
Red Hat AMQ 7.7

Deploying and Upgrading AMQ Streams on
OpenShift

For use with AMQ Streams 1.5 on OpenShift Container Platform

Last Updated: 2020-10-28

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

For use with AMQ Streams 1.5 on OpenShift Container Platform

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides instructions for deploying and upgrading AMQ Streams

. .

. .

. .

. .

Table of Contents

CHAPTER 1. DEPLOYMENT OVERVIEW
1.1. HOW AMQ STREAMS SUPPORTS KAFKA
1.2. AMQ STREAMS OPERATORS

Operators
1.2.1. Cluster Operator
1.2.2. Topic Operator
1.2.3. User Operator

1.3. AMQ STREAMS CUSTOM RESOURCES
1.3.1. AMQ Streams custom resource example

1.4. PROMETHEUS SUPPORT IN AMQ STREAMS
1.5. AMQ STREAMS INSTALLATION METHODS

AMQ Streams installation artifacts
OperatorHub

CHAPTER 2. WHAT IS DEPLOYED WITH AMQ STREAMS
2.1. ORDER OF DEPLOYMENT
2.2. ADDITIONAL DEPLOYMENT CONFIGURATION OPTIONS

2.2.1. Securing Kafka
2.2.2. Monitoring your deployment

CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT
3.1. DEPLOYMENT PREREQUISITES
3.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS
3.3. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY
3.4. DESIGNATING AMQ STREAMS ADMINISTRATORS

CHAPTER 4. DEPLOYING AMQ STREAMS
4.1. CREATE THE KAFKA CLUSTER

Deploying a Kafka cluster with the Topic Operator and User Operator
Deploying a standalone Topic Operator and User Operator
4.1.1. Deploying the Cluster Operator

4.1.1.1. Watch options for a Cluster Operator deployment
4.1.1.2. Deploying the Cluster Operator to watch a single namespace
4.1.1.3. Deploying the Cluster Operator to watch multiple namespaces
4.1.1.4. Deploying the Cluster Operator to watch all namespaces
4.1.1.5. Deploying the Cluster Operator from the OperatorHub

4.1.2. Deploying Kafka
4.1.2.1. Deploying the Kafka cluster
4.1.2.2. Deploying the Topic Operator using the Cluster Operator
4.1.2.3. Deploying the User Operator using the Cluster Operator

4.1.3. Alternative standalone deployment options for AMQ Streams Operators
4.1.3.1. Deploying the standalone Topic Operator
4.1.3.2. Deploying the standalone User Operator

4.2. DEPLOY KAFKA CONNECT
4.2.1. Deploying Kafka Connect to your OpenShift cluster
4.2.2. Extending Kafka Connect with connector plug-ins

4.2.2.1. Creating a Docker image from the Kafka Connect base image
4.2.2.2. Creating a container image using OpenShift builds and Source-to-Image

4.2.3. Creating and managing connectors
4.2.3.1. KafkaConnector resources
4.2.3.2. Availability of the Kafka Connect REST API

4.2.4. Deploying a KafkaConnector resource to Kafka Connect

5
5
5
5
6
7
8
9
9

12
12
13
13

14
14
14
15
15

16
16
16
16
17

19
19
19
19
19

20
20
21
23
24
26
26
28
28
29
29
31
32
33
34
34
36
37
38
39
39

Table of Contents

1

. .

. .

. .

4.3. DEPLOY KAFKA MIRRORMAKER
4.3.1. Deploying Kafka MirrorMaker to your OpenShift cluster

4.4. DEPLOY KAFKA BRIDGE
4.4.1. Deploying Kafka Bridge to your OpenShift cluster

CHAPTER 5. VERIFYING THE AMQ STREAMS DEPLOYMENT
5.1. DEPLOYING EXAMPLE CLIENTS

CHAPTER 6. INTRODUCING METRICS TO KAFKA
6.1. ADD PROMETHEUS AND GRAFANA

6.1.1. Example Metrics files
6.1.2. Exposing Prometheus metrics

6.1.2.1. Prometheus metrics configuration
6.1.2.2. Prometheus metrics deployment options
6.1.2.3. Copying Prometheus metrics configuration to a Kafka resource
6.1.2.4. Deploying a Kafka cluster with Prometheus metrics configuration

