
Red Hat AMQ 2021.q2

Using AMQ Streams on OpenShift

For use with AMQ Streams 1.7 on OpenShift Container Platform

Last Updated: 2021-04-30





Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

For use with AMQ Streams 1.7 on OpenShift Container Platform



Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install, configure, and manage Red Hat AMQ Streams to build a large-
scale messaging network.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. OVERVIEW OF AMQ STREAMS
1.1. KAFKA CAPABILITIES
1.2. KAFKA USE CASES
1.3. HOW AMQ STREAMS SUPPORTS KAFKA
1.4. AMQ STREAMS OPERATORS

Operators
1.4.1. Cluster Operator
1.4.2. Topic Operator
1.4.3. User Operator

1.5. AMQ STREAMS CUSTOM RESOURCES
1.5.1. AMQ Streams custom resource example

1.6. LISTENER CONFIGURATION
1.7. DOCUMENT CONVENTIONS

CHAPTER 2. DEPLOYMENT CONFIGURATION
2.1. KAFKA CLUSTER CONFIGURATION

2.1.1. Configuring Kafka
2.1.2. Configuring the Entity Operator

2.1.2.1. Entity Operator configuration properties
2.1.2.2. Topic Operator configuration properties
2.1.2.3. User Operator configuration properties

2.1.3. Kafka and ZooKeeper storage types
2.1.3.1. Data storage considerations

2.1.3.1.1. File systems
2.1.3.1.2. Apache Kafka and ZooKeeper storage

2.1.3.2. Ephemeral storage
2.1.3.2.1. Log directories

2.1.3.3. Persistent storage
2.1.3.3.1. Storage class overrides
2.1.3.3.2. Persistent Volume Claim naming
2.1.3.3.3. Log directories

2.1.3.4. Resizing persistent volumes
2.1.3.5. JBOD storage overview

2.1.3.5.1. JBOD configuration
2.1.3.5.2. JBOD and Persistent Volume Claims
2.1.3.5.3. Log directories

2.1.3.6. Adding volumes to JBOD storage
2.1.3.7. Removing volumes from JBOD storage

2.1.4. Scaling clusters
2.1.4.1. Scaling Kafka clusters

2.1.4.1.1. Adding brokers to a cluster
2.1.4.1.2. Removing brokers from a cluster

2.1.4.2. Partition reassignment
2.1.4.2.1. Reassignment JSON file
2.1.4.2.2. Reassigning partitions between JBOD volumes

2.1.4.3. Generating reassignment JSON files
2.1.4.4. Creating reassignment JSON files manually
2.1.4.5. Reassignment throttles
2.1.4.6. Scaling up a Kafka cluster

14

15
15
15
16
16
16
17
18
19
19

20
22
23

24
24
25
30
30
31
32
33
34
34
34
35
35
35
37
38
38
38
39
40
40
40
40
42
42
43
43
43
43
44
44
45
46
46
47

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.4.7. Scaling down a Kafka cluster
2.1.5. Maintenance time windows for rolling updates

2.1.5.1. Maintenance time windows overview
2.1.5.2. Maintenance time window definition
2.1.5.3. Configuring a maintenance time window

2.1.6. Connecting to ZooKeeper from a terminal
2.1.7. Deleting Kafka nodes manually
2.1.8. Deleting ZooKeeper nodes manually
2.1.9. List of Kafka cluster resources

2.2. KAFKA CONNECT/S2I CLUSTER CONFIGURATION
2.2.1. Configuring Kafka Connect
2.2.2. Kafka Connect configuration for multiple instances
2.2.3. Configuring Kafka Connect user authorization
2.2.4. Performing a restart of a Kafka connector
2.2.5. Performing a restart of a Kafka connector task
2.2.6. Migrating from Kafka Connect with S2I to Kafka Connect
2.2.7. List of Kafka Connect cluster resources
2.2.8. List of Kafka Connect (S2I) cluster resources
2.2.9. Integrating with Debezium for change data capture

2.3. KAFKA MIRRORMAKER CLUSTER CONFIGURATION
2.3.1. Configuring Kafka MirrorMaker
2.3.2. List of Kafka MirrorMaker cluster resources

2.4. KAFKA MIRRORMAKER 2.0 CLUSTER CONFIGURATION
2.4.1. MirrorMaker 2.0 data replication
2.4.2. Cluster configuration

2.4.2.1. Bidirectional replication (active/active)
2.4.2.2. Unidirectional replication (active/passive)
2.4.2.3. Topic configuration synchronization
2.4.2.4. Data integrity
2.4.2.5. Offset tracking
2.4.2.6. Synchronizing consumer group offsets
2.4.2.7. Connectivity checks

2.4.3. ACL rules synchronization
2.4.4. Synchronizing data between Kafka clusters using MirrorMaker 2.0
2.4.5. Performing a restart of a Kafka MirrorMaker 2.0 connector
2.4.6. Performing a restart of a Kafka MirrorMaker 2.0 connector task

2.5. KAFKA BRIDGE CLUSTER CONFIGURATION
2.5.1. Configuring the Kafka Bridge
2.5.2. List of Kafka Bridge cluster resources

2.6. CUSTOMIZING OPENSHIFT RESOURCES
2.6.1. Customizing the image pull policy

2.7. CONFIGURING POD SCHEDULING
2.7.1. Specifying affinity, tolerations, and topology spread constraints

2.7.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
2.7.1.2. Use node affinity to schedule workloads onto specific nodes
2.7.1.3. Use node affinity and tolerations for dedicated nodes

2.7.2. Configuring pod anti-affinity in Kafka components
2.7.3. Configuring node affinity in Kafka components
2.7.4. Setting up dedicated nodes and scheduling pods on them

2.8. EXTERNAL LOGGING
2.8.1. Creating a ConfigMap for logging

CHAPTER 3. CONFIGURING EXTERNAL LISTENERS

48
50
50
50
51
52
52
53
54
57
58
62
63
66
67
67
69
70
70
71
71
75
75
76
76
77
77
78
78
78
78
79
79
79
85
85
86
86
89
89
91
91
91

92
92
92
93
93
94
95
96

98

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1. ACCESSING KAFKA USING NODE PORTS
3.2. ACCESSING KAFKA USING LOADBALANCERS
3.3. ACCESSING KAFKA USING INGRESS
3.4. ACCESSING KAFKA USING OPENSHIFT ROUTES

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA
4.1. SECURITY OPTIONS FOR KAFKA

4.1.1. Listener authentication
4.1.1.1. Mutual TLS authentication
4.1.1.2. SCRAM-SHA-512 authentication
4.1.1.3. Network policies
4.1.1.4. Additional listener configuration options

4.1.2. Kafka authorization
4.1.2.1. Super users

4.2. SECURITY OPTIONS FOR KAFKA CLIENTS
4.2.1. Identifying a Kafka cluster for user handling
4.2.2. User authentication

4.2.2.1. TLS Client Authentication
4.2.2.2. SCRAM-SHA-512 Authentication

4.2.3. User authorization
4.2.3.1. ACL rules
4.2.3.2. Super user access to Kafka brokers
4.2.3.3. User quotas

4.3. SECURING ACCESS TO KAFKA BROKERS
4.3.1. Securing Kafka brokers
4.3.2. Securing user access to Kafka
4.3.3. Restricting access to Kafka listeners using network policies

4.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION
4.4.1. OAuth 2.0 authentication mechanisms
4.4.2. OAuth 2.0 Kafka broker configuration

4.4.2.1. OAuth 2.0 client configuration on an authorization server
4.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
4.4.2.3. Fast local JWT token validation configuration
4.4.2.4. OAuth 2.0 introspection endpoint configuration

4.4.3. Session re-authentication for Kafka brokers
4.4.4. OAuth 2.0 Kafka client configuration
4.4.5. OAuth 2.0 client authentication flow

4.4.5.1. Example client authentication flows
4.4.6. Configuring OAuth 2.0 authentication

4.4.6.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server
4.4.6.2. Configuring OAuth 2.0 support for Kafka brokers
4.4.6.3. Configuring Kafka Java clients to use OAuth 2.0
4.4.6.4. Configuring OAuth 2.0 for Kafka components

4.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
4.5.1. OAuth 2.0 authorization mechanism

4.5.1.1. Kafka broker custom authorizer
4.5.2. Configuring OAuth 2.0 authorization support

CHAPTER 5. USING AMQ STREAMS OPERATORS
5.1. USING THE CLUSTER OPERATOR

5.1.1. Cluster Operator configuration
5.1.1.1. Logging configuration by ConfigMap
5.1.1.2. Restricting Cluster Operator access with network policy

98
99

100
102

104
104
104
106
106
107
107
107
108
108
109
109
109
110
111
111
111
111

112
113
114
116
117
117
119
119

120
121
122
122
123
124
125
127
127
128
132
133
136
136
136
137

140
140
140
143
143

Table of Contents

3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.1.3. Periodic reconciliation
5.1.2. Provisioning Role-Based Access Control (RBAC)

5.1.2.1. Delegated privileges
5.1.2.2. ServiceAccount
5.1.2.3. ClusterRoles
5.1.2.4. ClusterRoleBindings

5.2. USING THE TOPIC OPERATOR
5.2.1. Kafka topic resource

5.2.1.1. Identifying a Kafka cluster for topic handling
5.2.1.2. Kafka topic usage recommendations
5.2.1.3. Kafka topic naming conventions

5.2.2. Topic Operator topic store
5.2.2.1. Internal topic store topics
5.2.2.2. Migrating topic metadata from ZooKeeper
5.2.2.3. Downgrading to an AMQ Streams version that uses ZooKeeper to store topic metadata
5.2.2.4. Topic Operator topic replication and scaling
5.2.2.5. Handling changes to topics

5.2.3. Configuring a Kafka topic
5.2.4. Configuring the Topic Operator with resource requests and limits

5.3. USING THE USER OPERATOR
5.3.1. Configuring the User Operator with resource requests and limits

5.4. MONITORING OPERATORS USING PROMETHEUS METRICS

CHAPTER 6. KAFKA BRIDGE
6.1. KAFKA BRIDGE OVERVIEW

6.1.1. Kafka Bridge interface
6.1.1.1. HTTP requests

6.1.2. Supported clients for the Kafka Bridge
6.1.3. Securing the Kafka Bridge
6.1.4. Accessing the Kafka Bridge outside of OpenShift
6.1.5. Requests to the Kafka Bridge

6.1.5.1. Content Type headers
6.1.5.2. Embedded data format
6.1.5.3. Message format
6.1.5.4. Accept headers

6.1.6. CORS
6.1.6.1. Simple request
6.1.6.2. Preflighted request

6.1.7. Kafka Bridge API resources
6.1.8. Kafka Bridge deployment

6.2. KAFKA BRIDGE QUICKSTART
6.2.1. Deploying the Kafka Bridge to your OpenShift cluster
6.2.2. Exposing the Kafka Bridge service to your local machine
6.2.3. Producing messages to topics and partitions
6.2.4. Creating a Kafka Bridge consumer
6.2.5. Subscribing a Kafka Bridge consumer to topics
6.2.6. Retrieving the latest messages from a Kafka Bridge consumer
6.2.7. Commiting offsets to the log
6.2.8. Seeking to offsets for a partition
6.2.9. Deleting a Kafka Bridge consumer

CHAPTER 7. USING THE KAFKA BRIDGE WITH 3SCALE
7.1. USING THE KAFKA BRIDGE WITH 3SCALE

144
144
144
145
146
153
155
155
156
156
156
157
157
158
158
158
159
160
161

162
162
163

164
164
164
164
165
165
166
166
166
167
168
168
169
169
169
170
170
171
171
172
173
175
176
176
177
178
179

181
181

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1.1. Kafka Bridge service discovery
7.1.2. 3scale APIcast gateway policies
7.1.3. TLS validation
7.1.4. 3scale documentation

7.2. DEPLOYING 3SCALE FOR THE KAFKA BRIDGE

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING
8.1. WHY USE CRUISE CONTROL?
8.2. OPTIMIZATION GOALS OVERVIEW

Goals configuration in AMQ Streams custom resources
Hard goals and soft goals
Master optimization goals
Default optimization goals
User-provided optimization goals

8.3. OPTIMIZATION PROPOSALS OVERVIEW
Cached optimization proposal
Contents of optimization proposals

8.4. REBALANCE PERFORMANCE TUNING OVERVIEW
Partition reassignment commands
Replica movement strategies
Rebalance tuning options

8.5. CRUISE CONTROL CONFIGURATION
Cross-Origin Resource Sharing configuration
Capacity configuration
Logging configuration

8.6. DEPLOYING CRUISE CONTROL
Auto-created topics

8.7. GENERATING OPTIMIZATION PROPOSALS
8.8. APPROVING AN OPTIMIZATION PROPOSAL
8.9. STOPPING A CLUSTER REBALANCE
8.10. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

CHAPTER 9. VALIDATING SCHEMAS WITH SERVICE REGISTRY

CHAPTER 10. DISTRIBUTED TRACING
How AMQ Streams supports tracing
Outline of procedures
10.1. OVERVIEW OF OPENTRACING AND JAEGER
10.2. SETTING UP TRACING FOR KAFKA CLIENTS

10.2.1. Initializing a Jaeger tracer for Kafka clients
10.2.2. Environment variables for tracing

10.3. INSTRUMENTING KAFKA CLIENTS WITH TRACERS
10.3.1. Instrumenting producers and consumers for tracing

10.3.1.1. Custom span names in a Decorator pattern
10.3.1.2. Built-in span names

10.3.2. Instrumenting Kafka Streams applications for tracing
10.4. SETTING UP TRACING FOR MIRRORMAKER, KAFKA CONNECT, AND THE KAFKA BRIDGE

10.4.1. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources

CHAPTER 11. MANAGING TLS CERTIFICATES
11.1. CERTIFICATE AUTHORITIES

11.1.1. CA certificates
11.1.2. Installing your own CA certificates

11.2. SECRETS

181
181

183
183
183

188
188
188
189
189
190
191

192
192
193
193
194
195
195
195
197
197
198
199

200
201

202
204
205
206

208

209
209
209
210
210
210
211
213
213
215
216
216
217
217

221
221
221
222
223

Table of Contents

5



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.2.1. PKCS #12 storage
11.2.2. Cluster CA Secrets
11.2.3. Client CA Secrets
11.2.4. Adding labels and annotations to Secrets
11.2.5. Disabling ownerReference in the CA Secrets
11.2.6. User Secrets

11.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS
11.3.1. Renewal process with automatically generated CA certificates
11.3.2. Client certificate renewal
11.3.3. Manually renewing the CA certificates generated by the Cluster Operator
11.3.4. Replacing private keys used by the CA certificates generated by the Cluster Operator
11.3.5. Renewing your own CA certificates

11.4. TLS CONNECTIONS
11.4.1. ZooKeeper communication
11.4.2. Kafka interbroker communication
11.4.3. Topic and User Operators
11.4.4. Cruise Control
11.4.5. Kafka Client connections

11.5. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA
11.6. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA
11.7. KAFKA LISTENER CERTIFICATES

11.7.1. Providing your own Kafka listener certificates
11.7.2. Alternative subjects in server certificates for Kafka listeners

11.7.2.1. TLS listener SAN examples
11.7.2.2. External listener SAN examples

CHAPTER 12. MANAGING AMQ STREAMS
12.1. WORKING WITH CUSTOM RESOURCES

12.1.1. Performing oc operations on custom resources
12.1.1.1. Resource categories
12.1.1.2. Querying the status of sub-resources

12.1.2. AMQ Streams custom resource status information
12.1.3. Finding the status of a custom resource

12.2. PAUSING RECONCILIATION OF CUSTOM RESOURCES
12.3. MANUALLY STARTING ROLLING UPDATES OF KAFKA AND ZOOKEEPER CLUSTERS

12.3.1. Prerequisites
12.3.2. Performing a rolling update using a StatefulSet annotation
12.3.3. Performing a rolling update using a Pod annotation

12.4. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS
Example internal Kafka bootstrap service
Example HTTP Bridge service
12.4.1. Returning connection details on services

12.5. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES
12.5.1. Recovery from namespace deletion
12.5.2. Recovery from loss of an OpenShift cluster
12.5.3. Recovering a deleted cluster from persistent volumes

12.6. TUNING CLIENT CONFIGURATION
12.6.1. Kafka producer configuration tuning

12.6.1.1. Basic producer configuration
12.6.1.2. Data durability
12.6.1.3. Ordered delivery
12.6.1.4. Reliability guarantees
12.6.1.5. Optimizing throughput and latency

224
224
226
226
227
227
228
229
229
230
232
233
234
234
234
235
235
235
235
237
238
238
240
240
241

242
242
242
243
243
244
247
247
248
249
249
249
250
250
251
251
251
251

252
252
256
257
257
257
258
259
259

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.6.2. Kafka consumer configuration tuning
12.6.2.1. Basic consumer configuration
12.6.2.2. Scaling data consumption using consumer groups
12.6.2.3. Message ordering guarantees
12.6.2.4. Optimizing throughput and latency
12.6.2.5. Avoiding data loss or duplication when committing offsets

12.6.2.5.1. Controlling transactional messages
12.6.2.6. Recovering from failure to avoid data loss
12.6.2.7. Managing offset policy
12.6.2.8. Minimizing the impact of rebalances

12.7. UNINSTALLING AMQ STREAMS
12.8. FREQUENTLY ASKED QUESTIONS

12.8.1. Questions related to the Cluster Operator
12.8.1.1. Why do I need cluster administrator privileges to install AMQ Streams?
12.8.1.2. Why does the Cluster Operator need to create ClusterRoleBindings?
12.8.1.3. Can standard OpenShift users create Kafka custom resources?
12.8.1.4. What do the failed to acquire lock warnings in the log mean?
12.8.1.5. Why is hostname verification failing when connecting to NodePorts using TLS?

CHAPTER 13. CUSTOM RESOURCE API REFERENCE
13.1. COMMON CONFIGURATION PROPERTIES

13.1.1. replicas
13.1.2. bootstrapServers
13.1.3. ssl
13.1.4. trustedCertificates
13.1.5. resources
13.1.6. image
13.1.7. livenessProbe and readinessProbe healthchecks
13.1.8. metricsConfig
13.1.9. jvmOptions
13.1.10. Garbage collector logging

13.2. SCHEMA PROPERTIES
13.2.1. Kafka schema reference
13.2.2. KafkaSpec schema reference
13.2.3. KafkaClusterSpec schema reference

13.2.3.1. listeners
13.2.3.2. config
13.2.3.3. brokerRackInitImage
13.2.3.4. logging
13.2.3.5. KafkaClusterSpec schema properties

13.2.4. GenericKafkaListener schema reference
13.2.4.1. listeners
13.2.4.2. type
13.2.4.3. port
13.2.4.4. tls
13.2.4.5. authentication
13.2.4.6. networkPolicyPeers
13.2.4.7. GenericKafkaListener schema properties

13.2.5. KafkaListenerAuthenticationTls schema reference
13.2.6. KafkaListenerAuthenticationScramSha512 schema reference
13.2.7. KafkaListenerAuthenticationOAuth schema reference
13.2.8. GenericSecretSource schema reference
13.2.9. CertSecretSource schema reference

261
261
262
263
263
264
265
265
265
266
267
268
268
268
268
269
269
269

271
271
271
271
271

272
272
274
277
278
279
281
282
282
282
283
283
283
285
286
287
290
291
291

294
295
295
295
296
297
298
298
301
302

Table of Contents

7



13.2.10. GenericKafkaListenerConfiguration schema reference
13.2.10.1. brokerCertChainAndKey
13.2.10.2. externalTrafficPolicy
13.2.10.3. loadBalancerSourceRanges
13.2.10.4. class
13.2.10.5. preferredNodePortAddressType
13.2.10.6. useServiceDnsDomain
13.2.10.7. GenericKafkaListenerConfiguration schema properties

13.2.11. CertAndKeySecretSource schema reference
13.2.12. GenericKafkaListenerConfigurationBootstrap schema reference

13.2.12.1. alternativeNames
13.2.12.2. host
13.2.12.3. nodePort
13.2.12.4. loadBalancerIP
13.2.12.5. annotations
13.2.12.6. GenericKafkaListenerConfigurationBootstrap schema properties

13.2.13. GenericKafkaListenerConfigurationBroker schema reference
13.2.13.1. GenericKafkaListenerConfigurationBroker schema properties

13.2.14. KafkaListeners schema reference
13.2.15. KafkaListenerPlain schema reference
13.2.16. KafkaListenerTls schema reference
13.2.17. TlsListenerConfiguration schema reference
13.2.18. KafkaListenerExternalRoute schema reference
13.2.19. RouteListenerOverride schema reference
13.2.20. RouteListenerBootstrapOverride schema reference
13.2.21. RouteListenerBrokerOverride schema reference
13.2.22. KafkaListenerExternalConfiguration schema reference
13.2.23. KafkaListenerExternalLoadBalancer schema reference
13.2.24. LoadBalancerListenerOverride schema reference
13.2.25. LoadBalancerListenerBootstrapOverride schema reference
13.2.26. LoadBalancerListenerBrokerOverride schema reference
13.2.27. KafkaListenerExternalNodePort schema reference
13.2.28. NodePortListenerOverride schema reference
13.2.29. NodePortListenerBootstrapOverride schema reference
13.2.30. NodePortListenerBrokerOverride schema reference
13.2.31. NodePortListenerConfiguration schema reference
13.2.32. KafkaListenerExternalIngress schema reference
13.2.33. IngressListenerConfiguration schema reference
13.2.34. IngressListenerBootstrapConfiguration schema reference
13.2.35. IngressListenerBrokerConfiguration schema reference
13.2.36. EphemeralStorage schema reference
13.2.37. PersistentClaimStorage schema reference
13.2.38. PersistentClaimStorageOverride schema reference
13.2.39. JbodStorage schema reference
13.2.40. KafkaAuthorizationSimple schema reference

13.2.40.1. superUsers
13.2.40.2. KafkaAuthorizationSimple schema properties

13.2.41. KafkaAuthorizationOpa schema reference
13.2.41.1. url
13.2.41.2. allowOnError
13.2.41.3. initialCacheCapacity
13.2.41.4. maximumCacheSize
13.2.41.5. expireAfterMs

302
302
303
303
303
304
304
305
306
306
307
307
308
309
309
310
311
312
313
313
313
314
314
315
315
316
316
316
317
318
318
319

320
320
321
321

322
323
323
324
324
325
325
326
326
326
327
327
327
328
328
328
328

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

8



13.2.41.6. superUsers
13.2.41.7. KafkaAuthorizationOpa schema properties

13.2.42. KafkaAuthorizationKeycloak schema reference
13.2.43. Rack schema reference

13.2.43.1. Rack schema properties
13.2.44. Probe schema reference
13.2.45. JvmOptions schema reference
13.2.46. SystemProperty schema reference
13.2.47. KafkaJmxOptions schema reference

13.2.47.1. KafkaJmxOptions schema properties
13.2.48. KafkaJmxAuthenticationPassword schema reference
13.2.49. JmxPrometheusExporterMetrics schema reference
13.2.50. ExternalConfigurationReference schema reference
13.2.51. InlineLogging schema reference
13.2.52. ExternalLogging schema reference
13.2.53. TlsSidecar schema reference

13.2.53.1. TlsSidecar schema properties
13.2.54. KafkaClusterTemplate schema reference
13.2.55. StatefulSetTemplate schema reference
13.2.56. MetadataTemplate schema reference

13.2.56.1. MetadataTemplate schema properties
13.2.57. PodTemplate schema reference

13.2.57.1. hostAliases
13.2.57.2. PodTemplate schema properties

13.2.58. ResourceTemplate schema reference
13.2.59. ExternalServiceTemplate schema reference

13.2.59.1. ExternalServiceTemplate schema properties
13.2.60. PodDisruptionBudgetTemplate schema reference

13.2.60.1. PodDisruptionBudgetTemplate schema properties
13.2.61. ContainerTemplate schema reference

13.2.61.1. ContainerTemplate schema properties
13.2.62. ContainerEnvVar schema reference
13.2.63. ZookeeperClusterSpec schema reference

13.2.63.1. config
13.2.63.2. logging
13.2.63.3. ZookeeperClusterSpec schema properties

13.2.64. ZookeeperClusterTemplate schema reference
13.2.65. TopicOperatorSpec schema reference
13.2.66. EntityOperatorSpec schema reference
13.2.67. EntityTopicOperatorSpec schema reference

13.2.67.1. logging
13.2.67.2. EntityTopicOperatorSpec schema properties

13.2.68. EntityUserOperatorSpec schema reference
13.2.68.1. logging
13.2.68.2. EntityUserOperatorSpec schema properties

13.2.69. EntityOperatorTemplate schema reference
13.2.70. CertificateAuthority schema reference
13.2.71. CruiseControlSpec schema reference
13.2.72. CruiseControlTemplate schema reference
13.2.73. BrokerCapacity schema reference
13.2.74. KafkaExporterSpec schema reference
13.2.75. KafkaExporterTemplate schema reference
13.2.76. KafkaStatus schema reference

328
328
329
330
332
332
333
334
334
335
336
336
336
336
337
337
339
340
341

342
342
343
343
343
345
345
345
346
347
347
348
348
348
348
349
351
352
353
355
355
356
357
358
358
360
360
361

362
363
364
365
366
366

Table of Contents

9



13.2.77. Condition schema reference
13.2.78. ListenerStatus schema reference
13.2.79. ListenerAddress schema reference
13.2.80. KafkaConnect schema reference
13.2.81. KafkaConnectSpec schema reference

13.2.81.1. config
13.2.81.2. logging
13.2.81.3. KafkaConnectSpec schema properties

13.2.82. KafkaConnectTls schema reference
13.2.82.1. trustedCertificates
13.2.82.2. KafkaConnectTls schema properties

13.2.83. KafkaClientAuthenticationTls schema reference
13.2.83.1. certificateAndKey
13.2.83.2. KafkaClientAuthenticationTls schema properties

13.2.84. KafkaClientAuthenticationScramSha512 schema reference
13.2.84.1. username
13.2.84.2. passwordSecret
13.2.84.3. KafkaClientAuthenticationScramSha512 schema properties

13.2.85. PasswordSecretSource schema reference
13.2.86. KafkaClientAuthenticationPlain schema reference

13.2.86.1. username
13.2.86.2. passwordSecret
13.2.86.3. KafkaClientAuthenticationPlain schema properties

13.2.87. KafkaClientAuthenticationOAuth schema reference
13.2.87.1. KafkaClientAuthenticationOAuth schema properties

13.2.88. JaegerTracing schema reference
13.2.89. KafkaConnectTemplate schema reference
13.2.90. DeploymentTemplate schema reference
13.2.91. ExternalConfiguration schema reference

13.2.91.1. env
13.2.91.2. volumes
13.2.91.3. ExternalConfiguration schema properties

13.2.92. ExternalConfigurationEnv schema reference
13.2.93. ExternalConfigurationEnvVarSource schema reference
13.2.94. ExternalConfigurationVolumeSource schema reference
13.2.95. Build schema reference

13.2.95.1. output
13.2.95.2. plugins
13.2.95.3. Build schema properties

13.2.96. DockerOutput schema reference
13.2.97. ImageStreamOutput schema reference
13.2.98. Plugin schema reference
13.2.99. JarArtifact schema reference
13.2.100. TgzArtifact schema reference
13.2.101. ZipArtifact schema reference
13.2.102. KafkaConnectStatus schema reference
13.2.103. ConnectorPlugin schema reference
13.2.104. KafkaConnectS2I schema reference
13.2.105. KafkaConnectS2ISpec schema reference

13.2.105.1. KafkaConnectS2ISpec schema properties
13.2.106. KafkaConnectS2IStatus schema reference
13.2.107. KafkaTopic schema reference
13.2.108. KafkaTopicSpec schema reference

367
367
368
368
368
369
370
372
374
374
374
375
375
375
376
376
376
377
377
377
378
378
379
379
381
382
383
384
384
384
386
387
387
387
388
388
388
390
392
393
393
394
394
394
395
395
396
396
397
397
400
401
401

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

10



13.2.109. KafkaTopicStatus schema reference
13.2.110. KafkaUser schema reference
13.2.111. KafkaUserSpec schema reference
13.2.112. KafkaUserTlsClientAuthentication schema reference
13.2.113. KafkaUserScramSha512ClientAuthentication schema reference
13.2.114. KafkaUserAuthorizationSimple schema reference
13.2.115. AclRule schema reference

13.2.115.1. resource
13.2.115.2. type
13.2.115.3. operation
13.2.115.4. host
13.2.115.5. AclRule schema properties

13.2.116. AclRuleTopicResource schema reference
13.2.117. AclRuleGroupResource schema reference
13.2.118. AclRuleClusterResource schema reference
13.2.119. AclRuleTransactionalIdResource schema reference
13.2.120. KafkaUserQuotas schema reference

13.2.120.1. quotas
13.2.120.2. KafkaUserQuotas schema properties

13.2.121. KafkaUserTemplate schema reference
13.2.121.1. KafkaUserTemplate schema properties

13.2.122. KafkaUserStatus schema reference
13.2.123. KafkaMirrorMaker schema reference
13.2.124. KafkaMirrorMakerSpec schema reference

13.2.124.1. whitelist
13.2.124.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec
13.2.124.3. logging
13.2.124.4. KafkaMirrorMakerSpec schema properties

13.2.125. KafkaMirrorMakerConsumerSpec schema reference
13.2.125.1. numStreams
13.2.125.2. offsetCommitInterval
13.2.125.3. config
13.2.125.4. groupId
13.2.125.5. KafkaMirrorMakerConsumerSpec schema properties

13.2.126. KafkaMirrorMakerTls schema reference
13.2.126.1. trustedCertificates
13.2.126.2. KafkaMirrorMakerTls schema properties

13.2.127. KafkaMirrorMakerProducerSpec schema reference
13.2.127.1. abortOnSendFailure
13.2.127.2. config
13.2.127.3. KafkaMirrorMakerProducerSpec schema properties

13.2.128. KafkaMirrorMakerTemplate schema reference
13.2.129. KafkaMirrorMakerStatus schema reference
13.2.130. KafkaBridge schema reference
13.2.131. KafkaBridgeSpec schema reference

13.2.131.1. logging
13.2.131.2. KafkaBridgeSpec schema properties

13.2.132. KafkaBridgeTls schema reference
13.2.133. KafkaBridgeHttpConfig schema reference

13.2.133.1. cors
13.2.133.2. KafkaBridgeHttpConfig schema properties

13.2.134. KafkaBridgeHttpCors schema reference
13.2.135. KafkaBridgeConsumerSpec schema reference

401
402
402
403
403
403
404
404
405
405
406
406
406
407
407
408
408
408
409
409
410
410
410
411
411
411
411

412
414
414
414
414
416
416
416
417
417
417
417
417
418
419
419

420
420
421

423
424
424
425
425
425
426

Table of Contents

11



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.2.135.1. KafkaBridgeConsumerSpec schema properties
13.2.136. KafkaBridgeProducerSpec schema reference

13.2.136.1. KafkaBridgeProducerSpec schema properties
13.2.137. KafkaBridgeTemplate schema reference
13.2.138. KafkaBridgeStatus schema reference
13.2.139. KafkaConnector schema reference
13.2.140. KafkaConnectorSpec schema reference
13.2.141. KafkaConnectorStatus schema reference
13.2.142. KafkaMirrorMaker2 schema reference
13.2.143. KafkaMirrorMaker2Spec schema reference
13.2.144. KafkaMirrorMaker2ClusterSpec schema reference

13.2.144.1. config
13.2.144.2. KafkaMirrorMaker2ClusterSpec schema properties

13.2.145. KafkaMirrorMaker2Tls schema reference
13.2.146. KafkaMirrorMaker2MirrorSpec schema reference
13.2.147. KafkaMirrorMaker2ConnectorSpec schema reference
13.2.148. KafkaMirrorMaker2Status schema reference
13.2.149. KafkaRebalance schema reference
13.2.150. KafkaRebalanceSpec schema reference
13.2.151. KafkaRebalanceStatus schema reference

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files

427
427
428
428
429
429
430
430
431
431

433
433
433
434
434
435
436
437
437
438

439
439
439
439

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

12



Table of Contents

13



MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

14

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language


CHAPTER 1. OVERVIEW OF AMQ STREAMS
AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

This guide provides instructions for configuring Kafka components and using AMQ Streams Operators.
Procedures relate to how you might want to modify your deployment and introduce additional features,
such as Cruise Control or distributed tracing.

You can configure your deployment using AMQ Streams custom resources . The Custom resource API
reference describes the properties you can use in your configuration.

NOTE

Looking to get started with AMQ Streams? For step-by-step deployment instructions,
see the Deploying and Upgrading AMQ Streams on OpenShift  guide.

1.1. KAFKA CAPABILITIES

The underlying data stream-processing capabilities and component architecture of Kafka can deliver:

Microservices and other applications to share data with extremely high throughput and low
latency

Message ordering guarantees

Message rewind/replay from data storage to reconstruct an application state

Message compaction to remove old records when using a key-value log

Horizontal scalability in a cluster configuration

Replication of data to control fault tolerance

Retention of high volumes of data for immediate access

1.2. KAFKA USE CASES

Kafka’s capabilities make it suitable for:

Event-driven architectures

Event sourcing to capture changes to the state of an application as a log of events

Message brokering

Website activity tracking

Operational monitoring through metrics

Log collection and aggregation

Commit logs for distributed systems

Stream processing so that applications can respond to data in real time

CHAPTER 1. OVERVIEW OF AMQ STREAMS

15

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index


1.3. HOW AMQ STREAMS SUPPORTS KAFKA

AMQ Streams provides container images and Operators for running Kafka on OpenShift. AMQ Streams
Operators are fundamental to the running of AMQ Streams. The Operators provided with AMQ Streams
are purpose-built with specialist operational knowledge to effectively manage Kafka.

Operators simplify the process of:

Deploying and running Kafka clusters

Deploying and running Kafka components

Configuring access to Kafka

Securing access to Kafka

Upgrading Kafka

Managing brokers

Creating and managing topics

Creating and managing users

1.4. AMQ STREAMS OPERATORS

AMQ Streams supports Kafka using Operators to deploy and manage the components and
dependencies of Kafka to OpenShift.

Operators are a method of packaging, deploying, and managing an OpenShift application. AMQ Streams
Operators extend OpenShift functionality, automating common and complex tasks related to a Kafka
deployment. By implementing knowledge of Kafka operations in code, Kafka administration tasks are
simplified and require less manual intervention.

Operators
AMQ Streams provides Operators for managing a Kafka cluster running within an OpenShift cluster.

Cluster Operator

Deploys and manages Apache Kafka clusters, Kafka Connect, Kafka MirrorMaker, Kafka Bridge, Kafka
Exporter, and the Entity Operator

Entity Operator

Comprises the Topic Operator and User Operator

Topic Operator

Manages Kafka topics

User Operator

Manages Kafka users

The Cluster Operator can deploy the Topic Operator and User Operator as part of an Entity Operator
configuration at the same time as a Kafka cluster.

Operators within the AMQ Streams architecture

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

16



1.4.1. Cluster Operator

AMQ Streams uses the Cluster Operator to deploy and manage clusters for:

Kafka (including ZooKeeper, Entity Operator, Kafka Exporter, and Cruise Control)

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

Custom resources are used to deploy the clusters.

For example, to deploy a Kafka cluster:

A Kafka resource with the cluster configuration is created within the OpenShift cluster.

The Cluster Operator deploys a corresponding Kafka cluster, based on what is declared in the 
Kafka resource.

The Cluster Operator can also deploy (through configuration of the Kafka resource):

A Topic Operator to provide operator-style topic management through KafkaTopic custom
resources

A User Operator to provide operator-style user management through KafkaUser custom

CHAPTER 1. OVERVIEW OF AMQ STREAMS

17



A User Operator to provide operator-style user management through KafkaUser custom
resources

The Topic Operator and User Operator function within the Entity Operator on deployment.

Example architecture for the Cluster Operator

1.4.2. Topic Operator

The Topic Operator provides a way of managing topics in a Kafka cluster through OpenShift resources.

Example architecture for the Topic Operator

The role of the Topic Operator is to keep a set of KafkaTopic OpenShift resources describing Kafka
topics in-sync with corresponding Kafka topics.

Specifically, if a KafkaTopic is:

Created, the Topic Operator creates the topic

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

18



Deleted, the Topic Operator deletes the topic

Changed, the Topic Operator updates the topic

Working in the other direction, if a topic is:

Created within the Kafka cluster, the Operator creates a KafkaTopic

Deleted from the Kafka cluster, the Operator deletes the KafkaTopic

Changed in the Kafka cluster, the Operator updates the KafkaTopic

This allows you to declare a KafkaTopic as part of your application’s deployment and the Topic
Operator will take care of creating the topic for you. Your application just needs to deal with producing
or consuming from the necessary topics.

The Topic Operator maintains information about each topic in a topic store, which is continually
synchronized with updates from Kafka topics or OpenShift KafkaTopic custom resources. Updates from
operations applied to a local in-memory topic store are persisted to a backup topic store on disk. If a
topic is reconfigured or reassigned to other brokers, the KafkaTopic will always be up to date.

1.4.3. User Operator

The User Operator manages Kafka users for a Kafka cluster by watching for KafkaUser resources that
describe Kafka users, and ensuring that they are configured properly in the Kafka cluster.

For example, if a KafkaUser is:

Created, the User Operator creates the user it describes

Deleted, the User Operator deletes the user it describes

Changed, the User Operator updates the user it describes

Unlike the Topic Operator, the User Operator does not sync any changes from the Kafka cluster with the
OpenShift resources. Kafka topics can be created by applications directly in Kafka, but it is not expected
that the users will be managed directly in the Kafka cluster in parallel with the User Operator.

The User Operator allows you to declare a KafkaUser resource as part of your application’s deployment.
You can specify the authentication and authorization mechanism for the user. You can also configure
user quotas  that control usage of Kafka resources to ensure, for example, that a user does not
monopolize access to a broker.

When the user is created, the user credentials are created in a Secret. Your application needs to use the
user and its credentials for authentication and to produce or consume messages.

In addition to managing credentials for authentication, the User Operator also manages authorization
rules by including a description of the user’s access rights in the KafkaUser declaration.

1.5. AMQ STREAMS CUSTOM RESOURCES

A deployment of Kafka components to an OpenShift cluster using AMQ Streams is highly configurable
through the application of custom resources. Custom resources are created as instances of APIs added
by Custom resource definitions (CRDs) to extend OpenShift resources.

CRDs act as configuration instructions to describe the custom resources in an OpenShift cluster, and are

CHAPTER 1. OVERVIEW OF AMQ STREAMS

19



provided with AMQ Streams for each Kafka component used in a deployment, as well as users and
topics. CRDs and custom resources are defined as YAML files. Example YAML files are provided with
the AMQ Streams distribution.

CRDs also allow AMQ Streams resources to benefit from native OpenShift features like CLI accessibility
and configuration validation.

Additional resources

Extend the Kubernetes API with CustomResourceDefinitions

1.5.1. AMQ Streams custom resource example

CRDs require a one-time installation in a cluster to define the schemas used to instantiate and manage
AMQ Streams-specific resources.

After a new custom resource type is added to your cluster by installing a CRD, you can create instances
of the resource based on its specification.

Depending on the cluster setup, installation typically requires cluster admin privileges.

NOTE

Access to manage custom resources is limited to AMQ Streams administrators. For more
information, see Designating AMQ Streams administrators  in the Deploying and
Upgrading AMQ Streams on OpenShift guide.

A CRD defines a new kind of resource, such as kind:Kafka, within an OpenShift cluster.

The Kubernetes API server allows custom resources to be created based on the kind and understands
from the CRD how to validate and store the custom resource when it is added to the OpenShift cluster.

WARNING

When CRDs are deleted, custom resources of that type are also deleted.
Additionally, the resources created by the custom resource, such as pods and
statefulsets are also deleted.

Each AMQ Streams-specific custom resource conforms to the schema defined by the CRD for the
resource’s kind. The custom resources for AMQ Streams components have common configuration
properties, which are defined under spec.

To understand the relationship between a CRD and a custom resource, let’s look at a sample of the CRD
for a Kafka topic.

Kafka topic CRD



apiVersion: kafka.strimzi.io/v1beta2
kind: CustomResourceDefinition

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

20

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#adding-users-the-strimzi-admin-role-str


1

2

3

4

5

6

The metadata for the topic CRD, its name and a label to identify the CRD.

The specification for this CRD, including the group (domain) name, the plural name and the
supported schema version, which are used in the URL to access the API of the topic. The other
names are used to identify instance resources in the CLI. For example, oc get kafkatopic my-topic
or oc get kafkatopics.

The shortname can be used in CLI commands. For example, oc get kt can be used as an
abbreviation instead of oc get kafkatopic.

The information presented when using a get command on the custom resource.

The current status of the CRD as described in the schema reference for the resource.

openAPIV3Schema validation provides validation for the creation of topic custom resources. For
example, a topic requires at least one partition and one replica.

NOTE

metadata: 1
  name: kafkatopics.kafka.strimzi.io
  labels:
    app: strimzi
spec: 2
  group: kafka.strimzi.io
  versions:
    v1beta2
  scope: Namespaced
  names:
    # ...
    singular: kafkatopic
    plural: kafkatopics
    shortNames:
    - kt 3
  additionalPrinterColumns: 4
      # ...
  subresources:
    status: {} 5
  validation: 6
    openAPIV3Schema:
      properties:
        spec:
          type: object
          properties:
            partitions:
              type: integer
              minimum: 1
            replicas:
              type: integer
              minimum: 1
              maximum: 32767
      # ...

CHAPTER 1. OVERVIEW OF AMQ STREAMS

21

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/using_amq_streams_on_openshift/index#type-Kafka-reference


1

2

3

4

NOTE

You can identify the CRD YAML files supplied with the AMQ Streams installation files,
because the file names contain an index number followed by ‘Crd’.

Here is a corresponding example of a KafkaTopic custom resource.

Kafka topic custom resource

The kind and apiVersion identify the CRD of which the custom resource is an instance.

A label, applicable only to KafkaTopic and KafkaUser resources, that defines the name of the
Kafka cluster (which is same as the name of the Kafka resource) to which a topic or user belongs.

The spec shows the number of partitions and replicas for the topic as well as the configuration
parameters for the topic itself. In this example, the retention period for a message to remain in the
topic and the segment file size for the log are specified.

Status conditions for the KafkaTopic resource. The type condition changed to Ready at the 
lastTransitionTime.

Custom resources can be applied to a cluster through the platform CLI. When the custom resource is
created, it uses the same validation as the built-in resources of the Kubernetes API.

After a KafkaTopic custom resource is created, the Topic Operator is notified and corresponding Kafka
topics are created in AMQ Streams.

1.6. LISTENER CONFIGURATION

Listeners are used to connect to Kafka brokers.

AMQ Streams provides a generic GenericKafkaListener schema with properties to configure listeners
through the Kafka resource.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic 1
metadata:
  name: my-topic
  labels:
    strimzi.io/cluster: my-cluster 2
spec: 3
  partitions: 1
  replicas: 1
  config:
    retention.ms: 7200000
    segment.bytes: 1073741824
status:
  conditions: 4
    lastTransitionTime: "2019-08-20T11:37:00.706Z"
    status: "True"
    type: Ready
  observedGeneration: 1
  / ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

22



The GenericKafkaListener provides a flexible approach to listener configuration.

You can specify properties to configure internal listeners for connecting within the OpenShift cluster, or
external listeners for connecting outside the OpenShift cluster.

Generic listener configuration

Each listener is defined as an array in the Kafka resource.

For more information on listener configuration, see the GenericKafkaListener schema reference.

Generic listener configuration replaces the previous approach to listener configuration using the 
KafkaListeners schema reference, which is deprecated. However, you can convert the old format into
the new format with backwards compatibility.

The KafkaListeners schema uses sub-properties for plain, tls and external listeners, with fixed ports
for each. Because of the limits inherent in the architecture of the schema, it is only possible to configure
three listeners, with configuration options limited to the type of listener.

With the GenericKafkaListener schema, you can configure as many listeners as required, as long as
their names and ports are unique.

You might want to configure multiple external listeners, for example, to handle access from networks
that require different authentication mechanisms. Or you might need to join your OpenShift network to
an outside network. In which case, you can configure internal listeners (using the 
useServiceDnsDomain property) so that the OpenShift service DNS domain (typically .cluster.local)
is not used.

Configuring listeners to secure access to Kafka brokers

You can configure listeners for secure connection using authentication. For more information on
securing access to Kafka brokers, see Managing access to Kafka .

Configuring external listeners for client access outside OpenShift

You can configure external listeners for client access outside an OpenShift environment using a
specified connection mechanism, such as a loadbalancer. For more information on the configuration
options for connecting an external client, see Configuring external listeners.

Listener certificates

You can provide your own server certificates, called Kafka listener certificates, for TLS listeners or
external listeners which have TLS encryption enabled. For more information, see Kafka listener
certificates.

1.7. DOCUMENT CONVENTIONS

Replaceables

In this document, replaceable text is styled in monospace, with italics, uppercase, and hyphens.

For example, in the following code, you will want to replace MY-NAMESPACE with the name of your
namespace:

sed -i 's/namespace: .*/namespace: MY-NAMESPACE/' install/cluster-operator/*RoleBinding*.yaml

CHAPTER 1. OVERVIEW OF AMQ STREAMS

23



CHAPTER 2. DEPLOYMENT CONFIGURATION
This chapter describes how to configure different aspects of the supported deployments using custom
resources:

Kafka clusters

Kafka Connect clusters

Kafka Connect clusters with Source2Image support

Kafka MirrorMaker

Kafka Bridge

Cruise Control

NOTE

Labels applied to a custom resource are also applied to the OpenShift resources
comprising Kafka MirrorMaker. This provides a convenient mechanism for resources to be
labeled as required.

2.1. KAFKA CLUSTER CONFIGURATION

This section describes how to configure a Kafka deployment in your AMQ Streams cluster. A Kafka
cluster is deployed with a ZooKeeper cluster. The deployment can also include the Topic Operator and
User Operator, which manage Kafka topics and users.

You configure Kafka using the Kafka resource. Configuration options are also available for ZooKeeper
and the Entity Operator within the Kafka resource. The Entity Operator comprises the Topic Operator
and User Operator.

The full schema of the Kafka resource is described in the Section 13.2.1, “Kafka schema reference”.

Listener configuration

You configure listeners for connecting clients to Kafka brokers. For more information on configuring
listeners for connecting brokers, see Listener configuration.

Authorizing access to Kafka

You can configure your Kafka cluster to allow or decline actions executed by users. For more information
on securing access to Kafka brokers, see Managing access to Kafka .

Managing TLS certificates

When deploying Kafka, the Cluster Operator automatically sets up and renews TLS certificates to
enable encryption and authentication within your cluster. If required, you can manually renew the cluster
and client CA certificates before their renewal period ends. You can also replace the keys used by the
cluster and client CA certificates. For more information, see Renewing CA certificates manually and
Replacing private keys.

Additional resources

For more information about Apache Kafka, see the Apache Kafka website.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

24

http://kafka.apache.org


2.1.1. Configuring Kafka

Use the properties of the Kafka resource to configure your Kafka deployment.

As well as configuring Kafka, you can add configuration for ZooKeeper and the AMQ Streams Operators.
Common configuration properties, such as logging and healthchecks, are configured independently for
each component.

This procedure shows only some of the possible configuration options, but those that are particularly
important include:

Resource requests (CPU / Memory)

JVM options for maximum and minimum memory allocation

Listeners (and authentication of clients)

Authentication

Storage

Rack awareness

Metrics

Cruise Control for cluster rebalancing

Kafka versions

The log.message.format.version and inter.broker.protocol.version properties for the Kafka config
must be the versions supported by the specified Kafka version (spec.kafka.version). The properties
represent the log format version appended to messages and the version of Kafka protocol used in a
Kafka cluster. Updates to these properties are required when upgrading your Kafka version. For more
information, see Upgrading Kafka  in the Deploying and Upgrading AMQ Streams on OpenShift  guide.

Prerequisites

An OpenShift cluster

A running Cluster Operator

See the Deploying and Upgrading AMQ Streams on OpenShift  guide for instructions on deploying a:

Cluster Operator

Kafka cluster

Procedure

1. Edit the spec properties for the Kafka resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:

CHAPTER 2. DEPLOYMENT CONFIGURATION

25

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-upgrading-kafka-versions-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str


  kafka:
    replicas: 3 1
    version: 2.7.0 2
    logging: 3
      type: inline
      loggers:
        kafka.root.logger.level: "INFO"
    resources: 4
      requests:
        memory: 64Gi
        cpu: "8"
      limits:
        memory: 64Gi
        cpu: "12"
    readinessProbe: 5
      initialDelaySeconds: 15
      timeoutSeconds: 5
    livenessProbe:
      initialDelaySeconds: 15
      timeoutSeconds: 5
    jvmOptions: 6
      -Xms: 8192m
      -Xmx: 8192m
    image: my-org/my-image:latest 7
    listeners: 8
      - name: plain 9
        port: 9092 10
        type: internal 11
        tls: false 12
        configuration:
          useServiceDnsDomain: true 13
      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication: 14
          type: tls
      - name: external 15
        port: 9094
        type: route
        tls: true
        configuration:
          brokerCertChainAndKey: 16
            secretName: my-secret
            certificate: my-certificate.crt
            key: my-key.key
    authorization: 17
      type: simple
    config: 18
      auto.create.topics.enable: "false"
      offsets.topic.replication.factor: 3
      transaction.state.log.replication.factor: 3
      transaction.state.log.min.isr: 2
      log.message.format.version: 2.7

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

26



      inter.broker.protocol.version: 2.7
      ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 19
      ssl.enabled.protocols: "TLSv1.2"
      ssl.protocol: "TLSv1.2"
    storage: 20
      type: persistent-claim 21
      size: 10000Gi 22
    rack: 23
      topologyKey: topology.kubernetes.io/zone
    metricsConfig: 24
      type: jmxPrometheusExporter
      valueFrom:
        configMapKeyRef: 25
          name: my-config-map
          key: my-key
    # ...
  zookeeper: 26
    replicas: 3 27
    logging: 28
      type: inline
      loggers:
        zookeeper.root.logger: "INFO"
    resources:
      requests:
        memory: 8Gi
        cpu: "2"
      limits:
        memory: 8Gi
        cpu: "2"
    jvmOptions:
      -Xms: 4096m
      -Xmx: 4096m
    storage:
      type: persistent-claim
      size: 1000Gi
    metricsConfig:
      # ...
  entityOperator: 29
    tlsSidecar: 30
      resources:
        requests:
          cpu: 200m
          memory: 64Mi
        limits:
          cpu: 500m
          memory: 128Mi
    topicOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging: 31
        type: inline
        loggers:
          rootLogger.level: "INFO"
      resources:

CHAPTER 2. DEPLOYMENT CONFIGURATION

27



1

2

3

4

5

6

7

8

9

The number of replica nodes . If your cluster already has topics defined, you can scale
clusters.

Kafka version, which can be changed to a supported version by following the upgrade
procedure.

Specified Kafka loggers and log levels  added directly (inline) or indirectly (external)
through a ConfigMap. A custom ConfigMap must be placed under the log4j.properties
key. For the Kafka kafka.root.logger.level logger, you can set the log level to INFO,
ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Listeners configure how clients connect to the Kafka cluster via bootstrap addresses.
Listeners are configured as internal or external listeners for connection from inside or
outside the OpenShift cluster.

Name to identify the listener. Must be unique within the Kafka cluster.

        requests:
          memory: 512Mi
          cpu: "1"
        limits:
          memory: 512Mi
          cpu: "1"
    userOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging: 32
        type: inline
        loggers:
          rootLogger.level: INFO
      resources:
        requests:
          memory: 512Mi
          cpu: "1"
        limits:
          memory: 512Mi
          cpu: "1"
  kafkaExporter: 33
    # ...
  cruiseControl: 34
    # ...
    tlsSidecar: 35
    # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

28

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-upgrade-str


10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Port number used by the listener inside Kafka. The port number has to be unique within a
given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports

Listener type specified as internal, or for external listeners, as route, loadbalancer, 
nodeport or ingress.

Enables TLS encryption for each listener. Default is false. TLS encryption is not required
for route listeners.

Defines whether the fully-qualified DNS names including the cluster service suffix (usually 
.cluster.local) are assigned.

Listener authentication mechanism specified as mutual TLS, SCRAM-SHA-512 or token-
based OAuth 2.0.

External listener configuration specifies how the Kafka cluster is exposed outside
OpenShift, such as through a route, loadbalancer or nodeport.

Optional configuration for a Kafka listener certificate managed by an external Certificate
Authority. The brokerCertChainAndKey specifies a Secret that contains a server
certificate and a private key. You can configure Kafka listener certificates on any listener
with enabled TLS encryption.

Authorization enables simple, OAUTH 2.0, or OPA authorization on the Kafka broker.
Simple authorization uses the AclAuthorizer Kafka plugin.

The config specifies the broker configuration. Standard Apache Kafka configuration may
be provided, restricted to those properties not managed directly by AMQ Streams.

SSL properties for listeners with TLS encryption enabled to enable a specific cipher suite
or TLS version.

Storage is configured as ephemeral, persistent-claim or jbod.

Storage size for persistent volumes may be increased  and additional volumes may be
added to JBOD storage.

Persistent storage has additional configuration options, such as a storage id and class for
dynamic volume provisioning.

Rack awareness is configured to spread replicas across different racks. A topologykey
must match the label of a cluster node.

Prometheus metrics enabled. In this example, metrics are configured for the Prometheus
JMX Exporter (the default metrics exporter).

Prometheus rules for exporting metrics to a Grafana dashboard through the Prometheus
JMX Exporter, which are enabled by referencing a ConfigMap containing configuration for
the Prometheus JMX exporter. You can enable metrics without further configuration using
a reference to a ConfigMap containing an empty file under 
metricsConfig.valueFrom.configMapKeyRef.key.

ZooKeeper-specific configuration, which contains properties similar to the Kafka
configuration.

The number of ZooKeeper nodes . ZooKeeper clusters or ensembles usually run with an odd
number of nodes, typically three, five, or seven. The majority of nodes must be available in
order to maintain an effective quorum. If the ZooKeeper cluster loses its quorum, it will

CHAPTER 2. DEPLOYMENT CONFIGURATION

29



28

29

30

31

32

33

34

35

order to maintain an effective quorum. If the ZooKeeper cluster loses its quorum, it will
stop responding to clients and the Kafka brokers will stop working. Having a stable and
highly available ZooKeeper cluster is crucial for AMQ Streams.

Specified ZooKeeper loggers and log levels .

Entity Operator configuration, which specifies the configuration for the Topic Operator
and User Operator.

Entity Operator TLS sidecar configuration. Entity Operator uses the TLS sidecar for
secure communication with ZooKeeper.

Specified Topic Operator loggers and log levels . This example uses inline logging.

Specified User Operator loggers and log levels .

Kafka Exporter configuration. Kafka Exporter is an optional component for extracting
metrics data from Kafka brokers, in particular consumer lag data.

Optional configuration for Cruise Control, which is used to rebalance the Kafka cluster.

Cruise Control TLS sidecar configuration. Cruise Control uses the TLS sidecar for secure
communication with ZooKeeper.

2. Create or update the resource:

2.1.2. Configuring the Entity Operator

The Entity Operator is responsible for managing Kafka-related entities in a running Kafka cluster.

The Entity Operator comprises the:

Topic Operator to manage Kafka topics

User Operator to manage Kafka users

Through Kafka resource configuration, the Cluster Operator can deploy the Entity Operator, including
one or both operators, when deploying a Kafka cluster.

NOTE

When deployed, the Entity Operator contains the operators according to the deployment
configuration.

The operators are automatically configured to manage the topics and users of the Kafka cluster.

2.1.2.1. Entity Operator configuration properties

Use the entityOperator property in Kafka.spec to configure the Entity Operator.

The entityOperator property supports several sub-properties:

tlsSidecar

oc apply -f KAFKA-CONFIG-FILE

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

30

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-kafka-exporter-str


topicOperator

userOperator

template

The tlsSidecar property contains the configuration of the TLS sidecar container, which is used to
communicate with ZooKeeper.

The template property contains the configuration of the Entity Operator pod, such as labels,
annotations, affinity, and tolerations. For more information on configuring templates, see Section 2.6,
“Customizing OpenShift resources”.

The topicOperator property contains the configuration of the Topic Operator. When this option is
missing, the Entity Operator is deployed without the Topic Operator.

The userOperator property contains the configuration of the User Operator. When this option is
missing, the Entity Operator is deployed without the User Operator.

For more information on the properties used to configure the Entity Operator, see the 
EntityUserOperatorSpec schema reference.

Example of basic configuration enabling both operators

If an empty object ({}) is used for the topicOperator and userOperator, all properties use their default
values.

When both topicOperator and userOperator properties are missing, the Entity Operator is not
deployed.

2.1.2.2. Topic Operator configuration properties

Topic Operator deployment can be configured using additional options inside the topicOperator object.
The following properties are supported:

watchedNamespace

The OpenShift namespace in which the topic operator watches for KafkaTopics. Default is the
namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 90.

zookeeperSessionTimeoutSeconds

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    topicOperator: {}
    userOperator: {}

CHAPTER 2. DEPLOYMENT CONFIGURATION

31



The ZooKeeper session timeout in seconds. Default 20.

topicMetadataMaxAttempts

The number of attempts at getting topic metadata from Kafka. The time between each attempt is
defined as an exponential back-off. Consider increasing this value when topic creation might take
more time due to the number of partitions or replicas. Default 6.

image

The image property can be used to configure the container image which will be used. For more
details about configuring custom container images, see Section 13.1.6, “image”.

resources

The resources property configures the amount of resources allocated to the Topic Operator. For
more details about resource request and limit configuration, see Section 13.1.5, “resources”.

logging

The logging property configures the logging of the Topic Operator. For more details, see
Section 13.2.67.1, “logging”.

Example Topic Operator configuration

2.1.2.3. User Operator configuration properties

User Operator deployment can be configured using additional options inside the userOperator object.
The following properties are supported:

watchedNamespace

The OpenShift namespace in which the user operator watches for KafkaUsers. Default is the
namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 120.

zookeeperSessionTimeoutSeconds

The ZooKeeper session timeout in seconds. Default 6.

image

The image property can be used to configure the container image which will be used. For more
details about configuring custom container images, see Section 13.1.6, “image”.

resources

The resources property configures the amount of resources allocated to the User Operator. For

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    topicOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
    # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

32



The resources property configures the amount of resources allocated to the User Operator. For
more details about resource request and limit configuration, see Section 13.1.5, “resources”.

logging

The logging property configures the logging of the User Operator. For more details, see
Section 13.2.67.1, “logging”.

secretPrefix

The secretPrefix property adds a prefix to the name of all Secrets created from the KafkaUser
resource. For example, STRIMZI_SECRET_PREFIX=kafka- would prefix all Secret names with 
kafka-. So a KafkaUser named my-user would create a Secret named kafka-my-user.

Example User Operator configuration

2.1.3. Kafka and ZooKeeper storage types

As stateful applications, Kafka and ZooKeeper need to store data on disk. AMQ Streams supports three
storage types for this data:

Ephemeral

Persistent

JBOD storage

NOTE

JBOD storage is supported only for Kafka, not for ZooKeeper.

When configuring a Kafka resource, you can specify the type of storage used by the Kafka broker and its
corresponding ZooKeeper node. You configure the storage type using the storage property in the
following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

The storage type is configured in the type field.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    userOperator:
      watchedNamespace: my-user-namespace
      reconciliationIntervalSeconds: 60
    # ...

CHAPTER 2. DEPLOYMENT CONFIGURATION

33



WARNING

The storage type cannot be changed after a Kafka cluster is deployed.

Additional resources

For more information about ephemeral storage, see ephemeral storage schema reference .

For more information about persistent storage, see persistent storage schema reference .

For more information about JBOD storage, see JBOD schema reference .

For more information about the schema for Kafka, see Kafka schema reference.

2.1.3.1. Data storage considerations

An efficient data storage infrastructure is essential to the optimal performance of AMQ Streams.

Block storage is required. File storage, such as NFS, does not work with Kafka.

For your block storage, you can choose, for example:

Cloud-based block storage solutions, such as Amazon Elastic Block Store (EBS)

Local persistent volumes

Storage Area Network (SAN) volumes accessed by a protocol such as Fibre Channel or iSCSI

NOTE

AMQ Streams does not require OpenShift raw block volumes.

2.1.3.1.1. File systems

It is recommended that you configure your storage system to use the XFS file system. AMQ Streams is
also compatible with the ext4 file system, but this might require additional configuration for best results.

2.1.3.1.2. Apache Kafka and ZooKeeper storage

Use separate disks for Apache Kafka and ZooKeeper.

Three types of data storage are supported:

Ephemeral (Recommended for development only)

Persistent

JBOD (Just a Bunch of Disks, suitable for Kafka only)

For more information, see Kafka and ZooKeeper storage .

Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters



Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

34

https://aws.amazon.com/ebs/
https://kubernetes.io/docs/concepts/storage/volumes/#local


Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters
where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective
with ZooKeeper, which requires fast, low latency data access.

NOTE

You do not need to provision replicated storage because Kafka and ZooKeeper both have
built-in data replication.

2.1.3.2. Ephemeral storage

Ephemeral storage uses emptyDir volumes to store data. To use ephemeral storage, set the type field
to ephemeral.

IMPORTANT

emptyDir volumes are not persistent and the data stored in them is lost when the pod is
restarted. After the new pod is started, it must recover all data from the other nodes of
the cluster. Ephemeral storage is not suitable for use with single-node ZooKeeper
clusters or for Kafka topics with a replication factor of 1. This configuration will cause data
loss.

An example of Ephemeral storage

2.1.3.2.1. Log directories

The ephemeral volume is used by the Kafka brokers as log directories mounted into the following path:

Where IDX is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

2.1.3.3. Persistent storage

Persistent storage uses Persistent Volume Claims  to provision persistent volumes for storing data.
Persistent Volume Claims can be used to provision volumes of many different types, depending on the
Storage Class which will provision the volume. The data types which can be used with persistent volume

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    storage:
      type: ephemeral
    # ...
  zookeeper:
    # ...
    storage:
      type: ephemeral
    # ...

/var/lib/kafka/data/kafka-logIDX

CHAPTER 2. DEPLOYMENT CONFIGURATION

35

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/storage-classes/


claims include many types of SAN storage as well as Local persistent volumes.

To use persistent storage, the type has to be set to persistent-claim. Persistent storage supports
additional configuration options:

id (optional)

Storage identification number. This option is mandatory for storage volumes defined in a JBOD
storage declaration. Default is 0.

size (required)

Defines the size of the persistent volume claim, for example, "1000Gi".

class (optional)

The OpenShift Storage Class to use for dynamic volume provisioning.

selector (optional)

Allows selecting a specific persistent volume to use. It contains key:value pairs representing labels for
selecting such a volume.

deleteClaim (optional)

Boolean value which specifies if the Persistent Volume Claim has to be deleted when the cluster is
undeployed. Default is false.

WARNING

Increasing the size of persistent volumes in an existing AMQ Streams cluster is only
supported in OpenShift versions that support persistent volume resizing. The
persistent volume to be resized must use a storage class that supports volume
expansion. For other versions of OpenShift and storage classes which do not
support volume expansion, you must decide the necessary storage size before
deploying the cluster. Decreasing the size of existing persistent volumes is not
possible.

Example fragment of persistent storage configuration with 1000Gi size

The following example demonstrates the use of a storage class.

Example fragment of persistent storage configuration with specific Storage Class



# ...
storage:
  type: persistent-claim
  size: 1000Gi
# ...

# ...
storage:
  type: persistent-claim
  size: 1Gi
  class: my-storage-class
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

36

https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kubernetes.io/docs/concepts/storage/storage-classes/


Finally, a selector can be used to select a specific labeled persistent volume to provide needed features
such as an SSD.

Example fragment of persistent storage configuration with selector

2.1.3.3.1. Storage class overrides

You can specify a different storage class for one or more Kafka brokers or ZooKeeper nodes, instead of
using the default storage class. This is useful if, for example, storage classes are restricted to different
availability zones or data centers. You can use the overrides field for this purpose.

In this example, the default storage class is named my-storage-class:

Example AMQ Streams cluster using storage class overrides

# ...
storage:
  type: persistent-claim
  size: 1Gi
  selector:
    hdd-type: ssd
  deleteClaim: true
# ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  labels:
    app: my-cluster
  name: my-cluster
  namespace: myproject
spec:
  # ...
  kafka:
    replicas: 3
    storage:
      deleteClaim: true
      size: 100Gi
      type: persistent-claim
      class: my-storage-class
      overrides:
        - broker: 0
          class: my-storage-class-zone-1a
        - broker: 1
          class: my-storage-class-zone-1b
        - broker: 2
          class: my-storage-class-zone-1c
  # ...
  zookeeper:
    replicas: 3
    storage:
      deleteClaim: true
      size: 100Gi
      type: persistent-claim

CHAPTER 2. DEPLOYMENT CONFIGURATION

37



As a result of the configured overrides property, the volumes use the following storage classes:

The persistent volumes of ZooKeeper node 0 will use my-storage-class-zone-1a.

The persistent volumes of ZooKeeper node 1 will use my-storage-class-zone-1b.

The persistent volumes of ZooKeeepr node 2 will use my-storage-class-zone-1c.

The persistent volumes of Kafka broker 0 will use my-storage-class-zone-1a.

The persistent volumes of Kafka broker 1 will use my-storage-class-zone-1b.

The persistent volumes of Kafka broker 2 will use my-storage-class-zone-1c.

The overrides property is currently used only to override storage class configurations. Overriding other
storage configuration fields is not currently supported. Other fields from the storage configuration are
currently not supported.

2.1.3.3.2. Persistent Volume Claim naming

When persistent storage is used, it creates Persistent Volume Claims with the following names:

data-cluster-name-kafka-idx

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx.

data-cluster-name-zookeeper-idx

Persistent Volume Claim for the volume used for storing data for the ZooKeeper node pod idx.

2.1.3.3.3. Log directories

The persistent volume is used by the Kafka brokers as log directories mounted into the following path:

Where IDX is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

2.1.3.4. Resizing persistent volumes

You can provision increased storage capacity by increasing the size of the persistent volumes used by an
existing AMQ Streams cluster. Resizing persistent volumes is supported in clusters that use either a
single persistent volume or multiple persistent volumes in a JBOD storage configuration.

NOTE

      class: my-storage-class
      overrides:
        - broker: 0
          class: my-storage-class-zone-1a
        - broker: 1
          class: my-storage-class-zone-1b
        - broker: 2
          class: my-storage-class-zone-1c
  # ...

/var/lib/kafka/data/kafka-logIDX

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

38



NOTE

You can increase but not decrease the size of persistent volumes. Decreasing the size of
persistent volumes is not currently supported in OpenShift.

Prerequisites

An OpenShift cluster with support for volume resizing.

The Cluster Operator is running.

A Kafka cluster using persistent volumes created using a storage class that supports volume
expansion.

Procedure

1. In a Kafka resource, increase the size of the persistent volume allocated to the Kafka cluster,
the ZooKeeper cluster, or both.

To increase the volume size allocated to the Kafka cluster, edit the spec.kafka.storage
property.

To increase the volume size allocated to the ZooKeeper cluster, edit the 
spec.zookeeper.storage property.
For example, to increase the volume size from 1000Gi to 2000Gi:

2. Create or update the resource:

OpenShift increases the capacity of the selected persistent volumes in response to a request
from the Cluster Operator. When the resizing is complete, the Cluster Operator restarts all pods
that use the resized persistent volumes. This happens automatically.

Additional resources

For more information about resizing persistent volumes in OpenShift, see Resizing Persistent Volumes
using Kubernetes.

2.1.3.5. JBOD storage overview

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    storage:
      type: persistent-claim
      size: 2000Gi
      class: my-storage-class
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 2. DEPLOYMENT CONFIGURATION

39

https://kubernetes.io/blog/2018/07/12/resizing-persistent-volumes-using-kubernetes/


You can configure AMQ Streams to use JBOD, a data storage configuration of multiple disks or
volumes. JBOD is one approach to providing increased data storage for Kafka brokers. It can also
improve performance.

A JBOD configuration is described by one or more volumes, each of which can be either ephemeral or
persistent. The rules and constraints for JBOD volume declarations are the same as those for ephemeral
and persistent storage. For example, you cannot decrease the size of a persistent storage volume after
it has been provisioned, or you cannot change the value of sizeLimit when type=ephemeral.

2.1.3.5.1. JBOD configuration

To use JBOD with AMQ Streams, the storage type must be set to jbod. The volumes property allows
you to describe the disks that make up your JBOD storage array or configuration. The following
fragment shows an example JBOD configuration:

The ids cannot be changed once the JBOD volumes are created.

Users can add or remove volumes from the JBOD configuration.

2.1.3.5.2. JBOD and Persistent Volume Claims

When persistent storage is used to declare JBOD volumes, the naming scheme of the resulting
Persistent Volume Claims is as follows:

data-id-cluster-name-kafka-idx

Where id is the ID of the volume used for storing data for Kafka broker pod idx.

2.1.3.5.3. Log directories

The JBOD volumes will be used by the Kafka brokers as log directories mounted into the following path:

/var/lib/kafka/data-id/kafka-log_idx_

Where id is the ID of the volume used for storing data for Kafka broker pod idx. For example 
/var/lib/kafka/data-0/kafka-log0.

2.1.3.6. Adding volumes to JBOD storage

This procedure describes how to add volumes to a Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type.

NOTE

# ...
storage:
  type: jbod
  volumes:
  - id: 0
    type: persistent-claim
    size: 100Gi
    deleteClaim: false
  - id: 1
    type: persistent-claim
    size: 100Gi
    deleteClaim: false
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

40



NOTE

When adding a new volume under an id which was already used in the past and removed,
you have to make sure that the previously used PersistentVolumeClaims have been
deleted.

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with JBOD storage

Procedure

1. Edit the spec.kafka.storage.volumes property in the Kafka resource. Add the new volumes to
the volumes array. For example, add the new volume with id 2:

2. Create or update the resource:

3. Create new topics or reassign existing partitions to the new disks.

Additional resources

For more information about reassigning topics, see Section 2.1.4.2, “Partition reassignment”.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    storage:
      type: jbod
      volumes:
      - id: 0
        type: persistent-claim
        size: 100Gi
        deleteClaim: false
      - id: 1
        type: persistent-claim
        size: 100Gi
        deleteClaim: false
      - id: 2
        type: persistent-claim
        size: 100Gi
        deleteClaim: false
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 2. DEPLOYMENT CONFIGURATION

41



2.1.3.7. Removing volumes from JBOD storage

This procedure describes how to remove volumes from Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type. The JBOD storage always
has to contain at least one volume.

IMPORTANT

To avoid data loss, you have to move all partitions before removing the volumes.

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with JBOD storage with two or more volumes

Procedure

1. Reassign all partitions from the disks which are you going to remove. Any data in partitions still
assigned to the disks which are going to be removed might be lost.

2. Edit the spec.kafka.storage.volumes property in the Kafka resource. Remove one or more
volumes from the volumes array. For example, remove the volumes with ids 1 and 2:

3. Create or update the resource:

Additional resources

For more information about reassigning topics, see Section 2.1.4.2, “Partition reassignment”.

2.1.4. Scaling clusters

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    storage:
      type: jbod
      volumes:
      - id: 0
        type: persistent-claim
        size: 100Gi
        deleteClaim: false
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

42



2.1.4.1. Scaling Kafka clusters

2.1.4.1.1. Adding brokers to a cluster

The primary way of increasing throughput for a topic is to increase the number of partitions for that
topic. That works because the extra partitions allow the load of the topic to be shared between the
different brokers in the cluster. However, in situations where every broker is constrained by a particular
resource (typically I/O) using more partitions will not result in increased throughput. Instead, you need to
add brokers to the cluster.

When you add an extra broker to the cluster, Kafka does not assign any partitions to it automatically. You
must decide which partitions to move from the existing brokers to the new broker.

Once the partitions have been redistributed between all the brokers, the resource utilization of each
broker should be reduced.

2.1.4.1.2. Removing brokers from a cluster

Because AMQ Streams uses StatefulSets to manage broker pods, you cannot remove any pod from the
cluster. You can only remove one or more of the highest numbered pods from the cluster. For example,
in a cluster of 12 brokers the pods are named cluster-name-kafka-0 up to cluster-name-kafka-11. If
you decide to scale down by one broker, the cluster-name-kafka-11 will be removed.

Before you remove a broker from a cluster, ensure that it is not assigned to any partitions. You should
also decide which of the remaining brokers will be responsible for each of the partitions on the broker
being decommissioned. Once the broker has no assigned partitions, you can scale the cluster down
safely.

2.1.4.2. Partition reassignment

The Topic Operator does not currently support reassigning replicas to different brokers, so it is
necessary to connect directly to broker pods to reassign replicas to brokers.

Within a broker pod, the kafka-reassign-partitions.sh utility allows you to reassign partitions to
different brokers.

It has three different modes:

--generate

Takes a set of topics and brokers and generates a reassignment JSON file  which will result in the
partitions of those topics being assigned to those brokers. Because this operates on whole topics, it
cannot be used when you only want to reassign some partitions of some topics.

--execute

Takes a reassignment JSON file  and applies it to the partitions and brokers in the cluster. Brokers
that gain partitions as a result become followers of the partition leader. For a given partition, once
the new broker has caught up and joined the ISR (in-sync replicas) the old broker will stop being a
follower and will delete its replica.

--verify

Using the same reassignment JSON file  as the --execute step, --verify checks whether all the
partitions in the file have been moved to their intended brokers. If the reassignment is complete, --
verify also removes any throttles that are in effect. Unless removed, throttles will continue to affect
the cluster even after the reassignment has finished.

It is only possible to have one reassignment running in a cluster at any given time, and it is not possible

CHAPTER 2. DEPLOYMENT CONFIGURATION

43



to cancel a running reassignment. If you need to cancel a reassignment, wait for it to complete and then
perform another reassignment to revert the effects of the first reassignment. The kafka-reassign-
partitions.sh will print the reassignment JSON for this reversion as part of its output. Very large
reassignments should be broken down into a number of smaller reassignments in case there is a need to
stop in-progress reassignment.

2.1.4.2.1. Reassignment JSON file

The reassignment JSON file  has a specific structure:

{
  "version": 1,
  "partitions": [
    <PartitionObjects>
  ]
}

Where <PartitionObjects> is a comma-separated list of objects like:

{
  "topic": <TopicName>,
  "partition": <Partition>,
  "replicas": [ <AssignedBrokerIds> ]
}

NOTE

Although Kafka also supports a "log_dirs" property this should not be used in AMQ
Streams.

The following is an example reassignment JSON file that assigns partition 4 of topic topic-a to brokers 
2, 4 and 7, and partition 2 of topic topic-b to brokers 1, 5 and 7:

Partitions not included in the JSON are not changed.

2.1.4.2.2. Reassigning partitions between JBOD volumes

{
  "version": 1,
  "partitions": [
    {
      "topic": "topic-a",
      "partition": 4,
      "replicas": [2,4,7]
    },
    {
      "topic": "topic-b",
      "partition": 2,
      "replicas": [1,5,7]
    }
  ]
}

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

44



When using JBOD storage in your Kafka cluster, you can choose to reassign the partitions between
specific volumes and their log directories (each volume has a single log directory). To reassign a
partition to a specific volume, add the log_dirs option to <PartitionObjects> in the reassignment JSON
file.

{
  "topic": <TopicName>,
  "partition": <Partition>,
  "replicas": [ <AssignedBrokerIds> ],
  "log_dirs": [ <AssignedLogDirs> ]
}

The log_dirs object should contain the same number of log directories as the number of replicas
specified in the replicas object. The value should be either an absolute path to the log directory, or the 
any keyword.

For example:

{
      "topic": "topic-a",
      "partition": 4,
      "replicas": [2,4,7].
      "log_dirs": [ "/var/lib/kafka/data-0/kafka-log2", "/var/lib/kafka/data-0/kafka-log4", 
"/var/lib/kafka/data-0/kafka-log7" ]
}

2.1.4.3. Generating reassignment JSON files

This procedure describes how to generate a reassignment JSON file that reassigns all the partitions for
a given set of topics using the kafka-reassign-partitions.sh tool.

Prerequisites

A running Cluster Operator

A Kafka resource

A set of topics to reassign the partitions of

Procedure

1. Prepare a JSON file named topics.json that lists the topics to move. It must have the following
structure:

{
  "version": 1,
  "topics": [
    <TopicObjects>
  ]
}

where <TopicObjects> is a comma-separated list of objects like:

CHAPTER 2. DEPLOYMENT CONFIGURATION

45



{
  "topic": <TopicName>
}

For example if you want to reassign all the partitions of topic-a and topic-b, you would need to
prepare a topics.json file like this:

2. Copy the topics.json file to one of the broker pods:

cat topics.json | oc exec -c kafka <BrokerPod> -i -- \
  /bin/bash -c \
  'cat > /tmp/topics.json'

3. Use the kafka-reassign-partitions.sh command to generate the reassignment JSON.

oc exec <BrokerPod> -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --topics-to-move-json-file /tmp/topics.json \
  --broker-list <BrokerList> \
  --generate

For example, to move all the partitions of topic-a and topic-b to brokers 4 and 7

2.1.4.4. Creating reassignment JSON files manually

You can manually create the reassignment JSON file if you want to move specific partitions.

2.1.4.5. Reassignment throttles

Partition reassignment can be a slow process because it involves transferring large amounts of data
between brokers. To avoid a detrimental impact on clients, you can throttle the reassignment process.
This might cause the reassignment to take longer to complete.

If the throttle is too low then the newly assigned brokers will not be able to keep up with records
being published and the reassignment will never complete.

If the throttle is too high then clients will be impacted.

For example, for producers, this could manifest as higher than normal latency waiting for

{
  "version": 1,
  "topics": [
    { "topic": "topic-a"},
    { "topic": "topic-b"}
  ]
}

oc exec <BrokerPod> -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --topics-to-move-json-file /tmp/topics.json \
  --broker-list 4,7 \
  --generate

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

46



For example, for producers, this could manifest as higher than normal latency waiting for
acknowledgement. For consumers, this could manifest as a drop in throughput caused by higher latency
between polls.

2.1.4.6. Scaling up a Kafka cluster

This procedure describes how to increase the number of brokers in a Kafka cluster.

Prerequisites

An existing Kafka cluster.

A reassignment JSON file  named reassignment.json that describes how partitions should be
reassigned to brokers in the enlarged cluster.

Procedure

1. Add as many new brokers as you need by increasing the Kafka.spec.kafka.replicas
configuration option.

2. Verify that the new broker pods have started.

3. Copy the reassignment.json file to the broker pod on which you will later execute the
commands:

For example:

4. Execute the partition reassignment using the kafka-reassign-partitions.sh command line tool
from the same broker pod.

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a local file (not a file in the

cat reassignment.json | \
  oc exec broker-pod -c kafka -i -- /bin/bash -c \
  'cat > /tmp/reassignment.json'

cat reassignment.json | \
  oc exec my-cluster-kafka-0 -c kafka -i -- /bin/bash -c \
  'cat > /tmp/reassignment.json'

oc exec broker-pod -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --execute

oc exec my-cluster-kafka-0 -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --throttle 5000000 \
  --execute

CHAPTER 2. DEPLOYMENT CONFIGURATION

47



pod) in case you need to revert the reassignment later on. The second JSON object is the
target reassignment you have passed in your reassignment JSON file.

5. If you need to change the throttle during reassignment you can use the same command line
with a different throttled rate. For example:

6. Periodically verify whether the reassignment has completed using the kafka-reassign-
partitions.sh command line tool from any of the broker pods. This is the same command as the
previous step but with the --verify option instead of the --execute option.

For example,

7. The reassignment has finished when the --verify command reports each of the partitions being
moved as completed successfully. This final --verify will also have the effect of removing any
reassignment throttles. You can now delete the revert file if you saved the JSON for reverting
the assignment to their original brokers.

2.1.4.7. Scaling down a Kafka cluster

This procedure describes how to decrease the number of brokers in a Kafka cluster.

Prerequisites

An existing Kafka cluster.

A reassignment JSON file  named reassignment.json describing how partitions should be
reassigned to brokers in the cluster once the broker(s) in the highest numbered Pod(s) have
been removed.

Procedure

1. Copy the reassignment.json file to the broker pod on which you will later execute the
commands:

oc exec my-cluster-kafka-0 -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --throttle 10000000 \
  --execute

oc exec broker-pod -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --verify

oc exec my-cluster-kafka-0 -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --verify

cat reassignment.json | \
  oc exec broker-pod -c kafka -i -- /bin/bash -c \
  'cat > /tmp/reassignment.json'

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

48



For example:

2. Execute the partition reassignment using the kafka-reassign-partitions.sh command line tool
from the same broker pod.

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a local file (not a file in the
pod) in case you need to revert the reassignment later on. The second JSON object is the
target reassignment you have passed in your reassignment JSON file.

3. If you need to change the throttle during reassignment you can use the same command line
with a different throttled rate. For example:

4. Periodically verify whether the reassignment has completed using the kafka-reassign-
partitions.sh command line tool from any of the broker pods. This is the same command as the
previous step but with the --verify option instead of the --execute option.

For example,

5. The reassignment has finished when the --verify command reports each of the partitions being

cat reassignment.json | \
  oc exec my-cluster-kafka-0 -c kafka -i -- /bin/bash -c \
  'cat > /tmp/reassignment.json'

oc exec broker-pod -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --execute

oc exec my-cluster-kafka-0 -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --throttle 5000000 \
  --execute

oc exec my-cluster-kafka-0 -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --throttle 10000000 \
  --execute

oc exec broker-pod -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --verify

oc exec my-cluster-kafka-0 -c kafka -it -- \
  bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9092 \
  --reassignment-json-file /tmp/reassignment.json \
  --verify

CHAPTER 2. DEPLOYMENT CONFIGURATION

49



moved as completed successfully. This final --verify will also have the effect of removing any
reassignment throttles. You can now delete the revert file if you saved the JSON for reverting
the assignment to their original brokers.

6. Once all the partition reassignments have finished, the broker(s) being removed should not
have responsibility for any of the partitions in the cluster. You can verify this by checking that
the broker’s data log directory does not contain any live partition logs. If the log directory on the
broker contains a directory that does not match the extended regular expression \.[a-z0-9]-
delete$ then the broker still has live partitions and it should not be stopped.
You can check this by executing the command:

where N is the number of the Pod(s) being deleted.

If the above command prints any output then the broker still has live partitions. In this case,
either the reassignment has not finished, or the reassignment JSON file was incorrect.

7. Once you have confirmed that the broker has no live partitions you can edit the 
Kafka.spec.kafka.replicas of your Kafka resource, which will scale down the StatefulSet,
deleting the highest numbered broker Pod(s).

2.1.5. Maintenance time windows for rolling updates

Maintenance time windows allow you to schedule certain rolling updates of your Kafka and ZooKeeper
clusters to start at a convenient time.

2.1.5.1. Maintenance time windows overview

In most cases, the Cluster Operator only updates your Kafka or ZooKeeper clusters in response to
changes to the corresponding Kafka resource. This enables you to plan when to apply changes to a 
Kafka resource to minimize the impact on Kafka client applications.

However, some updates to your Kafka and ZooKeeper clusters can happen without any corresponding
change to the Kafka resource. For example, the Cluster Operator will need to perform a rolling restart if
a CA (Certificate Authority) certificate that it manages is close to expiry.

While a rolling restart of the pods should not affect availability of the service (assuming correct broker
and topic configurations), it could affect performance of the Kafka client applications. Maintenance time
windows allow you to schedule such spontaneous rolling updates of your Kafka and ZooKeeper clusters
to start at a convenient time. If maintenance time windows are not configured for a cluster then it is
possible that such spontaneous rolling updates will happen at an inconvenient time, such as during a
predictable period of high load.

2.1.5.2. Maintenance time window definition

You configure maintenance time windows by entering an array of strings in the 
Kafka.spec.maintenanceTimeWindows property. Each string is a cron expression interpreted as being
in UTC (Coordinated Universal Time, which for practical purposes is the same as Greenwich Mean
Time).

The following example configures a single maintenance time window that starts at midnight and ends at

oc exec my-cluster-kafka-0 -c kafka -it -- \
  /bin/bash -c \
  "ls -l /var/lib/kafka/kafka-log_<N>_ | grep -E '^d' | grep -vE '[a-zA-Z0-9.-]+\.[a-z0-9]+-
delete$'"

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

50

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html


The following example configures a single maintenance time window that starts at midnight and ends at
01:59am (UTC), on Sundays, Mondays, Tuesdays, Wednesdays, and Thursdays:

In practice, maintenance windows should be set in conjunction with the 
Kafka.spec.clusterCa.renewalDays and Kafka.spec.clientsCa.renewalDays properties of the Kafka
resource, to ensure that the necessary CA certificate renewal can be completed in the configured
maintenance time windows.

NOTE

AMQ Streams does not schedule maintenance operations exactly according to the given
windows. Instead, for each reconciliation, it checks whether a maintenance window is
currently "open". This means that the start of maintenance operations within a given time
window can be delayed by up to the Cluster Operator reconciliation interval. Maintenance
time windows must therefore be at least this long.

Additional resources

For more information about the Cluster Operator configuration, see Section 5.1.1, “Cluster
Operator configuration”.

2.1.5.3. Configuring a maintenance time window

You can configure a maintenance time window for rolling updates triggered by supported processes.

Prerequisites

An OpenShift cluster.

The Cluster Operator is running.

Procedure

1. Add or edit the maintenanceTimeWindows property in the Kafka resource. For example to
allow maintenance between 0800 and 1059 and between 1400 and 1559 you would set the 
maintenanceTimeWindows as shown below:

# ...
maintenanceTimeWindows:
  - "* * 0-1 ? * SUN,MON,TUE,WED,THU *"
# ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  maintenanceTimeWindows:
    - "* * 8-10 * * ?"
    - "* * 14-15 * * ?"

CHAPTER 2. DEPLOYMENT CONFIGURATION

51



2. Create or update the resource:

Additional resources

Performing rolling updates:

Section 12.3.2, “Performing a rolling update using a StatefulSet annotation”

Section 12.3.3, “Performing a rolling update using a Pod annotation”

2.1.6. Connecting to ZooKeeper from a terminal

Most Kafka CLI tools can connect directly to Kafka, so under normal circumstances you should not need
to connect to ZooKeeper. ZooKeeper services are secured with encryption and authentication and are
not intended to be used by external applications that are not part of AMQ Streams.

However, if you want to use Kafka CLI tools that require a connection to ZooKeeper, you can use a
terminal inside a ZooKeeper container and connect to localhost:12181 as the ZooKeeper address.

Prerequisites

An OpenShift cluster is available.

A Kafka cluster is running.

The Cluster Operator is running.

Procedure

1. Open the terminal using the OpenShift console or run the exec command from your CLI.
For example:

Be sure to use localhost:12181.

You can now run Kafka commands to ZooKeeper.

2.1.7. Deleting Kafka nodes manually

This procedure describes how to delete an existing Kafka node by using an OpenShift annotation.
Deleting a Kafka node consists of deleting both the Pod on which the Kafka broker is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

oc apply -f KAFKA-CONFIG-FILE

oc exec -ti my-cluster-zookeeper-0 -- bin/kafka-topics.sh --list --zookeeper localhost:12181

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

52



WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss. The following
procedure should only be performed if you have encountered storage issues.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift  guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Find the name of the Pod that you want to delete.
For example, if the cluster is named cluster-name, the pods are named cluster-name-
kafka-index, where index starts at zero and ends at the total number of replicas.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

2.1.8. Deleting ZooKeeper nodes manually

This procedure describes how to delete an existing ZooKeeper node by using an OpenShift annotation.
Deleting a ZooKeeper node consists of deleting both the Pod on which ZooKeeper is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss. The following
procedure should only be performed if you have encountered storage issues.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift  guide for instructions on running a:

Cluster Operator

Kafka cluster



oc annotate pod cluster-name-kafka-index strimzi.io/delete-pod-and-pvc=true



CHAPTER 2. DEPLOYMENT CONFIGURATION

53

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str


Procedure

1. Find the name of the Pod that you want to delete.
For example, if the cluster is named cluster-name, the pods are named cluster-name-
zookeeper-index, where index starts at zero and ends at the total number of replicas.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

2.1.9. List of Kafka cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

Shared resources

cluster-name-cluster-ca

Secret with the Cluster CA private key used to encrypt the cluster communication.

cluster-name-cluster-ca-cert

Secret with the Cluster CA public key. This key can be used to verify the identity of the Kafka
brokers.

cluster-name-clients-ca

Secret with the Clients CA private key used to sign user certificates

cluster-name-clients-ca-cert

Secret with the Clients CA public key. This key can be used to verify the identity of the Kafka users.

cluster-name-cluster-operator-certs

Secret with Cluster operators keys for communication with Kafka and ZooKeeper.

Zookeeper nodes

cluster-name-zookeeper

StatefulSet which is in charge of managing the ZooKeeper node pods.

cluster-name-zookeeper-idx

Pods created by the Zookeeper StatefulSet.

cluster-name-zookeeper-nodes

Headless Service needed to have DNS resolve the ZooKeeper pods IP addresses directly.

cluster-name-zookeeper-client

Service used by Kafka brokers to connect to ZooKeeper nodes as clients.

cluster-name-zookeeper-config

ConfigMap that contains the ZooKeeper ancillary configuration, and is mounted as a volume by the
ZooKeeper node pods.

cluster-name-zookeeper-nodes

Secret with ZooKeeper node keys.

oc annotate pod cluster-name-zookeeper-index strimzi.io/delete-pod-and-pvc=true

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

54



cluster-name-zookeeper

Service account used by the Zookeeper nodes.

cluster-name-zookeeper

Pod Disruption Budget configured for the ZooKeeper nodes.

cluster-name-network-policy-zookeeper

Network policy managing access to the ZooKeeper services.

data-cluster-name-zookeeper-idx

Persistent Volume Claim for the volume used for storing data for the ZooKeeper node pod idx. This
resource will be created only if persistent storage is selected for provisioning persistent volumes to
store data.

Kafka brokers

cluster-name-kafka

StatefulSet which is in charge of managing the Kafka broker pods.

cluster-name-kafka-idx

Pods created by the Kafka StatefulSet.

cluster-name-kafka-brokers

Service needed to have DNS resolve the Kafka broker pods IP addresses directly.

cluster-name-kafka-bootstrap

Service can be used as bootstrap servers for Kafka clients connecting from within the OpenShift
cluster.

cluster-name-kafka-external-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

cluster-name-kafka-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

cluster-name-kafka-external-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

cluster-name-kafka-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

cluster-name-kafka-listener-name-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The new service name will be used for all other external
listeners.

cluster-name-kafka-listener-name-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The new service name will be used for all other
external listeners.

CHAPTER 2. DEPLOYMENT CONFIGURATION

55



cluster-name-kafka-listener-name-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The new route name will be used for
all other external listeners.

cluster-name-kafka-listener-name-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The new route name will be used for all
other external listeners.

cluster-name-kafka-config

ConfigMap which contains the Kafka ancillary configuration and is mounted as a volume by the Kafka
broker pods.

cluster-name-kafka-brokers

Secret with Kafka broker keys.

cluster-name-kafka

Service account used by the Kafka brokers.

cluster-name-kafka

Pod Disruption Budget configured for the Kafka brokers.

cluster-name-network-policy-kafka

Network policy managing access to the Kafka services.

strimzi-namespace-name-cluster-name-kafka-init

Cluster role binding used by the Kafka brokers.

cluster-name-jmx

Secret with JMX username and password used to secure the Kafka broker port. This resource is
created only when JMX is enabled in Kafka.

data-cluster-name-kafka-idx

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for provisioning persistent volumes to store
data.

data-id-cluster-name-kafka-idx

Persistent Volume Claim for the volume id used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for JBOD volumes when provisioning
persistent volumes to store data.

Entity Operator

These resources are only created if the Entity Operator is deployed using the Cluster Operator.

cluster-name-entity-operator

Deployment with Topic and User Operators.

cluster-name-entity-operator-random-string

Pod created by the Entity Operator deployment.

cluster-name-entity-topic-operator-config

ConfigMap with ancillary configuration for Topic Operators.

cluster-name-entity-user-operator-config

ConfigMap with ancillary configuration for User Operators.

cluster-name-entity-operator-certs

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

56



Secret with Entity Operator keys for communication with Kafka and ZooKeeper.

cluster-name-entity-operator

Service account used by the Entity Operator.

strimzi-cluster-name-entity-topic-operator

Role binding used by the Entity Topic Operator.

strimzi-cluster-name-entity-user-operator

Role binding used by the Entity User Operator.

Kafka Exporter

These resources are only created if the Kafka Exporter is deployed using the Cluster Operator.

cluster-name-kafka-exporter

Deployment with Kafka Exporter.

cluster-name-kafka-exporter-random-string

Pod created by the Kafka Exporter deployment.

cluster-name-kafka-exporter

Service used to collect consumer lag metrics.

cluster-name-kafka-exporter

Service account used by the Kafka Exporter.

Cruise Control

These resources are only created if Cruise Control was deployed using the Cluster Operator.

cluster-name-cruise-control

Deployment with Cruise Control.

cluster-name-cruise-control-random-string

Pod created by the Cruise Control deployment.

cluster-name-cruise-control-config

ConfigMap that contains the Cruise Control ancillary configuration, and is mounted as a volume by
the Cruise Control pods.

cluster-name-cruise-control-certs

Secret with Cruise Control keys for communication with Kafka and ZooKeeper.

cluster-name-cruise-control

Service used to communicate with Cruise Control.

cluster-name-cruise-control

Service account used by Cruise Control.

cluster-name-network-policy-cruise-control

Network policy managing access to the Cruise Control service.

2.2. KAFKA CONNECT/S2I CLUSTER CONFIGURATION

This section describes how to configure a Kafka Connect or Kafka Connect with Source-to-Image (S2I)
deployment in your AMQ Streams cluster.

Kafka Connect is an integration toolkit for streaming data between Kafka brokers and other systems

CHAPTER 2. DEPLOYMENT CONFIGURATION

57



using connector plugins. Kafka Connect provides a framework for integrating Kafka with an external data
source or target, such as a database, for import or export of data using connectors. Connectors are
plugins that provide the connection configuration needed.

If you are using Kafka Connect, you configure either the KafkaConnect or the KafkaConnectS2I
resource. Use the KafkaConnectS2I resource if you are using the Source-to-Image (S2I) framework to
deploy Kafka Connect.

The full schema of the KafkaConnect resource is described in Section 13.2.80, “KafkaConnect
schema reference”.

The full schema of the KafkaConnectS2I resource is described in Section 13.2.104,
“KafkaConnectS2I schema reference”.

IMPORTANT

With the introduction of build configuration to the KafkaConnect resource, AMQ
Streams can now automatically build a container image with the connector plugins you
require for your data connections. As a result, support for Kafka Connect with Source-to-
Image (S2I) is deprecated. To prepare for this change, you can migrate Kafka Connect
S2I instances to Kafka Connect instances.

Additional resources

Creating and managing connectors

Deploying a KafkaConnector resource to Kafka Connect

Restart a Kafka connector by annotating a KafkaConnector resource

Restart a Kafka connector task by annotating a KafkaConnector resource

2.2.1. Configuring Kafka Connect

Use Kafka Connect to set up external data connections to your Kafka cluster.

Use the properties of the KafkaConnect or KafkaConnectS2I resource to configure your Kafka
Connect deployment. The example shown in this procedure is for the KafkaConnect resource, but the
properties are the same for the KafkaConnectS2I resource.

Kafka connector configuration

KafkaConnector resources allow you to create and manage connector instances for Kafka Connect in an
OpenShift-native way.

In your Kafka Connect configuration, you enable KafkaConnectors for a Kafka Connect cluster by adding
the strimzi.io/use-connector-resources annotation. You can also add a build configuration so that
AMQ Streams automatically builds a container image with the connector plugins you require for your
data connections. External configuration for Kafka Connect connectors is specified through the 
externalConfiguration property.

To manage connectors, you can use the Kafka Connect REST API, or use KafkaConnector custom
resources. KafkaConnector resources must be deployed to the same namespace as the Kafka Connect
cluster they link to. For more information on using these methods to create, reconfigure, or delete
connectors, see Creating and managing connectors in the Deploying and Upgrading AMQ Streams on
OpenShift guide.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

58

https://docs.okd.io/latest/creating_images/s2i.html
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#con-creating-managing-connectors-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#proc-deploying-kafkaconnector-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#proc-manual-restart-connector-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#proc-manual-restart-connector-task-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#con-creating-managing-connectors-str


Connector configuration is passed to Kafka Connect as part of an HTTP request and stored within Kafka
itself. ConfigMaps and Secrets are standard OpenShift resources used for storing configurations and
confidential data. You can use ConfigMaps and Secrets to configure certain elements of a connector.
You can then reference the configuration values in HTTP REST commands, which keeps the
configuration separate and more secure, if needed. This method applies especially to confidential data,
such as usernames, passwords, or certificates.

Prerequisites

An OpenShift cluster

A running Cluster Operator

See the Deploying and Upgrading AMQ Streams on OpenShift  guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Edit the spec properties for the KafkaConnect or KafkaConnectS2I resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect 1
metadata:
  name: my-connect-cluster
  annotations:
    strimzi.io/use-connector-resources: "true" 2
spec:
  replicas: 3 3
  authentication: 4
    type: tls
    certificateAndKey:
      certificate: source.crt
      key: source.key
      secretName: my-user-source
  bootstrapServers: my-cluster-kafka-bootstrap:9092 5
  tls: 6
    trustedCertificates:
      - secretName: my-cluster-cluster-cert
        certificate: ca.crt
      - secretName: my-cluster-cluster-cert
        certificate: ca2.crt
  config: 7
    group.id: my-connect-cluster
    offset.storage.topic: my-connect-cluster-offsets
    config.storage.topic: my-connect-cluster-configs
    status.storage.topic: my-connect-cluster-status
    key.converter: org.apache.kafka.connect.json.JsonConverter
    value.converter: org.apache.kafka.connect.json.JsonConverter
    key.converter.schemas.enable: true
    value.converter.schemas.enable: true
    config.storage.replication.factor: 3

CHAPTER 2. DEPLOYMENT CONFIGURATION

59

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str


    offset.storage.replication.factor: 3
    status.storage.replication.factor: 3
  build: 8
    output: 9
      type: docker
      image: my-registry.io/my-org/my-connect-cluster:latest
      pushSecret: my-registry-credentials
    plugins: 10
      - name: debezium-postgres-connector
        artifacts:
          - type: tgz
            url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/1.3.1.Final/debezium-connector-postgres-1.3.1.Final-plugin.tar.gz
            sha512sum: 
962a12151bdf9a5a30627eebac739955a4fd95a08d373b86bdcea2b4d0c27dd6e1edd5cb54804
5e115e33a9e69b1b2a352bee24df035a0447cb820077af00c03
      - name: camel-telegram
        artifacts:
          - type: tgz
            url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.7.0/camel-telegram-kafka-connector-0.7.0-package.tar.gz
            sha512sum: 
a9b1ac63e3284bea7836d7d24d84208c49cdf5600070e6bd1535de654f6920b74ad950d51733e
8020bf4187870699819f54ef5859c7846ee4081507f48873479
  externalConfiguration: 11
    env:
      - name: AWS_ACCESS_KEY_ID
        valueFrom:
          secretKeyRef:
            name: aws-creds
            key: awsAccessKey
      - name: AWS_SECRET_ACCESS_KEY
        valueFrom:
          secretKeyRef:
            name: aws-creds
            key: awsSecretAccessKey
  resources: 12
    requests:
      cpu: "1"
      memory: 2Gi
    limits:
      cpu: "2"
      memory: 2Gi
  logging: 13
    type: inline
    loggers:
      log4j.rootLogger: "INFO"
  readinessProbe: 14
    initialDelaySeconds: 15
    timeoutSeconds: 5
  livenessProbe:
    initialDelaySeconds: 15
    timeoutSeconds: 5
  metricsConfig: 15
    type: jmxPrometheusExporter

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

60



1

2

3

4

5

6

7

8

9

Use KafkaConnect or KafkaConnectS2I, as required.

Enables KafkaConnectors for the Kafka Connect cluster.

The number of replica nodes .

Authentication for the Kafka Connect cluster, using the TLS mechanism, as shown here,
using OAuth bearer tokens, or a SASL-based SCRAM-SHA-512 or PLAIN mechanism. By
default, Kafka Connect connects to Kafka brokers using a plain text connection.

Bootstrap server for connection to the Kafka Connect cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
the cluster. If certificates are stored in the same secret, it can be listed multiple times.

Kafka Connect configuration of workers (not connectors). Standard Apache Kafka
configuration may be provided, restricted to those properties not managed directly by
AMQ Streams.

Build configuration properties  for building a container image with connector plugins
automatically.

(Required) Configuration of the container registry where new images are pushed.

    valueFrom:
      configMapKeyRef:
        name: my-config-map
        key: my-key
  jvmOptions: 16
    "-Xmx": "1g"
    "-Xms": "1g"
  image: my-org/my-image:latest 17
  rack:
    topologyKey: topology.kubernetes.io/zone 18
  template: 19
    pod:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            - labelSelector:
                matchExpressions:
                  - key: application
                    operator: In
                    values:
                      - postgresql
                      - mongodb
              topologyKey: "kubernetes.io/hostname"
    connectContainer: 20
      env:
        - name: JAEGER_SERVICE_NAME
          value: my-jaeger-service
        - name: JAEGER_AGENT_HOST
          value: jaeger-agent-name
        - name: JAEGER_AGENT_PORT
          value: "6831"

CHAPTER 2. DEPLOYMENT CONFIGURATION

61



10

11

12

13

14

15

16

17

18

19

20

(Required) List of connector plugins and their artifacts to add to the new container image.
Each plugin must be configured with at least one artifact.

External configuration for Kafka connectors  using environment variables, as shown here, or
volumes.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified Kafka Connect loggers and log levels  added directly (inline) or indirectly
(external) through a ConfigMap. A custom ConfigMap must be placed under the 
log4j.properties or log4j2.properties key. For the Kafka Connect log4j.rootLogger
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

Prometheus metrics, which are enabled by referencing a ConfigMap containing
configuration for the Prometheus JMX exporter in this example. You can enable metrics
without further configuration using a reference to a ConfigMap containing an empty file
under metricsConfig.valueFrom.configMapKeyRef.key.

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka Connect.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Rack awareness is configured to spread replicas across different racks. A topologykey
must match the label of a cluster node.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are also set for distributed tracing using Jaeger .

2. Create or update the resource:

3. If authorization is enabled for Kafka Connect, configure Kafka Connect users to enable access
to the Kafka Connect consumer group and topics.

2.2.2. Kafka Connect configuration for multiple instances

If you are running multiple instances of Kafka Connect, you have to change the default configuration of
the following config properties:

oc apply -f KAFKA-CONNECT-CONFIG-FILE

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect
spec:
  # ...
  config:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

62



1

2

3

4

Kafka Connect cluster group that the instance belongs to.

Kafka topic that stores connector offsets.

Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

NOTE

Values for the three topics must be the same for all Kafka Connect instances with the
same group.id.

Unless you change the default settings, each Kafka Connect instance connecting to the same Kafka
cluster is deployed with the same values. What happens, in effect, is all instances are coupled to run in a
cluster and use the same topics.

If multiple Kafka Connect clusters try to use the same topics, Kafka Connect will not work as expected
and generate errors.

If you wish to run multiple Kafka Connect instances, change the values of these properties for each
instance.

2.2.3. Configuring Kafka Connect user authorization

This procedure describes how to authorize user access to Kafka Connect.

When any type of authorization is being used in Kafka, a Kafka Connect user requires read/write access
rights to the consumer group and the internal topics of Kafka Connect.

The properties for the consumer group and internal topics are automatically configured by AMQ
Streams, or they can be specified explicitly in the spec of the KafkaConnect or KafkaConnectS2I
resource.

Example configuration properties in the KafkaConnect resource

    group.id: connect-cluster 1
    offset.storage.topic: connect-cluster-offsets 2
    config.storage.topic: connect-cluster-configs 3
    status.storage.topic: connect-cluster-status  4
    # ...
# ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect
spec:
  # ...
  config:
    group.id: my-connect-cluster 1
    offset.storage.topic: my-connect-cluster-offsets 2
    config.storage.topic: my-connect-cluster-configs 3

CHAPTER 2. DEPLOYMENT CONFIGURATION

63



1

2

3

4

Kafka Connect cluster group that the instance belongs to.

Kafka topic that stores connector offsets.

Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

This procedure shows how access is provided when simple authorization is being used.

Simple authorization uses ACL rules, handled by the Kafka AclAuthorizer plugin, to provide the right
level of access. For more information on configuring a KafkaUser resource to use simple authorization,
see the AclRule schema reference.

NOTE

The default values for the consumer group and topics will differ when running multiple
instances.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the authorization property in the KafkaUser resource to provide access rights to the user.
In the following example, access rights are configured for the Kafka Connect topics and
consumer group using literal name values:

Property Name

offset.storage.topic connect-cluster-offsets

status.storage.topic connect-cluster-status

config.storage.topic connect-cluster-configs

group connect-cluster

    status.storage.topic: my-connect-cluster-status 4
    # ...
  # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
  name: my-user
  labels:
    strimzi.io/cluster: my-cluster

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

64



spec:
  # ...
  authorization:
    type: simple
    acls:
      # access to offset.storage.topic
      - resource:
          type: topic
          name: connect-cluster-offsets
          patternType: literal
        operation: Write
        host: "*"
      - resource:
          type: topic
          name: connect-cluster-offsets
          patternType: literal
        operation: Create
        host: "*"
      - resource:
          type: topic
          name: connect-cluster-offsets
          patternType: literal
        operation: Describe
        host: "*"
      - resource:
          type: topic
          name: connect-cluster-offsets
          patternType: literal
        operation: Read
        host: "*"
      # access to status.storage.topic
      - resource:
          type: topic
          name: connect-cluster-status
          patternType: literal
        operation: Write
        host: "*"
      - resource:
          type: topic
          name: connect-cluster-status
          patternType: literal
        operation: Create
        host: "*"
      - resource:
          type: topic
          name: connect-cluster-status
          patternType: literal
        operation: Describe
        host: "*"
      - resource:
          type: topic
          name: connect-cluster-status
          patternType: literal
        operation: Read
        host: "*"
      # access to config.storage.topic

CHAPTER 2. DEPLOYMENT CONFIGURATION

65



2. Create or update the resource.

2.2.4. Performing a restart of a Kafka connector

This procedure describes how to manually trigger a restart of a Kafka connector by using an OpenShift
annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector you
want to restart:

2. To restart the connector, annotate the KafkaConnector resource in OpenShift. For example,
using oc annotate:

      - resource:
          type: topic
          name: connect-cluster-configs
          patternType: literal
        operation: Write
        host: "*"
      - resource:
          type: topic
          name: connect-cluster-configs
          patternType: literal
        operation: Create
        host: "*"
      - resource:
          type: topic
          name: connect-cluster-configs
          patternType: literal
        operation: Describe
        host: "*"
      - resource:
          type: topic
          name: connect-cluster-configs
          patternType: literal
        operation: Read
        host: "*"
      # consumer group
      - resource:
          type: group
          name: connect-cluster
          patternType: literal
        operation: Read
        host: "*"

oc apply -f KAFKA-USER-CONFIG-FILE

oc get KafkaConnector

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

66



3. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector is restarted, as long as the annotation was detected by the reconciliation
process. When Kafka Connect accepts the restart request, the annotation is removed from the 
KafkaConnector custom resource.

Additional resources

Creating and managing connectors in the Deploying and Upgrading  guide.

2.2.5. Performing a restart of a Kafka connector task

This procedure describes how to manually trigger a restart of a Kafka connector task by using an
OpenShift annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector task
you want to restart:

2. Find the ID of the task to be restarted from the KafkaConnector custom resource. Task IDs are
non-negative integers, starting from 0.

3. To restart the connector task, annotate the KafkaConnector resource in OpenShift. For
example, using oc annotate to restart task 0:

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector task is restarted, as long as the annotation was detected by the
reconciliation process. When Kafka Connect accepts the restart request, the annotation is
removed from the KafkaConnector custom resource.

Additional resources

Creating and managing connectors in the Deploying and Upgrading  guide.

2.2.6. Migrating from Kafka Connect with S2I to Kafka Connect

Support for Kafka Connect with S2I and the KafkaConnectS2I resource is deprecated. This follows the
introduction of build configuration properties to the KafkaConnect resource, which are used to build a
container image with the connector plugins you require for your data connections automatically.

This procedure describes how to migrate your Kafka Connect with S2I instance to a standard Kafka

oc annotate KafkaConnector KAFKACONNECTOR-NAME strimzi.io/restart=true

oc get KafkaConnector

oc describe KafkaConnector KAFKACONNECTOR-NAME

oc annotate KafkaConnector KAFKACONNECTOR-NAME strimzi.io/restart-task=0

CHAPTER 2. DEPLOYMENT CONFIGURATION

67

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#con-creating-managing-connectors-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#con-creating-managing-connectors-str


This procedure describes how to migrate your Kafka Connect with S2I instance to a standard Kafka
Connect instance. To do this, you configure a new KafkaConnect custom resource to replace the 
KafkaConnectS2I resource, which is then deleted.

WARNING

The migration process involves downtime from the moment the KafkaConnectS2I
instance is deleted until the new KafkaConnect instance has been successfully
deployed. During this time, connectors will not be running and processing data.
However, after the changeover they should continue from the point at which they
stopped.

Prerequisites

Kafka Connect with S2I is deployed using a KafkaConnectS2I configuration

Kafka Connect with S2I is using an image with connectors added using an S2I build

Sink and source connector instances were created using KafkaConnector resources or the
Kafka Connect REST API

Procedure

1. Create a new KafkaConnect custom resource using the same name as the name used for the 
KafkaconnectS2I resource.

2. Copy the KafkaConnectS2I resource properties to the KafkaConnect resource.

3. If specified, make sure you use the same spec.config properties:

group.id

offset.storage.topic

config.storage.topic

status.storage.topic
If these properties are not specified, defaults are used. In which case, leave them out of the 
KafkaConnect resource configuration as well.

Now add configuration specific to the KafkaConnect resource to the new resource.

4. Add build configuration to configure all the connectors and other libraries you want to add to
the Kafka Connect deployment.

NOTE

Alternatively, you can build a new image with connectors manually, and specify it
using the .spec.image property.

5. Delete the old KafkaConnectS2I resource:



Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

68



Replace MY-KAFKA-CONNECT-S2I-CONFIG-FILE with the name of the file containing your 
KafkaConnectS2I resource configuration.

Alternatively, you can specify the name of the resource:

Replace MY-KAFKA-CONNECT-S2I with the name of the KafkaConnectS2I resource.

Wait until the Kafka Connect with S2I deployment and pods are deleted.

WARNING

No other resources must be deleted.

6. Deploy the new KafkaConnect resource:

Replace MY-KAFKA-CONNECT-CONFIG-FILE with the name of the file containing your new 
KafkaConnect resource configuration.

Wait until the new image is built, the deployment is created, and the pods have started.

7. If you are using KafkaConnector resources for managing Kafka Connect connectors, check that
all expected connectors are present and are running:

Replace MY-KAFKA-CONNECT-CLUSTER with the name of your Kafka Connect cluster.

Connectors automatically recover through Kafka Connect storage. Even if you are using the
Kafka Connect REST API to manage them, you should not need to recreate them manually.

Additional resources

Configuring Kafka Connect

Creating a new container image automatically using AMQ Streams

Creating a Docker image from the Kafka Connect base image

Creating and managing connectors

2.2.7. List of Kafka Connect cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

oc delete -f MY-KAFKA-CONNECT-S2I-CONFIG-FILE

oc delete kafkaconnects2i MY-KAFKA-CONNECT-S2I



oc apply -f MY-KAFKA-CONNECT-CONFIG-FILE

oc get kctr --selector strimzi.io/cluster=MY-KAFKA-CONNECT-CLUSTER -o name

CHAPTER 2. DEPLOYMENT CONFIGURATION

69

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#creating-new-image-using-kafka-connect-build-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#creating-new-image-from-base-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#con-creating-managing-connectors-str


connect-cluster-name-connect

Deployment which is in charge to create the Kafka Connect worker node pods.

connect-cluster-name-connect-api

Service which exposes the REST interface for managing the Kafka Connect cluster.

connect-cluster-name-config

ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by
the Kafka broker pods.

connect-cluster-name-connect

Pod Disruption Budget configured for the Kafka Connect worker nodes.

2.2.8. List of Kafka Connect (S2I) cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

connect-cluster-name-connect-source

ImageStream which is used as the base image for the newly-built Docker images.

connect-cluster-name-connect

BuildConfig which is responsible for building the new Kafka Connect Docker images.

connect-cluster-name-connect

ImageStream where the newly built Docker images will be pushed.

connect-cluster-name-connect

DeploymentConfig which is in charge of creating the Kafka Connect worker node pods.

connect-cluster-name-connect-api

Service which exposes the REST interface for managing the Kafka Connect cluster.

connect-cluster-name-config

ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by
the Kafka broker pods.

connect-cluster-name-connect

Pod Disruption Budget configured for the Kafka Connect worker nodes.

2.2.9. Integrating with Debezium for change data capture

Red Hat Debezium is a distributed change data capture platform. It captures row-level changes in
databases, creates change event records, and streams the records to Kafka topics. Debezium is built on
Apache Kafka. You can deploy and integrate Debezium with AMQ Streams. Following a deployment of
AMQ Streams, you deploy Debezium as a connector configuration through Kafka Connect. Debezium
passes change event records to AMQ Streams on OpenShift. Applications can read these change event
streams and access the change events in the order in which they occurred.

Debezium has multiple uses, including:

Data replication

Updating caches and search indexes

Simplifying monolithic applications

Data integration

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

70



Enabling streaming queries

To capture database changes, deploy Kafka Connect with a Debezium database connector . You
configure a KafkaConnector resource to define the connector instance.

For more information on deploying Debezium with AMQ Streams, refer to the product documentation.
The Debezium documentation includes a Getting Started with Debezium  guide that guides you through
the process of setting up the services and connector required to view change event records for
database updates.

2.3. KAFKA MIRRORMAKER CLUSTER CONFIGURATION

This chapter describes how to configure a Kafka MirrorMaker deployment in your AMQ Streams cluster
to replicate data between Kafka clusters.

You can use AMQ Streams with MirrorMaker or MirrorMaker 2.0. MirrorMaker 2.0 is the latest version,
and offers a more efficient way to mirror data between Kafka clusters.

If you are using MirrorMaker, you configure the KafkaMirrorMaker resource.

The following procedure shows how the resource is configured:

Configuring Kafka MirrorMaker

The full schema of the KafkaMirrorMaker resource is described in the KafkaMirrorMaker schema
reference.

2.3.1. Configuring Kafka MirrorMaker

Use the properties of the KafkaMirrorMaker resource to configure your Kafka MirrorMaker deployment.

You can configure access control for producers and consumers using TLS or SASL authentication. This
procedure shows a configuration that uses TLS encryption and authentication on the consumer and
producer side.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift  guide for instructions on running
a:

Cluster Operator

Kafka cluster

Source and target Kafka clusters must be available

Procedure

1. Edit the spec properties for the KafkaMirrorMaker resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:
  name: my-mirror-maker

CHAPTER 2. DEPLOYMENT CONFIGURATION

71

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q1/
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str


spec:
  replicas: 3 1
  consumer:
    bootstrapServers: my-source-cluster-kafka-bootstrap:9092 2
    groupId: "my-group" 3
    numStreams: 2 4
    offsetCommitInterval: 120000 5
    tls: 6
      trustedCertificates:
      - secretName: my-source-cluster-ca-cert
        certificate: ca.crt
    authentication: 7
      type: tls
      certificateAndKey:
        secretName: my-source-secret
        certificate: public.crt
        key: private.key
    config: 8
      max.poll.records: 100
      receive.buffer.bytes: 32768
      ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 9
      ssl.enabled.protocols: "TLSv1.2"
      ssl.protocol: "TLSv1.2"
      ssl.endpoint.identification.algorithm: HTTPS 10
  producer:
    bootstrapServers: my-target-cluster-kafka-bootstrap:9092
    abortOnSendFailure: false 11
    tls:
      trustedCertificates:
      - secretName: my-target-cluster-ca-cert
        certificate: ca.crt
    authentication:
      type: tls
      certificateAndKey:
        secretName: my-target-secret
        certificate: public.crt
        key: private.key
    config:
      compression.type: gzip
      batch.size: 8192
      ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 12
      ssl.enabled.protocols: "TLSv1.2"
      ssl.protocol: "TLSv1.2"
      ssl.endpoint.identification.algorithm: HTTPS 13
  whitelist: "my-topic|other-topic" 14
  resources: 15
    requests:
      cpu: "1"
      memory: 2Gi
    limits:
      cpu: "2"
      memory: 2Gi
  logging: 16
    type: inline

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

72



1

2

3

4

5

6

The number of replica nodes .

Bootstrap servers for consumer and producer.

Group ID for the consumer .

The number of consumer streams.

The offset auto-commit interval in milliseconds .

TLS encryption with key names under which TLS certificates are stored in X.509 format for
consumer or producer. If certificates are stored in the same secret, it can be listed multiple
times.

Authentication for consumer or producer, using the TLS mechanism, as shown here, using

    loggers:
      mirrormaker.root.logger: "INFO"
  readinessProbe: 17
    initialDelaySeconds: 15
    timeoutSeconds: 5
  livenessProbe:
    initialDelaySeconds: 15
    timeoutSeconds: 5
  metricsConfig: 18
   type: jmxPrometheusExporter
   valueFrom:
     configMapKeyRef:
       name: my-config-map
       key: my-key
  jvmOptions: 19
    "-Xmx": "1g"
    "-Xms": "1g"
  image: my-org/my-image:latest 20
  template: 21
    pod:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            - labelSelector:
                matchExpressions:
                  - key: application
                    operator: In
                    values:
                      - postgresql
                      - mongodb
              topologyKey: "kubernetes.io/hostname"
    connectContainer: 22
      env:
        - name: JAEGER_SERVICE_NAME
          value: my-jaeger-service
        - name: JAEGER_AGENT_HOST
          value: jaeger-agent-name
        - name: JAEGER_AGENT_PORT
          value: "6831"
  tracing: 23
    type: jaeger

CHAPTER 2. DEPLOYMENT CONFIGURATION

73



7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Authentication for consumer or producer, using the TLS mechanism, as shown here, using
OAuth bearer tokens, or a SASL-based SCRAM-SHA-512 or PLAIN mechanism.

Kafka configuration options for consumer and producer.

SSL properties for external listeners to run with a specific cipher suite for a TLS version.

Hostname verification is enabled by setting to HTTPS. An empty string disables the
verification.

If the abortOnSendFailure property is set to true, Kafka MirrorMaker will exit and the
container will restart following a send failure for a message.

SSL properties for external listeners to run with a specific cipher suite for a TLS version.

Hostname verification is enabled by setting to HTTPS. An empty string disables the
verification.

A whitelist of topics mirrored from source to target Kafka cluster.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified loggers and log levels  added directly (inline) or indirectly (external) through a
ConfigMap. A custom ConfigMap must be placed under the log4j.properties or 
log4j2.properties key. MirrorMaker has a single logger called mirrormaker.root.logger.
You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

Prometheus metrics, which are enabled by referencing a ConfigMap containing
configuration for the Prometheus JMX exporter in this example. You can enable metrics
without further configuration using a reference to a ConfigMap containing an empty file
under metricsConfig.valueFrom.configMapKeyRef.key.

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka MirrorMaker.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are also set for distributed tracing using Jaeger .

Distributed tracing is enabled for Jaeger.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

74



WARNING

With the abortOnSendFailure property set to false, the producer
attempts to send the next message in a topic. The original message might
be lost, as there is no attempt to resend a failed message.

2. Create or update the resource:

2.3.2. List of Kafka MirrorMaker cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

<mirror-maker-name>-mirror-maker

Deployment which is responsible for creating the Kafka MirrorMaker pods.

<mirror-maker-name>-config

ConfigMap which contains ancillary configuration for the Kafka MirrorMaker, and is mounted as a
volume by the Kafka broker pods.

<mirror-maker-name>-mirror-maker

Pod Disruption Budget configured for the Kafka MirrorMaker worker nodes.

2.4. KAFKA MIRRORMAKER 2.0 CLUSTER CONFIGURATION

This section describes how to configure a Kafka MirrorMaker 2.0 deployment in your AMQ Streams
cluster.

MirrorMaker 2.0 is used to replicate data between two or more active Kafka clusters, within or across
data centers.

Data replication across clusters supports scenarios that require:

Recovery of data in the event of a system failure

Aggregation of data for analysis

Restriction of data access to a specific cluster

Provision of data at a specific location to improve latency

If you are using MirrorMaker 2.0, you configure the KafkaMirrorMaker2 resource.

MirrorMaker 2.0 introduces an entirely new way of replicating data between clusters.

As a result, the resource configuration differs from the previous version of MirrorMaker. If you choose to
use MirrorMaker 2.0, there is currently no legacy support, so any resources must be manually converted
into the new format.

How MirrorMaker 2.0 replicates data is described here:



oc apply -f <your-file>

CHAPTER 2. DEPLOYMENT CONFIGURATION

75



MirrorMaker 2.0 data replication

The following procedure shows how the resource is configured for MirrorMaker 2.0:

Synchronizing data between Kafka clusters

The full schema of the KafkaMirrorMaker2 resource is described in the KafkaMirrorMaker2 schema
reference.

2.4.1. MirrorMaker 2.0 data replication

MirrorMaker 2.0 consumes messages from a source Kafka cluster and writes them to a target Kafka
cluster.

MirrorMaker 2.0 uses:

Source cluster configuration to consume data from the source cluster

Target cluster configuration to output data to the target cluster

MirrorMaker 2.0 is based on the Kafka Connect framework, connectors managing the transfer of data
between clusters. A MirrorMaker 2.0 MirrorSourceConnector replicates topics from a source cluster to
a target cluster.

The process of mirroring data from one cluster to another cluster is asynchronous. The recommended
pattern is for messages to be produced locally alongside the source Kafka cluster, then consumed
remotely close to the target Kafka cluster.

MirrorMaker 2.0 can be used with more than one source cluster.

Figure 2.1. Replication across two clusters

By default, a check for new topics in the source cluster is made every 10 minutes. You can change the
frequency by adding refresh.topics.interval.seconds to the source connector configuration of the 
KafkaMirrorMaker2 resource. However, increasing the frequency of the operation might affect overall
performance.

2.4.2. Cluster configuration

You can use MirrorMaker 2.0 in active/passive or active/active cluster configurations.

In an active/active configuration, both clusters are active and provide the same data
simultaneously, which is useful if you want to make the same data available locally in different
geographical locations.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

76



In an active/passive configuration, the data from an active cluster is replicated in a passive
cluster, which remains on standby, for example, for data recovery in the event of system failure.

The expectation is that producers and consumers connect to active clusters only.

A MirrorMaker 2.0 cluster is required at each target destination.

2.4.2.1. Bidirectional replication (active/active)

The MirrorMaker 2.0 architecture supports bidirectional replication in an active/active cluster
configuration.

Each cluster replicates the data of the other cluster using the concept of source and remote topics. As
the same topics are stored in each cluster, remote topics are automatically renamed by MirrorMaker 2.0
to represent the source cluster. The name of the originating cluster is prepended to the name of the
topic.

Figure 2.2. Topic renaming

By flagging the originating cluster, topics are not replicated back to that cluster.

The concept of replication through remote topics is useful when configuring an architecture that
requires data aggregation. Consumers can subscribe to source and remote topics within the same
cluster, without the need for a separate aggregation cluster.

2.4.2.2. Unidirectional replication (active/passive)

The MirrorMaker 2.0 architecture supports unidirectional replication in an active/passive cluster
configuration.

You can use an active/passive cluster configuration to make backups or migrate data to another cluster.
In this situation, you might not want automatic renaming of remote topics.

CHAPTER 2. DEPLOYMENT CONFIGURATION

77



You can override automatic renaming by adding IdentityReplicationPolicy to the source connector
configuration of the KafkaMirrorMaker2 resource. With this configuration applied, topics retain their
original names.

2.4.2.3. Topic configuration synchronization

Topic configuration is automatically synchronized between source and target clusters. By synchronizing
configuration properties, the need for rebalancing is reduced.

2.4.2.4. Data integrity

MirrorMaker 2.0 monitors source topics and propagates any configuration changes to remote topics,
checking for and creating missing partitions. Only MirrorMaker 2.0 can write to remote topics.

2.4.2.5. Offset tracking

MirrorMaker 2.0 tracks offsets for consumer groups using internal topics.

The offset sync topic maps the source and target offsets for replicated topic partitions from
record metadata

The checkpoint topic maps the last committed offset in the source and target cluster for
replicated topic partitions in each consumer group

Offsets for the checkpoint topic are tracked at predetermined intervals through configuration. Both
topics enable replication to be fully restored from the correct offset position on failover.

MirrorMaker 2.0 uses its MirrorCheckpointConnector to emit checkpoints for offset tracking.

2.4.2.6. Synchronizing consumer group offsets

The __consumer_offsets topic stores information on committed offsets, for each consumer group.
Offset synchronization periodically transfers the consumer offsets for the consumer groups of a source
cluster into the consumer offsets topic of a target cluster.

Offset synchronization is particularly useful in an active/passive configuration. If the active cluster goes
down, consumer applications can switch to the passive (standby) cluster and pick up from the last
transferred offset position.

To use topic offset synchronization:

Enable the synchronization by adding sync.group.offsets.enabled to the checkpoint
connector configuration of the KafkaMirrorMaker2 resource, and setting the property to true.
Synchronization is disabled by default.

Add the IdentityReplicationPolicy to the source and checkpoint connector configuration so
that topics in the target cluster retain their original names.

For topic offset synchronization to work, consumer groups in the target cluster cannot use the same ids
as groups in the source cluster.

If enabled, the synchronization of offsets from the source cluster is made periodically. You can change
the frequency by adding sync.group.offsets.interval.seconds and 
emit.checkpoints.interval.seconds to the checkpoint connector configuration. The properties specify
the frequency in seconds that the consumer group offsets are synchronized, and the frequency of

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

78



checkpoints emitted for offset tracking. The default for both properties is 60 seconds. You can also
change the frequency of checks for new consumer groups using the refresh.groups.interval.seconds
property, which is performed every 10 minutes by default.

Because the synchronization is time-based, any switchover by consumers to a passive cluster will likely
result in some duplication of messages.

2.4.2.7. Connectivity checks

A heartbeat internal topic checks connectivity between clusters.

The heartbeat topic is replicated from the source cluster.

Target clusters use the topic to check:

The connector managing connectivity between clusters is running

The source cluster is available

MirrorMaker 2.0 uses its MirrorHeartbeatConnector to emit heartbeats that perform these checks.

2.4.3. ACL rules synchronization

ACL access to remote topics is possible if you are not using the User Operator.

If AclAuthorizer is being used, without the User Operator, ACL rules that manage access to brokers
also apply to remote topics. Users that can read a source topic can read its remote equivalent.

NOTE

OAuth 2.0 authorization does not support access to remote topics in this way.

2.4.4. Synchronizing data between Kafka clusters using MirrorMaker 2.0

Use MirrorMaker 2.0 to synchronize data between Kafka clusters through configuration.

The configuration must specify:

Each Kafka cluster

Connection information for each cluster, including TLS authentication

The replication flow and direction

Cluster to cluster

Topic to topic

Use the properties of the KafkaMirrorMaker2 resource to configure your Kafka MirrorMaker 2.0
deployment.

NOTE

The previous version of MirrorMaker continues to be supported. If you wish to use the
resources configured for the previous version, they must be updated to the format
supported by MirrorMaker 2.0.

CHAPTER 2. DEPLOYMENT CONFIGURATION

79



MirrorMaker 2.0 provides default configuration values for properties such as replication factors. A
minimal configuration, with defaults left unchanged, would be something like this example:

You can configure access control for source and target clusters using TLS or SASL authentication. This
procedure shows a configuration that uses TLS encryption and authentication for the source and target
cluster.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift  guide for instructions on running
a:

Cluster Operator

Kafka cluster

Source and target Kafka clusters must be available

Procedure

1. Edit the spec properties for the KafkaMirrorMaker2 resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
  name: my-mirror-maker2
spec:
  version: 2.7.0
  connectCluster: "my-cluster-target"
  clusters:
  - alias: "my-cluster-source"
    bootstrapServers: my-cluster-source-kafka-bootstrap:9092
  - alias: "my-cluster-target"
    bootstrapServers: my-cluster-target-kafka-bootstrap:9092
  mirrors:
  - sourceCluster: "my-cluster-source"
    targetCluster: "my-cluster-target"
    sourceConnector: {}

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
  name: my-mirror-maker2
spec:
  version: 2.7.0 1
  replicas: 3 2
  connectCluster: "my-cluster-target" 3
  clusters: 4
  - alias: "my-cluster-source" 5
    authentication: 6
      certificateAndKey:
        certificate: source.crt
        key: source.key

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

80

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str


        secretName: my-user-source
      type: tls
    bootstrapServers: my-cluster-source-kafka-bootstrap:9092 7
    tls: 8
      trustedCertificates:
      - certificate: ca.crt
        secretName: my-cluster-source-cluster-ca-cert
  - alias: "my-cluster-target" 9
    authentication: 10
      certificateAndKey:
        certificate: target.crt
        key: target.key
        secretName: my-user-target
      type: tls
    bootstrapServers: my-cluster-target-kafka-bootstrap:9092 11
    config: 12
      config.storage.replication.factor: 1
      offset.storage.replication.factor: 1
      status.storage.replication.factor: 1
      ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 13
      ssl.enabled.protocols: "TLSv1.2"
      ssl.protocol: "TLSv1.2"
      ssl.endpoint.identification.algorithm: HTTPS 14
    tls: 15
      trustedCertificates:
      - certificate: ca.crt
        secretName: my-cluster-target-cluster-ca-cert
  mirrors: 16
  - sourceCluster: "my-cluster-source" 17
    targetCluster: "my-cluster-target" 18
    sourceConnector: 19
      config:
        replication.factor: 1 20
        offset-syncs.topic.replication.factor: 1 21
        sync.topic.acls.enabled: "false" 22
        refresh.topics.interval.seconds: 60 23
        replication.policy.separator: "" 24
        replication.policy.class: "io.strimzi.kafka.connect.mirror.IdentityReplicationPolicy" 25
    heartbeatConnector: 26
      config:
        heartbeats.topic.replication.factor: 1 27
    checkpointConnector: 28
      config:
        checkpoints.topic.replication.factor: 1 29
        refresh.groups.interval.seconds: 600 30
        sync.group.offsets.enabled: true 31
        sync.group.offsets.interval.seconds: 60 32
        emit.checkpoints.interval.seconds: 60 33
        replication.policy.class: "io.strimzi.kafka.connect.mirror.IdentityReplicationPolicy"
    topicsPattern: ".*" 34
    groupsPattern: "group1|group2|group3" 35
  resources: 36

CHAPTER 2. DEPLOYMENT CONFIGURATION

81



    requests:
      cpu: "1"
      memory: 2Gi
    limits:
      cpu: "2"
      memory: 2Gi
  logging: 37
    type: inline
    loggers:
      connect.root.logger.level: "INFO"
  readinessProbe: 38
    initialDelaySeconds: 15
    timeoutSeconds: 5
  livenessProbe:
    initialDelaySeconds: 15
    timeoutSeconds: 5
  jvmOptions: 39
    "-Xmx": "1g"
    "-Xms": "1g"
  image: my-org/my-image:latest 40
  template: 41
    pod:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            - labelSelector:
                matchExpressions:
                  - key: application
                    operator: In
                    values:
                      - postgresql
                      - mongodb
              topologyKey: "kubernetes.io/hostname"
    connectContainer: 42
      env:
        - name: JAEGER_SERVICE_NAME
          value: my-jaeger-service
        - name: JAEGER_AGENT_HOST
          value: jaeger-agent-name
        - name: JAEGER_AGENT_PORT
          value: "6831"
  tracing:
    type: jaeger 43
  externalConfiguration: 44
    env:
      - name: AWS_ACCESS_KEY_ID
        valueFrom:
          secretKeyRef:
            name: aws-creds
            key: awsAccessKey
      - name: AWS_SECRET_ACCESS_KEY
        valueFrom:
          secretKeyRef:
            name: aws-creds
            key: awsSecretAccessKey

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

82



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

The Kafka Connect and Mirror Maker 2.0 version, which will always be the same.

The number of replica nodes .

Kafka cluster alias for Kafka Connect, which must specify the target Kafka cluster. The
Kafka cluster is used by Kafka Connect for its internal topics.

Specification for the Kafka clusters being synchronized.

Cluster alias for the source Kafka cluster.

Authentication for the source cluster, using the TLS mechanism, as shown here, using
OAuth bearer tokens, or a SASL-based SCRAM-SHA-512 or PLAIN mechanism.

Bootstrap server for connection to the source Kafka cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
the source Kafka cluster. If certificates are stored in the same secret, it can be listed
multiple times.

Cluster alias for the target Kafka cluster.

Authentication for the target Kafka cluster is configured in the same way as for the source
Kafka cluster.

Bootstrap server for connection to the target Kafka cluster.

Kafka Connect configuration. Standard Apache Kafka configuration may be provided,
restricted to those properties not managed directly by AMQ Streams.

SSL properties for external listeners to run with a specific cipher suite for a TLS version.

Hostname verification is enabled by setting to HTTPS. An empty string disables the
verification.

TLS encryption for the target Kafka cluster is configured in the same way as for the source
Kafka cluster.

MirrorMaker 2.0 connectors.

Cluster alias for the source cluster used by the MirrorMaker 2.0 connectors.

Cluster alias for the target cluster used by the MirrorMaker 2.0 connectors.

Configuration for the MirrorSourceConnector that creates remote topics. The config
overrides the default configuration options.

Replication factor for mirrored topics created at the target cluster.

Replication factor for the MirrorSourceConnector offset-syncs internal topic that maps
the offsets of the source and target clusters.

When ACL rules synchronization is enabled, ACLs are applied to synchronized topics. The
default is true.

Optional setting to change the frequency of checks for new topics. The default is for a
check every 10 minutes.

CHAPTER 2. DEPLOYMENT CONFIGURATION

83



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Defines the separator used for the renaming of remote topics.

Adds a policy that overrides the automatic renaming of remote topics. Instead of
prepending the name with the name of the source cluster, the topic retains its original
name. This optional setting is useful for active/passive backups and data migration. To
configure topic offset synchronization, this property must also be set for the 
checkpointConnector.config.

Configuration for the MirrorHeartbeatConnector that performs connectivity checks. The 
config overrides the default configuration options.

Replication factor for the heartbeat topic created at the target cluster.

Configuration for the MirrorCheckpointConnector that tracks offsets. The config
overrides the default configuration options.

Replication factor for the checkpoints topic created at the target cluster.

Optional setting to change the frequency of checks for new consumer groups. The default
is for a check every 10 minutes.

Optional setting to synchronize consumer group offsets, which is useful for recovery in an
active/passive configuration. Synchronization is not enabled by default.

If the synchronization of consumer group offsets is enabled, you can adjust the frequency
of the synchronization.

Adjusts the frequency of checks for offset tracking. If you change the frequency of offset
synchronization, you might also need to adjust the frequency of these checks.

Topic replication from the source cluster defined as regular expression patterns . Here we
request all topics.

Consumer group replication from the source cluster defined as regular expression
patterns. Here we request three consumer groups by name. You can use comma-
separated lists.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified Kafka Connect loggers and log levels  added directly (inline) or indirectly
(external) through a ConfigMap. A custom ConfigMap must be placed under the 
log4j.properties or log4j2.properties key. For the Kafka Connect log4j.rootLogger
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka MirrorMaker.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

84



42

43

44

Environment variables are also set for distributed tracing using Jaeger .

Distributed tracing is enabled for Jaeger.

External configuration  for an OpenShift Secret mounted to Kafka MirrorMaker as an
environment variable.

2. Create or update the resource:

2.4.5. Performing a restart of a Kafka MirrorMaker 2.0 connector

This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2.0 connector by
using an OpenShift annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaMirrorMaker2 custom resource that controls the Kafka MirrorMaker
2.0 connector you want to restart:

2. Find the name of the Kafka MirrorMaker 2.0 connector to be restarted from the 
KafkaMirrorMaker2 custom resource.

3. To restart the connector, annotate the KafkaMirrorMaker2 resource in OpenShift. In this
example, oc annotate restarts a connector named my-source->my-
target.MirrorSourceConnector:

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2.0 connector is restarted, as long as the annotation was detected by
the reconciliation process. When the restart request is accepted, the annotation is removed
from the KafkaMirrorMaker2 custom resource.

Additional resources

Kafka MirrorMaker 2.0 cluster configuration .

2.4.6. Performing a restart of a Kafka MirrorMaker 2.0 connector task

This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2.0 connector task by
using an OpenShift annotation.

oc apply -f MIRRORMAKER-CONFIGURATION-FILE

oc get KafkaMirrorMaker2

oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME

oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-
connector=my-source->my-target.MirrorSourceConnector"

CHAPTER 2. DEPLOYMENT CONFIGURATION

85



Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaMirrorMaker2 custom resource that controls the Kafka MirrorMaker
2.0 connector you want to restart:

2. Find the name of the Kafka MirrorMaker 2.0 connector and the ID of the task to be restarted
from the KafkaMirrorMaker2 custom resource. Task IDs are non-negative integers, starting
from 0.

3. To restart the connector task, annotate the KafkaMirrorMaker2 resource in OpenShift. In this
example, oc annotate restarts task 0 of a connector named my-source->my-
target.MirrorSourceConnector:

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2.0 connector task is restarted, as long as the annotation was detected
by the reconciliation process. When the restart task request is accepted, the annotation is
removed from the KafkaMirrorMaker2 custom resource.

Additional resources

Kafka MirrorMaker 2.0 cluster configuration .

2.5. KAFKA BRIDGE CLUSTER CONFIGURATION

This section describes how to configure a Kafka Bridge deployment in your AMQ Streams cluster.

Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster.

If you are using the Kafka Bridge, you configure the KafkaBridge resource.

The full schema of the KafkaBridge resource is described in Section 13.2.130, “KafkaBridge schema
reference”.

2.5.1. Configuring the Kafka Bridge

Use the Kafka Bridge to make HTTP-based requests to the Kafka cluster.

Use the properties of the KafkaBridge resource to configure your Kafka Bridge deployment.

In order to prevent issues arising when client consumer requests are processed by different Kafka Bridge
instances, address-based routing must be employed to ensure that requests are routed to the right
Kafka Bridge instance. Additionally, each independent Kafka Bridge instance must have a replica. A
Kafka Bridge instance has its own state which is not shared with another instances.

oc get KafkaMirrorMaker2

oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME

oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-
connector-task=my-source->my-target.MirrorSourceConnector:0"

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

86



Prerequisites

An OpenShift cluster

A running Cluster Operator

See the Deploying and Upgrading AMQ Streams on OpenShift  guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Edit the spec properties for the KafkaBridge resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
spec:
  replicas: 3 1
  bootstrapServers: my-cluster-kafka-bootstrap:9092 2
  tls: 3
    trustedCertificates:
      - secretName: my-cluster-cluster-cert
        certificate: ca.crt
      - secretName: my-cluster-cluster-cert
        certificate: ca2.crt
  authentication: 4
    type: tls
    certificateAndKey:
      secretName: my-secret
      certificate: public.crt
      key: private.key
  http: 5
    port: 8080
    cors: 6
      allowedOrigins: "https://strimzi.io"
      allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
  consumer: 7
    config:
      auto.offset.reset: earliest
  producer: 8
    config:
      delivery.timeout.ms: 300000
  resources: 9
    requests:
      cpu: "1"
      memory: 2Gi
    limits:
      cpu: "2"
      memory: 2Gi
  logging: 10

CHAPTER 2. DEPLOYMENT CONFIGURATION

87

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str


1

2

3

4

5

6

7

The number of replica nodes .

Bootstrap server for connection to the target Kafka cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
the source Kafka cluster. If certificates are stored in the same secret, it can be listed
multiple times.

Authentication for the Kafka Bridge cluster, using the TLS mechanism, as shown here, using
OAuth bearer tokens, or a SASL-based SCRAM-SHA-512 or PLAIN mechanism. By
default, the Kafka Bridge connects to Kafka brokers without authentication.

HTTP access to Kafka brokers.

CORS access specifying selected resources and access methods. Additional HTTP
headers in requests describe the origins that are permitted access to the Kafka cluster .

Consumer configuration options.

    type: inline
    loggers:
      logger.bridge.level: "INFO"
      # enabling DEBUG just for send operation
      logger.send.name: "http.openapi.operation.send"
      logger.send.level: "DEBUG"
  jvmOptions: 11
    "-Xmx": "1g"
    "-Xms": "1g"
  readinessProbe: 12
    initialDelaySeconds: 15
    timeoutSeconds: 5
  livenessProbe:
    initialDelaySeconds: 15
    timeoutSeconds: 5
  image: my-org/my-image:latest 13
  template: 14
    pod:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            - labelSelector:
                matchExpressions:
                  - key: application
                    operator: In
                    values:
                      - postgresql
                      - mongodb
              topologyKey: "kubernetes.io/hostname"
    bridgeContainer: 15
      env:
        - name: JAEGER_SERVICE_NAME
          value: my-jaeger-service
        - name: JAEGER_AGENT_HOST
          value: jaeger-agent-name
        - name: JAEGER_AGENT_PORT
          value: "6831"

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

88



8

9

10

11

12

13

14

15

Producer configuration options.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified Kafka Bridge loggers and log levels  added directly (inline) or indirectly
(external) through a ConfigMap. A custom ConfigMap must be placed under the 
log4j.properties or log4j2.properties key. For the Kafka Bridge loggers, you can set the
log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

JVM configuration options to optimize performance for the Virtual Machine (VM) running
the Kafka Bridge.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are also set for distributed tracing using Jaeger .

2. Create or update the resource:

2.5.2. List of Kafka Bridge cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

bridge-cluster-name-bridge

Deployment which is in charge to create the Kafka Bridge worker node pods.

bridge-cluster-name-bridge-service

Service which exposes the REST interface of the Kafka Bridge cluster.

bridge-cluster-name-bridge-config

ConfigMap which contains the Kafka Bridge ancillary configuration and is mounted as a volume by the
Kafka broker pods.

bridge-cluster-name-bridge

Pod Disruption Budget configured for the Kafka Bridge worker nodes.

2.6. CUSTOMIZING OPENSHIFT RESOURCES

AMQ Streams creates several OpenShift resources, such as Deployments, StatefulSets, Pods, and 
Services, which are managed by AMQ Streams operators. Only the operator that is responsible for
managing a particular OpenShift resource can change that resource. If you try to manually change an
operator-managed OpenShift resource, the operator will revert your changes back.

However, changing an operator-managed OpenShift resource can be useful if you want to perform
certain tasks, such as:

Adding custom labels or annotations that control how Pods are treated by Istio or other

oc apply -f KAFKA-BRIDGE-CONFIG-FILE

CHAPTER 2. DEPLOYMENT CONFIGURATION

89



Adding custom labels or annotations that control how Pods are treated by Istio or other
services

Managing how Loadbalancer-type Services are created by the cluster

You can make such changes using the template property in the AMQ Streams custom resources. The 
template property is supported in the following resources. The API reference provides more details
about the customizable fields.

Kafka.spec.kafka

See Section 13.2.54, “KafkaClusterTemplate schema reference”

Kafka.spec.zookeeper

See Section 13.2.64, “ZookeeperClusterTemplate schema reference”

Kafka.spec.entityOperator

See Section 13.2.69, “EntityOperatorTemplate schema reference”

Kafka.spec.kafkaExporter

See Section 13.2.75, “KafkaExporterTemplate schema reference”

Kafka.spec.cruiseControl

See Section 13.2.72, “CruiseControlTemplate schema reference”

KafkaConnect.spec

See Section 13.2.89, “KafkaConnectTemplate schema reference”

KafkaConnectS2I.spec

See Section 13.2.89, “KafkaConnectTemplate schema reference”

KafkaMirrorMaker.spec

See Section 13.2.128, “KafkaMirrorMakerTemplate schema reference”

KafkaMirrorMaker2.spec

See Section 13.2.89, “KafkaConnectTemplate schema reference”

KafkaBridge.spec

See Section 13.2.137, “KafkaBridgeTemplate schema reference”

KafkaUser.spec

See Section 13.2.121, “KafkaUserTemplate schema reference”

In the following example, the template property is used to modify the labels in a Kafka broker’s 
StatefulSet:

Example template customization

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
  labels:
    app: my-cluster
spec:
  kafka:
    # ...
    template:
      statefulset:
        metadata:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

90



2.6.1. Customizing the image pull policy

AMQ Streams allows you to customize the image pull policy for containers in all pods deployed by the
Cluster Operator. The image pull policy is configured using the environment variable 
STRIMZI_IMAGE_PULL_POLICY in the Cluster Operator deployment. The 
STRIMZI_IMAGE_PULL_POLICY environment variable can be set to three different values:

Always

Container images are pulled from the registry every time the pod is started or restarted.

IfNotPresent

Container images are pulled from the registry only when they were not pulled before.

Never

Container images are never pulled from the registry.

The image pull policy can be currently customized only for all Kafka, Kafka Connect, and Kafka
MirrorMaker clusters at once. Changing the policy will result in a rolling update of all your Kafka, Kafka
Connect, and Kafka MirrorMaker clusters.

Additional resources

For more information about Cluster Operator configuration, see Section 5.1, “Using the Cluster
Operator”.

For more information about Image Pull Policies, see Disruptions.

2.7. CONFIGURING POD SCHEDULING

When two applications are scheduled to the same OpenShift node, both applications might use the
same resources like disk I/O and impact performance. That can lead to performance degradation.
Scheduling Kafka pods in a way that avoids sharing nodes with other critical workloads, using the right
nodes or dedicated a set of nodes only for Kafka are the best ways how to avoid such problems.

2.7.1. Specifying affinity, tolerations, and topology spread constraints

Use affinity, tolerations and topology spread constraints to schedule the pods of kafka resources onto
nodes. Affinity, tolerations and topology spread constraints are configured using the affinity, 
tolerations, and topologySpreadConstraint properties in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

          labels:
            mylabel: myvalue
    # ...

CHAPTER 2. DEPLOYMENT CONFIGURATION

91

https://kubernetes.io/docs/concepts/containers/images/#updating-images


KafkaMirrorMaker.spec.template.pod

KafkaMirrorMaker2.spec.template.pod

The format of the affinity, tolerations, and topologySpreadConstraint properties follows the
OpenShift specification. The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

NOTE

On OpenShift 1.16 and 1.17, the support for topologySpreadConstraint is disabled by
default. In order to use topologySpreadConstraint, you have to enable the 
EvenPodsSpread feature gate in Kubernetes API server and scheduler.

Additional resources

Kubernetes node and pod affinity documentation

Kubernetes taints and tolerations

Controlling pod placement by using pod topology spread constraints

2.7.1.1. Use pod anti-affinity to avoid critical applications sharing nodes

Use pod anti-affinity to ensure that critical applications are never scheduled on the same disk. When
running a Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers do
not share nodes with other workloads, such as databases.

2.7.1.2. Use node affinity to schedule workloads onto specific nodes

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best
possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to
create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like 
beta.kubernetes.io/instance-type or custom labels to select the right node.

2.7.1.3. Use node affinity and tolerations for dedicated nodes

Use taints to create dedicated nodes, then schedule Kafka pods on the dedicated nodes by configuring
node affinity and tolerations.

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Running Kafka and its components on dedicated nodes can have many advantages. There will be no

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

92

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://docs.openshift.com/container-platform/latest/nodes/scheduling/nodes-scheduler-pod-topology-spread-constraints.html


Running Kafka and its components on dedicated nodes can have many advantages. There will be no
other applications running on the same nodes which could cause disturbance or consume the resources
needed for Kafka. That can lead to improved performance and stability.

2.7.2. Configuring pod anti-affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled
on nodes with the same hostname. For example:

2. Create or update the resource.
This can be done using oc apply:

2.7.3. Configuring node affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    template:
      pod:
        affinity:
          podAntiAffinity:
            requiredDuringSchedulingIgnoredDuringExecution:
              - labelSelector:
                  matchExpressions:
                    - key: application
                      operator: In
                      values:
                        - postgresql
                        - mongodb
                topologyKey: "kubernetes.io/hostname"
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 2. DEPLOYMENT CONFIGURATION

93



Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
This can be done using oc label:

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

3. Create or update the resource.
This can be done using oc apply:

2.7.4. Setting up dedicated nodes and scheduling pods on them

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.

2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
This can be done using oc adm taint:

oc label node NAME-OF-NODE node-type=fast-network

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    template:
      pod:
        affinity:
          nodeAffinity:
            requiredDuringSchedulingIgnoredDuringExecution:
              nodeSelectorTerms:
                - matchExpressions:
                  - key: node-type
                    operator: In
                    values:
                    - fast-network
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

oc adm taint node NAME-OF-NODE dedicated=Kafka:NoSchedule

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

94



4. Additionally, add a label to the selected nodes as well.
This can be done using oc label:

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

6. Create or update the resource.
This can be done using oc apply:

2.8. EXTERNAL LOGGING

When setting the logging levels for a resource, you can specify them inline directly in the spec.logging
property of the resource YAML:

Or you can specify external logging:

oc label node NAME-OF-NODE dedicated=Kafka

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    template:
      pod:
        tolerations:
          - key: "dedicated"
            operator: "Equal"
            value: "Kafka"
            effect: "NoSchedule"
        affinity:
          nodeAffinity:
            requiredDuringSchedulingIgnoredDuringExecution:
              nodeSelectorTerms:
              - matchExpressions:
                - key: dedicated
                  operator: In
                  values:
                  - Kafka
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

spec:
  # ...
  logging:
    type: inline
    loggers:
      kafka.root.logger.level: "INFO"

CHAPTER 2. DEPLOYMENT CONFIGURATION

95



With external logging, logging properties are defined in a ConfigMap. The name of the ConfigMap is
referenced in the spec.logging.valueFrom.configMapKeyRef.name property. The 
spec.logging.valueFrom.configMapKeyRef.name and 
spec.logging.valueFrom.configMapKeyRef.key properties are mandatory. Default logging is used if
the name or key is not set.

The advantages of using a ConfigMap are that the logging properties are maintained in one place and
are accessible to more than one resource.

2.8.1. Creating a ConfigMap for logging

To use a ConfigMap to define logging properties, you create the ConfigMap and then reference it as
part of the logging definition in the spec of a resource.

The ConfigMap must contain the appropriate logging configuration.

log4j.properties for Kafka components, ZooKeeper, and the Kafka Bridge

log4j2.properties for the Topic Operator and User Operator

The configuration must be placed under these properties.

Here we demonstrate how a ConfigMap defines a root logger for a Kafka resource.

Procedure

1. Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file using oc at the command
line.

ConfigMap example with a root logger definition for Kafka:

From the command line, using a properties file:

The properties file defines the logging configuration:

spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: keyInConfigMap

kind: ConfigMap
apiVersion: kafka.strimzi.io/v1beta2
metadata:
  name: logging-configmap
data:
  log4j.properties:
    kafka.root.logger.level="INFO"

oc create configmap logging-configmap --from-file=log4j.properties

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

96



2. Define external logging in the spec of the resource, setting the 
logging.valueFrom.configMapKeyRef.name to the name of the ConfigMap and 
logging.valueFrom.configMapKeyRef.key to the key in this ConfigMap.

3. Create or update the resource.

# Define the logger
kafka.root.logger.level="INFO"
# ...

spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: keyInConfigMap

oc apply -f kafka.yaml

CHAPTER 2. DEPLOYMENT CONFIGURATION

97



CHAPTER 3. CONFIGURING EXTERNAL LISTENERS
Use an external listener to expose your AMQ Streams Kafka cluster to a client outside an OpenShift
environment.

Specify the connection type to expose Kafka in the external listener configuration.

nodeport uses NodePort type Services

loadbalancer uses Loadbalancer type Services

ingress uses Kubernetes Ingress and the NGINX Ingress Controller for Kubernetes

route uses OpenShift Routes and the HAProxy router

For more information on listener configuration, see GenericKafkaListener schema reference.

NOTE

route is only supported on OpenShift

Additional resources

Accessing Apache Kafka in Strimzi

3.1. ACCESSING KAFKA USING NODE PORTS

This procedure describes how to access an AMQ Streams Kafka cluster from an external client using
node ports.

To connect to a broker, you need a hostname and port number for the Kafka bootstrap address , as well
as the certificate used for authentication.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Configure a Kafka resource with an external listener set to the nodeport type.
For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    listeners:
      - name: external
        port: 9094
        type: nodeport
        tls: true

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

98

https://github.com/kubernetes/ingress-nginx
https://developers.redhat.com/blog/2019/06/06/accessing-apache-kafka-in-strimzi-part-1-introduction/


2. Create or update the resource.

NodePort type services are created for each Kafka broker, as well as an external bootstrap
service. The bootstrap service routes external traffic to the Kafka brokers. Node addresses used
for connection are propagated to the status of the Kafka custom resource.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

3. Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the 
Kafka resource.

4. If TLS encryption is enabled, extract the public certificate of the broker certification authority.

Use the extracted certificate in your Kafka client to configure TLS connection. If you enabled
any authentication, you will also need to configure SASL or TLS authentication.

3.2. ACCESSING KAFKA USING LOADBALANCERS

This procedure describes how to access an AMQ Streams Kafka cluster from an external client using
loadbalancers.

To connect to a broker, you need the address of the bootstrap loadbalancer , as well as the certificate
used for TLS encryption.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Configure a Kafka resource with an external listener set to the loadbalancer type.
For example:

        authentication:
          type: tls
        # ...
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

oc get kafka KAFKA-CLUSTER-NAME -o=jsonpath='{.status.listeners[?
(@.type=="external")].bootstrapServers}{"\n"}'

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -
d > ca.crt

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:

CHAPTER 3. CONFIGURING EXTERNAL LISTENERS

99



2. Create or update the resource.

loadbalancer type services and loadbalancers are created for each Kafka broker, as well as an
external bootstrap service . The bootstrap service routes external traffic to all Kafka brokers.
DNS names and IP addresses used for connection are propagated to the status of each service.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

3. Retrieve the address of the bootstrap service you can use to access the Kafka cluster from the
status of the Kafka resource.

4. If TLS encryption is enabled, extract the public certificate of the broker certification authority.

Use the extracted certificate in your Kafka client to configure TLS connection. If you enabled
any authentication, you will also need to configure SASL or TLS authentication.

3.3. ACCESSING KAFKA USING INGRESS

This procedure shows how to access an AMQ Streams Kafka cluster from an external client outside of
OpenShift using Nginx Ingress.

To connect to a broker, you need a hostname (advertised address) for the Ingress bootstrap address , as
well as the certificate used for authentication.

For access using Ingress, the port is always 443.

TLS passthrough

Kafka uses a binary protocol over TCP, but the NGINX Ingress Controller for Kubernetes  is designed to
work with the HTTP protocol. To be able to pass the Kafka connections through the Ingress, AMQ
Streams uses the TLS passthrough feature of the NGINX Ingress Controller for Kubernetes . Ensure TLS
passthrough is enabled in your NGINX Ingress Controller for Kubernetes  deployment.

Because it is using the TLS passthrough functionality, TLS encryption cannot be disabled when

  kafka:
    # ...
    listeners:
      - name: external
        port: 9094
        type: loadbalancer
        tls: true
        # ...
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

oc get kafka KAFKA-CLUSTER-NAME -o=jsonpath='{.status.listeners[?
(@.type=="external")].bootstrapServers}{"\n"}'

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -
d > ca.crt

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

100

https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx


1

Because it is using the TLS passthrough functionality, TLS encryption cannot be disabled when
exposing Kafka using Ingress.

For more information about enabling TLS passthrough, see TLS passthrough documentation.

Prerequisites

OpenShift cluster

Deployed NGINX Ingress Controller for Kubernetes  with TLS passthrough enabled

A running Cluster Operator

Procedure

1. Configure a Kafka resource with an external listener set to the ingress type.
Specify the Ingress hosts for the bootstrap service and Kafka brokers.

For example:

Ingress hosts for the bootstrap service and Kafka brokers.

2. Create or update the resource.

ClusterIP type services are created for each Kafka broker, as well as an additional bootstrap
service. These services are used by the Ingress controller to route traffic to the Kafka brokers.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    listeners:
      - name: external
        port: 9094
        type: ingress
        tls: true
        authentication:
          type: tls
        configuration: 1
          bootstrap:
            host: bootstrap.myingress.com
          brokers:
          - broker: 0
            host: broker-0.myingress.com
          - broker: 1
            host: broker-1.myingress.com
          - broker: 2
            host: broker-2.myingress.com
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

CHAPTER 3. CONFIGURING EXTERNAL LISTENERS

101

https://kubernetes.github.io/ingress-nginx/user-guide/tls/#ssl-passthrough
https://github.com/kubernetes/ingress-nginx


An Ingress resource is also created for each service to expose them using the Ingress
controller. The Ingress hosts are propagated to the status of each service.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

Use the address for the bootstrap host you specified in the configuration and port 443
(BOOTSTRAP-HOST:443) in your Kafka client as the bootstrap address  to connect to the Kafka
cluster.

3. Extract the public certificate of the broker certificate authority.

Use the extracted certificate in your Kafka client to configure the TLS connection. If you
enabled any authentication, you will also need to configure SASL or TLS authentication.

3.4. ACCESSING KAFKA USING OPENSHIFT ROUTES

This procedure describes how to access an AMQ Streams Kafka cluster from an external client outside of
OpenShift using routes.

To connect to a broker, you need a hostname for the route bootstrap address , as well as the certificate
used for TLS encryption.

For access using routes, the port is always 443.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Configure a Kafka resource with an external listener set to the route type.
For example:

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -
d > ca.crt

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  labels:
    app: my-cluster
  name: my-cluster
  namespace: myproject
spec:
  kafka:
    # ...
    listeners:
      - name: listener1
        port: 9094
        type: route
        tls: true
        # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

102



WARNING

An OpenShift Route address comprises the name of the Kafka cluster, the
name of the listener, and the name of the namespace it is created in. For
example, my-cluster-kafka-listener1-bootstrap-myproject (CLUSTER-
NAME-kafka-LISTENER-NAME-bootstrap-NAMESPACE). Be careful that
the whole length of the address does not exceed a maximum limit of 63
characters.

2. Create or update the resource.

ClusterIP type services are created for each Kafka broker, as well as an external bootstrap
service. The services route the traffic from the OpenShift Routes to the Kafka brokers. An
OpenShift Route resource is also created for each service to expose them using the HAProxy
load balancer. DNS addresses used for connection are propagated to the status of each
service.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

3. Retrieve the address of the bootstrap service you can use to access the Kafka cluster from the
status of the Kafka resource.

4. Extract the public certificate of the broker certification authority.

Use the extracted certificate in your Kafka client to configure TLS connection. If you enabled
any authentication, you will also need to configure SASL or TLS authentication.

    # ...
  zookeeper:
    # ...



oc apply -f KAFKA-CONFIG-FILE

oc get kafka KAFKA-CLUSTER-NAME -o=jsonpath='{.status.listeners[?
(@.type=="external")].bootstrapServers}{"\n"}'

oc get secret KAFKA-CLUSTER-NAME-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -
d > ca.crt

CHAPTER 3. CONFIGURING EXTERNAL LISTENERS

103



CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA
You can secure your Kafka cluster by managing the access each client has to the Kafka brokers.

A secure connection between Kafka brokers and clients can encompass:

Encryption for data exchange

Authentication to prove identity

Authorization to allow or decline actions executed by users

This chapter explains how to set up secure connections between Kafka brokers and clients, with sections
describing:

Security options for Kafka clusters and clients

How to secure Kafka brokers

How to use an authorization server for OAuth 2.0 token-based authentication and authorization

4.1. SECURITY OPTIONS FOR KAFKA

Use the Kafka resource to configure the mechanisms used for Kafka authentication and authorization.