6.1.3. Setting up Prometheus
6.1.3.1. Prometheus configuration
6.1.3.2. Prometheus resources
6.1.3.3. Deploying the CoreOS Prometheus Operator
6.1.3.4. Deploying Prometheus

6.1.4. Setting up Prometheus Alertmanager
6.1.4.1. Alertmanager configuration
6.1.4.2. Alerting rules
6.1.4.3. Alerting rule examples
6.1.4.4. Deploying Alertmanager

6.1.5. Setting up Grafana
6.1.5.1. Grafana configuration
6.1.5.2. Deploying Grafana
6.1.5.3. Enabling the example Grafana dashboards

6.2. ADD KAFKA EXPORTER
6.2.1. Monitoring Consumer lag

The importance of monitoring consumer lag
Reducing consumer lag

6.2.2. Example Kafka Exporter alerting rules
6.2.3. Exposing Kafka Exporter metrics
6.2.4. Configuring Kafka Exporter
6.2.5. Enabling the Kafka Exporter Grafana dashboard

CHAPTER 7. UPGRADING AMQ STREAMS
7.1. AMQ STREAMS AND KAFKA UPGRADES

7.1.1. Kafka versions
7.1.2. Upgrading the Cluster Operator

7.1.2.1. Upgrading the Cluster Operator to a later version
7.1.3. Upgrading Kafka

7.1.3.1. Kafka version and image mappings
7.1.3.2. Strategies for upgrading clients
7.1.3.3. Upgrading Kafka brokers and client applications
7.1.3.4. Upgrading consumers and Kafka Streams applications to cooperative rebalancing

7.1.4. Downgrading Kafka
7.1.4.1. Target downgrade version
7.1.4.2. Downgrading Kafka brokers and client applications

7.2. AMQ STREAMS RESOURCE UPGRADES
7.2.1. Upgrading Kafka resources

40
40
40
41

42
42

43
43
44
44
45
45
45
45
46
46
47
47
48
49
49
49
49
51
51
52
52
52
57
57
58
58
58
59
60
61

63
63
63
64
64
65
65
66
67
70
71
72
72
74
74

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

2

. .

7.2.2. Upgrading Kafka Connect resources
7.2.3. Upgrading Kafka Connect S2I resources
7.2.4. Upgrading Kafka MirrorMaker resources
7.2.5. Upgrading Kafka Topic resources
7.2.6. Upgrading Kafka User resources

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files

77
78
79
80
80

82
82
82
82

Table of Contents

3

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

4

CHAPTER 1. DEPLOYMENT OVERVIEW
AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

This guide provides instructions on all the options available for deploying and upgrading AMQ Streams,
describing what is deployed, and the order of deployment required to run Apache Kafka in an OpenShift
cluster.

As well as describing the deployment steps, the guide also provides pre- and post-deployment
instructions to prepare for and verify a deployment. Additional deployment options described include
the steps to introduce metrics. Upgrade instructions are provided for AMQ Streams and Kafka upgrades.

AMQ Streams is designed to work on all types of OpenShift cluster regardless of distribution, from
public and private clouds to local deployments intended for development.

1.1. HOW AMQ STREAMS SUPPORTS KAFKA

AMQ Streams provides container images and Operators for running Kafka on OpenShift. AMQ Streams
Operators are fundamental to the running of AMQ Streams. The Operators provided with AMQ Streams
are purpose-built with specialist operational knowledge to effectively manage Kafka.

Operators simplify the process of:

Deploying and running Kafka clusters

Deploying and running Kafka components

Configuring access to Kafka

Securing access to Kafka

Upgrading Kafka

Managing brokers

Creating and managing topics

Creating and managing users

1.2. AMQ STREAMS OPERATORS

AMQ Streams supports Kafka using Operators to deploy and manage the components and
dependencies of Kafka to OpenShift.

Operators are a method of packaging, deploying, and managing an OpenShift application. AMQ Streams
Operators extend OpenShift functionality, automating common and complex tasks related to a Kafka
deployment. By implementing knowledge of Kafka operations in code, Kafka administration tasks are
simplified and require less manual intervention.