4.1.1. Listener authentication

For clients inside the OpenShift cluster, you can create plain (without encryption) or tls internal
listeners.

For clients outside the OpenShift cluster, you create external listeners and specify a connection
mechanism, which can be nodeport, loadbalancer, ingress or route (on OpenShift).

For more information on the configuration options for connecting an external client, see Configuring
external listeners.

Supported authentication options:

1. Mutual TLS authentication (only on the listeners with TLS enabled encryption)

2. SCRAM-SHA-512 authentication

3. OAuth 2.0 token based authentication

The authentication option you choose depends on how you wish to authenticate client access to Kafka
brokers.

Figure 4.1. Kafka listener authentication options

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

104



Figure 4.1. Kafka listener authentication options

The listener authentication property is used to specify an authentication mechanism specific to that
listener.

If no authentication property is specified then the listener does not authenticate clients which connect
through that listener. The listener will accept all connections without authentication.

Authentication must be configured when using the User Operator to manage KafkaUsers.

The following example shows:

A plain listener configured for SCRAM-SHA-512 authentication

A tls listener with mutual TLS authentication

An external listener with mutual TLS authentication

Each listener is configured with a unique name and port within a Kafka cluster.

NOTE

Listeners cannot be configured to use the ports set aside for interbroker communication
(9091) and metrics (9404).

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

105



An example showing listener authentication configuration

4.1.1.1. Mutual TLS authentication

Mutual TLS authentication is always used for the communication between Kafka brokers and ZooKeeper
pods.

AMQ Streams can configure Kafka to use TLS (Transport Layer Security) to provide encrypted
communication between Kafka brokers and clients either with or without mutual authentication. For
mutual, or two-way, authentication, both the server and the client present certificates. When you
configure mutual authentication, the broker authenticates the client (client authentication) and the
client authenticates the broker (server authentication).

NOTE

TLS authentication is more commonly one-way, with one party authenticating the identity
of another. For example, when HTTPS is used between a web browser and a web server,
the browser obtains proof of the identity of the web server.

4.1.1.2. SCRAM-SHA-512 authentication

SCRAM (Salted Challenge Response Authentication Mechanism) is an authentication protocol that can
establish mutual authentication using passwords. AMQ Streams can configure Kafka to use SASL
(Simple Authentication and Security Layer) SCRAM-SHA-512 to provide authentication on both
unencrypted and encrypted client connections.

When SCRAM-SHA-512 authentication is used with a TLS client connection, the TLS protocol provides
the encryption, but is not used for authentication.

The following properties of SCRAM make it safe to use SCRAM-SHA-512 even on unencrypted
connections:

The passwords are not sent in the clear over the communication channel. Instead the client and

# ...
listeners:
  - name: plain
    port: 9092
    type: internal
    tls: true
    authentication:
      type: scram-sha-512
  - name: tls
    port: 9093
    type: internal
    tls: true
    authentication:
      type: tls
  - name: external
    port: 9094
    type: loadbalancer
    tls: true
    authentication:
      type: tls
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

106



The passwords are not sent in the clear over the communication channel. Instead the client and
the server are each challenged by the other to offer proof that they know the password of the
authenticating user.

The server and client each generate a new challenge for each authentication exchange. This
means that the exchange is resilient against replay attacks.

When a KafkaUser.spec.authentication.type is configured with scram-sha-512 the User Operator will
generate a random 12-character password consisting of upper and lowercase ASCII letters and numbers.

4.1.1.3. Network policies

AMQ Streams automatically creates a NetworkPolicy resource for every listener that is enabled on a
Kafka broker. By default, a NetworkPolicy grants access to a listener to all applications and
namespaces.

If you want to restrict access to a listener at the network level to only selected applications or
namespaces, use the networkPolicyPeers property.

Use network policies as part of the listener authentication configuration. Each listener can have a
different networkPolicyPeers configuration.

For more information, refer to the Listener network policies section and the NetworkPolicyPeer API
reference.

NOTE

Your configuration of OpenShift must support ingress NetworkPolicies in order to use
network policies in AMQ Streams.

4.1.1.4. Additional listener configuration options

You can use the properties of the GenericKafkaListenerConfiguration schema to add further
configuration to listeners.

4.1.2. Kafka authorization

You can configure authorization for Kafka brokers using the authorization property in the 
Kafka.spec.kafka resource. If the authorization property is missing, no authorization is enabled and
clients have no restrictions. When enabled, authorization is applied to all enabled listeners. The
authorization method is defined in the type field.

Supported authorization options:

Simple authorization

OAuth 2.0 authorization (if you are using OAuth 2.0 token based authentication)

Open Policy Agent (OPA) authorization

Figure 4.2. Kafka cluster authorization options

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

107

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io


Figure 4.2. Kafka cluster authorization options

4.1.2.1. Super users

Super users can access all resources in your Kafka cluster regardless of any access restrictions, and are
supported by all authorization mechanisms.

To designate super users for a Kafka cluster, add a list of user principals to the superUsers property. If a
user uses TLS client authentication, their username is the common name from their certificate subject
prefixed with CN=.

An example configuration with super users

4.2. SECURITY OPTIONS FOR KAFKA CLIENTS

Use the KafkaUser resource to configure the authentication mechanism, authorization mechanism, and
access rights for Kafka clients. In terms of configuring security, clients are represented as users.

You can authenticate and authorize user access to Kafka brokers. Authentication permits access, and
authorization constrains the access to permissible actions.

You can also create super users that have unconstrained access to Kafka brokers.

The authentication and authorization mechanisms must match the specification for the listener used to
access the Kafka brokers.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
  namespace: myproject
spec:
  kafka:
    # ...
    authorization:
      type: simple
      superUsers:
        - CN=client_1
        - user_2
        - CN=client_3
    # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

108



4.2.1. Identifying a Kafka cluster for user handling

A KafkaUser resource includes a label that defines the appropriate name of the Kafka cluster (derived
from the name of the Kafka resource) to which it belongs.

The label is used by the User Operator to identify the KafkaUser resource and create a new user, and
also in subsequent handling of the user.

If the label does not match the Kafka cluster, the User Operator cannot identify the KafkaUser and the
user is not created.

If the status of the KafkaUser resource remains empty, check your label.

4.2.2. User authentication

User authentication is configured using the authentication property in KafkaUser.spec. The
authentication mechanism enabled for the user is specified using the type field.

Supported authentication mechanisms:

TLS client authentication

SCRAM-SHA-512 authentication

When no authentication mechanism is specified, the User Operator does not create the user or its
credentials.

Additional resources

When to use mutual TLS authentication or SCRAM-SHA Authentication authentication for
clients

4.2.2.1. TLS Client Authentication

To use TLS client authentication, you set the type field to tls.

An example KafkaUser with TLS client authentication enabled

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
  name: my-user
  labels:
    strimzi.io/cluster: my-cluster

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
  name: my-user
  labels:
    strimzi.io/cluster: my-cluster
spec:
  authentication:
    type: tls
  # ...

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

109



When the user is created by the User Operator, it creates a new Secret with the same name as the 
KafkaUser resource. The Secret contains a private and public key for TLS client authentication. The
public key is contained in a user certificate, which is signed by the client Certificate Authority (CA).

All keys are in X.509 format.

Secrets provide private keys and certificates in PEM and PKCS #12 formats.

For more information on securing Kafka communication with Secrets, see Chapter 11, Managing TLS
certificates.

An example Secret with user credentials

4.2.2.2. SCRAM-SHA-512 Authentication

To use the SCRAM-SHA-512 authentication mechanism, you set the type field to scram-sha-512.

An example KafkaUser with SCRAM-SHA-512 authentication enabled

When the user is created by the User Operator, it creates a new secret with the same name as the 
KafkaUser resource. The secret contains the generated password in the password key, which is
encoded with base64. In order to use the password, it must be decoded.

An example Secret with user credentials

apiVersion: v1
kind: Secret
metadata:
  name: my-user
  labels:
    strimzi.io/kind: KafkaUser
    strimzi.io/cluster: my-cluster
type: Opaque
data:
  ca.crt: # Public key of the client CA
  user.crt: # User certificate that contains the public key of the user
  user.key: # Private key of the user
  user.p12: # PKCS #12 archive file for storing certificates and keys
  user.password: # Password for protecting the PKCS #12 archive file

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
  name: my-user
  labels:
    strimzi.io/cluster: my-cluster
spec:
  authentication:
    type: scram-sha-512
  # ...

apiVersion: v1
kind: Secret
metadata:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

110



1

2

The generated password, base64 encoded.

The JAAS configuration string for SASL SCRAM-SHA-512 authentication, base64 encoded.

Decoding the generated password:

echo "Z2VuZXJhdGVkcGFzc3dvcmQ=" | base64 --decode

4.2.3. User authorization

User authorization is configured using the authorization property in KafkaUser.spec. The authorization
type enabled for a user is specified using the type field.

To use simple authorization, you set the type property to simple in KafkaUser.spec.authorization.
Simple authorization uses the default Kafka authorization plugin, AclAuthorizer.

Alternatively, you can use OPA authorization, or if you are already using OAuth 2.0 token based
authentication, you can also use OAuth 2.0 authorization .

If no authorization is specified, the User Operator does not provision any access rights for the user.
Whether such a KafkaUser can still access resources depends on the authorizer being used. For
example, for the AclAuthorizer this is determined by its allow.everyone.if.no.acl.found configuration.

4.2.3.1. ACL rules

AclAuthorizer uses ACL rules to manage access to Kafka brokers.

ACL rules grant access rights to the user, which you specify in the acls property.

For more information about the AclRule object, see the AclRule schema reference.

4.2.3.2. Super user access to Kafka brokers

If a user is added to a list of super users in a Kafka broker configuration, the user is allowed unlimited
access to the cluster regardless of any authorization constraints defined in ACLs in KafkaUser.

For more information on configuring super user access to brokers, see Kafka authorization.

4.2.3.3. User quotas

You can configure the spec for the KafkaUser resource to enforce quotas so that a user does not
exceed access to Kafka brokers based on a byte threshold or a time limit of CPU utilization.

  name: my-user
  labels:
    strimzi.io/kind: KafkaUser
    strimzi.io/cluster: my-cluster
type: Opaque
data:
  password: Z2VuZXJhdGVkcGFzc3dvcmQ= 1
  sasl.jaas.config: 
b3JnLmFwYWNoZS5rYWZrYS5jb21tb24uc2VjdXJpdHkuc2NyYW0uU2NyYW1Mb2dpbk1vZHVsZSByZ
XF1aXJlZCB1c2VybmFtZT0ibXktdXNlciIgcGFzc3dvcmQ9ImdlbmVyYXRlZHBhc3N3b3JkIjsK 2

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

111



1

2

3

An example KafkaUser with user quotas

Byte-per-second quota on the amount of data the user can push to a Kafka broker

Byte-per-second quota on the amount of data the user can fetch from a Kafka broker

CPU utilization limit as a percentage of time for a client group

For more information on these properties, see the KafkaUserQuotas schema reference.

4.3. SECURING ACCESS TO KAFKA BROKERS

To establish secure access to Kafka brokers, you configure and apply:

A Kafka resource to:

Create listeners with a specified authentication type

Configure authorization for the whole Kafka cluster

A KafkaUser resource to access the Kafka brokers securely through the listeners

Configure the Kafka resource to set up:

Listener authentication

Network policies that restrict access to Kafka listeners

Kafka authorization

Super users for unconstrained access to brokers

Authentication is configured independently for each listener. Authorization is always configured for the
whole Kafka cluster.

The Cluster Operator creates the listeners and sets up the cluster and client certificate authority (CA)
certificates to enable authentication within the Kafka cluster.

You can replace the certificates generated by the Cluster Operator by installing your own certificates.
You can also configure your listener to use a Kafka listener certificate managed by an external
Certificate Authority. Certificates are available in PKCS #12 format (.p12) and PEM (.crt) formats.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
  name: my-user
  labels:
    strimzi.io/cluster: my-cluster
spec:
  # ...
  quotas:
    producerByteRate: 1048576 1
    consumerByteRate: 2097152 2
    requestPercentage: 55 3

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

112

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/using_amq_streams_on_openshift/index#installing-your-own-ca-certificates-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/using_amq_streams_on_openshift/index#kafka-listener-certificates-str


Use KafkaUser to enable the authentication and authorization mechanisms that a specific client uses to
access Kafka.

Configure the KafkaUser resource to set up:

Authentication to match the enabled listener authentication

Authorization to match the enabled Kafka authorization

Quotas to control the use of resources by clients

The User Operator creates the user representing the client and the security credentials used for client
authentication, based on the chosen authentication type.

Additional resources

For more information about the schema for:

Kafka, see the Kafka schema reference.

KafkaUser, see the KafkaUser schema reference.

4.3.1. Securing Kafka brokers

This procedure shows the steps involved in securing Kafka brokers when running AMQ Streams.

The security implemented for Kafka brokers must be compatible with the security implemented for the
clients requiring access.

Kafka.spec.kafka.listeners[*].authentication matches KafkaUser.spec.authentication

Kafka.spec.kafka.authorization matches KafkaUser.spec.authorization

The steps show the configuration for simple authorization and a listener using TLS authentication. For
more information on listener configuration, see GenericKafkaListener schema reference.

Alternatively, you can use SCRAM-SHA or OAuth 2.0 for listener authentication, and OAuth 2.0 or OPA
for Kafka authorization.

Procedure

1. Configure the Kafka resource.

a. Configure the authorization property for authorization.

b. Configure the listeners property to create a listener with authentication.
For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    authorization: 1
      type: simple
      superUsers: 2

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

113



1

2

3

Authorization enables simple authorization on the Kafka broker using the 
AclAuthorizer Kafka plugin .

List of user principals with unlimited access to Kafka. CN is the common name from
the client certificate when TLS authentication is used.

Listener authentication mechanisms may be configured for each listener, and specified
as mutual TLS, SCRAM-SHA-512 or token-based OAuth 2.0.

If you are configuring an external listener, the configuration is dependent on the chosen
connection mechanism.

2. Create or update the Kafka resource.

The Kafka cluster is configured with a Kafka broker listener using TLS authentication.

A service is created for each Kafka broker pod.

A service is created to serve as the bootstrap address  for connection to the Kafka cluster.

The cluster CA certificate to verify the identity of the kafka brokers is also created with the
same name as the Kafka resource.

4.3.2. Securing user access to Kafka

Use the properties of the KafkaUser resource to configure a Kafka user.

You can use oc apply to create or modify users, and oc delete to delete existing users.

For example:

oc apply -f USER-CONFIG-FILE

oc delete KafkaUser USER-NAME

When you configure the KafkaUser authentication and authorization mechanisms, ensure they match
the equivalent Kafka configuration:

KafkaUser.spec.authentication matches Kafka.spec.kafka.listeners[*].authentication

        - CN=client_1
        - user_2
        - CN=client_3
    listeners:
      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication:
          type: tls 3
    # ...
  zookeeper:
    # ...

oc apply -f KAFKA-CONFIG-FILE

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

114



KafkaUser.spec.authorization matches Kafka.spec.kafka.authorization

This procedure shows how a user is created with TLS authentication. You can also create a user with
SCRAM-SHA authentication.

The authentication required depends on the type of authentication configured for the Kafka broker
listener.

NOTE

Authentication between Kafka users and Kafka brokers depends on the authentication
settings for each. For example, it is not possible to authenticate a user with TLS if it is not
also enabled in the Kafka configuration.

Prerequisites

A running Kafka cluster configured with a Kafka broker listener using TLS authentication and
encryption.

A running User Operator (typically deployed with the Entity Operator).

The authentication type in KafkaUser should match the authentication configured in Kafka brokers.

Procedure

1. Configure the KafkaUser resource.
For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
  name: my-user
  labels:
    strimzi.io/cluster: my-cluster
spec:
  authentication: 1
    type: tls
  authorization:
    type: simple 2
    acls:
      - resource:
          type: topic
          name: my-topic
          patternType: literal
        operation: Read
      - resource:
          type: topic
          name: my-topic
          patternType: literal
        operation: Describe
      - resource:
          type: group
          name: my-group
          patternType: literal
        operation: Read

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

115



1

2

User authentication mechanism, defined as mutual tls or scram-sha-512.

Simple authorization, which requires an accompanying list of ACL rules.

2. Create or update the KafkaUser resource.

The user is created, as well as a Secret with the same name as the KafkaUser resource. The
Secret contains a private and public key for TLS client authentication.

For information on configuring a Kafka client with properties for secure connection to Kafka brokers, see
Setting up access for clients outside of OpenShift  in the Deploying and Upgrading AMQ Streams on
OpenShift guide.

4.3.3. Restricting access to Kafka listeners using network policies

You can restrict access to a listener to only selected applications by using the networkPolicyPeers
property.

Prerequisites

An OpenShift cluster with support for Ingress NetworkPolicies.

The Cluster Operator is running.

Procedure

1. Open the Kafka resource.

2. In the networkPolicyPeers property, define the application pods or namespaces that will be
allowed to access the Kafka cluster.
For example, to configure a tls listener to allow connections only from application pods with the
label app set to kafka-client:

oc apply -f USER-CONFIG-FILE

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    listeners:
      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication:
          type: tls
        networkPolicyPeers:
          - podSelector:
              matchLabels:
                app: kafka-client
    # ...
  zookeeper:
    # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

116

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#setup-external-clients-str


3. Create or update the resource.
Use oc apply:

Additional resources

For more information about the schema, see the NetworkPolicyPeer API reference  and the 
GenericKafkaListener schema reference.

4.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION

AMQ Streams supports the use of OAuth 2.0 authentication using the OAUTHBEARER and PLAIN
mechanisms.

OAuth 2.0 enables standardized token-based authentication and authorization between applications,
using a central authorization server to issue tokens that grant limited access to resources.

Kafka brokers and clients both need to be configured to use OAuth 2.0. You can configure OAuth 2.0
authentication, then OAuth 2.0 authorization .

NOTE

OAuth 2.0 authentication can be used in conjunction with Kafka authorization.

Using OAuth 2.0 authentication, application clients can access resources on application servers (called
resource servers) without exposing account credentials.

The application client passes an access token as a means of authenticating, which application servers
can also use to determine the level of access to grant. The authorization server handles the granting of
access and inquiries about access.

In the context of AMQ Streams:

Kafka brokers act as OAuth 2.0 resource servers

Kafka clients act as OAuth 2.0 application clients

Kafka clients authenticate to Kafka brokers. The brokers and clients communicate with the OAuth 2.0
authorization server, as necessary, to obtain or validate access tokens.

For a deployment of AMQ Streams, OAuth 2.0 integration provides:

Server-side OAuth 2.0 support for Kafka brokers

Client-side OAuth 2.0 support for Kafka MirrorMaker, Kafka Connect and the Kafka Bridge

Additional resources

OAuth 2.0 site

4.4.1. OAuth 2.0 authentication mechanisms

AMQ Streams supports the OAUTHBEARER and PLAIN mechanisms for OAuth 2.0 authentication.

oc apply -f your-file

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

117

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://oauth.net/2/


Both mechanisms allow Kafka clients to establish authenticated sessions with Kafka brokers. The
authentication flow between clients, the authorization server, and Kafka brokers is different for each
mechanism.

We recommend that you configure clients to use OAUTHBEARER whenever possible. OAUTHBEARER
provides a higher level of security than PLAIN because client credentials are never shared with Kafka
brokers. Consider using PLAIN only with Kafka clients that do not support OAUTHBEARER.

If necessary, OAUTHBEARER and PLAIN can be enabled together, on the same oauth listener.

OAUTHBEARER overview

Kafka supports the OAUTHBEARER authentication mechanism, however it must be explicitly
configured. Also, many Kafka client tools use libraries that provide basic support for OAUTHBEARER at
the protocol level.

To ease application development, AMQ Streams provides an OAuth callback handler  for the upstream
Kafka Client Java libraries (but not for other libraries). Therefore, you do not need to write your own
callback handlers for such clients. An application client can use the callback handler to provide the
access token. Clients written in other languages, such as Go, must use custom code to connect to the
authorization server and obtain the access token.

With OAUTHBEARER, the client initiates a session with the Kafka broker for credentials exchange, where
credentials take the form of a bearer token provided by the callback handler. Using the callbacks, you
can configure token provision in one of three ways:

Client ID and Secret (by using the OAuth 2.0 client credentials mechanism)

A long-lived access token, obtained manually at configuration time

A long-lived refresh token, obtained manually at configuration time

OAUTHBEARER is automatically enabled in the oauth listener configuration for the Kafka broker. You
can set the enableOauthBearer property to true, though this is not required.

NOTE

OAUTHBEARER authentication can only be used by Kafka clients that support the
OAUTHBEARER mechanism at the protocol level.

PLAIN overview

PLAIN is a simple authentication mechanism used by all Kafka client tools (including developer tools
such as kafkacat). To enable PLAIN to be used together with OAuth 2.0 authentication, AMQ Streams
includes server-side callbacks and calls this OAuth 2.0 over PLAIN.

With the AMQ Streams implementation of PLAIN, the client credentials are not stored in ZooKeeper.
Instead, client credentials are handled centrally behind a compliant authorization server, similar to when
OAUTHBEARER authentication is used.

  # ...
  authentication:
    type: oauth
    # ...
    enableOauthBearer: true

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

118



When used with the OAuth 2.0 over PLAIN callbacks, Kafka clients authenticate with Kafka brokers using
either of the following methods:

Client ID and secret (by using the OAuth 2.0 client credentials mechanism)

A long-lived access token, obtained manually at configuration time

The client must be enabled to use PLAIN authentication, and provide a username and password. If the
password is prefixed with $accessToken: followed by the value of the access token, the Kafka broker
will interpret the password as the access token. Otherwise, the Kafka broker will interpret the username
as the client ID and the password as the client secret.

If the password is set as the access token, the username must be set to the same principal name that
the Kafka broker obtains from the access token. The process depends on how you configure username
extraction using userNameClaim, fallbackUserNameClaim, fallbackUsernamePrefix, or 
userInfoEndpointUri. It also depends on your authorization server; in particular, how it maps client IDs to
account names.

To use PLAIN, you must enable it in the oauth listener configuration for the Kafka broker.

In the following example, PLAIN is enabled in addition to OAUTHBEARER, which is enabled by default. If
you want to use PLAIN only, you can disable OAUTHBEARER by setting enableOauthBearer to false.

Additional resources

Section 4.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers”

4.4.2. OAuth 2.0 Kafka broker configuration

Kafka broker configuration for OAuth 2.0 involves:

Creating the OAuth 2.0 client in the authorization server

Configuring OAuth 2.0 authentication in the Kafka custom resource

NOTE

In relation to the authorization server, Kafka brokers and Kafka clients are both regarded
as OAuth 2.0 clients.

4.4.2.1. OAuth 2.0 client configuration on an authorization server

To configure a Kafka broker to validate the token received during session initiation, the recommended
approach is to create an OAuth 2.0 client definition in an authorization server, configured as confidential,
with the following client credentials enabled:

Client ID of kafka (for example)

  # ...
  authentication:
    type: oauth
    # ...
    enablePlain: true
    tokenEndpointUri: https://OAUTH-SERVER-ADDRESS/auth/realms/external/protocol/openid-
connect/token

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

119



Client ID and Secret as the authentication mechanism

NOTE

You only need to use a client ID and secret when using a non-public introspection
endpoint of the authorization server. The credentials are not typically required when using
public authorization server endpoints, as with fast local JWT token validation.

4.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster

To use OAuth 2.0 authentication in the Kafka cluster, you specify, for example, a TLS listener
configuration for your Kafka cluster custom resource with the authentication method oauth:

Assigining the authentication method type for OAuth 2.0

You can configure plain, tls and external listeners, but it is recommended not to use plain listeners or 
external listeners with disabled TLS encryption with OAuth 2.0 as this creates a vulnerability to network
eavesdropping and unauthorized access through token theft.

You configure an external listener with type: oauth for a secure transport layer to communicate with
the client.

Using OAuth 2.0 with an external listener

The tls property is false by default, so it must be enabled.

When you have defined the type of authentication as OAuth 2.0, you add configuration based on the
type of validation, either as fast local JWT validation or token validation using an introspection endpoint .

The procedure to configure OAuth 2.0 for listeners, with descriptions and examples, is described in
Configuring OAuth 2.0 support for Kafka brokers .

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    listeners:
      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication:
          type: oauth
      #...

# ...
listeners:
  - name: external
    port: 9094
    type: loadbalancer
    tls: true
    authentication:
      type: oauth
    #...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

120



4.4.2.3. Fast local JWT token validation configuration

Fast local JWT token validation checks a JWT token signature locally.

The local check ensures that a token:

Conforms to type by containing a (typ) claim value of Bearer for an access token

Is valid (not expired)

Has an issuer that matches a validIssuerURI

You specify a validIssuerURI attribute when you configure the listener, so that any tokens not issued by
the authorization server are rejected.

The authorization server does not need to be contacted during fast local JWT token validation. You
activate fast local JWT token validation by specifying a jwksEndpointUri attribute, the endpoint
exposed by the OAuth 2.0 authorization server. The endpoint contains the public keys used to validate
signed JWT tokens, which are sent as credentials by Kafka clients.

NOTE

All communication with the authorization server should be performed using TLS
encryption.

You can configure a certificate truststore as an OpenShift Secret in your AMQ Streams project
namespace, and use a tlsTrustedCertificates attribute to point to the OpenShift Secret containing the
truststore file.

You might want to configure a userNameClaim to properly extract a username from the JWT token. If
you want to use Kafka ACL authorization, you need to identify the user by their username during
authentication. (The sub claim in JWT tokens is typically a unique ID, not a username.)

Example configuration for fast local JWT token validation

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    #...
    listeners:
      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication:
          type: oauth
          validIssuerUri: <https://<auth-server-address>/auth/realms/tls>
          jwksEndpointUri: <https://<auth-server-address>/auth/realms/tls/protocol/openid-connect/certs>
          userNameClaim: preferred_username
          maxSecondsWithoutReauthentication: 3600
          tlsTrustedCertificates:
          - secretName: oauth-server-cert
            certificate: ca.crt
    #...

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

121



4.4.2.4. OAuth 2.0 introspection endpoint configuration

Token validation using an OAuth 2.0 introspection endpoint treats a received access token as opaque.
The Kafka broker sends an access token to the introspection endpoint, which responds with the token
information necessary for validation. Importantly, it returns up-to-date information if the specific access
token is valid, and also information about when the token expires.

To configure OAuth 2.0 introspection-based validation, you specify an introspectionEndpointUri
attribute rather than the jwksEndpointUri attribute specified for fast local JWT token validation.
Depending on the authorization server, you typically have to specify a clientId and clientSecret,
because the introspection endpoint is usually protected.

Example configuration for an introspection endpoint

4.4.3. Session re-authentication for Kafka brokers

You can configure oauth listeners to use Kafka session re-authentication for OAuth 2.0 sessions
between Kafka clients and Kafka brokers. This mechanism enforces the expiry of an authenticated
session between the client and the broker after a defined period of time. When a session expires, the
client immediately starts a new session by reusing the existing connection rather than dropping it.

Session re-authentication is disabled by default. To enable it, you set a time value for 
maxSecondsWithoutReauthentication in the oauth listener configuration. The same property is used
to configure session re-authentication for OAUTHBEARER and PLAIN authentication. For an example
configuration, see Section 4.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers” .

Session re-authentication must be supported by the Kafka client libraries used by the client.

Session re-authentication can be used with fast local JWT  or introspection endpoint token validation.

Client re-authentication

When the broker’s authenticated session expires, the client must re-authenticate to the existing session

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    listeners:
      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication:
          type: oauth
          clientId: kafka-broker
          clientSecret:
            secretName: my-cluster-oauth
            key: clientSecret
          validIssuerUri: <https://<auth-server-address>/auth/realms/tls>
          introspectionEndpointUri: <https://<auth-server-address>/auth/realms/tls/protocol/openid-
connect/token/introspect>
          userNameClaim: preferred_username
          maxSecondsWithoutReauthentication: 3600
          tlsTrustedCertificates:
          - secretName: oauth-server-cert
            certificate: ca.crt

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

122



When the broker’s authenticated session expires, the client must re-authenticate to the existing session
by sending a new, valid access token to the broker, without dropping the connection.

If token validation is successful, a new client session is started using the existing connection. If the client
fails to re-authenticate, the broker will close the connection if further attempts are made to send or
receive messages. Java clients that use Kafka client library 2.2 or later automatically re-authenticate if
the re-authentication mechanism is enabled on the broker.

Session re-authentication also applies to refresh tokens, if used. When the session expires, the client
refreshes the access token by using its refresh token. The client then uses the new access token to re-
authenticate to the existing session.

Session expiry for OAUTHBEARER and PLAIN

When session re-authentication is configured, session expiry works differently for OAUTHBEARER and
PLAIN authentication.

For OAUTHBEARER and PLAIN, using the client ID and secret method:

The broker’s authenticated session will expire at the configured 
maxSecondsWithoutReauthentication.

The session will expire earlier if the access token expires before the configured time.

For PLAIN using the long-lived access token method:

The broker’s authenticated session will expire at the configured 
maxSecondsWithoutReauthentication.

Re-authentication will fail if the access token expires before the configured time. Although
session re-authentication is attempted, PLAIN has no mechanism for refreshing tokens.

If maxSecondsWithoutReauthentication is not configured, OAUTHBEARER and PLAIN clients can
remain connected to brokers indefinitely, without needing to re-authenticate. Authenticated sessions
do not end with access token expiry. However, this can be considered when configuring authorization,
for example, by using keycloak authorization or installing a custom authorizer.

Additional resources

Section 4.4.2, “OAuth 2.0 Kafka broker configuration”

Section 4.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers”

KafkaListenerAuthenticationOAuth schema reference

KIP-368

4.4.4. OAuth 2.0 Kafka client configuration

A Kafka client is configured with either:

The credentials required to obtain a valid access token from an authorization server (client ID
and Secret)

A valid long-lived access token or refresh token, obtained using tools provided by an
authorization server

The only information ever sent to the Kafka broker is an access token. The credentials used to

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

123

https://cwiki.apache.org/confluence/display/KAFKA/KIP-368%3A+Allow+SASL+Connections+to+Periodically+Re-Authenticate


The only information ever sent to the Kafka broker is an access token. The credentials used to
authenticate with the authorization server to obtain the access token are never sent to the broker.

When a client obtains an access token, no further communication with the authorization server is
needed.

The simplest mechanism is authentication with a client ID and Secret. Using a long-lived access token, or
a long-lived refresh token, adds more complexity because there is an additional dependency on
authorization server tools.

NOTE

If you are using long-lived access tokens, you may need to configure the client in the
authorization server to increase the maximum lifetime of the token.

If the Kafka client is not configured with an access token directly, the client exchanges credentials for an
access token during Kafka session initiation by contacting the authorization server. The Kafka client
exchanges either:

Client ID and Secret

Client ID, refresh token, and (optionally) a Secret

4.4.5. OAuth 2.0 client authentication flow

In this section, we explain and visualize the communication flow between Kafka client, Kafka broker, and
authorization server during Kafka session initiation. The flow depends on the client and server
configuration.

When a Kafka client sends an access token as credentials to a Kafka broker, the token needs to be
validated.

Depending on the authorization server used, and the configuration options available, you may prefer to
use:

Fast local token validation based on JWT signature checking and local token introspection,
without contacting the authorization server

An OAuth 2.0 introspection endpoint provided by the authorization server

Using fast local token validation requires the authorization server to provide a JWKS endpoint with
public certificates that are used to validate signatures on the tokens.

Another option is to use an OAuth 2.0 introspection endpoint on the authorization server. Each time a
new Kafka broker connection is established, the broker passes the access token received from the client
to the authorization server, and checks the response to confirm whether or not the token is valid.

Kafka client credentials can also be configured for:

Direct local access using a previously generated long-lived access token

Contact with the authorization server for a new access token to be issued

NOTE

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

124



NOTE

An authorization server might only allow the use of opaque access tokens, which means
that local token validation is not possible.

4.4.5.1. Example client authentication flows

Here you can see the communication flows, for different configurations of Kafka clients and brokers,
during Kafka session authentication.

Client using client ID and secret, with broker delegating validation to authorization server

Client using client ID and secret, with broker performing fast local token validation

Client using long-lived access token, with broker delegating validation to authorization server

Client using long-lived access token, with broker performing fast local validation

Client using client ID and secret, with broker delegating validation to authorization server

1. Kafka client requests access token from authorization server, using client ID and secret, and
optionally a refresh token.

2. Authorization server generates a new access token.

3. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER  mechanism to
pass the access token.

4. Kafka broker validates the access token by calling a token introspection endpoint on
authorization server, using its own client ID and secret.

5. Kafka client session is established if the token is valid.

Client using client ID and secret, with broker performing fast local token validation

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

125



1. Kafka client authenticates with authorization server from the token endpoint, using a client ID
and secret, and optionally a refresh token.

2. Authorization server generates a new access token.

3. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER  mechanism to
pass the access token.

4. Kafka broker validates the access token locally using a JWT token signature check, and local
token introspection.

Client using long-lived access token, with broker delegating validation to authorization
server

1. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER  mechanism to
pass the long-lived access token.

2. Kafka broker validates the access token by calling a token introspection endpoint on
authorization server, using its own client ID and secret.

3. Kafka client session is established if the token is valid.

Client using long-lived access token, with broker performing fast local validation

1. Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER  mechanism to
pass the long-lived access token.

2. Kafka broker validates the access token locally using JWT token signature check, and local
token introspection.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

126



WARNING

Fast local JWT token signature validation is suitable only for short-lived tokens as
there is no check with the authorization server if a token has been revoked. Token
expiration is written into the token, but revocation can happen at any time, so
cannot be accounted for without contacting the authorization server. Any issued
token would be considered valid until it expires.

4.4.6. Configuring OAuth 2.0 authentication

OAuth 2.0 is used for interaction between Kafka clients and AMQ Streams components.

In order to use OAuth 2.0 for AMQ Streams, you must:

1. Deploy an authorization server and configure the deployment to integrate with AMQ Streams

2. Deploy or update the Kafka cluster with Kafka broker listeners configured to use OAuth 2.0

3. Update your Java-based Kafka clients to use OAuth 2.0

4. Update Kafka component clients to use OAuth 2.0

4.4.6.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server

This procedure describes how to deploy Red Hat Single Sign-On as an authorization server and
configure it for integration with AMQ Streams.

The authorization server provides a central point for authentication and authorization, and management
of users, clients, and permissions. Red Hat Single Sign-On has a concept of realms where a realm
represents a separate set of users, clients, permissions, and other configuration. You can use a default
master realm, or create a new one. Each realm exposes its own OAuth 2.0 endpoints, which means that
application clients and application servers all need to use the same realm.

To use OAuth 2.0 with AMQ Streams, you use a deployment of Red Hat Single Sign-On to create and
manage authentication realms.

NOTE

If you already have Red Hat Single Sign-On deployed, you can skip the deployment step
and use your current deployment.

Before you begin

You will need to be familiar with using Red Hat Single Sign-On.

For deployment and administration instructions, see:

Red Hat Single Sign-On for OpenShift

Server Administration Guide

Prerequisites



CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

127

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/red_hat_single_sign-on_for_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/server_administration_guide/index


Prerequisites

AMQ Streams and Kafka is running

For the Red Hat Single Sign-On deployment:

Check the Red Hat Single Sign-On Supported Configurations

Installation requires a user with a cluster-admin role, such as system:admin

Procedure

1. Deploy Red Hat Single Sign-On to your OpenShift cluster.
Check the progress of the deployment in your OpenShift web console.

2. Log in to the Red Hat Single Sign-On Admin Console to create the OAuth 2.0 policies for AMQ
Streams.
Login details are provided when you deploy Red Hat Single Sign-On.

3. Create and enable a realm.
You can use an existing master realm.

4. Adjust the session and token timeouts for the realm, if required.

5. Create a client called kafka-broker.

6. From the Settings tab, set:

Access Type to Confidential

Standard Flow Enabled to OFF to disable web login for this client

Service Accounts Enabled to ON to allow this client to authenticate in its own name

7. Click Save before continuing.

8. From the Credentials tab, take a note of the secret for using in your AMQ Streams Kafka cluster
configuration.

9. Repeat the client creation steps for any application client that will connect to your Kafka
brokers.
Create a definition for each new client.

You will use the names as client IDs in your configuration.

What to do next

After deploying and configuring the authorization server, configure the Kafka brokers to use OAuth 2.0 .

4.4.6.2. Configuring OAuth 2.0 support for Kafka brokers

This procedure describes how to configure Kafka brokers so that the broker listeners are enabled to use
OAuth 2.0 authentication using an authorization server.

We advise use of OAuth 2.0 over an encrypted interface through configuration of TLS listeners. Plain
listeners are not recommended.

If the authorization server is using certificates signed by the trusted CA and matching the OAuth 2.0

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

128

https://access.redhat.com/articles/2342861


If the authorization server is using certificates signed by the trusted CA and matching the OAuth 2.0
server hostname, TLS connection works using the default settings. Otherwise, you may need to
configure the truststore with prober certificates or disable the certificate hostname validation.

When configuring the Kafka broker you have two options for the mechanism used to validate the access
token during OAuth 2.0 authentication of the newly connected Kafka client:

Configuring fast local JWT token validation

Configuring token validation using an introspection endpoint

Before you start

For more information on the configuration of OAuth 2.0 authentication for Kafka broker listeners, see:

KafkaListenerAuthenticationOAuth schema reference

Managing access to Kafka

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed

Procedure

1. Update the Kafka broker configuration (Kafka.spec.kafka) of your Kafka resource in an editor.

2. Configure the Kafka broker listeners configuration.
The configuration for each type of listener does not have to be the same, as they are
independent.

The examples here show the configuration options as configured for external listeners.

Example 1: Configuring fast local JWT token validation

oc edit kafka my-cluster

#...
- name: external
  port: 9094
  type: loadbalancer
  tls: true
  authentication:
    type: oauth 1
    validIssuerUri: <https://<auth-server-address>/auth/realms/external> 2
    jwksEndpointUri: <https://<auth-server-address>/auth/realms/external/protocol/openid-
connect/certs> 3
    userNameClaim: preferred_username 4
    maxSecondsWithoutReauthentication: 3600 5
    tlsTrustedCertificates: 6
    - secretName: oauth-server-cert
      certificate: ca.crt
    disableTlsHostnameVerification: true 7

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

129



1

2

3

4

5

6

7

8

9

10

11

Listener type set to oauth.

URI of the token issuer used for authentication.

URI of the JWKS certificate endpoint used for local JWT validation.

The token claim (or key) that contains the actual user name in the token. The user name is
the principal used to identify the user. The userNameClaim value will depend on the
authentication flow and the authorization server used.

(Optional) Activates the Kafka re-authentication mechanism that enforces session expiry
to the same length of time as the access token. If the specified value is less than the time
left for the access token to expire, then the client will have to re-authenticate before the
actual token expiry. By default, the session does not expire when the access token expires,
and the client does not attempt re-authentication.

(Optional) Trusted certificates for TLS connection to the authorization server.

(Optional) Disable TLS hostname verification. Default is false.

The duration the JWKS certificates are considered valid before they expire. Default is 360
seconds. If you specify a longer time, consider the risk of allowing access to revoked
certificates.

The period between refreshes of JWKS certificates. The interval must be at least 60
seconds shorter than the expiry interval. Default is 300 seconds.

The minimum pause in seconds between consecutive attempts to refresh JWKS public
keys. When an unknown signing key is encountered, the JWKS keys refresh is scheduled
outside the regular periodic schedule with at least the specified pause since the last
refresh attempt. The refreshing of keys follows the rule of exponential backoff, retrying on
unsuccessful refreshes with ever increasing pause, until it reaches jwksRefreshSeconds.
The default value is 1.

(Optional) If ECDSA is used for signing JWT tokens on authorization server, then this
needs to be enabled. It installs additional crypto providers using BouncyCastle crypto
library. Default is false.

Example 2: Configuring token validation using an introspection endpoint

    jwksExpirySeconds: 360 8
    jwksRefreshSeconds: 300 9
    jwksMinRefreshPauseSeconds: 1 10
    enableECDSA: "true" 11

- name: external
  port: 9094
  type: loadbalancer
  tls: true
  authentication:
    type: oauth
    validIssuerUri: <https://<auth-server-address>/auth/realms/external>
    introspectionEndpointUri: <https://<auth-server-
address>/auth/realms/external/protocol/openid-connect/token/introspect> 1
    clientId: kafka-broker 2

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

130



1

2

3

4

5

1

2

3

URI of the token introspection endpoint.

Client ID to identify the client.

Client Secret and client ID is used for authentication.

The token claim (or key) that contains the actual user name in the token. The user name is
the principal used to identify the user. The userNameClaim value will depend on the
authorization server used.

(Optional) Activates the Kafka re-authentication mechanism that enforces session expiry
to the same length of time as the access token. If the specified value is less than the time
left for the access token to expire, then the client will have to re-authenticate before the
actual token expiry. By default, the session does not expire when the access token expires,
and the client does not attempt re-authentication.

Depending on how you apply OAuth 2.0 authentication, and the type of authorization server,
there are additional (optional) configuration settings you can use:

If your authorization server does not provide an iss claim, it is not possible to perform an
issuer check. In this situation, set checkIssuer to false and do not specify a 
validIssuerUri. Default is true.

If your authorization server provides an aud (audience) claim, and you want to enforce an
audience check, set checkAudience to true. Audience checks identify the intended
recipients of tokens. As a result, the Kafka broker will reject tokens that do not have its 
clientId in their aud claim. Default is false.

An authorization server may not provide a single attribute to identify both regular users

    clientSecret: 3
      secretName: my-cluster-oauth
      key: clientSecret
    userNameClaim: preferred_username 4
    maxSecondsWithoutReauthentication: 3600 5

  # ...
  authentication:
    type: oauth
    # ...
    checkIssuer: false 1
    checkAudience: true 2
    fallbackUserNameClaim: client_id 3
    fallbackUserNamePrefix: client-account- 4
    validTokenType: bearer 5
    userInfoEndpointUri: https://OAUTH-SERVER-
ADDRESS/auth/realms/external/protocol/openid-connect/userinfo 6
    enableOauthBearer: false 7
    enablePlain: true 8
    tokenEndpointUri: https://OAUTH-SERVER-
ADDRESS/auth/realms/external/protocol/openid-connect/token 9
    customClaimCheck: "@.custom == 'custom-value'" 10

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

131



4

5

6

7

8

9

10

In situations where fallbackUserNameClaim is applicable, it may also be necessary to
prevent name collisions between the values of the username claim, and those of the

(Only applicable when using introspectionEndpointUri) Depending on the authorization
server you are using, the introspection endpoint may or may not return the token type
attribute, or it may contain different values. You can specify a valid token type value that
the response from the introspection endpoint has to contain.

(Only applicable when using introspectionEndpointUri) The authorization server may be
configured or implemented in such a way to not provide any identifiable information in an
Introspection Endpoint response. In order to obtain the user ID, you can configure the URI
of the userinfo endpoint as a fallback. The userNameClaim, fallbackUserNameClaim,
and fallbackUserNamePrefix settings are applied to the response of userinfo endpoint.

Set this to false`to disable the OAUTHBEARER mechanism on the listener. At least 
one of PLAIN or OAUTHBEARER has to be enabled. Default is `true.

Set this to true to enable the PLAIN mechanism on the listener, which is supported by all
clients on all platforms. The Kafka client has to enable the PLAIN mechanism and set the 
username and the password. This mechanism can be used to authenticate either by using
the OAuth access token, or by using the OAuth client id and secret (client credentials). If
the client sets password to start with the string $accessToken:, the password is
interpreted as the access token on the server, and username as the account username,
otherwise the user is interpreted as the client id, and password as the client secret. Default
is false.

This has to be set to support the client credentials authentication when enablePlain is set
to true, as described in previous point.

Additional custom rules can be imposed on the JWT access token during validation by
setting this to a JsonPath filter query. If the access token does not contain the necessary
data, it is rejected. When using the introspectionEndpointUri, the custom check is applied
to the introspection endpoint response JSON.

3. Save and exit the editor, then wait for rolling updates to complete.

4. Check the update in the logs or by watching the pod state transitions:

The rolling update configures the brokers to use OAuth 2.0 authentication.

What to do next

Configure your Kafka clients to use OAuth 2.0

4.4.6.3. Configuring Kafka Java clients to use OAuth 2.0

This procedure describes how to configure Kafka producer and consumer APIs to use OAuth 2.0 for
interaction with Kafka brokers.

Add a client callback plugin to your pom.xml file, and configure the system properties.

Prerequisites

oc logs -f ${POD_NAME} -c ${CONTAINER_NAME}
oc get pod -w

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

132



1

2

3

1

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

Kafka brokers are configured for OAuth 2.0

Procedure

1. Add the client library with OAuth 2.0 support to the pom.xml file for the Kafka client:

2. Configure the system properties for the callback:
For example:

URI of the authorization server token endpoint.

Client ID, which is the name used when creating the client in the authorization server.

Client secret created when creating the client in the authorization server.

3. Enable the SASL OAUTHBEARER  mechanism on a TLS encrypted connection in the Kafka client
configuration:
For example:

Here we use SASL_SSL for use over TLS connections. Use SASL_PLAINTEXT over
unencrypted connections.

4. Verify that the Kafka client can access the Kafka brokers.

What to do next

Configure Kafka components to use OAuth 2.0

4.4.6.4. Configuring OAuth 2.0 for Kafka components

<dependency>
 <groupId>io.strimzi</groupId>
 <artifactId>kafka-oauth-client</artifactId>
 <version>0.7.1.redhat-00003</version>
</dependency>

System.setProperty(ClientConfig.OAUTH_TOKEN_ENDPOINT_URI, “https://<auth-server-
address>/auth/realms/master/protocol/openid-connect/token”); 1
System.setProperty(ClientConfig.OAUTH_CLIENT_ID, "<client-name>"); 2
System.setProperty(ClientConfig.OAUTH_CLIENT_SECRET, "<client-secret>"); 3

props.put("sasl.jaas.config", 
"org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required;");
props.put("security.protocol", "SASL_SSL"); 1
props.put("sasl.mechanism", "OAUTHBEARER");
props.put("sasl.login.callback.handler.class", 
"io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHandler");

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

133



1

This procedure describes how to configure Kafka components to use OAuth 2.0 authentication using an
authorization server.

You can configure authentication for:

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

In this scenario, the Kafka component and the authorization server are running in the same cluster.

Before you start

For more information on the configuration of OAuth 2.0 authentication for Kafka components, see:

KafkaClientAuthenticationOAuth schema reference

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

Kafka brokers are configured for OAuth 2.0

Procedure

1. Create a client secret and mount it to the component as an environment variable.
For example, here we are creating a client Secret for the Kafka Bridge:

The clientSecret key must be in base64 format.

2. Create or edit the resource for the Kafka component so that OAuth 2.0 authentication is
configured for the authentication property.
For OAuth 2.0 authentication, you can use:

Client ID and secret

Client ID and refresh token

Access token

TLS

apiVersion: kafka.strimzi.io/v1beta2
kind: Secret
metadata:
 name: my-bridge-oauth
type: Opaque
data:
 clientSecret: MGQ1OTRmMzYtZTllZS00MDY2LWI5OGEtMTM5MzM2NjdlZjQw 1

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

134



1

2

3

1

2

3

4

KafkaClientAuthenticationOAuth schema reference provides examples of each .

For example, here OAuth 2.0 is assigned to the Kafka Bridge client using a client ID and secret,
and TLS:

Authentication type set to oauth.

URI of the token endpoint for authentication.

Trusted certificates for TLS connection to the authorization server.

Depending on how you apply OAuth 2.0 authentication, and the type of authorization server,
there are additional configuration options you can use:

(Optional) Disable TLS hostname verification. Default is false.

If the authorization server does not return a typ (type) claim inside the JWT token, you can
apply checkAccessTokenType: false to skip the token type check. Default is true.

If you are using opaque tokens, you can apply accessTokenIsJwt: false so that access
tokens are not treated as JWT tokens.

(Optional) The scope for requesting the token from the token endpoint. An authorization
server may require a client to specify the scope. In this case it is any.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
spec:
  # ...
  authentication:
    type: oauth 1
    tokenEndpointUri: https://<auth-server-address>/auth/realms/master/protocol/openid-
connect/token 2
    clientId: kafka-bridge
    clientSecret:
      secretName: my-bridge-oauth
      key: clientSecret
    tlsTrustedCertificates: 3
    - secretName: oauth-server-cert
      certificate: tls.crt

# ...
spec:
  # ...
  authentication:
    # ...
    disableTlsHostnameVerification: true 1
    checkAccessTokenType: false 2
    accessTokenIsJwt: false 3
    scope: any 4

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

135



3. Apply the changes to the deployment of your Kafka resource.

4. Check the update in the logs or by watching the pod state transitions:

The rolling updates configure the component for interaction with Kafka brokers using OAuth 2.0
authentication.

4.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION

If you are using OAuth 2.0 with Red Hat Single Sign-On for token-based authentication, you can also
use Red Hat Single Sign-On to configure authorization rules to constrain client access to Kafka brokers.
Authentication establishes the identity of a user. Authorization decides the level of access for that user.

AMQ Streams supports the use of OAuth 2.0 token-based authorization through Red Hat Single Sign-
On Authorization Services, which allows you to manage security policies and permissions centrally.

Security policies and permissions defined in Red Hat Single Sign-On are used to grant access to
resources on Kafka brokers. Users and clients are matched against policies that permit access to
perform specific actions on Kafka brokers.

Kafka allows all users full access to brokers by default, and also provides the AclAuthorizer plugin to
configure authorization based on Access Control Lists (ACLs).

ZooKeeper stores ACL rules that grant or deny access to resources based on username. However,
OAuth 2.0 token-based authorization with Red Hat Single Sign-On offers far greater flexibility on how
you wish to implement access control to Kafka brokers. In addition, you can configure your Kafka brokers
to use OAuth 2.0 authorization and ACLs.

Additional resources

Using OAuth 2.0 token-based authentication

Kafka Authorization

Red Hat Single Sign-On documentation

4.5.1. OAuth 2.0 authorization mechanism

OAuth 2.0 authorization in AMQ Streams uses Red Hat Single Sign-On server Authorization Services
REST endpoints to extend token-based authentication with Red Hat Single Sign-On by applying
defined security policies on a particular user, and providing a list of permissions granted on different
resources for that user. Policies use roles and groups to match permissions to users. OAuth 2.0
authorization enforces permissions locally based on the received list of grants for the user from Red Hat
Single Sign-On Authorization Services.

4.5.1.1. Kafka broker custom authorizer

A Red Hat Single Sign-On authorizer (KeycloakRBACAuthorizer) is provided with AMQ Streams. To be

oc apply -f your-file

oc logs -f ${POD_NAME} -c ${CONTAINER_NAME}
oc get pod -w

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

136

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/authorization_services_guide/index
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/


A Red Hat Single Sign-On authorizer (KeycloakRBACAuthorizer) is provided with AMQ Streams. To be
able to use the Red Hat Single Sign-On REST endpoints for Authorization Services provided by Red Hat
Single Sign-On, you configure a custom authorizer on the Kafka broker.

The authorizer fetches a list of granted permissions from the authorization server as needed, and
enforces authorization locally on the Kafka Broker, making rapid authorization decisions for each client
request.

4.5.2. Configuring OAuth 2.0 authorization support

This procedure describes how to configure Kafka brokers to use OAuth 2.0 authorization using Red Hat
Single Sign-On Authorization Services.

Before you begin

Consider the access you require or want to limit for certain users. You can use a combination of Red Hat
Single Sign-On groups, roles, clients, and users to configure access in Red Hat Single Sign-On.

Typically, groups are used to match users based on organizational departments or geographical
locations. And roles are used to match users based on their function.

With Red Hat Single Sign-On, you can store users and groups in LDAP, whereas clients and roles cannot
be stored this way. Storage and access to user data may be a factor in how you choose to configure
authorization policies.

NOTE

Super users always have unconstrained access to a Kafka broker regardless of the
authorization implemented on the Kafka broker.

Prerequisites

AMQ Streams must be configured to use OAuth 2.0 with Red Hat Single Sign-On for token-
based authentication. You use the same Red Hat Single Sign-On server endpoint when you set
up authorization.

OAuth 2.0 authentication must be configured with the maxSecondsWithoutReauthentication
option to enable re-authentication.

Procedure

1. Access the Red Hat Single Sign-On Admin Console or use the Red Hat Single Sign-On Admin
CLI to enable Authorization Services for the Kafka broker client you created when setting up
OAuth 2.0 authentication.

2. Use Authorization Services to define resources, authorization scopes, policies, and permissions
for the client.

3. Bind the permissions to users and clients by assigning them roles and groups.

4. Configure the Kafka brokers to use Red Hat Single Sign-On authorization by updating the Kafka
broker configuration (Kafka.spec.kafka) of your Kafka resource in an editor.

5. Configure the Kafka broker kafka configuration to use keycloak authorization, and to be able to

oc edit kafka my-cluster

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

137



1

2

3

4

5

6

7

8

9

5. Configure the Kafka broker kafka configuration to use keycloak authorization, and to be able to
access the authorization server and Authorization Services.
For example:

Type keycloak enables Red Hat Single Sign-On authorization.

URI of the Red Hat Single Sign-On token endpoint. For production, always use HTTPs.

The client ID of the OAuth 2.0 client definition in Red Hat Single Sign-On that has
Authorization Services enabled. Typically, kafka is used as the ID.

(Optional) Delegate authorization to Kafka AclAuthorizer if access is denied by Red Hat
Single Sign-On Authorization Services policies. Default is false.

(Optional) Disable TLS hostname verification. Default is false.

(Optional) Designated super users.

(Optional) Trusted certificates for TLS connection to the authorization server.

(Optional) The time between two consecutive grants refresh runs. That is the maximum
time for active sessions to detect any permissions changes for the user on Red Hat Single
Sign-On. The default value is 60.

(Optional) The number of threads to use to refresh (in parallel) the grants for the active
sessions. The default value is 5.

6. Save and exit the editor, then wait for rolling updates to complete.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    authorization:
      type: keycloak 1
      tokenEndpointUri: <https://<auth-server-address>/auth/realms/external/protocol/openid-
connect/token> 2
      clientId: kafka 3
      delegateToKafkaAcls: false 4
      disableTlsHostnameVerification: false 5
      superUsers: 6
      - CN=fred
      - sam
      - CN=edward
      tlsTrustedCertificates: 7
      - secretName: oauth-server-cert
        certificate: ca.crt
      grantsRefreshPeriodSeconds: 60 8
      grantsRefreshPoolSize: 5 9
    #...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

138



7. Check the update in the logs or by watching the pod state transitions:

The rolling update configures the brokers to use OAuth 2.0 authorization.

8. Verify the configured permissions by accessing Kafka brokers as clients or users with specific
roles, making sure they have the necessary access, or do not have the access they are not
supposed to have.

oc logs -f ${POD_NAME} -c kafka
oc get pod -w

CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA

139



CHAPTER 5. USING AMQ STREAMS OPERATORS
Use the AMQ Streams operators to manage your Kafka cluster, and Kafka topics and users.

5.1. USING THE CLUSTER OPERATOR

The Cluster Operator is used to deploy a Kafka cluster and other Kafka components.

The Cluster Operator is deployed using YAML installation files.

NOTE

On OpenShift, a Kafka Connect deployment can incorporate a Source2Image feature to
provide a convenient way to add additional connectors.

Additional resources

Deploying the Cluster Operator  in the Deploying and Upgrading AMQ Streams on OpenShift
guide.

Kafka Cluster configuration .

5.1.1. Cluster Operator configuration

You can configure the Cluster Operator using supported environment variables, and through its logging
configuration.

The environment variables relate to container configuration for the deployment of the Cluster Operator
image. For more information on image configuration, see, Section 13.1.6, “image”.

STRIMZI_NAMESPACE

A comma-separated list of namespaces that the operator should operate in. When not set, set to
empty string, or set to *, the Cluster Operator will operate in all namespaces. The Cluster Operator
deployment might use the OpenShift Downward API to set this automatically to the namespace the
Cluster Operator is deployed in.

Example configuration for Cluster Operator namespaces

STRIMZI_FULL_RECONCILIATION_INTERVAL_MS

Optional, default is 120000 ms. The interval between periodic reconciliations, in milliseconds.

STRIMZI_OPERATION_TIMEOUT_MS

Optional, default 300000 ms. The timeout for internal operations, in milliseconds. This value should
be increased when using AMQ Streams on clusters where regular OpenShift operations take longer
than usual (because of slow downloading of Docker images, for example).

STRIMZI_OPERATOR_NAMESPACE

The name of the namespace where the AMQ Streams Cluster Operator is running. Do not configure

env:
  - name: STRIMZI_NAMESPACE
    valueFrom:
      fieldRef:
        fieldPath: metadata.namespace

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

140

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/#the-downward-api


The name of the namespace where the AMQ Streams Cluster Operator is running. Do not configure
this variable manually. Use the OpenShift Downward API.

STRIMZI_OPERATOR_NAMESPACE_LABELS

Optional. The labels of the namespace where the AMQ Streams Cluster Operator is running.
Namespace labels are used to configure the namespace selector in network policies to allow the
AMQ Streams Cluster Operator to only have access to the operands from the namespace with these
labels. When not set, the namespace selector in network policies is configured to allow access to the
AMQ Streams Cluster Operator from any namespace in the OpenShift cluster.

STRIMZI_CUSTOM_RESOURCE_SELECTOR

Optional. Specifies label selector used to filter the custom resources handled by the operator. The
operator will operate only on those custom resources which will have the specified labels set.
Resources without these labels will not be seen by the operator. The label selector applies to Kafka, 
KafkaConnect, KafkaConnectS2I, KafkaBridge, KafkaMirrorMaker, and KafkaMirrorMaker2
resources. KafkaRebalance and KafkaConnector resources will be operated only when their
corresponding Kafka and Kafka Connect clusters have the matching labels.

STRIMZI_KAFKA_IMAGES

Required. This provides a mapping from Kafka version to the corresponding Docker image containing
a Kafka broker of that version. The required syntax is whitespace or comma separated 
<version>=<image> pairs. For example 2.6.0=registry.redhat.io/amq7/amq-streams-kafka-26-
rhel7:1.7.0, 2.7.0=registry.redhat.io/amq7/amq-streams-kafka-27-rhel7:1.7.0. This is used when a 
Kafka.spec.kafka.version property is specified but not the Kafka.spec.kafka.image in the Kafka
resource.

STRIMZI_DEFAULT_KAFKA_INIT_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-rhel7-operator:1.7.0. The image name to
use as default for the init container started before the broker for initial configuration work (that is,
rack support), if no image is specified as the kafka-init-image in the Kafka resource.

STRIMZI_KAFKA_CONNECT_IMAGES

Required. This provides a mapping from the Kafka version to the corresponding Docker image
containing a Kafka connect of that version. The required syntax is whitespace or comma separated 
<version>=<image> pairs. For example 2.6.0=registry.redhat.io/amq7/amq-streams-kafka-26-
rhel7:1.7.0, 2.7.0=registry.redhat.io/amq7/amq-streams-kafka-27-rhel7:1.7.0. This is used when a 
KafkaConnect.spec.version property is specified but not the KafkaConnect.spec.image.

STRIMZI_KAFKA_CONNECT_S2I_IMAGES

Required. This provides a mapping from the Kafka version to the corresponding Docker image

env:
  - name: STRIMZI_OPERATOR_NAMESPACE
    valueFrom:
      fieldRef:
        fieldPath: metadata.namespace

env:
  - name: STRIMZI_OPERATOR_NAMESPACE_LABELS
    value: label1=value1,label2=value2

env:
  - name: STRIMZI_CUSTOM_RESOURCE_SELECTOR
    value: label1=value1,label2=value2

CHAPTER 5. USING AMQ STREAMS OPERATORS

141



containing a Kafka connect of that version. The required syntax is whitespace or comma separated 
<version>=<image> pairs. For example 2.6.0=registry.redhat.io/amq7/amq-streams-kafka-26-
rhel7:1.7.0, 2.7.0=registry.redhat.io/amq7/amq-streams-kafka-27-rhel7:1.7.0. This is used when a 
KafkaConnectS2I.spec.version property is specified but not the KafkaConnectS2I.spec.image.

STRIMZI_KAFKA_MIRROR_MAKER_IMAGES

Required. This provides a mapping from the Kafka version to the corresponding Docker image
containing a Kafka mirror maker of that version. The required syntax is whitespace or comma
separated <version>=<image> pairs. For example 2.6.0=registry.redhat.io/amq7/amq-streams-
kafka-26-rhel7:1.7.0, 2.7.0=registry.redhat.io/amq7/amq-streams-kafka-27-rhel7:1.7.0. This is
used when a KafkaMirrorMaker.spec.version property is specified but not the 
KafkaMirrorMaker.spec.image.

STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-rhel7-operator:1.7.0. The image name to
use as the default when deploying the topic operator, if no image is specified as the 
Kafka.spec.entityOperator.topicOperator.image in Kafka resource.

STRIMZI_DEFAULT_USER_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-rhel7-operator:1.7.0. The image name to
use as the default when deploying the user operator, if no image is specified as the 
Kafka.spec.entityOperator.userOperator.image in the Kafka resource.

STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-kafka-27-rhel7:1.7.0. The image name to
use as the default when deploying the sidecar container which provides TLS support for the Entity
Operator, if no image is specified as the Kafka.spec.entityOperator.tlsSidecar.image in the Kafka
resource.

STRIMZI_IMAGE_PULL_POLICY

Optional. The ImagePullPolicy which will be applied to containers in all pods managed by AMQ
Streams Cluster Operator. The valid values are Always, IfNotPresent, and Never. If not specified,
the OpenShift defaults will be used. Changing the policy will result in a rolling update of all your
Kafka, Kafka Connect, and Kafka MirrorMaker clusters.

STRIMZI_IMAGE_PULL_SECRETS

Optional. A comma-separated list of Secret names. The secrets referenced here contain the
credentials to the container registries where the container images are pulled from. The secrets are
used in the imagePullSecrets field for all Pods created by the Cluster Operator. Changing this list
results in a rolling update of all your Kafka, Kafka Connect, and Kafka MirrorMaker clusters.

STRIMZI_KUBERNETES_VERSION

Optional. Overrides the Kubernetes version information detected from the API server.

Example configuration for Kubernetes version override

env:
  - name: STRIMZI_KUBERNETES_VERSION
    value: |
           major=1
           minor=16
           gitVersion=v1.16.2
           gitCommit=c97fe5036ef3df2967d086711e6c0c405941e14b
           gitTreeState=clean
           buildDate=2019-10-15T19:09:08Z
           goVersion=go1.12.10
           compiler=gc
           platform=linux/amd64

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

142



KUBERNETES_SERVICE_DNS_DOMAIN

Optional. Overrides the default OpenShift DNS domain name suffix.
By default, services assigned in the OpenShift cluster have a DNS domain name that uses the
default suffix cluster.local.

For example, for broker kafka-0:

The DNS domain name is added to the Kafka broker certificates used for hostname verification.

If you are using a different DNS domain name suffix in your cluster, change the 
KUBERNETES_SERVICE_DNS_DOMAIN environment variable from the default to the one you are
using in order to establish a connection with the Kafka brokers.

STRIMZI_CONNECT_BUILD_TIMEOUT_MS

Optional, default 300000 ms. The timeout for building new Kafka Connect images with additional
connectots, in milliseconds. This value should be increased when using AMQ Streams to build
container images containing many connectors or using a slow container registry.

5.1.1.1. Logging configuration by ConfigMap

The Cluster Operator’s logging is configured by the strimzi-cluster-operator ConfigMap.

A ConfigMap containing logging configuration is created when installing the Cluster Operator. This 
ConfigMap is described in the file install/cluster-operator/050-ConfigMap-strimzi-cluster-
operator.yaml. You configure Cluster Operator logging by changing the data field log4j2.properties in
this ConfigMap.

To update the logging configuration, you can edit the 050-ConfigMap-strimzi-cluster-operator.yaml
file and then run the following command:

Alternatively, edit the ConfigMap directly:

To change the frequency of the reload interval, set a time in seconds in the monitorInterval option in
the created ConfigMap.

If the ConfigMap is missing when the Cluster Operator is deployed, the default logging values are used.

If the ConfigMap is accidentally deleted after the Cluster Operator is deployed, the most recently
loaded logging configuration is used. Create a new ConfigMap to load a new logging configuration.

NOTE

Do not remove the monitorInterval option from the ConfigMap.

5.1.1.2. Restricting Cluster Operator access with network policy

The Cluster Operator can run in the same namespace as the resources it manages, or in a separate

<cluster-name>-kafka-0.<cluster-name>-kafka-brokers.<namespace>.svc.cluster.local

oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml

oc edit cm strimzi-cluster-operator

CHAPTER 5. USING AMQ STREAMS OPERATORS

143



namespace. By default, the STRIMZI_OPERATOR_NAMESPACE environment variable is configured
to use the OpenShift Downward API to find which namespace the Cluster Operator is running in. If the
Cluster Operator is running in the same namespace as the resources, only local access is required, and
allowed by AMQ Streams.

If the Cluster Operator is running in a separate namespace to the resources it manages, any namespace
in the OpenShift cluster is allowed access to the Cluster Operator unless network policy is configured.
Use the optional STRIMZI_OPERATOR_NAMESPACE_LABELS environment variable to establish
network policy for the Cluster Operator using namespace labels. By adding namespace labels, access to
the Cluster Operator is restricted to the namespaces specified.

Network policy configured for the Cluster Operator deployment

5.1.1.3. Periodic reconciliation

Although the Cluster Operator reacts to all notifications about the desired cluster resources received
from the OpenShift cluster, if the operator is not running, or if a notification is not received for any
reason, the desired resources will get out of sync with the state of the running OpenShift cluster.

In order to handle failovers properly, a periodic reconciliation process is executed by the Cluster
Operator so that it can compare the state of the desired resources with the current cluster deployments
in order to have a consistent state across all of them. You can set the time interval for the periodic
reconciliations using the [STRIMZI_FULL_RECONCILIATION_INTERVAL_MS] variable.

5.1.2. Provisioning Role-Based Access Control (RBAC)

For the Cluster Operator to function it needs permission within the OpenShift cluster to interact with
resources such as Kafka, KafkaConnect, and so on, as well as the managed resources, such as 
ConfigMaps, Pods, Deployments, StatefulSets and Services. Such permission is described in terms of
OpenShift role-based access control (RBAC) resources:

ServiceAccount,

Role and ClusterRole,

RoleBinding and ClusterRoleBinding.

In addition to running under its own ServiceAccount with a ClusterRoleBinding, the Cluster Operator
manages some RBAC resources for the components that need access to OpenShift resources.

OpenShift also includes privilege escalation protections that prevent components operating under one 
ServiceAccount from granting other ServiceAccounts privileges that the granting ServiceAccount
does not have. Because the Cluster Operator must be able to create the ClusterRoleBindings, and 
RoleBindings needed by resources it manages, the Cluster Operator must also have those same
privileges.

5.1.2.1. Delegated privileges

When the Cluster Operator deploys resources for a desired Kafka resource it also creates 

#...
env:
  # ...
  - name: STRIMZI_OPERATOR_NAMESPACE_LABELS
    value: label1=value1,label2=value2
  #...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

144



When the Cluster Operator deploys resources for a desired Kafka resource it also creates 
ServiceAccounts, RoleBindings, and ClusterRoleBindings, as follows:

The Kafka broker pods use a ServiceAccount called cluster-name-kafka

When the rack feature is used, the strimzi-cluster-name-kafka-init ClusterRoleBinding is
used to grant this ServiceAccount access to the nodes within the cluster via a ClusterRole
called strimzi-kafka-broker

When the rack feature is not used no binding is created

The ZooKeeper pods use a ServiceAccount called cluster-name-zookeeper

The Entity Operator pod uses a ServiceAccount called cluster-name-entity-operator

The Topic Operator produces OpenShift events with status information, so the 
ServiceAccount is bound to a ClusterRole called strimzi-entity-operator which grants this
access via the strimzi-entity-operator RoleBinding

The pods for KafkaConnect and KafkaConnectS2I resources use a ServiceAccount called 
cluster-name-cluster-connect

The pods for KafkaMirrorMaker use a ServiceAccount called cluster-name-mirror-maker

The pods for KafkaMirrorMaker2 use a ServiceAccount called cluster-name-mirrormaker2

The pods for KafkaBridge use a ServiceAccount called cluster-name-bridge

5.1.2.2. ServiceAccount

The Cluster Operator is best run using a ServiceAccount:

Example ServiceAccount for the Cluster Operator

The Deployment of the operator then needs to specify this in its 
spec.template.spec.serviceAccountName:

Partial example of Deployment for the Cluster Operator

apiVersion: v1
kind: ServiceAccount
metadata:
  name: strimzi-cluster-operator
  labels:
    app: strimzi

apiVersion: apps/v1
kind: Deployment
metadata:
  name: strimzi-cluster-operator
  labels:
    app: strimzi
spec:
  replicas: 1
  selector:
    matchLabels:

CHAPTER 5. USING AMQ STREAMS OPERATORS

145



Note line 12, where the strimzi-cluster-operator ServiceAccount is specified as the 
serviceAccountName.

5.1.2.3. ClusterRoles

The Cluster Operator needs to operate using ClusterRoles that gives access to the necessary
resources. Depending on the OpenShift cluster setup, a cluster administrator might be needed to create
the ClusterRoles.

NOTE

Cluster administrator rights are only needed for the creation of the ClusterRoles. The
Cluster Operator will not run under the cluster admin account.

The ClusterRoles follow the principle of least privilege  and contain only those privileges needed by the
Cluster Operator to operate Kafka, Kafka Connect, and ZooKeeper clusters. The first set of assigned
privileges allow the Cluster Operator to manage OpenShift resources such as StatefulSets, 
Deployments, Pods, and ConfigMaps.

Cluster Operator uses ClusterRoles to grant permission at the namespace-scoped resources level and
cluster-scoped resources level:

ClusterRole with namespaced resources for the Cluster Operator

      name: strimzi-cluster-operator
      strimzi.io/kind: cluster-operator
  template:
      # ...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: strimzi-cluster-operator-namespaced
  labels:
    app: strimzi
rules:
  - apiGroups:
      - "rbac.authorization.k8s.io"
    resources:
      # The cluster operator needs to access and manage rolebindings to grant Strimzi components 
cluster permissions
      - rolebindings
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      - "rbac.authorization.k8s.io"
    resources:
      # The cluster operator needs to access and manage roles to grant the entity operator permissions

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

146



      - roles
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      - ""
    resources:
      # The cluster operator needs to access and delete pods, this is to allow it to monitor pod health 
and coordinate rolling updates
      - pods
      # The cluster operator needs to access and manage service accounts to grant Strimzi 
components cluster permissions
      - serviceaccounts
      # The cluster operator needs to access and manage config maps for Strimzi components 
configuration
      - configmaps
      # The cluster operator needs to access and manage services and endpoints to expose Strimzi 
components to network traffic
      - services
      - endpoints
      # The cluster operator needs to access and manage secrets to handle credentials
      - secrets
      # The cluster operator needs to access and manage persistent volume claims to bind them to 
Strimzi components for persistent data
      - persistentvolumeclaims
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      - "kafka.strimzi.io"
    resources:
      # The cluster operator runs the KafkaAssemblyOperator, which needs to access and manage 
Kafka resources
      - kafkas
      - kafkas/status
      # The cluster operator runs the KafkaConnectAssemblyOperator, which needs to access and 
manage KafkaConnect resources
      - kafkaconnects
      - kafkaconnects/status
      # The cluster operator runs the KafkaConnectS2IAssemblyOperator, which needs to access and 
manage KafkaConnectS2I resources
      - kafkaconnects2is
      - kafkaconnects2is/status
      # The cluster operator runs the KafkaConnectorAssemblyOperator, which needs to access and 
manage KafkaConnector resources
      - kafkaconnectors

CHAPTER 5. USING AMQ STREAMS OPERATORS

147



      - kafkaconnectors/status
      # The cluster operator runs the KafkaMirrorMakerAssemblyOperator, which needs to access and 
manage KafkaMirrorMaker resources
      - kafkamirrormakers
      - kafkamirrormakers/status
      # The cluster operator runs the KafkaBridgeAssemblyOperator, which needs to access and 
manage BridgeMaker resources
      - kafkabridges
      - kafkabridges/status
      # The cluster operator runs the KafkaMirrorMaker2AssemblyOperator, which needs to access and 
manage KafkaMirrorMaker2 resources
      - kafkamirrormaker2s
      - kafkamirrormaker2s/status
      # The cluster operator runs the KafkaRebalanceAssemblyOperator, which needs to access and 
manage KafkaRebalance resources
      - kafkarebalances
      - kafkarebalances/status
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      # The cluster operator needs the extensions api as the operator supports Kubernetes version 
1.11+
      # apps/v1 was introduced in Kubernetes 1.14
      - "extensions"
    resources:
      # The cluster operator needs to access and manage deployments to run deployment based 
Strimzi components
      - deployments
      - deployments/scale
      # The cluster operator needs to access replica sets to manage Strimzi components and to 
determine error states
      - replicasets
      # The cluster operator needs to access and manage replication controllers to manage replicasets
      - replicationcontrollers
      # The cluster operator needs to access and manage network policies to lock down 
communication between Strimzi components
      - networkpolicies
      # The cluster operator needs to access and manage ingresses which allow external access to the 
services in a cluster
      - ingresses
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      - "apps"

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

148



    resources:
      # The cluster operator needs to access and manage deployments to run deployment based 
Strimzi components
      - deployments
      - deployments/scale
      - deployments/status
      # The cluster operator needs to access and manage stateful sets to run stateful sets based 
Strimzi components
      - statefulsets
      # The cluster operator needs to access replica-sets to manage Strimzi components and to 
determine error states
      - replicasets
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      - ""
    resources:
      # The cluster operator needs to be able to create events and delegate permissions to do so
      - events
    verbs:
      - create
  - apiGroups:
      # OpenShift S2I requirements
      - apps.openshift.io
    resources:
      - deploymentconfigs
      - deploymentconfigs/scale
      - deploymentconfigs/status
      - deploymentconfigs/finalizers
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      # OpenShift S2I requirements
      - build.openshift.io
    resources:
      - buildconfigs
      - buildconfigs/instantiate
      - builds
    verbs:
      - get
      - list
      - watch
      - create
      - delete

CHAPTER 5. USING AMQ STREAMS OPERATORS

149



      - patch
      - update
  - apiGroups:
      # OpenShift S2I requirements
      - image.openshift.io
    resources:
      - imagestreams
      - imagestreams/status
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      - networking.k8s.io
    resources:
      # The cluster operator needs to access and manage network policies to lock down 
communication between Strimzi components
      - networkpolicies
      # The cluster operator needs to access and manage ingresses which allow external access to the 
services in a cluster
      - ingresses
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      - route.openshift.io
    resources:
      # The cluster operator needs to access and manage routes to expose Strimzi components for 
external access
      - routes
      - routes/custom-host
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      - policy
    resources:
      # The cluster operator needs to access and manage pod disruption budgets this limits the number 
of concurrent disruptions
      # that a Strimzi component experiences, allowing for higher availability
      - poddisruptionbudgets
    verbs:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

150



The second includes the permissions needed for cluster-scoped resources.

ClusterRole with cluster-scoped resources for the Cluster Operator

The strimzi-kafka-broker ClusterRole represents the access needed by the init container in Kafka
pods that is used for the rack feature. As described in the Delegated privileges  section, this role is also
needed by the Cluster Operator in order to be able to delegate this access.

      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: strimzi-cluster-operator-global
  labels:
    app: strimzi
rules:
  - apiGroups:
      - "rbac.authorization.k8s.io"
    resources:
      # The cluster operator needs to create and manage cluster role bindings in the case of an install 
where a user
      # has specified they want their cluster role bindings generated
      - clusterrolebindings
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update
  - apiGroups:
      - storage.k8s.io
    resources:
      # The cluster operator requires "get" permissions to view storage class details
      # This is because only a persistent volume of a supported storage class type can be resized
      - storageclasses
    verbs:
      - get
  - apiGroups:
      - ""
    resources:
      # The cluster operator requires "list" permissions to view all nodes in a cluster
      # The listing is used to determine the node addresses when NodePort access is configured
      # These addresses are then exposed in the custom resource states
      - nodes
    verbs:
      - list

CHAPTER 5. USING AMQ STREAMS OPERATORS

151



ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to
the Kafka broker pods

The strimzi-topic-operator ClusterRole represents the access needed by the Topic Operator. As
described in the Delegated privileges  section, this role is also needed by the Cluster Operator in order to
be able to delegate this access.

ClusterRole for the Cluster Operator allowing it to delegate access to events to the Topic
Operator

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: strimzi-kafka-broker
  labels:
    app: strimzi
rules:
  - apiGroups:
      - ""
    resources:
      # The Kafka Brokers require "get" permissions to view the node they are on
      # This information is used to generate a Rack ID that is used for High Availability configurations
      - nodes
    verbs:
      - get

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: strimzi-entity-operator
  labels:
    app: strimzi
rules:
  - apiGroups:
      - "kafka.strimzi.io"
    resources:
      # The entity operator runs the KafkaTopic assembly operator, which needs to access and manage 
KafkaTopic resources
      - kafkatopics
      - kafkatopics/status
      # The entity operator runs the KafkaUser assembly operator, which needs to access and manage 
KafkaUser resources
      - kafkausers
      - kafkausers/status
    verbs:
      - get
      - list
      - watch
      - create
      - patch
      - update
      - delete
  - apiGroups:
      - ""
    resources:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

152



The strimzi-kafka-client ClusterRole represents the access needed by the components based on
Kafka clients which use the client rack-awareness. As described in the Delegated privileges  section, this
role is also needed by the Cluster Operator in order to be able to delegate this access.

ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to
the Kafka client based pods

5.1.2.4. ClusterRoleBindings

The operator needs ClusterRoleBindings and RoleBindings which associates its ClusterRole with its 
ServiceAccount: ClusterRoleBindings are needed for ClusterRoles containing cluster-scoped
resources.

Example ClusterRoleBinding for the Cluster Operator

      - events
    verbs:
      # The entity operator needs to be able to create events
      - create
  - apiGroups:
      - ""
    resources:
      # The entity operator user-operator needs to access and manage secrets to store generated 
credentials
      - secrets
    verbs:
      - get
      - list
      - watch
      - create
      - delete
      - patch
      - update

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: strimzi-kafka-client
  labels:
    app: strimzi
rules:
  - apiGroups:
      - ""
    resources:
      # The Kafka clients (Connect, Mirror Maker, etc.) require "get" permissions to view the node they 
are on
      # This information is used to generate a Rack ID (client.rack option) that is used for consuming 
from the closest
      # replicas when enabled
      - nodes
    verbs:
      - get

apiVersion: rbac.authorization.k8s.io/v1

CHAPTER 5. USING AMQ STREAMS OPERATORS

153



ClusterRoleBindings are also needed for the ClusterRoles needed for delegation:

Example ClusterRoleBinding for the Cluster Operator for the Kafka broker rack-awarness

and

Example ClusterRoleBinding for the Cluster Operator for the Kafka client rack-awarness

kind: ClusterRoleBinding
metadata:
  name: strimzi-cluster-operator
  labels:
    app: strimzi
subjects:
  - kind: ServiceAccount
    name: strimzi-cluster-operator
    namespace: myproject
roleRef:
  kind: ClusterRole
  name: strimzi-cluster-operator-global
  apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: strimzi-cluster-operator-kafka-broker-delegation
  labels:
    app: strimzi
# The Kafka broker cluster role must be bound to the cluster operator service account so that it can 
delegate the cluster role to the Kafka brokers.
# This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
  - kind: ServiceAccount
    name: strimzi-cluster-operator
    namespace: myproject
roleRef:
  kind: ClusterRole
  name: strimzi-kafka-broker
  apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: strimzi-cluster-operator-kafka-client-delegation
  labels:
    app: strimzi
# The Kafka clients cluster role must be bound to the cluster operator service account so that it can 
delegate the
# cluster role to the Kafka clients using it for consuming from closest replica.
# This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
  - kind: ServiceAccount
    name: strimzi-cluster-operator
    namespace: myproject
roleRef:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

154



ClusterRoles containing only namespaced resources are bound using RoleBindings only.

5.2. USING THE TOPIC OPERATOR

When you create, modify or delete a topic using the KafkaTopic resource, the Topic Operator ensures
those changes are reflected in the Kafka cluster.

The Deploying and Upgrading AMQ Streams on OpenShift  guide provides instructions to deploy the
Topic Operator:

Using the Cluster Operator (recommended)

Standalone to operate with Kafka clusters not managed by AMQ Streams

5.2.1. Kafka topic resource

The KafkaTopic resource is used to configure topics, including the number of partitions and replicas.

  kind: ClusterRole
  name: strimzi-kafka-client
  apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: strimzi-cluster-operator
  labels:
    app: strimzi
subjects:
  - kind: ServiceAccount
    name: strimzi-cluster-operator
    namespace: myproject
roleRef:
  kind: ClusterRole
  name: strimzi-cluster-operator-namespaced
  apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: strimzi-cluster-operator-entity-operator-delegation
  labels:
    app: strimzi
# The Entity Operator cluster role must be bound to the cluster operator service account so that it can 
delegate the cluster role to the Entity Operator.
# This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
  - kind: ServiceAccount
    name: strimzi-cluster-operator
    namespace: myproject
roleRef:
  kind: ClusterRole
  name: strimzi-entity-operator
  apiGroup: rbac.authorization.k8s.io

CHAPTER 5. USING AMQ STREAMS OPERATORS

155

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-topic-operator-using-the-cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-topic-operator-standalone-str


The full schema for KafkaTopic is described in KafkaTopic schema reference.

5.2.1.1. Identifying a Kafka cluster for topic handling

A KafkaTopic resource includes a label that defines the appropriate name of the Kafka cluster (derived
from the name of the Kafka resource) to which it belongs.

For example:

The label is used by the Topic Operator to identify the KafkaTopic resource and create a new topic, and
also in subsequent handling of the topic.

If the label does not match the Kafka cluster, the Topic Operator cannot identify the KafkaTopic and
the topic is not created.

5.2.1.2. Kafka topic usage recommendations

When working with topics, be consistent. Always operate on either KafkaTopic resources or topics
directly in OpenShift. Avoid routinely switching between both methods for a given topic.

Use topic names that reflect the nature of the topic, and remember that names cannot be changed
later.

If creating a topic in Kafka, use a name that is a valid OpenShift resource name, otherwise the Topic
Operator will need to create the corresponding KafkaTopic with a name that conforms to the
OpenShift rules.

NOTE

Recommendations for identifiers and names in OpenShift are outlined in Identifiers and
Names in OpenShift community article.

5.2.1.3. Kafka topic naming conventions

Kafka and OpenShift impose their own validation rules for the naming of topics in Kafka and 
KafkaTopic.metadata.name respectively. There are valid names for each which are invalid in the other.

Using the spec.topicName property, it is possible to create a valid topic in Kafka with a name that would
be invalid for the Kafka topic in OpenShift.

The spec.topicName property inherits Kafka naming validation rules:

The name must not be longer than 249 characters.

Valid characters for Kafka topics are ASCII alphanumerics, ., _, and -.

The name cannot be . or .., though . can be used in a name, such as exampleTopic. or 
.exampleTopic.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
  name: topic-name-1
  labels:
    strimzi.io/cluster: my-cluster

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

156

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/identifiers.md


1

spec.topicName must not be changed.

For example:

Upper case is invalid in OpenShift.

cannot be changed to:

NOTE

Some Kafka client applications, such as Kafka Streams, can create topics in Kafka
programmatically. If those topics have names that are invalid OpenShift resource names,
the Topic Operator gives them a valid metadata.name based on the Kafka name. Invalid
characters are replaced and a hash is appended to the name. For example:

5.2.2. Topic Operator topic store

The Topic Operator uses Kafka to store topic metadata describing topic configuration as key-value
pairs. The topic store is based on the Kafka Streams key-value mechanism, which uses Kafka topics to
persist the state.

Topic metadata is cached in-memory and accessed locally within the Topic Operator. Updates from
operations applied to the local in-memory cache are persisted to a backup topic store on disk. The topic
store is continually synchronized with updates from Kafka topics or OpenShift KafkaTopic custom
resources. Operations are handled rapidly with the topic store set up this way, but should the in-memory
cache crash it is automatically repopulated from the persistent storage.

5.2.2.1. Internal topic store topics

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
  name: topic-name-1
spec:
  topicName: topicName-1 1
  # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
  name: topic-name-1
spec:
  topicName: name-2
  # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
  name: mytopic---c55e57fe2546a33f9e603caf57165db4072e827e
spec:
  topicName: myTopic
  # ...

CHAPTER 5. USING AMQ STREAMS OPERATORS

157



Internal topics support the handling of topic metadata in the topic store.

__strimzi_store_topic

Input topic for storing the topic metadata

__strimzi-topic-operator-kstreams-topic-store-changelog

Retains a log of compacted topic store values

WARNING

Do not delete these topics, as they are essential to the running of the Topic
Operator.

5.2.2.2. Migrating topic metadata from ZooKeeper

In previous releases of AMQ Streams, topic metadata was stored in ZooKeeper. The new process
removes this requirement, bringing the metadata into the Kafka cluster, and under the control of the
Topic Operator.

When upgrading to AMQ Streams 1.7, the transition to Topic Operator control of the topic store is
seamless. Metadata is found and migrated from ZooKeeper, and the old store is deleted.

5.2.2.3. Downgrading to an AMQ Streams version that uses ZooKeeper to store topic
metadata

If you are reverting back to a version of AMQ Streams earlier than 0.22, which uses ZooKeeper for the
storage of topic metadata, you still downgrade your Cluster Operator to the previous version, then
downgrade Kafka brokers and client applications to the previous Kafka version as standard.

However, you must also delete the topics that were created for the topic store using a kafka-admin
command, specifying the bootstrap address of the Kafka cluster. For example:

The command must correspond to the type of listener and authentication used to access the Kafka
cluster.

The Topic Operator will reconstruct the ZooKeeper topic metadata from the state of the topics in
Kafka.

5.2.2.4. Topic Operator topic replication and scaling

The recommended configuration for topics managed by the Topic Operator is a topic replication factor
of 3, and a minimum of 2 in-sync replicas.



oc run kafka-admin -ti --image=registry.redhat.io/amq7/amq-streams-kafka-27-rhel7:1.7.0 --rm=true -
-restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi-topic-
operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh --bootstrap-server 
localhost:9092 --topic __strimzi_store_topic --delete

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

158



1

2

3

The number of partitions for the topic. Generally, 1 partition is sufficient.

The number of replica topic partitions. Currently, this cannot be changed in the KafkaTopic
resource, but it can be changed using the kafka-reassign-partitions.sh tool.

The minimum number of replica partitions that a message must be successfully written to, or an
exception is raised.

NOTE

In-sync replicas are used in conjunction with the acks configuration for producer
applications. The acks configuration determines the number of follower partitions a
message must be replicated to before the message is acknowledged as successfully
received. The Topic Operator runs with acks=all, whereby messages must be
acknowledged by all in-sync replicas.

When scaling Kafka clusters by adding or removing brokers, replication factor configuration is not
changed and replicas are not reassigned automatically. However, you can use the kafka-reassign-
partitions.sh tool to change the replication factor, and manually reassign replicas to brokers.

Alternatively, though the integration of Cruise Control for AMQ Streams cannot change the replication
factor for topics, the optimization proposals it generates for rebalancing Kafka include commands that
transfer partition replicas and change partition leadership.

5.2.2.5. Handling changes to topics

A fundamental problem that the Topic Operator needs to solve is that there is no single source of truth:
both the KafkaTopic resource and the Kafka topic can be modified independently of the Topic
Operator. Complicating this, the Topic Operator might not always be able to observe changes at each
end in real time. For example, when the Topic Operator is down.

To resolve this, the Topic Operator maintains information about each topic in the topic store. When a
change happens in the Kafka cluster or OpenShift, it looks at both the state of the other system and the
topic store in order to determine what needs to change to keep everything in sync. The same thing
happens whenever the Topic Operator starts, and periodically while it is running.

For example, suppose the Topic Operator is not running, and a KafkaTopic called my-topic is created.
When the Topic Operator starts, the topic store does not contain information on my-topic, so it can infer
that the KafkaTopic was created after it was last running. The Topic Operator creates the topic
corresponding to my-topic, and also stores metadata for my-topic in the topic store.

If you update Kafka topic configuration or apply a change through the KafkaTopic custom resource, the
topic store is updated after the Kafka cluster is reconciled.

metadata:
  name: my-topic
  labels:
    strimzi.io/cluster: my-cluster
spec:
  partitions: 1 1
  replicas: 3 2
  config:
    min.insync.replicas=2 3
  #...

CHAPTER 5. USING AMQ STREAMS OPERATORS

159



The topic store also allows the Topic Operator to manage scenarios where the topic configuration is
changed in Kafka topics and updated through OpenShift KafkaTopic custom resources, as long as the
changes are not incompatible. For example, it is possible to make changes to the same topic config key,
but to different values. For incompatible changes, the Kafka configuration takes priority, and the 
KafkaTopic is updated accordingly.

NOTE

You can also use the KafkaTopic resource to delete topics using a oc delete -f KAFKA-
TOPIC-CONFIG-FILE command. To be able to do this, delete.topic.enable must be set
to true (default) in the spec.kafka.config of the Kafka resource.

Additional resources

Downgrading AMQ Streams

Producer configuration tuning and data durability

Scaling cluster and partition reassignment

Cruise Control for cluster rebalancing

5.2.3. Configuring a Kafka topic

Use the properties of the KafkaTopic resource to configure a Kafka topic.

You can use oc apply to create or modify topics, and oc delete to delete existing topics.

For example:

oc apply -f <topic-config-file>

oc delete KafkaTopic <topic-name>

This procedure shows how to create a topic with 10 partitions and 2 replicas.

Before you start

It is important that you consider the following before making your changes:

Kafka does not support making the following changes through the KafkaTopic resource:

Changing topic names using spec.topicName

Decreasing partition size using spec.partitions

You cannot use spec.replicas to change the number of replicas that were initially specified.

Increasing spec.partitions for topics with keys will change how records are partitioned, which
can be particularly problematic when the topic uses semantic partitioning.

Prerequisites

A running Kafka cluster configured with a Kafka broker listener using TLS authentication and
encryption.

A running Topic Operator (typically deployed with the Entity Operator).

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

160

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-downgrade-str


For deleting a topic, delete.topic.enable=true (default) in the spec.kafka.config of the Kafka
resource.

Procedure

1. Prepare a file containing the KafkaTopic to be created.

An example KafkaTopic

TIP

When modifying a topic, you can get the current version of the resource using oc get 
kafkatopic orders -o yaml.

2. Create the KafkaTopic resource in OpenShift.

5.2.4. Configuring the Topic Operator with resource requests and limits

You can allocate resources, such as CPU and memory, to the Topic Operator and set a limit on the
amount of resources it can consume.

Prerequisites

The Cluster Operator is running.

Procedure

1. Update the Kafka cluster configuration in an editor, as required:

2. In the spec.entityOperator.topicOperator.resources property in the Kafka resource, set the
resource requests and limits for the Topic Operator.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
  name: orders
  labels:
    strimzi.io/cluster: my-cluster
spec:
  partitions: 10
  replicas: 2

oc apply -f TOPIC-CONFIG-FILE

oc edit kafka MY-CLUSTER

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  # Kafka and ZooKeeper sections...
  entityOperator:
    topicOperator:
      resources:

CHAPTER 5. USING AMQ STREAMS OPERATORS

161



3. Apply the new configuration to create or update the resource.

5.3. USING THE USER OPERATOR

When you create, modify or delete a user using the KafkaUser resource, the User Operator ensures
those changes are reflected in the Kafka cluster.

The Deploying and Upgrading AMQ Streams on OpenShift  guide provides instructions to deploy the
User Operator:

Using the Cluster Operator (recommended)

Standalone to operate with Kafka clusters not managed by AMQ Streams

For more information about the schema, see KafkaUser schema reference.

Authenticating and authorizing access to Kafka

Use KafkaUser to enable the authentication and authorization mechanisms that a specific client uses to
access Kafka.

For more information on using KafkUser to manage users and secure access to Kafka brokers, see
Securing access to Kafka brokers .

5.3.1. Configuring the User Operator with resource requests and limits

You can allocate resources, such as CPU and memory, to the User Operator and set a limit on the
amount of resources it can consume.

Prerequisites

The Cluster Operator is running.

Procedure

1. Update the Kafka cluster configuration in an editor, as required:

2. In the spec.entityOperator.userOperator.resources property in the Kafka resource, set the
resource requests and limits for the User Operator.

        requests:
          cpu: "1"
          memory: 500Mi
        limits:
          cpu: "1"
          memory: 500Mi

oc apply -f KAFKA-CONFIG-FILE

oc edit kafka MY-CLUSTER

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

162

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-user-operator-using-the-cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-user-operator-standalone-str


Save the file and exit the editor. The Cluster Operator applies the changes automatically.

5.4. MONITORING OPERATORS USING PROMETHEUS METRICS

AMQ Streams operators expose Prometheus metrics. The metrics are automatically enabled and
contain information about:

Number of reconciliations

Number of Custom Resources the operator is processing

Duration of reconciliations

JVM metrics from the operators

Additionally, we provide example Grafana dashboards.

For more information, see Setting up metrics and dashboards for AMQ Streams  in the Deploying and
upgrading AMQ Streams on OpenShift guide.

  # Kafka and ZooKeeper sections...
  entityOperator:
    userOperator:
      resources:
        requests:
          cpu: "1"
          memory: 500Mi
        limits:
          cpu: "1"
          memory: 500Mi

CHAPTER 5. USING AMQ STREAMS OPERATORS

163

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-setup-str


CHAPTER 6. KAFKA BRIDGE
This chapter provides an overview of the AMQ Streams Kafka Bridge and helps you get started using its
REST API to interact with AMQ Streams.

To try out the Kafka Bridge in your local environment, see the Section 6.2, “Kafka Bridge
quickstart” later in this chapter.

For detailed configuration steps, see Section 2.5, “Kafka Bridge cluster configuration” .

To view the API documentation, see the Kafka Bridge API reference .

6.1. KAFKA BRIDGE OVERVIEW

You can use the AMQ Streams Kafka Bridge as an interface to make specific types of HTTP requests to
the Kafka cluster.

6.1.1. Kafka Bridge interface

The Kafka Bridge provides a RESTful interface that allows HTTP-based clients to interact with a Kafka
cluster.  It offers the advantages of a web API connection to AMQ Streams, without the need for client
applications to interpret the Kafka protocol.

The API has two main resources — consumers and topics — that are exposed and made accessible
through endpoints to interact with consumers and producers in your Kafka cluster. The resources relate
only to the Kafka Bridge, not the consumers and producers connected directly to Kafka.

6.1.1.1. HTTP requests

The Kafka Bridge supports HTTP requests to a Kafka cluster, with methods to:

Send messages to a topic.

Retrieve messages from topics.

Retrieve a list of partitions for a topic.

Create and delete consumers.

Subscribe consumers to topics, so that they start receiving messages from those topics.

Retrieve a list of topics that a consumer is subscribed to.

Unsubscribe consumers from topics.

Assign partitions to consumers.

Commit a list of consumer offsets.

Seek on a partition, so that a consumer starts receiving messages from the first or last offset
position, or a given offset position.

The methods provide JSON responses and HTTP response code error handling. Messages can be sent
in JSON or binary formats.

Clients can produce and consume messages without the requirement to use the native Kafka protocol.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

164

https://strimzi.io/docs/bridge/latest/


Additional resources

To view the API documentation, including example requests and responses, see the Kafka
Bridge API reference.

6.1.2. Supported clients for the Kafka Bridge

You can use the Kafka Bridge to integrate both internal and external HTTP client applications with your
Kafka cluster.

Internal clients

Internal clients are container-based HTTP clients running in the same  OpenShift cluster as the Kafka
Bridge itself. Internal clients can access the Kafka Bridge on the host and port defined in the 
KafkaBridge custom resource.

External clients

External clients are HTTP clients running outside the OpenShift cluster in which the Kafka Bridge is
deployed and running. External clients can access the Kafka Bridge through an OpenShift Route, a
loadbalancer service, or using an Ingress.

HTTP internal and external client integration

6.1.3. Securing the Kafka Bridge

AMQ Streams does not currently provide any encryption, authentication, or authorization for the Kafka
Bridge. This means that requests sent from external clients to the Kafka Bridge are:

Not encrypted, and must use HTTP rather than HTTPS

Sent without authentication

CHAPTER 6. KAFKA BRIDGE

165

https://strimzi.io/docs/bridge/latest/


1

However, you can secure the Kafka Bridge using other methods, such as:

OpenShift Network Policies that define which pods can access the Kafka Bridge.

Reverse proxies with authentication or authorization, for example, OAuth2 proxies.

API Gateways.

Ingress or OpenShift Routes with TLS termination.

The Kafka Bridge supports TLS encryption and TLS and SASL authentication when connecting to the
Kafka Brokers. Within your OpenShift cluster, you can configure:

TLS or SASL-based authentication between the Kafka Bridge and your Kafka cluster

A TLS-encrypted connection between the Kafka Bridge and your Kafka cluster.

For more information, see Section 2.5.1, “Configuring the Kafka Bridge” .

You can use ACLs in Kafka brokers to restrict the topics that can be consumed and produced using the
Kafka Bridge.

6.1.4. Accessing the Kafka Bridge outside of OpenShift

After deployment, the AMQ Streams Kafka Bridge can only be accessed by applications running in the
same OpenShift cluster. These applications use the kafka-bridge-name-bridge-service Service to
access the API.

If you want to make the Kafka Bridge accessible to applications running outside of the OpenShift cluster,
you can expose it manually by using one of the following features:

Services of types LoadBalancer or NodePort

Ingress resources

OpenShift Routes

If you decide to create Services, use the following labels in the selector to configure the pods to which
the service will route the traffic:

Name of the Kafka Bridge custom resource in your OpenShift cluster.

6.1.5. Requests to the Kafka Bridge

Specify data formats and HTTP headers to ensure valid requests are submitted to the Kafka Bridge.

6.1.5.1. Content Type headers

API request and response bodies are always encoded as JSON.

  # ...
  selector:
    strimzi.io/cluster: kafka-bridge-name 1
    strimzi.io/kind: KafkaBridge
  #...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

166



1

When performing consumer operations, POST requests must provide the following Content-
Type header if there is a non-empty body:

When performing producer operations, POST requests must provide Content-Type headers
specifying the embedded data format  of the messages produced. This can be either json or 
binary.

Embedded data format Content-Type header

JSON Content-Type: application/vnd.kafka.json.v2+json

Binary Content-Type: application/vnd.kafka.binary.v2+json

The embedded data format is set per consumer, as described in the next section.

The Content-Type must not be set if the POST request has an empty body. An empty body can be used
to create a consumer with the default values.

6.1.5.2. Embedded data format

The embedded data format is the format of the Kafka messages that are transmitted, over HTTP, from a
producer to a consumer using the Kafka Bridge. Two embedded data formats are supported: JSON and
binary.

When creating a consumer using the /consumers/groupid endpoint, the POST request body must
specify an embedded data format of either JSON or binary. This is specified in the format field, for
example:

A binary embedded data format.

The embedded data format specified when creating a consumer must match the data format of the
Kafka messages it will consume.

If you choose to specify a binary embedded data format, subsequent producer requests must provide
the binary data in the request body as Base64-encoded strings. For example, when sending messages
using the /topics/topicname endpoint, records.value must be encoded in Base64:

Content-Type: application/vnd.kafka.v2+json

{
  "name": "my-consumer",
  "format": "binary", 1
...
}

{
  "records": [
    {
      "key": "my-key",
      "value": "ZWR3YXJkdGhldGhyZWVsZWdnZWRjYXQ="
    },
  ]
}

CHAPTER 6. KAFKA BRIDGE

167



1

Producer requests must also provide a Content-Type header that corresponds to the embedded data
format, for example, Content-Type: application/vnd.kafka.binary.v2+json.

6.1.5.3. Message format

When sending messages using the /topics endpoint, you enter the message payload in the request body,
in the records parameter.

The records parameter can contain any of these optional fields:

Message headers

Message key

Message value

Destination partition

Example POST request to /topics

The header value in binary format and encoded as Base64.

6.1.5.4. Accept headers

After creating a consumer, all subsequent GET requests must provide an Accept header in the following
format:

The EMBEDDED-DATA-FORMAT is either json or binary.

For example, when retrieving records for a subscribed consumer using an embedded data format of
JSON, include this Accept header:

curl -X POST \
  http://localhost:8080/topics/my-topic \
  -H 'content-type: application/vnd.kafka.json.v2+json' \
  -d '{
    "records": [
        {
            "key": "my-key",
            "value": "sales-lead-0001"
            "partition": 2
            "headers": [
              {
                "key": "key1",
                "value": "QXBhY2hlIEthZmthIGlzIHRoZSBib21iIQ==" 1
              }
            ]
        },
    ]
}'

Accept: application/vnd.kafka.EMBEDDED-DATA-FORMAT.v2+json

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

168



1

6.1.6. CORS

Cross-Origin Resource Sharing (CORS) allows you to specify allowed methods and originating URLs for
accessing the Kafka cluster in your Kafka Bridge HTTP configuration .

Example CORS configuration for Kafka Bridge

CORS allows for simple and preflighted requests between origin sources on different domains.

Simple requests are suitable for standard requests using GET, HEAD, POST methods.

A preflighted request sends a HTTP OPTIONS request as an initial check that the actual request is safe
to send. On confirmation, the actual request is sent. Preflight requests are suitable for methods that
require greater safeguards, such as PUT and DELETE, and use non-standard headers.

All requests require an Origin value in their header, which is the source of the HTTP request.

6.1.6.1. Simple request

For example, this simple request header specifies the origin as https://strimzi.io.

The header information is added to the request.

In the response from the Kafka Bridge, an Access-Control-Allow-Origin header is returned.

Returning an asterisk (*) shows the resource can be accessed by any domain.

6.1.6.2. Preflighted request

An initial preflight request is sent to Kafka Bridge using an OPTIONS method. The HTTP OPTIONS
request sends header information to check that Kafka Bridge will allow the actual request.

Here the preflight request checks that a POST request is valid from https://strimzi.io.

Accept: application/vnd.kafka.json.v2+json

# ...
cors:
  allowedOrigins: "https://strimzi.io"
  allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
  # ...

Origin: https://strimzi.io

curl -v -X GET HTTP-ADDRESS/bridge-consumer/records \
-H 'Origin: https://strimzi.io'\
-H 'content-type: application/vnd.kafka.v2+json'

HTTP/1.1 200 OK
Access-Control-Allow-Origin: * 1

OPTIONS /my-group/instances/my-user/subscription HTTP/1.1

CHAPTER 6. KAFKA BRIDGE

169



1

2

Kafka Bridge is alerted that the actual request is a POST request.

The actual request will be sent with a Content-Type header.

OPTIONS is added to the header information of the preflight request.

Kafka Bridge responds to the initial request to confirm that the request will be accepted. The response
header returns allowed origins, methods and headers.

If the origin or method is rejected, an error message is returned.

The actual request does not require Access-Control-Request-Method header, as it was confirmed in
the preflight request, but it does require the origin header.

The response shows the originating URL is allowed.

Additional resources

Fetch CORS specification

6.1.7. Kafka Bridge API resources

For the full list of REST API endpoints and descriptions, including example requests and responses, see
the Kafka Bridge API reference .

6.1.8. Kafka Bridge deployment

You deploy the Kafka Bridge into your OpenShift cluster by using the Cluster Operator.

After the Kafka Bridge is deployed, the Cluster Operator creates Kafka Bridge objects in your OpenShift
cluster. Objects include the deployment, service, and pod, each named after the name given in the
custom resource for the Kafka Bridge.

Additional resources

Origin: https://strimzi.io
Access-Control-Request-Method: POST 1
Access-Control-Request-Headers: Content-Type 2

curl -v -X OPTIONS -H 'Origin: https://strimzi.io' \
-H 'Access-Control-Request-Method: POST' \
-H 'content-type: application/vnd.kafka.v2+json'

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://strimzi.io
Access-Control-Allow-Methods: GET,POST,PUT,DELETE,OPTIONS,PATCH
Access-Control-Allow-Headers: content-type

curl -v -X POST HTTP-ADDRESS/topics/bridge-topic \
-H 'Origin: https://strimzi.io' \
-H 'content-type: application/vnd.kafka.v2+json'

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://strimzi.io

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

170

https://www.w3.org/TR/cors/
https://strimzi.io/docs/bridge/latest/


Additional resources

For deployment instructions, see Deploying Kafka Bridge to your OpenShift cluster  in the
Deploying and Upgrading AMQ Streams on OpenShift  guide.

For detailed information on configuring the Kafka Bridge, see Section 2.5, “Kafka Bridge cluster
configuration”

For information on configuring the host and port for the KafkaBridge resource, see
Section 2.5.1, “Configuring the Kafka Bridge” .

For information on integrating external clients, see Section 6.1.4, “Accessing the Kafka Bridge
outside of OpenShift”.

6.2. KAFKA BRIDGE QUICKSTART

Use this quickstart to try out the AMQ Streams Kafka Bridge in your local development environment.
You will learn how to:

Deploy the Kafka Bridge to your OpenShift cluster

Expose the Kafka Bridge service to your local machine by using port-forwarding

Produce messages to topics and partitions in your Kafka cluster

Create a Kafka Bridge consumer

Perform basic consumer operations, such as subscribing the consumer to topics and retrieving
the messages that you produced

In this quickstart, HTTP requests are formatted as curl commands that you can copy and paste to your
terminal. Access to an OpenShift cluster is required; to run and manage a local OpenShift cluster, use a
tool such as Minikube, CodeReady Containers, or MiniShift.

Ensure you have the prerequisites and then follow the tasks in the order provided in this chapter.

About data formats

In this quickstart, you will produce and consume messages in JSON format, not binary. For more
information on the data formats and HTTP headers used in the example requests, see Section 6.1.5,
“Requests to the Kafka Bridge”.

Prerequisites for the quickstart

Cluster administrator access to a local or remote OpenShift cluster.

AMQ Streams is installed.

A running Kafka cluster, deployed by the Cluster Operator, in an OpenShift namespace.

The Entity Operator is deployed and running as part of the Kafka cluster.

6.2.1. Deploying the Kafka Bridge to your OpenShift cluster

AMQ Streams includes a YAML example that specifies the configuration of the AMQ Streams Kafka
Bridge. Make some minimal changes to this file and then deploy an instance of the Kafka Bridge to your
OpenShift cluster.

CHAPTER 6. KAFKA BRIDGE

171

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-bridge-str


1

2

Procedure

1. Edit the examples/bridge/kafka-bridge.yaml file.

When the Kafka Bridge is deployed, -bridge is appended to the name of the deployment
and other related resources. In this example, the Kafka Bridge deployment is named 
quickstart-bridge and the accompanying Kafka Bridge service is named quickstart-
bridge-service.

In the bootstrapServers property, enter the name of the Kafka cluster as the <cluster-
name>.

2. Deploy the Kafka Bridge to your OpenShift cluster:

A quickstart-bridge deployment, service, and other related resources are created in your
OpenShift cluster.

3. Verify that the Kafka Bridge was successfully deployed:

What to do next

After deploying the Kafka Bridge to your OpenShift cluster, expose the Kafka Bridge service to your
local machine.

Additional resources

For more detailed information about configuring the Kafka Bridge, see Section 2.5, “Kafka
Bridge cluster configuration”.

6.2.2. Exposing the Kafka Bridge service to your local machine

Next, use port forwarding to expose the AMQ Streams Kafka Bridge service to your local machine on
http://localhost:8080.

NOTE

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: quickstart 1
spec:
  replicas: 1
  bootstrapServers: <cluster-name>-kafka-bootstrap:9092 2
  http:
    port: 8080

oc apply -f examples/bridge/kafka-bridge.yaml

oc get deployments

NAME                             READY   UP-TO-DATE   AVAILABLE   AGE
quickstart-bridge                  1/1     1            1          34m
my-cluster-connect                 1/1     1            1          24h
my-cluster-entity-operator         1/1     1            1          24h
#...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

172

http://localhost:8080


1

NOTE

Port forwarding is only suitable for development and testing purposes.

Procedure

1. List the names of the pods in your OpenShift cluster:

2. Connect to the quickstart-bridge pod on port 8080:

NOTE

If port 8080 on your local machine is already in use, use an alternative HTTP port,
such as 8008.

API requests are now forwarded from port 8080 on your local machine to port 8080 in the Kafka Bridge
pod.

6.2.3. Producing messages to topics and partitions

Next, produce messages to topics in JSON format by using the topics endpoint. You can specify
destination partitions for messages in the request body, as shown here. The partitions endpoint
provides an alternative method for specifying a single destination partition for all messages as a path
parameter.

Procedure

1. In a text editor, create a YAML definition for a Kafka topic with three partitions.

The name of the Kafka cluster in which the Kafka Bridge is deployed.

oc get pods -o name

pod/kafka-consumer
# ...
pod/quickstart-bridge-589d78784d-9jcnr
pod/strimzi-cluster-operator-76bcf9bc76-8dnfm

oc port-forward pod/quickstart-bridge-589d78784d-9jcnr 8080:8080 &

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
  name: bridge-quickstart-topic
  labels:
    strimzi.io/cluster: <kafka-cluster-name> 1
spec:
  partitions: 3 2
  replicas: 1
  config:
    retention.ms: 7200000
    segment.bytes: 1073741824

CHAPTER 6. KAFKA BRIDGE

173

https://strimzi.io/docs/bridge/latest/#_send
https://strimzi.io/docs/bridge/latest/#_sendtopartition


2 The number of partitions for the topic.

2. Save the file to the examples/topic directory as bridge-quickstart-topic.yaml.

3. Create the topic in your OpenShift cluster:

4. Using the Kafka Bridge, produce three messages to the topic you created:

sales-lead-0001 is sent to a partition based on the hash of the key.

sales-lead-0002 is sent directly to partition 2.

sales-lead-0003 is sent to a partition in the bridge-quickstart-topic topic using a round-
robin method.

5. If the request is successful, the Kafka Bridge returns an offsets array, along with a 200 code and
a content-type header of application/vnd.kafka.v2+json. For each message, the offsets array
describes:

The partition that the message was sent to

The current message offset of the partition

Example response

oc apply -f examples/topic/bridge-quickstart-topic.yaml

curl -X POST \
  http://localhost:8080/topics/bridge-quickstart-topic \
  -H 'content-type: application/vnd.kafka.json.v2+json' \
  -d '{
    "records": [
        {
            "key": "my-key",
            "value": "sales-lead-0001"
        },
        {
            "value": "sales-lead-0002",
            "partition": 2
        },
        {
            "value": "sales-lead-0003"
        }
    ]
}'

#...
{
  "offsets":[
    {
      "partition":0,
      "offset":0
    },
    {
      "partition":2,

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

174



What to do next

After producing messages to topics and partitions, create a Kafka Bridge consumer .

Additional resources

POST /topics/{topicname} in the API reference documentation.

POST /topics/{topicname}/partitions/{partitionid} in the API reference documentation.

6.2.4. Creating a Kafka Bridge consumer

Before you can perform any consumer operations in the Kafka cluster, you must first create a consumer
by using the consumers endpoint. The consumer is referred to as a Kafka Bridge consumer.

Procedure

1. Create a Kafka Bridge consumer in a new consumer group named bridge-quickstart-
consumer-group:

The consumer is named bridge-quickstart-consumer and the embedded data format is
set as json.

Some basic configuration settings are defined.

The consumer will not commit offsets to the log automatically because the 
enable.auto.commit setting is false. You will commit the offsets manually later in this
quickstart.
If the request is successful, the Kafka Bridge returns the consumer ID (instance_id) and
base URL (base_uri) in the response body, along with a 200 code.

Example response

      "offset":0
    },
    {
      "partition":0,
      "offset":1
    }
  ]
}

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-group \
  -H 'content-type: application/vnd.kafka.v2+json' \
  -d '{
    "name": "bridge-quickstart-consumer",
    "auto.offset.reset": "earliest",
    "format": "json",
    "enable.auto.commit": false,
    "fetch.min.bytes": 512,
    "consumer.request.timeout.ms": 30000
  }'

#...
{

CHAPTER 6. KAFKA BRIDGE

175

https://strimzi.io/docs/bridge/latest/#_send
https://strimzi.io/docs/bridge/latest/#_sendtopartition
https://strimzi.io/docs/bridge/latest/#_createconsumer


2. Copy the base URL (base_uri) to use in the other consumer operations in this quickstart.

What to do next

Now that you have created a Kafka Bridge consumer, you can subscribe it to topics .

Additional resources

POST /consumers/{groupid} in the API reference documentation.

6.2.5. Subscribing a Kafka Bridge consumer to topics

After you have created a Kafka Bridge consumer, subscribe it to one or more topics by using the
subscription endpoint. Once subscribed, the consumer starts receiving all messages that are produced
to the topic.

Procedure

Subscribe the consumer to the bridge-quickstart-topic topic that you created earlier, in
Producing messages to topics and partitions :

The topics array can contain a single topic (as shown here) or multiple topics. If you want to
subscribe the consumer to multiple topics that match a regular expression, you can use the 
topic_pattern string instead of the topics array.

If the request is successful, the Kafka Bridge returns a 204 (No Content) code only.

What to do next

After subscribing a Kafka Bridge consumer to topics, you can retrieve messages from the consumer .

Additional resources

POST /consumers/{groupid}/instances/{name}/subscription in the API reference
documentation.

6.2.6. Retrieving the latest messages from a Kafka Bridge consumer

Next, retrieve the latest messages from the Kafka Bridge consumer by requesting data from the records
endpoint. In production, HTTP clients can call this endpoint repeatedly (in a loop).

Procedure

  "instance_id": "bridge-quickstart-consumer",
  "base_uri":"http://<bridge-name>-bridge-service:8080/consumers/bridge-quickstart-
consumer-group/instances/bridge-quickstart-consumer"
}

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/subscription \
  -H 'content-type: application/vnd.kafka.v2+json' \
  -d '{
    "topics": [
        "bridge-quickstart-topic"
    ]
}'

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

176

https://strimzi.io/docs/bridge/latest/#_createconsumer
https://strimzi.io/docs/bridge/latest/#_subscribe
https://strimzi.io/docs/bridge/latest/#_subscribe
https://strimzi.io/docs/bridge/latest/#_poll


Procedure

1. Produce additional messages to the Kafka Bridge consumer, as described in Producing
messages to topics and partitions.

2. Submit a GET request to the records endpoint:

After creating and subscribing to a Kafka Bridge consumer, a first GET request will return an
empty response because the poll operation starts a rebalancing process to assign partitions.

3. Repeat step two to retrieve messages from the Kafka Bridge consumer.
The Kafka Bridge returns an array of messages — describing the topic name, key, value, partition,
and offset — in the response body, along with a 200 code. Messages are retrieved from the
latest offset by default.

NOTE

If an empty response is returned, produce more records to the consumer as
described in Producing messages to topics and partitions , and then try retrieving
messages again.

What to do next

After retrieving messages from a Kafka Bridge consumer, try committing offsets to the log .

Additional resources

GET /consumers/{groupid}/instances/{name}/records in the API reference documentation.

6.2.7. Commiting offsets to the log

curl -X GET http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/records \
  -H 'accept: application/vnd.kafka.json.v2+json'

HTTP/1.1 200 OK
content-type: application/vnd.kafka.json.v2+json
#...
[
  {
    "topic":"bridge-quickstart-topic",
    "key":"my-key",
    "value":"sales-lead-0001",
    "partition":0,
    "offset":0
  },
  {
    "topic":"bridge-quickstart-topic",
    "key":null,
    "value":"sales-lead-0003",
    "partition":0,
    "offset":1
  },
#...

CHAPTER 6. KAFKA BRIDGE

177

https://strimzi.io/docs/bridge/latest/#_poll


Next, use the offsets endpoint to manually commit offsets to the log for all messages received by the
Kafka Bridge consumer. This is required because the Kafka Bridge consumer that you created earlier, in
Creating a Kafka Bridge consumer , was configured with the enable.auto.commit setting as false.

Procedure

Commit offsets to the log for the bridge-quickstart-consumer:

Because no request body is submitted, offsets are committed for all the records that have been
received by the consumer. Alternatively, the request body can contain an array
(OffsetCommitSeekList) that specifies the topics and partitions that you want to commit
offsets for.

If the request is successful, the Kafka Bridge returns a 204 code only.

What to do next

After committing offsets to the log, try out the endpoints for seeking to offsets .

Additional resources

POST /consumers/{groupid}/instances/{name}/offsets in the API reference documentation.

6.2.8. Seeking to offsets for a partition

Next, use the positions endpoints to configure the Kafka Bridge consumer to retrieve messages for a
partition from a specific offset, and then from the latest offset. This is referred to in Apache Kafka as a
seek operation.

Procedure

1. Seek to a specific offset for partition 0 of the quickstart-bridge-topic topic:

If the request is successful, the Kafka Bridge returns a 204 code only.

2. Submit a GET request to the records endpoint:

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/offsets

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/positions \
  -H 'content-type: application/vnd.kafka.v2+json' \
  -d '{
    "offsets": [
        {
            "topic": "bridge-quickstart-topic",
            "partition": 0,
            "offset": 2
        }
    ]
}'

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

178

https://strimzi.io/docs/bridge/latest/#_commit
https://strimzi.io/docs/bridge/latest/#_offsetcommitseeklist
https://strimzi.io/docs/bridge/latest/#_commit
https://strimzi.io/docs/bridge/latest/#_seek


The Kafka Bridge returns messages from the offset that you seeked to.

3. Restore the default message retrieval behavior by seeking to the last offset for the same
partition. This time, use the positions/end endpoint.

If the request is successful, the Kafka Bridge returns another 204 code.

NOTE

You can also use the positions/beginning endpoint to seek to the first offset for one or
more partitions.

What to do next

In this quickstart, you have used the AMQ Streams Kafka Bridge to perform several common operations
on a Kafka cluster. You can now delete the Kafka Bridge consumer  that you created earlier.

Additional resources

POST /consumers/{groupid}/instances/{name}/positions in the API reference documentation.

POST /consumers/{groupid}/instances/{name}/positions/beginning in the API reference
documentation.

POST /consumers/{groupid}/instances/{name}/positions/end in the API reference
documentation.

6.2.9. Deleting a Kafka Bridge consumer

Finally, delete the Kafa Bridge consumer that you used throughout this quickstart.

Procedure

Delete the Kafka Bridge consumer by sending a DELETE request to the instances endpoint.

curl -X GET http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/records \
  -H 'accept: application/vnd.kafka.json.v2+json'

curl -X POST http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer/positions/end \
  -H 'content-type: application/vnd.kafka.v2+json' \
  -d '{
    "partitions": [
        {
            "topic": "bridge-quickstart-topic",
            "partition": 0
        }
    ]
}'

curl -X DELETE http://localhost:8080/consumers/bridge-quickstart-consumer-
group/instances/bridge-quickstart-consumer

CHAPTER 6. KAFKA BRIDGE

179

https://strimzi.io/docs/bridge/latest/#_seektoend
https://strimzi.io/docs/bridge/latest/#_seektobeginning
https://strimzi.io/docs/bridge/latest/#_seek
https://strimzi.io/docs/bridge/latest/#_seektobeginning
https://strimzi.io/docs/bridge/latest/#_seektoend
https://strimzi.io/docs/bridge/latest/#_deleteconsumer


If the request is successful, the Kafka Bridge returns a 204 code only.

Additional resources

DELETE /consumers/{groupid}/instances/{name} in the API reference documentation.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

180

https://strimzi.io/docs/bridge/latest/#_deleteconsumer


CHAPTER 7. USING THE KAFKA BRIDGE WITH 3SCALE
You can deploy and integrate Red Hat 3scale API Management with the AMQ Streams Kafka Bridge.

7.1. USING THE KAFKA BRIDGE WITH 3SCALE

With a plain deployment of the Kafka Bridge, there is no provision for authentication or authorization,
and no support for a TLS encrypted connection to external clients.

3scale can secure the Kafka Bridge with TLS, and provide authentication and authorization. Integration
with 3scale also means that additional features like metrics, rate limiting and billing are available.

With 3scale, you can use different types of authentication for requests from external clients wishing to
access AMQ Streams. 3scale supports the following types of authentication:

Standard API Keys

Single randomized strings or hashes acting as an identifier and a secret token.

Application Identifier and Key pairs

Immutable identifier and mutable secret key strings.

OpenID Connect

Protocol for delegated authentication.

Using an existing 3scale deployment?

If you already have 3scale deployed to OpenShift and you wish to use it with the Kafka Bridge, ensure
that you have the correct setup.

Setup is described in Section 7.2, “Deploying 3scale for the Kafka Bridge” .

7.1.1. Kafka Bridge service discovery

3scale is integrated using service discovery, which requires that 3scale is deployed to the same
OpenShift cluster as AMQ Streams and the Kafka Bridge.

Your AMQ Streams Cluster Operator deployment must have the following environment variables set:

STRIMZI_CUSTOM_KAFKA_BRIDGE_SERVICE_LABELS

STRIMZI_CUSTOM_KAFKA_BRIDGE_SERVICE_ANNOTATIONS

When the Kafka Bridge is deployed, the service that exposes the REST interface of the Kafka Bridge
uses the annotations and labels for discovery by 3scale.

A discovery.3scale.net=true label is used by 3scale to find a service.

Annotations provide information about the service.

You can check your configuration in the OpenShift console by navigating to Services for the Kafka
Bridge instance. Under Annotations you will see the endpoint to the OpenAPI specification for the
Kafka Bridge.

7.1.2. 3scale APIcast gateway policies

3scale is used in conjunction with 3scale APIcast, an API gateway deployed with 3scale that provides a

CHAPTER 7. USING THE KAFKA BRIDGE WITH 3SCALE

181



3scale is used in conjunction with 3scale APIcast, an API gateway deployed with 3scale that provides a
single point of entry for the Kafka Bridge.

APIcast policies provide a mechanism to customize how the gateway operates. 3scale provides a set of
standard policies for gateway configuration. You can also create your own policies.

For more information on APIcast policies, see Administering the API Gateway in the 3scale
documentation.

APIcast policies for the Kafka Bridge

A sample policy configuration for 3scale integration with the Kafka Bridge is provided with the 
policies_config.json file, which defines:

Anonymous access

Header modification

Routing

URL rewriting

Gateway policies are enabled or disabled through this file.

You can use this sample as a starting point for defining your own policies.

Anonymous access

The anonymous access policy exposes a service without authentication, providing default credentials
(for anonymous access) when a HTTP client does not provide them. The policy is not mandatory and
can be disabled or removed if authentication is always needed.

Header modification

The header modification policy allows existing HTTP headers to be modified, or new headers added
to requests or responses passing through the gateway. For 3scale integration, the policy adds
headers to every request passing through the gateway from a HTTP client to the Kafka Bridge.
When the Kafka Bridge receives a request for creating a new consumer, it returns a JSON payload
containing a base_uri field with the URI that the consumer must use for all the subsequent requests.
For example:

When using APIcast, clients send all subsequent requests to the gateway and not to the Kafka Bridge
directly. So the URI requires the gateway hostname, not the address of the Kafka Bridge behind the
gateway.

Using header modification policies, headers are added to requests from the HTTP client so that the
Kafka Bridge uses the gateway hostname.

For example, by applying a Forwarded: host=my-gateway:80;proto=http header, the Kafka Bridge
delivers the following to the consumer.

{
  "instance_id": "consumer-1",
  "base_uri":"http://my-bridge:8080/consumers/my-group/instances/consumer1"
}

{
    "instance_id": "consumer-1",
    "base_uri":"http://my-gateway:80/consumers/my-group/instances/consumer1"

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

182

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/administering_the_api_gateway/index


An X-Forwarded-Path header carries the original path contained in a request from the client to the
gateway. This header is strictly related to the routing policy applied when a gateway supports more
than one Kafka Bridge instance.

Routing

A routing policy is applied when there is more than one Kafka Bridge instance. Requests must be sent
to the same Kafka Bridge instance where the consumer was initially created, so a request must
specify a route for the gateway to forward a request to the appropriate Kafka Bridge instance.
A routing policy names each bridge instance, and routing is performed using the name. You specify
the name in the KafkaBridge custom resource when you deploy the Kafka Bridge.

For example, each request (using X-Forwarded-Path) from a consumer to:

http://my-gateway:80/my-bridge-1/consumers/my-group/instances/consumer1

is forwarded to:

http://my-bridge-1-bridge-service:8080/consumers/my-group/instances/consumer1

URL rewriting policy removes the bridge name, as it is not used when forwarding the request from the
gateway to the Kafka Bridge.

URL rewriting

The URL rewiring policy ensures that a request to a specific Kafka Bridge instance from a client does
not contain the bridge name when forwarding the request from the gateway to the Kafka Bridge.
The bridge name is not used in the endpoints exposed by the bridge.

7.1.3. TLS validation

You can set up APIcast for TLS validation, which requires a self-managed deployment of APIcast using a
template. The apicast service is exposed as a route.

You can also apply a TLS policy to the Kafka Bridge API.

For more information on TLS configuration, see Administering the API Gateway in the 3scale
documentation.

7.1.4. 3scale documentation

The procedure to deploy 3scale for use with the Kafka Bridge assumes some understanding of 3scale.

For more information, refer to the 3scale product documentation:

Product Documentation for Red Hat 3scale API Management

7.2. DEPLOYING 3SCALE FOR THE KAFKA BRIDGE

In order to use 3scale with the Kafka Bridge, you first deploy it and then configure it to discover the
Kafka Bridge API.

You will also use 3scale APIcast and 3scale toolbox.

}

CHAPTER 7. USING THE KAFKA BRIDGE WITH 3SCALE

183

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/administering_the_api_gateway/index
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management


APIcast is provided by 3scale as an NGINX-based API gateway for HTTP clients to connect to
the Kafka Bridge API service.

3scale toolbox is a configuration tool that is used to import the OpenAPI specification for the
Kafka Bridge service to 3scale.

In this scenario, you run AMQ Streams, Kafka, the Kafka Bridge and 3scale/APIcast in the same
OpenShift cluster.

NOTE

If you already have 3scale deployed in the same cluster as the Kafka Bridge, you can skip
the deployment steps and use your current deployment.

Prerequisites

AMQ Streams and Kafka is running

The Kafka Bridge is deployed

For the 3scale deployment:

Check the Red Hat 3scale API Management supported configurations .

Installation requires a user with cluster-admin role, such as system:admin.

You need access to the JSON files describing the:

Kafka Bridge OpenAPI specification (openapiv2.json)

Header modification and routing policies for the Kafka Bridge (policies_config.json)
Find the JSON files on GitHub.

Procedure

1. Deploy 3scale API Management to the OpenShift cluster.

a. Create a new project or use an existing project.

b. Deploy 3scale.
Use the information provided in the Installing 3scale guide to deploy 3scale on OpenShift
using a template or operator.

Whichever approach you use, make sure that you set the WILDCARD_DOMAIN parameter
to the domain of your OpenShift cluster.

Make a note of the URLS and credentials presented for accessing the 3scale Admin Portal.

2. Grant authorization for 3scale to discover the Kafka Bridge service:

3. Verify that 3scale was successfully deployed to the Openshift cluster from the OpenShift

oc new-project my-project \
    --description="description" --display-name="display_name"

oc adm policy add-cluster-role-to-user view system:serviceaccount:my-project:amp

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

184

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-bridge-str
https://access.redhat.com/articles/2798521
https://github.com/strimzi-incubator/strimzi-kafka-bridge-api/tree/master/3scale
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/installing_3scale/index


1

2

3

4

5

3. Verify that 3scale was successfully deployed to the Openshift cluster from the OpenShift
console or CLI.
For example:

4. Set up 3scale toolbox.

a. Use the information provided in the Operating 3scale guide to install 3scale toolbox.

b. Set environment variables to be able to interact with 3scale:

REMOTE_NAME is the name assigned to the remote address of the 3scale Admin
Portal.

SYSTEM_NAME is the name of the 3scale service/API created by importing the
OpenAPI specification through the 3scale toolbox.

TENANT is the tenant name of the 3scale Admin Portal (that is, 
https://$TENANT.3scale.net).

PORTAL_ENDPOINT is the endpoint running the 3scale Admin Portal.

TOKEN is the access token provided by the 3scale Admin Portal for interaction
through the 3scale toolbox or HTTP requests.

c. Configure the remote web address of the 3scale toolbox:

Now the endpoint address of the 3scale Admin portal does not need to be specified every
time you run the toolbox.

5. Check that your Cluster Operator deployment has the labels and annotations properties
required for the Kafka Bridge service to be discovered by 3scale.

oc get deployment 3scale-operator

export REMOTE_NAME=strimzi-kafka-bridge 1
export SYSTEM_NAME=strimzi_http_bridge_for_apache_kafka 2
export TENANT=strimzi-kafka-bridge-admin 3
export PORTAL_ENDPOINT=$TENANT.3scale.net 4
export TOKEN=3scale access token 5

3scale remote add $REMOTE_NAME https://$TOKEN@$PORTAL_ENDPOINT/

#...
env:
- name: STRIMZI_CUSTOM_KAFKA_BRIDGE_SERVICE_LABELS
    value: |
    discovery.3scale.net=true
- name: STRIMZI_CUSTOM_KAFKA_BRIDGE_SERVICE_ANNOTATIONS
    value: |
    discovery.3scale.net/scheme=http
    discovery.3scale.net/port=8080
    discovery.3scale.net/path=/
    discovery.3scale.net/description-path=/openapi
#...

CHAPTER 7. USING THE KAFKA BRIDGE WITH 3SCALE

185

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/operating_3scale/index


If not, add the properties through the OpenShift console or try redeploying the Cluster
Operator and the Kafka Bridge .

6. Discover the Kafka Bridge API service through 3scale.

a. Log in to the 3scale Admin portal using the credentials provided when 3scale was deployed.

b. From the 3scale Admin Portal, navigate to New API → Import from OpenShift where you
will see the Kafka Bridge service.

c. Click Create Service.
You may need to refresh the page to see the Kafka Bridge service.

Now you need to import the configuration for the service. You do this from an editor, but
keep the portal open to check the imports are successful.

7. Edit the Host field in the OpenAPI specification (JSON file) to use the base URL of the Kafka
Bridge service:
For example:

Check the host URL includes the correct:

Kafka Bridge name (my-bridge)

Project name (my-project)

Port for the Kafka Bridge (8080)

8. Import the updated OpenAPI specification using the 3scale toolbox:

9. Import the header modification and routing policies for the service (JSON file).

a. Locate the ID for the service you created in 3scale.
Here we use the `jq` utility:

You need the ID when importing the policies.

b. Import the policies:

10. From the 3scale Admin Portal, navigate to Integration → Configuration to check that the
endpoints and policies for the Kafka Bridge service have loaded.

"host": "my-bridge-bridge-service.my-project.svc.cluster.local:8080"

3scale import openapi -k -d $REMOTE_NAME openapiv2.json -t myproject-my-bridge-
bridge-service

export SERVICE_ID=$(curl -k -s -X GET 
"https://$PORTAL_ENDPOINT/admin/api/services.json?access_token=$TOKEN" | jq 
".services[] | select(.service.system_name | contains(\"$SYSTEM_NAME\")) | 
.service.id")

curl -k -X PUT 
"https://$PORTAL_ENDPOINT/admin/api/services/$SERVICE_ID/proxy/policies.json" --
data "access_token=$TOKEN" --data-urlencode policies_config@policies_config.json

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

186

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-bridge-str
https://stedolan.github.io/jq/


11. Navigate to Applications → Create Application Plan to create an application plan.

12. Navigate to Audience → Developer → Applications → Create Application to create an
application.
The application is required in order to obtain a user key for authentication.

13. (Production environment step) To make the API available to the production gateway, promote
the configuration:

14. Use an API testing tool to verify you can access the Kafka Bridge through the APIcast gateway
using a call to create a consumer, and the user key created for the application.
For example:

If a payload is returned from the Kafka Bridge, the consumer was created successfully.

The base URI is the address that the client will use in subsequent requests.

3scale proxy-config promote $REMOTE_NAME $SERVICE_ID

https//my-project-my-bridge-bridge-service-3scale-apicast-
staging.example.com:443/consumers/my-group?
user_key=3dfc188650101010ecd7fdc56098ce95

{
  "instance_id": "consumer1",
  "base uri": "https//my-project-my-bridge-bridge-service-3scale-apicast-
staging.example.com:443/consumers/my-group/instances/consumer1"
}

CHAPTER 7. USING THE KAFKA BRIDGE WITH 3SCALE

187



CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING
You can deploy Cruise Control to your AMQ Streams cluster and use it to rebalance the Kafka cluster.

Cruise Control is an open source system for automating Kafka operations, such as monitoring cluster
workload, rebalancing a cluster based on predefined constraints, and detecting and fixing anomalies. It
consists of four main components—​the Load Monitor, the Analyzer, the Anomaly Detector, and the
Executor—​and a REST API for client interactions. AMQ Streams utilizes the REST API to support the
following Cruise Control features:

Generating optimization proposals  from multiple optimization goals.

Rebalancing a Kafka cluster based on an optimization proposal.

Other Cruise Control features are not currently supported, including anomaly detection, notifications,
write-your-own goals, and changing the topic replication factor.

Example YAML files for Cruise Control are provided in examples/cruise-control/.

8.1. WHY USE CRUISE CONTROL?

Cruise Control reduces the time and effort involved in running an efficient and balanced Kafka cluster.

A typical cluster can become unevenly loaded over time. Partitions that handle large amounts of
message traffic might be unevenly distributed across the available brokers. To rebalance the cluster,
administrators must monitor the load on brokers and manually reassign busy partitions to brokers with
spare capacity.

Cruise Control automates the cluster rebalancing process. It constructs a workload model of resource
utilization for the cluster—​based on CPU, disk, and network load—​and generates optimization proposals
(that you can approve or reject) for more balanced partition assignments. A set of configurable
optimization goals is used to calculate these proposals.

When you approve an optimization proposal, Cruise Control applies it to your Kafka cluster. When the
cluster rebalancing operation is complete, the broker pods are used more effectively and the Kafka
cluster is more evenly balanced.

Additional resources

Cruise Control Wiki

8.2. OPTIMIZATION GOALS OVERVIEW

To rebalance a Kafka cluster, Cruise Control uses optimization goals to generate optimization proposals,
which you can approve or reject.

Optimization goals are constraints on workload redistribution and resource utilization across a Kafka
cluster. AMQ Streams supports most of the optimization goals developed in the Cruise Control project.
The supported goals, in the default descending order of priority, are as follows:

1. Rack-awareness

2. Minimum number of leader replicas per broker for a set of topics

3. Replica capacity

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

188

https://github.com/linkedin/cruise-control
https://github.com/linkedin/cruise-control/wiki


4. Capacity: Disk capacity, Network inbound capacity, Network outbound capacity, CPU capacity

5. Replica distribution

6. Potential network output

7. Resource distribution: Disk utilization distribution, Network inbound utilization distribution,
Network outbound utilization distribution, CPU utilization distribution

NOTE

The resource distribution goals are controlled using capacity limits on broker
resources.

8. Leader bytes-in rate distribution

9. Topic replica distribution

10. Leader replica distribution

11. Preferred leader election

For more information on each optimization goal, see Goals in the Cruise Control Wiki.

NOTE

Intra-broker disk goals, "Write your own" goals, and Kafka assigner goals are not yet
supported.

Goals configuration in AMQ Streams custom resources
You configure optimization goals in Kafka and KafkaRebalance custom resources. Cruise Control has
configurations for hard optimization goals that must be satisfied, as well as master, default, and user-
provided optimization goals. Optimization goals for resource distribution (disk, network inbound,
network outbound, and CPU) are subject to capacity limits on broker resources.

The following sections describe each goal configuration in more detail.

Hard goals and soft goals
Hard goals are goals that must be satisfied in optimization proposals. Goals that are not configured as
hard goals are known as soft goals. You can think of soft goals as best effort goals: they do not need to
be satisfied in optimization proposals, but are included in optimization calculations. An optimization
proposal that violates one or more soft goals, but satisfies all hard goals, is valid.

Cruise Control will calculate optimization proposals that satisfy all the hard goals and as many soft goals
as possible (in their priority order). An optimization proposal that does not satisfy all the hard goals is
rejected by Cruise Control and not sent to the user for approval.

NOTE

For example, you might have a soft goal to distribute a topic’s replicas evenly across the
cluster (the topic replica distribution goal). Cruise Control will ignore this goal if doing so
enables all the configured hard goals to be met.

In Cruise Control, the following master optimization goals are preset as hard goals:

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

189

https://github.com/linkedin/cruise-control/wiki/Pluggable-Components#goals


RackAwareGoal; MinTopicLeadersPerBrokerGoal; ReplicaCapacityGoal; DiskCapacityGoal; 
NetworkInboundCapacityGoal; NetworkOutboundCapacityGoal; CpuCapacityGoal

You configure hard goals in the Cruise Control deployment configuration, by editing the hard.goals
property in Kafka.spec.cruiseControl.config.

To inherit the preset hard goals from Cruise Control, do not specify the hard.goals property in 
Kafka.spec.cruiseControl.config

To change the preset hard goals, specify the desired goals in the hard.goals property, using
their fully-qualified domain names.

Example Kafka configuration for hard optimization goals

Increasing the number of configured hard goals will reduce the likelihood of Cruise Control generating
valid optimization proposals.

If skipHardGoalCheck: true is specified in the KafkaRebalance custom resource, Cruise Control does
not check that the list of user-provided optimization goals (in KafkaRebalance.spec.goals) contains all
the configured hard goals (hard.goals). Therefore, if some, but not all, of the user-provided
optimization goals are in the hard.goals list, Cruise Control will still treat them as hard goals even if 
skipHardGoalCheck: true is specified.

Master optimization goals
The master optimization goals are available to all users. Goals that are not listed in the master
optimization goals are not available for use in Cruise Control operations.

Unless you change the Cruise Control deployment configuration, AMQ Streams will inherit the following
master optimization goals from Cruise Control, in descending priority order:

RackAwareGoal; ReplicaCapacityGoal; DiskCapacityGoal; NetworkInboundCapacityGoal; 
NetworkOutboundCapacityGoal; CpuCapacityGoal; ReplicaDistributionGoal; PotentialNwOutGoal; 
DiskUsageDistributionGoal; NetworkInboundUsageDistributionGoal; 

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    topicOperator: {}
    userOperator: {}
  cruiseControl:
    brokerCapacity:
      inboundNetwork: 10000KB/s
      outboundNetwork: 10000KB/s
    config:
      hard.goals: >
        com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
        com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal
      # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

190



NetworkOutboundUsageDistributionGoal; CpuUsageDistributionGoal; TopicReplicaDistributionGoal; 
LeaderReplicaDistributionGoal; LeaderBytesInDistributionGoal; PreferredLeaderElectionGoal

Six of these goals are preset as hard goals.

To reduce complexity, we recommend that you use the inherited master optimization goals, unless you
need to completely exclude one or more goals from use in KafkaRebalance resources. The priority
order of the master optimization goals can be modified, if desired, in the configuration for default
optimization goals.

You configure master optimization goals, if necessary, in the Cruise Control deployment configuration: 
Kafka.spec.cruiseControl.config.goals

To accept the inherited master optimization goals, do not specify the goals property in 
Kafka.spec.cruiseControl.config.

If you need to modify the inherited master optimization goals, specify a list of goals, in
descending priority order, in the goals configuration option.

NOTE

If you change the inherited master optimization goals, you must ensure that the hard
goals, if configured in the hard.goals property in Kafka.spec.cruiseControl.config, are
a subset of the master optimization goals that you configured. Otherwise, errors will
occur when generating optimization proposals.

Default optimization goals
Cruise Control uses the default optimization goals to generate the cached optimization proposal . For
more information about the cached optimization proposal, see Section 8.3, “Optimization proposals
overview”.

You can override the default optimization goals by setting user-provided optimization goals  in a 
KafkaRebalance custom resource.

Unless you specify default.goals in the Cruise Control deployment configuration, the master
optimization goals are used as the default optimization goals. In this case, the cached optimization
proposal is generated using the master optimization goals.

To use the master optimization goals as the default goals, do not specify the default.goals
property in Kafka.spec.cruiseControl.config.

To modify the default optimization goals, edit the default.goals property in 
Kafka.spec.cruiseControl.config. You must use a subset of the master optimization goals.

Example Kafka configuration for default optimization goals

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

191



If no default optimization goals are specified, the cached proposal is generated using the master
optimization goals.

User-provided optimization goals
User-provided optimization goals  narrow down the configured default goals for a particular optimization
proposal. You can set them, as required, in spec.goals in a KafkaRebalance custom resource:

KafkaRebalance.spec.goals

User-provided optimization goals can generate optimization proposals for different scenarios. For
example, you might want to optimize leader replica distribution across the Kafka cluster without
considering disk capacity or disk utilization. So, you create a KafkaRebalance custom resource
containing a single user-provided goal for leader replica distribution.

User-provided optimization goals must:

Include all configured hard goals, or an error occurs

Be a subset of the master optimization goals

To ignore the configured hard goals when generating an optimization proposal, add the 
skipHardGoalCheck: true property to the KafkaRebalance custom resource. See Section 8.7,
“Generating optimization proposals”.

Additional resources

Section 8.5, “Cruise Control configuration”

Configurations in the Cruise Control Wiki.

8.3. OPTIMIZATION PROPOSALS OVERVIEW

An optimization proposal  is a summary of proposed changes that would produce a more balanced Kafka
cluster, with partition workloads distributed more evenly among the brokers. Each optimization proposal
is based on the set of optimization goals that was used to generate it, subject to any configured
capacity limits on broker resources .

An optimization proposal is contained in the Status.Optimization Result property of a 
KafkaRebalance custom resource. The information provided is a summary of the full optimization
proposal. Use the summary to decide whether to:

Approve the optimization proposal. This instructs Cruise Control to apply the proposal to the

  entityOperator:
    topicOperator: {}
    userOperator: {}
  cruiseControl:
    brokerCapacity:
      inboundNetwork: 10000KB/s
      outboundNetwork: 10000KB/s
    config:
      default.goals: >
         com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
         com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
         com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal
      # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

192

https://github.com/linkedin/cruise-control/wiki/Configurations


Approve the optimization proposal. This instructs Cruise Control to apply the proposal to the
Kafka cluster and start a cluster rebalance operation.

Reject the optimization proposal. You can change the optimization goals and then generate
another proposal.

All optimization proposals are dry runs: you cannot approve a cluster rebalance without first generating
an optimization proposal. There is no limit to the number of optimization proposals that can be
generated.

Cached optimization proposal
Cruise Control maintains a cached optimization proposal  based on the configured default optimization
goals. Generated from the workload model, the cached optimization proposal is updated every 15
minutes to reflect the current state of the Kafka cluster. If you generate an optimization proposal using
the default optimization goals, Cruise Control returns the most recent cached proposal.

To change the cached optimization proposal refresh interval, edit the proposal.expiration.ms setting
in the Cruise Control deployment configuration. Consider a shorter interval for fast changing clusters,
although this increases the load on the Cruise Control server.

Contents of optimization proposals
The following table describes the properties contained in an optimization proposal:

Table 8.1. Properties contained in an optimization proposal

JSON property Description

numIntraBrokerReplicaMovem
ents

The total number of partition replicas that will be transferred between
the disks of the cluster’s brokers.

Performance impact during rebalance operation: Relatively high, but
lower than numReplicaMovements.

excludedBrokersForLeadershi
p

Not yet supported. An empty list is returned.

numReplicaMovements The number of partition replicas that will be moved between separate
brokers.

Performance impact during rebalance operation: Relatively high.

onDemandBalancednessScore
Before, 
onDemandBalancednessScore
After

A measurement of the overall balancedness of a Kafka Cluster, before
and after the optimization proposal was generated.

The score is calculated by subtracting the sum of the 
BalancednessScore of each violated soft goal from 100. Cruise
Control assigns a BalancednessScore to every optimization goal
based on several factors, including priority—​the goal’s position in the
list of default.goals or user-provided goals.

The Before score is based on the current configuration of the Kafka
cluster. The After score is based on the generated optimization
proposal.

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

193



intraBrokerDataToMoveMB The sum of the size of each partition replica that will be moved
between disks on the same broker (see also 
numIntraBrokerReplicaMovements).

Performance impact during rebalance operation: Variable. The
larger the number, the longer the cluster rebalance will take to
complete. Moving a large amount of data between disks on the same
broker has less impact than between separate brokers (see 
dataToMoveMB).

recentWindows The number of metrics windows upon which the optimization proposal
is based.

dataToMoveMB The sum of the size of each partition replica that will be moved to a
separate broker (see also numReplicaMovements).

Performance impact during rebalance operation: Variable. The
larger the number, the longer the cluster rebalance will take to
complete.

monitoredPartitionsPercentag
e

The percentage of partitions in the Kafka cluster covered by the
optimization proposal. Affected by the number of excludedTopics.

excludedTopics If you specified a regular expression in the 
spec.excludedTopicsRegex property in the KafkaRebalance
resource, all topic names matching that expression are listed here.
These topics are excluded from the calculation of partition
replica/leader movements in the optimization proposal.

numLeaderMovements The number of partitions whose leaders will be switched to different
replicas. This involves a change to ZooKeeper configuration.

Performance impact during rebalance operation: Relatively low.

excludedBrokersForReplicaM
ove

Not yet supported. An empty list is returned.

JSON property Description

Additional resources

Section 8.2, “Optimization goals overview”

Section 8.7, “Generating optimization proposals”

Section 8.8, “Approving an optimization proposal”

8.4. REBALANCE PERFORMANCE TUNING OVERVIEW

You can adjust several performance tuning options for cluster rebalances. These options control how

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

194



You can adjust several performance tuning options for cluster rebalances. These options control how
partition replica and leadership movements in a rebalance are executed, as well as the bandwidth that is
allocated to a rebalance operation.

Partition reassignment commands
Optimization proposals  are comprised of separate partition reassignment commands. When you
approve a proposal, the Cruise Control server applies these commands to the Kafka cluster.

A partition reassignment command consists of either of the following types of operations:

Partition movement: Involves transferring the partition replica and its data to a new location.
Partition movements can take one of two forms:

Inter-broker movement: The partition replica is moved to a log directory on a different
broker.

Intra-broker movement: The partition replica is moved to a different log directory on the
same broker.

Leadership movement: This involves switching the leader of the partition’s replicas.

Cruise Control issues partition reassignment commands to the Kafka cluster in batches. The
performance of the cluster during the rebalance is affected by the number of each type of movement
contained in each batch.

Replica movement strategies
Cluster rebalance performance is also influenced by the replica movement strategy  that is applied to the
batches of partition reassignment commands. By default, Cruise Control uses the 
BaseReplicaMovementStrategy, which simply applies the commands in the order they were generated.
However, if there are some very large partition reassignments early in the proposal, this strategy can
slow down the application of the other reassignments.

Cruise Control provides three alternative replica movement strategies that can be applied to
optimization proposals:

PrioritizeSmallReplicaMovementStrategy: Order reassignments in order of ascending size.

PrioritizeLargeReplicaMovementStrategy: Order reassignments in order of descending size.

PostponeUrpReplicaMovementStrategy: Prioritize reassignments for replicas of partitions
which have no out-of-sync replicas.

These strategies can be configured as a sequence. The first strategy attempts to compare two partition
reassignments using its internal logic. If the reassignments are equivalent, then it passes them to the
next strategy in the sequence to decide the order, and so on.

Rebalance tuning options
Cruise Control provides several configuration options for tuning the rebalance parameters discussed
above. You can set these tuning options at either the Cruise Control server or optimization proposal
levels:

The Cruise Control server setting can be set in the Kafka custom resource under 
Kafka.spec.cruiseControl.config.

The individual rebalance performance configurations can be set under KafkaRebalance.spec.

The relevant configurations are summarized below:

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

195



Server and KafkaRebalance
Configuration

Description Default Value

num.concurrent.partition.mo
vements.per.broker

The maximum number of inter-
broker partition movements in
each partition reassignment batch

5

concurrentPartitionMovemen
tsPerBroker

num.concurrent.intra.broker.
partition.movements

The maximum number of intra-
broker partition movements in
each partition reassignment batch

2

concurrentIntraBrokerPartiti
onMovements

num.concurrent.leader.move
ments

The maximum number of partition
leadership changes in each
partition reassignment batch

1000

concurrentLeaderMovement
s

default.replication.throttle The bandwidth (in bytes per
second) to be assigned to the
reassigning of partitions

No Limit

replicationThrottle

default.replica.movement.str
ategies

The list of strategies (in priority
order) used to determine the
order in which partition
reassignment commands are
executed for generated
proposals.

For the server setting, use a
comma separated string with the
fully qualified names of the
strategy class (add 
com.linkedin.kafka.cruiseco
ntrol.executor.strategy. to the
start of each class name). For the 
KafkaRebalance resource
setting use a YAML array of
strategy class names.

BaseReplicaMovementStrate
gy

replicaMovementStrategies

Changing the default settings affects the length of time that the rebalance takes to complete, as well as
the load placed on the Kafka cluster during the rebalance. Using lower values reduces the load but
increases the amount of time taken, and vice versa.

Additional resources

Section 13.2.71, “CruiseControlSpec schema reference”.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

196



Section 13.2.150, “KafkaRebalanceSpec schema reference”.

8.5. CRUISE CONTROL CONFIGURATION

The config property in Kafka.spec.cruiseControl contains configuration options as keys with values as
one of the following JSON types:

String

Number

Boolean

You can specify and configure all the options listed in the "Configurations" section of the Cruise Control
documentation, apart from those managed directly by AMQ Streams. Specifically, you cannot modify
configuration options with keys equal to or starting with one of the keys mentioned here.

If restricted options are specified, they are ignored and a warning message is printed to the Cluster
Operator log file. All the supported options are passed to Cruise Control.

An example Cruise Control configuration

Cross-Origin Resource Sharing configuration
Cross-Origin Resource Sharing (CORS) allows you to specify allowed methods and originating URLs for
accessing REST APIs.

By default, CORS is disabled for the Cruise Control REST API. When enabled, only GET requests for
read-only access to the Kafka cluster state are allowed. This means that external applications, which are
running in different origins than the AMQ Streams components, cannot make POST requests to the
Cruise Control API. However, those applications can make GET requests to access read-only
information about the Kafka cluster, such as the current cluster load or the most recent optimization
proposal.

Enabling CORS for Cruise Control

You enable and configure CORS in Kafka.spec.cruiseControl.config.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  cruiseControl:
    # ...
    config:
      default.goals: >
         com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
         com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
      cpu.balance.threshold: 1.1
      metadata.max.age.ms: 300000
      send.buffer.bytes: 131072
    # ...

apiVersion: kafka.strimzi.io/v1beta2

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

197

https://github.com/linkedin/cruise-control/wiki/Configurations


For more information, see REST APIs in the Cruise Control Wiki .

Capacity configuration
Cruise Control uses capacity limits to determine if optimization goals for resource distribution are being
broken. There are four goals of this type:

DiskUsageDistributionGoal - Disk utilization distribution

CpuUsageDistributionGoal - CPU utilization distribution

NetworkInboundUsageDistributionGoal - Network inbound utilization distribution

NetworkOutboundUsageDistributionGoal - Network outbound utilization distribution

You specify capacity limits for Kafka broker resources in the brokerCapacity property in 
Kafka.spec.cruiseControl . They are enabled by default and you can change their default values.
Capacity limits can be set for the following broker resources, using the standard OpenShift byte units
(K, M, G and T) or their bibyte (power of two) equivalents (Ki, Mi, Gi and Ti):

disk - Disk storage per broker (Default: 100000Mi)

cpuUtilization - CPU utilization as a percentage (Default: 100)

inboundNetwork - Inbound network throughput in byte units per second (Default: 10000KiB/s)

outboundNetwork - Outbound network throughput in byte units per second (Default:
10000KiB/s)

Because AMQ Streams Kafka brokers are homogeneous, Cruise Control applies the same capacity limits
to every broker it is monitoring.

An example Cruise Control brokerCapacity configuration using bibyte units

kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  cruiseControl:
    # ...
    config:
      webserver.http.cors.enabled: true
      webserver.http.cors.origin: "*"
      webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type"
    # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  cruiseControl:
    # ...
    brokerCapacity:
      disk: 100Gi

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

198

https://github.com/linkedin/cruise-control/wiki/REST-APIs


Additional resources

For more information, refer to the Section 13.2.73, “BrokerCapacity schema reference”.

Logging configuration
Cruise Control has its own configurable logger:

rootLogger.level

Cruise Control uses the Apache log4j 2 logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both 
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. Here we see examples of inline and 
external logging.

Inline logging

External logging

      cpuUtilization: 100
      inboundNetwork: 10000KiB/s
      outboundNetwork: 10000KiB/s
    # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
# ...
spec:
  cruiseControl:
    # ...
    logging:
      type: inline
      loggers:
        rootLogger.level: "INFO"
    # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
# ...
spec:
  cruiseControl:
    # ...
    logging:
      type: external
      valueFrom:
        configMapKeyRef:

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

199



8.6. DEPLOYING CRUISE CONTROL

To deploy Cruise Control to your AMQ Streams cluster, define the configuration using the 
cruiseControl property in the Kafka resource, and then create or update the resource.

Deploy one instance of Cruise Control per Kafka cluster.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the Kafka resource and add the cruiseControl property.
The properties you can configure are shown in this example configuration:

          name: customConfigMap
          key: cruise-control-log4j.properties
    # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  cruiseControl:
    brokerCapacity: 1
      inboundNetwork: 10000KB/s
      outboundNetwork: 10000KB/s
      # ...
    config: 2
      default.goals: >
         com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
         com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
         # ...
      cpu.balance.threshold: 1.1
      metadata.max.age.ms: 300000
      send.buffer.bytes: 131072
      # ...
    resources: 3
      requests:
        cpu: 1
        memory: 512Mi
      limits:
        cpu: 2
        memory: 2Gi
    logging: 4
        type: inline
        loggers:
          rootLogger.level: "INFO"
    template: 5

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

200



1

2

3

4

5

6

7

Specifies capacity limits for broker resources. For more information, see Capacity
configuration.

Defines the Cruise Control configuration, including the default optimization goals (in 
default.goals) and any customizations to the master optimization goals (in goals) or the
hard goals (in hard.goals). You can provide any standard Cruise Control configuration
option apart from those managed directly by AMQ Streams. For more information on
configuring optimization goals, see Section 8.2, “Optimization goals overview” .

CPU and memory resources reserved for Cruise Control. For more information, see
Section 13.1.5, “resources”.

Defined loggers and log levels added directly (inline) or indirectly (external) through a
ConfigMap. A custom ConfigMap must be placed under the log4j.properties key. Cruise
Control has a single logger named rootLogger.level. You can set the log level to INFO,
ERROR, WARN, TRACE, DEBUG, FATAL or OFF. For more information, see Logging
configuration.

Customization of deployment templates and pods.

Healthcheck readiness probes.

Healthcheck liveness probes.

2. Create or update the resource:

3. Verify that Cruise Control was successfully deployed:

Auto-created topics
The following table shows the three topics that are automatically created when Cruise Control is
deployed. These topics are required for Cruise Control to work properly and must not be deleted or
changed.

Table 8.2. Auto-created topics

      pod:
        metadata:
          labels:
            label1: value1
        securityContext:
          runAsUser: 1000001
          fsGroup: 0
        terminationGracePeriodSeconds: 120
    readinessProbe: 6
      initialDelaySeconds: 15
      timeoutSeconds: 5
    livenessProbe: 7
      initialDelaySeconds: 15
      timeoutSeconds: 5
# ...

oc apply -f kafka.yaml

oc get deployments -l app.kubernetes.io/name=cruise-control

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

201



Auto-created
topic

Created by Function

strimzi.cruiseco
ntrol.metrics

AMQ Streams
Metrics Reporter

Stores the raw metrics from the Metrics Reporter in each Kafka
broker.

strimzi.cruiseco
ntrol.partitionm
etricsamples

Cruise Control Stores the derived metrics for each partition. These are created
by the Metric Sample Aggregator.

strimzi.cruiseco
ntrol.modeltrain
ingsamples

Cruise Control Stores the metrics samples used to create the Cluster Workload
Model.

To prevent the removal of records that are needed by Cruise Control, log compaction is disabled in the
auto-created topics.

What to do next

After configuring and deploying Cruise Control, you can generate optimization proposals .

Additional resources

Section 13.2.72, “CruiseControlTemplate schema reference”.

8.7. GENERATING OPTIMIZATION PROPOSALS

When you create or update a KafkaRebalance resource, Cruise Control generates an optimization
proposal for the Kafka cluster based on the configured optimization goals.

Analyze the information in the optimization proposal and decide whether to approve it.

Prerequisites

You have deployed Cruise Control to your AMQ Streams cluster.

You have configured optimization goals and, optionally, capacity limits on broker resources .

Procedure

1. Create a KafkaRebalance resource:

a. To use the default optimization goals defined in the Kafka resource, leave the spec
property empty:

b. To configure user-provided optimization goals instead of using the default goals, add the 

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
  name: my-rebalance
  labels:
    strimzi.io/cluster: my-cluster
spec: {}

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

202

https://github.com/linkedin/cruise-control/wiki/Overview#metric-sample-aggregator
https://github.com/linkedin/cruise-control/wiki/Overview#cluster-workload-model


b. To configure user-provided optimization goals instead of using the default goals, add the 
goals property and enter one or more goals.
In the following example, rack awareness and replica capacity are configured as user-
provided optimization goals:

c. To ignore the configured hard goals, add the skipHardGoalCheck: true property:

2. Create or update the resource:

The Cluster Operator requests the optimization proposal from Cruise Control. This might take a
few minutes depending on the size of the Kafka cluster.

3. Check the status of the KafkaRebalance resource:

Cruise Control returns one of two statuses:

PendingProposal: The rebalance operator is polling the Cruise Control API to check if the
optimization proposal is ready.

ProposalReady: The optimization proposal is ready for review and, if desired, approval. The
optimization proposal is contained in the Status.Optimization Result property of the 
KafkaRebalance resource.

4. Review the optimization proposal.

Here is an example proposal:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
  name: my-rebalance
  labels:
    strimzi.io/cluster: my-cluster
spec:
  goals:
    - RackAwareGoal
    - ReplicaCapacityGoal

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
  name: my-rebalance
  labels:
    strimzi.io/cluster: my-cluster
spec:
  goals:
    - RackAwareGoal
    - ReplicaCapacityGoal
  skipHardGoalCheck: true

oc apply -f your-file

oc describe kafkarebalance rebalance-cr-name

oc describe kafkarebalance rebalance-cr-name

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

203



The properties in the Optimization Result section describe the pending cluster rebalance
operation. For descriptions of each property, see Contents of optimization proposals .

What to do next

Section 8.8, “Approving an optimization proposal”

Additional resources

Section 8.3, “Optimization proposals overview”

8.8. APPROVING AN OPTIMIZATION PROPOSAL

You can approve an optimization proposal generated by Cruise Control, if its status is ProposalReady.
Cruise Control will then apply the optimization proposal to the Kafka cluster, reassigning partitions to
brokers and changing partition leadership.

CAUTION

This is not a dry run. Before you approve an optimization proposal, you must:

Refresh the proposal in case it has become out of date.

Carefully review the contents of the proposal .

Prerequisites

You have generated an optimization proposal  from Cruise Control.

The KafkaRebalance custom resource status is ProposalReady.

Procedure

Perform these steps for the optimization proposal that you want to approve:

Status:
  Conditions:
    Last Transition Time:  2020-05-19T13:50:12.533Z
    Status:                ProposalReady
    Type:                  State
  Observed Generation:     1
  Optimization Result:
    Data To Move MB:  0
    Excluded Brokers For Leadership:
    Excluded Brokers For Replica Move:
    Excluded Topics:
    Intra Broker Data To Move MB:         0
    Monitored Partitions Percentage:      100
    Num Intra Broker Replica Movements:   0
    Num Leader Movements:                 0
    Num Replica Movements:                26
    On Demand Balancedness Score After:   81.8666802863978
    On Demand Balancedness Score Before:  78.01176356230222
    Recent Windows:                       1
  Session Id:                             05539377-ca7b-45ef-b359-e13564f1458c

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

204



1. Unless the optimization proposal is newly generated, check that it is based on current
information about the state of the Kafka cluster. To do so, refresh the optimization proposal to
make sure it uses the latest cluster metrics:

a. Annotate the KafkaRebalance resource in OpenShift with refresh:

b. Check the status of the KafkaRebalance resource:

c. Wait until the status changes to ProposalReady.