Operators
AMQ Streams provides Operators for managing a Kafka cluster running within an OpenShift cluster.

Cluster Operator

Deploys and manages Apache Kafka clusters, Kafka Connect, Kafka MirrorMaker, Kafka Bridge, Kafka
Exporter, and the Entity Operator

CHAPTER 1. DEPLOYMENT OVERVIEW

5

Entity Operator

Comprises the Topic Operator and User Operator

Topic Operator

Manages Kafka topics

User Operator

Manages Kafka users

The Cluster Operator can deploy the Topic Operator and User Operator as part of an Entity Operator
configuration at the same time as a Kafka cluster.

Operators within the AMQ Streams architecture

1.2.1. Cluster Operator

AMQ Streams uses the Cluster Operator to deploy and manage clusters for:

Kafka (including ZooKeeper, Entity Operator, Kafka Exporter, and Cruise Control)

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

Custom resources are used to deploy the clusters.

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

6

For example, to deploy a Kafka cluster:

A Kafka resource with the cluster configuration is created within the OpenShift cluster.

The Cluster Operator deploys a corresponding Kafka cluster, based on what is declared in the
Kafka resource.

The Cluster Operator can also deploy (through configuration of the Kafka resource):

A Topic Operator to provide operator-style topic management through KafkaTopic custom
resources

A User Operator to provide operator-style user management through KafkaUser custom
resources

The Topic Operator and User Operator function within the Entity Operator on deployment.

Example architecture for the Cluster Operator

1.2.2. Topic Operator

The Topic Operator provides a way of managing topics in a Kafka cluster through OpenShift resources.

Example architecture for the Topic Operator

CHAPTER 1. DEPLOYMENT OVERVIEW

7

The role of the Topic Operator is to keep a set of KafkaTopic OpenShift resources describing Kafka
topics in-sync with corresponding Kafka topics.

Specifically, if a KafkaTopic is:

Created, the Topic Operator creates the topic

Deleted, the Topic Operator deletes the topic

Changed, the Topic Operator updates the topic

Working in the other direction, if a topic is:

Created within the Kafka cluster, the Operator creates a KafkaTopic

Deleted from the Kafka cluster, the Operator deletes the KafkaTopic

Changed in the Kafka cluster, the Operator updates the KafkaTopic

This allows you to declare a KafkaTopic as part of your application’s deployment and the Topic
Operator will take care of creating the topic for you. Your application just needs to deal with producing
or consuming from the necessary topics.

If the topic is reconfigured or reassigned to different Kafka nodes, the KafkaTopic will always be up to
date.

1.2.3. User Operator

The User Operator manages Kafka users for a Kafka cluster by watching for KafkaUser resources that
describe Kafka users, and ensuring that they are configured properly in the Kafka cluster.

For example, if a KafkaUser is:

Created, the User Operator creates the user it describes

Deleted, the User Operator deletes the user it describes

Changed, the User Operator updates the user it describes

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

8

Unlike the Topic Operator, the User Operator does not sync any changes from the Kafka cluster with the
OpenShift resources. Kafka topics can be created by applications directly in Kafka, but it is not expected
that the users will be managed directly in the Kafka cluster in parallel with the User Operator.

The User Operator allows you to declare a KafkaUser resource as part of your application’s deployment.
You can specify the authentication and authorization mechanism for the user. You can also configure
user quotas that control usage of Kafka resources to ensure, for example, that a user does not
monopolize access to a broker.

When the user is created, the user credentials are created in a Secret. Your application needs to use the
user and its credentials for authentication and to produce or consume messages.

In addition to managing credentials for authentication, the User Operator also manages authorization
rules by including a description of the user’s access rights in the KafkaUser declaration.

1.3. AMQ STREAMS CUSTOM RESOURCES

A deployment of Kafka components to an OpenShift cluster using AMQ Streams is highly configurable
through the application of custom resources. Custom resources are created as instances of APIs added
by Custom resource definitions (CRDs) to extend OpenShift resources.

CRDs act as configuration instructions to describe the custom resources in an OpenShift cluster, and are
provided with AMQ Streams for each Kafka component used in a deployment, as well as users and
topics. CRDs and custom resources are defined as YAML files. Example YAML files are provided with
the AMQ Streams distribution.

CRDs also allow AMQ Streams resources to benefit from native OpenShift features like CLI accessibility
and configuration validation.

Additional resources

Extend the Kubernetes API with CustomResourceDefinitions

1.3.1. AMQ Streams custom resource example

CRDs require a one-time installation in a cluster to define the schemas used to instantiate and manage
AMQ Streams-specific resources.

After a new custom resource type is added to your cluster by installing a CRD, you can create instances
of the resource based on its specification.

Depending on the cluster setup, installation typically requires cluster admin privileges.

NOTE

Access to manage custom resources is limited to AMQ Streams administrators .

A CRD defines a new kind of resource, such as kind:Kafka, within an OpenShift cluster.

The Kubernetes API server allows custom resources to be created based on the kind and understands
from the CRD how to validate and store the custom resource when it is added to the OpenShift cluster.

CHAPTER 1. DEPLOYMENT OVERVIEW

9

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

WARNING

When CRDs are deleted, custom resources of that type are also deleted.
Additionally, the resources created by the custom resource, such as pods and
statefulsets are also deleted.

Each AMQ Streams-specific custom resource conforms to the schema defined by the CRD for the
resource’s kind. The custom resources for AMQ Streams components have common configuration
properties, which are defined under spec.

To understand the relationship between a CRD and a custom resource, let’s look at a sample of the CRD
for a Kafka topic.

Kafka topic CRD



apiVersion: kafka.strimzi.io/v1beta1
kind: CustomResourceDefinition
metadata: 1
 name: kafkatopics.kafka.strimzi.io
 labels:
 app: strimzi
spec: 2
 group: kafka.strimzi.io
 versions:
 v1beta1
 scope: Namespaced
 names:
 # ...
 singular: kafkatopic
 plural: kafkatopics
 shortNames:
 - kt 3
 additionalPrinterColumns: 4
 # ...
 subresources:
 status: {} 5
 validation: 6
 openAPIV3Schema:
 properties:
 spec:
 type: object
 properties:
 partitions:
 type: integer
 minimum: 1
 replicas:
 type: integer
 minimum: 1
 maximum: 32767
 # ...

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

10

1

2

3

4

5

6

1

2

3

The metadata for the topic CRD, its name and a label to identify the CRD.

The specification for this CRD, including the group (domain) name, the plural name and the
supported schema version, which are used in the URL to access the API of the topic. The other
names are used to identify instance resources in the CLI. For example, oc get kafkatopic my-topic
or oc get kafkatopics.

The shortname can be used in CLI commands. For example, oc get kt can be used as an
abbreviation instead of oc get kafkatopic.

The information presented when using a get command on the custom resource.

The current status of the CRD as described in the schema reference for the resource.

openAPIV3Schema validation provides validation for the creation of topic custom resources. For
example, a topic requires at least one partition and one replica.

NOTE

You can identify the CRD YAML files supplied with the AMQ Streams installation files,
because the file names contain an index number followed by ‘Crd’.

Here is a corresponding example of a KafkaTopic custom resource.

Kafka topic custom resource

The kind and apiVersion identify the CRD of which the custom resource is an instance.

A label, applicable only to KafkaTopic and KafkaUser resources, that defines the name of the
Kafka cluster (which is same as the name of the Kafka resource) to which a topic or user belongs.

The spec shows the number of partitions and replicas for the topic as well as the configuration
parameters for the topic itself. In this example, the retention period for a message to remain in the
topic and the segment file size for the log are specified.

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic 1
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster 2
spec: 3
 partitions: 1
 replicas: 1
 config:
 retention.ms: 7200000
 segment.bytes: 1073741824
status:
 conditions: 4
 lastTransitionTime: "2019-08-20T11:37:00.706Z"
 status: "True"
 type: Ready
 observedGeneration: 1
 / ...