2. Approve the optimization proposal that you want Cruise Control to apply.
Annotate the KafkaRebalance resource in OpenShift:

3. The Cluster Operator detects the annotated resource and instructs Cruise Control to rebalance
the Kafka cluster.

4. Check the status of the KafkaRebalance resource:

5. Cruise Control returns one of three statuses:

Rebalancing: The cluster rebalance operation is in progress.

Ready: The cluster rebalancing operation completed successfully. The KafkaRebalance
custom resource cannot be reused.

NotReady: An error occurred—​see Section 8.10, “Fixing problems with a KafkaRebalance
resource”.

Additional resources

Section 8.3, “Optimization proposals overview”

Section 8.9, “Stopping a cluster rebalance”

8.9. STOPPING A CLUSTER REBALANCE

Once started, a cluster rebalance operation might take some time to complete and affect the overall
performance of the Kafka cluster.

If you want to stop a cluster rebalance operation that is in progress, apply the stop annotation to the 
KafkaRebalance custom resource. This instructs Cruise Control to finish the current batch of partition
reassignments and then stop the rebalance. When the rebalance has stopped, completed partition
reassignments have already been applied; therefore, the state of the Kafka cluster is different when
compared to prior to the start of the rebalance operation. If further rebalancing is required, you should
generate a new optimization proposal.

NOTE

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=refresh

oc describe kafkarebalance rebalance-cr-name

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=approve

oc describe kafkarebalance rebalance-cr-name

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

205



NOTE

The performance of the Kafka cluster in the intermediate (stopped) state might be worse
than in the initial state.

Prerequisites

You have approved the optimization proposal  by annotating the KafkaRebalance custom
resource with approve.

The status of the KafkaRebalance custom resource is Rebalancing.

Procedure

1. Annotate the KafkaRebalance resource in OpenShift:

2. Check the status of the KafkaRebalance resource:

3. Wait until the status changes to Stopped.

Additional resources

Section 8.3, “Optimization proposals overview”

8.10. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

If an issue occurs when creating a KafkaRebalance resource or interacting with Cruise Control, the
error is reported in the resource status, along with details of how to fix it. The resource also moves to
the NotReady state.

To continue with the cluster rebalance operation, you must fix the problem in the KafkaRebalance
resource itself or with the overall Cruise Control deployment. Problems might include the following:

A misconfigured parameter in the KafkaRebalance resource.

The strimzi.io/cluster label for specifying the Kafka cluster in the KafkaRebalance resource is
missing.

The Cruise Control server is not deployed as the cruiseControl property in the Kafka resource
is missing.

The Cruise Control server is not reachable.

After fixing the issue, you need to add the refresh annotation to the KafkaRebalance resource. During
a “refresh”, a new optimization proposal is requested from the Cruise Control server.

Prerequisites

You have approved an optimization proposal .

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=stop

oc describe kafkarebalance rebalance-cr-name

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

206



The status of the KafkaRebalance custom resource for the rebalance operation is NotReady.

Procedure

1. Get information about the error from the KafkaRebalance status:

2. Attempt to resolve the issue in the KafkaRebalance resource.

3. Annotate the KafkaRebalance resource in OpenShift:

4. Check the status of the KafkaRebalance resource:

5. Wait until the status changes to PendingProposal, or directly to ProposalReady.

Additional resources

Section 8.3, “Optimization proposals overview”

oc describe kafkarebalance rebalance-cr-name

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=refresh

oc describe kafkarebalance rebalance-cr-name

CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING

207



CHAPTER 9. VALIDATING SCHEMAS WITH SERVICE
REGISTRY

You can use Red Hat Service Registry with AMQ Streams.

Service Registry is a datastore for sharing standard event schemas and API designs across API and
event-driven architectures. You can use Service Registry to decouple the structure of your data from
your client applications, and to share and manage your data types and API descriptions at runtime using
a REST interface.

Service Registry stores schemas used to serialize and deserialize messages, which can then be
referenced from your client applications to ensure that the messages that they send and receive are
compatible with those schemas. Service Registry provides Kafka client serializers/deserializers for Kafka
producer and consumer applications. Kafka producer applications use serializers to encode messages
that conform to specific event schemas. Kafka consumer applications use deserializers, which validate
that the messages have been serialized using the correct schema, based on a specific schema ID.

You can enable your applications to use a schema from the registry. This ensures consistent schema
usage and helps to prevent data errors at runtime.

Additional resources

Service Registry documentation

Service Registry is built on the Apicurio Registry open source community project available on
GitHub: Apicurio/apicurio-registry

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

208

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q4/html/getting_started_with_service_registry
https://github.com/apicurio/apicurio-registry


CHAPTER 10. DISTRIBUTED TRACING
Distributed tracing allows you to track the progress of transactions between applications in a distributed
system. In a microservices architecture, tracing tracks the progress of transactions between services.
Trace data is useful for monitoring application performance and investigating issues with target systems
and end-user applications.

In AMQ Streams, tracing facilitates the end-to-end tracking of messages: from source systems to
Kafka, and then from Kafka to target systems and applications. It complements the metrics that are
available to view in Grafana dashboards, as well as the component loggers.

How AMQ Streams supports tracing
Support for tracing is built in to the following components:

Kafka Connect (including Kafka Connect with Source2Image support)

MirrorMaker

MirrorMaker 2.0

AMQ Streams Kafka Bridge

You enable and configure tracing for these components using template configuration properties in their
custom resources.

To enable tracing in Kafka producers, consumers, and Kafka Streams API applications, you instrument
application code using the OpenTracing Apache Kafka Client Instrumentation library (included with
AMQ Streams). When instrumented, clients generate trace data; for example, when producing messages
or writing offsets to the log.

Traces are sampled according to a sampling strategy and then visualized in the Jaeger user interface.

NOTE

Tracing is not supported for Kafka brokers.

Setting up tracing for applications and systems beyond AMQ Streams is outside the
scope of this chapter. To learn more about this subject, search for "inject and extract" in
the OpenTracing documentation.

Outline of procedures
To set up tracing for AMQ Streams, follow these procedures in order:

Set up tracing for clients:

Initialize a Jaeger tracer for Kafka clients

Instrument clients with tracers:

Instrument producers and consumers for tracing

Instrument Kafka Streams applications for tracing

Set up tracing for MirrorMaker, Kafka Connect, and the Kafka Bridge

Prerequisites

CHAPTER 10. DISTRIBUTED TRACING

209

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-setup-str
https://github.com/opentracing-contrib/java-kafka-client/blob/master/README.md
https://opentracing.io/docs/overview/


The Jaeger backend components are deployed to your OpenShift cluster. For deployment
instructions, see the Jaeger deployment documentation .

10.1. OVERVIEW OF OPENTRACING AND JAEGER

AMQ Streams uses the OpenTracing and Jaeger projects.

OpenTracing is an API specification that is independent from the tracing or monitoring system.

The OpenTracing APIs are used to instrument application code

Instrumented applications generate traces for individual transactions across the distributed
system

Traces are composed of spans that define specific units of work over time

Jaeger is a tracing system for microservices-based distributed systems.

Jaeger implements the OpenTracing APIs and provides client libraries for instrumentation

The Jaeger user interface allows you to query, filter, and analyze trace data

Additional resources

OpenTracing

Jaeger

10.2. SETTING UP TRACING FOR KAFKA CLIENTS

Initialize a Jaeger tracer to instrument your client applications for distributed tracing.

10.2.1. Initializing a Jaeger tracer for Kafka clients

Configure and initialize a Jaeger tracer using a set of tracing environment variables.

Procedure

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

210

https://www.jaegertracing.io/docs/1.18/deployment/
https://opentracing.io/
https://www.jaegertracing.io/


In each client application:

1. Add Maven dependencies for Jaeger to the pom.xml file for the client application:

2. Define the configuration of the Jaeger tracer using the tracing environment variables.

3. Create the Jaeger tracer from the environment variables that you defined in step two:

NOTE

For alternative ways to initialize a Jaeger tracer, see the Java OpenTracing
library documentation.

4. Register the Jaeger tracer as a global tracer:

A Jaeger tracer is now initialized for the client application to use.

10.2.2. Environment variables for tracing

Use these environment variables when configuring a Jaeger tracer for Kafka clients.

NOTE

The tracing environment variables are part of the Jaeger project and are subject to
change. For the latest environment variables, see the Jaeger documentation.

Property Required Description

JAEGER_SERVICE_NAME Yes The name of the Jaeger tracer
service.

JAEGER_AGENT_HOST No The hostname for communicating
with the jaeger-agent through
the User Datagram Protocol
(UDP).

JAEGER_AGENT_PORT No The port used for communicating
with the jaeger-agent through
UDP.

<dependency>
    <groupId>io.jaegertracing</groupId>
    <artifactId>jaeger-client</artifactId>
    <version>1.1.0.redhat-00002</version>
</dependency>

Tracer tracer = Configuration.fromEnv().getTracer();

GlobalTracer.register(tracer);

CHAPTER 10. DISTRIBUTED TRACING

211

https://github.com/jaegertracing/jaeger-client-java/tree/master/jaeger-core
https://github.com/jaegertracing/jaeger-client-java/tree/master/jaeger-core#configuration-via-environment


JAEGER_ENDPOINT No The traces endpoint. Only define
this variable if the client
application will bypass the 
jaeger-agent and connect
directly to the jaeger-collector.

JAEGER_AUTH_TOKEN No The authentication token to send
to the endpoint as a bearer token.

JAEGER_USER No The username to send to the
endpoint if using basic
authentication.

JAEGER_PASSWORD No The password to send to the
endpoint if using basic
authentication.

JAEGER_PROPAGATION No A comma-separated list of
formats to use for propagating
the trace context. Defaults to the
standard Jaeger format. Valid
values are jaeger, b3, and w3c.

JAEGER_REPORTER_LOG_
SPANS

No Indicates whether the reporter
should also log the spans.

JAEGER_REPORTER_MAX_
QUEUE_SIZE

No The reporter’s maximum queue
size.

JAEGER_REPORTER_FLUS
H_INTERVAL

No The reporter’s flush interval, in ms.
Defines how frequently the
Jaeger reporter flushes span
batches.

Property Required Description

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

212



JAEGER_SAMPLER_TYPE No The sampling strategy to use for
client traces:

Constant

Probabilistic

Rate Limiting

Remote (the default)

To sample all traces, use the
Constant sampling strategy with a
parameter of 1.

For more information, see the
Jaeger documentation.

JAEGER_SAMPLER_PARAM No The sampler parameter (number).

JAEGER_SAMPLER_MANAG
ER_HOST_PORT

No The hostname and port to use if a
Remote sampling strategy is
selected.

JAEGER_TAGS No A comma-separated list of
tracer-level tags that are added
to all reported spans.

The value can also refer to an
environment variable using the
format 
${envVarName:default}. 
:default is optional and identifies
a value to use if the environment
variable cannot be found.

Property Required Description

Additional resources

Section 10.2.1, “Initializing a Jaeger tracer for Kafka clients”

10.3. INSTRUMENTING KAFKA CLIENTS WITH TRACERS

Instrument Kafka producer and consumer clients, and Kafka Streams API applications for distributed
tracing.

10.3.1. Instrumenting producers and consumers for tracing

Use a Decorator pattern or Interceptors to instrument your Java producer and consumer application
code for tracing.

CHAPTER 10. DISTRIBUTED TRACING

213

https://www.jaegertracing.io/docs/1.14/sampling/#client-sampling-configuration


Procedure

In the application code of each producer and consumer application:

1. Add the Maven dependency for OpenTracing to the producer or consumer’s pom.xml file.

2. Instrument your client application code using either a Decorator pattern or Interceptors.

To use a Decorator pattern:

To use Interceptors:

<dependency>
    <groupId>io.opentracing.contrib</groupId>
    <artifactId>opentracing-kafka-client</artifactId>
    <version>0.1.15.redhat-00001</version>
</dependency>

// Create an instance of the KafkaProducer:
KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);

// Create an instance of the TracingKafkaProducer:
TracingKafkaProducer<Integer, String> tracingProducer = new TracingKafkaProducer<>
(producer,
        tracer);

// Send:
tracingProducer.send(...);

// Create an instance of the KafkaConsumer:
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

// Create an instance of the TracingKafkaConsumer:
TracingKafkaConsumer<Integer, String> tracingConsumer = new 
TracingKafkaConsumer<>(consumer,
        tracer);

// Subscribe:
tracingConsumer.subscribe(Collections.singletonList("messages"));

// Get messages:
ConsumerRecords<Integer, String> records = tracingConsumer.poll(1000);

// Retrieve SpanContext from polled record (consumer side):
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), 
tracer);

// Register the tracer with GlobalTracer:
GlobalTracer.register(tracer);

// Add the TracingProducerInterceptor to the sender properties:
senderProps.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
          TracingProducerInterceptor.class.getName());

// Create an instance of the KafkaProducer:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

214



10.3.1.1. Custom span names in a Decorator pattern

A span is a logical unit of work in Jaeger, with an operation name, start time, and duration.

To use a Decorator pattern to instrument your producer and consumer applications, define custom span
names by passing a BiFunction object as an additional argument when creating the 
TracingKafkaProducer and TracingKafkaConsumer objects. The OpenTracing Apache Kafka Client
Instrumentation library includes several built-in span names.

Example: Using custom span names to instrument client application code in a Decorator
pattern

KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);

// Send:
producer.send(...);

// Add the TracingConsumerInterceptor to the consumer properties:
consumerProps.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
          TracingConsumerInterceptor.class.getName());

// Create an instance of the KafkaConsumer:
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

// Subscribe:
consumer.subscribe(Collections.singletonList("messages"));

// Get messages:
ConsumerRecords<Integer, String> records = consumer.poll(1000);

// Retrieve the SpanContext from a polled message (consumer side):
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), 
tracer);

// Create a BiFunction for the KafkaProducer that operates on (String operationName, 
ProducerRecord consumerRecord) and returns a String to be used as the name:

BiFunction<String, ProducerRecord, String> producerSpanNameProvider =
    (operationName, producerRecord) -> "CUSTOM_PRODUCER_NAME";

// Create an instance of the KafkaProducer:
KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);

// Create an instance of the TracingKafkaProducer
TracingKafkaProducer<Integer, String> tracingProducer = new TracingKafkaProducer<>(producer,
        tracer,
        producerSpanNameProvider);

// Spans created by the tracingProducer will now have "CUSTOM_PRODUCER_NAME" as the span 
name.

// Create a BiFunction for the KafkaConsumer that operates on (String operationName, 
ConsumerRecord consumerRecord) and returns a String to be used as the name:

CHAPTER 10. DISTRIBUTED TRACING

215



10.3.1.2. Built-in span names

When defining custom span names, you can use the following BiFunctions in the 
ClientSpanNameProvider class. If no spanNameProvider is specified, 
CONSUMER_OPERATION_NAME and PRODUCER_OPERATION_NAME are used.

BiFunction Description

CONSUMER_OPERATION_NAME, 
PRODUCER_OPERATION_NAME

Returns the operationName as the span name:
"receive" for consumers and "send" for producers.

CONSUMER_PREFIXED_OPERATION_NAME
(String prefix), 
PRODUCER_PREFIXED_OPERATION_NAME(
String prefix)

Returns a String concatenation of prefix and 
operationName.

CONSUMER_TOPIC, PRODUCER_TOPIC Returns the name of the topic that the message was
sent to or retrieved from in the format 
(record.topic()).

PREFIXED_CONSUMER_TOPIC(String 
prefix), 
PREFIXED_PRODUCER_TOPIC(String prefix)

Returns a String concatenation of prefix and the
topic name in the format (record.topic()).

CONSUMER_OPERATION_NAME_TOPIC, 
PRODUCER_OPERATION_NAME_TOPIC

Returns the operation name and the topic name: 
"operationName - record.topic()".

CONSUMER_PREFIXED_OPERATION_NAME
_TOPIC(String prefix), 
PRODUCER_PREFIXED_OPERATION_NAME
_TOPIC(String prefix)

Returns a String concatenation of prefix and 
"operationName - record.topic()".

10.3.2. Instrumenting Kafka Streams applications for tracing

BiFunction<String, ConsumerRecord, String> consumerSpanNameProvider =
    (operationName, consumerRecord) -> operationName.toUpperCase();

// Create an instance of the KafkaConsumer:
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

// Create an instance of the TracingKafkaConsumer, passing in the consumerSpanNameProvider 
BiFunction:

TracingKafkaConsumer<Integer, String> tracingConsumer = new TracingKafkaConsumer<>
(consumer,
        tracer,
        consumerSpanNameProvider);

// Spans created by the tracingConsumer will have the operation name as the span name, in upper-
case.
// "receive" -> "RECEIVE"

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

216



This section describes how to instrument Kafka Streams API applications for distributed tracing.

Procedure

In each Kafka Streams API application:

1. Add the opentracing-kafka-streams dependency to the pom.xml file for your Kafka Streams
API application:

2. Create an instance of the TracingKafkaClientSupplier supplier interface:

3. Provide the supplier interface to KafkaStreams:

10.4. SETTING UP TRACING FOR MIRRORMAKER, KAFKA CONNECT,
AND THE KAFKA BRIDGE

Distributed tracing is supported for MirrorMaker, MirrorMaker 2.0, Kafka Connect (including Kafka
Connect with Source2Image support), and the AMQ Streams Kafka Bridge.

Tracing in MirrorMaker and MirrorMaker 2.0

For MirrorMaker and MirrorMaker 2.0, messages are traced from the source cluster to the target cluster.
The trace data records messages entering and leaving the MirrorMaker or MirrorMaker 2.0 component.

Tracing in Kafka Connect

Only messages produced and consumed by Kafka Connect itself are traced. To trace messages sent
between Kafka Connect and external systems, you must configure tracing in the connectors for those
systems. For more information, see Section 2.2.1, “Configuring Kafka Connect” .

Tracing in the Kafka Bridge

Messages produced and consumed by the Kafka Bridge are traced. Incoming HTTP requests from client
applications to send and receive messages through the Kafka Bridge are also traced. To have end-to-
end tracing, you must configure tracing in your HTTP clients.

10.4.1. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources

Update the configuration of KafkaMirrorMaker, KafkaMirrorMaker2, KafkaConnect, 
KafkaConnectS2I, and KafkaBridge custom resources to specify and configure a Jaeger tracer service
for each resource. Updating a tracing-enabled resource in your OpenShift cluster triggers two events:

Interceptor classes are updated in the integrated consumers and producers in MirrorMaker,

<dependency>
    <groupId>io.opentracing.contrib</groupId>
    <artifactId>opentracing-kafka-streams</artifactId>
    <version>0.1.15.redhat-00001</version>
</dependency>

KafkaClientSupplier supplier = new TracingKafkaClientSupplier(tracer);

KafkaStreams streams = new KafkaStreams(builder.build(), new StreamsConfig(config), 
supplier);
streams.start();

CHAPTER 10. DISTRIBUTED TRACING

217



Interceptor classes are updated in the integrated consumers and producers in MirrorMaker,
MirrorMaker 2.0, Kafka Connect, or the AMQ Streams Kafka Bridge.

For MirrorMaker, MirrorMaker 2.0, and Kafka Connect, the tracing agent initializes a Jaeger
tracer based on the tracing configuration defined in the resource.

For the Kafka Bridge, a Jaeger tracer based on the tracing configuration defined in the resource
is initialized by the Kafka Bridge itself.

Procedure

Perform these steps for each KafkaMirrorMaker, KafkaMirrorMaker2, KafkaConnect, 
KafkaConnectS2I, and KafkaBridge resource.

1. In the spec.template property, configure the Jaeger tracer service. For example:

Jaeger tracer configuration for Kafka Connect

Jaeger tracer configuration for MirrorMaker

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  template:
    connectContainer: 1
      env:
        - name: JAEGER_SERVICE_NAME
          value: my-jaeger-service
        - name: JAEGER_AGENT_HOST
          value: jaeger-agent-name
        - name: JAEGER_AGENT_PORT
          value: "6831"
  tracing: 2
    type: jaeger
  #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:
  name: my-mirror-maker
spec:
  #...
  template:
    mirrorMakerContainer:
      env:
        - name: JAEGER_SERVICE_NAME
          value: my-jaeger-service
        - name: JAEGER_AGENT_HOST
          value: jaeger-agent-name
        - name: JAEGER_AGENT_PORT
          value: "6831"

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

218



1

2

Jaeger tracer configuration for MirrorMaker 2.0

Jaeger tracer configuration for the Kafka Bridge

Use the tracing environment variables as template configuration properties.

Set the spec.tracing.type property to jaeger.

2. Create or update the resource:

  tracing:
    type: jaeger
#...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
  name: my-mm2-cluster
spec:
  #...
  template:
    connectContainer:
      env:
        - name: JAEGER_SERVICE_NAME
          value: my-jaeger-service
        - name: JAEGER_AGENT_HOST
          value: jaeger-agent-name
        - name: JAEGER_AGENT_PORT
          value: "6831"
  tracing:
    type: jaeger
#...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
spec:
  #...
  template:
    bridgeContainer:
      env:
        - name: JAEGER_SERVICE_NAME
          value: my-jaeger-service
        - name: JAEGER_AGENT_HOST
          value: jaeger-agent-name
        - name: JAEGER_AGENT_PORT
          value: "6831"
  tracing:
    type: jaeger
#...

oc apply -f your-file

CHAPTER 10. DISTRIBUTED TRACING

219



Additional resources

Section 13.2.61, “ContainerTemplate schema reference”

Section 2.6, “Customizing OpenShift resources”

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

220



CHAPTER 11. MANAGING TLS CERTIFICATES
AMQ Streams supports encrypted communication between the Kafka and AMQ Streams components
using the TLS protocol. Communication between Kafka brokers (interbroker communication), between
ZooKeeper nodes (internodal communication), and between these and the AMQ Streams operators is
always encrypted. Communication between Kafka clients and Kafka brokers is encrypted according to
how the cluster is configured. For the Kafka and AMQ Streams components, TLS certificates are also
used for authentication.

The Cluster Operator automatically sets up and renews TLS certificates to enable encryption and
authentication within your cluster. It also sets up other TLS certificates if you want to enable encryption
or TLS authentication between Kafka brokers and clients. Certificates provided by users are not
renewed.

You can provide your own server certificates, called Kafka listener certificates, for TLS listeners or
external listeners which have TLS encryption enabled. For more information, see Section 11.7, “Kafka
listener certificates”.

Figure 11.1. Example architecture of the communication secured by TLS

11.1. CERTIFICATE AUTHORITIES

To support encryption, each AMQ Streams component needs its own private keys and public key
certificates. All component certificates are signed by an internal Certificate Authority (CA) called the
cluster CA .

Similarly, each Kafka client application connecting to AMQ Streams using TLS client authentication
needs to provide private keys and certificates. A second internal CA, named the clients CA, is used to
sign certificates for the Kafka clients.

11.1.1. CA certificates

CHAPTER 11. MANAGING TLS CERTIFICATES

221



Both the cluster CA and clients CA have a self-signed public key certificate.

Kafka brokers are configured to trust certificates signed by either the cluster CA or clients CA.
Components that clients do not need to connect to, such as ZooKeeper, only trust certificates signed by
the cluster CA. Unless TLS encryption for external listeners is disabled, client applications must trust
certificates signed by the cluster CA. This is also true for client applications that perform mutual TLS
authentication.

By default, AMQ Streams automatically generates and renews CA certificates issued by the cluster CA
or clients CA. You can configure the management of these CA certificates in the Kafka.spec.clusterCa
and Kafka.spec.clientsCa objects. Certificates provided by users are not renewed.

You can provide your own CA certificates for the cluster CA or clients CA. For more information, see
Section 11.1.2, “Installing your own CA certificates” . If you provide your own certificates, you must
manually renew them when needed.

11.1.2. Installing your own CA certificates

This procedure describes how to install your own CA certificates and keys instead of using the CA
certificates and private keys generated by the Cluster Operator.

You can use this procedure to install your own cluster or client CA certificates.

The procedure describes renewal of CA certificates in PEM format. You can also use certificates in
PKCS #12 format.

Prerequisites

The Cluster Operator is running.

A Kafka cluster is not yet deployed.

Your own X.509 certificates and keys in PEM format for the cluster CA or clients CA.

If you want to use a cluster or clients CA which is not a Root CA, you have to include the
whole chain in the certificate file. The chain should be in the following order:

1. The cluster or clients CA

2. One or more intermediate CAs

3. The root CA

All CAs in the chain should be configured as a CA in the X509v3 Basic Constraints.

Procedure

1. Put your CA certificate in the corresponding Secret.

a. Delete the existing secret:

CA-CERTIFICATE-SECRET is the name of the Secret, which is CLUSTER-NAME-cluster-
ca-cert for the cluster CA certificate and CLUSTER-NAME-clients-ca-cert for the clients
CA certificate.

oc delete secret CA-CERTIFICATE-SECRET

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

222



Ignore any "Not Exists" errors.

b. Create and label the new secret

2. Put your CA key in the corresponding Secret.

a. Delete the existing secret:

CA-KEY-SECRET is the name of CA key, which is CLUSTER-NAME-cluster-ca for the
cluster CA key and CLUSTER-NAME-clients-ca for the clients CA key.

b. Create the new secret:

3. Label the secrets with the labels strimzi.io/kind=Kafka and strimzi.io/cluster=CLUSTER-
NAME:

4. Create the Kafka resource for your cluster, configuring either the Kafka.spec.clusterCa or the 
Kafka.spec.clientsCa object to not use generated CAs:

Example fragment Kafka resource configuring the cluster CA to use certificates you
supply for yourself

Additional resources

To renew CA certificates you have previously installed, see Section 11.3.5, “Renewing your own
CA certificates”.

Section 11.7.1, “Providing your own Kafka listener certificates” .

11.2. SECRETS

AMQ Streams uses Secrets to store private keys and certificates for Kafka cluster components and
clients. Secrets are used for establishing TLS encrypted connections between Kafka brokers, and
between brokers and clients. They are also used for mutual TLS authentication.

oc create secret generic CA-CERTIFICATE-SECRET --from-file=ca.crt=CA-
CERTIFICATE-FILENAME

oc delete secret CA-KEY-SECRET

oc create secret generic CA-KEY-SECRET --from-file=ca.key=CA-KEY-SECRET-
FILENAME

oc label secret CA-CERTIFICATE-SECRET strimzi.io/kind=Kafka 
strimzi.io/cluster=CLUSTER-NAME
oc label secret CA-KEY-SECRET strimzi.io/kind=Kafka strimzi.io/cluster=CLUSTER-NAME

kind: Kafka
version: kafka.strimzi.io/v1beta2
spec:
  # ...
  clusterCa:
    generateCertificateAuthority: false

CHAPTER 11. MANAGING TLS CERTIFICATES

223



A Cluster Secret contains a cluster CA certificate to sign Kafka broker certificates, and is used
by a connecting client to establish a TLS encrypted connection with the Kafka cluster to validate
broker identity.

A Client Secret  contains a client CA certificate for a user to sign its own client certificate to allow
mutual authentication against the Kafka cluster. The broker validates the client identity through
the client CA certificate itself.

A User Secret contains a private key and certificate, which are generated and signed by the
client CA certificate when a new user is created. The key and certificate are used for
authentication and authorization when accessing the cluster.

Secrets provide private keys and certificates in PEM and PKCS #12 formats. Using private keys and
certificates in PEM format means that users have to get them from the Secrets, and generate a
corresponding truststore (or keystore) to use in their Java applications. PKCS #12 storage provides a
truststore (or keystore) that can be used directly.

All keys are 2048 bits in size.

11.2.1. PKCS #12 storage

PKCS #12 defines an archive file format (.p12) for storing cryptography objects into a single file with
password protection. You can use PKCS #12 to manage certificates and keys in one place.

Each Secret contains fields specific to PKCS #12.

The .p12 field contains the certificates and keys.

The .password field is the password that protects the archive.

11.2.2. Cluster CA Secrets

The following tables describe the Cluster Secrets that are managed by the Cluster Operator in a Kafka
cluster.

Only the <cluster>-cluster-ca-cert Secret needs to be used by clients. All other Secrets described only
need to be accessed by the AMQ Streams components. You can enforce this using OpenShift role-
based access controls, if necessary.

Table 11.1. Fields in the <cluster>-cluster-ca Secret

Field Description

ca.key The current private key for the cluster CA.

Table 11.2. Fields in the <cluster>-cluster-ca-cert Secret

Field Description

ca.p12 PKCS #12 archive file for storing certificates and keys.

ca.password Password for protecting the PKCS #12 archive file.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

224



ca.crt The current certificate for the cluster CA.

Field Description

NOTE

The CA certificates in <cluster>-cluster-ca-cert must be trusted by Kafka client
applications so that they validate the Kafka broker certificates when connecting to Kafka
brokers over TLS.

Table 11.3. Fields in the <cluster>-kafka-brokers Secret

Field Description

<cluster>-kafka-<num>.p12 PKCS #12 archive file for storing certificates and keys.

<cluster>-kafka-<num>.password Password for protecting the PKCS #12 archive file.

<cluster>-kafka-<num>.crt Certificate for Kafka broker pod <num>. Signed by a current or
former cluster CA private key in <cluster>-cluster-ca.

<cluster>-kafka-<num>.key Private key for Kafka broker pod <num>.

Table 11.4. Fields in the <cluster>-zookeeper-nodes Secret

Field Description

<cluster>-zookeeper-<num>.p12 PKCS #12 archive file for storing certificates and keys.

<cluster>-
zookeeper-<num>.password

Password for protecting the PKCS #12 archive file.

<cluster>-zookeeper-<num>.crt Certificate for ZooKeeper node <num>. Signed by a current or
former cluster CA private key in <cluster>-cluster-ca.

<cluster>-zookeeper-<num>.key Private key for ZooKeeper pod <num>.

Table 11.5. Fields in the <cluster>-entity-operator-certs Secret

Field Description

entity-operator_.p12 PKCS #12 archive file for storing certificates and keys.

entity-operator_.password Password for protecting the PKCS #12 archive file.

CHAPTER 11. MANAGING TLS CERTIFICATES

225



entity-operator_.crt Certificate for TLS communication between the Entity Operator
and Kafka or ZooKeeper. Signed by a current or former cluster
CA private key in <cluster>-cluster-ca.

entity-operator.key Private key for TLS communication between the Entity
Operator and Kafka or ZooKeeper.

Field Description

11.2.3. Client CA Secrets

Table 11.6. Clients CA Secrets managed by the Cluster Operator in <cluster>

Secret name Field within Secret Description

<cluster>-clients-ca ca.key The current private key for the clients CA.

<cluster>-clients-ca-cert ca.p12 PKCS #12 archive file for storing
certificates and keys.

ca.password Password for protecting the PKCS #12
archive file.

ca.crt The current certificate for the clients CA.

The certificates in <cluster>-clients-ca-cert are those which the Kafka brokers trust.

NOTE

<cluster>-clients-ca is used to sign certificates of client applications. It needs to be
accessible to the AMQ Streams components and for administrative access if you are
intending to issue application certificates without using the User Operator. You can
enforce this using OpenShift role-based access controls if necessary.

11.2.4. Adding labels and annotations to Secrets

By configuring the clusterCaCert template property in the Kafka custom resource, you can add custom
labels and annotations to the Cluster CA Secrets created by the Cluster Operator. Labels and
annotations are useful for identifying objects and adding contextual information. You configure
template properties in AMQ Streams custom resources.

Example template customization to add labels and annotations to Secrets

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

226



For more information on configuring template properties, see Section 2.6, “Customizing OpenShift
resources”.

11.2.5. Disabling ownerReference in the CA Secrets

By default, the Cluster and Client CA Secrets are created with an ownerReference property that is set
to the Kafka custom resource. This means that, when the Kafka custom resource is deleted, the CA
secrets are also deleted (garbage collected) by OpenShift.

If you want to reuse the CA for a new cluster, you can disable the ownerReference by setting the 
generateSecretOwnerReference property for the Cluster and Client CA Secrets to false in the Kafka
configuration. When the ownerReference is disabled, CA Secrets are not deleted by OpenShift when
the corresponding Kafka custom resource is deleted.

Example Kafka configuration with disabled ownerReference for Cluster and Client CAs

Additional resources

CertificateAuthority schema reference

11.2.6. User Secrets

Table 11.7. Secrets managed by the User Operator

Secret name Field within Secret Description

<user> user.p12 PKCS #12 archive file for storing
certificates and keys.

spec:
  kafka:
    # ...
    template:
      clusterCaCert:
        metadata:
          labels:
            label1: value1
            label2: value2
          annotations:
            annotation1: value1
            annotation2: value2
    # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
# ...
spec:
# ...
  clusterCa:
    generateSecretOwnerReference: false
  clientsCa:
    generateSecretOwnerReference: false
# ...

CHAPTER 11. MANAGING TLS CERTIFICATES

227



user.password Password for protecting the PKCS #12
archive file.

user.crt Certificate for the user, signed by the
clients CA

user.key Private key for the user

Secret name Field within Secret Description

11.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS

Cluster CA and clients CA certificates are only valid for a limited time period, known as the validity
period. This is usually defined as a number of days since the certificate was generated.

For CA certificates automatically created by the Cluster Operator, you can configure the validity period
of:

Cluster CA certificates in Kafka.spec.clusterCa.validityDays

Client CA certificates in Kafka.spec.clientsCa.validityDays

The default validity period for both certificates is 365 days. Manually-installed CA certificates should
have their own validity periods defined.

When a CA certificate expires, components and clients that still trust that certificate will not accept TLS
connections from peers whose certificates were signed by the CA private key. The components and
clients need to trust the new CA certificate instead.

To allow the renewal of CA certificates without a loss of service, the Cluster Operator will initiate
certificate renewal before the old CA certificates expire.

You can configure the renewal period of the certificates created by the Cluster Operator:

Cluster CA certificates in Kafka.spec.clusterCa.renewalDays

Client CA certificates in Kafka.spec.clientsCa.renewalDays

The default renewal period for both certificates is 30 days.

The renewal period is measured backwards, from the expiry date of the current certificate.

Validity period against renewal period

Not Before                                     Not After
    |                                              |
    |<--------------- validityDays --------------->|
                              <--- renewalDays --->|

To make a change to the validity and renewal periods after creating the Kafka cluster, you configure and
apply the Kafka custom resource, and manually renew the CA certificates. If you do not manually renew
the certificates, the new periods will be used the next time the certificate is renewed automatically.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

228



Example Kafka configuration for certificate validity and renewal periods

The behavior of the Cluster Operator during the renewal period depends on the settings for the
certificate generation properties, generateCertificateAuthority and generateCertificateAuthority.

true

If the properties are set to true, a CA certificate is generated automatically by the Cluster Operator,
and renewed automatically within the renewal period.

false

If the properties are set to false, a CA certificate is not generated by the Cluster Operator. Use this
option if you are installing your own certificates.

11.3.1. Renewal process with automatically generated CA certificates

The Cluster Operator performs the following process to renew CA certificates:

1. Generate a new CA certificate, but retain the existing key. The new certificate replaces the old
one with the name ca.crt within the corresponding Secret.

2. Generate new client certificates (for ZooKeeper nodes, Kafka brokers, and the Entity Operator).
This is not strictly necessary because the signing key has not changed, but it keeps the validity
period of the client certificate in sync with the CA certificate.

3. Restart ZooKeeper nodes so that they will trust the new CA certificate and use the new client
certificates.

4. Restart Kafka brokers so that they will trust the new CA certificate and use the new client
certificates.

5. Restart the Topic and User Operators so that they will trust the new CA certificate and use the
new client certificates.

11.3.2. Client certificate renewal

The Cluster Operator is not aware of the client applications using the Kafka cluster.

When connecting to the cluster, and to ensure they operate correctly, client applications must:

Trust the cluster CA certificate published in the <cluster>-cluster-ca-cert Secret.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
# ...
spec:
# ...
  clusterCa:
    renewalDays: 30
    validityDays: 365
    generateCertificateAuthority: true
  clientsCa:
    renewalDays: 30
    validityDays: 365
    generateCertificateAuthority: true
# ...

CHAPTER 11. MANAGING TLS CERTIFICATES

229



Use the credentials published in their <user-name> Secret to connect to the cluster.
The User Secret provides credentials in PEM and PKCS #12 format, or it can provide a password
when using SCRAM-SHA authentication. The User Operator creates the user credentials when a
user is created.

You must ensure clients continue to work after certificate renewal. The renewal process depends on
how the clients are configured.

If you are provisioning client certificates and keys manually, you must generate new client certificates
and ensure the new certificates are used by clients within the renewal period. Failure to do this by the
end of the renewal period could result in client applications being unable to connect to the cluster.

NOTE

For workloads running inside the same OpenShift cluster and namespace, Secrets can be
mounted as a volume so the client Pods construct their keystores and truststores from
the current state of the Secrets. For more details on this procedure, see Configuring
internal clients to trust the cluster CA.

11.3.3. Manually renewing the CA certificates generated by the Cluster Operator

Cluster and clients CA certificates generated by the Cluster Operator auto-renew at the start of their
respective certificate renewal periods. However, you can use the strimzi.io/force-renew annotation to
manually renew one or both of these certificates before the certificate renewal period starts. You might
do this for security reasons, or if you have changed the renewal or validity periods for the certificates .

A renewed certificate uses the same private key as the old certificate.

NOTE

If you are using your own CA certificates, the force-renew annotation cannot be used.
Instead, follow the procedure for renewing your own CA certificates .

Prerequisites

The Cluster Operator is running.

A Kafka cluster in which CA certificates and private keys are installed.

Procedure

1. Apply the strimzi.io/force-renew annotation to the Secret that contains the CA certificate that
you want to renew.

Table 11.8. Annotation for the Secret that forces renewal of certificates

Certificate Secret Annotate command

Cluster CA KAFKA-CLUSTER-NAME-
cluster-ca-cert

oc annotate secret 
KAFKA-CLUSTER-NAME-
cluster-ca-cert 
strimzi.io/force-
renew=true

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

230



Clients CA KAFKA-CLUSTER-NAME-
clients-ca-cert

oc annotate secret 
KAFKA-CLUSTER-NAME-
clients-ca-cert 
strimzi.io/force-
renew=true

Certificate Secret Annotate command

At the next reconciliation the Cluster Operator will generate a new CA certificate for the Secret
that you annotated. If maintenance time windows are configured, the Cluster Operator will
generate the new CA certificate at the first reconciliation within the next maintenance time
window.

Client applications must reload the cluster and clients CA certificates that were renewed by the
Cluster Operator.

2. Check the period the CA certificate is valid:
For example, using an openssl command:

CA-CERTIFICATE-SECRET is the name of the Secret, which is KAFKA-CLUSTER-NAME-
cluster-ca-cert for the cluster CA certificate and KAFKA-CLUSTER-NAME-clients-ca-cert for
the clients CA certificate.

CA-CERTIFICATE is the name of the CA certificate, such as jsonpath={.data.ca\.crt}.

The command returns a notBefore and notAfter date, which is the validity period for the CA
certificate.

For example, for a cluster CA certificate:

3. Delete old certificates from the Secret.
When components are using the new certificates, older certificates might still be active. Delete
the old certificates to remove any potential security risk.

Additional resources

Section 11.2, “Secrets”

Section 2.1.5, “Maintenance time windows for rolling updates”

Section 13.2.70, “CertificateAuthority schema reference”

11.3.4. Replacing private keys used by the CA certificates generated by the Cluster

oc get secret CA-CERTIFICATE-SECRET -o 'jsonpath={.data.CA-CERTIFICATE}' | base64 -
d | openssl x509 -subject -issuer -startdate -enddate -noout

subject=O = io.strimzi, CN = cluster-ca v0
issuer=O = io.strimzi, CN = cluster-ca v0
notBefore=Jun 30 09:43:54 2020 GMT
notAfter=Jun 30 09:43:54 2021 GMT

CHAPTER 11. MANAGING TLS CERTIFICATES

231



11.3.4. Replacing private keys used by the CA certificates generated by the Cluster
Operator

You can replace the private keys used by the cluster CA and clients CA certificates generated by the
Cluster Operator. When a private key is replaced, the Cluster Operator generates a new CA certificate
for the new private key.

NOTE

If you are using your own CA certificates, the force-replace annotation cannot be used.
Instead, follow the procedure for renewing your own CA certificates .

Prerequisites

The Cluster Operator is running.

A Kafka cluster in which CA certificates and private keys are installed.

Procedure

Apply the strimzi.io/force-replace annotation to the Secret that contains the private key that
you want to renew.

Table 11.9. Commands for replacing private keys

Private key for Secret Annotate command

Cluster CA CLUSTER-NAME-cluster-ca oc annotate secret 
CLUSTER-NAME-cluster-
ca strimzi.io/force-
replace=true

Clients CA CLUSTER-NAME-clients-ca oc annotate secret 
CLUSTER-NAME-clients-
ca strimzi.io/force-
replace=true

At the next reconciliation the Cluster Operator will:

Generate a new private key for the Secret that you annotated

Generate a new CA certificate

If maintenance time windows are configured, the Cluster Operator will generate the new private key and
CA certificate at the first reconciliation within the next maintenance time window.

Client applications must reload the cluster and clients CA certificates that were renewed by the Cluster
Operator.

Additional resources

Section 11.2, “Secrets”

Section 2.1.5, “Maintenance time windows for rolling updates”

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

232



11.3.5. Renewing your own CA certificates

This procedure describes how to renew CA certificates and keys you installed yourself, instead of using
the certificates generated by the Cluster Operator.

If you are using your own certificates, the Cluster Operator will not renew them automatically. Therefore,
it is important that you follow this procedure during the renewal period of the certificate in order to
replace CA certificates that will soon expire.

The procedure describes the renewal of CA certificates in PEM format. You can also use certificates in
PKCS #12 format.

Prerequisites

The Cluster Operator is running.

Your own CA certificates and private keys are installed .

You have new cluster and clients X.509 certificates and keys in PEM format.

These could be generated using an openssl command, such as:

Procedure

1. Check the details of the current CA certificates in the Secret:

CA-CERTIFICATE-SECRET is the name of the Secret, which is KAFKA-CLUSTER-NAME-
cluster-ca-cert for the cluster CA certificate and KAFKA-CLUSTER-NAME-clients-ca-cert for
the clients CA certificate.

2. Create a directory to contain the existing CA certificates in the secret.

3. Fetch the secret for each CA certificate you wish to renew:

Replace CA-CERTIFICATE with the name of each CA certificate.

4. Rename the old ca.crt file as ca-DATE.crt, where DATE is the certificate expiry date in the
format YEAR-MONTH-DAYTHOUR-MINUTE-SECONDZ.
For example ca-2018-09-27T17-32-00Z.crt.

5. Copy your new CA certificate into the directory, naming it ca.crt:

openssl req -x509 -new -days NUMBER-OF-DAYS-VALID --nodes -out ca.crt -keyout ca.key

oc describe secret CA-CERTIFICATE-SECRET

mkdir new-ca-cert-secret
cd new-ca-cert-secret

oc get secret CA-CERTIFICATE-SECRET -o 'jsonpath={.data.CA-CERTIFICATE}' | base64 -
d > CA-CERTIFICATE

mv ca.crt ca-$(date -u -d$(openssl x509 -enddate -noout -in ca.crt | sed 's/.*=//') +'%Y-%m-
%dT%H-%M-%SZ').crt

CHAPTER 11. MANAGING TLS CERTIFICATES

233



6. Put your CA certificate in the corresponding Secret.

a. Delete the existing secret:

CA-CERTIFICATE-SECRET is the name of the Secret, as returned in the first step.

Ignore any "Not Exists" errors.

b. Recreate the secret:

7. Delete the directory you created:

8. Put your CA key in the corresponding Secret.

a. Delete the existing secret:

CA-KEY-SECRET is the name of CA key, which is KAFKA-CLUSTER-NAME-cluster-ca for
the cluster CA key and KAFKA-CLUSTER-NAME-clients-ca for the clients CA key.

b. Recreate the secret with the new CA key:

9. Label the secrets with the labels strimzi.io/kind=Kafka and strimzi.io/cluster=KAFKA-
CLUSTER-NAME:

11.4. TLS CONNECTIONS

11.4.1. ZooKeeper communication

Communication between the ZooKeeper nodes on all ports as well as between clients and ZooKeeper is
encrypted.

11.4.2. Kafka interbroker communication

Communication between Kafka brokers is done through an internal listener on port 9091, which is

cp PATH-TO-NEW-CERTIFICATE ca.crt

oc delete secret CA-CERTIFICATE-SECRET

oc create secret generic CA-CERTIFICATE-SECRET --from-file=.

cd ..
rm -r new-ca-cert-secret

oc delete secret CA-KEY-SECRET

oc create secret generic CA-KEY-SECRET --from-file=ca.key=CA-KEY-SECRET-
FILENAME

oc label secret CA-CERTIFICATE-SECRET strimzi.io/kind=Kafka strimzi.io/cluster=KAFKA-
CLUSTER-NAME
oc label secret CA-KEY-SECRET strimzi.io/kind=Kafka strimzi.io/cluster=KAFKA-CLUSTER-
NAME

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

234



Communication between Kafka brokers is done through an internal listener on port 9091, which is
encrypted by default and not accessible to Kafka clients.

Communication between Kafka brokers and ZooKeeper nodes is also encrypted.

11.4.3. Topic and User Operators

All Operators use encryption for communication with both Kafka and ZooKeeper. In Topic and User
Operators, a TLS sidecar is used when communicating with ZooKeeper.

11.4.4. Cruise Control

Cruise Control uses encryption for communication with both Kafka and ZooKeeper. A TLS sidecar is
used when communicating with ZooKeeper.

11.4.5. Kafka Client connections

Encrypted or unencrypted communication between Kafka brokers and clients is configured using the tls
property for spec.kafka.listeners.

11.5. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA

This procedure describes how to configure a Kafka client that resides inside the OpenShift cluster —
connecting to a TLS listener — to trust the cluster CA certificate.

The easiest way to achieve this for an internal client is to use a volume mount to access the Secrets
containing the necessary certificates and keys.

Follow the steps to configure trust certificates that are signed by the cluster CA for Java-based Kafka
Producer, Consumer, and Streams APIs.

Choose the steps to follow according to the certificate format of the cluster CA: PKCS #12 (.p12) or
PEM (.crt).

The steps describe how to mount the Cluster Secret that verifies the identity of the Kafka cluster to the
client pod.

Prerequisites

The Cluster Operator must be running.

There needs to be a Kafka resource within the OpenShift cluster.

You need a Kafka client application inside the OpenShift cluster that will connect using TLS, and
needs to trust the cluster CA certificate.

The client application must be running in the same namespace as the Kafka resource.

Using PKCS #12 format (.p12)

1. Mount the cluster Secret as a volume when defining the client pod.
For example:

kind: Pod

CHAPTER 11. MANAGING TLS CERTIFICATES

235



Here we’re mounting:

The PKCS #12 file into an exact path, which can be configured

The password into an environment variable, where it can be used for Java configuration

2. Configure the Kafka client with the following properties:

A security protocol option:

security.protocol: SSL when using TLS for encryption (with or without TLS
authentication).

security.protocol: SASL_SSL when using SCRAM-SHA authentication over TLS.

ssl.truststore.location with the truststore location where the certificates were imported.

ssl.truststore.password with the password for accessing the truststore.

ssl.truststore.type=PKCS12 to identify the truststore type.

Using PEM format (.crt)

1. Mount the cluster Secret as a volume when defining the client pod.
For example:

apiVersion: v1
metadata:
  name: client-pod
spec:
  containers:
  - name: client-name
    image: client-name
    volumeMounts:
    - name: secret-volume
      mountPath: /data/p12
    env:
    - name: SECRET_PASSWORD
      valueFrom:
        secretKeyRef:
          name: my-secret
          key: my-password
  volumes:
  - name: secret-volume
    secret:
      secretName: my-cluster-cluster-ca-cert

kind: Pod
apiVersion: v1
metadata:
  name: client-pod
spec:
  containers:
  - name: client-name
    image: client-name
    volumeMounts:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

236



2. Use the certificate with clients that use certificates in X.509 format.

11.6. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA

This procedure describes how to configure a Kafka client that resides outside the OpenShift cluster –
connecting to an external listener – to trust the cluster CA certificate. Follow this procedure when
setting up the client and during the renewal period, when the old clients CA certificate is replaced.

Follow the steps to configure trust certificates that are signed by the cluster CA for Java-based Kafka
Producer, Consumer, and Streams APIs.

Choose the steps to follow according to the certificate format of the cluster CA: PKCS #12 (.p12) or
PEM (.crt).

The steps describe how to obtain the certificate from the Cluster Secret that verifies the identity of the
Kafka cluster.

IMPORTANT

The <cluster-name>-cluster-ca-cert Secret will contain more than one CA certificate
during the CA certificate renewal period. Clients must add all of them to their truststores.

Prerequisites

The Cluster Operator must be running.

There needs to be a Kafka resource within the OpenShift cluster.

You need a Kafka client application outside the OpenShift cluster that will connect using TLS,
and needs to trust the cluster CA certificate.

Using PKCS #12 format (.p12)

1. Extract the cluster CA certificate and password from the generated <cluster-name>-cluster-
ca-cert Secret.

2. Configure the Kafka client with the following properties:

A security protocol option:

security.protocol: SSL when using TLS for encryption (with or without TLS

    - name: secret-volume
      mountPath: /data/crt
  volumes:
  - name: secret-volume
    secret:
      secretName: my-cluster-cluster-ca-cert

oc get secret <cluster-name>-cluster-ca-cert -o jsonpath='{.data.ca\.p12}' | base64 -d > 
ca.p12

oc get secret <cluster-name>-cluster-ca-cert -o jsonpath='{.data.ca\.password}' | base64 -d > 
ca.password

CHAPTER 11. MANAGING TLS CERTIFICATES

237



security.protocol: SSL when using TLS for encryption (with or without TLS
authentication).

security.protocol: SASL_SSL when using SCRAM-SHA authentication over TLS.

ssl.truststore.location with the truststore location where the certificates were imported.

ssl.truststore.password with the password for accessing the truststore. This property can
be omitted if it is not needed by the truststore.

ssl.truststore.type=PKCS12 to identify the truststore type.

Using PEM format (.crt)

1. Extract the cluster CA certificate from the generated <cluster-name>-cluster-ca-cert Secret.

2. Use the certificate with clients that use certificates in X.509 format.

11.7. KAFKA LISTENER CERTIFICATES

You can provide your own server certificates and private keys for the following types of listeners:

Internal TLS listeners for communication within the OpenShift cluster

External listeners (route, loadbalancer, ingress, and nodeport types), which have TLS
encryption enabled, for communication between Kafka clients and Kafka brokers

These user-provided certificates are called Kafka listener certificates.

Providing Kafka listener certificates for external listeners allows you to leverage existing security
infrastructure, such as your organization’s private CA or a public CA. Kafka clients will connect to Kafka
brokers using Kafka listener certificates rather than certificates signed by the cluster CA or clients CA.

You must manually renew Kafka listener certificates when needed.

11.7.1. Providing your own Kafka listener certificates

This procedure shows how to configure a listener to use your own private key and server certificate,
called a Kafka listener certificate.

Your client applications should use the CA public key as a trusted certificate in order to verify the
identity of the Kafka broker.

Prerequisites

An OpenShift cluster.

The Cluster Operator is running.

For each listener, a compatible server certificate signed by an external CA.

Provide an X.509 certificate in PEM format.

Specify the correct Subject Alternative Names (SANs) for each listener. For more

oc get secret <cluster-name>-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

238



Specify the correct Subject Alternative Names (SANs) for each listener. For more
information, see Section 11.7.2, “Alternative subjects in server certificates for Kafka
listeners”.

You can provide a certificate that includes the whole CA chain in the certificate file.

Procedure

1. Create a Secret containing your private key and server certificate:

2. Edit the Kafka resource for your cluster. Configure the listener to use your Secret, certificate
file, and private key file in the configuration.brokerCertChainAndKey property.

Example configuration for a loadbalancer external listener with TLS encryption
enabled

Example configuration for a TLS listener

oc create secret generic my-secret --from-file=my-listener-key.key --from-file=my-listener-
certificate.crt

# ...
listeners:
  - name: plain
    port: 9092
    type: internal
    tls: false
  - name: external
    port: 9094
    type: loadbalancer
    tls: true
    authentication:
      type: tls
    configuration:
      brokerCertChainAndKey:
        secretName: my-secret
        certificate: my-listener-certificate.crt
        key: my-listener-key.key
# ...

# ...
listeners:
  - name: plain
    port: 9092
    type: internal
    tls: false
  - name: tls
    port: 9093
    type: internal
    tls: true
    authentication:
      type: tls
    configuration:
      brokerCertChainAndKey:
        secretName: my-secret

CHAPTER 11. MANAGING TLS CERTIFICATES

239



3. Apply the new configuration to create or update the resource:

The Cluster Operator starts a rolling update of the Kafka cluster, which updates the
configuration of the listeners.

NOTE

A rolling update is also started if you update a Kafka listener certificate in a 
Secret that is already used by a TLS or external listener.

Additional resources

Alternative subjects in server certificates for Kafka listeners

GenericKafkaListener schema reference

Kafka listener certificates

11.7.2. Alternative subjects in server certificates for Kafka listeners

In order to use TLS hostname verification with your own Kafka listener certificates, you must use the
correct Subject Alternative Names (SANs) for each listener. The certificate SANs must specify
hostnames for:

All of the Kafka brokers in your cluster

The Kafka cluster bootstrap service

You can use wildcard certificates if they are supported by your CA.

11.7.2.1. TLS listener SAN examples

Use the following examples to help you specify hostnames of the SANs in your certificates for TLS
listeners.

Wildcards example

Non-wildcards example

        certificate: my-listener-certificate.crt
        key: my-listener-key.key
# ...

oc apply -f kafka.yaml

//Kafka brokers
*.<cluster-name>-kafka-brokers
*.<cluster-name>-kafka-brokers.<namespace>.svc

// Bootstrap service
<cluster-name>-kafka-bootstrap
<cluster-name>-kafka-bootstrap.<namespace>.svc

// Kafka brokers

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

240



11.7.2.2. External listener SAN examples

For external listeners which have TLS encryption enabled, the hostnames you need to specify in
certificates depends on the external listener type.

Table 11.10. SANs for each type of external listener

External listener type In the SANs, specify…​

Route Addresses of all Kafka broker Routes and the
address of the bootstrap Route.

You can use a matching wildcard name.

loadbalancer Addresses of all Kafka broker loadbalancers and
the bootstrap loadbalancer address.

You can use a matching wildcard name.

NodePort Addresses of all OpenShift worker nodes that the
Kafka broker pods might be scheduled to.

You can use a matching wildcard name.

Additional resources

Section 11.7.1, “Providing your own Kafka listener certificates”

<cluster-name>-kafka-0.<cluster-name>-kafka-brokers
<cluster-name>-kafka-0.<cluster-name>-kafka-brokers.<namespace>.svc
<cluster-name>-kafka-1.<cluster-name>-kafka-brokers
<cluster-name>-kafka-1.<cluster-name>-kafka-brokers.<namespace>.svc
# ...

// Bootstrap service
<cluster-name>-kafka-bootstrap
<cluster-name>-kafka-bootstrap.<namespace>.svc

CHAPTER 11. MANAGING TLS CERTIFICATES

241



CHAPTER 12. MANAGING AMQ STREAMS
This chapter covers tasks to maintain a deployment of AMQ Streams.

12.1. WORKING WITH CUSTOM RESOURCES

You can use oc commands to retrieve information and perform other operations on AMQ Streams
custom resources.

Using oc with the status subresource of a custom resource allows you to get the information about the
resource.

12.1.1. Performing oc operations on custom resources

Use oc commands, such as get, describe, edit, or delete, to perform operations on resource types. For
example, oc get kafkatopics retrieves a list of all Kafka topics and oc get kafkas retrieves all deployed
Kafka clusters.

When referencing resource types, you can use both singular and plural names: oc get kafkas gets the
same results as oc get kafka.

You can also use the short name  of the resource. Learning short names can save you time when
managing AMQ Streams. The short name for Kafka is k, so you can also run oc get k to list all Kafka
clusters.

Table 12.1. Long and short names for each AMQ Streams resource

AMQ Streams resource Long name Short name

Kafka kafka k

Kafka Topic kafkatopic kt

Kafka User kafkauser ku

Kafka Connect kafkaconnect kc

Kafka Connect S2I kafkaconnects2i kcs2i

Kafka Connector kafkaconnector kctr

Kafka Mirror Maker kafkamirrormaker kmm

Kafka Mirror Maker 2 kafkamirrormaker2 kmm2

oc get k

NAME         DESIRED KAFKA REPLICAS   DESIRED ZK REPLICAS
my-cluster   3                        3

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

242



Kafka Bridge kafkabridge kb

Kafka Rebalance kafkarebalance kr

AMQ Streams resource Long name Short name

12.1.1.1. Resource categories

Categories of custom resources can also be used in oc commands.

All AMQ Streams custom resources belong to the category strimzi, so you can use strimzi to get all the
AMQ Streams resources with one command.

For example, running oc get strimzi lists all AMQ Streams custom resources in a given namespace.

The oc get strimzi -o name command returns all resource types and resource names. The -o name
option fetches the output in the type/name format

You can combine this strimzi command with other commands. For example, you can pass it into a oc 
delete command to delete all resources in a single command.

Deleting all resources in a single operation might be useful, for example, when you are testing new AMQ
Streams features.

12.1.1.2. Querying the status of sub-resources

There are other values you can pass to the -o option. For example, by using -o yaml you get the output
in YAML format. Usng -o json will return it as JSON.

oc get strimzi

NAME                                   DESIRED KAFKA REPLICAS DESIRED ZK REPLICAS
kafka.kafka.strimzi.io/my-cluster      3                      3

NAME                                   PARTITIONS REPLICATION FACTOR
kafkatopic.kafka.strimzi.io/kafka-apps 3          3

NAME                                   AUTHENTICATION AUTHORIZATION
kafkauser.kafka.strimzi.io/my-user     tls            simple

oc get strimzi -o name

kafka.kafka.strimzi.io/my-cluster
kafkatopic.kafka.strimzi.io/kafka-apps
kafkauser.kafka.strimzi.io/my-user

oc delete $(oc get strimzi -o name)

kafka.kafka.strimzi.io "my-cluster" deleted
kafkatopic.kafka.strimzi.io "kafka-apps" deleted
kafkauser.kafka.strimzi.io "my-user" deleted

CHAPTER 12. MANAGING AMQ STREAMS

243



You can see all the options in oc get --help.

One of the most useful options is the JSONPath support, which allows you to pass JSONPath
expressions to query the Kubernetes API. A JSONPath expression can extract or navigate specific parts
of any resource.

For example, you can use the JSONPath expression {.status.listeners[?
(@.type=="tls")].bootstrapServers} to get the bootstrap address from the status of the Kafka custom
resource and use it in your Kafka clients.

Here, the command finds the bootstrapServers value of the tls listeners.

By changing the type condition to @.type=="external" or @.type=="plain" you can also get the
address of the other Kafka listeners.

You can use jsonpath to extract any other property or group of properties from any custom resource.

12.1.2. AMQ Streams custom resource status information

Several resources have a status property, as described in the following table.

Table 12.2. Custom resource status properties

AMQ Streams resource Schema reference Publishes status information
on…​

Kafka Section 13.2.76, “KafkaStatus
schema reference”

The Kafka cluster.

KafkaConnect Section 13.2.102,
“KafkaConnectStatus schema
reference”

The Kafka Connect cluster, if
deployed.

KafkaConnectS2I Section 13.2.106,
“KafkaConnectS2IStatus
schema reference”

The Kafka Connect cluster with
Source-to-Image support, if
deployed.

KafkaConnector Section 13.2.141,
“KafkaConnectorStatus
schema reference”

KafkaConnector resources, if
deployed.

KafkaMirrorMaker Section 13.2.129,
“KafkaMirrorMakerStatus
schema reference”

The Kafka MirrorMaker tool, if
deployed.

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.type=="tls")].bootstrapServers}{"\n"}'

my-cluster-kafka-bootstrap.myproject.svc:9093

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.type=="external")].bootstrapServers}{"\n"}'

192.168.1.247:9094

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

244

https://kubernetes.io/docs/reference/kubectl/jsonpath/


KafkaTopic Section 13.2.109,
“KafkaTopicStatus schema
reference”

Kafka topics in your Kafka cluster.

KafkaUser Section 13.2.122,
“KafkaUserStatus schema
reference”

Kafka users in your Kafka cluster.

KafkaBridge Section 13.2.138,
“KafkaBridgeStatus schema
reference”

The AMQ Streams Kafka Bridge, if
deployed.

AMQ Streams resource Schema reference Publishes status information
on…​

The status property of a resource provides information on the resource’s:

Current state, in the status.conditions property

Last observed generation, in the status.observedGeneration property

The status property also provides resource-specific information. For example:

KafkaStatus provides information on listener addresses, and the id of the Kafka cluster.

KafkaConnectStatus provides the REST API endpoint for Kafka Connect connectors.

KafkaUserStatus provides the user name of the Kafka user and the Secret in which their
credentials are stored.

KafkaBridgeStatus provides the HTTP address at which external client applications can access
the Bridge service.

A resource’s current state  is useful for tracking progress related to the resource achieving its desired
state, as defined by the spec property. The status conditions provide the time and reason the state of
the resource changed and details of events preventing or delaying the operator from realizing the
resource’s desired state.

The last observed generation  is the generation of the resource that was last reconciled by the Cluster
Operator. If the value of observedGeneration is different from the value of metadata.generation, the
operator has not yet processed the latest update to the resource. If these values are the same, the
status information reflects the most recent changes to the resource.

AMQ Streams creates and maintains the status of custom resources, periodically evaluating the current
state of the custom resource and updating its status accordingly. When performing an update on a
custom resource using oc edit, for example, its status is not editable. Moreover, changing the status
would not affect the configuration of the Kafka cluster.

Here we see the status property specified for a Kafka custom resource.

Kafka custom resource with status

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka

CHAPTER 12. MANAGING AMQ STREAMS

245



1

2

3

4

5

Status conditions describe criteria related to the status that cannot be deduced from the existing
resource information, or are specific to the instance of a resource.

The Ready condition indicates whether the Cluster Operator currently considers the Kafka cluster
able to handle traffic.

The observedGeneration indicates the generation of the Kafka custom resource that was last
reconciled by the Cluster Operator.

The listeners describe the current Kafka bootstrap addresses by type.

The Kafka cluster id.

IMPORTANT

The address in the custom resource status for external listeners with type nodeport
is currently not supported.

NOTE

metadata:
spec:
  # ...
status:
  conditions: 1
  - lastTransitionTime: 2021-07-23T23:46:57+0000
    status: "True"
    type: Ready 2
  observedGeneration: 4 3
  listeners: 4
  - addresses:
    - host: my-cluster-kafka-bootstrap.myproject.svc
      port: 9092
    type: plain
  - addresses:
    - host: my-cluster-kafka-bootstrap.myproject.svc
      port: 9093
    certificates:
    - |
      -----BEGIN CERTIFICATE-----
      ...
      -----END CERTIFICATE-----
    type: tls
  - addresses:
    - host: 172.29.49.180
      port: 9094
    certificates:
    - |
      -----BEGIN CERTIFICATE-----
      ...
      -----END CERTIFICATE-----
    type: external
  clusterId: CLUSTER-ID 5
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

246



NOTE

The Kafka bootstrap addresses listed in the status do not signify that those endpoints or
the Kafka cluster is in a ready state.

Accessing status information

You can access status information for a resource from the command line. For more information, see
Section 12.1.3, “Finding the status of a custom resource” .

12.1.3. Finding the status of a custom resource

This procedure describes how to find the status of a custom resource.

Prerequisites

An OpenShift cluster.

The Cluster Operator is running.

Procedure

Specify the custom resource and use the -o jsonpath option to apply a standard JSONPath
expression to select the status property:

This expression returns all the status information for the specified custom resource. You can use
dot notation, such as status.listeners or status.observedGeneration, to fine-tune the status
information you wish to see.

Additional resources

Section 12.1.2, “AMQ Streams custom resource status information”

For more information about using JSONPath, see JSONPath support.

12.2. PAUSING RECONCILIATION OF CUSTOM RESOURCES

Sometimes it is useful to pause the reconciliation of custom resources managed by AMQ Streams
Operators, so that you can perform fixes or make updates. If reconciliations are paused, any changes
made to custom resources are ignored by the Operators until the pause ends.

If you want to pause reconciliation of a custom resource, set the strimzi.io/pause-reconciliation
annotation to true in its configuration. This instructs the appropriate Operator to pause reconciliation of
the custom resource. For example, you can apply the annotation to the KafkaConnect resource so that
reconciliation by the Cluster Operator is paused.

You can also create a custom resource with the pause annotation enabled. The custom resource is
created, but it is ignored.

IMPORTANT

It is not currently possible to pause reconciliation of KafkaTopic resources.

oc get kafka <kafka_resource_name> -o jsonpath='{.status}'

CHAPTER 12. MANAGING AMQ STREAMS

247

https://kubernetes.io/docs/reference/kubectl/jsonpath/


Prerequisites

The AMQ Streams Operator that manages the custom resource is running.

Procedure

1. Annotate the custom resource in OpenShift, setting pause-reconciliation to true:

For example, for the KafkaConnect custom resource:

2. Check that the status conditions of the custom resource show a change to 
ReconciliationPaused:

The type condition changes to ReconciliationPaused at the lastTransitionTime.

Example custom resource with a paused reconciliation condition type

Resuming from pause

To resume reconciliation, you can set the annotation to false, or remove the annotation.

Additional resources

Customizing OpenShift resources

Finding the status of a custom resource

12.3. MANUALLY STARTING ROLLING UPDATES OF KAFKA AND
ZOOKEEPER CLUSTERS

AMQ Streams supports the use of annotations on StatefulSet and Pod resources to manually trigger a

oc annotate KIND-OF-CUSTOM-RESOURCE NAME-OF-CUSTOM-RESOURCE 
strimzi.io/pause-reconciliation="true"

oc annotate KafkaConnect my-connect strimzi.io/pause-reconciliation="true"

oc describe KIND-OF-CUSTOM-RESOURCE NAME-OF-CUSTOM-RESOURCE

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  annotations:
    strimzi.io/pause-reconciliation: "true"
    strimzi.io/use-connector-resources: "true"
  creationTimestamp: 2021-03-12T10:47:11Z
  #...
spec:
  # ...
status:
  conditions:
  - lastTransitionTime: 2021-03-12T10:47:41.689249Z
    status: "True"
    type: ReconciliationPaused

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

248



AMQ Streams supports the use of annotations on StatefulSet and Pod resources to manually trigger a
rolling update of Kafka and ZooKeeper clusters through the Cluster Operator. Rolling updates restart
the pods of the resource with new ones.

Manually performing a rolling update on a specific pod or set of pods from the same StatefulSet is
usually only required in exceptional circumstances. However, rather than deleting the pods directly, if
you perform the rolling update through the Cluster Operator you ensure that:

The manual deletion of the pod does not conflict with simultaneous Cluster Operator
operations, such as deleting other pods in parallel.

The Cluster Operator logic handles the Kafka configuration specifications, such as the number
of in-sync replicas.

12.3.1. Prerequisites

To perform a manual rolling update, you need a running Cluster Operator and Kafka cluster.

See the Deploying and Upgrading AMQ Streams on OpenShift  guide for instructions on running a:

Cluster Operator

Kafka cluster

12.3.2. Performing a rolling update using a StatefulSet annotation

This procedure describes how to manually trigger a rolling update of an existing Kafka cluster or
ZooKeeper cluster using an OpenShift StatefulSet annotation.

Procedure

1. Find the name of the StatefulSet that controls the Kafka or ZooKeeper pods you want to
manually update.
For example, if your Kafka cluster is named my-cluster, the corresponding StatefulSet names
are my-cluster-kafka and my-cluster-zookeeper.

2. Annotate the StatefulSet resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation to occur (every two minutes by default). A rolling update of all
pods within the annotated StatefulSet is triggered, as long as the annotation was detected by
the reconciliation process. When the rolling update of all the pods is complete, the annotation is
removed from the StatefulSet.

12.3.3. Performing a rolling update using a Pod annotation

This procedure describes how to manually trigger a rolling update of an existing Kafka cluster or
ZooKeeper cluster using an OpenShift Pod annotation. When multiple pods from the same StatefulSet
are annotated, consecutive rolling updates are performed within the same reconciliation run.

oc annotate statefulset cluster-name-kafka strimzi.io/manual-rolling-update=true

oc annotate statefulset cluster-name-zookeeper strimzi.io/manual-rolling-update=true

CHAPTER 12. MANAGING AMQ STREAMS

249

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-kafka-cluster-str


Procedure

1. Find the name of the Kafka or ZooKeeper Pod you want to manually update.
For example, if your Kafka cluster is named my-cluster, the corresponding Pod names are my-
cluster-kafka-index and my-cluster-zookeeper-index. The index starts at zero and ends at the
total number of replicas.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation to occur (every two minutes by default). A rolling update of the
annotated Pod is triggered, as long as the annotation was detected by the reconciliation
process. When the rolling update of a pod is complete, the annotation is removed from the Pod.

12.4. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS

Service discovery makes it easier for client applications running in the same OpenShift cluster as AMQ
Streams to interact with a Kafka cluster.

A service discovery  label and annotation is generated for services used to access the Kafka cluster:

Internal Kafka bootstrap service

HTTP Bridge service

The label helps to make the service discoverable, and the annotation provides connection details that a
client application can use to make the connection.

The service discovery label, strimzi.io/discovery, is set as true for the Service resources. The service
discovery annotation has the same key, providing connection details in JSON format for each service.

Example internal Kafka bootstrap service

oc annotate pod cluster-name-kafka-index strimzi.io/manual-rolling-update=true

oc annotate pod cluster-name-zookeeper-index strimzi.io/manual-rolling-update=true

apiVersion: v1
kind: Service
metadata:
  annotations:
    strimzi.io/discovery: |-
      [ {
        "port" : 9092,
        "tls" : false,
        "protocol" : "kafka",
        "auth" : "scram-sha-512"
      }, {
        "port" : 9093,
        "tls" : true,
        "protocol" : "kafka",
        "auth" : "tls"
      } ]
  labels:
    strimzi.io/cluster: my-cluster

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

250



Example HTTP Bridge service

12.4.1. Returning connection details on services

You can find the services by specifying the discovery label when fetching services from the command
line or a corresponding API call.

The connection details are returned when retrieving the service discovery label.

12.5. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES

You can recover a Kafka cluster from persistent volumes (PVs) if they are still present.

You might want to do this, for example, after:

A namespace was deleted unintentionally

A whole OpenShift cluster is lost, but the PVs remain in the infrastructure

12.5.1. Recovery from namespace deletion

Recovery from namespace deletion is possible because of the relationship between persistent volumes
and namespaces. A PersistentVolume (PV) is a storage resource that lives outside of a namespace. A
PV is mounted into a Kafka pod using a PersistentVolumeClaim (PVC), which lives inside a namespace.

The reclaim policy for a PV tells a cluster how to act when a namespace is deleted. If the reclaim policy is
set as:

    strimzi.io/discovery: "true"
    strimzi.io/kind: Kafka
    strimzi.io/name: my-cluster-kafka-bootstrap
  name: my-cluster-kafka-bootstrap
spec:
  #...

apiVersion: v1
kind: Service
metadata:
  annotations:
    strimzi.io/discovery: |-
      [ {
        "port" : 8080,
        "tls" : false,
        "auth" : "none",
        "protocol" : "http"
      } ]
  labels:
    strimzi.io/cluster: my-bridge
    strimzi.io/discovery: "true"
    strimzi.io/kind: KafkaBridge
    strimzi.io/name: my-bridge-bridge-service

oc get service -l strimzi.io/discovery=true

CHAPTER 12. MANAGING AMQ STREAMS

251



Delete (default), PVs are deleted when PVCs are deleted within a namespace

Retain, PVs are not deleted when a namespace is deleted

To ensure that you can recover from a PV if a namespace is deleted unintentionally, the policy must be
reset from Delete to Retain in the PV specification using the persistentVolumeReclaimPolicy
property:

Alternatively, PVs can inherit the reclaim policy of an associated storage class. Storage classes are used
for dynamic volume allocation.

By configuring the reclaimPolicy property for the storage class, PVs that use the storage class are
created with the appropriate reclaim policy. The storage class is configured for the PV using the 
storageClassName property.

NOTE

If you are using Retain as the reclaim policy, but you want to delete an entire cluster, you
need to delete the PVs manually. Otherwise they will not be deleted, and may cause
unnecessary expenditure on resources.

12.5.2. Recovery from loss of an OpenShift cluster

When a cluster is lost, you can use the data from disks/volumes to recover the cluster if they were
preserved within the infrastructure. The recovery procedure is the same as with namespace deletion,
assuming PVs can be recovered and they were created manually.

12.5.3. Recovering a deleted cluster from persistent volumes

This procedure describes how to recover a deleted cluster from persistent volumes (PVs).

apiVersion: v1
kind: PersistentVolume
# ...
spec:
  # ...
  persistentVolumeReclaimPolicy: Retain

apiVersion: v1
kind: StorageClass
metadata:
  name: gp2-retain
parameters:
  # ...
# ...
reclaimPolicy: Retain

apiVersion: v1
kind: PersistentVolume
# ...
spec:
  # ...
  storageClassName: gp2-retain

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

252



In this situation, the Topic Operator identifies that topics exist in Kafka, but the KafkaTopic resources
do not exist.

When you get to the step to recreate your cluster, you have two options:

1. Use Option 1 when you can recover all KafkaTopic resources.
The KafkaTopic resources must therefore be recovered before the cluster is started so that
the corresponding topics are not deleted by the Topic Operator.

2. Use Option 2  when you are unable to recover all KafkaTopic resources.
In this case, you deploy your cluster without the Topic Operator, delete the Topic Operator
topic store metadata, and then redeploy the Kafka cluster with the Topic Operator so it can
recreate the KafkaTopic resources from the corresponding topics.

NOTE

If the Topic Operator is not deployed, you only need to recover the 
PersistentVolumeClaim (PVC) resources.

Before you begin

In this procedure, it is essential that PVs are mounted into the correct PVC to avoid data corruption. A 
volumeName is specified for the PVC and this must match the name of the PV.

For more information, see:

Persistent Volume Claim naming

JBOD and Persistent Volume Claims

NOTE

The procedure does not include recovery of KafkaUser resources, which must be
recreated manually. If passwords and certificates need to be retained, secrets must be
recreated before creating the KafkaUser resources.

Procedure

1. Check information on the PVs in the cluster:

Information is presented for PVs with data.

Example output showing columns important to this procedure:

oc get pv

NAME                                         RECLAIMPOLICY CLAIM
pvc-5e9c5c7f-3317-11ea-a650-06e1eadd9a4c ... Retain ...    myproject/data-my-cluster-
zookeeper-1
pvc-5e9cc72d-3317-11ea-97b0-0aef8816c7ea ... Retain ...    myproject/data-my-cluster-
zookeeper-0
pvc-5ead43d1-3317-11ea-97b0-0aef8816c7ea ... Retain ...    myproject/data-my-cluster-
zookeeper-2
pvc-7e1f67f9-3317-11ea-a650-06e1eadd9a4c ... Retain ...    myproject/data-0-my-cluster-
kafka-0

CHAPTER 12. MANAGING AMQ STREAMS

253



NAME shows the name of each PV.

RECLAIM POLICY shows that PVs are retained.

CLAIM shows the link to the original PVCs.

2. Recreate the original namespace:

3. Recreate the original PVC resource specifications, linking the PVCs to the appropriate PV:
For example:

4. Edit the PV specifications to delete the claimRef properties that bound the original PVC.
For example:

pvc-7e21042e-3317-11ea-9786-02deaf9aa87e ... Retain ...    myproject/data-0-my-cluster-
kafka-1
pvc-7e226978-3317-11ea-97b0-0aef8816c7ea ... Retain ...    myproject/data-0-my-cluster-
kafka-2

oc create namespace myproject

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: data-0-my-cluster-kafka-0
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 100Gi
  storageClassName: gp2-retain
  volumeMode: Filesystem
  volumeName: pvc-7e1f67f9-3317-11ea-a650-06e1eadd9a4c

apiVersion: v1
kind: PersistentVolume
metadata:
  annotations:
    kubernetes.io/createdby: aws-ebs-dynamic-provisioner
    pv.kubernetes.io/bound-by-controller: "yes"
    pv.kubernetes.io/provisioned-by: kubernetes.io/aws-ebs
  creationTimestamp: "<date>"
  finalizers:
  - kubernetes.io/pv-protection
  labels:
    failure-domain.beta.kubernetes.io/region: eu-west-1
    failure-domain.beta.kubernetes.io/zone: eu-west-1c
  name: pvc-7e226978-3317-11ea-97b0-0aef8816c7ea
  resourceVersion: "39431"
  selfLink: /api/v1/persistentvolumes/pvc-7e226978-3317-11ea-97b0-0aef8816c7ea
  uid: 7efe6b0d-3317-11ea-a650-06e1eadd9a4c
spec:
  accessModes:
  - ReadWriteOnce

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

254



In the example, the following properties are deleted:

5. Deploy the Cluster Operator.

6. Recreate your cluster.
Follow the steps depending on whether or not you have all the KafkaTopic resources needed to
recreate your cluster.

Option 1: If you have all the KafkaTopic resources that existed before you lost your cluster,
including internal topics such as committed offsets from __consumer_offsets:

1. Recreate all KafkaTopic resources.
It is essential that you recreate the resources before deploying the cluster, or the Topic
Operator will delete the topics.

2. Deploy the Kafka cluster.
For example:

  awsElasticBlockStore:
    fsType: xfs
    volumeID: aws://eu-west-1c/vol-09db3141656d1c258
  capacity:
    storage: 100Gi
  claimRef:
    apiVersion: v1
    kind: PersistentVolumeClaim
    name: data-0-my-cluster-kafka-2
    namespace: myproject
    resourceVersion: "39113"
    uid: 54be1c60-3319-11ea-97b0-0aef8816c7ea
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: failure-domain.beta.kubernetes.io/zone
          operator: In
          values:
          - eu-west-1c
        - key: failure-domain.beta.kubernetes.io/region
          operator: In
          values:
          - eu-west-1
  persistentVolumeReclaimPolicy: Retain
  storageClassName: gp2-retain
  volumeMode: Filesystem

claimRef:
  apiVersion: v1
  kind: PersistentVolumeClaim
  name: data-0-my-cluster-kafka-2
  namespace: myproject
  resourceVersion: "39113"
  uid: 54be1c60-3319-11ea-97b0-0aef8816c7ea

oc create -f install/cluster-operator -n my-project

CHAPTER 12. MANAGING AMQ STREAMS

255



1

Option 2: If you do not have all the KafkaTopic resources that existed before you lost your
cluster:

1. Deploy the Kafka cluster, as with the first option, but without the Topic Operator by
removing the topicOperator property from the Kafka resource before deploying.
If you include the Topic Operator in the deployment, the Topic Operator will delete all the
topics.

2. Delete the internal topic store topics from the Kafka cluster:

The command must correspond to the type of listener and authentication used to access
the Kafka cluster.

3. Enable the Topic Operator by redeploying the Kafka cluster with the topicOperator
property to recreate the KafkaTopic resources.
For example:

Here we show the default configuration, which has no additional properties. You specify
the required configuration using the properties described in Section 13.2.67,
“EntityTopicOperatorSpec schema reference”.

7. Verify the recovery by listing the KafkaTopic resources:

12.6. TUNING CLIENT CONFIGURATION

Use configuration properties to optimize the performance of Kafka producers and consumers.

A minimum set of configuration properties is required, but you can add or adjust properties to change
how producers and consumers interact with Kafka. For example, for producers you can tune latency and
throughput of messages so that clients can respond to data in real time. Or you can change the
configuration to provide stronger message durability guarantees.