CHAPTER 1. DEPLOYMENT OVERVIEW

11

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#type-Kafka-reference

4 Status conditions for the KafkaTopic resource. The type condition changed to Ready at the
lastTransitionTime.

Custom resources can be applied to a cluster through the platform CLI. When the custom resource is
created, it uses the same validation as the built-in resources of the Kubernetes API.

After a KafkaTopic custom resource is created, the Topic Operator is notified and corresponding Kafka
topics are created in AMQ Streams.

1.4. PROMETHEUS SUPPORT IN AMQ STREAMS

The Prometheus server and the CoreOS Prometheus Operator are not supported as part of the AMQ
Streams distribution. However, the Prometheus endpoint and the Prometheus JMX Exporter used to
expose the metrics are supported. For more information about these supported components, see
Section 6.1.2, “Exposing Prometheus metrics” .

For your convenience, we supply detailed instructions and example metrics configuration files should
you wish to use Prometheus with AMQ Streams for monitoring.

See Chapter 6, Introducing Metrics to Kafka .

1.5. AMQ STREAMS INSTALLATION METHODS

There are two ways to install AMQ Streams on OpenShift.

Installation method Description Supported versions

Installation artifacts (YAML files) Download the amq-streams-
x.y.z-ocp-install-
examples.zip file from the AMQ
Streams download site. Next,
deploy the YAML installation
artifacts to your OpenShift
cluster using oc. You start by
deploying the Cluster Operator
from install/cluster-operator
to a single namespace, multiple
namespaces, or all namespaces.

OpenShift 3.11 and later

OperatorHub Use the AMQ Streams Operator
in the OperatorHub to deploy the
Cluster Operator to a single
namespace or all namespaces.

OpenShift 4.x only

For the greatest flexibility, choose the installation artifacts method. Choose the OperatorHub method if
you want to install AMQ Streams to OpenShift 4 in a standard configuration using the OpenShift 4 web
console. The OperatorHub also allows you to take advantage of automatic updates.

In the case of both methods, the Cluster Operator is deployed to your OpenShift cluster, ready for you
to deploy the other components of AMQ Streams, starting with a Kafka cluster, using the YAML example
files provided.

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

12

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

AMQ Streams installation artifacts
The AMQ Streams installation artifacts contain various YAML files that can be deployed to OpenShift,
using oc, to create custom resources, including:

Deployments

Custom resource definitions (CRDs)

Roles and role bindings

Service accounts

YAML installation files are provided for the Cluster Operator, Topic Operator, User Operator, and the
Strimzi Admin role.

OperatorHub
In OpenShift 4, the Operator Lifecycle Manager (OLM) helps cluster administrators to install, update,
and manage the lifecycle of all Operators and their associated services running across their clusters. The
OLM is part of the Operator Framework , an open source toolkit designed to manage Kubernetes-native
applications (Operators) in an effective, automated, and scalable way.

The OperatorHub is part of the OpenShift 4 web console. Cluster administrators can use it to discover,
install, and upgrade Operators. Operators can be pulled from the OperatorHub, installed on the
OpenShift cluster to a single (project) namespace or all (projects) namespaces, and managed by the
OLM. Engineering teams can then independently manage the software in development, test, and
production environments using the OLM.

NOTE

The OperatorHub is not available in versions of OpenShift earlier than version 4.

AMQ Streams Operator

The AMQ Streams Operator is available to install from the OperatorHub. Once installed, the AMQ
Streams Operator deploys the Cluster Operator to your OpenShift cluster, along with the necessary
CRDs and role-based access control (RBAC) resources.

Additional resources

Installing AMQ Streams using the installation artifacts:

Section 4.1.1.2, “Deploying the Cluster Operator to watch a single namespace”

Section 4.1.1.3, “Deploying the Cluster Operator to watch multiple namespaces”

Section 4.1.1.4, “Deploying the Cluster Operator to watch all namespaces”

Installing AMQ Streams from the OperatorHub:

Section 4.1.1.5, “Deploying the Cluster Operator from the OperatorHub”

Operators guide in the OpenShift documentation.

CHAPTER 1. DEPLOYMENT OVERVIEW

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html/operators

CHAPTER 2. WHAT IS DEPLOYED WITH AMQ STREAMS
Apache Kafka components are provided for deployment to OpenShift with the AMQ Streams
distribution. The Kafka components are generally run as clusters for availability.

A typical deployment incorporating Kafka components might include:

Kafka cluster of broker nodes

ZooKeeper cluster of replicated ZooKeeper instances

Kafka Connect cluster for external data connections

Kafka MirrorMaker cluster to mirror the Kafka cluster in a secondary cluster

Kafka Exporter to extract additional Kafka metrics data for monitoring

Kafka Bridge to make HTTP-based requests to the Kafka cluster

Not all of these components are mandatory, though you need Kafka and ZooKeeper as a minimum.
Some components can be deployed without Kafka, such as MirrorMaker or Kafka Connect.

2.1. ORDER OF DEPLOYMENT

The required order of deployment to an OpenShift cluster is as follows:

1. Deploy the Cluster operator to manage your Kafka cluster

2. Deploy the Kafka cluster with the ZooKeeper cluster, and include the Topic Operator and User
Operator in the deployment

3. Optionally deploy:

The Topic Operator and User Operator standalone if you did not deploy them with the
Kafka cluster

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

Components for the monitoring of metrics

2.2. ADDITIONAL DEPLOYMENT CONFIGURATION OPTIONS

The deployment procedures in this guide describe a deployment using the example installation YAML
files provided with AMQ Streams. The procedures highlight any important configuration considerations,
but they do not describe all the configuration options available.

You can use custom resources to refine your deployment.

You may wish to review the configuration options available for Kafka components before you deploy
AMQ Streams. For more information on the configuration through custom resources, see Deployment
configuration.

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

14

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-str

2.2.1. Securing Kafka

On deployment, the Cluster Operator automatically sets up TLS certificates for data encryption and
authentication within your cluster.

AMQ Streams provides additional configuration options for encryption, authentication and authorization:

Secure data exchange between the Kafka cluster and clients by configuration of Kafka
resources.

Configure your deployment to use an authorization server to provide OAuth 2.0 authentication
and OAuth 2.0 authorization .

Secure Kafka using your own certificates .

2.2.2. Monitoring your deployment

AMQ Streams supports additional deployment options to monitor your deployment.

Extract metrics and monitor Kafka components by deploying Prometheus and Grafana with
your Kafka cluster.

Extract additional metrics, particularly related to monitoring consumer lag, by deploying Kafka
Exporter with your Kafka cluster.

Track messages end-to-end by setting up distributed tracing.

CHAPTER 2. WHAT IS DEPLOYED WITH AMQ STREAMS

15

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-oauth-authentication_str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-oauth-authorization_str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#security-str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-distributed-tracing-str

CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS
DEPLOYMENT

This section shows how you prepare for a AMQ Streams deployment, describing:

The prerequisites you need before you can deploy AMQ Streams

How to download the AMQ Streams release artifacts to use in your deployment

How to push the AMQ Streams container images into you own registry (if required)

How to set up admin roles for configuration of custom resources used in deployment

NOTE

To run the commands in this guide, your cluster user must have the rights to manage role-
based access control (RBAC) and CRDs.

3.1. DEPLOYMENT PREREQUISITES

To deploy AMQ Streams, make sure:

An OpenShift 3.11 and later cluster is available
AMQ Streams is based on AMQ Streams Strimzi 0.18.x.

The oc command-line tool is installed and configured to connect to the running cluster.

NOTE

AMQ Streams supports some features that are specific to OpenShift, where such
integration benefits OpenShift users and there is no equivalent implementation using
standard OpenShift.

3.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS

To install AMQ Streams, download and extract the release artifacts from the amq-streams-<version>-
ocp-install-examples.zip file from the AMQ Streams download site .

AMQ Streams release artifacts include sample YAML files to help you deploy the components of AMQ
Streams to OpenShift, perform common operations, and configure your Kafka cluster.

You deploy AMQ Streams to an OpenShift cluster using the oc command-line tool.

NOTE

Additionally, AMQ Streams container images are available through the Red Hat
Ecosystem Catalog. However, we recommend that you use the YAML files provided to
deploy AMQ Streams.