You might start by analyzing client metrics to gauge where to make your initial configurations, then make

oc apply -f kafka.yaml

oc run kafka-admin -ti --image=registry.redhat.io/amq7/amq-streams-kafka-27-
rhel7:1.7.0 --rm=true --restart=Never -- ./bin/kafka-topics.sh --bootstrap-server 
localhost:9092 --topic __strimzi-topic-operator-kstreams-topic-store-changelog --delete 
&& ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi_store_topic --
delete

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  #...
  entityOperator:
    topicOperator: {} 1
    #...

oc get KafkaTopic

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

256



1

2

3

4

5

You might start by analyzing client metrics to gauge where to make your initial configurations, then make
incremental changes and further comparisons until you have the configuration you need.

12.6.1. Kafka producer configuration tuning

Use a basic producer configuration with optional properties that are tailored to specific use cases.

Adjusting your configuration to maximize throughput might increase latency or vice versa. You will need
to experiment and tune your producer configuration to get the balance you need.

12.6.1.1. Basic producer configuration

Connection and serializer properties are required for every producer. Generally, it is good practice to
add a client id for tracking, and use compression on the producer to reduce batch sizes in requests.

In a basic producer configuration:

The order of messages in a partition is not guaranteed.

The acknowledgment of messages reaching the broker does not guarantee durability.

(Required) Tells the producer to connect to a Kafka cluster using a host:port bootstrap server
address for a Kafka broker. The producer uses the address to discover and connect to all brokers in
the cluster. Use a comma-separated list to specify two or three addresses in case a server is down,
but it’s not necessary to provide a list of all the brokers in the cluster.

(Required) Serializer to transform the key of each message to bytes prior to them being sent to a
broker.

(Required) Serializer to transform the value of each message to bytes prior to them being sent to a
broker.

(Optional) The logical name for the client, which is used in logs and metrics to identify the source
of a request.

(Optional) The codec for compressing messages, which are sent and might be stored in
compressed format and then decompressed when reaching a consumer. Compression is useful for
improving throughput and reducing the load on storage, but might not be suitable for low latency
applications where the cost of compression or decompression could be prohibitive.

12.6.1.2. Data durability

You can apply greater data durability, to minimize the likelihood that messages are lost, using message
delivery acknowledgments.

# ...
bootstrap.servers=localhost:9092 1
key.serializer=org.apache.kafka.common.serialization.StringSerializer 2
value.serializer=org.apache.kafka.common.serialization.StringSerializer 3
client.id=my-client 4
compression.type=gzip 5
# ...

CHAPTER 12. MANAGING AMQ STREAMS

257



1

1

1

2

3

4

# ...
acks=all 1
# ...

Specifying acks=all forces a partition leader to replicate messages to a certain number of followers
before acknowledging that the message request was successfully received. Because of the
additional checks, acks=all increases the latency between the producer sending a message and
receiving acknowledgment.

The number of brokers which need to have appended the messages to their logs before the
acknowledgment is sent to the producer is determined by the topic’s min.insync.replicas
configuration. A typical starting point is to have a topic replication factor of 3, with two in-sync replicas
on other brokers. In this configuration, the producer can continue unaffected if a single broker is
unavailable. If a second broker becomes unavailable, the producer won’t receive acknowledgments and
won’t be able to produce more messages.

Topic configuration to support acks=all

# ...
min.insync.replicas=2 1
# ...

Use 2 in-sync replicas. The default is 1.

NOTE

If the system fails, there is a risk of unsent data in the buffer being lost.

12.6.1.3. Ordered delivery

Idempotent producers avoid duplicates as messages are delivered exactly once. IDs and sequence
numbers are assigned to messages to ensure the order of delivery, even in the event of failure. If you are
using acks=all for data consistency, enabling idempotency makes sense for ordered delivery.

Ordered delivery with idempotency

# ...
enable.idempotence=true 1
max.in.flight.requests.per.connection=5 2
acks=all 3
retries=2147483647 4
# ...

Set to true to enable the idempotent producer.

With idempotent delivery the number of in-flight requests may be greater than 1 while still
providing the message ordering guarantee. The default is 5 in-flight requests.

Set acks to all.

Set the number of attempts to resend a failed message request.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

258



1

2

1

2

If you are not using acks=all and idempotency because of the performance cost, set the number of in-
flight (unacknowledged) requests to 1 to preserve ordering. Otherwise, a situation is possible where
Message-A fails only to succeed after Message-B was already written to the broker.

Ordered delivery without idempotency

# ...
enable.idempotence=false 1
max.in.flight.requests.per.connection=1 2
retries=2147483647
# ...

Set to false to disable the idempotent producer.

Set the number of in-flight requests to exactly 1.

12.6.1.4. Reliability guarantees

Idempotence is useful for exactly once writes to a single partition. Transactions, when used with
idempotence, allow exactly once writes across multiple partitions.

Transactions guarantee that messages using the same transactional ID are produced once, and either all
are successfully written to the respective logs or none of them are.

Specify a unique transactional ID.

Set the maximum allowed time for transactions in milliseconds before a timeout error is returned.
The default is 900000 or 15 minutes.

The choice of transactional.id is important in order that the transactional guarantee is maintained. Each
transactional id should be used for a unique set of topic partitions. For example, this can be achieved
using an external mapping of topic partition names to transactional ids, or by computing the
transactional id from the topic partition names using a function that avoids collisions.

12.6.1.5. Optimizing throughput and latency

Usually, the requirement of a system is to satisfy a particular throughput target for a proportion of
messages within a given latency. For example, targeting 500,000 messages per second with 95% of
messages being acknowledged within 2 seconds.

It’s likely that the messaging semantics (message ordering and durability) of your producer are defined
by the requirements for your application. For instance, it’s possible that you don’t have the option of
using acks=0 or acks=1 without breaking some important property or guarantee provided by your
application.

# ...
enable.idempotence=true
max.in.flight.requests.per.connection=5
acks=all
retries=2147483647
transactional.id=UNIQUE-ID 1
transaction.timeout.ms=900000 2
# ...

CHAPTER 12. MANAGING AMQ STREAMS

259



Broker restarts have a significant impact on high percentile statistics. For example, over a long period
the 99th percentile latency is dominated by behavior around broker restarts. This is worth considering
when designing benchmarks or comparing performance numbers from benchmarking with performance
numbers seen in production.

Depending on your objective, Kafka offers a number of configuration parameters and techniques for
tuning producer performance for throughput and latency.

Message batching (linger.ms and batch.size)

Message batching delays sending messages in the hope that more messages destined for the same
broker will be sent, allowing them to be batched into a single produce request. Batching is a
compromise between higher latency in return for higher throughput. Time-based batching is
configured using linger.ms, and size-based batching is configured using batch.size.

Compression (compression.type)

Message compression adds latency in the producer (CPU time spent compressing the messages),
but makes requests (and potentially disk writes) smaller, which can increase throughput. Whether
compression is worthwhile, and the best compression to use, will depend on the messages being sent.
Compression happens on the thread which calls KafkaProducer.send(), so if the latency of this
method matters for your application you should consider using more threads.

Pipelining (max.in.flight.requests.per.connection)

Pipelining means sending more requests before the response to a previous request has been
received. In general more pipelining means better throughput, up to a threshold at which other
effects, such as worse batching, start to counteract the effect on throughput.

Lowering latency

When your application calls KafkaProducer.send() the messages are:

Processed by any interceptors

Serialized

Assigned to a partition

Compressed

Added to a batch of messages in a per-partition queue

At which point the send() method returns. So the time send() is blocked is determined by:

The time spent in the interceptors, serializers and partitioner

The compression algorithm used

The time spent waiting for a buffer to use for compression

Batches will remain in the queue until one of the following occurs:

The batch is full (according to batch.size)

The delay introduced by linger.ms has passed

The sender is about to send message batches for other partitions to the same broker, and it is
possible to add this batch too

The producer is being flushed or closed

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

260



1

2

3

1

2

Look at the configuration for batching and buffering to mitigate the impact of send() blocking on
latency.

# ...
linger.ms=100 1
batch.size=16384 2
buffer.memory=33554432 3
# ...

The linger property adds a delay in milliseconds so that larger batches of messages are
accumulated and sent in a request. The default is 0'.

If a maximum batch.size in bytes is used, a request is sent when the maximum is reached, or
messages have been queued for longer than linger.ms (whichever comes sooner). Adding the
delay allows batches to accumulate messages up to the batch size.

The buffer size must be at least as big as the batch size, and be able to accommodate buffering,
compression and in-flight requests.

Increasing throughput

Improve throughput of your message requests by adjusting the maximum time to wait before a message
is delivered and completes a send request.

You can also direct messages to a specified partition by writing a custom partitioner to replace the
default.

# ...
delivery.timeout.ms=120000 1
partitioner.class=my-custom-partitioner 2

# ...

The maximum time in milliseconds to wait for a complete send request. You can set the value to 
MAX_LONG to delegate to Kafka an indefinite number of retries. The default is 120000 or 2
minutes.

Specify the class name of the custom partitioner.

12.6.2. Kafka consumer configuration tuning

Use a basic consumer configuration with optional properties that are tailored to specific use cases.

When tuning your consumers your primary concern will be ensuring that they cope efficiently with the
amount of data ingested. As with the producer tuning, be prepared to make incremental changes until
the consumers operate as expected.

12.6.2.1. Basic consumer configuration

Connection and deserializer properties are required for every consumer. Generally, it is good practice to
add a client id for tracking.

In a consumer configuration, irrespective of any subsequent configuration:

CHAPTER 12. MANAGING AMQ STREAMS

261



1

2

3

4

5

1

The consumer fetches from a given offset and consumes the messages in order, unless the
offset is changed to skip or re-read messages.

The broker does not know if the consumer processed the responses, even when committing
offsets to Kafka, because the offsets might be sent to a different broker in the cluster.

(Required) Tells the consumer to connect to a Kafka cluster using a host:port bootstrap server
address for a Kafka broker. The consumer uses the address to discover and connect to all brokers
in the cluster. Use a comma-separated list to specify two or three addresses in case a server is
down, but it is not necessary to provide a list of all the brokers in the cluster. If you are using a
loadbalancer service to expose the Kafka cluster, you only need the address for the service
because the availability is handled by the loadbalancer.

(Required) Deserializer to transform the bytes fetched from the Kafka broker into message keys.

(Required) Deserializer to transform the bytes fetched from the Kafka broker into message values.

(Optional) The logical name for the client, which is used in logs and metrics to identify the source
of a request. The id can also be used to throttle consumers based on processing time quotas.

(Conditional) A group id is required for a consumer to be able to join a consumer group.

Consumer groups are used to share a typically large data stream generated by multiple producers from
a given topic. Consumers are grouped using a group.id, allowing messages to be spread across the
members.

12.6.2.2. Scaling data consumption using consumer groups

Consumer groups share a typically large data stream generated by one or multiple producers from a
given topic. Consumers with the same group.id property are in the same group. One of the consumers
in the group is elected leader and decides how the partitions are assigned to the consumers in the
group. Each partition can only be assigned to a single consumer.

If you do not already have as many consumers as partitions, you can scale data consumption by adding
more consumer instances with the same group.id. Adding more consumers to a group than there are
partitions will not help throughput, but it does mean that there are consumers on standby should one
stop functioning. If you can meet throughput goals with fewer consumers, you save on resources.

Consumers within the same consumer group send offset commits and heartbeats to the same broker.
So the greater the number of consumers in the group, the higher the request load on the broker.

# ...
group.id=my-group-id 1
# ...

Add a consumer to a consumer group using a group id.

# ...
bootstrap.servers=localhost:9092 1
key.deserializer=org.apache.kafka.common.serialization.StringDeserializer  2
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer  3
client.id=my-client 4
group.id=my-group-id 5
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

262



1

2

12.6.2.3. Message ordering guarantees

Kafka brokers receive fetch requests from consumers that ask the broker to send messages from a list
of topics, partitions and offset positions.

A consumer observes messages in a single partition in the same order that they were committed to the
broker, which means that Kafka only provides ordering guarantees for messages in a single partition.
Conversely, if a consumer is consuming messages from multiple partitions, the order of messages in
different partitions as observed by the consumer does not necessarily reflect the order in which they
were sent.

If you want a strict ordering of messages from one topic, use one partition per consumer.

12.6.2.4. Optimizing throughput and latency

Control the number of messages returned when your client application calls KafkaConsumer.poll().

Use the fetch.max.wait.ms and fetch.min.bytes properties to increase the minimum amount of data
fetched by the consumer from the Kafka broker. Time-based batching is configured using 
fetch.max.wait.ms, and size-based batching is configured using fetch.min.bytes.

If CPU utilization in the consumer or broker is high, it might be because there are too many requests
from the consumer. You can adjust fetch.max.wait.ms and fetch.min.bytes properties higher so that
there are fewer requests and messages are delivered in bigger batches. By adjusting higher, throughput
is improved with some cost to latency. You can also adjust higher if the amount of data being produced
is low.

For example, if you set fetch.max.wait.ms to 500ms and fetch.min.bytes to 16384 bytes, when Kafka
receives a fetch request from the consumer it will respond when the first of either threshold is reached.

Conversely, you can adjust the fetch.max.wait.ms and fetch.min.bytes properties lower to improve
end-to-end latency.

# ...
fetch.max.wait.ms=500 1
fetch.min.bytes=16384 2
# ...

The maximum time in milliseconds the broker will wait before completing fetch requests. The
default is 500 milliseconds.

If a minimum batch size in bytes is used, a request is sent when the minimum is reached, or
messages have been queued for longer than fetch.max.wait.ms (whichever comes sooner).
Adding the delay allows batches to accumulate messages up to the batch size.

Lowering latency by increasing the fetch request size

Use the fetch.max.bytes and max.partition.fetch.bytes properties to increase the maximum amount
of data fetched by the consumer from the Kafka broker.

The fetch.max.bytes property sets a maximum limit in bytes on the amount of data fetched from the
broker at one time.

The max.partition.fetch.bytes sets a maximum limit in bytes on how much data is returned for each

CHAPTER 12. MANAGING AMQ STREAMS

263



1

2

1

The max.partition.fetch.bytes sets a maximum limit in bytes on how much data is returned for each
partition, which must always be larger than the number of bytes set in the broker or topic configuration
for max.message.bytes.

The maximum amount of memory a client can consume is calculated approximately as:

If memory usage can accommodate it, you can increase the values of these two properties. By allowing
more data in each request, latency is improved as there are fewer fetch requests.

# ...
fetch.max.bytes=52428800 1
max.partition.fetch.bytes=1048576 2
# ...

The maximum amount of data in bytes returned for a fetch request.

The maximum amount of data in bytes returned for each partition.

12.6.2.5. Avoiding data loss or duplication when committing offsets

The Kafka auto-commit mechanism allows a consumer to commit the offsets of messages automatically.
If enabled, the consumer will commit offsets received from polling the broker at 5000ms intervals.

The auto-commit mechanism is convenient, but it introduces a risk of data loss and duplication. If a
consumer has fetched and transformed a number of messages, but the system crashes with processed
messages in the consumer buffer when performing an auto-commit, that data is lost. If the system
crashes after processing the messages, but before performing the auto-commit, the data is duplicated
on another consumer instance after rebalancing.

Auto-committing can avoid data loss only when all messages are processed before the next poll to the
broker, or the consumer closes.

To minimize the likelihood of data loss or duplication, you can set enable.auto.commit to false and
develop your client application to have more control over committing offsets. Or you can use 
auto.commit.interval.ms to decrease the intervals between commits.

# ...
enable.auto.commit=false 1
# ...

Auto commit is set to false to provide more control over committing offsets.

By setting to enable.auto.commit to false, you can commit offsets after all processing has been
performed and the message has been consumed. For example, you can set up your application to call
the Kafka commitSync and commitAsync commit APIs.

The commitSync API commits the offsets in a message batch returned from polling. You call the API
when you are finished processing all the messages in the batch. If you use the commitSync API, the
application will not poll for new messages until the last offset in the batch is committed. If this negatively
affects throughput, you can commit less frequently, or you can use the commitAsync API. The 

NUMBER-OF-BROKERS * fetch.max.bytes and NUMBER-OF-PARTITIONS * 
max.partition.fetch.bytes

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

264



1

commitAsync API does not wait for the broker to respond to a commit request, but risks creating more
duplicates when rebalancing. A common approach is to combine both commit APIs in an application,
with the commitSync API used just before shutting the consumer down or rebalancing to make sure the
final commit is successful.

12.6.2.5.1. Controlling transactional messages

Consider using transactional ids and enabling idempotence (enable.idempotence=true) on the
producer side to guarantee exactly-once delivery. On the consumer side, you can then use the 
isolation.level property to control how transactional messages are read by the consumer.

The isolation.level property has two valid values:

read_committed

read_uncommitted (default)

Use read_committed to ensure that only transactional messages that have been committed are read by
the consumer. However, this will cause an increase in end-to-end latency, because the consumer will not
be able to return a message until the brokers have written the transaction markers that record the result
of the transaction (committed or aborted).

# ...
enable.auto.commit=false
isolation.level=read_committed 1
# ...

Set to read_committed so that only committed messages are read by the consumer.

12.6.2.6. Recovering from failure to avoid data loss

Use the session.timeout.ms and heartbeat.interval.ms properties to configure the time taken to
check and recover from consumer failure within a consumer group.

The session.timeout.ms property specifies the maximum amount of time in milliseconds a consumer
within a consumer group can be out of contact with a broker before being considered inactive and a
rebalancing is triggered between the active consumers in the group. When the group rebalances, the
partitions are reassigned to the members of the group.

The heartbeat.interval.ms property specifies the interval in milliseconds between heartbeat checks to
the consumer group coordinator to indicate that the consumer is active and connected. The heartbeat
interval must be lower, usually by a third, than the session timeout interval.

If you set the session.timeout.ms property lower, failing consumers are detected earlier, and
rebalancing can take place quicker. However, take care not to set the timeout so low that the broker
fails to receive a heartbeat in time and triggers an unnecessary rebalance.

Decreasing the heartbeat interval reduces the chance of accidental rebalancing, but more frequent
heartbeats increases the overhead on broker resources.

12.6.2.7. Managing offset policy

Use the auto.offset.reset property to control how a consumer behaves when no offsets have been
committed, or a committed offset is no longer valid or deleted.

CHAPTER 12. MANAGING AMQ STREAMS

265



1

2

3

Suppose you deploy a consumer application for the first time, and it reads messages from an existing
topic. Because this is the first time the group.id is used, the __consumer_offsets topic does not
contain any offset information for this application. The new application can start processing all existing
messages from the start of the log or only new messages. The default reset value is latest, which starts
at the end of the partition, and consequently means some messages are missed. To avoid data loss, but
increase the amount of processing, set auto.offset.reset to earliest to start at the beginning of the
partition.

Also consider using the earliest option to avoid messages being lost when the offsets retention period
(offsets.retention.minutes) configured for a broker has ended. If a consumer group or standalone
consumer is inactive and commits no offsets during the retention period, previously committed offsets
are deleted from __consumer_offsets.

# ...
heartbeat.interval.ms=3000 1
session.timeout.ms=10000 2
auto.offset.reset=earliest 3
# ...

Adjust the heartbeat interval lower according to anticipated rebalances.

If no heartbeats are received by the Kafka broker before the timeout duration expires, the
consumer is removed from the consumer group and a rebalance is initiated. If the broker
configuration has a group.min.session.timeout.ms and group.max.session.timeout.ms, the
session timeout value must be within that range.

Set to earliest to return to the start of a partition and avoid data loss if offsets were not
committed.

If the amount of data returned in a single fetch request is large, a timeout might occur before the
consumer has processed it. In this case, you can lower max.partition.fetch.bytes or increase 
session.timeout.ms.

12.6.2.8. Minimizing the impact of rebalances

The rebalancing of a partition between active consumers in a group is the time it takes for:

Consumers to commit their offsets

The new consumer group to be formed

The group leader to assign partitions to group members

The consumers in the group to receive their assignments and start fetching

Clearly, the process increases the downtime of a service, particularly when it happens repeatedly during
a rolling restart of a consumer group cluster.

In this situation, you can use the concept of static membership  to reduce the number of rebalances.
Rebalancing assigns topic partitions evenly among consumer group members. Static membership uses
persistence so that a consumer instance is recognized during a restart after a session timeout.

The consumer group coordinator can identify a new consumer instance using a unique id that is
specified using the group.instance.id property. During a restart, the consumer is assigned a new
member id, but as a static member it continues with the same instance id, and the same assignment of

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

266



1

2

3

topic partitions is made.

If the consumer application does not make a call to poll at least every max.poll.interval.ms
milliseconds, the consumer is considered to be failed, causing a rebalance. If the application cannot
process all the records returned from poll in time, you can avoid a rebalance by using the 
max.poll.interval.ms property to specify the interval in milliseconds between polls for new messages
from a consumer. Or you can use the max.poll.records property to set a maximum limit on the number
of records returned from the consumer buffer, allowing your application to process fewer records within
the max.poll.interval.ms limit.

The unique instance id ensures that a new consumer instance receives the same assignment of
topic partitions.

Set the interval to check the consumer is continuing to process messages.

Sets the number of processed records returned from the consumer.

12.7. UNINSTALLING AMQ STREAMS

This procedure describes how to uninstall AMQ Streams and remove resources related to the
deployment.

Prerequisites

In order to perform this procedure, identify resources created specifically for a deployment and
referenced from the AMQ Streams resource.

Such resources include:

Secrets (Custom CAs and certificates, Kafka Connect secrets, and other Kafka secrets)

Logging ConfigMaps (of type external)

These are resources referenced by Kafka, KafkaConnect, KafkaConnectS2I, KafkaMirrorMaker, or 
KafkaBridge configuration.

Procedure

1. Delete the Cluster Operator Deployment, related CustomResourceDefinitions, and RBAC
resources:

oc delete -f install/cluster-operator

# ...
group.instance.id=UNIQUE-ID 1
max.poll.interval.ms=300000 2
max.poll.records=500 3
# ...

CHAPTER 12. MANAGING AMQ STREAMS

267



WARNING

Deleting CustomResourceDefinitions results in the garbage collection of
the corresponding custom resources (Kafka, KafkaConnect, 
KafkaConnectS2I, KafkaMirrorMaker, or KafkaBridge) and the resources
dependent on them (Deployments, StatefulSets, and other dependent
resources).

2. Delete the resources you identified in the prerequisites.

12.8. FREQUENTLY ASKED QUESTIONS

12.8.1. Questions related to the Cluster Operator

12.8.1.1. Why do I need cluster administrator privileges to install AMQ Streams?

To install AMQ Streams, you need to be able to create the following cluster-scoped resources:

Custom Resource Definitions (CRDs) to instruct OpenShift about resources that are specific to
AMQ Streams, such as Kafka and KafkaConnect

ClusterRoles and ClusterRoleBindings

Cluster-scoped resources, which are not scoped to a particular OpenShift namespace, typically require
cluster administrator privileges to install.

As a cluster administrator, you can inspect all the resources being installed (in the /install/ directory) to
ensure that the ClusterRoles do not grant unnecessary privileges.

After installation, the Cluster Operator runs as a regular Deployment, so any standard (non-admin)
OpenShift user with privileges to access the Deployment can configure it. The cluster administrator can
grant standard users the privileges necessary to manage Kafka custom resources.

See also:

Why does the Cluster Operator need to create ClusterRoleBindings?

Can standard OpenShift users create Kafka custom resources?

12.8.1.2. Why does the Cluster Operator need to create ClusterRoleBindings?

OpenShift has built-in privilege escalation prevention , which means that the Cluster Operator cannot
grant privileges it does not have itself, specifically, it cannot grant such privileges in a namespace it
cannot access. Therefore, the Cluster Operator must have the privileges necessary for all the
components it orchestrates.

The Cluster Operator needs to be able to grant access so that:

The Topic Operator can manage KafkaTopics, by creating Roles and RoleBindings in the
namespace that the operator runs in

The User Operator can manage KafkaUsers, by creating Roles and RoleBindings in the



Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

268

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#privilege-escalation-prevention-and-bootstrapping


The User Operator can manage KafkaUsers, by creating Roles and RoleBindings in the
namespace that the operator runs in

The failure domain of a Node is discovered by AMQ Streams, by creating a ClusterRoleBinding

When using rack-aware partition assignment, the broker pod needs to be able to get information about
the Node it is running on, for example, the Availability Zone in Amazon AWS. A Node is a cluster-scoped
resource, so access to it can only be granted through a ClusterRoleBinding, not a namespace-scoped 
RoleBinding.

12.8.1.3. Can standard OpenShift users create Kafka custom resources?

By default, standard OpenShift users will not have the privileges necessary to manage the custom
resources handled by the Cluster Operator. The cluster administrator can grant a user the necessary
privileges using OpenShift RBAC resources.

For more information, see Designating AMQ Streams administrators  in the Deploying and Upgrading
AMQ Streams on OpenShift guide.

12.8.1.4. What do the failed to acquire lock warnings in the log mean?

For each cluster, the Cluster Operator executes only one operation at a time. The Cluster Operator uses
locks to make sure that there are never two parallel operations running for the same cluster. Other
operations must wait until the current operation completes before the lock is released.

INFO

Examples of cluster operations include cluster creation , rolling update, scale down , and scale up.

If the waiting time for the lock takes too long, the operation times out and the following warning
message is printed to the log:

Depending on the exact configuration of STRIMZI_FULL_RECONCILIATION_INTERVAL_MS and 
STRIMZI_OPERATION_TIMEOUT_MS, this warning message might appear occasionally without
indicating any underlying issues. Operations that time out are picked up in the next periodic
reconciliation, so that the operation can acquire the lock and execute again.

Should this message appear periodically, even in situations when there should be no other operations
running for a given cluster, it might indicate that the lock was not properly released due to an error. If this
is the case, try restarting the Cluster Operator.

12.8.1.5. Why is hostname verification failing when connecting to NodePorts using TLS?

Currently, off-cluster access using NodePorts with TLS encryption enabled does not support TLS
hostname verification. As a result, the clients that verify the hostname will fail to connect. For example,
the Java client will fail with the following exception:

2018-03-04 17:09:24 WARNING AbstractClusterOperations:290 - Failed to acquire lock for kafka 
cluster lock::kafka::myproject::my-cluster

Caused by: java.security.cert.CertificateException: No subject alternative names matching IP address 
168.72.15.231 found
 at sun.security.util.HostnameChecker.matchIP(HostnameChecker.java:168)
 at sun.security.util.HostnameChecker.match(HostnameChecker.java:94)
 at sun.security.ssl.X509TrustManagerImpl.checkIdentity(X509TrustManagerImpl.java:455)
 at sun.security.ssl.X509TrustManagerImpl.checkIdentity(X509TrustManagerImpl.java:436)

CHAPTER 12. MANAGING AMQ STREAMS

269

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#adding-users-the-strimzi-admin-role-str


To connect, you must disable hostname verification. In the Java client, you can do this by setting the
configuration option ssl.endpoint.identification.algorithm to an empty string.

When configuring the client using a properties file, you can do it this way:

When configuring the client directly in Java, set the configuration option to an empty string:

 at sun.security.ssl.X509TrustManagerImpl.checkTrusted(X509TrustManagerImpl.java:252)
 at sun.security.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustManagerImpl.java:136)
 at sun.security.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.java:1501)
 ... 17 more

ssl.endpoint.identification.algorithm=

props.put("ssl.endpoint.identification.algorithm", "");

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

270



CHAPTER 13. CUSTOM RESOURCE API REFERENCE

13.1. COMMON CONFIGURATION PROPERTIES

Common configuration properties apply to more than one resource.

13.1.1. replicas

Use the replicas property to configure replicas.

The type of replication depends on the resource.

KafkaTopic uses a replication factor to configure the number of replicas of each partition within
a Kafka cluster.

Kafka components use replicas to configure the number of pods in a deployment to provide
better availability and scalability.

NOTE

When running a Kafka component on OpenShift it may not be necessary to run multiple
replicas for high availability. When the node where the component is deployed crashes,
OpenShift will automatically reschedule the Kafka component pod to a different node.
However, running Kafka components with multiple replicas can provide faster failover
times as the other nodes will be up and running.

13.1.2. bootstrapServers

Use the bootstrapServers property to configure a list of bootstrap servers.

The bootstrap server lists can refer to Kafka clusters that are not deployed in the same OpenShift
cluster. They can also refer to a Kafka cluster not deployed by AMQ Streams.

If on the same OpenShift cluster, each list must ideally contain the Kafka cluster bootstrap service which
is named CLUSTER-NAME-kafka-bootstrap and a port number. If deployed by AMQ Streams but on
different OpenShift clusters, the list content depends on the approach used for exposing the clusters
(routes, ingress, nodeports or loadbalancers).

When using Kafka with a Kafka cluster not managed by AMQ Streams, you can specify the bootstrap
servers list according to the configuration of the given cluster.

13.1.3. ssl

Use the three allowed ssl configuration options for client connection using a specific cipher suite for a
TLS version. A cipher suite combines algorithms for secure connection and data transfer.

You can also configure the ssl.endpoint.identification.algorithm property to enable or disable
hostname verification.

Example SSL configuration

# ...
spec:

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

271



1

2

3

4

The cipher suite for TLS using a combination of ECDHE key exchange mechanism, RSA
authentication algorithm, AES bulk encyption algorithm and SHA384 MAC algorithm.

The SSl protocol TLSv1.2 is enabled.

Specifies the TLSv1.2 protocol to generate the SSL context. Allowed values are TLSv1.1 and 
TLSv1.2.

Hostname verification is enabled by setting to HTTPS. An empty string disables the verification.

13.1.4. trustedCertificates

Having set tls to configure TLS encryption, use the trustedCertificates property to provide a list of
secrets with key names under which the certificates are stored in X.509 format.

You can use the secrets created by the Cluster Operator for the Kafka cluster, or you can create your
own TLS certificate file, then create a Secret from the file:

Example TLS encryption configuration

If certificates are stored in the same secret, it can be listed multiple times.

If you want to enable TLS, but use the default set of public certification authorities shipped with Java,
you can specify trustedCertificates as an empty array:

Example of enabling TLS with the default Java certificates

For information on configuring TLS client authentication, see KafkaClientAuthenticationTls schema
reference.

13.1.5. resources

You request CPU and memory resources for components. Limits specify the maximum resources that

  config:
    ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" 1
    ssl.enabled.protocols: "TLSv1.2" 2
    ssl.protocol: "TLSv1.2" 3
    ssl.endpoint.identification.algorithm: HTTPS 4
# ...

oc create secret generic MY-SECRET \
--from-file=MY-TLS-CERTIFICATE-FILE.crt

tls:
  trustedCertificates:
    - secretName: my-cluster-cluster-cert
      certificate: ca.crt
    - secretName: my-cluster-cluster-cert
      certificate: ca2.crt

tls:
  trustedCertificates: []

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

272



You request CPU and memory resources for components. Limits specify the maximum resources that
can be consumed by a given container.

Resource requests and limits for the Topic Operator and User Operator are set in the Kafka resource.

Use the reources.requests and resources.limits properties to configure resource requests and limits.

For every deployed container, AMQ Streams allows you to request specific resources and define the
maximum consumption of those resources.

AMQ Streams supports requests and limits for the following types of resources:

cpu

memory

AMQ Streams uses the OpenShift syntax for specifying these resources.

For more information about managing computing resources on OpenShift, see Managing Compute
Resources for Containers.

Resource requests

Requests specify the resources to reserve for a given container. Reserving the resources ensures that
they are always available.

IMPORTANT

If the resource request is for more than the available free resources in the OpenShift
cluster, the pod is not scheduled.

A request may be configured for one or more supported resources.

Example resource requests configuration

Resource limits

Limits specify the maximum resources that can be consumed by a given container. The limit is not
reserved and might not always be available. A container can use the resources up to the limit only when
they are available. Resource limits should be always higher than the resource requests.

A resource may be configured for one or more supported limits.

Example resource limits configuration

# ...
resources:
  requests:
    cpu: 12
    memory: 64Gi
# ...

# ...
resources:
  limits:

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

273

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/


Supported CPU formats

CPU requests and limits are supported in the following formats:

Number of CPU cores as integer (5 CPU core) or decimal (2.5 CPU core).

Number or millicpus / millicores (100m) where 1000 millicores is the same 1 CPU core.

Example CPU units

NOTE

The computing power of 1 CPU core may differ depending on the platform where
OpenShift is deployed.

For more information on CPU specification, see the Meaning of CPU.

Supported memory formats

Memory requests and limits are specified in megabytes, gigabytes, mebibytes, and gibibytes.

To specify memory in megabytes, use the M suffix. For example 1000M.

To specify memory in gigabytes, use the G suffix. For example 1G.

To specify memory in mebibytes, use the Mi suffix. For example 1000Mi.

To specify memory in gibibytes, use the Gi suffix. For example 1Gi.

Example resources using different memory units

For more details about memory specification and additional supported units, see Meaning of memory.

13.1.6. image

    cpu: 12
    memory: 64Gi
# ...

# ...
resources:
  requests:
    cpu: 500m
  limits:
    cpu: 2.5
# ...

# ...
resources:
  requests:
    memory: 512Mi
  limits:
    memory: 2Gi
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

274

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-memory


Use the image property to configure the container image used by the component.

Overriding container images is recommended only in special situations where you need to use a different
container registry or a customized image.

For example, if your network does not allow access to the container repository used by AMQ Streams,
you can copy the AMQ Streams images or build them from the source. However, if the configured image
is not compatible with AMQ Streams images, it might not work properly.

A copy of the container image might also be customized and used for debugging.

You can specify which container image to use for a component using the image property in the
following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaMirrorMaker.spec

KafkaMirrorMaker2.spec

KafkaBridge.spec

Configuring the image property for Kafka, Kafka Connect, and Kafka MirrorMaker

Kafka, Kafka Connect (including Kafka Connect with S2I support), and Kafka MirrorMaker support
multiple versions of Kafka. Each component requires its own image. The default images for the different
Kafka versions are configured in the following environment variables:

STRIMZI_KAFKA_IMAGES

STRIMZI_KAFKA_CONNECT_IMAGES

STRIMZI_KAFKA_CONNECT_S2I_IMAGES

STRIMZI_KAFKA_MIRROR_MAKER_IMAGES

These environment variables contain mappings between the Kafka versions and their corresponding
images. The mappings are used together with the image and version properties:

If neither image nor version are given in the custom resource then the version will default to
the Cluster Operator’s default Kafka version, and the image will be the one corresponding to
this version in the environment variable.

If image is given but version is not, then the given image is used and the version is assumed to
be the Cluster Operator’s default Kafka version.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

275



If version is given but image is not, then the image that corresponds to the given version in the
environment variable is used.

If both version and image are given, then the given image is used. The image is assumed to
contain a Kafka image with the given version.

The image and version for the different components can be configured in the following properties:

For Kafka in spec.kafka.image and spec.kafka.version.

For Kafka Connect, Kafka Connect S2I, and Kafka MirrorMaker in spec.image and 
spec.version.

WARNING

It is recommended to provide only the version and leave the image property
unspecified. This reduces the chance of making a mistake when configuring the
custom resource. If you need to change the images used for different versions of
Kafka, it is preferable to configure the Cluster Operator’s environment variables.

Configuring the image property in other resources

For the image property in the other custom resources, the given value will be used during deployment. If
the image property is missing, the image specified in the Cluster Operator configuration will be used. If
the image name is not defined in the Cluster Operator configuration, then the default value will be used.

For Topic Operator:

1. Container image specified in the STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-rhel7-operator:1.7.0 container image.

For User Operator:

1. Container image specified in the STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-rhel7-operator:1.7.0 container image.

For Entity Operator TLS sidecar:

1. Container image specified in the 
STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE environment variable
from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-kafka-27-rhel7:1.7.0 container image.

For Kafka Exporter:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_EXPORTER_IMAGE
environment variable from the Cluster Operator configuration.



Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

276



2. registry.redhat.io/amq7/amq-streams-kafka-27-rhel7:1.7.0 container image.

For Kafka Bridge:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_BRIDGE_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-bridge-rhel7:1.7.0 container image.

For Kafka broker initializer:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_INIT_IMAGE environment
variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-rhel7-operator:1.7.0 container image.

Example of container image configuration

13.1.7. livenessProbe and readinessProbe healthchecks

Use the livenessProbe and readinessProbe properties to configure healthcheck probes supported in
AMQ Streams.

Healthchecks are periodical tests which verify the health of an application. When a Healthcheck probe
fails, OpenShift assumes that the application is not healthy and attempts to fix it.

For more details about the probes, see Configure Liveness and Readiness Probes .

Both livenessProbe and readinessProbe support the following options:

initialDelaySeconds

timeoutSeconds

periodSeconds

successThreshold

failureThreshold

Example of liveness and readiness probe configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    image: my-org/my-image:latest
    # ...
  zookeeper:
    # ...

# ...
readinessProbe:

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

277

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/


For more information about the livenessProbe and readinessProbe options, see Probe schema
reference.

13.1.8. metricsConfig

Use the metricsConfig property to enable and configure Prometheus metrics.

The metricsConfig property contains a reference to a ConfigMap containing additional configuration
for the Prometheus JMX exporter. AMQ Streams supports Prometheus metrics using Prometheus JMX
exporter to convert the JMX metrics supported by Apache Kafka and ZooKeeper to Prometheus
metrics.

To enable Prometheus metrics export without further configuration, you can reference a ConfigMap
containing an empty file under metricsConfig.valueFrom.configMapKeyRef.key. When referencing an
empty file, all metrics are exposed as long as they have not been renamed.

Example ConfigMap with metrics configuration for Kafka

Example metrics configuration for Kafka

  initialDelaySeconds: 15
  timeoutSeconds: 5
livenessProbe:
  initialDelaySeconds: 15
  timeoutSeconds: 5
# ...

kind: ConfigMap
apiVersion: v1
metadata:
  name: my-configmap
data:
  my-key: |
    lowercaseOutputName: true
    rules:
    # Special cases and very specific rules
    - pattern: kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Value
      name: kafka_server_$1_$2
      type: GAUGE
      labels:
       clientId: "$3"
       topic: "$4"
       partition: "$5"
    # further configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    metricsConfig:
      type: jmxPrometheusExporter
      valueFrom:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

278

https://github.com/prometheus/jmx_exporter


When metrics are enabled, they are exposed on port 9404.

When the metricsConfig (or deprecated metrics) property is not defined in the resource, the
Prometheus metrics are disabled.

For more information about setting up and deploying Prometheus and Grafana, see Introducing Metrics
to Kafka in the Deploying and Upgrading AMQ Streams on OpenShift  guide.

13.1.9. jvmOptions

The following AMQ Streams components run inside a Java Virtual Machine (JVM):

Apache Kafka

Apache ZooKeeper

Apache Kafka Connect

Apache Kafka MirrorMaker

AMQ Streams Kafka Bridge

To optimize their performance on different platforms and architectures, you configure the jvmOptions
property in the following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaMirrorMaker.spec

KafkaMirrorMaker2.spec

KafkaBridge.spec

You can specify the following options in your configuration:

-Xms

Minimum initial allocation heap size when the JVM starts.

-Xmx

Maximum heap size.

-XX

Advanced runtime options for the JVM.

        configMapKeyRef:
          name: my-config-map
          key: my-key
    # ...
  zookeeper:
    # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

279

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-setup-str


javaSystemProperties

Additional system properties.

gcLoggingEnabled

Enables garbage collector logging .

The full schema of jvmOptions is described in JvmOptions schema reference.

NOTE

The units accepted by JVM settings, such as -Xmx and -Xms, are the same units
accepted by the JDK java binary in the corresponding image. Therefore, 1g or 1G means
1,073,741,824 bytes, and Gi is not a valid unit suffix. This is different from the units used
for memory requests and limits , which follow the OpenShift convention where 1G means
1,000,000,000 bytes, and 1Gi means 1,073,741,824 bytes

-Xms and -Xmx options

The default values used for -Xms and -Xmx depend on whether there is a memory request limit
configured for the container.

If there is a memory limit, the JVM’s minimum and maximum memory is set to a value
corresponding to the limit.

If there is no memory limit, the JVM’s minimum memory is set to 128M. The JVM’s maximum
memory is not defined to allow the memory to increase as needed. This is ideal for single node
environments in test and development.

Before setting -Xmx explicitly consider the following:

The JVM’s overall memory usage will be approximately 4 × the maximum heap, as configured by 
-Xmx.

If -Xmx is set without also setting an appropriate OpenShift memory limit, it is possible that the
container will be killed should the OpenShift node experience memory pressure from other
Pods running on it.

If -Xmx is set without also setting an appropriate OpenShift memory request, it is possible that
the container will be scheduled to a node with insufficient memory. In this case, the container will
not start but crash immediately if -Xms is set to -Xmx, or at a later time if not.

It is recommended to:

Set the memory request and the memory limit to the same value

Use a memory request that is at least 4.5 × the -Xmx

Consider setting -Xms to the same value as -Xmx

In this example, the JVM uses 2 GiB (=2,147,483,648 bytes) for its heap. Its total memory usage is
approximately 8GiB.

Example -Xmx and -Xms configuration

# ...
jvmOptions:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

280



Setting the same value for initial (-Xms) and maximum (-Xmx) heap sizes avoids the JVM having to
allocate memory after startup, at the cost of possibly allocating more heap than is really needed.

IMPORTANT

Containers performing lots of disk I/O, such as Kafka broker containers, require available
memory for use as an operating system page cache. On such containers, the requested
memory should be significantly higher than the memory used by the JVM.

-XX option

-XX options are used to configure the KAFKA_JVM_PERFORMANCE_OPTS option of Apache Kafka.

Example -XX configuration

JVM options resulting from the -XX configuration

-XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -
XX:+ExplicitGCInvokesConcurrent -XX:-UseParNewGC

NOTE

When no -XX options are specified, the default Apache Kafka configuration of 
KAFKA_JVM_PERFORMANCE_OPTS is used.

javaSystemProperties

javaSystemProperties are used to configure additional Java system properties, such as debugging
utilities.

Example javaSystemProperties configuration

13.1.10. Garbage collector logging

The jvmOptions property also allows you to enable and disable garbage collector (GC) logging. GC
logging is disabled by default. To enable it, set the gcLoggingEnabled property as follows:

  "-Xmx": "2g"
  "-Xms": "2g"
# ...

jvmOptions:
  "-XX":
    "UseG1GC": true
    "MaxGCPauseMillis": 20
    "InitiatingHeapOccupancyPercent": 35
    "ExplicitGCInvokesConcurrent": true

jvmOptions:
  javaSystemProperties:
    - name: javax.net.debug
      value: ssl

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

281



Example GC logging configuration

13.2. SCHEMA PROPERTIES

13.2.1. Kafka schema reference

Property Description

spec The specification of the Kafka and ZooKeeper
clusters, and Topic Operator.

KafkaSpec

status The status of the Kafka and ZooKeeper clusters, and
Topic Operator.

KafkaStatus

13.2.2. KafkaSpec schema reference

Used in: Kafka

Property Description

kafka Configuration of the Kafka cluster.

KafkaClusterSpec

zookeeper Configuration of the ZooKeeper cluster.

ZookeeperClusterSpec

topicOperator The topicOperator property has been
deprecated, and should now be configured using 
spec.entityOperator.topicOperator. The
property topicOperator is removed in API version 
v1beta2. Configuration of the Topic Operator.

TopicOperatorSpec

entityOperator Configuration of the Entity Operator.

EntityOperatorSpec

clusterCa Configuration of the cluster certificate authority.

# ...
jvmOptions:
  gcLoggingEnabled: true
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

282



CertificateAuthority

clientsCa Configuration of the clients certificate authority.

CertificateAuthority

cruiseControl Configuration for Cruise Control deployment.
Deploys a Cruise Control instance when specified.

CruiseControlSpec

kafkaExporter Configuration of the Kafka Exporter. Kafka Exporter
can provide additional metrics, for example lag of
consumer group at topic/partition.KafkaExporterSpec

maintenanceTimeWindows A list of time windows for maintenance tasks (that is,
certificates renewal). Each time window is defined by
a cron expression.string array

Property Description

13.2.3. KafkaClusterSpec schema reference

Used in: KafkaSpec

Full list of KafkaClusterSpec schema properties

Configures a Kafka cluster.

13.2.3.1. listeners

Use the listeners property to configure listeners to provide access to Kafka brokers.

Example configuration of a plain (unencrypted) listener without authentication

13.2.3.2. config

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    listeners:
      - name: plain
        port: 9092
        type: internal
        tls: false
    # ...
  zookeeper:
    # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

283



Use the config properties to configure Kafka broker options as keys.

Standard Apache Kafka configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

Configuration options that cannot be configured relate to:

Security (Encryption, Authentication, and Authorization)

Listener configuration

Broker ID configuration

Configuration of log data directories

Inter-broker communication

ZooKeeper connectivity

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka documentation with the exception
of those options that are managed directly by AMQ Streams. Specifically, all configuration options with
keys equal to or starting with one of the following strings are forbidden:

listeners

advertised.

broker.

listener.

host.name

port

inter.broker.listener.name

sasl.

ssl.

security.

password.

principal.builder.class

log.dir

zookeeper.connect

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

284

http://kafka.apache.org/documentation/#brokerconfigs


zookeeper.set.acl

authorizer.

super.user

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other supported options are passed to Kafka.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties. You can also configure the 
zookeeper.connection.timeout.ms property to set the maximum time allowed for establishing a
ZooKeeper connection.

Example Kafka broker configuration

13.2.3.3. brokerRackInitImage

When rack awareness is enabled, Kafka broker pods use init container to collect the labels from the
OpenShift cluster nodes. The container image used for this container can be configured using the 
brokerRackInitImage property. When the brokerRackInitImage field is missing, the following images
are used in order of priority:

1. Container image specified in STRIMZI_DEFAULT_KAFKA_INIT_IMAGE environment variable
in the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-rhel7-operator:1.7.0 container image.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    config:
      num.partitions: 1
      num.recovery.threads.per.data.dir: 1
      default.replication.factor: 3
      offsets.topic.replication.factor: 3
      transaction.state.log.replication.factor: 3
      transaction.state.log.min.isr: 1
      log.retention.hours: 168
      log.segment.bytes: 1073741824
      log.retention.check.interval.ms: 300000
      num.network.threads: 3
      num.io.threads: 8
      socket.send.buffer.bytes: 102400
      socket.receive.buffer.bytes: 102400
      socket.request.max.bytes: 104857600
      group.initial.rebalance.delay.ms: 0
      ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
      ssl.enabled.protocols: "TLSv1.2"
      ssl.protocol: "TLSv1.2"
      zookeeper.connection.timeout.ms: 6000
    # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

285



Example brokerRackInitImage configuration

NOTE

Overriding container images is recommended only in special situations, where you need to
use a different container registry. For example, because your network does not allow
access to the container registry used by AMQ Streams. In this case, you should either
copy the AMQ Streams images or build them from the source. If the configured image is
not compatible with AMQ Streams images, it might not work properly.

13.2.3.4. logging

Kafka has its own configurable loggers:

log4j.logger.org.I0Itec.zkclient.ZkClient

log4j.logger.org.apache.zookeeper

log4j.logger.kafka

log4j.logger.org.apache.kafka

log4j.logger.kafka.request.logger

log4j.logger.kafka.network.Processor

log4j.logger.kafka.server.KafkaApis

log4j.logger.kafka.network.RequestChannel$

log4j.logger.kafka.controller

log4j.logger.kafka.log.LogCleaner

log4j.logger.state.change.logger

log4j.logger.kafka.authorizer.logger

Kafka uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    rack:
      topologyKey: topology.kubernetes.io/zone
    brokerRackInitImage: my-org/my-image:latest
    # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

286



the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both 
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

Any available loggers that are not configured have their level set to OFF.

If Kafka was deployed using the Cluster Operator, changes to Kafka logging levels are applied
dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

13.2.3.5. KafkaClusterSpec schema properties

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  # ...
  kafka:
    # ...
    logging:
      type: inline
      loggers:
        kafka.root.logger.level: "INFO"
  # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: kafka-log4j.properties
  # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

287

https://logging.apache.org/


Property Description

version The kafka broker version. Defaults to 2.7.0. Consult
the user documentation to understand the process
required to upgrade or downgrade the version.string

replicas The number of pods in the cluster.

integer

image The docker image for the pods. The default value
depends on the configured 
Kafka.spec.kafka.version.string

listeners Configures listeners of Kafka brokers.

GenericKafkaListener array or KafkaListeners

config Kafka broker config properties with the following
prefixes cannot be set: listeners, advertised., broker.,
listener., host.name, port, inter.broker.listener.name,
sasl., ssl., security., password., principal.builder.class,
log.dir, zookeeper.connect, zookeeper.set.acl,
zookeeper.ssl, zookeeper.clientCnxnSocket,
authorizer., super.user, cruise.control.metrics.topic,
cruise.control.metrics.reporter.bootstrap.servers
(with the exception of:
zookeeper.connection.timeout.ms, ssl.cipher.suites,
ssl.protocol,
ssl.enabled.protocols,cruise.control.metrics.topic.nu
m.partitions,
cruise.control.metrics.topic.replication.factor,
cruise.control.metrics.topic.retention.ms,cruise.contr
ol.metrics.topic.auto.create.retries,
cruise.control.metrics.topic.auto.create.timeout.ms,cr
uise.control.metrics.topic.min.insync.replicas).

map

storage Storage configuration (disk). Cannot be updated.
The type depends on the value of the storage.type
property within the given object, which must be one
of [ephemeral, persistent-claim, jbod].

EphemeralStorage, PersistentClaimStorage, 
JbodStorage

authorization Authorization configuration for Kafka brokers. The
type depends on the value of the 
authorization.type property within the given
object, which must be one of [simple, opa, keycloak].

KafkaAuthorizationSimple, 
KafkaAuthorizationOpa, 
KafkaAuthorizationKeycloak

rack Configuration of the broker.rack broker config.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

288



Rack

brokerRackInitImage The image of the init container used for initializing
the broker.rack.

string

affinity The affinity property has been deprecated, and
should now be configured using 
spec.kafka.template.pod.affinity. The property
affinity is removed in API version v1beta2. The
pod’s affinity rules. For more information, see the
external documentation for core/v1 affinity.

Affinity

tolerations The tolerations property has been deprecated,
and should now be configured using 
spec.kafka.template.pod.tolerations. The
property tolerations is removed in API version 
v1beta2. The pod’s tolerations. For more
information, see the external documentation for
core/v1 toleration.

Toleration array

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options for Kafka brokers.

KafkaJmxOptions

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

Property Description

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

289

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


metrics The metrics property has been deprecated, and
should now be configured using 
spec.kafka.metricsConfig. The property metrics
is removed in API version v1beta2. The
Prometheus JMX Exporter configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.

map

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

logging Logging configuration for Kafka. The type depends
on the value of the logging.type property within the
given object, which must be one of [inline, external].InlineLogging, ExternalLogging

tlsSidecar The tlsSidecar property has been deprecated.
The property tlsSidecar is removed in API version 
v1beta2. TLS sidecar configuration.TlsSidecar

template Template for Kafka cluster resources. The template
allows users to specify how are the StatefulSet, 
Pods and Services generated.KafkaClusterTemplate

Property Description

13.2.4. GenericKafkaListener schema reference

Used in: KafkaClusterSpec

Full list of GenericKafkaListener schema properties

Configures listeners to connect to Kafka brokers within and outside OpenShift.

You configure the listeners in the Kafka resource.

Example Kafka resource showing listener configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    #...
    listeners:
      - name: plain
        port: 9092
        type: internal
        tls: false

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

290

https://github.com/prometheus/jmx_exporter


13.2.4.1. listeners

You configure Kafka broker listeners using the listeners property in the Kafka resource. Listeners are
defined as an array.

Example listener configuration

The name and port must be unique within the Kafka cluster. The name can be up to 25 characters long,
comprising lower-case letters and numbers. Allowed port numbers are 9092 and higher with the
exception of ports 9404 and 9999, which are already used for Prometheus and JMX.

By specifying a unique name and port for each listener, you can configure multiple listeners.

13.2.4.2. type

The type is set as internal, or for external listeners, as route, loadbalancer, nodeport or ingress.

internal

You can configure internal listeners with or without encryption using the tls property.

      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication:
          type: tls
      - name: external1
        port: 9094
        type: route
        tls: true
      - name: external2
        port: 9095
        type: ingress
        tls: true
        authentication:
          type: tls
        configuration:
          bootstrap:
            host: bootstrap.myingress.com
          brokers:
          - broker: 0
            host: broker-0.myingress.com
          - broker: 1
            host: broker-1.myingress.com
          - broker: 2
            host: broker-2.myingress.com
    #...

listeners:
  - name: plain
    port: 9092
    type: internal
    tls: false

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

291



Example internal listener configuration

route

Configures an external listener to expose Kafka using OpenShift Routes and the HAProxy router.
A dedicated Route is created for every Kafka broker pod. An additional Route is created to serve as
a Kafka bootstrap address. Kafka clients can use these Routes to connect to Kafka on port 443. The
client connects on port 443, the default router port, but traffic is then routed to the port you
configure, which is 9094 in this example.

Example route listener configuration

ingress

Configures an external listener to expose Kafka using Kubernetes Ingress and the NGINX Ingress
Controller for Kubernetes.
A dedicated Ingress resource is created for every Kafka broker pod. An additional Ingress resource
is created to serve as a Kafka bootstrap address. Kafka clients can use these Ingress resources to
connect to Kafka on port 443. The client connects on port 443, the default controller port, but traffic
is then routed to the port you configure, which is 9095 in the following example.

You must specify the hostnames used by the bootstrap and per-broker services using 
GenericKafkaListenerConfigurationBootstrap and GenericKafkaListenerConfigurationBroker
properties.

#...
spec:
  kafka:
    #...
    listeners:
      #...
      - name: plain
        port: 9092
        type: internal
        tls: false
      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication:
          type: tls
    #...

#...
spec:
  kafka:
    #...
    listeners:
      #...
      - name: external1
        port: 9094
        type: route
        tls: true
    #...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

292

https://github.com/kubernetes/ingress-nginx


Example ingress listener configuration

NOTE

External listeners using Ingress are currently only tested with the NGINX Ingress
Controller for Kubernetes.

loadbalancer

Configures an external listener to expose Kafka Loadbalancer type Services.
A new loadbalancer service is created for every Kafka broker pod. An additional loadbalancer is
created to serve as a Kafka bootstrap address. Loadbalancers listen to the specified port number,
which is port 9094 in the following example.

You can use the loadBalancerSourceRanges property to configure source ranges to restrict
access to the specified IP addresses.

Example loadbalancer listener configuration

#...
spec:
  kafka:
    #...
    listeners:
      #...
      - name: external2
        port: 9095
        type: ingress
        tls: true
        authentication:
          type: tls
        configuration:
          bootstrap:
            host: bootstrap.myingress.com
          brokers:
          - broker: 0
            host: broker-0.myingress.com
          - broker: 1
            host: broker-1.myingress.com
          - broker: 2
            host: broker-2.myingress.com
  #...

#...
spec:
  kafka:
    #...
    listeners:
      - name: external3
        port: 9094
        type: loadbalancer
        tls: true
        configuration:
          loadBalancerSourceRanges:

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

293

https://github.com/kubernetes/ingress-nginx


nodeport

Configures an external listener to expose Kafka using NodePort type Services.
Kafka clients connect directly to the nodes of OpenShift. An additional NodePort type of service is
created to serve as a Kafka bootstrap address.

When configuring the advertised addresses for the Kafka broker pods, AMQ Streams uses the
address of the node on which the given pod is running. You can use 
preferredNodePortAddressType property to configure the first address type checked as the node
address.

Example nodeport listener configuration

NOTE

TLS hostname verification is not currently supported when exposing Kafka clusters
using node ports.

13.2.4.3. port

The port number is the port used in the Kafka cluster, which might not be the same port used for access
by a client.

loadbalancer listeners use the specified port number, as do internal listeners

ingress and route listeners use port 443 for access

nodeport listeners use the port number assigned by OpenShift

For client connection, use the address and port for the bootstrap service of the listener. You can
retrieve this from the status of the Kafka resource.

Example command to retrieve the address and port for client connection

            - 10.0.0.0/8
            - 88.208.76.87/32
    #...

#...
spec:
  kafka:
    #...
    listeners:
      #...
      - name: external4
        port: 9095
        type: nodeport
        tls: false
        configuration:
          preferredNodePortAddressType: InternalDNS
    #...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

294



NOTE

Listeners cannot be configured to use the ports set aside for interbroker communication
(9091) and metrics (9404).

13.2.4.4. tls

The TLS property is required.

By default, TLS encryption is not enabled. To enable it, set the tls property to true.

TLS encryption is always used with route listeners.

13.2.4.5. authentication

Authentication for the listener can be specified as:

Mutual TLS (tls)

SCRAM-SHA-512 (scram-sha-512)

Token-based OAuth 2.0 (oauth).

13.2.4.6. networkPolicyPeers

Use networkPolicyPeers to configure network policies that restrict access to a listener at the network
level. The following example shows a networkPolicyPeers configuration for a plain and a tls listener.

oc get kafka KAFKA-CLUSTER-NAME -o=jsonpath='{.status.listeners[?
(@.type=="external")].bootstrapServers}{"\n"}'

listeners:
  #...
  - name: plain
    port: 9092
    type: internal
    tls: true
    authentication:
      type: scram-sha-512
    networkPolicyPeers:
      - podSelector:
          matchLabels:
            app: kafka-sasl-consumer
      - podSelector:
          matchLabels:
            app: kafka-sasl-producer
  - name: tls
    port: 9093
    type: internal
    tls: true
    authentication:
      type: tls
    networkPolicyPeers:
      - namespaceSelector:

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

295



1

In the example:

Only application pods matching the labels app: kafka-sasl-consumer and app: kafka-sasl-
producer can connect to the plain listener. The application pods must be running in the same
namespace as the Kafka broker.

Only application pods running in namespaces matching the labels project: myproject and 
project: myproject2 can connect to the tls listener.

The syntax of the networkPolicyPeers field is the same as the from field in NetworkPolicy resources.

Backwards compatibility with KafkaListeners

GenericKafkaListener replaces the KafkaListeners schema, which is now deprecated.

To convert the listeners configured using the KafkaListeners schema into the format of the 
GenericKafkaListener schema, with backwards compatibility, use the following names, ports and types:

Options: ingress, loadbalancer, nodeport, route

13.2.4.7. GenericKafkaListener schema properties

Property Description

name Name of the listener. The name will be used to
identify the listener and the related OpenShift
objects. The name has to be unique within given a
Kafka cluster. The name can consist of lowercase
characters and numbers and be up to 11 characters
long.

string

          matchLabels:
            project: myproject
      - namespaceSelector:
          matchLabels:
            project: myproject2
# ...

listeners:
  #...
  - name: plain
    port: 9092
    type: internal
    tls: false
  - name: tls
    port: 9093
    type: internal
    tls: true
  - name: external
    port: 9094
    type: EXTERNAL-LISTENER-TYPE 1
    tls: true
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

296



port Port number used by the listener inside Kafka. The
port number has to be unique within a given Kafka
cluster. Allowed port numbers are 9092 and higher
with the exception of ports 9404 and 9999, which
are already used for Prometheus and JMX.
Depending on the listener type, the port number
might not be the same as the port number that
connects Kafka clients.

integer

type Type of the listener. Currently the supported types
are internal, route, loadbalancer, nodeport and 
ingress.

* internal type exposes Kafka internally only within
the OpenShift cluster. * route type uses OpenShift
Routes to expose Kafka. * loadbalancer type uses
LoadBalancer type services to expose Kafka. * 
nodeport type uses NodePort type services to
expose Kafka. * ingress type uses OpenShift Nginx
Ingress to expose Kafka. .

string (one of [ingress, internal, route, loadbalancer,
nodeport])

tls Enables TLS encryption on the listener. This is a
required property.

boolean

authentication Authentication configuration for this listener. The
type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
oauth].

KafkaListenerAuthenticationTls, 
KafkaListenerAuthenticationScramSha512, 
KafkaListenerAuthenticationOAuth

configuration Additional listener configuration.

GenericKafkaListenerConfiguration

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list. For more information, see the
external documentation for networking.k8s.io/v1
networkpolicypeer.

NetworkPolicyPeer array

Property Description

13.2.5. KafkaListenerAuthenticationTls schema reference

Used in: GenericKafkaListener, KafkaListenerExternalIngress, 

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

297

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io


Used in: GenericKafkaListener, KafkaListenerExternalIngress, 
KafkaListenerExternalLoadBalancer, KafkaListenerExternalNodePort, 
KafkaListenerExternalRoute, KafkaListenerPlain, KafkaListenerTls

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationTls type
from KafkaListenerAuthenticationScramSha512, KafkaListenerAuthenticationOAuth. It must have
the value tls for the type KafkaListenerAuthenticationTls.

Property Description

type Must be tls.

string

13.2.6. KafkaListenerAuthenticationScramSha512 schema reference

Used in: GenericKafkaListener, KafkaListenerExternalIngress, 
KafkaListenerExternalLoadBalancer, KafkaListenerExternalNodePort, 
KafkaListenerExternalRoute, KafkaListenerPlain, KafkaListenerTls

The type property is a discriminator that distinguishes use of the 
KafkaListenerAuthenticationScramSha512 type from KafkaListenerAuthenticationTls, 
KafkaListenerAuthenticationOAuth. It must have the value scram-sha-512 for the type 
KafkaListenerAuthenticationScramSha512.

Property Description

type Must be scram-sha-512.

string

13.2.7. KafkaListenerAuthenticationOAuth schema reference

Used in: GenericKafkaListener, KafkaListenerExternalIngress, 
KafkaListenerExternalLoadBalancer, KafkaListenerExternalNodePort, 
KafkaListenerExternalRoute, KafkaListenerPlain, KafkaListenerTls

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationOAuth
type from KafkaListenerAuthenticationTls, KafkaListenerAuthenticationScramSha512. It must have
the value oauth for the type KafkaListenerAuthenticationOAuth.

Property Description

accessTokenIsJwt Configure whether the access token is treated as
JWT. This must be set to false if the authorization
server returns opaque tokens. Defaults to true.boolean

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

298



checkAccessTokenType Configure whether the access token type check is
performed or not. This should be set to false if the
authorization server does not include 'typ' claim in
JWT token. Defaults to true.

boolean

checkAudience Enable or disable audience checking. Audience
checks identify the recipients of tokens. If audience
checking is enabled, the OAuth Client ID also has to
be configured using the clientId property. The Kafka
broker will reject tokens that do not have its clientId
in their aud (audience) claim.Default value is false.

boolean

checkIssuer Enable or disable issuer checking. By default issuer is
checked using the value configured by 
validIssuerUri. Default value is true.boolean

clientId OAuth Client ID which the Kafka broker can use to
authenticate against the authorization server and use
the introspect endpoint URI.string

clientSecret Link to OpenShift Secret containing the OAuth client
secret which the Kafka broker can use to
authenticate against the authorization server and use
the introspect endpoint URI.

GenericSecretSource

customClaimCheck JsonPath filter query to be applied to the JWT token
or to the response of the introspection endpoint for
additional token validation. Not set by default.string

disableTlsHostnameVerification Enable or disable TLS hostname verification. Default
value is false.

boolean

enableECDSA Enable or disable ECDSA support by installing
BouncyCastle crypto provider. Default value is false.

boolean

enableOauthBearer Enable or disable OAuth authentication over
SASL_OAUTHBEARER. Default value is true.

boolean

enablePlain Enable or disable OAuth authentication over
SASL_PLAIN. There is no re-authentication support
when this mechanism is used. Default value is false.boolean

Property Description

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

299



fallbackUserNameClaim The fallback username claim to be used for the user
id if the claim specified by userNameClaim is not
present. This is useful when client_credentials
authentication only results in the client id being
provided in another claim. It only takes effect if 
userNameClaim is set.

string

fallbackUserNamePrefix The prefix to use with the value of 
fallbackUserNameClaim to construct the user id.
This only takes effect if fallbackUserNameClaim
is true, and the value is present for the claim.
Mapping usernames and client ids into the same user
id space is useful in preventing name collisions.

string

introspectionEndpointUri URI of the token introspection endpoint which can be
used to validate opaque non-JWT tokens.

string

jwksEndpointUri URI of the JWKS certificate endpoint, which can be
used for local JWT validation.

string

jwksExpirySeconds Configures how often are the JWKS certificates
considered valid. The expiry interval has to be at least
60 seconds longer then the refresh interval specified
in jwksRefreshSeconds. Defaults to 360 seconds.

integer

jwksMinRefreshPauseSeconds The minimum pause between two consecutive
refreshes. When an unknown signing key is
encountered the refresh is scheduled immediately,
but will always wait for this minimum pause. Defaults
to 1 second.

integer

jwksRefreshSeconds Configures how often are the JWKS certificates
refreshed. The refresh interval has to be at least 60
seconds shorter then the expiry interval specified in 
jwksExpirySeconds. Defaults to 300 seconds.

integer

Property Description

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

300



maxSecondsWithoutReauthentication Maximum number of seconds the authenticated
session remains valid without re-authentication. This
enables Apache Kafka re-authentication feature, and
causes sessions to expire when the access token
expires. If the access token expires before max time
or if max time is reached, the client has to re-
authenticate, otherwise the server will drop the
connection. Not set by default - the authenticated
session does not expire when the access token
expires. This option only applies to
SASL_OAUTHBEARER authentication mechanism
(when enableOauthBearer is true).

integer

tlsTrustedCertificates Trusted certificates for TLS connection to the OAuth
server.

CertSecretSource array

tokenEndpointUri URI of the Token Endpoint to use with SASL_PLAIN
mechanism when the client authenticates with
clientId and a secret.string

type Must be oauth.

string

userInfoEndpointUri URI of the User Info Endpoint to use as a fallback to
obtaining the user id when the Introspection
Endpoint does not return information that can be
used for the user id.

string

userNameClaim Name of the claim from the JWT authentication
token, Introspection Endpoint response or User Info
Endpoint response which will be used to extract the
user id. Defaults to sub.

string

validIssuerUri URI of the token issuer used for authentication.

string

validTokenType Valid value for the token_type attribute returned by
the Introspection Endpoint. No default value, and not
checked by default.string

Property Description

13.2.8. GenericSecretSource schema reference

Used in: KafkaClientAuthenticationOAuth, KafkaListenerAuthenticationOAuth

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

301



Property Description

key The key under which the secret value is stored in the
OpenShift Secret.

string

secretName The name of the OpenShift Secret containing the
secret value.

string

13.2.9. CertSecretSource schema reference

Used in: KafkaAuthorizationKeycloak, KafkaBridgeTls, KafkaClientAuthenticationOAuth, 
KafkaConnectTls, KafkaListenerAuthenticationOAuth, KafkaMirrorMaker2Tls, 
KafkaMirrorMakerTls

Property Description

certificate The name of the file certificate in the Secret.

string

secretName The name of the Secret containing the certificate.

string

13.2.10. GenericKafkaListenerConfiguration schema reference

Used in: GenericKafkaListener

Full list of GenericKafkaListenerConfiguration schema properties

Configuration for Kafka listeners.

13.2.10.1. brokerCertChainAndKey

The brokerCertChainAndKey property is only used with listeners that have TLS encryption enabled.
You can use the property to providing your own Kafka listener certificates.

Example configuration for a loadbalancer external listener with TLS encryption enabled

listeners:
  #...
  - name: external
    port: 9094
    type: loadbalancer
    tls: true
    authentication:
      type: tls

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

302



13.2.10.2. externalTrafficPolicy

The externalTrafficPolicy property is used with loadbalancer and nodeport listeners. When exposing
Kafka outside of OpenShift you can choose Local or Cluster. Local avoids hops to other nodes and
preserves the client IP, whereas Cluster does neither. The default is Cluster.

13.2.10.3. loadBalancerSourceRanges

The loadBalancerSourceRanges property is only used with loadbalancer listeners. When exposing
Kafka outside of OpenShift use source ranges, in addition to labels and annotations, to customize how a
service is created.

Example source ranges configured for a loadbalancer listener

13.2.10.4. class

The class property is only used with ingress listeners. You can configure the Ingress class using the 
class property.

Example of an external listener of type ingress using Ingress class nginx-internal

    configuration:
      brokerCertChainAndKey:
        secretName: my-secret
        certificate: my-listener-certificate.crt
        key: my-listener-key.key
# ...

listeners:
  #...
  - name: external
    port: 9094
    type: loadbalancer
    tls: false
    configuration:
      externalTrafficPolicy: Local
      loadBalancerSourceRanges:
        - 10.0.0.0/8
        - 88.208.76.87/32
      # ...
# ...

listeners:
  #...
  - name: external
    port: 9094
    type: ingress
    tls: true
    configuration:
      class: nginx-internal
    # ...
# ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

303



13.2.10.5. preferredNodePortAddressType

The preferredNodePortAddressType property is only used with nodeport listeners.

Use the preferredNodePortAddressType property in your listener configuration to specify the first
address type checked as the node address. This property is useful, for example, if your deployment does
not have DNS support, or you only want to expose a broker internally through an internal DNS or IP
address. If an address of this type is found, it is used. If the preferred address type is not found, AMQ
Streams proceeds through the types in the standard order of priority:

1. ExternalDNS

2. ExternalIP

3. Hostname

4. InternalDNS

5. InternalIP

Example of an external listener configured with a preferred node port address type

13.2.10.6. useServiceDnsDomain

The useServiceDnsDomain property is only used with internal listeners. It defines whether the fully-
qualified DNS names that include the cluster service suffix (usually .cluster.local) are used. With 
useServiceDnsDomain set as false, the advertised addresses are generated without the service suffix;
for example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc. With 
useServiceDnsDomain set as true, the advertised addresses are generated with the service suffix; for
example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc.cluster.local. Default is false.

Example of an internal listener configured to use the Service DNS domain

If your OpenShift cluster uses a different service suffix than .cluster.local, you can configure the suffix

listeners:
  #...
  - name: external
    port: 9094
    type: nodeport
    tls: false
    configuration:
      preferredNodePortAddressType: InternalDNS
      # ...
# ...

listeners:
  #...
  - name: plain
    port: 9092
    type: internal
    tls: false
    configuration:
      useServiceDnsDomain: true
      # ...
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

304



If your OpenShift cluster uses a different service suffix than .cluster.local, you can configure the suffix
using the KUBERNETES_SERVICE_DNS_DOMAIN environment variable in the Cluster Operator
configuration. See Section 5.1.1, “Cluster Operator configuration” for more details.

13.2.10.7. GenericKafkaListenerConfiguration schema properties

Property Description

brokerCertChainAndKey Reference to the Secret which holds the certificate
and private key pair which will be used for this
listener. The certificate can optionally contain the
whole chain. This field can be used only with listeners
with enabled TLS encryption.

CertAndKeySecretSource

externalTrafficPolicy Specifies whether the service routes external traffic
to node-local or cluster-wide endpoints. Cluster
may cause a second hop to another node and
obscures the client source IP. Local avoids a second
hop for LoadBalancer and Nodeport type services
and preserves the client source IP (when supported
by the infrastructure). If unspecified, OpenShift will
use Cluster as the default.This field can be used
only with loadbalancer or nodeport type listener.

string (one of [Local, Cluster])

loadBalancerSourceRanges A list of CIDR ranges (for example 10.0.0.0/8 or 
130.211.204.1/32) from which clients can connect
to load balancer type listeners. If supported by the
platform, traffic through the loadbalancer is
restricted to the specified CIDR ranges. This field is
applicable only for loadbalancer type services and is
ignored if the cloud provider does not support the
feature. For more information, see https://v1-
17.docs.kubernetes.io/docs/tasks/access-
application-cluster/configure-cloud-provider-
firewall/. This field can be used only with 
loadbalancer type listener.

string array

bootstrap Bootstrap configuration.

GenericKafkaListenerConfigurationBootstrap

brokers Per-broker configurations.

GenericKafkaListenerConfigurationBroker
array

class Configures the Ingress class that defines which 
Ingress controller will be used. This field can be
used only with ingress type listener. If not specified,
the default Ingress controller will be used.

string

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

305

https://v1-17.docs.kubernetes.io/docs/tasks/access-application-cluster/configure-cloud-provider-firewall/


preferredNodePortAddressType Defines which address type should be used as the
node address. Available types are: ExternalDNS, 
ExternalIP, InternalDNS, InternalIP and 
Hostname. By default, the addresses will be used in
the following order (the first one found will be used):
* ExternalDNS * ExternalIP * InternalDNS * 
InternalIP * Hostname

This field can be used to select the address type
which will be used as the preferred type and checked
first. In case no address will be found for this address
type, the other types will be used in the default
order.This field can be used only with nodeport type
listener..

string (one of [ExternalDNS, ExternalIP, Hostname,
InternalIP, InternalDNS])

useServiceDnsDomain Configures whether the OpenShift service DNS
domain should be used or not. If set to true, the
generated addresses will contain the service DNS
domain suffix (by default .cluster.local, can be
configured using environment variable 
KUBERNETES_SERVICE_DNS_DOMAIN).
Defaults to false.This field can be used only with 
internal type listener.

boolean

Property Description

13.2.11. CertAndKeySecretSource schema reference

Used in: GenericKafkaListenerConfiguration, IngressListenerConfiguration, 
KafkaClientAuthenticationTls, KafkaListenerExternalConfiguration, 
NodePortListenerConfiguration, TlsListenerConfiguration

Property Description

certificate The name of the file certificate in the Secret.

string

key The name of the private key in the Secret.

string

secretName The name of the Secret containing the certificate.

string

13.2.12. GenericKafkaListenerConfigurationBootstrap schema reference

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

306



Used in: GenericKafkaListenerConfiguration

Full list of GenericKafkaListenerConfigurationBootstrap schema properties

Broker service equivalents of nodePort, host, loadBalancerIP and annotations properties are
configured in the GenericKafkaListenerConfigurationBroker schema.

13.2.12.1. alternativeNames

You can specify alternative names for the bootstrap service. The names are added to the broker
certificates and can be used for TLS hostname verification. The alternativeNames property is
applicable to all types of listeners.

Example of an external route listener configured with an additional bootstrap address

13.2.12.2. host

The host property is used with route and ingress listeners to specify the hostnames used by the
bootstrap and per-broker services.

A host property value is mandatory for ingress listener configuration, as the Ingress controller does not
assign any hostnames automatically. Make sure that the hostnames resolve to the Ingress endpoints.
AMQ Streams will not perform any validation that the requested hosts are available and properly routed
to the Ingress endpoints.

Example of host configuration for an ingress listener

listeners:
  #...
  - name: external
    port: 9094
    type: route
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        alternativeNames:
          - example.hostname1
          - example.hostname2
# ...

listeners:
  #...
  - name: external
    port: 9094
    type: ingress
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        host: bootstrap.myingress.com
      brokers:
      - broker: 0

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

307



By default, route listener hosts are automatically assigned by OpenShift. However, you can override the
assigned route hosts by specifying hosts.

AMQ Streams does not perform any validation that the requested hosts are available. You must ensure
that they are free and can be used.

Example of host configuration for a route listener

13.2.12.3. nodePort

By default, the port numbers used for the bootstrap and broker services are automatically assigned by
OpenShift. You can override the assigned node ports for nodeport listeners by specifying the
requested port numbers.

AMQ Streams does not perform any validation on the requested ports. You must ensure that they are
free and available for use.

Example of an external listener configured with overrides for node ports

        host: broker-0.myingress.com
      - broker: 1
        host: broker-1.myingress.com
      - broker: 2
        host: broker-2.myingress.com
# ...

# ...
listeners:
  #...
  - name: external
    port: 9094
    type: route
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        host: bootstrap.myrouter.com
      brokers:
      - broker: 0
        host: broker-0.myrouter.com
      - broker: 1
        host: broker-1.myrouter.com
      - broker: 2
        host: broker-2.myrouter.com
# ...

# ...
listeners:
  #...
  - name: external
    port: 9094
    type: nodeport
    tls: true
    authentication:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

308



13.2.12.4. loadBalancerIP

Use the loadBalancerIP property to request a specific IP address when creating a loadbalancer. Use this
property when you need to use a loadbalancer with a specific IP address. The loadBalancerIP field is
ignored if the cloud provider does not support the feature.

Example of an external listener of type loadbalancer with specific loadbalancer IP address
requests

13.2.12.5. annotations

Use the annotations property to add annotations to OpenShift resources related to the listeners. You
can use these annotations, for example, to instrument DNS tooling such as External DNS, which
automatically assigns DNS names to the loadbalancer services.

Example of an external listener of type loadbalancer using annotations

      type: tls
    configuration:
      bootstrap:
        nodePort: 32100
      brokers:
      - broker: 0
        nodePort: 32000
      - broker: 1
        nodePort: 32001
      - broker: 2
        nodePort: 32002
# ...

# ...
listeners:
  #...
  - name: external
    port: 9094
    type: loadbalancer
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        loadBalancerIP: 172.29.3.10
      brokers:
      - broker: 0
        loadBalancerIP: 172.29.3.1
      - broker: 1
        loadBalancerIP: 172.29.3.2
      - broker: 2
        loadBalancerIP: 172.29.3.3
# ...

# ...
listeners:
  #...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

309

https://github.com/kubernetes-incubator/external-dns


13.2.12.6. GenericKafkaListenerConfigurationBootstrap schema properties

Property Description

alternativeNames Additional alternative names for the bootstrap
service. The alternative names will be added to the
list of subject alternative names of the TLS
certificates.

string array

host The bootstrap host. This field will be used in the
Ingress resource or in the Route resource to specify
the desired hostname. This field can be used only
with route (optional) or ingress (required) type
listeners.

string

nodePort Node port for the bootstrap service. This field can be
used only with nodeport type listener.

integer

loadBalancerIP The loadbalancer is requested with the IP address
specified in this field. This feature depends on
whether the underlying cloud provider supports
specifying the loadBalancerIP when a load
balancer is created. This field is ignored if the cloud
provider does not support the feature.This field can
be used only with loadbalancer type listener.

string

  - name: external
    port: 9094
    type: loadbalancer
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        annotations:
          external-dns.alpha.kubernetes.io/hostname: kafka-bootstrap.mydomain.com.
          external-dns.alpha.kubernetes.io/ttl: "60"
      brokers:
      - broker: 0
        annotations:
          external-dns.alpha.kubernetes.io/hostname: kafka-broker-0.mydomain.com.
          external-dns.alpha.kubernetes.io/ttl: "60"
      - broker: 1
        annotations:
          external-dns.alpha.kubernetes.io/hostname: kafka-broker-1.mydomain.com.
          external-dns.alpha.kubernetes.io/ttl: "60"
      - broker: 2
        annotations:
          external-dns.alpha.kubernetes.io/hostname: kafka-broker-2.mydomain.com.
          external-dns.alpha.kubernetes.io/ttl: "60"
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

310



annotations Annotations that will be added to the Ingress, 
Route, or Service resource. You can use this field
to configure DNS providers such as External DNS.
This field can be used only with loadbalancer, 
nodeport, route, or ingress type listeners.

map

labels Labels that will be added to the Ingress, Route, or 
Service resource. This field can be used only with 
loadbalancer, nodeport, route, or ingress type
listeners.

map

Property Description

13.2.13. GenericKafkaListenerConfigurationBroker schema reference

Used in: GenericKafkaListenerConfiguration

Full list of GenericKafkaListenerConfigurationBroker schema properties

You can see example configuration for the nodePort, host, loadBalancerIP and annotations
properties in the GenericKafkaListenerConfigurationBootstrap schema, which configures bootstrap
service overrides.

Advertised addresses for brokers

By default, AMQ Streams tries to automatically determine the hostnames and ports that your Kafka
cluster advertises to its clients. This is not sufficient in all situations, because the infrastructure on which
AMQ Streams is running might not provide the right hostname or port through which Kafka can be
accessed.

You can specify a broker ID and customize the advertised hostname and port in the configuration
property of the listener. AMQ Streams will then automatically configure the advertised address in the
Kafka brokers and add it to the broker certificates so it can be used for TLS hostname verification.
Overriding the advertised host and ports is available for all types of listeners.

Example of an external route listener configured with overrides for advertised addresses

listeners:
  #...
  - name: external
    port: 9094
    type: route
    tls: true
    authentication:
      type: tls
    configuration:
      brokers:
      - broker: 0
        advertisedHost: example.hostname.0
        advertisedPort: 12340
      - broker: 1
        advertisedHost: example.hostname.1
        advertisedPort: 12341

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

311



13.2.13.1. GenericKafkaListenerConfigurationBroker schema properties

Property Description

broker ID of the kafka broker (broker identifier). Broker IDs
start from 0 and correspond to the number of broker
replicas.integer

advertisedHost The host name which will be used in the brokers' 
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers' 
advertised.brokers.

integer

host The broker host. This field will be used in the Ingress
resource or in the Route resource to specify the
desired hostname. This field can be used only with 
route (optional) or ingress (required) type
listeners.

string

nodePort Node port for the per-broker service. This field can
be used only with nodeport type listener.

integer

loadBalancerIP The loadbalancer is requested with the IP address
specified in this field. This feature depends on
whether the underlying cloud provider supports
specifying the loadBalancerIP when a load
balancer is created. This field is ignored if the cloud
provider does not support the feature.This field can
be used only with loadbalancer type listener.

string

annotations Annotations that will be added to the Ingress or 
Service resource. You can use this field to configure
DNS providers such as External DNS. This field can
be used only with loadbalancer, nodeport, or 
ingress type listeners.

map

labels Labels that will be added to the Ingress, Route, or 
Service resource. This field can be used only with 
loadbalancer, nodeport, route, or ingress type
listeners.

map

      - broker: 2
        advertisedHost: example.hostname.2
        advertisedPort: 12342
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

312



13.2.14. KafkaListeners schema reference

The type KafkaListeners has been deprecated and is removed in API version v1beta2. Please use 
GenericKafkaListener instead.

Used in: KafkaClusterSpec

Refer to previous documentation for example configuration.

Property Description

plain Configures plain listener on port 9092.

KafkaListenerPlain

tls Configures TLS listener on port 9093.

KafkaListenerTls

external Configures external listener on port 9094. The type
depends on the value of the external.type property
within the given object, which must be one of [route,
loadbalancer, nodeport, ingress].

KafkaListenerExternalRoute, 
KafkaListenerExternalLoadBalancer, 
KafkaListenerExternalNodePort, 
KafkaListenerExternalIngress

13.2.15. KafkaListenerPlain schema reference

Used in: KafkaListeners

Property Description

authentication Authentication configuration for this listener. Since
this listener does not use TLS transport you cannot
configure an authentication with type: tls. The type
depends on the value of the authentication.type
property within the given object, which must be one
of [tls, scram-sha-512, oauth].

KafkaListenerAuthenticationTls, 
KafkaListenerAuthenticationScramSha512, 
KafkaListenerAuthenticationOAuth

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list. For more information, see the
external documentation for networking.k8s.io/v1
networkpolicypeer.

NetworkPolicyPeer array

13.2.16. KafkaListenerTls schema reference

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

313

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io


Used in: KafkaListeners

Property Description

authentication Authentication configuration for this listener. The
type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
oauth].

KafkaListenerAuthenticationTls, 
KafkaListenerAuthenticationScramSha512, 
KafkaListenerAuthenticationOAuth

configuration Configuration of TLS listener.

TlsListenerConfiguration

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list. For more information, see the
external documentation for networking.k8s.io/v1
networkpolicypeer.

NetworkPolicyPeer array

13.2.17. TlsListenerConfiguration schema reference

Used in: KafkaListenerTls

Property Description

brokerCertChainAndKey Reference to the Secret which holds the certificate
and private key pair. The certificate can optionally
contain the whole chain.CertAndKeySecretSource

13.2.18. KafkaListenerExternalRoute schema reference

Used in: KafkaListeners

The type property is a discriminator that distinguishes use of the KafkaListenerExternalRoute type
from KafkaListenerExternalLoadBalancer, KafkaListenerExternalNodePort, 
KafkaListenerExternalIngress. It must have the value route for the type KafkaListenerExternalRoute.

Property Description

type Must be route.

string

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

314

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io


authentication Authentication configuration for Kafka brokers. The
type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
oauth].

KafkaListenerAuthenticationTls, 
KafkaListenerAuthenticationScramSha512, 
KafkaListenerAuthenticationOAuth

overrides Overrides for external bootstrap and broker services
and externally advertised addresses.

RouteListenerOverride

configuration External listener configuration.

KafkaListenerExternalConfiguration

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list. For more information, see the
external documentation for networking.k8s.io/v1
networkpolicypeer.

NetworkPolicyPeer array

Property Description

13.2.19. RouteListenerOverride schema reference

Used in: KafkaListenerExternalRoute

Property Description

bootstrap External bootstrap service configuration.

RouteListenerBootstrapOverride

brokers External broker services configuration.

RouteListenerBrokerOverride array

13.2.20. RouteListenerBootstrapOverride schema reference

Used in: RouteListenerOverride

Property Description

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

315

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io


address Additional address name for the bootstrap service.
The address will be added to the list of subject
alternative names of the TLS certificates.string

host Host for the bootstrap route. This field will be used in
the spec.host field of the OpenShift Route.

string

Property Description

13.2.21. RouteListenerBrokerOverride schema reference

Used in: RouteListenerOverride

Property Description

broker Id of the kafka broker (broker identifier).

integer

advertisedHost The host name which will be used in the brokers' 
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers' 
advertised.brokers.

integer

host Host for the broker route. This field will be used in the
spec.host field of the OpenShift Route.

string

13.2.22. KafkaListenerExternalConfiguration schema reference

Used in: KafkaListenerExternalLoadBalancer, KafkaListenerExternalRoute

Property Description

brokerCertChainAndKey Reference to the Secret which holds the certificate
and private key pair. The certificate can optionally
contain the whole chain.CertAndKeySecretSource

13.2.23. KafkaListenerExternalLoadBalancer schema reference

Used in: KafkaListeners

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

316



The type property is a discriminator that distinguishes use of the KafkaListenerExternalLoadBalancer
type from KafkaListenerExternalRoute, KafkaListenerExternalNodePort, 
KafkaListenerExternalIngress. It must have the value loadbalancer for the type 
KafkaListenerExternalLoadBalancer.

Property Description

type Must be loadbalancer.

string

authentication Authentication configuration for Kafka brokers. The
type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
oauth].

KafkaListenerAuthenticationTls, 
KafkaListenerAuthenticationScramSha512, 
KafkaListenerAuthenticationOAuth

overrides Overrides for external bootstrap and broker services
and externally advertised addresses.

LoadBalancerListenerOverride

configuration External listener configuration.

KafkaListenerExternalConfiguration

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list. For more information, see the
external documentation for networking.k8s.io/v1
networkpolicypeer.

NetworkPolicyPeer array

tls Enables TLS encryption on the listener. By default
set to true for enabled TLS encryption.

boolean

13.2.24. LoadBalancerListenerOverride schema reference

Used in: KafkaListenerExternalLoadBalancer

Property Description

bootstrap External bootstrap service configuration.

LoadBalancerListenerBootstrapOverride

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

317

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io


brokers External broker services configuration.

LoadBalancerListenerBrokerOverride array

Property Description

13.2.25. LoadBalancerListenerBootstrapOverride schema reference

Used in: LoadBalancerListenerOverride

Property Description

address Additional address name for the bootstrap service.
The address will be added to the list of subject
alternative names of the TLS certificates.string

dnsAnnotations Annotations that will be added to the Service
resource. You can use this field to configure DNS
providers such as External DNS.map

loadBalancerIP The loadbalancer is requested with the IP address
specified in this field. This feature depends on
whether the underlying cloud provider supports
specifying the loadBalancerIP when a load
balancer is created. This field is ignored if the cloud
provider does not support the feature.

string

13.2.26. LoadBalancerListenerBrokerOverride schema reference

Used in: LoadBalancerListenerOverride

Property Description

broker Id of the kafka broker (broker identifier).

integer

advertisedHost The host name which will be used in the brokers' 
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers' 
advertised.brokers.

integer

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

318



dnsAnnotations Annotations that will be added to the Service
resources for individual brokers. You can use this field
to configure DNS providers such as External DNS.map

loadBalancerIP The loadbalancer is requested with the IP address
specified in this field. This feature depends on
whether the underlying cloud provider supports
specifying the loadBalancerIP when a load
balancer is created. This field is ignored if the cloud
provider does not support the feature.

string

Property Description

13.2.27. KafkaListenerExternalNodePort schema reference

Used in: KafkaListeners

The type property is a discriminator that distinguishes use of the KafkaListenerExternalNodePort type
from KafkaListenerExternalRoute, KafkaListenerExternalLoadBalancer, 
KafkaListenerExternalIngress. It must have the value nodeport for the type 
KafkaListenerExternalNodePort.

Property Description

type Must be nodeport.

string

authentication Authentication configuration for Kafka brokers. The
type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
oauth].

KafkaListenerAuthenticationTls, 
KafkaListenerAuthenticationScramSha512, 
KafkaListenerAuthenticationOAuth

overrides Overrides for external bootstrap and broker services
and externally advertised addresses.

NodePortListenerOverride

configuration External listener configuration.

NodePortListenerConfiguration

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

319



networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list. For more information, see the
external documentation for networking.k8s.io/v1
networkpolicypeer.

NetworkPolicyPeer array

tls Enables TLS encryption on the listener. By default
set to true for enabled TLS encryption.

boolean

Property Description

13.2.28. NodePortListenerOverride schema reference

Used in: KafkaListenerExternalNodePort

Property Description

bootstrap External bootstrap service configuration.

NodePortListenerBootstrapOverride

brokers External broker services configuration.

NodePortListenerBrokerOverride array

13.2.29. NodePortListenerBootstrapOverride schema reference

Used in: NodePortListenerOverride

Property Description

address Additional address name for the bootstrap service.
The address will be added to the list of subject
alternative names of the TLS certificates.string

dnsAnnotations Annotations that will be added to the Service
resource. You can use this field to configure DNS
providers such as External DNS.map

nodePort Node port for the bootstrap service.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

320

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io


integer

Property Description

13.2.30. NodePortListenerBrokerOverride schema reference

Used in: NodePortListenerOverride

Property Description

broker Id of the kafka broker (broker identifier).

integer

advertisedHost The host name which will be used in the brokers' 
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers' 
advertised.brokers.

integer

nodePort Node port for the broker service.

integer

dnsAnnotations Annotations that will be added to the Service
resources for individual brokers. You can use this field
to configure DNS providers such as External DNS.map

13.2.31. NodePortListenerConfiguration schema reference

Used in: KafkaListenerExternalNodePort

Property Description

brokerCertChainAndKey Reference to the Secret which holds the certificate
and private key pair. The certificate can optionally
contain the whole chain.CertAndKeySecretSource

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

321



preferredAddressType Defines which address type should be used as the
node address. Available types are: ExternalDNS, 
ExternalIP, InternalDNS, InternalIP and 
Hostname. By default, the addresses will be used in
the following order (the first one found will be used):
* ExternalDNS * ExternalIP * InternalDNS * 
InternalIP * Hostname

This field can be used to select the address type
which will be used as the preferred type and checked
first. In case no address will be found for this address
type, the other types will be used in the default
order..

string (one of [ExternalDNS, ExternalIP, Hostname,
InternalIP, InternalDNS])

Property Description

13.2.32. KafkaListenerExternalIngress schema reference

Used in: KafkaListeners

The type property is a discriminator that distinguishes use of the KafkaListenerExternalIngress type
from KafkaListenerExternalRoute, KafkaListenerExternalLoadBalancer, 
KafkaListenerExternalNodePort. It must have the value ingress for the type 
KafkaListenerExternalIngress.

Property Description

type Must be ingress.

string

authentication Authentication configuration for Kafka brokers. The
type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
oauth].

KafkaListenerAuthenticationTls, 
KafkaListenerAuthenticationScramSha512, 
KafkaListenerAuthenticationOAuth

class Configures the Ingress class that defines which 
Ingress controller will be used.

string

configuration External listener configuration.

IngressListenerConfiguration

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

322



networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list. For more information, see the
external documentation for networking.k8s.io/v1
networkpolicypeer.

NetworkPolicyPeer array

Property Description

13.2.33. IngressListenerConfiguration schema reference

Used in: KafkaListenerExternalIngress

Property Description

bootstrap External bootstrap ingress configuration.

IngressListenerBootstrapConfiguration

brokers External broker ingress configuration.

IngressListenerBrokerConfiguration array

brokerCertChainAndKey Reference to the Secret which holds the certificate
and private key pair. The certificate can optionally
contain the whole chain.CertAndKeySecretSource

13.2.34. IngressListenerBootstrapConfiguration schema reference

Used in: IngressListenerConfiguration

Property Description

address Additional address name for the bootstrap service.
The address will be added to the list of subject
alternative names of the TLS certificates.string

dnsAnnotations Annotations that will be added to the Ingress
resource. You can use this field to configure DNS
providers such as External DNS.map

host Host for the bootstrap route. This field will be used in
the Ingress resource.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

323

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#networkpolicypeer-v1-networking-k8s-io


string

Property Description

13.2.35. IngressListenerBrokerConfiguration schema reference

Used in: IngressListenerConfiguration

Property Description

broker Id of the kafka broker (broker identifier).

integer

advertisedHost The host name which will be used in the brokers' 
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers' 
advertised.brokers.

integer

host Host for the broker ingress. This field will be used in
the Ingress resource.

string

dnsAnnotations Annotations that will be added to the Ingress
resources for individual brokers. You can use this field
to configure DNS providers such as External DNS.map

13.2.36. EphemeralStorage schema reference

Used in: JbodStorage, KafkaClusterSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the EphemeralStorage type from 
PersistentClaimStorage. It must have the value ephemeral for the type EphemeralStorage.

Property Description

id Storage identification number. It is mandatory only
for storage volumes defined in a storage of type
'jbod'.integer

sizeLimit When type=ephemeral, defines the total amount of
local storage required for this EmptyDir volume (for
example 1Gi).string

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

324



type Must be ephemeral.

string

Property Description

13.2.37. PersistentClaimStorage schema reference

Used in: JbodStorage, KafkaClusterSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the PersistentClaimStorage type from 
EphemeralStorage. It must have the value persistent-claim for the type PersistentClaimStorage.

Property Description

type Must be persistent-claim.

string

size When type=persistent-claim, defines the size of the
persistent volume claim (i.e 1Gi). Mandatory when
type=persistent-claim.string

selector Specifies a specific persistent volume to use. It
contains key:value pairs representing labels for
selecting such a volume.map

deleteClaim Specifies if the persistent volume claim has to be
deleted when the cluster is un-deployed.

boolean

class The storage class to use for dynamic volume
allocation.

string

id Storage identification number. It is mandatory only
for storage volumes defined in a storage of type
'jbod'.integer

overrides Overrides for individual brokers. The overrides field
allows to specify a different configuration for
different brokers.PersistentClaimStorageOverride array

13.2.38. PersistentClaimStorageOverride schema reference

Used in: PersistentClaimStorage

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

325



Property Description

class The storage class to use for dynamic volume
allocation for this broker.

string

broker Id of the kafka broker (broker identifier).

integer

13.2.39. JbodStorage schema reference

Used in: KafkaClusterSpec

The type property is a discriminator that distinguishes use of the JbodStorage type from 
EphemeralStorage, PersistentClaimStorage. It must have the value jbod for the type JbodStorage.

Property Description

type Must be jbod.

string

volumes List of volumes as Storage objects representing the
JBOD disks array.

EphemeralStorage, PersistentClaimStorage
array

13.2.40. KafkaAuthorizationSimple schema reference

Used in: KafkaClusterSpec

Full list of KafkaAuthorizationSimple schema properties

Simple authorization in AMQ Streams uses the AclAuthorizer plugin, the default Access Control Lists
(ACLs) authorization plugin provided with Apache Kafka. ACLs allow you to define which users have
access to which resources at a granular level.

Configure the Kafka custom resource to use simple authorization. Set the type property in the 
authorization section to the value simple, and configure a list of super users.

Access rules are configured for the KafkaUser, as described in the ACLRule schema reference .

13.2.40.1. superUsers

A list of user principals treated as super users, so that they are always allowed without querying ACL
rules. For more information see Kafka authorization.

An example of simple authorization configuration

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

326



NOTE

The super.user configuration option in the config property in Kafka.spec.kafka is
ignored. Designate super users in the authorization property instead. For more
information, see Kafka broker configuration .

13.2.40.2. KafkaAuthorizationSimple schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationSimple type from 
KafkaAuthorizationOpa, KafkaAuthorizationKeycloak. It must have the value simple for the type 
KafkaAuthorizationSimple.

Property Description

type Must be simple.

string

superUsers List of super users. Should contain list of user
principals which should get unlimited access rights.

string array

13.2.41. KafkaAuthorizationOpa schema reference

Used in: KafkaClusterSpec

Full list of KafkaAuthorizationOpa schema properties

To use Open Policy Agent  authorization, set the type property in the authorization section to the value
opa, and configure OPA properties as required.

13.2.41.1. url

The URL used to connect to the Open Policy Agent server. The URL has to include the policy which will
be queried by the authorizer. Required.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
  namespace: myproject
spec:
  kafka:
    # ...
    authorization:
      type: simple
      superUsers:
        - CN=client_1
        - user_2
        - CN=client_3
    # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

327

https://www.openpolicyagent.org/


13.2.41.2. allowOnError

Defines whether a Kafka client should be allowed or denied by default when the authorizer fails to query
the Open Policy Agent, for example, when it is temporarily unavailable. Defaults to false - all actions will
be denied.

13.2.41.3. initialCacheCapacity

Initial capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for
every request. Defaults to 5000.

13.2.41.4. maximumCacheSize

Maximum capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent
for every request. Defaults to 50000.

13.2.41.5. expireAfterMs

The expiration of the records kept in the local cache to avoid querying the Open Policy Agent for every
request. Defines how often the cached authorization decisions are reloaded from the Open Policy Agent
server. In milliseconds. Defaults to 3600000 milliseconds (1 hour).

13.2.41.6. superUsers

A list of user principals treated as super users, so that they are always allowed without querying the open
Policy Agent policy. For more information see Kafka authorization.

An example of Open Policy Agent authorizer configuration

13.2.41.7. KafkaAuthorizationOpa schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationOpa type from 

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
  namespace: myproject
spec:
  kafka:
    # ...
    authorization:
      type: opa
      url: http://opa:8181/v1/data/kafka/allow
      allowOnError: false
      initialCacheCapacity: 1000
      maximumCacheSize: 10000
      expireAfterMs: 60000
      superUsers:
        - CN=fred
        - sam
        - CN=edward
    # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

328



The type property is a discriminator that distinguishes use of the KafkaAuthorizationOpa type from 
KafkaAuthorizationSimple, KafkaAuthorizationKeycloak. It must have the value opa for the type 
KafkaAuthorizationOpa.

Property Description

type Must be opa.

string

url The URL used to connect to the Open Policy Agent
server. The URL has to include the policy which will
be queried by the authorizer. This option is required.string

allowOnError Defines whether a Kafka client should be allowed or
denied by default when the authorizer fails to query
the Open Policy Agent, for example, when it is
temporarily unavailable). Defaults to false - all
actions will be denied.

boolean

initialCacheCapacity Initial capacity of the local cache used by the
authorizer to avoid querying the Open Policy Agent
for every request Defaults to 5000.integer

maximumCacheSize Maximum capacity of the local cache used by the
authorizer to avoid querying the Open Policy Agent
for every request. Defaults to 50000.integer

expireAfterMs The expiration of the records kept in the local cache
to avoid querying the Open Policy Agent for every
request. Defines how often the cached authorization
decisions are reloaded from the Open Policy Agent
server. In milliseconds. Defaults to 3600000.

integer

superUsers List of super users, which is specifically a list of user
principals that have unlimited access rights.

string array

13.2.42. KafkaAuthorizationKeycloak schema reference

Used in: KafkaClusterSpec

The type property is a discriminator that distinguishes use of the KafkaAuthorizationKeycloak type
from KafkaAuthorizationSimple, KafkaAuthorizationOpa. It must have the value keycloak for the
type KafkaAuthorizationKeycloak.

Property Description

type Must be keycloak.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

329



string

clientId OAuth Client ID which the Kafka client can use to
authenticate against the OAuth server and use the
token endpoint URI.string

tokenEndpointUri Authorization server token endpoint URI.

string

tlsTrustedCertificates Trusted certificates for TLS connection to the OAuth
server.

CertSecretSource array

disableTlsHostnameVerification Enable or disable TLS hostname verification. Default
value is false.

boolean

delegateToKafkaAcls Whether authorization decision should be delegated
to the 'Simple' authorizer if DENIED by Red Hat
Single Sign-On Authorization Services policies.
Default value is false.

boolean

grantsRefreshPeriodSeconds The time between two consecutive grants refresh
runs in seconds. The default value is 60.

integer

grantsRefreshPoolSize The number of threads to use to refresh grants for
active sessions. The more threads, the more
parallelism, so the sooner the job completes.
However, using more threads places a heavier load
on the authorization server. The default value is 5.

integer

superUsers List of super users. Should contain list of user
principals which should get unlimited access rights.

string array

Property Description

13.2.43. Rack schema reference

Used in: KafkaClusterSpec, KafkaConnectS2ISpec, KafkaConnectSpec

Full list of Rack schema properties

Configures rack awareness to spread partition replicas across different racks.

A rack can represent an availability zone, data center, or an actual rack in your data center. By

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

330



A rack can represent an availability zone, data center, or an actual rack in your data center. By
configuring a rack for a Kafka cluster, consumers can fetch data from the closest replica. This is useful
for reducing the load on your network when a Kafka cluster spans multiple datacenters.

To configure Kafka brokers for rack awareness, you specify a topologyKey value to match the label of
the cluster node used by OpenShift when scheduling Kafka broker pods to nodes.

If the OpenShift cluster is running on a cloud provider platform, the label must represent the availability
zone where the node is running. Usually, nodes are labeled with the topology.kubernetes.io/zone label
(or failure-domain.beta.kubernetes.io/zone on older OpenShift versions), which can be used as the 
topologyKey value.

The rack awareness configuration spreads the broker pods and partition replicas across zones,
improving resiliency, and also sets a broker.rack configuration for each Kafka broker. The broker.rack
configuration assigns a rack ID to each broker.

Consult your OpenShift administrator regarding the node label that represents the zone or rack into
which the node is deployed.

Example rack configuration for Kafka

Use the RackAwareReplicaSelector implementation for the Kafka ReplicaSelector plugin if you want
clients to consume from the closest replica. The ReplicaSelector plugin provides the logic that enables
clients to consume from the nearest replica. Specify RackAwareReplicaSelector for the 
replica.selector.class to switch from the default implementation. The default implementation uses 
LeaderSelector to always select the leader replica for the client. By switching from the leader replica to
the replica follower, there is some cost to latency. If required, you can also customize your own
implementation.

For clients, including Kafka Connect, you specify the same topology key as the broker that the client will
use to consume messages.

Example rack configuration for Kafka Connect

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    rack:
      topologyKey: topology.kubernetes.io/zone
    config:
      # ...
      replica.selector.class: org.apache.kafka.common.replica.RackAwareReplicaSelector
    # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
# ...
spec:
  kafka:
    # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

331



The client is assigned a client.rack ID.

RackAwareReplicaSelector associates matching broker.rack and client.rack IDs, so the client can
consume from the nearest replica.

Figure 13.1. Example showing client consuming from replicas in the same availability zone

If there are multiple replicas in the same rack, RackAwareReplicaSelector always selects the most up-
to-date replica. If the rack ID is not specified, or if it cannot find a replica with the same rack ID, it will fall
back to the leader replica.

For more information about OpenShift node labels, see Well-Known Labels, Annotations and Taints .

13.2.43.1. Rack schema properties

Property Description

topologyKey A key that matches labels assigned to the OpenShift
cluster nodes. The value of the label is used to set
the broker’s broker.rack config and client.rack in
Kafka Connect.

string

13.2.44. Probe schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectS2ISpec, KafkaConnectSpec, KafkaExporterSpec, 

    rack:
      topologyKey: topology.kubernetes.io/zone
    # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

332

https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/


KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec, TlsSidecar, TopicOperatorSpec, 
ZookeeperClusterSpec

Property Description

failureThreshold Minimum consecutive failures for the probe to be
considered failed after having succeeded. Defaults to
3. Minimum value is 1.integer

initialDelaySeconds The initial delay before first the health is first
checked. Default to 15 seconds. Minimum value is 0.

integer

periodSeconds How often (in seconds) to perform the probe.
Default to 10 seconds. Minimum value is 1.

integer

successThreshold Minimum consecutive successes for the probe to be
considered successful after having failed. Defaults to
1. Must be 1 for liveness. Minimum value is 1.integer

timeoutSeconds The timeout for each attempted health check.
Default to 5 seconds. Minimum value is 1.

integer

13.2.45. JvmOptions schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, 
KafkaMirrorMakerSpec, TopicOperatorSpec, ZookeeperClusterSpec

Property Description

-XX A map of -XX options to the JVM.

map

-Xms -Xms option to to the JVM.

string

-Xmx -Xmx option to to the JVM.

string

gcLoggingEnabled Specifies whether the Garbage Collection logging is
enabled. The default is false.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

333



boolean

javaSystemProperties A map of additional system properties which will be
passed using the -D option to the JVM.

SystemProperty array

Property Description

13.2.46. SystemProperty schema reference

Used in: JvmOptions

Property Description

name The system property name.

string

value The system property value.

string

13.2.47. KafkaJmxOptions schema reference

Used in: KafkaClusterSpec, KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMaker2Spec

Full list of KafkaJmxOptions schema properties

Configures JMX connection options.

JMX metrics are obtained from Kafka brokers, Kafka Connect, and MirrorMaker 2.0 by opening a JMX
port on 9999. Use the jmxOptions property to configure a password-protected or an unprotected JMX
port. Using password protection prevents unauthorized pods from accessing the port.

You can then obtain metrics about the component.

For example, for each Kafka broker you can obtain bytes-per-second usage data from clients, or the
request rate of the network of the broker.

To enable security for the JMX port, set the type parameter in the authentication field to password.

Example password-protected JMX configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

334



You can then deploy a pod into a cluster and obtain JMX metrics using the headless service by
specifying which broker you want to address.

For example, to get JMX metrics from broker 0 you specify:

CLUSTER-NAME-kafka-0 is name of the broker pod, and CLUSTER-NAME-kafka-brokers is the name
of the headless service to return the IPs of the broker pods.

If the JMX port is secured, you can get the username and password by referencing them from the JMX
Secret in the deployment of your pod.

For an unprotected JMX port, use an empty object {} to open the JMX port on the headless service.
You deploy a pod and obtain metrics in the same way as for the protected port, but in this case any pod
can read from the JMX port.

Example open port JMX configuration

Additional resources

For more information on the Kafka component metrics exposed using JMX, see the Apache
Kafka documentation.

13.2.47.1. KafkaJmxOptions schema properties

Property Description

authentication Authentication configuration for connecting to the
JMX port. The type depends on the value of the 
authentication.type property within the given
object, which must be one of [password].

KafkaJmxAuthenticationPassword

    # ...
    jmxOptions:
      authentication:
        type: "password"
    # ...
  zookeeper:
    # ...

"CLUSTER-NAME-kafka-0.CLUSTER-NAME-kafka-brokers"

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    jmxOptions: {}
    # ...
  zookeeper:
    # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

335

https://kafka.apache.org/documentation/


13.2.48. KafkaJmxAuthenticationPassword schema reference

Used in: KafkaJmxOptions

The type property is a discriminator that distinguishes use of the KafkaJmxAuthenticationPassword
type from other subtypes which may be added in the future. It must have the value password for the
type KafkaJmxAuthenticationPassword.

Property Description

type Must be password.

string

13.2.49. JmxPrometheusExporterMetrics schema reference

Used in: CruiseControlSpec, KafkaClusterSpec, KafkaConnectS2ISpec, KafkaConnectSpec, 
KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the JmxPrometheusExporterMetrics
type from other subtypes which may be added in the future. It must have the value 
jmxPrometheusExporter for the type JmxPrometheusExporterMetrics.

Property Description

type Must be jmxPrometheusExporter.

string

valueFrom ConfigMap entry where the Prometheus JMX
Exporter configuration is stored. For details of the
structure of this configuration, see the JMX Exporter
documentation.

ExternalConfigurationReference

13.2.50. ExternalConfigurationReference schema reference

Used in: ExternalLogging, JmxPrometheusExporterMetrics

Property Description

configMapKeyRef Reference to the key in the ConfigMap containing
the configuration. For more information, see the
external documentation for core/v1
configmapkeyselector.

ConfigMapKeySelector

13.2.51. InlineLogging schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

336

https://github.com/prometheus/jmx_exporter
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapkeyselector-v1-core


Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, 
KafkaMirrorMakerSpec, TopicOperatorSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the InlineLogging type from 
ExternalLogging. It must have the value inline for the type InlineLogging.

Property Description

type Must be inline.

string

loggers A Map from logger name to logger level.

map

13.2.52. ExternalLogging schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, 
KafkaMirrorMakerSpec, TopicOperatorSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the ExternalLogging type from 
InlineLogging. It must have the value external for the type ExternalLogging.

Property Description

type Must be external.

string

name The name property has been deprecated, and
should now be configured using valueFrom. The
property name is removed in API version v1beta2.
The name of the ConfigMap from which to get the
logging configuration.

string

valueFrom ConfigMap entry where the logging configuration is
stored.

ExternalConfigurationReference

13.2.53. TlsSidecar schema reference

Used in: CruiseControlSpec, EntityOperatorSpec, KafkaClusterSpec, TopicOperatorSpec, 
ZookeeperClusterSpec

Full list of TlsSidecar schema properties

Configures a TLS sidecar, which is a container that runs in a pod, but serves a supporting purpose. In

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

337



Configures a TLS sidecar, which is a container that runs in a pod, but serves a supporting purpose. In
AMQ Streams, the TLS sidecar uses TLS to encrypt and decrypt communication between components
and ZooKeeper.

The TLS sidecar is used in:

Entity Operator

Cruise Control

The TLS sidecar is configured using the tlsSidecar property in:

Kafka.spec.entityOperator

Kafka.spec.cruiseControl

The TLS sidecar supports the following additional options:

image

resources

logLevel

readinessProbe

livenessProbe

The resources property specifies the memory and CPU resources allocated for the TLS sidecar.

The image property configures the container image which will be used.

The readinessProbe and livenessProbe properties configure healthcheck probes for the TLS sidecar.

The logLevel property specifies the logging level. The following logging levels are supported:

emerg

alert

crit

err

warning

notice

info

debug

The default value is notice.

Example TLS sidecar configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

338



13.2.53.1. TlsSidecar schema properties

Property Description

image The docker image for the container.

string

livenessProbe Pod liveness checking.

Probe

logLevel The log level for the TLS sidecar. Default value is 
notice.

string (one of [emerg, debug, crit, err, alert, warning,
notice, info])

metadata:
  name: my-cluster
spec:
  # ...
  entityOperator:
    # ...
    tlsSidecar:
      resources:
        requests:
          cpu: 200m
          memory: 64Mi
        limits:
          cpu: 500m
          memory: 128Mi
    # ...
  cruiseControl:
    # ...
    tlsSidecar:
      image: my-org/my-image:latest
      resources:
        requests:
          cpu: 200m
          memory: 64Mi
        limits:
          cpu: 500m
          memory: 128Mi
      logLevel: debug
      readinessProbe:
        initialDelaySeconds: 15
        timeoutSeconds: 5
      livenessProbe:
        initialDelaySeconds: 15
        timeoutSeconds: 5
    # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

339



readinessProbe Pod readiness checking.

Probe

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

Property Description

13.2.54. KafkaClusterTemplate schema reference

Used in: KafkaClusterSpec

Property Description

statefulset Template for Kafka StatefulSet.

StatefulSetTemplate

pod Template for Kafka Pods.

PodTemplate

bootstrapService Template for Kafka bootstrap Service.

ResourceTemplate

brokersService Template for Kafka broker Service.

ResourceTemplate

externalBootstrapService Template for Kafka external bootstrap Service.

ExternalServiceTemplate

perPodService Template for Kafka per-pod Services used for
access from outside of OpenShift.

ExternalServiceTemplate

externalBootstrapRoute Template for Kafka external bootstrap Route.

ResourceTemplate

perPodRoute Template for Kafka per-pod Routes used for access
from outside of OpenShift.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

340

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


ResourceTemplate

externalBootstrapIngress Template for Kafka external bootstrap Ingress.

ResourceTemplate

perPodIngress Template for Kafka per-pod Ingress used for access
from outside of OpenShift.

ResourceTemplate

persistentVolumeClaim Template for all Kafka PersistentVolumeClaims.

ResourceTemplate

podDisruptionBudget Template for Kafka PodDisruptionBudget.

PodDisruptionBudgetTemplate

kafkaContainer Template for the Kafka broker container.

ContainerTemplate

tlsSidecarContainer The tlsSidecarContainer property has been
deprecated. The property tlsSidecarContainer is
removed in API version v1beta2. Template for the
Kafka broker TLS sidecar container.

ContainerTemplate

initContainer Template for the Kafka init container.

ContainerTemplate

clusterCaCert Template for Secret with Kafka Cluster certificate
public key.

ResourceTemplate

clusterRoleBinding Template for the Kafka ClusterRoleBinding.

ResourceTemplate

Property Description

13.2.55. StatefulSetTemplate schema reference

Used in: KafkaClusterTemplate, ZookeeperClusterTemplate

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

341



Property Description

metadata Metadata applied to the resource.

MetadataTemplate

podManagementPolicy PodManagementPolicy which will be used for this
StatefulSet. Valid values are Parallel and 
OrderedReady. Defaults to Parallel.string (one of [OrderedReady, Parallel])

13.2.56. MetadataTemplate schema reference

Used in: DeploymentTemplate, ExternalServiceTemplate, PodDisruptionBudgetTemplate, 
PodTemplate, ResourceTemplate, StatefulSetTemplate

Full list of MetadataTemplate schema properties

Labels and Annotations are used to identify and organize resources, and are configured in the 
metadata property.

For example:

The labels and annotations fields can contain any labels or annotations that do not contain the
reserved string strimzi.io. Labels and annotations containing strimzi.io are used internally by AMQ
Streams and cannot be configured.

13.2.56.1. MetadataTemplate schema properties

Property Description

labels Labels added to the resource template. Can be
applied to different resources such as StatefulSets, 
Deployments, Pods, and Services.map

annotations Annotations added to the resource template. Can be
applied to different resources such as StatefulSets, 
Deployments, Pods, and Services.map

# ...
template:
  statefulset:
    metadata:
      labels:
        label1: value1
        label2: value2
      annotations:
        annotation1: value1
        annotation2: value2
# ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

342



13.2.57. PodTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate, 
KafkaClusterTemplate, KafkaConnectTemplate, KafkaExporterTemplate, 
KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Full list of PodTemplate schema properties

Configures the template for Kafka pods.

Example PodTemplate configuration

13.2.57.1. hostAliases

Use the hostAliases property to a specify a list of hosts and IP addresses, which are injected into the 
/etc/hosts file of the pod.

This configuration is especially useful for Kafka Connect or MirrorMaker when a connection outside of
the cluster is also requested by users.

Example hostAliases configuration

13.2.57.2. PodTemplate schema properties

# ...
template:
  pod:
    metadata:
      labels:
        label1: value1
      annotations:
        anno1: value1
    imagePullSecrets:
      - name: my-docker-credentials
    securityContext:
      runAsUser: 1000001
      fsGroup: 0
    terminationGracePeriodSeconds: 120
# ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
#...
spec:
  # ...
  template:
    pod:
      hostAliases:
      - ip: "192.168.1.86"
        hostnames:
        - "my-host-1"
        - "my-host-2"
      #...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

343



Property Description

metadata Metadata applied to the resource.

MetadataTemplate

imagePullSecrets List of references to secrets in the same namespace
to use for pulling any of the images used by this Pod.
When the STRIMZI_IMAGE_PULL_SECRETS
environment variable in Cluster Operator and the 
imagePullSecrets option are specified, only the 
imagePullSecrets variable is used and the 
STRIMZI_IMAGE_PULL_SECRETS variable is
ignored. For more information, see the external
documentation for core/v1 localobjectreference.

LocalObjectReference array

securityContext Configures pod-level security attributes and common
container settings. For more information, see the
external documentation for core/v1
podsecuritycontext.

PodSecurityContext

terminationGracePeriodSeconds The grace period is the duration in seconds after the
processes running in the pod are sent a termination
signal, and the time when the processes are forcibly
halted with a kill signal. Set this value to longer than
the expected cleanup time for your process. Value
must be a non-negative integer. A zero value
indicates delete immediately. You might need to
increase the grace period for very large Kafka
clusters, so that the Kafka brokers have enough time
to transfer their work to another broker before they
are terminated. Defaults to 30 seconds.

integer

affinity The pod’s affinity rules. For more information, see
the external documentation for core/v1 affinity.

Affinity

tolerations The pod’s tolerations. For more information, see the
external documentation for core/v1 toleration.

Toleration array

priorityClassName The name of the priority class used to assign priority
to the pods. For more information about priority
classes, see Pod Priority and Preemption.string

schedulerName The name of the scheduler used to dispatch this 
Pod. If not specified, the default scheduler will be
used.string

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

344

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#localobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#localobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#podsecuritycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#podsecuritycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption


hostAliases The pod’s HostAliases. HostAliases is an optional list
of hosts and IPs that will be injected into the pod’s
hosts file if specified. For more information, see the
external documentation for core/v1 HostAlias.

HostAlias array

topologySpreadConstraints The pod’s topology spread constraints. For more
information, see the external documentation for
core/v1 topologyspreadconstraint.TopologySpreadConstraint array

Property Description

13.2.58. ResourceTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate, 
KafkaClusterTemplate, KafkaConnectTemplate, KafkaExporterTemplate, KafkaUserTemplate, 
ZookeeperClusterTemplate

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

13.2.59. ExternalServiceTemplate schema reference

Used in: KafkaClusterTemplate

Full list of ExternalServiceTemplate schema properties

When exposing Kafka outside of OpenShift using loadbalancers or node ports, you can use properties, in
addition to labels and annotations, to customize how a Service is created.

An example showing customized external services

13.2.59.1. ExternalServiceTemplate schema properties

# ...
template:
  externalBootstrapService:
    externalTrafficPolicy: Local
    loadBalancerSourceRanges:
      - 10.0.0.0/8
      - 88.208.76.87/32
  perPodService:
    externalTrafficPolicy: Local
    loadBalancerSourceRanges:
      - 10.0.0.0/8
      - 88.208.76.87/32
# ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

345

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#HostAlias-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#HostAlias-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#topologyspreadconstraint-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#topologyspreadconstraint-v1-core


Property Description

metadata Metadata applied to the resource.

MetadataTemplate

externalTrafficPolicy The externalTrafficPolicy property has been
deprecated, and should now be configured using 
spec.kafka.listeners[].configuration. The
property externalTrafficPolicy is removed in API
version v1beta2. Specifies whether the service
routes external traffic to node-local or cluster-wide
endpoints. Cluster may cause a second hop to
another node and obscures the client source IP. 
Local avoids a second hop for LoadBalancer and
Nodeport type services and preserves the client
source IP (when supported by the infrastructure). If
unspecified, OpenShift will use Cluster as the
default.

string (one of [Local, Cluster])

loadBalancerSourceRanges The loadBalancerSourceRanges property has
been deprecated, and should now be configured
using spec.kafka.listeners[].configuration. The
property loadBalancerSourceRanges is removed in
API version v1beta2. A list of CIDR ranges (for
example 10.0.0.0/8 or 130.211.204.1/32) from
which clients can connect to load balancer type
listeners. If supported by the platform, traffic
through the loadbalancer is restricted to the
specified CIDR ranges. This field is applicable only for
loadbalancer type services and is ignored if the cloud
provider does not support the feature. For more
information, see https://v1-
17.docs.kubernetes.io/docs/tasks/access-
application-cluster/configure-cloud-provider-
firewall/.

string array

13.2.60. PodDisruptionBudgetTemplate schema reference

Used in: CruiseControlTemplate, KafkaBridgeTemplate, KafkaClusterTemplate, 
KafkaConnectTemplate, KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Full list of PodDisruptionBudgetTemplate schema properties

AMQ Streams creates a PodDisruptionBudget for every new StatefulSet or Deployment. By default,
pod disruption budgets only allow a single pod to be unavailable at a given time. You can increase the
amount of unavailable pods allowed by changing the default value of the maxUnavailable property in
the PodDisruptionBudget.spec resource.

An example of PodDisruptionBudget template

# ...
template:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

346

https://v1-17.docs.kubernetes.io/docs/tasks/access-application-cluster/configure-cloud-provider-firewall/


13.2.60.1. PodDisruptionBudgetTemplate schema properties

Property Description

metadata Metadata to apply to the 
PodDistruptionBugetTemplate resource.

MetadataTemplate

maxUnavailable Maximum number of unavailable pods to allow
automatic Pod eviction. A Pod eviction is allowed
when the maxUnavailable number of pods or
fewer are unavailable after the eviction. Setting this
value to 0 prevents all voluntary evictions, so the
pods must be evicted manually. Defaults to 1.

integer

13.2.61. ContainerTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate, 
KafkaClusterTemplate, KafkaConnectTemplate, KafkaExporterTemplate, 
KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Full list of ContainerTemplate schema properties

You can set custom security context and environment variables for a container.

The environment variables are defined under the env property as a list of objects with name and value
fields. The following example shows two custom environment variables and a custom security context
set for the Kafka broker containers:

Environment variables prefixed with KAFKA_ are internal to AMQ Streams and should be avoided. If you

    podDisruptionBudget:
        metadata:
            labels:
                key1: label1
                key2: label2
            annotations:
                key1: label1
                key2: label2
        maxUnavailable: 1
# ...

# ...
template:
  kafkaContainer:
    env:
    - name: EXAMPLE_ENV_1
      value: example.env.one
    - name: EXAMPLE_ENV_2
      value: example.env.two
    securityContext:
      runAsUser: 2000
# ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

347



Environment variables prefixed with KAFKA_ are internal to AMQ Streams and should be avoided. If you
set a custom environment variable that is already in use by AMQ Streams, it is ignored and a warning is
recorded in the log.

13.2.61.1. ContainerTemplate schema properties

Property Description

env Environment variables which should be applied to the
container.

ContainerEnvVar array

securityContext Security context for the container. For more
information, see the external documentation for
core/v1 securitycontext.SecurityContext

13.2.62. ContainerEnvVar schema reference

Used in: ContainerTemplate

Property Description

name The environment variable key.

string

value The environment variable value.

string

13.2.63. ZookeeperClusterSpec schema reference

Used in: KafkaSpec

Full list of ZookeeperClusterSpec schema properties

Configures a ZooKeeper cluster.

13.2.63.1. config

Use the config properties to configure ZooKeeper options as keys.

Standard Apache ZooKeeper configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

Configuration options that cannot be configured relate to:

Security (Encryption, Authentication, and Authorization)

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

348

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#securitycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#securitycontext-v1-core


Listener configuration

Configuration of data directories

ZooKeeper cluster composition

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the ZooKeeper documentation with the exception of
those managed directly by AMQ Streams. Specifically, all configuration options with keys equal to or
starting with one of the following strings are forbidden:

server.

dataDir

dataLogDir

clientPort

authProvider

quorum.auth

requireClientAuthScheme

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other supported options are passed to ZooKeeper.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties.

Example ZooKeeper configuration

13.2.63.2. logging

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
  zookeeper:
    # ...
    config:
      autopurge.snapRetainCount: 3
      autopurge.purgeInterval: 1
      ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
      ssl.enabled.protocols: "TLSv1.2"
      ssl.protocol: "TLSv1.2"
    # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

349

https://zookeeper.apache.org/doc/r3.5.8/zookeeperAdmin.html


ZooKeeper has a configurable logger:

zookeeper.root.logger

ZooKeeper uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both 
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  # ...
  zookeeper:
    # ...
    logging:
      type: inline
      loggers:
        zookeeper.root.logger: "INFO"
    # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  # ...
  zookeeper:
    # ...
    logging:
      type: external
      valueFrom:
        configMapKeyRef:
          name: customConfigMap
          key: zookeeper-log4j.properties
  # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

350

https://logging.apache.org/


13.2.63.3. ZookeeperClusterSpec schema properties

Property Description

replicas The number of pods in the cluster.

integer

image The docker image for the pods.

string

storage Storage configuration (disk). Cannot be updated.
The type depends on the value of the storage.type
property within the given object, which must be one
of [ephemeral, persistent-claim].

EphemeralStorage, PersistentClaimStorage

config The ZooKeeper broker config. Properties with the
following prefixes cannot be set: server., dataDir,
dataLogDir, clientPort, authProvider, quorum.auth,
requireClientAuthScheme, snapshot.trust.empty,
standaloneEnabled, reconfigEnabled,
4lw.commands.whitelist, secureClientPort, ssl.,
serverCnxnFactory, sslQuorum (with the exception
of: ssl.protocol, ssl.quorum.protocol,
ssl.enabledProtocols, ssl.quorum.enabledProtocols,
ssl.ciphersuites, ssl.quorum.ciphersuites,
ssl.hostnameVerification,
ssl.quorum.hostnameVerification).

map

affinity The affinity property has been deprecated, and
should now be configured using 
spec.zookeeper.template.pod.affinity. The
property affinity is removed in API version 
v1beta2. The pod’s affinity rules. For more
information, see the external documentation for
core/v1 affinity.

Affinity

tolerations The tolerations property has been deprecated,
and should now be configured using 
spec.zookeeper.template.pod.tolerations. The
property tolerations is removed in API version 
v1beta2. The pod’s tolerations. For more
information, see the external documentation for
core/v1 toleration.

Toleration array

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

351

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core


Probe

jvmOptions JVM Options for pods.

JvmOptions

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

metrics The metrics property has been deprecated, and
should now be configured using 
spec.zookeeper.metricsConfig. The property
metrics is removed in API version v1beta2. The
Prometheus JMX Exporter configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.

map

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

logging Logging configuration for ZooKeeper. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

template Template for ZooKeeper cluster resources. The
template allows users to specify how are the 
StatefulSet, Pods and Services generated.ZookeeperClusterTemplate

tlsSidecar The tlsSidecar property has been deprecated.
The property tlsSidecar is removed in API version 
v1beta2. TLS sidecar configuration. The TLS sidecar
is not used anymore and this option will be ignored.

TlsSidecar

Property Description

13.2.64. ZookeeperClusterTemplate schema reference

Used in: ZookeeperClusterSpec

Property Description

statefulset Template for ZooKeeper StatefulSet.

StatefulSetTemplate

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

352

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://github.com/prometheus/jmx_exporter


pod Template for ZooKeeper Pods.

PodTemplate

clientService Template for ZooKeeper client Service.

ResourceTemplate

nodesService Template for ZooKeeper nodes Service.

ResourceTemplate

persistentVolumeClaim Template for all ZooKeeper 
PersistentVolumeClaims.

ResourceTemplate

podDisruptionBudget Template for ZooKeeper PodDisruptionBudget.

PodDisruptionBudgetTemplate

zookeeperContainer Template for the ZooKeeper container.

ContainerTemplate

tlsSidecarContainer The tlsSidecarContainer property has been
deprecated. The property tlsSidecarContainer is
removed in API version v1beta2. Template for the
Zookeeper server TLS sidecar container. The TLS
sidecar is not used anymore and this option will be
ignored.

ContainerTemplate

Property Description

13.2.65. TopicOperatorSpec schema reference

The type TopicOperatorSpec has been deprecated and is removed in API version v1beta2. Please
use EntityTopicOperatorSpec instead.

Used in: KafkaSpec

Property Description

watchedNamespace The namespace the Topic Operator should watch.

string

image The image to use for the Topic Operator.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

353



string

reconciliationIntervalSeconds Interval between periodic reconciliations.

integer

zookeeperSessionTimeoutSeconds Timeout for the ZooKeeper session.

integer

affinity The affinity property has been deprecated, and
should now be configured using 
spec.entityOperator.template.pod.affinity. The
property affinity is removed in API version 
v1beta2. Pod affinity rules. For more information,
see the external documentation for core/v1 affinity.

Affinity

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

topicMetadataMaxAttempts The number of attempts at getting topic metadata.

integer

tlsSidecar The tlsSidecar property has been deprecated,
and should now be configured using 
spec.entityOperator.tlsSidecar. The property
tlsSidecar is removed in API version v1beta2. TLS
sidecar configuration.

TlsSidecar

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

JvmOptions

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

Property Description

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

354

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


startupProbe Pod startup checking.

Probe

Property Description

13.2.66. EntityOperatorSpec schema reference

Used in: KafkaSpec

Property Description

topicOperator Configuration of the Topic Operator.

EntityTopicOperatorSpec

userOperator Configuration of the User Operator.

EntityUserOperatorSpec

affinity The affinity property has been deprecated, and
should now be configured using 
spec.entityOperator.template.pod.affinity. The
property affinity is removed in API version 
v1beta2. The pod’s affinity rules. For more
information, see the external documentation for
core/v1 affinity.

Affinity

tolerations The tolerations property has been deprecated,
and should now be configured using 
spec.entityOperator.template.pod.tolerations.
The property tolerations is removed in API version 
v1beta2. The pod’s tolerations. For more
information, see the external documentation for
core/v1 toleration.

Toleration array

tlsSidecar TLS sidecar configuration.

TlsSidecar

template Template for Entity Operator resources. The
template allows users to specify how is the 
Deployment and Pods generated.EntityOperatorTemplate

13.2.67. EntityTopicOperatorSpec schema reference

Used in: EntityOperatorSpec

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

355

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core


Full list of EntityTopicOperatorSpec schema properties

Configures the Topic Operator.

13.2.67.1. logging

The Topic Operator has a configurable logger:

rootLogger.level

The Topic Operator uses the Apache log4j2 logger implementation.

Use the logging property in the entityOperator.topicOperator field of the Kafka resource Kafka
resource to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j2.properties. Both 
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    topicOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging:
        type: inline
        loggers:
          rootLogger.level: INFO
  # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

356

https://logging.apache.org/


Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

13.2.67.2. EntityTopicOperatorSpec schema properties

Property Description

watchedNamespace The namespace the Topic Operator should watch.

string

image The image to use for the Topic Operator.

string

reconciliationIntervalSeconds Interval between periodic reconciliations.

integer

zookeeperSessionTimeoutSeconds Timeout for the ZooKeeper session.

integer

startupProbe Pod startup checking.

Probe

livenessProbe Pod liveness checking.

Probe

  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    topicOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging:
        type: external
        valueFrom:
          configMapKeyRef:
            name: customConfigMap
            key: topic-operator-log4j2.properties
  # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

357



readinessProbe Pod readiness checking.

Probe

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

topicMetadataMaxAttempts The number of attempts at getting topic metadata.

integer

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

JvmOptions

Property Description

13.2.68. EntityUserOperatorSpec schema reference

Used in: EntityOperatorSpec

Full list of EntityUserOperatorSpec schema properties

Configures the User Operator.

13.2.68.1. logging

The User Operator has a configurable logger:

rootLogger.level

The User Operator uses the Apache log4j2 logger implementation.

Use the logging property in the entityOperator.userOperator field of the Kafka resource to configure
loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j2.properties. Both 
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

358

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    userOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging:
        type: inline
        loggers:
          rootLogger.level: INFO
  # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    userOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging:
        type: external
        valueFrom:
          configMapKeyRef:
            name: customConfigMap
            key: user-operator-log4j2.properties
   # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

359

https://logging.apache.org/


13.2.68.2. EntityUserOperatorSpec schema properties

Property Description

watchedNamespace The namespace the User Operator should watch.

string

image The image to use for the User Operator.

string

reconciliationIntervalSeconds Interval between periodic reconciliations.

integer

zookeeperSessionTimeoutSeconds Timeout for the ZooKeeper session.

integer

secretPrefix The prefix that will be added to the KafkaUser name
to be used as the Secret name.

string

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

JvmOptions

13.2.69. EntityOperatorTemplate schema reference

Used in: EntityOperatorSpec

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

360

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


Property Description

deployment Template for Entity Operator Deployment.

ResourceTemplate

pod Template for Entity Operator Pods.

PodTemplate

tlsSidecarContainer Template for the Entity Operator TLS sidecar
container.

ContainerTemplate

topicOperatorContainer Template for the Entity Topic Operator container.

ContainerTemplate

userOperatorContainer Template for the Entity User Operator container.

ContainerTemplate

13.2.70. CertificateAuthority schema reference

Used in: KafkaSpec

Configuration of how TLS certificates are used within the cluster. This applies to certificates used for
both internal communication within the cluster and to certificates used for client access via 
Kafka.spec.kafka.listeners.tls.

Property Description

generateCertificateAuthority If true then Certificate Authority certificates will be
generated automatically. Otherwise the user will need
to provide a Secret with the CA certificate. Default is
true.

boolean

generateSecretOwnerReference If true, the Cluster and Client CA Secrets are
configured with the ownerReference set to the 
Kafka resource. If the Kafka resource is deleted
when true, the CA Secrets are also deleted. If false,
the ownerReference is disabled. If the Kafka
resource is deleted when false, the CA Secrets are
retained and available for reuse. Default is true.

boolean

validityDays The number of days generated certificates should be
valid for. The default is 365.

integer

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

361



renewalDays The number of days in the certificate renewal period.
This is the number of days before the a certificate
expires during which renewal actions may be
performed. When generateCertificateAuthority is
true, this will cause the generation of a new
certificate. When generateCertificateAuthority is
true, this will cause extra logging at WARN level
about the pending certificate expiry. Default is 30.

integer

certificateExpirationPolicy How should CA certificate expiration be handled
when generateCertificateAuthority=true. The
default is for a new CA certificate to be generated
reusing the existing private key.

string (one of [replace-key, renew-certificate])

Property Description

13.2.71. CruiseControlSpec schema reference

Used in: KafkaSpec

Property Description

image The docker image for the pods.

string

tlsSidecar TLS sidecar configuration.

TlsSidecar

resources CPU and memory resources to reserve for the Cruise
Control container. For more information, see the
external documentation for core/v1
resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking for the Cruise Control
container.

Probe

readinessProbe Pod readiness checking for the Cruise Control
container.

Probe

jvmOptions JVM Options for the Cruise Control container.

JvmOptions

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

362

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


logging Logging configuration (Log4j 2) for Cruise Control.
The type depends on the value of the logging.type
property within the given object, which must be one
of [inline, external].

InlineLogging, ExternalLogging

template Template to specify how Cruise Control resources, 
Deployments and Pods, are generated.

CruiseControlTemplate

brokerCapacity The Cruise Control brokerCapacity configuration.

BrokerCapacity

config The Cruise Control configuration. For a full list of
configuration options refer to
https://github.com/linkedin/cruise-
control/wiki/Configurations. Note that properties
with the following prefixes cannot be set:
bootstrap.servers, client.id, zookeeper., network.,
security., failed.brokers.zk.path,webserver.http.,
webserver.api.urlprefix, webserver.session.path,
webserver.accesslog., two.step.,
request.reason.required,metric.reporter.sampler.boot
strap.servers, metric.reporter.topic,
partition.metric.sample.store.topic,
broker.metric.sample.store.topic,capacity.config.file,
self.healing., anomaly.detection., ssl. (with the
exception of: ssl.cipher.suites, ssl.protocol,
ssl.enabled.protocols,
webserver.http.cors.enabled,webserver.http.cors.orig
in, webserver.http.cors.exposeheaders).

map

metrics The metrics property has been deprecated, and
should now be configured using 
spec.cruiseControl.metricsConfig. The
property metrics is removed in API version 
v1beta2. The Prometheus JMX Exporter
configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.

map

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

Property Description

13.2.72. CruiseControlTemplate schema reference

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

363

https://github.com/linkedin/cruise-control/wiki/Configurations
https://github.com/prometheus/jmx_exporter


Used in: CruiseControlSpec

Property Description

deployment Template for Cruise Control Deployment.

ResourceTemplate

pod Template for Cruise Control Pods.

PodTemplate

apiService Template for Cruise Control API Service.

ResourceTemplate

podDisruptionBudget Template for Cruise Control 
PodDisruptionBudget.

PodDisruptionBudgetTemplate

cruiseControlContainer Template for the Cruise Control container.

ContainerTemplate

tlsSidecarContainer Template for the Cruise Control TLS sidecar
container.

ContainerTemplate

13.2.73. BrokerCapacity schema reference

Used in: CruiseControlSpec

Property Description

disk Broker capacity for disk in bytes, for example, 100Gi.

string

cpuUtilization Broker capacity for CPU resource utilization as a
percentage (0 - 100).

integer

inboundNetwork Broker capacity for inbound network throughput in
bytes per second, for example, 10000KB/s.

string

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

364



outboundNetwork Broker capacity for outbound network throughput in
bytes per second, for example 10000KB/s.

string

Property Description

13.2.74. KafkaExporterSpec schema reference

Used in: KafkaSpec

Property Description

image The docker image for the pods.

string

groupRegex Regular expression to specify which consumer groups
to collect. Default value is .*.

string

topicRegex Regular expression to specify which topics to collect.
Default value is .*.

string

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

logging Only log messages with the given severity or above.
Valid levels: [debug, info, warn, error, fatal].
Default log level is info.string

enableSaramaLogging Enable Sarama logging, a Go client library used by
the Kafka Exporter.

boolean

template Customization of deployment templates and pods.

KafkaExporterTemplate

livenessProbe Pod liveness check.

Probe

readinessProbe Pod readiness check.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

365

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


Probe

Property Description

13.2.75. KafkaExporterTemplate schema reference

Used in: KafkaExporterSpec

Property Description

deployment Template for Kafka Exporter Deployment.

ResourceTemplate

pod Template for Kafka Exporter Pods.

PodTemplate

service Template for Kafka Exporter Service.

ResourceTemplate

container Template for the Kafka Exporter container.

ContainerTemplate

13.2.76. KafkaStatus schema reference

Used in: Kafka

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

listeners Addresses of the internal and external listeners.

ListenerStatus array

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

366



clusterId Kafka cluster Id.

string

Property Description

13.2.77. Condition schema reference

Used in: KafkaBridgeStatus, KafkaConnectorStatus, KafkaConnectS2IStatus, KafkaConnectStatus, 
KafkaMirrorMaker2Status, KafkaMirrorMakerStatus, KafkaRebalanceStatus, KafkaStatus, 
KafkaTopicStatus, KafkaUserStatus

Property Description

type The unique identifier of a condition, used to
distinguish between other conditions in the resource.

string

status The status of the condition, either True, False or
Unknown.

string

lastTransitionTime Last time the condition of a type changed from one
status to another. The required format is 'yyyy-MM-
ddTHH:mm:ssZ', in the UTC time zone.string

reason The reason for the condition’s last transition (a single
word in CamelCase).

string

message Human-readable message indicating details about
the condition’s last transition.

string

13.2.78. ListenerStatus schema reference

Used in: KafkaStatus

Property Description

type The type of the listener. Can be one of the following
three types: plain, tls, and external.

string

addresses A list of the addresses for this listener.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

367



ListenerAddress array

bootstrapServers A comma-separated list of host:port pairs for
connecting to the Kafka cluster using this listener.

string

certificates A list of TLS certificates which can be used to verify
the identity of the server when connecting to the
given listener. Set only for tls and external listeners.string array

Property Description

13.2.79. ListenerAddress schema reference

Used in: ListenerStatus

Property Description

host The DNS name or IP address of the Kafka bootstrap
service.

string

port The port of the Kafka bootstrap service.

integer

13.2.80. KafkaConnect schema reference

Property Description

spec The specification of the Kafka Connect cluster.

KafkaConnectSpec

status The status of the Kafka Connect cluster.

KafkaConnectStatus

13.2.81. KafkaConnectSpec schema reference

Used in: KafkaConnect

Full list of KafkaConnectSpec schema properties

Configures a Kafka Connect cluster.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

368



13.2.81.1. config

Use the config properties to configure Kafka options as keys.

Standard Apache Kafka Connect configuration may be provided, restricted to those properties not
managed directly by AMQ Streams.

Configuration options that cannot be configured relate to:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Listener / REST interface configuration

Plugin path configuration

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka documentation with the exception
of those options that are managed directly by AMQ Streams. Specifically, configuration options with
keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

listeners

plugin.path

rest.

bootstrap.servers

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other options are passed to Kafka Connect.

IMPORTANT

The Cluster Operator does not validate keys or values in the config object provided.
When an invalid configuration is provided, the Kafka Connect cluster might not start or
might become unstable. In this circumstance, fix the configuration in the 
KafkaConnect.spec.config or KafkaConnectS2I.spec.config object, then the Cluster
Operator can roll out the new configuration to all Kafka Connect nodes.

Certain options have default values:

group.id with default value connect-cluster

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

369

http://kafka.apache.org/documentation/#connectconfigs


offset.storage.topic with default value connect-cluster-offsets

config.storage.topic with default value connect-cluster-configs

status.storage.topic with default value connect-cluster-status

key.converter with default value org.apache.kafka.connect.json.JsonConverter

value.converter with default value org.apache.kafka.connect.json.JsonConverter

These options are automatically configured in case they are not present in the 
KafkaConnect.spec.config or KafkaConnectS2I.spec.config properties.

There are exceptions to the forbidden options. You can use three allowed ssl configuration options for
client connection using a specific cipher suite for a TLS version. A cipher suite combines algorithms for
secure connection and data transfer. You can also configure the ssl.endpoint.identification.algorithm
property to enable or disable hostname verification.

Example Kafka Connect configuration

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

13.2.81.2. logging

Kafka Connect (and Kafka Connect with Source2Image support) has its own configurable loggers:

connect.root.logger.level

log4j.logger.org.reflections

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect
spec:
  # ...
  config:
    group.id: my-connect-cluster
    offset.storage.topic: my-connect-cluster-offsets
    config.storage.topic: my-connect-cluster-configs
    status.storage.topic: my-connect-cluster-status
    key.converter: org.apache.kafka.connect.json.JsonConverter
    value.converter: org.apache.kafka.connect.json.JsonConverter
    key.converter.schemas.enable: true
    value.converter.schemas.enable: true
    config.storage.replication.factor: 3
    offset.storage.replication.factor: 3
    status.storage.replication.factor: 3
    ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
    ssl.enabled.protocols: "TLSv1.2"
    ssl.protocol: "TLSv1.2"
    ssl.endpoint.identification.algorithm: HTTPS
  # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

370



Further loggers are added depending on the Kafka Connect plugins running.

Use a curl request to get a complete list of Kafka Connect loggers running from any Kafka broker pod:

Kafka Connect uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both 
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

Any available loggers that are not configured have their level set to OFF.

If Kafka Connect was deployed using the Cluster Operator, changes to Kafka Connect logging levels are
applied dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

curl -s http://<connect-cluster-name>-connect-api:8083/admin/loggers/

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
  # ...
  logging:
    type: inline
    loggers:
      connect.root.logger.level: "INFO"
  # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: connect-logging.log4j
  # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

371

https://logging.apache.org/


Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

13.2.81.3. KafkaConnectSpec schema properties

Property Description

version The Kafka Connect version. Defaults to 2.7.0.
Consult the user documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Kafka Connect group.

integer

image The docker image for the pods.

string

bootstrapServers Bootstrap servers to connect to. This should be
given as a comma separated list of
<hostname>:​<port> pairs.string

tls TLS configuration.

KafkaConnectTls

authentication Authentication configuration for Kafka Connect. The
type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls, 
KafkaClientAuthenticationScramSha512, 
KafkaClientAuthenticationPlain, 
KafkaClientAuthenticationOAuth

config The Kafka Connect configuration. Properties with the
following prefixes cannot be set: ssl., sasl., security.,
listeners, plugin.path, rest., bootstrap.servers,
consumer.interceptor.classes,
producer.interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

resources The maximum limits for CPU and memory resources
and the requested initial resources. For more
information, see the external documentation for
core/v1 resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

372

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options.

KafkaJmxOptions

affinity The affinity property has been deprecated, and
should now be configured using 
spec.template.pod.affinity. The property affinity
is removed in API version v1beta2. The pod’s
affinity rules. For more information, see the external
documentation for core/v1 affinity.

Affinity

tolerations The tolerations property has been deprecated,
and should now be configured using 
spec.template.pod.tolerations. The property
tolerations is removed in API version v1beta2. The
pod’s tolerations. For more information, see the
external documentation for core/v1 toleration.

Toleration array

logging Logging configuration for Kafka Connect. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

metrics The metrics property has been deprecated, and
should now be configured using 
spec.metricsConfig. The property metrics is
removed in API version v1beta2. The Prometheus
JMX Exporter configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.

map

tracing The configuration of tracing in Kafka Connect. The
type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger].

JaegerTracing

Property Description

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

373

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://github.com/prometheus/jmx_exporter


template Template for Kafka Connect and Kafka Connect S2I
resources. The template allows users to specify how
the Deployment, Pods and Service are
generated.

KafkaConnectTemplate

externalConfiguration Pass data from Secrets or ConfigMaps to the Kafka
Connect pods and use them to configure connectors.

ExternalConfiguration

build Configures how the Connect container image should
be built. Optional.

Build

clientRackInitImage The image of the init container used for initializing
the client.rack.

string

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

rack Configuration of the node label which will be used as
the client.rack consumer configuration.

Rack

Property Description

13.2.82. KafkaConnectTls schema reference

Used in: KafkaConnectS2ISpec, KafkaConnectSpec

Full list of KafkaConnectTls schema properties

Configures TLS trusted certificates for connecting Kafka Connect to the cluster.

13.2.82.1. trustedCertificates

Provide a list of secrets using the trustedCertificates property.

13.2.82.2. KafkaConnectTls schema properties

Property Description

trustedCertificates Trusted certificates for TLS connection.

CertSecretSource array

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

374



13.2.83. KafkaClientAuthenticationTls schema reference

Used in: KafkaBridgeSpec, KafkaConnectS2ISpec, KafkaConnectSpec, 
KafkaMirrorMaker2ClusterSpec, KafkaMirrorMakerConsumerSpec, 
KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationTls schema properties

To configure TLS client authentication, set the type property to the value tls. TLS client authentication
uses a TLS certificate to authenticate.

13.2.83.1. certificateAndKey

The certificate is specified in the certificateAndKey property and is always loaded from an OpenShift
secret. In the secret, the certificate must be stored in X509 format under two different keys: public and
private.

You can use the secrets created by the User Operator, or you can create your own TLS certificate file,
with the keys used for authentication, then create a Secret from the file:

NOTE

TLS client authentication can only be used with TLS connections.

Example TLS client authentication configuration

13.2.83.2. KafkaClientAuthenticationTls schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationTls type
from KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain, 
KafkaClientAuthenticationOAuth. It must have the value tls for the type 
KafkaClientAuthenticationTls.

Property Description

certificateAndKey Reference to the Secret which holds the certificate
and private key pair.

CertAndKeySecretSource

type Must be tls.

oc create secret generic MY-SECRET \
--from-file=MY-PUBLIC-TLS-CERTIFICATE-FILE.crt \
--from-file=MY-PRIVATE.key

authentication:
  type: tls
  certificateAndKey:
    secretName: my-secret
    certificate: my-public-tls-certificate-file.crt
    key: private.key

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

375



string

Property Description

13.2.84. KafkaClientAuthenticationScramSha512 schema reference

Used in: KafkaBridgeSpec, KafkaConnectS2ISpec, KafkaConnectSpec, 
KafkaMirrorMaker2ClusterSpec, KafkaMirrorMakerConsumerSpec, 
KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationScramSha512 schema properties

To configure SASL-based SCRAM-SHA-512 authentication, set the type property to scram-sha-512.
The SCRAM-SHA-512 authentication mechanism requires a username and password.

13.2.84.1. username

Specify the username in the username property.

13.2.84.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, you can create a text file that contains the password, in cleartext, to use for authentication:

You can then create a Secret from the text file, setting your own field name (key) for the password:

Example Secret for SCRAM-SHA-512 client authentication for Kafka Connect

The secretName property contains the name of the Secret, and the password property contains the
name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password property.

echo -n PASSWORD > MY-PASSWORD.txt

oc create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-
NAME=./MY-PASSWORD.txt

apiVersion: v1
kind: Secret
metadata:
  name: my-connect-secret-name
type: Opaque
data:
  my-connect-password-field: LFTIyFRFlMmU2N2Tm

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

376



Example SASL-based SCRAM-SHA-512 client authentication configuration for Kafka
Connect

13.2.84.3. KafkaClientAuthenticationScramSha512 schema properties

The type property is a discriminator that distinguishes use of the 
KafkaClientAuthenticationScramSha512 type from KafkaClientAuthenticationTls, 
KafkaClientAuthenticationPlain, KafkaClientAuthenticationOAuth. It must have the value scram-
sha-512 for the type KafkaClientAuthenticationScramSha512.

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be scram-sha-512.

string

username Username used for the authentication.

string

13.2.85. PasswordSecretSource schema reference

Used in: KafkaClientAuthenticationPlain, KafkaClientAuthenticationScramSha512

Property Description

password The name of the key in the Secret under which the
password is stored.

string

secretName The name of the Secret containing the password.

string

13.2.86. KafkaClientAuthenticationPlain schema reference

Used in: KafkaBridgeSpec, KafkaConnectS2ISpec, KafkaConnectSpec, 

authentication:
  type: scram-sha-512
  username: my-connect-username
  passwordSecret:
    secretName: my-connect-secret-name
    password: my-connect-password-field

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

377



Used in: KafkaBridgeSpec, KafkaConnectS2ISpec, KafkaConnectSpec, 
KafkaMirrorMaker2ClusterSpec, KafkaMirrorMakerConsumerSpec, 
KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationPlain schema properties

To configure SASL-based PLAIN authentication, set the type property to plain. SASL PLAIN
authentication mechanism requires a username and password.

WARNING

The SASL PLAIN mechanism will transfer the username and password across the
network in cleartext. Only use SASL PLAIN authentication if TLS encryption is
enabled.

13.2.86.1. username

Specify the username in the username property.

13.2.86.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, create a text file that contains the password, in cleartext, to use for authentication:

You can then create a Secret from the text file, setting your own field name (key) for the password:

Example Secret for PLAIN client authentication for Kafka Connect

The secretName property contains the name of the Secret and the password property contains the
name of the key under which the password is stored inside the Secret.

IMPORTANT



echo -n PASSWORD > MY-PASSWORD.txt

oc create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-
NAME=./MY-PASSWORD.txt

apiVersion: v1
kind: Secret
metadata:
  name: my-connect-secret-name
type: Opaque
data:
  my-password-field-name: LFTIyFRFlMmU2N2Tm

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

378



IMPORTANT

Do not specify the actual password in the password property.

An example SASL based PLAIN client authentication configuration

13.2.86.3. KafkaClientAuthenticationPlain schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationPlain type
from KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha512, 
KafkaClientAuthenticationOAuth. It must have the value plain for the type 
KafkaClientAuthenticationPlain.

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be plain.

string

username Username used for the authentication.

string

13.2.87. KafkaClientAuthenticationOAuth schema reference

Used in: KafkaBridgeSpec, KafkaConnectS2ISpec, KafkaConnectSpec, 
KafkaMirrorMaker2ClusterSpec, KafkaMirrorMakerConsumerSpec, 
KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationOAuth schema properties

To configure OAuth client authentication, set the type property to oauth.

OAuth authentication can be configured using one of the following options:

Client ID and secret

Client ID and refresh token

Access token

authentication:
  type: plain
  username: my-connect-username
  passwordSecret:
    secretName: my-connect-secret-name
    password: my-password-field-name

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

379



TLS

Client ID and secret

You can configure the address of your authorization server in the tokenEndpointUri property together
with the client ID and client secret used in authentication. The OAuth client will connect to the OAuth
server, authenticate using the client ID and secret and get an access token which it will use to
authenticate with the Kafka broker. In the clientSecret property, specify a link to a Secret containing
the client secret.

An example of OAuth client authentication using client ID and client secret

Client ID and refresh token

You can configure the address of your OAuth server in the tokenEndpointUri property together with
the OAuth client ID and refresh token. The OAuth client will connect to the OAuth server, authenticate
using the client ID and refresh token and get an access token which it will use to authenticate with the
Kafka broker. In the refreshToken property, specify a link to a Secret containing the refresh token.

+ .An example of OAuth client authentication using client ID and refresh token

Access token

You can configure the access token used for authentication with the Kafka broker directly. In this case,
you do not specify the tokenEndpointUri. In the accessToken property, specify a link to a Secret
containing the access token.

An example of OAuth client authentication using only an access token

TLS

Accessing the OAuth server using the HTTPS protocol does not require any additional configuration as
long as the TLS certificates used by it are signed by a trusted certification authority and its hostname is
listed in the certificate.

authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  clientId: my-client-id
  clientSecret:
    secretName: my-client-oauth-secret
    key: client-secret

authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  clientId: my-client-id
  refreshToken:
    secretName: my-refresh-token-secret
    key: refresh-token

authentication:
  type: oauth
  accessToken:
    secretName: my-access-token-secret
    key: access-token

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

380



If your OAuth server is using certificates which are self-signed or are signed by a certification authority
which is not trusted, you can configure a list of trusted certificates in the custom resoruce. The 
tlsTrustedCertificates property contains a list of secrets with key names under which the certificates
are stored. The certificates must be stored in X509 format.

An example of TLS certificates provided

The OAuth client will by default verify that the hostname of your OAuth server matches either the
certificate subject or one of the alternative DNS names. If it is not required, you can disable the
hostname verification.

An example of disabled TLS hostname verification

13.2.87.1. KafkaClientAuthenticationOAuth schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationOAuth
type from KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha512, 
KafkaClientAuthenticationPlain. It must have the value oauth for the type 
KafkaClientAuthenticationOAuth.

Property Description

accessToken Link to OpenShift Secret containing the access
token which was obtained from the authorization
server.GenericSecretSource

accessTokenIsJwt Configure whether access token should be treated
as JWT. This should be set to false if the
authorization server returns opaque tokens. Defaults
to true.

boolean

authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  clientId: my-client-id
  refreshToken:
    secretName: my-refresh-token-secret
    key: refresh-token
  tlsTrustedCertificates:
    - secretName: oauth-server-ca
      certificate: tls.crt

authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  clientId: my-client-id
  refreshToken:
    secretName: my-refresh-token-secret
    key: refresh-token
  disableTlsHostnameVerification: true

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

381



clientId OAuth Client ID which the Kafka client can use to
authenticate against the OAuth server and use the
token endpoint URI.string

clientSecret Link to OpenShift Secret containing the OAuth client
secret which the Kafka client can use to authenticate
against the OAuth server and use the token endpoint
URI.

GenericSecretSource

disableTlsHostnameVerification Enable or disable TLS hostname verification. Default
value is false.

boolean

maxTokenExpirySeconds Set or limit time-to-live of the access tokens to the
specified number of seconds. This should be set if
the authorization server returns opaque tokens.integer

refreshToken Link to OpenShift Secret containing the refresh
token which can be used to obtain access token from
the authorization server.GenericSecretSource

scope OAuth scope to use when authenticating against the
authorization server. Some authorization servers
require this to be set. The possible values depend on
how authorization server is configured. By default 
scope is not specified when doing the token
endpoint request.

string

tlsTrustedCertificates Trusted certificates for TLS connection to the OAuth
server.

CertSecretSource array

tokenEndpointUri Authorization server token endpoint URI.

string

type Must be oauth.

string

Property Description

13.2.88. JaegerTracing schema reference

Used in: KafkaBridgeSpec, KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, 
KafkaMirrorMakerSpec

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

382



The type property is a discriminator that distinguishes use of the JaegerTracing type from other
subtypes which may be added in the future. It must have the value jaeger for the type JaegerTracing.

Property Description

type Must be jaeger.

string

13.2.89. KafkaConnectTemplate schema reference

Used in: KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMaker2Spec

Property Description

deployment Template for Kafka Connect Deployment.

DeploymentTemplate

pod Template for Kafka Connect Pods.

PodTemplate

apiService Template for Kafka Connect API Service.

ResourceTemplate

buildConfig Template for the Kafka Connect BuildConfig used to
build new container images. The BuildConfig is used
only on OpenShift.ResourceTemplate

buildContainer Template for the Kafka Connect Build container. The
build container is used only on OpenShift.

ContainerTemplate

buildPod Template for Kafka Connect Build Pods. The build
pod is used only on OpenShift.

PodTemplate

clusterRoleBinding Template for the Kafka Connect ClusterRoleBinding.

ResourceTemplate

connectContainer Template for the Kafka Connect container.

ContainerTemplate

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

383



initContainer Template for the Kafka init container.

ContainerTemplate

podDisruptionBudget Template for Kafka Connect 
PodDisruptionBudget.

PodDisruptionBudgetTemplate

Property Description

13.2.90. DeploymentTemplate schema reference

Used in: KafkaBridgeTemplate, KafkaConnectTemplate, KafkaMirrorMakerTemplate

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

deploymentStrategy DeploymentStrategy which will be used for this
Deployment. Valid values are RollingUpdate and 
Recreate. Defaults to RollingUpdate.string (one of [RollingUpdate, Recreate])

13.2.91. ExternalConfiguration schema reference

Used in: KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMaker2Spec

Full list of ExternalConfiguration schema properties

Configures external storage properties that define configuration options for Kafka Connect connectors.

You can mount ConfigMaps or Secrets into a Kafka Connect pod as environment variables or volumes.
Volumes and environment variables are configured in the externalConfiguration property in 
KafkaConnect.spec and KafkaConnectS2I.spec.

When applied, the environment variables and volumes are available for use when developing your
connectors.

13.2.91.1. env

The env property is used to specify one or more environment variables. These variables can contain a
value from either a ConfigMap or a Secret.

Example Secret containing values for environment variables

apiVersion: v1
kind: Secret
metadata:

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

384



NOTE

The names of user-defined environment variables cannot start with KAFKA_ or 
STRIMZI_.

To mount a value from a Secret to an environment variable, use the valueFrom property and the 
secretKeyRef.

Example environment variables set to values from a Secret

A common use case for mounting Secrets to environment variables is when your connector needs to
communicate with Amazon AWS and needs to read the AWS_ACCESS_KEY_ID and 
AWS_SECRET_ACCESS_KEY environment variables with credentials.

To mount a value from a ConfigMap to an environment variable, use configMapKeyRef in the 
valueFrom property as shown in the following example.

Example environment variables set to values from a ConfigMap

  name: aws-creds
type: Opaque
data:
  awsAccessKey: QUtJQVhYWFhYWFhYWFhYWFg=
  awsSecretAccessKey: Ylhsd1lYTnpkMjl5WkE=

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect
spec:
  # ...
  externalConfiguration:
    env:
      - name: AWS_ACCESS_KEY_ID
        valueFrom:
          secretKeyRef:
            name: aws-creds
            key: awsAccessKey
      - name: AWS_SECRET_ACCESS_KEY
        valueFrom:
          secretKeyRef:
            name: aws-creds
            key: awsSecretAccessKey

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect
spec:
  # ...
  externalConfiguration:
    env:
      - name: MY_ENVIRONMENT_VARIABLE
        valueFrom:

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

385



1

2

13.2.91.2. volumes

You can also mount ConfigMaps or Secrets to a Kafka Connect pod as volumes.

Using volumes instead of environment variables is useful in the following scenarios:

Mounting truststores or keystores with TLS certificates

Mounting a properties file that is used to configure Kafka Connect connectors

Example Secret with properties

The connector configuration in properties file format.

Database username and password properties used in the configuration.

In this example, a Secret named mysecret is mounted to a volume named connector-config. In the 
config property, a configuration provider ( FileConfigProvider) is specified, which will load
configuration values from external sources. The Kafka FileConfigProvider is given the alias file, and will
read and extract database username and password property values from the file to use in the connector
configuration.

Example external volumes set to values from a Secret

          configMapKeyRef:
            name: my-config-map
            key: my-key

apiVersion: v1
kind: Secret
metadata:
  name: mysecret
type: Opaque
stringData:
  connector.properties: |- 1
    dbUsername: my-user 2
    dbPassword: my-password

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect
spec:
  # ...
  config:
    config.providers: file 1
    config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider 2
  #...
  externalConfiguration:
    volumes:
      - name: connector-config 3
        secret:
          secretName: mysecret 4

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

386



1

2

3

4

The alias for the configuration provider, which is used to define other configuration parameters.
Use a comma-separated list if you want to add more than one provider.

The FileConfigProvider is the configuration provider that provides values from properties files.
The parameter uses the alias from config.providers, taking the form 
config.providers.${alias}.class.

The name of the volume containing the Secret. Each volume must specify a name in the name
property and a reference to ConfigMap or Secret.

The name of the Secret.

The volumes are mounted inside the Kafka Connect containers in the path /opt/kafka/external-
configuration/<volume-name>. For example, the files from a volume named connector-config would
appear in the directory /opt/kafka/external-configuration/connector-config.

The FileConfigProvider is used to read the values from the mounted properties files in connector
configurations.

13.2.91.3. ExternalConfiguration schema properties

Property Description

env Allows to pass data from Secret or ConfigMap to the
Kafka Connect pods as environment variables.

ExternalConfigurationEnv array

volumes Allows to pass data from Secret or ConfigMap to the
Kafka Connect pods as volumes.

ExternalConfigurationVolumeSource array

13.2.92. ExternalConfigurationEnv schema reference

Used in: ExternalConfiguration

Property Description

name Name of the environment variable which will be
passed to the Kafka Connect pods. The name of the
environment variable cannot start with KAFKA_ or 
STRIMZI_.

string

valueFrom Value of the environment variable which will be
passed to the Kafka Connect pods. It can be passed
either as a reference to Secret or ConfigMap field.
The field has to specify exactly one Secret or
ConfigMap.

ExternalConfigurationEnvVarSource

13.2.93. ExternalConfigurationEnvVarSource schema reference

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

387



Used in: ExternalConfigurationEnv

Property Description

configMapKeyRef Reference to a key in a ConfigMap. For more
information, see the external documentation for
core/v1 configmapkeyselector.ConfigMapKeySelector

secretKeyRef Reference to a key in a Secret. For more information,
see the external documentation for core/v1
secretkeyselector.SecretKeySelector

13.2.94. ExternalConfigurationVolumeSource schema reference

Used in: ExternalConfiguration

Property Description

configMap Reference to a key in a ConfigMap. Exactly one
Secret or ConfigMap has to be specified. For more
information, see the external documentation for
core/v1 configmapvolumesource.

ConfigMapVolumeSource

name Name of the volume which will be added to the Kafka
Connect pods.

string

secret Reference to a key in a Secret. Exactly one Secret or
ConfigMap has to be specified. For more
information, see the external documentation for
core/v1 secretvolumesource.

SecretVolumeSource

13.2.95. Build schema reference

Used in: KafkaConnectS2ISpec, KafkaConnectSpec

Full list of Build schema properties

Configures additional connectors for Kafka Connect deployments.

13.2.95.1. output

To build new container images with additional connector plugins, AMQ Streams requires a container
registry where the images can be pushed to, stored, and pulled from. AMQ Streams does not run its own
container registry, so a registry must be provided. AMQ Streams supports private container registries as
well as public registries such as Quay or Docker Hub. The container registry is configured in the 
.spec.build.output section of the KafkaConnect custom resource. The output configuration, which is
required, supports two types: docker and imagestream.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

388

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#configmapvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#secretvolumesource-v1-core
https://quay.io/
https://hub.docker.com//


1

2

3

Using Docker registry

To use a Docker registry, you have to specify the type as docker, and the image field with the full name
of the new container image. The full name must include:

The address of the registry

Port number (if listening on a non-standard port)

The tag of the new container image

Example valid container image names:

docker.io/my-org/my-image/my-tag

quay.io/my-org/my-image/my-tag

image-registry.image-registry.svc:5000/myproject/kafka-connect-build:latest

Each Kafka Connect deployment must use a separate image, which can mean different tags at the most
basic level.

If the registry requires authentication, use the pushSecret to set a name of the Secret with the registry
credentials. For the Secret, use the kubernetes.io/dockerconfigjson type and a .dockerconfigjson
file to contain the Docker credentials. For more information on pulling an image from a private registry,
see Create a Secret based on existing Docker credentials .

Example output configuration

(Required) Type of output used by AMQ Streams.

(Required) Full name of the image used, including the repository and tag.

(Optional) Name of the secret with the container registry credentials.

Using OpenShift ImageStream

Instead of Docker, you can use OpenShift ImageStream to store a new container image. The
ImageStream has to be created manually before deploying Kafka Connect. To use ImageStream, set the
type to imagestream, and use the image property to specify the name of the ImageStream and the tag
used. For example, my-connect-image-stream:latest.

Example output configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      type: docker 1
      image: my-registry.io/my-org/my-connect-cluster:latest 2
      pushSecret: my-registry-credentials 3
  #...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

389

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#registry-secret-existing-credentials


1

2

(Required) Type of output used by AMQ Streams.

(Required) Name of the ImageStream and tag.

13.2.95.2. plugins

Connector plugins are a set of files that define the implementation required to connect to certain types
of external system. The connector plugins required for a container image must be configured using the 
.spec.build.plugins property of the KafkaConnect custom resource. Each connector plugin must have
a name which is unique within the Kafka Connect deployment. Additionally, the plugin artifacts must be
listed. These artifacts are downloaded by AMQ Streams, added to the new container image, and used in
the Kafka Connect deployment. The connector plugin artifacts can also include additional components,
such as (de)serializers. Each connector plugin is downloaded into a separate directory so that the
different connectors and their dependencies are properly sandboxed. Each plugin must be configured
with at least one artifact.

Example plugins configuration with two connector plugins

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      type: imagestream 1
      image: my-connect-build:latest 2
  #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      #...
    plugins: 1
      - name: debezium-postgres-connector
        artifacts:
          - type: tgz
            url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/1.3.1.Final/debezium-connector-postgres-1.3.1.Final-plugin.tar.gz
            sha512sum: 
962a12151bdf9a5a30627eebac739955a4fd95a08d373b86bdcea2b4d0c27dd6e1edd5cb548045e115e
33a9e69b1b2a352bee24df035a0447cb820077af00c03
      - name: camel-telegram
        artifacts:
          - type: tgz
            url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.7.0/camel-telegram-kafka-connector-0.7.0-package.tar.gz
            sha512sum: 

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

390



1

1

2

3

(Required) List of connector plugins and their artifacts.

AMQ Streams supports two types of artifacts: * JAR files, which are downloaded and used directly *
TGZ archives, which are downloaded and unpacked

IMPORTANT

AMQ Streams does not perform any security scanning of the downloaded artifacts. For
security reasons, you should first verify the artifacts manually, and configure the
checksum verification to make sure the same artifact is used in the automated build and
in the Kafka Connect deployment.

Using JAR artifacts

JAR artifacts represent a resource which is downloaded and added to a container image. JAR artifacts
are mainly used for downloading JAR files, but they can also used to download other file types. To use a
JAR artifacts, set the type property to jar, and specify the download location using the url property.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, AMQ Streams will verify
the checksum of the artifact while building the new container image.

Example JAR artifact

(Required) Type of artifact.

(Required) URL from which the artifact is downloaded.

(Optional) SHA-512 checksum to verify the artifact.

Using TGZ artifacts

a9b1ac63e3284bea7836d7d24d84208c49cdf5600070e6bd1535de654f6920b74ad950d51733e8020bf4
187870699819f54ef5859c7846ee4081507f48873479
  #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      #...
    plugins:
      - name: my-plugin
        artifacts:
          - type: jar 1
            url: https://my-domain.tld/my-jar.jar 2
            sha512sum: 589...ab4 3
          - type: jar
            url: https://my-domain.tld/my-jar2.jar
  #...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

391



1

2

3

TGZ artifacts are used to download TAR archives that have been compressed using Gzip compression.
The TGZ artifact can contain the whole Kafka Connect connector, even when comprising multiple
different files. The TGZ artifact is automatically downloaded and unpacked by AMQ Streams while
building the new container image. To use TGZ artifacts, set the type property to tgz, and specify the
download location using the url property.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, AMQ Streams will verify
the checksum before unpacking it and building the new container image.

Example TGZ artifact

(Required) Type of artifact.

(Required) URL from which the archive is downloaded.

(Optional) SHA-512 checksum to verify the artifact.

13.2.95.3. Build schema properties

Property Description

output Configures where should the newly built image be
stored. Required. The type depends on the value of
the output.type property within the given object,
which must be one of [docker, imagestream].

DockerOutput, ImageStreamOutput

resources CPU and memory resources to reserve for the build.
For more information, see the external
documentation for core/v1 resourcerequirements.ResourceRequirements

plugins List of connector plugins which should be added to
the Kafka Connect. Required.

Plugin array

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      #...
    plugins:
      - name: my-plugin
        artifacts:
          - type: tgz 1
            url: https://my-domain.tld/my-connector-archive.jar 2
            sha512sum: 158...jg10 3
  #...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

392

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


13.2.96. DockerOutput schema reference

Used in: Build

The type property is a discriminator that distinguishes use of the DockerOutput type from 
ImageStreamOutput. It must have the value docker for the type DockerOutput.

Property Description

image The full name which should be used for tagging and
pushing the newly built image. For example 
quay.io/my-organization/my-custom-
connect:latest. Required.

string

pushSecret Container Registry Secret with the credentials for
pushing the newly built image.

string

additionalKanikoOptions Configures additional options which will be passed to
the Kaniko executor when building the new Connect
image. Allowed options are: --customPlatform, --
insecure, --insecure-pull, --insecure-registry, --log-
format, --log-timestamp, --registry-mirror, --
reproducible, --single-snapshot, --skip-tls-verify, --
skip-tls-verify-pull, --skip-tls-verify-registry, --
verbosity, --snapshotMode, --use-new-run. These
options will be used only on OpenShift where the
Kaniko executor is used. They will be ignored on
OpenShift. The options are described in the Kaniko
GitHub repository. Changing this field does not
trigger new build of the Kafka Connect image.

string array

type Must be docker.

string

13.2.97. ImageStreamOutput schema reference

Used in: Build

The type property is a discriminator that distinguishes use of the ImageStreamOutput type from 
DockerOutput. It must have the value imagestream for the type ImageStreamOutput.

Property Description

image The name and tag of the ImageStream where the
newly built image will be pushed. For example my-
custom-connect:latest. Required.string

type Must be imagestream.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

393

https://github.com/GoogleContainerTools/kaniko


string

Property Description

13.2.98. Plugin schema reference

Used in: Build

Property Description

name The unique name of the connector plugin. Will be
used to generate the path where the connector
artifacts will be stored. The name has to be unique
within the KafkaConnect resource. The name has to
follow the following pattern: ̂ [a-z][-_a-z0-9]*[a-
z]$. Required.

string

artifacts List of artifacts which belong to this connector
plugin. Required.

JarArtifact, TgzArtifact, ZipArtifact array

13.2.99. JarArtifact schema reference

Used in: Plugin

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified.

string

type Must be jar.

string

13.2.100. TgzArtifact schema reference

Used in: Plugin

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

394



Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified.

string

type Must be tgz.

string

13.2.101. ZipArtifact schema reference

Used in: Plugin

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified.

string

type Must be zip.

string

13.2.102. KafkaConnectStatus schema reference

Used in: KafkaConnect

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

395



Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL of the REST API endpoint for managing and
monitoring Kafka Connect connectors.

string

connectorPlugins The list of connector plugins available in this Kafka
Connect deployment.

ConnectorPlugin array

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

13.2.103. ConnectorPlugin schema reference

Used in: KafkaConnectS2IStatus, KafkaConnectStatus, KafkaMirrorMaker2Status

Property Description

type The type of the connector plugin. The available types
are sink and source.

string

version The version of the connector plugin.

string

class The class of the connector plugin.

string

13.2.104. KafkaConnectS2I schema reference

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

396



The type KafkaConnectS2I has been deprecated. Please use Build instead.

Property Description

spec The specification of the Kafka Connect Source-to-
Image (S2I) cluster.

KafkaConnectS2ISpec

status The status of the Kafka Connect Source-to-Image
(S2I) cluster.

KafkaConnectS2IStatus

13.2.105. KafkaConnectS2ISpec schema reference

Used in: KafkaConnectS2I

Full list of KafkaConnectS2ISpec schema properties

Configures a Kafka Connect cluster with Source-to-Image (S2I) support.

When extending Kafka Connect with connector plugins on OpenShift (only), you can use OpenShift
builds and S2I to create a container image that is used by the Kafka Connect deployment.

The configuration options are similar to Kafka Connect configuration using the KafkaConnectSpec
schema.

13.2.105.1. KafkaConnectS2ISpec schema properties

Property Description

version The Kafka Connect version. Defaults to 2.7.0.
Consult the user documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Kafka Connect group.

integer

image The docker image for the pods.

string

buildResources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

397

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


bootstrapServers Bootstrap servers to connect to. This should be
given as a comma separated list of
<hostname>:​<port> pairs.string

tls TLS configuration.

KafkaConnectTls

authentication Authentication configuration for Kafka Connect. The
type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls, 
KafkaClientAuthenticationScramSha512, 
KafkaClientAuthenticationPlain, 
KafkaClientAuthenticationOAuth

config The Kafka Connect configuration. Properties with the
following prefixes cannot be set: ssl., sasl., security.,
listeners, plugin.path, rest., bootstrap.servers,
consumer.interceptor.classes,
producer.interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

resources The maximum limits for CPU and memory resources
and the requested initial resources. For more
information, see the external documentation for
core/v1 resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options.

KafkaJmxOptions

Property Description

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

398

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


affinity The affinity property has been deprecated, and
should now be configured using 
spec.template.pod.affinity. The property affinity
is removed in API version v1beta2. The pod’s
affinity rules. For more information, see the external
documentation for core/v1 affinity.

Affinity

tolerations The tolerations property has been deprecated,
and should now be configured using 
spec.template.pod.tolerations. The property
tolerations is removed in API version v1beta2. The
pod’s tolerations. For more information, see the
external documentation for core/v1 toleration.

Toleration array

logging Logging configuration for Kafka Connect. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

metrics The metrics property has been deprecated, and
should now be configured using 
spec.metricsConfig. The property metrics is
removed in API version v1beta2. The Prometheus
JMX Exporter configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.

map

tracing The configuration of tracing in Kafka Connect. The
type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger].

JaegerTracing

template Template for Kafka Connect and Kafka Connect S2I
resources. The template allows users to specify how
the Deployment, Pods and Service are
generated.

KafkaConnectTemplate

externalConfiguration Pass data from Secrets or ConfigMaps to the Kafka
Connect pods and use them to configure connectors.

ExternalConfiguration

build Configures how the Connect container image should
be built. Optional.

Build

clientRackInitImage The image of the init container used for initializing
the client.rack.

string

Property Description

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

399

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://github.com/prometheus/jmx_exporter


insecureSourceRepository When true this configures the source repository with
the 'Local' reference policy and an import policy that
accepts insecure source tags.boolean

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

rack Configuration of the node label which will be used as
the client.rack consumer configuration.

Rack

Property Description

13.2.106. KafkaConnectS2IStatus schema reference

Used in: KafkaConnectS2I

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL of the REST API endpoint for managing and
monitoring Kafka Connect connectors.

string

connectorPlugins The list of connector plugins available in this Kafka
Connect deployment.

ConnectorPlugin array

buildConfigName The name of the build configuration.

string

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

400



integer

Property Description

13.2.107. KafkaTopic schema reference

Property Description

spec The specification of the topic.

KafkaTopicSpec

status The status of the topic.

KafkaTopicStatus

13.2.108. KafkaTopicSpec schema reference

Used in: KafkaTopic

Property Description

partitions The number of partitions the topic should have. This
cannot be decreased after topic creation. It can be
increased after topic creation, but it is important to
understand the consequences that has, especially for
topics with semantic partitioning.

integer

replicas The number of replicas the topic should have.

integer

config The topic configuration.

map

topicName The name of the topic. When absent this will default
to the metadata.name of the topic. It is
recommended to not set this unless the topic name is
not a valid OpenShift resource name.

string

13.2.109. KafkaTopicStatus schema reference

Used in: KafkaTopic

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

401



Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

13.2.110. KafkaUser schema reference

Property Description

spec The specification of the user.

KafkaUserSpec

status The status of the Kafka User.

KafkaUserStatus

13.2.111. KafkaUserSpec schema reference

Used in: KafkaUser

Property Description

authentication Authentication mechanism enabled for this Kafka
user. The type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512].

KafkaUserTlsClientAuthentication, 
KafkaUserScramSha512ClientAuthentication

authorization Authorization rules for this Kafka user. The type
depends on the value of the authorization.type
property within the given object, which must be one
of [simple].

KafkaUserAuthorizationSimple

quotas Quotas on requests to control the broker resources
used by clients. Network bandwidth and request rate
quotas can be enforced.Kafka documentation for
Kafka User quotas can be found at
http://kafka.apache.org/documentation/#design_qu
otas.

KafkaUserQuotas

template Template to specify how Kafka User Secrets are
generated.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

402

http://kafka.apache.org/documentation/#design_quotas


KafkaUserTemplate

Property Description

13.2.112. KafkaUserTlsClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserTlsClientAuthentication
type from KafkaUserScramSha512ClientAuthentication. It must have the value tls for the type 
KafkaUserTlsClientAuthentication.

Property Description

type Must be tls.

string

13.2.113. KafkaUserScramSha512ClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the 
KafkaUserScramSha512ClientAuthentication type from KafkaUserTlsClientAuthentication. It must
have the value scram-sha-512 for the type KafkaUserScramSha512ClientAuthentication.

Property Description

type Must be scram-sha-512.

string

13.2.114. KafkaUserAuthorizationSimple schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserAuthorizationSimple type
from other subtypes which may be added in the future. It must have the value simple for the type 
KafkaUserAuthorizationSimple.

Property Description

type Must be simple.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

403



string

acls List of ACL rules which should be applied to this
user.

AclRule array

Property Description

13.2.115. AclRule schema reference

Used in: KafkaUserAuthorizationSimple

Full list of AclRule schema properties

Configures access control rule for a KafkaUser when brokers are using the AclAuthorizer.

Example KafkaUser configuration with authorization

13.2.115.1. resource

Use the resource property to specify the resource that the rule applies to.

Simple authorization supports four resource types, which are specified in the type property:

Topics (topic)

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
  name: my-user
  labels:
    strimzi.io/cluster: my-cluster
spec:
  # ...
  authorization:
    type: simple
    acls:
      - resource:
          type: topic
          name: my-topic
          patternType: literal
        operation: Read
      - resource:
          type: topic
          name: my-topic
          patternType: literal
        operation: Describe
      - resource:
          type: group
          name: my-group
          patternType: prefix
        operation: Read

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

404



Consumer Groups (group)

Clusters (cluster)

Transactional IDs (transactionalId)

For Topic, Group, and Transactional ID resources you can specify the name of the resource the rule
applies to in the name property.

Cluster type resources have no name.

A name is specified as a literal or a prefix using the patternType property.

Literal names are taken exactly as they are specified in the name field.

Prefix names use the value from the name as a prefix, and will apply the rule to all resources
with names starting with the value.

13.2.115.2. type

The type of rule, which is to allow or deny (not currently supported) an operation.

The type field is optional. If type is unspecified, the ACL rule is treated as an allow rule.

13.2.115.3. operation

Specify an operation for the rule to allow or deny.

The following operations are supported:

Read

Write

Delete

Alter

Describe

All

IdempotentWrite

ClusterAction

Create

AlterConfigs

DescribeConfigs

Only certain operations work with each resource.

For more details about AclAuthorizer, ACLs and supported combinations of resources and operations,
see Authorization and ACLs.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

405

http://kafka.apache.org/documentation/#security_authz


13.2.115.4. host

Use the host property to specify a remote host from which the rule is allowed or denied.

Use an asterisk (*) to allow or deny the operation from all hosts. The host field is optional. If host is
unspecified, the * value is used by default.

13.2.115.5. AclRule schema properties

Property Description

host The host from which the action described in the ACL
rule is allowed or denied.

string

operation Operation which will be allowed or denied. Supported
operations are: Read, Write, Create, Delete, Alter,
Describe, ClusterAction, AlterConfigs,
DescribeConfigs, IdempotentWrite and All.

string (one of [Read, Write, Delete, Alter, Describe,
All, IdempotentWrite, ClusterAction, Create,
AlterConfigs, DescribeConfigs])

resource Indicates the resource for which given ACL rule
applies. The type depends on the value of the 
resource.type property within the given object,
which must be one of [topic, group, cluster,
transactionalId].

AclRuleTopicResource, 
AclRuleGroupResource, 
AclRuleClusterResource, 
AclRuleTransactionalIdResource

type The type of the rule. Currently the only supported
type is allow. ACL rules with type allow are used to
allow user to execute the specified operations.
Default value is allow.

string (one of [allow, deny])

13.2.116. AclRuleTopicResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleTopicResource type from 
AclRuleGroupResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must have
the value topic for the type AclRuleTopicResource.

Property Description

type Must be topic.

string

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

406



name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full topic name. With prefix pattern
type, the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

Property Description

13.2.117. AclRuleGroupResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleGroupResource type from 
AclRuleTopicResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must have
the value group for the type AclRuleGroupResource.

Property Description

type Must be group.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full topic name. With prefix pattern
type, the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

13.2.118. AclRuleClusterResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleClusterResource type from 
AclRuleTopicResource, AclRuleGroupResource, AclRuleTransactionalIdResource. It must have the
value cluster for the type AclRuleClusterResource.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

407



Property Description

type Must be cluster.

string

13.2.119. AclRuleTransactionalIdResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleTransactionalIdResource
type from AclRuleTopicResource, AclRuleGroupResource, AclRuleClusterResource. It must have
the value transactionalId for the type AclRuleTransactionalIdResource.

Property Description

type Must be transactionalId.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full name. With prefix pattern type,
the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

13.2.120. KafkaUserQuotas schema reference

Used in: KafkaUserSpec

Full list of KafkaUserQuotas schema properties

Kafka allows a user to set quotas to control the use of resources by clients.

13.2.120.1. quotas

Quotas split into two categories:

Network usage  quotas, which are defined as the byte rate threshold for each group of clients
sharing a quota

CPU utilization  quotas, which are defined as the percentage of time a client can utilize on
request handler I/O threads and network threads of each broker within a quota window

Using quotas for Kafka clients might be useful in a number of situations. Consider a wrongly configured

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

408



Kafka producer which is sending requests at too high a rate. Such misconfiguration can cause a denial of
service to other clients, so the problematic client ought to be blocked. By using a network limiting quota,
it is possible to prevent this situation from significantly impacting other clients.

AMQ Streams supports user-level quotas, but not client-level quotas.

An example Kafka user quotas

For more info about Kafka user quotas, refer to the Apache Kafka documentation.

13.2.120.2. KafkaUserQuotas schema properties

Property Description

consumerByteRate A quota on the maximum bytes per-second that each
client group can fetch from a broker before the
clients in the group are throttled. Defined on a per-
broker basis.

integer

producerByteRate A quota on the maximum bytes per-second that each
client group can publish to a broker before the clients
in the group are throttled. Defined on a per-broker
basis.

integer

requestPercentage A quota on the maximum CPU utilization of each
client group as a percentage of network and I/O
threads.integer

13.2.121. KafkaUserTemplate schema reference

Used in: KafkaUserSpec

Full list of KafkaUserTemplate schema properties

Specify additional labels and annotations for the secret created by the User Operator.

An example showing the KafkaUserTemplate

spec:
  quotas:
    producerByteRate: 1048576
    consumerByteRate: 2097152
    requestPercentage: 55

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
  name: my-user
  labels:
    strimzi.io/cluster: my-cluster
spec:
  authentication:

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

409

http://kafka.apache.org/documentation/#design_quotas


13.2.121.1. KafkaUserTemplate schema properties

Property Description

secret Template for KafkaUser resources. The template
allows users to specify how the Secret with
password or TLS certificates is generated.ResourceTemplate

13.2.122. KafkaUserStatus schema reference

Used in: KafkaUser

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

username Username.

string

secret The name of Secret where the credentials are
stored.

string

13.2.123. KafkaMirrorMaker schema reference

Property Description

spec The specification of Kafka MirrorMaker.

    type: tls
  template:
    secret:
      metadata:
        labels:
          label1: value1
        annotations:
          anno1: value1
  # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

410



KafkaMirrorMakerSpec

status The status of Kafka MirrorMaker.

KafkaMirrorMakerStatus

Property Description

13.2.124. KafkaMirrorMakerSpec schema reference

Used in: KafkaMirrorMaker

Full list of KafkaMirrorMakerSpec schema properties

Configures Kafka MirrorMaker.

13.2.124.1. whitelist

Use the whitelist property to configure a list of topics that Kafka MirrorMaker mirrors from the source
to the target Kafka cluster.

The property allows any regular expression from the simplest case with a single topic name to complex
patterns. For example, you can mirror topics A and B using "A|B" or all topics using "*". You can also pass
multiple regular expressions separated by commas to the Kafka MirrorMaker.

13.2.124.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec

Use the KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec to configure source
(consumer) and target (producer) clusters.

Kafka MirrorMaker always works together with two Kafka clusters (source and target). To establish a
connection, the bootstrap servers for the source and the target Kafka clusters are specified as comma-
separated lists of HOSTNAME:PORT pairs. Each comma-separated list contains one or more Kafka
brokers or a Service pointing to Kafka brokers specified as a HOSTNAME:PORT pair.

13.2.124.3. logging

Kafka MirrorMaker has its own configurable logger:

mirrormaker.root.logger

MirrorMaker uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both 
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

411



you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging:

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

13.2.124.4. KafkaMirrorMakerSpec schema properties

Property Description

version The Kafka MirrorMaker version. Defaults to 2.7.0.
Consult the documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Deployment.

integer

image The docker image for the pods.

string

consumer Configuration of source cluster.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
  # ...
  logging:
    type: inline
    loggers:
      mirrormaker.root.logger: "INFO"
  # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: mirror-maker-log4j.properties
  # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

412

https://logging.apache.org/


KafkaMirrorMakerConsumerSpec

producer Configuration of target cluster.

KafkaMirrorMakerProducerSpec

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

whitelist List of topics which are included for mirroring. This
option allows any regular expression using Java-style
regular expressions. Mirroring two topics named A
and B is achieved by using the whitelist 'A|B'. Or, as a
special case, you can mirror all topics using the
whitelist '*'. You can also specify multiple regular
expressions separated by commas.

string

affinity The affinity property has been deprecated, and
should now be configured using 
spec.template.pod.affinity. The property affinity
is removed in API version v1beta2. The pod’s
affinity rules. For more information, see the external
documentation for core/v1 affinity.

Affinity

tolerations The tolerations property has been deprecated,
and should now be configured using 
spec.template.pod.tolerations. The property
tolerations is removed in API version v1beta2. The
pod’s tolerations. For more information, see the
external documentation for core/v1 toleration.

Toleration array

jvmOptions JVM Options for pods.

JvmOptions

logging Logging configuration for MirrorMaker. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

metrics The metrics property has been deprecated, and
should now be configured using 
spec.metricsConfig. The property metrics is
removed in API version v1beta2. The Prometheus
JMX Exporter configuration. See JMX Exporter
documentation for details of the structure of this
configuration.

map

Property Description

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

413

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://github.com/prometheus/jmx_exporter


metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

tracing The configuration of tracing in Kafka MirrorMaker.
The type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger].

JaegerTracing

template Template to specify how Kafka MirrorMaker
resources, Deployments and Pods, are generated.

KafkaMirrorMakerTemplate

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

Property Description

13.2.125. KafkaMirrorMakerConsumerSpec schema reference

Used in: KafkaMirrorMakerSpec

Full list of KafkaMirrorMakerConsumerSpec schema properties

Configures a MirrorMaker consumer.

13.2.125.1. numStreams

Use the consumer.numStreams property to configure the number of streams for the consumer.

You can increase the throughput in mirroring topics by increasing the number of consumer threads.
Consumer threads belong to the consumer group specified for Kafka MirrorMaker. Topic partitions are
assigned across the consumer threads, which consume messages in parallel.

13.2.125.2. offsetCommitInterval

Use the consumer.offsetCommitInterval property to configure an offset auto-commit interval for the
consumer.

You can specify the regular time interval at which an offset is committed after Kafka MirrorMaker has
consumed data from the source Kafka cluster. The time interval is set in milliseconds, with a default
value of 60,000.

13.2.125.3. config

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

414



Use the consumer.config properties to configure Kafka options for the consumer.

The config property contains the Kafka MirrorMaker consumer configuration options as keys, with
values set in one of the following JSON types:

String

Number

Boolean

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for
consumers.

However, there are exceptions for options automatically configured and managed directly by AMQ
Streams related to:

Kafka cluster bootstrap address

Security (encryption, authentication, and authorization)

Consumer group identifier

Interceptors

Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

bootstrap.servers

group.id

interceptor.classes

ssl. (not including specific exceptions )

sasl.

security.

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other options are passed to Kafka MirrorMaker.

IMPORTANT

The Cluster Operator does not validate keys or values in the provided config object.
When an invalid configuration is provided, the Kafka MirrorMaker might not start or might
become unstable. In such cases, the configuration in the 
KafkaMirrorMaker.spec.consumer.config object should be fixed and the Cluster
Operator will roll out the new configuration for Kafka MirrorMaker.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

415

http://kafka.apache.org/documentation/#consumerconfigs


13.2.125.4. groupId

Use the consumer.groupId property to configure a consumer group identifier for the consumer.

Kafka MirrorMaker uses a Kafka consumer to consume messages, behaving like any other Kafka
consumer client. Messages consumed from the source Kafka cluster are mirrored to a target Kafka
cluster. A group identifier is required, as the consumer needs to be part of a consumer group for the
assignment of partitions.

13.2.125.5. KafkaMirrorMakerConsumerSpec schema properties

Property Description

numStreams Specifies the number of consumer stream threads to
create.

integer

offsetCommitInterval Specifies the offset auto-commit interval in ms.
Default value is 60000.

integer

bootstrapServers A list of host:port pairs for establishing the initial
connection to the Kafka cluster.

string

groupId A unique string that identifies the consumer group
this consumer belongs to.

string

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls, 
KafkaClientAuthenticationScramSha512, 
KafkaClientAuthenticationPlain, 
KafkaClientAuthenticationOAuth

config The MirrorMaker consumer config. Properties with
the following prefixes cannot be set: ssl.,
bootstrap.servers, group.id, sasl., security.,
interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

tls TLS configuration for connecting MirrorMaker to the
cluster.

KafkaMirrorMakerTls

13.2.126. KafkaMirrorMakerTls schema reference

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

416



Used in: KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaMirrorMakerTls schema properties

Configures TLS trusted certificates for connecting MirrorMaker to the cluster.

13.2.126.1. trustedCertificates

Provide a list of secrets using the trustedCertificates property.

13.2.126.2. KafkaMirrorMakerTls schema properties

Property Description

trustedCertificates Trusted certificates for TLS connection.

CertSecretSource array

13.2.127. KafkaMirrorMakerProducerSpec schema reference

Used in: KafkaMirrorMakerSpec

Full list of KafkaMirrorMakerProducerSpec schema properties

Configures a MirrorMaker producer.

13.2.127.1. abortOnSendFailure

Use the producer.abortOnSendFailure property to configure how to handle message send failure from
the producer.

By default, if an error occurs when sending a message from Kafka MirrorMaker to a Kafka cluster:

The Kafka MirrorMaker container is terminated in OpenShift.

The container is then recreated.

If the abortOnSendFailure option is set to false, message sending errors are ignored.

13.2.127.2. config

Use the producer.config properties to configure Kafka options for the producer.

The config property contains the Kafka MirrorMaker producer configuration options as keys, with values
set in one of the following JSON types:

String

Number

Boolean

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

417



For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for
producers.

However, there are exceptions for options automatically configured and managed directly by AMQ
Streams related to:

Kafka cluster bootstrap address

Security (encryption, authentication, and authorization)

Interceptors

Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

bootstrap.servers

interceptor.classes

ssl. (not including specific exceptions )

sasl.

security.

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other options are passed to Kafka MirrorMaker.

IMPORTANT

The Cluster Operator does not validate keys or values in the provided config object.
When an invalid configuration is provided, the Kafka MirrorMaker might not start or might
become unstable. In such cases, the configuration in the 
KafkaMirrorMaker.spec.producer.config object should be fixed and the Cluster
Operator will roll out the new configuration for Kafka MirrorMaker.

13.2.127.3. KafkaMirrorMakerProducerSpec schema properties

Property Description

bootstrapServers A list of host:port pairs for establishing the initial
connection to the Kafka cluster.

string

abortOnSendFailure Flag to set the MirrorMaker to exit on a failed send.
Default value is true.

boolean

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

418

http://kafka.apache.org/documentation/#producerconfigs


authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls, 
KafkaClientAuthenticationScramSha512, 
KafkaClientAuthenticationPlain, 
KafkaClientAuthenticationOAuth

config The MirrorMaker producer config. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, sasl., security., interceptor.classes
(with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

tls TLS configuration for connecting MirrorMaker to the
cluster.

KafkaMirrorMakerTls

Property Description

13.2.128. KafkaMirrorMakerTemplate schema reference

Used in: KafkaMirrorMakerSpec

Property Description

deployment Template for Kafka MirrorMaker Deployment.

DeploymentTemplate

pod Template for Kafka MirrorMaker Pods.

PodTemplate

mirrorMakerContainer Template for Kafka MirrorMaker container.

ContainerTemplate

podDisruptionBudget Template for Kafka MirrorMaker 
PodDisruptionBudget.

PodDisruptionBudgetTemplate

13.2.129. KafkaMirrorMakerStatus schema reference

Used in: KafkaMirrorMaker

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

419



Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

13.2.130. KafkaBridge schema reference

Property Description

spec The specification of the Kafka Bridge.

KafkaBridgeSpec

status The status of the Kafka Bridge.

KafkaBridgeStatus

13.2.131. KafkaBridgeSpec schema reference

Used in: KafkaBridge

Full list of KafkaBridgeSpec schema properties

Configures a Kafka Bridge cluster.

Configuration options relate to:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Consumer configuration

Producer configuration

HTTP configuration

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

420



13.2.131.1. logging

Kafka Bridge has its own configurable loggers:

logger.bridge

logger.<operation-id>

You can replace <operation-id> in the logger.<operation-id> logger to set log levels for specific
operations:

createConsumer

deleteConsumer

subscribe

unsubscribe

poll

assign

commit

send

sendToPartition

seekToBeginning

seekToEnd

seek

healthy

ready

openapi

Each operation is defined according OpenAPI specification, and has a corresponding API endpoint
through which the bridge receives requests from HTTP clients. You can change the log level on each
endpoint to create fine-grained logging information about the incoming and outgoing HTTP requests.

Each logger has to be configured assigning it a name as http.openapi.operation.<operation-id>. For
example, configuring the logging level for the send operation logger means defining the following:

logger.send.name = http.openapi.operation.send
logger.send.level = DEBUG

Kafka Bridge uses the Apache log4j2 logger implementation. Loggers are defined in the 
log4j2.properties file, which has the following default configuration for healthy and ready endpoints:

logger.healthy.name = http.openapi.operation.healthy
logger.healthy.level = WARN
logger.ready.name = http.openapi.operation.ready

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

421



logger.ready.level = WARN

The log level of all other operations is set to INFO by default.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. The 
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. Default logging is used if the name or key is not set. Inside the ConfigMap,
the logging configuration is described using log4j.properties. For more information about log levels, see
Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

Any available loggers that are not configured have their level set to OFF.

If the Kafka Bridge was deployed using the Cluster Operator, changes to Kafka Bridge logging levels are
applied dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
  # ...
  logging:
    type: inline
    loggers:
      logger.bridge.level: "INFO"
      # enabling DEBUG just for send operation
      logger.send.name: "http.openapi.operation.send"
      logger.send.level: "DEBUG"
  # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: bridge-logj42.properties
  # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

422

https://logging.apache.org/


13.2.131.2. KafkaBridgeSpec schema properties

Property Description

replicas The number of pods in the Deployment.

integer

image The docker image for the pods.

string

bootstrapServers A list of host:port pairs for establishing the initial
connection to the Kafka cluster.

string

tls TLS configuration for connecting Kafka Bridge to the
cluster.

KafkaBridgeTls

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls, 
KafkaClientAuthenticationScramSha512, 
KafkaClientAuthenticationPlain, 
KafkaClientAuthenticationOAuth

http The HTTP related configuration.

KafkaBridgeHttpConfig

consumer Kafka consumer related configuration.

KafkaBridgeConsumerSpec

producer Kafka producer related configuration.

KafkaBridgeProducerSpec

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

jvmOptions Currently not supported JVM Options for pods.

JvmOptions

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

423

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core


logging Logging configuration for Kafka Bridge. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

enableMetrics Enable the metrics for the Kafka Bridge. Default is
false.

boolean

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

template Template for Kafka Bridge resources. The template
allows users to specify how is the Deployment and 
Pods generated.KafkaBridgeTemplate

tracing The configuration of tracing in Kafka Bridge. The type
depends on the value of the tracing.type property
within the given object, which must be one of
[jaeger].

JaegerTracing

Property Description

13.2.132. KafkaBridgeTls schema reference

Used in: KafkaBridgeSpec

Property Description

trustedCertificates Trusted certificates for TLS connection.

CertSecretSource array

13.2.133. KafkaBridgeHttpConfig schema reference

Used in: KafkaBridgeSpec

Full list of KafkaBridgeHttpConfig schema properties

Configures HTTP access to a Kafka cluster for the Kafka Bridge.

The default HTTP configuration is for the Kafka Bridge to listen on port 8080.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

424



13.2.133.1. cors

As well as enabling HTTP access to a Kafka cluster, HTTP properties provide the capability to enable and
define access control for the Kafka Bridge through Cross-Origin Resource Sharing (CORS). CORS is a
HTTP mechanism that allows browser access to selected resources from more than one origin. To
configure CORS, you define a list of allowed resource origins and HTTP access methods. For the origins,
you can use a URL or a Java regular expression.

Example Kafka Bridge HTTP configuration

13.2.133.2. KafkaBridgeHttpConfig schema properties

Property Description

port The port which is the server listening on.

integer

cors CORS configuration for the HTTP Bridge.

KafkaBridgeHttpCors

13.2.134. KafkaBridgeHttpCors schema reference

Used in: KafkaBridgeHttpConfig

Property Description

allowedOrigins List of allowed origins. Java regular expressions can
be used.

string array

allowedMethods List of allowed HTTP methods.

string array

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
spec:
  # ...
  http:
    port: 8080
    cors:
      allowedOrigins: "https://strimzi.io"
      allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
  # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

425



13.2.135. KafkaBridgeConsumerSpec schema reference

Used in: KafkaBridgeSpec

Full list of KafkaBridgeConsumerSpec schema properties

Configures consumer options for the Kafka Bridge as keys.

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka configuration documentation for
consumers with the exception of those options which are managed directly by AMQ Streams.
Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

ssl.

sasl.

security.

bootstrap.servers

group.id

When one of the forbidden options is present in the config property, it is ignored and a warning
message will be printed to the Cluster Operator log file. All other options will be passed to Kafka

IMPORTANT

The Cluster Operator does not validate keys or values in the config object. If an invalid
configuration is provided, the Kafka Bridge cluster might not start or might become
unstable. Fix the configuration so that the Cluster Operator can roll out the new
configuration to all Kafka Bridge nodes.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties.

Example Kafka Bridge consumer configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
spec:
  # ...
  consumer:
    config:
      auto.offset.reset: earliest
      enable.auto.commit: true

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

426

http://kafka.apache.org/documentation/#consumerconfigs


13.2.135.1. KafkaBridgeConsumerSpec schema properties

Property Description

config The Kafka consumer configuration used for consumer
instances created by the bridge. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, group.id, sasl., security. (with the
exception of: ssl.endpoint.identification.algorithm,
ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

map

13.2.136. KafkaBridgeProducerSpec schema reference

Used in: KafkaBridgeSpec

Full list of KafkaBridgeProducerSpec schema properties

Configures producer options for the Kafka Bridge as keys.

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka configuration documentation for
producers with the exception of those options which are managed directly by AMQ Streams. Specifically,
all configuration options with keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

bootstrap.servers

When one of the forbidden options is present in the config property, it is ignored and a warning
message will be printed to the Cluster Operator log file. All other options will be passed to Kafka

IMPORTANT

The Cluster Operator does not validate keys or values in the config object. If an invalid
configuration is provided, the Kafka Bridge cluster might not start or might become
unstable. Fix the configuration so that the Cluster Operator can roll out the new
configuration to all Kafka Bridge nodes.

      ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
      ssl.enabled.protocols: "TLSv1.2"
      ssl.protocol: "TLSv1.2"
      ssl.endpoint.identification.algorithm: HTTPS
    # ...

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

427

http://kafka.apache.org/documentation/#producerconfigs


There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties.

Example Kafka Bridge producer configuration

13.2.136.1. KafkaBridgeProducerSpec schema properties

Property Description

config The Kafka producer configuration used for producer
instances created by the bridge. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, sasl., security. (with the exception
of: ssl.endpoint.identification.algorithm,
ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

map

13.2.137. KafkaBridgeTemplate schema reference

Used in: KafkaBridgeSpec

Property Description

deployment Template for Kafka Bridge Deployment.

DeploymentTemplate

pod Template for Kafka Bridge Pods.

PodTemplate

apiService Template for Kafka Bridge API Service.

ResourceTemplate

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
spec:
  # ...
  producer:
    config:
      acks: 1
      delivery.timeout.ms: 300000
      ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
      ssl.enabled.protocols: "TLSv1.2"
      ssl.protocol: "TLSv1.2"
      ssl.endpoint.identification.algorithm: HTTPS
    # ...

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

428



bridgeContainer Template for the Kafka Bridge container.

ContainerTemplate

podDisruptionBudget Template for Kafka Bridge PodDisruptionBudget.

PodDisruptionBudgetTemplate

Property Description

13.2.138. KafkaBridgeStatus schema reference

Used in: KafkaBridge

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL at which external client applications can
access the Kafka Bridge.

string

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

13.2.139. KafkaConnector schema reference

Property Description

spec The specification of the Kafka Connector.

KafkaConnectorSpec

status The status of the Kafka Connector.

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

429



KafkaConnectorStatus

Property Description

13.2.140. KafkaConnectorSpec schema reference

Used in: KafkaConnector

Property Description

class The Class for the Kafka Connector.

string

tasksMax The maximum number of tasks for the Kafka
Connector.

integer

config The Kafka Connector configuration. The following
properties cannot be set: connector.class, tasks.max.

map

pause Whether the connector should be paused. Defaults
to false.

boolean

13.2.141. KafkaConnectorStatus schema reference

Used in: KafkaConnector

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

connectorStatus The connector status, as reported by the Kafka
Connect REST API.

map

tasksMax The maximum number of tasks for the Kafka
Connector.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

430



integer

topics The list of topics used by the Kafka Connector.

string array

Property Description

13.2.142. KafkaMirrorMaker2 schema reference

Property Description

spec The specification of the Kafka MirrorMaker 2.0
cluster.

KafkaMirrorMaker2Spec

status The status of the Kafka MirrorMaker 2.0 cluster.

KafkaMirrorMaker2Status

13.2.143. KafkaMirrorMaker2Spec schema reference

Used in: KafkaMirrorMaker2

Property Description

version The Kafka Connect version. Defaults to 2.7.0.
Consult the user documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Kafka Connect group.

integer

image The docker image for the pods.

string

connectCluster The cluster alias used for Kafka Connect. The alias
must match a cluster in the list at spec.clusters.

string

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

431



clusters Kafka clusters for mirroring.

KafkaMirrorMaker2ClusterSpec array

mirrors Configuration of the MirrorMaker 2.0 connectors.

KafkaMirrorMaker2MirrorSpec array

resources The maximum limits for CPU and memory resources
and the requested initial resources. For more
information, see the external documentation for
core/v1 resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options.

KafkaJmxOptions

affinity The affinity property has been deprecated, and
should now be configured using 
spec.template.pod.affinity. The property affinity
is removed in API version v1beta2. The pod’s
affinity rules. For more information, see the external
documentation for core/v1 affinity.

Affinity

tolerations The tolerations property has been deprecated,
and should now be configured using 
spec.template.pod.tolerations. The property
tolerations is removed in API version v1beta2. The
pod’s tolerations. For more information, see the
external documentation for core/v1 toleration.

Toleration array

logging Logging configuration for Kafka Connect. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

Property Description

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

432

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#toleration-v1-core


metrics The metrics property has been deprecated, and
should now be configured using 
spec.metricsConfig. The property metrics is
removed in API version v1beta2. The Prometheus
JMX Exporter configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.

map

tracing The configuration of tracing in Kafka Connect. The
type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger].

JaegerTracing

template Template for Kafka Connect and Kafka Connect S2I
resources. The template allows users to specify how
the Deployment, Pods and Service are
generated.

KafkaConnectTemplate

externalConfiguration Pass data from Secrets or ConfigMaps to the Kafka
Connect pods and use them to configure connectors.

ExternalConfiguration

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

Property Description

13.2.144. KafkaMirrorMaker2ClusterSpec schema reference

Used in: KafkaMirrorMaker2Spec

Full list of KafkaMirrorMaker2ClusterSpec schema properties

Configures Kafka clusters for mirroring.

13.2.144.1. config

Use the config properties to configure Kafka options.

Standard Apache Kafka configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

13.2.144.2. KafkaMirrorMaker2ClusterSpec schema properties

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

433

https://github.com/prometheus/jmx_exporter


Property Description

alias Alias used to reference the Kafka cluster.

string

bootstrapServers A comma-separated list of host:port pairs for
establishing the connection to the Kafka cluster.

string

tls TLS configuration for connecting MirrorMaker 2.0
connectors to a cluster.

KafkaMirrorMaker2Tls

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the 
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain, oauth].

KafkaClientAuthenticationTls, 
KafkaClientAuthenticationScramSha512, 
KafkaClientAuthenticationPlain, 
KafkaClientAuthenticationOAuth

config The MirrorMaker 2.0 cluster config. Properties with
the following prefixes cannot be set: ssl., sasl.,
security., listeners, plugin.path, rest.,
bootstrap.servers, consumer.interceptor.classes,
producer.interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

13.2.145. KafkaMirrorMaker2Tls schema reference

Used in: KafkaMirrorMaker2ClusterSpec

Property Description

trustedCertificates Trusted certificates for TLS connection.

CertSecretSource array

13.2.146. KafkaMirrorMaker2MirrorSpec schema reference

Used in: KafkaMirrorMaker2Spec

Property Description

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

434



sourceCluster The alias of the source cluster used by the Kafka
MirrorMaker 2.0 connectors. The alias must match a
cluster in the list at spec.clusters.string

targetCluster The alias of the target cluster used by the Kafka
MirrorMaker 2.0 connectors. The alias must match a
cluster in the list at spec.clusters.string

sourceConnector The specification of the Kafka MirrorMaker 2.0
source connector.

KafkaMirrorMaker2ConnectorSpec

heartbeatConnector The specification of the Kafka MirrorMaker 2.0
heartbeat connector.

KafkaMirrorMaker2ConnectorSpec

checkpointConnector The specification of the Kafka MirrorMaker 2.0
checkpoint connector.

KafkaMirrorMaker2ConnectorSpec

topicsPattern A regular expression matching the topics to be
mirrored, for example, "topic1|topic2|topic3".
Comma-separated lists are also supported.string

topicsBlacklistPattern A regular expression matching the topics to exclude
from mirroring. Comma-separated lists are also
supported.string

groupsPattern A regular expression matching the consumer groups
to be mirrored. Comma-separated lists are also
supported.string

groupsBlacklistPattern A regular expression matching the consumer groups
to exclude from mirroring. Comma-separated lists
are also supported.string

Property Description

13.2.147. KafkaMirrorMaker2ConnectorSpec schema reference

Used in: KafkaMirrorMaker2MirrorSpec

Property Description

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

435



tasksMax The maximum number of tasks for the Kafka
Connector.

integer

config The Kafka Connector configuration. The following
properties cannot be set: connector.class, tasks.max.

map

pause Whether the connector should be paused. Defaults
to false.

boolean

Property Description

13.2.148. KafkaMirrorMaker2Status schema reference

Used in: KafkaMirrorMaker2

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL of the REST API endpoint for managing and
monitoring Kafka Connect connectors.

string

connectorPlugins The list of connector plugins available in this Kafka
Connect deployment.

ConnectorPlugin array

connectors List of MirrorMaker 2.0 connector statuses, as
reported by the Kafka Connect REST API.

map array

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

436



integer

Property Description

13.2.149. KafkaRebalance schema reference

Property Description

spec The specification of the Kafka rebalance.

KafkaRebalanceSpec

status The status of the Kafka rebalance.

KafkaRebalanceStatus

13.2.150. KafkaRebalanceSpec schema reference

Used in: KafkaRebalance

Property Description

goals A list of goals, ordered by decreasing priority, to use
for generating and executing the rebalance proposal.
The supported goals are available at
https://github.com/linkedin/cruise-control#goals. If
an empty goals list is provided, the goals declared in
the default.goals Cruise Control configuration
parameter are used.

string array

skipHardGoalCheck Whether to allow the hard goals specified in the Kafka
CR to be skipped in optimization proposal
generation. This can be useful when some of those
hard goals are preventing a balance solution being
found. Default is false.

boolean

excludedTopics A regular expression where any matching topics will
be excluded from the calculation of optimization
proposals. This expression will be parsed by the
java.util.regex.Pattern class; for more information on
the supported formar consult the documentation for
that class.

string

concurrentPartitionMovementsPerBroker The upper bound of ongoing partition replica
movements going into/out of each broker. Default is
5.integer

CHAPTER 13. CUSTOM RESOURCE API REFERENCE

437

https://github.com/linkedin/cruise-control#goals


concurrentIntraBrokerPartitionMovements The upper bound of ongoing partition replica
movements between disks within each broker.
Default is 2.

integer

concurrentLeaderMovements The upper bound of ongoing partition leadership
movements. Default is 1000.

integer

replicationThrottle The upper bound, in bytes per second, on the
bandwidth used to move replicas. There is no limit by
default.integer

replicaMovementStrategies A list of strategy class names used to determine the
execution order for the replica movements in the
generated optimization proposal. By default
BaseReplicaMovementStrategy is used, which will
execute the replica movements in the order that they
were generated.

string array

Property Description

13.2.151. KafkaRebalanceStatus schema reference

Used in: KafkaRebalance

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

sessionId The session identifier for requests to Cruise Control
pertaining to this KafkaRebalance resource. This is
used by the Kafka Rebalance operator to track the
status of ongoing rebalancing operations.

string

optimizationResult A JSON object describing the optimization result.

map

Red Hat AMQ 2021.q2 Using AMQ Streams on OpenShift

438



APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Streams entries in the INTEGRATION AND AUTOMATION
category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Revised on 2021-04-30 09:47:31 UTC

APPENDIX A. USING YOUR SUBSCRIPTION

439

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. OVERVIEW OF AMQ STREAMS
	1.1. KAFKA CAPABILITIES
	1.2. KAFKA USE CASES
	1.3. HOW AMQ STREAMS SUPPORTS KAFKA
	1.4. AMQ STREAMS OPERATORS
	Operators
	1.4.1. Cluster Operator
	1.4.2. Topic Operator
	1.4.3. User Operator

	1.5. AMQ STREAMS CUSTOM RESOURCES
	1.5.1. AMQ Streams custom resource example

	1.6. LISTENER CONFIGURATION
	1.7. DOCUMENT CONVENTIONS

	CHAPTER 2. DEPLOYMENT CONFIGURATION
	2.1. KAFKA CLUSTER CONFIGURATION
	2.1.1. Configuring Kafka
	2.1.2. Configuring the Entity Operator
	2.1.2.1. Entity Operator configuration properties
	2.1.2.2. Topic Operator configuration properties
	2.1.2.3. User Operator configuration properties

	2.1.3. Kafka and ZooKeeper storage types
	2.1.3.1. Data storage considerations
	2.1.3.2. Ephemeral storage
	2.1.3.3. Persistent storage
	2.1.3.4. Resizing persistent volumes
	2.1.3.5. JBOD storage overview
	2.1.3.6. Adding volumes to JBOD storage
	2.1.3.7. Removing volumes from JBOD storage

	2.1.4. Scaling clusters
	2.1.4.1. Scaling Kafka clusters
	2.1.4.2. Partition reassignment
	2.1.4.3. Generating reassignment JSON files
	2.1.4.4. Creating reassignment JSON files manually
	2.1.4.5. Reassignment throttles
	2.1.4.6. Scaling up a Kafka cluster
	2.1.4.7. Scaling down a Kafka cluster

	2.1.5. Maintenance time windows for rolling updates
	2.1.5.1. Maintenance time windows overview
	2.1.5.2. Maintenance time window definition
	2.1.5.3. Configuring a maintenance time window

	2.1.6. Connecting to ZooKeeper from a terminal
	2.1.7. Deleting Kafka nodes manually
	2.1.8. Deleting ZooKeeper nodes manually
	2.1.9. List of Kafka cluster resources

	2.2. KAFKA CONNECT/S2I CLUSTER CONFIGURATION
	2.2.1. Configuring Kafka Connect
	2.2.2. Kafka Connect configuration for multiple instances
	2.2.3. Configuring Kafka Connect user authorization
	2.2.4. Performing a restart of a Kafka connector
	2.2.5. Performing a restart of a Kafka connector task
	2.2.6. Migrating from Kafka Connect with S2I to Kafka Connect
	2.2.7. List of Kafka Connect cluster resources
	2.2.8. List of Kafka Connect (S2I) cluster resources
	2.2.9. Integrating with Debezium for change data capture

	2.3. KAFKA MIRRORMAKER CLUSTER CONFIGURATION
	2.3.1. Configuring Kafka MirrorMaker
	2.3.2. List of Kafka MirrorMaker cluster resources

	2.4. KAFKA MIRRORMAKER 2.0 CLUSTER CONFIGURATION
	2.4.1. MirrorMaker 2.0 data replication
	2.4.2. Cluster configuration
	2.4.2.1. Bidirectional replication (active/active)
	2.4.2.2. Unidirectional replication (active/passive)
	2.4.2.3. Topic configuration synchronization
	2.4.2.4. Data integrity
	2.4.2.5. Offset tracking
	2.4.2.6. Synchronizing consumer group offsets
	2.4.2.7. Connectivity checks

	2.4.3. ACL rules synchronization
	2.4.4. Synchronizing data between Kafka clusters using MirrorMaker 2.0
	2.4.5. Performing a restart of a Kafka MirrorMaker 2.0 connector
	2.4.6. Performing a restart of a Kafka MirrorMaker 2.0 connector task

	2.5. KAFKA BRIDGE CLUSTER CONFIGURATION
	2.5.1. Configuring the Kafka Bridge
	2.5.2. List of Kafka Bridge cluster resources

	2.6. CUSTOMIZING OPENSHIFT RESOURCES
	2.6.1. Customizing the image pull policy

	2.7. CONFIGURING POD SCHEDULING
	2.7.1. Specifying affinity, tolerations, and topology spread constraints
	2.7.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
	2.7.1.2. Use node affinity to schedule workloads onto specific nodes
	2.7.1.3. Use node affinity and tolerations for dedicated nodes

	2.7.2. Configuring pod anti-affinity in Kafka components
	2.7.3. Configuring node affinity in Kafka components
	2.7.4. Setting up dedicated nodes and scheduling pods on them

	2.8. EXTERNAL LOGGING
	2.8.1. Creating a ConfigMap for logging


	CHAPTER 3. CONFIGURING EXTERNAL LISTENERS
	3.1. ACCESSING KAFKA USING NODE PORTS
	3.2. ACCESSING KAFKA USING LOADBALANCERS
	3.3. ACCESSING KAFKA USING INGRESS
	3.4. ACCESSING KAFKA USING OPENSHIFT ROUTES

	CHAPTER 4. MANAGING SECURE ACCESS TO KAFKA
	4.1. SECURITY OPTIONS FOR KAFKA
	4.1.1. Listener authentication
	4.1.1.1. Mutual TLS authentication
	4.1.1.2. SCRAM-SHA-512 authentication
	4.1.1.3. Network policies
	4.1.1.4. Additional listener configuration options

	4.1.2. Kafka authorization
	4.1.2.1. Super users


	4.2. SECURITY OPTIONS FOR KAFKA CLIENTS
	4.2.1. Identifying a Kafka cluster for user handling
	4.2.2. User authentication
	4.2.2.1. TLS Client Authentication
	4.2.2.2. SCRAM-SHA-512 Authentication

	4.2.3. User authorization
	4.2.3.1. ACL rules
	4.2.3.2. Super user access to Kafka brokers
	4.2.3.3. User quotas


	4.3. SECURING ACCESS TO KAFKA BROKERS
	4.3.1. Securing Kafka brokers
	4.3.2. Securing user access to Kafka
	4.3.3. Restricting access to Kafka listeners using network policies

	4.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION
	4.4.1. OAuth 2.0 authentication mechanisms
	4.4.2. OAuth 2.0 Kafka broker configuration
	4.4.2.1. OAuth 2.0 client configuration on an authorization server
	4.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
	4.4.2.3. Fast local JWT token validation configuration
	4.4.2.4. OAuth 2.0 introspection endpoint configuration

	4.4.3. Session re-authentication for Kafka brokers
	4.4.4. OAuth 2.0 Kafka client configuration
	4.4.5. OAuth 2.0 client authentication flow
	4.4.5.1. Example client authentication flows

	4.4.6. Configuring OAuth 2.0 authentication
	4.4.6.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server
	4.4.6.2. Configuring OAuth 2.0 support for Kafka brokers
	4.4.6.3. Configuring Kafka Java clients to use OAuth 2.0
	4.4.6.4. Configuring OAuth 2.0 for Kafka components


	4.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
	4.5.1. OAuth 2.0 authorization mechanism
	4.5.1.1. Kafka broker custom authorizer

	4.5.2. Configuring OAuth 2.0 authorization support


	CHAPTER 5. USING AMQ STREAMS OPERATORS
	5.1. USING THE CLUSTER OPERATOR
	5.1.1. Cluster Operator configuration
	5.1.1.1. Logging configuration by ConfigMap
	5.1.1.2. Restricting Cluster Operator access with network policy
	5.1.1.3. Periodic reconciliation

	5.1.2. Provisioning Role-Based Access Control (RBAC)
	5.1.2.1. Delegated privileges
	5.1.2.2. ServiceAccount
	5.1.2.3. ClusterRoles
	5.1.2.4. ClusterRoleBindings


	5.2. USING THE TOPIC OPERATOR
	5.2.1. Kafka topic resource
	5.2.1.1. Identifying a Kafka cluster for topic handling
	5.2.1.2. Kafka topic usage recommendations
	5.2.1.3. Kafka topic naming conventions

	5.2.2. Topic Operator topic store
	5.2.2.1. Internal topic store topics
	5.2.2.2. Migrating topic metadata from ZooKeeper
	5.2.2.3. Downgrading to an AMQ Streams version that uses ZooKeeper to store topic metadata
	5.2.2.4. Topic Operator topic replication and scaling
	5.2.2.5. Handling changes to topics

	5.2.3. Configuring a Kafka topic
	5.2.4. Configuring the Topic Operator with resource requests and limits

	5.3. USING THE USER OPERATOR
	5.3.1. Configuring the User Operator with resource requests and limits

	5.4. MONITORING OPERATORS USING PROMETHEUS METRICS

	CHAPTER 6. KAFKA BRIDGE
	6.1. KAFKA BRIDGE OVERVIEW
	6.1.1. Kafka Bridge interface
	6.1.1.1. HTTP requests

	6.1.2. Supported clients for the Kafka Bridge
	6.1.3. Securing the Kafka Bridge
	6.1.4. Accessing the Kafka Bridge outside of OpenShift
	6.1.5. Requests to the Kafka Bridge
	6.1.5.1. Content Type headers
	6.1.5.2. Embedded data format
	6.1.5.3. Message format
	6.1.5.4. Accept headers

	6.1.6. CORS
	6.1.6.1. Simple request
	6.1.6.2. Preflighted request

	6.1.7. Kafka Bridge API resources
	6.1.8. Kafka Bridge deployment

	6.2. KAFKA BRIDGE QUICKSTART
	6.2.1. Deploying the Kafka Bridge to your OpenShift cluster
	6.2.2. Exposing the Kafka Bridge service to your local machine
	6.2.3. Producing messages to topics and partitions
	6.2.4. Creating a Kafka Bridge consumer
	6.2.5. Subscribing a Kafka Bridge consumer to topics
	6.2.6. Retrieving the latest messages from a Kafka Bridge consumer
	6.2.7. Commiting offsets to the log
	6.2.8. Seeking to offsets for a partition
	6.2.9. Deleting a Kafka Bridge consumer


	CHAPTER 7. USING THE KAFKA BRIDGE WITH 3SCALE
	7.1. USING THE KAFKA BRIDGE WITH 3SCALE
	7.1.1. Kafka Bridge service discovery
	7.1.2. 3scale APIcast gateway policies
	7.1.3. TLS validation
	7.1.4. 3scale documentation

	7.2. DEPLOYING 3SCALE FOR THE KAFKA BRIDGE

	CHAPTER 8. CRUISE CONTROL FOR CLUSTER REBALANCING
	8.1. WHY USE CRUISE CONTROL?
	8.2. OPTIMIZATION GOALS OVERVIEW
	Goals configuration in AMQ Streams custom resources
	Hard goals and soft goals
	Master optimization goals
	Default optimization goals
	User-provided optimization goals


	8.3. OPTIMIZATION PROPOSALS OVERVIEW
	Cached optimization proposal
	Contents of optimization proposals

	8.4. REBALANCE PERFORMANCE TUNING OVERVIEW
	Partition reassignment commands
	Replica movement strategies
	Rebalance tuning options

	8.5. CRUISE CONTROL CONFIGURATION
	Cross-Origin Resource Sharing configuration
	Capacity configuration
	Logging configuration

	8.6. DEPLOYING CRUISE CONTROL
	Auto-created topics

	8.7. GENERATING OPTIMIZATION PROPOSALS
	8.8. APPROVING AN OPTIMIZATION PROPOSAL
	8.9. STOPPING A CLUSTER REBALANCE
	8.10. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

	CHAPTER 9. VALIDATING SCHEMAS WITH SERVICE REGISTRY
	CHAPTER 10. DISTRIBUTED TRACING
	How AMQ Streams supports tracing
	Outline of procedures
	10.1. OVERVIEW OF OPENTRACING AND JAEGER
	10.2. SETTING UP TRACING FOR KAFKA CLIENTS
	10.2.1. Initializing a Jaeger tracer for Kafka clients
	10.2.2. Environment variables for tracing

	10.3. INSTRUMENTING KAFKA CLIENTS WITH TRACERS
	10.3.1. Instrumenting producers and consumers for tracing
	10.3.1.1. Custom span names in a Decorator pattern
	10.3.1.2. Built-in span names

	10.3.2. Instrumenting Kafka Streams applications for tracing

	10.4. SETTING UP TRACING FOR MIRRORMAKER, KAFKA CONNECT, AND THE KAFKA BRIDGE
	10.4.1. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources


	CHAPTER 11. MANAGING TLS CERTIFICATES
	11.1. CERTIFICATE AUTHORITIES
	11.1.1. CA certificates
	11.1.2. Installing your own CA certificates

	11.2. SECRETS
	11.2.1. PKCS #12 storage
	11.2.2. Cluster CA Secrets
	11.2.3. Client CA Secrets
	11.2.4. Adding labels and annotations to Secrets
	11.2.5. Disabling ownerReference in the CA Secrets
	11.2.6. User Secrets

	11.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS
	11.3.1. Renewal process with automatically generated CA certificates
	11.3.2. Client certificate renewal
	11.3.3. Manually renewing the CA certificates generated by the Cluster Operator
	11.3.4. Replacing private keys used by the CA certificates generated by the Cluster Operator
	11.3.5. Renewing your own CA certificates

	11.4. TLS CONNECTIONS
	11.4.1. ZooKeeper communication
	11.4.2. Kafka interbroker communication
	11.4.3. Topic and User Operators
	11.4.4. Cruise Control
	11.4.5. Kafka Client connections

	11.5. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA
	11.6. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA
	11.7. KAFKA LISTENER CERTIFICATES
	11.7.1. Providing your own Kafka listener certificates
	11.7.2. Alternative subjects in server certificates for Kafka listeners
	11.7.2.1. TLS listener SAN examples
	11.7.2.2. External listener SAN examples



	CHAPTER 12. MANAGING AMQ STREAMS
	12.1. WORKING WITH CUSTOM RESOURCES
	12.1.1. Performing oc operations on custom resources
	12.1.1.1. Resource categories
	12.1.1.2. Querying the status of sub-resources

	12.1.2. AMQ Streams custom resource status information
	12.1.3. Finding the status of a custom resource

	12.2. PAUSING RECONCILIATION OF CUSTOM RESOURCES
	12.3. MANUALLY STARTING ROLLING UPDATES OF KAFKA AND ZOOKEEPER CLUSTERS
	12.3.1. Prerequisites
	12.3.2. Performing a rolling update using a StatefulSet annotation
	12.3.3. Performing a rolling update using a Pod annotation

	12.4. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS
	Example internal Kafka bootstrap service
	Example HTTP Bridge service
	12.4.1. Returning connection details on services

	12.5. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES
	12.5.1. Recovery from namespace deletion
	12.5.2. Recovery from loss of an OpenShift cluster
	12.5.3. Recovering a deleted cluster from persistent volumes

	12.6. TUNING CLIENT CONFIGURATION
	12.6.1. Kafka producer configuration tuning
	12.6.1.1. Basic producer configuration
	12.6.1.2. Data durability
	12.6.1.3. Ordered delivery
	12.6.1.4. Reliability guarantees
	12.6.1.5. Optimizing throughput and latency

	12.6.2. Kafka consumer configuration tuning
	12.6.2.1. Basic consumer configuration
	12.6.2.2. Scaling data consumption using consumer groups
	12.6.2.3. Message ordering guarantees
	12.6.2.4. Optimizing throughput and latency
	12.6.2.5. Avoiding data loss or duplication when committing offsets
	12.6.2.6. Recovering from failure to avoid data loss
	12.6.2.7. Managing offset policy
	12.6.2.8. Minimizing the impact of rebalances


	12.7. UNINSTALLING AMQ STREAMS
	12.8. FREQUENTLY ASKED QUESTIONS
	12.8.1. Questions related to the Cluster Operator
	12.8.1.1. Why do I need cluster administrator privileges to install AMQ Streams?
	12.8.1.2. Why does the Cluster Operator need to create ClusterRoleBindings?
	12.8.1.3. Can standard OpenShift users create Kafka custom resources?
	12.8.1.4. What do the failed to acquire lock warnings in the log mean?
	12.8.1.5. Why is hostname verification failing when connecting to NodePorts using TLS?



	CHAPTER 13. CUSTOM RESOURCE API REFERENCE
	13.1. COMMON CONFIGURATION PROPERTIES
	13.1.1. replicas
	13.1.2. bootstrapServers
	13.1.3. ssl
	13.1.4. trustedCertificates
	13.1.5. resources
	13.1.6. image
	13.1.7. livenessProbe and readinessProbe healthchecks
	13.1.8. metricsConfig
	13.1.9. jvmOptions
	13.1.10. Garbage collector logging

	13.2. SCHEMA PROPERTIES
	13.2.1. Kafka schema reference
	13.2.2. KafkaSpec schema reference
	13.2.3. KafkaClusterSpec schema reference
	13.2.3.1. listeners
	13.2.3.2. config
	13.2.3.3. brokerRackInitImage
	13.2.3.4. logging
	13.2.3.5. KafkaClusterSpec schema properties

	13.2.4. GenericKafkaListener schema reference
	13.2.4.1. listeners
	13.2.4.2. type
	13.2.4.3. port
	13.2.4.4. tls
	13.2.4.5. authentication
	13.2.4.6. networkPolicyPeers
	13.2.4.7. GenericKafkaListener schema properties

	13.2.5. KafkaListenerAuthenticationTls schema reference
	13.2.6. KafkaListenerAuthenticationScramSha512 schema reference
	13.2.7. KafkaListenerAuthenticationOAuth schema reference
	13.2.8. GenericSecretSource schema reference
	13.2.9. CertSecretSource schema reference
	13.2.10. GenericKafkaListenerConfiguration schema reference
	13.2.10.1. brokerCertChainAndKey
	13.2.10.2. externalTrafficPolicy
	13.2.10.3. loadBalancerSourceRanges
	13.2.10.4. class
	13.2.10.5. preferredNodePortAddressType
	13.2.10.6. useServiceDnsDomain
	13.2.10.7. GenericKafkaListenerConfiguration schema properties

	13.2.11. CertAndKeySecretSource schema reference
	13.2.12. GenericKafkaListenerConfigurationBootstrap schema reference
	13.2.12.1. alternativeNames
	13.2.12.2. host
	13.2.12.3. nodePort
	13.2.12.4. loadBalancerIP
	13.2.12.5. annotations
	13.2.12.6. GenericKafkaListenerConfigurationBootstrap schema properties

	13.2.13. GenericKafkaListenerConfigurationBroker schema reference
	13.2.13.1. GenericKafkaListenerConfigurationBroker schema properties

	13.2.14. KafkaListeners schema reference
	13.2.15. KafkaListenerPlain schema reference
	13.2.16. KafkaListenerTls schema reference
	13.2.17. TlsListenerConfiguration schema reference
	13.2.18. KafkaListenerExternalRoute schema reference
	13.2.19. RouteListenerOverride schema reference
	13.2.20. RouteListenerBootstrapOverride schema reference
	13.2.21. RouteListenerBrokerOverride schema reference
	13.2.22. KafkaListenerExternalConfiguration schema reference
	13.2.23. KafkaListenerExternalLoadBalancer schema reference
	13.2.24. LoadBalancerListenerOverride schema reference
	13.2.25. LoadBalancerListenerBootstrapOverride schema reference
	13.2.26. LoadBalancerListenerBrokerOverride schema reference
	13.2.27. KafkaListenerExternalNodePort schema reference
	13.2.28. NodePortListenerOverride schema reference
	13.2.29. NodePortListenerBootstrapOverride schema reference
	13.2.30. NodePortListenerBrokerOverride schema reference
	13.2.31. NodePortListenerConfiguration schema reference
	13.2.32. KafkaListenerExternalIngress schema reference
	13.2.33. IngressListenerConfiguration schema reference
	13.2.34. IngressListenerBootstrapConfiguration schema reference
	13.2.35. IngressListenerBrokerConfiguration schema reference
	13.2.36. EphemeralStorage schema reference
	13.2.37. PersistentClaimStorage schema reference
	13.2.38. PersistentClaimStorageOverride schema reference
	13.2.39. JbodStorage schema reference
	13.2.40. KafkaAuthorizationSimple schema reference
	13.2.40.1. superUsers
	13.2.40.2. KafkaAuthorizationSimple schema properties

	13.2.41. KafkaAuthorizationOpa schema reference
	13.2.41.1. url
	13.2.41.2. allowOnError
	13.2.41.3. initialCacheCapacity
	13.2.41.4. maximumCacheSize
	13.2.41.5. expireAfterMs
	13.2.41.6. superUsers
	13.2.41.7. KafkaAuthorizationOpa schema properties

	13.2.42. KafkaAuthorizationKeycloak schema reference
	13.2.43. Rack schema reference
	13.2.43.1. Rack schema properties

	13.2.44. Probe schema reference
	13.2.45. JvmOptions schema reference
	13.2.46. SystemProperty schema reference
	13.2.47. KafkaJmxOptions schema reference
	13.2.47.1. KafkaJmxOptions schema properties

	13.2.48. KafkaJmxAuthenticationPassword schema reference
	13.2.49. JmxPrometheusExporterMetrics schema reference
	13.2.50. ExternalConfigurationReference schema reference
	13.2.51. InlineLogging schema reference
	13.2.52. ExternalLogging schema reference
	13.2.53. TlsSidecar schema reference
	13.2.53.1. TlsSidecar schema properties

	13.2.54. KafkaClusterTemplate schema reference
	13.2.55. StatefulSetTemplate schema reference
	13.2.56. MetadataTemplate schema reference
	13.2.56.1. MetadataTemplate schema properties

	13.2.57. PodTemplate schema reference
	13.2.57.1. hostAliases
	13.2.57.2. PodTemplate schema properties

	13.2.58. ResourceTemplate schema reference
	13.2.59. ExternalServiceTemplate schema reference
	13.2.59.1. ExternalServiceTemplate schema properties

	13.2.60. PodDisruptionBudgetTemplate schema reference
	13.2.60.1. PodDisruptionBudgetTemplate schema properties

	13.2.61. ContainerTemplate schema reference
	13.2.61.1. ContainerTemplate schema properties

	13.2.62. ContainerEnvVar schema reference
	13.2.63. ZookeeperClusterSpec schema reference
	13.2.63.1. config
	13.2.63.2. logging
	13.2.63.3. ZookeeperClusterSpec schema properties

	13.2.64. ZookeeperClusterTemplate schema reference
	13.2.65. TopicOperatorSpec schema reference
	13.2.66. EntityOperatorSpec schema reference
	13.2.67. EntityTopicOperatorSpec schema reference
	13.2.67.1. logging
	13.2.67.2. EntityTopicOperatorSpec schema properties

	13.2.68. EntityUserOperatorSpec schema reference
	13.2.68.1. logging
	13.2.68.2. EntityUserOperatorSpec schema properties

	13.2.69. EntityOperatorTemplate schema reference
	13.2.70. CertificateAuthority schema reference
	13.2.71. CruiseControlSpec schema reference
	13.2.72. CruiseControlTemplate schema reference
	13.2.73. BrokerCapacity schema reference
	13.2.74. KafkaExporterSpec schema reference
	13.2.75. KafkaExporterTemplate schema reference
	13.2.76. KafkaStatus schema reference
	13.2.77. Condition schema reference
	13.2.78. ListenerStatus schema reference
	13.2.79. ListenerAddress schema reference
	13.2.80. KafkaConnect schema reference
	13.2.81. KafkaConnectSpec schema reference
	13.2.81.1. config
	13.2.81.2. logging
	13.2.81.3. KafkaConnectSpec schema properties

	13.2.82. KafkaConnectTls schema reference
	13.2.82.1. trustedCertificates
	13.2.82.2. KafkaConnectTls schema properties

	13.2.83. KafkaClientAuthenticationTls schema reference
	13.2.83.1. certificateAndKey
	13.2.83.2. KafkaClientAuthenticationTls schema properties

	13.2.84. KafkaClientAuthenticationScramSha512 schema reference
	13.2.84.1. username
	13.2.84.2. passwordSecret
	13.2.84.3. KafkaClientAuthenticationScramSha512 schema properties

	13.2.85. PasswordSecretSource schema reference
	13.2.86. KafkaClientAuthenticationPlain schema reference
	13.2.86.1. username
	13.2.86.2. passwordSecret
	13.2.86.3. KafkaClientAuthenticationPlain schema properties

	13.2.87. KafkaClientAuthenticationOAuth schema reference
	13.2.87.1. KafkaClientAuthenticationOAuth schema properties

	13.2.88. JaegerTracing schema reference
	13.2.89. KafkaConnectTemplate schema reference
	13.2.90. DeploymentTemplate schema reference
	13.2.91. ExternalConfiguration schema reference
	13.2.91.1. env
	13.2.91.2. volumes
	13.2.91.3. ExternalConfiguration schema properties

	13.2.92. ExternalConfigurationEnv schema reference
	13.2.93. ExternalConfigurationEnvVarSource schema reference
	13.2.94. ExternalConfigurationVolumeSource schema reference
	13.2.95. Build schema reference
	13.2.95.1. output
	13.2.95.2. plugins
	13.2.95.3. Build schema properties

	13.2.96. DockerOutput schema reference
	13.2.97. ImageStreamOutput schema reference
	13.2.98. Plugin schema reference
	13.2.99. JarArtifact schema reference
	13.2.100. TgzArtifact schema reference
	13.2.101. ZipArtifact schema reference
	13.2.102. KafkaConnectStatus schema reference
	13.2.103. ConnectorPlugin schema reference
	13.2.104. KafkaConnectS2I schema reference
	13.2.105. KafkaConnectS2ISpec schema reference
	13.2.105.1. KafkaConnectS2ISpec schema properties

	13.2.106. KafkaConnectS2IStatus schema reference
	13.2.107. KafkaTopic schema reference
	13.2.108. KafkaTopicSpec schema reference
	13.2.109. KafkaTopicStatus schema reference
	13.2.110. KafkaUser schema reference
	13.2.111. KafkaUserSpec schema reference
	13.2.112. KafkaUserTlsClientAuthentication schema reference
	13.2.113. KafkaUserScramSha512ClientAuthentication schema reference
	13.2.114. KafkaUserAuthorizationSimple schema reference
	13.2.115. AclRule schema reference
	13.2.115.1. resource
	13.2.115.2. type
	13.2.115.3. operation
	13.2.115.4. host
	13.2.115.5. AclRule schema properties

	13.2.116. AclRuleTopicResource schema reference
	13.2.117. AclRuleGroupResource schema reference
	13.2.118. AclRuleClusterResource schema reference
	13.2.119. AclRuleTransactionalIdResource schema reference
	13.2.120. KafkaUserQuotas schema reference
	13.2.120.1. quotas
	13.2.120.2. KafkaUserQuotas schema properties

	13.2.121. KafkaUserTemplate schema reference
	13.2.121.1. KafkaUserTemplate schema properties

	13.2.122. KafkaUserStatus schema reference
	13.2.123. KafkaMirrorMaker schema reference
	13.2.124. KafkaMirrorMakerSpec schema reference
	13.2.124.1. whitelist
	13.2.124.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec
	13.2.124.3. logging
	13.2.124.4. KafkaMirrorMakerSpec schema properties

	13.2.125. KafkaMirrorMakerConsumerSpec schema reference
	13.2.125.1. numStreams
	13.2.125.2. offsetCommitInterval
	13.2.125.3. config
	13.2.125.4. groupId
	13.2.125.5. KafkaMirrorMakerConsumerSpec schema properties

	13.2.126. KafkaMirrorMakerTls schema reference
	13.2.126.1. trustedCertificates
	13.2.126.2. KafkaMirrorMakerTls schema properties

	13.2.127. KafkaMirrorMakerProducerSpec schema reference
	13.2.127.1. abortOnSendFailure
	13.2.127.2. config
	13.2.127.3. KafkaMirrorMakerProducerSpec schema properties

	13.2.128. KafkaMirrorMakerTemplate schema reference
	13.2.129. KafkaMirrorMakerStatus schema reference
	13.2.130. KafkaBridge schema reference
	13.2.131. KafkaBridgeSpec schema reference
	13.2.131.1. logging
	13.2.131.2. KafkaBridgeSpec schema properties

	13.2.132. KafkaBridgeTls schema reference
	13.2.133. KafkaBridgeHttpConfig schema reference
	13.2.133.1. cors
	13.2.133.2. KafkaBridgeHttpConfig schema properties

	13.2.134. KafkaBridgeHttpCors schema reference
	13.2.135. KafkaBridgeConsumerSpec schema reference
	13.2.135.1. KafkaBridgeConsumerSpec schema properties

	13.2.136. KafkaBridgeProducerSpec schema reference
	13.2.136.1. KafkaBridgeProducerSpec schema properties

	13.2.137. KafkaBridgeTemplate schema reference
	13.2.138. KafkaBridgeStatus schema reference
	13.2.139. KafkaConnector schema reference
	13.2.140. KafkaConnectorSpec schema reference
	13.2.141. KafkaConnectorStatus schema reference
	13.2.142. KafkaMirrorMaker2 schema reference
	13.2.143. KafkaMirrorMaker2Spec schema reference
	13.2.144. KafkaMirrorMaker2ClusterSpec schema reference
	13.2.144.1. config
	13.2.144.2. KafkaMirrorMaker2ClusterSpec schema properties

	13.2.145. KafkaMirrorMaker2Tls schema reference
	13.2.146. KafkaMirrorMaker2MirrorSpec schema reference
	13.2.147. KafkaMirrorMaker2ConnectorSpec schema reference
	13.2.148. KafkaMirrorMaker2Status schema reference
	13.2.149. KafkaRebalance schema reference
	13.2.150. KafkaRebalanceSpec schema reference
	13.2.151. KafkaRebalanceStatus schema reference


	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files