3.3. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY

Container images for AMQ Streams are available in the Red Hat Ecosystem Catalog . The installation
YAML files provided by AMQ Streams will pull the images directly from the Red Hat Ecosystem Catalog .

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

16

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://access.redhat.com/containers/#/product/RedHatAmq
https://access.redhat.com/containers/#/product/RedHatAmq
https://access.redhat.com/containers/#/product/RedHatAmq

If you do not have access to the Red Hat Ecosystem Catalog or want to use your own container
repository:

1. Pull all container images listed here

2. Push them into your own registry

3. Update the image names in the installation YAML files

NOTE

Each Kafka version supported for the release has a separate image.

Container image Namespace/Repository Description

Kafka
registry.redhat.io/amq7/
amq-streams-kafka-25-
rhel7:1.5.0

registry.redhat.io/amq7/
amq-streams-kafka-24-
rhel7:1.5.0

AMQ Streams image for running
Kafka, including:

Kafka Broker

Kafka Connect / S2I

Kafka Mirror Maker

ZooKeeper

TLS Sidecars

Operator
registry.redhat.io/amq7/
amq-streams-rhel7-
operator:1.5.0

AMQ Streams image for running
the operators:

Cluster Operator

Topic Operator

User Operator

Kafka Initializer

Kafka Bridge
registry.redhat.io/amq7/
amq-streams-bridge-
rhel7:1.5.0

AMQ Streams image for running
the AMQ Streams Kafka Bridge

3.4. DESIGNATING AMQ STREAMS ADMINISTRATORS

AMQ Streams provides custom resources for configuration of your deployment. By default, permission
to view, create, edit, and delete these resources is limited to OpenShift cluster administrators. AMQ
Streams provides two cluster roles that you can use to assign these rights to other users:

strimzi-view allows users to view and list AMQ Streams resources.

strimzi-admin allows users to also create, edit or delete AMQ Streams resources.

CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT

17

https://access.redhat.com/containers/#/product/RedHatAmq

When you install these roles, they will automatically aggregate (add) these rights to the default
OpenShift cluster roles. strimzi-view aggregates to the view role, and strimzi-admin aggregates to
the edit and admin roles. Because of the aggregation, you might not need to assign these roles to users
who already have similar rights.

The following procedure shows how to assign a strimzi-admin role that allows non-cluster
administrators to manage AMQ Streams resources.

A system administrator can designate AMQ Streams administrators after the Cluster Operator is
deployed.

Prerequisites

The AMQ Streams Custom Resource Definitions (CRDs) and role-based access control (RBAC)
resources to manage the CRDs have been deployed with the Cluster Operator .

Procedure

1. Create the strimzi-view and strimzi-admin cluster roles in OpenShift.

2. If needed, assign the roles that provide access rights to users that require them.

oc apply -f install/strimzi-admin

oc create clusterrolebinding strimzi-admin --clusterrole=strimzi-admin --user=user1 --
user=user2

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

18

CHAPTER 4. DEPLOYING AMQ STREAMS
Having prepared your environment for a deployment of AMQ Streams , this section shows:

How to create the Kafka cluster

Optional procedures to deploy other Kafka components according to your requirements:

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

The procedures assume an OpenShift cluster is available and running.

4.1. CREATE THE KAFKA CLUSTER

In order to create your Kafka cluster, you deploy the Cluster Operator to manage the Kafka cluster, then
deploy the Kafka cluster.

When deploying the Kafka cluster using the Kafka resource, you can deploy the Topic Operator and
User Operator at the same time. Alternatively, if you are using a non-AMQ Streams Kafka cluster, you
can deploy the Topic Operator and User Operator as standalone components.

Deploying a Kafka cluster with the Topic Operator and User Operator
Perform these deployment steps if you want to use the Topic Operator and User Operator with a Kafka
cluster managed by AMQ Streams.

1. Deploy the Cluster Operator

2. Use the Cluster Operator to deploy the:

a. Kafka cluster

b. Topic Operator

c. User Operator

Deploying a standalone Topic Operator and User Operator
Perform these deployment steps if you want to use the Topic Operator and User Operator with a Kafka
cluster that is not managed by AMQ Streams.

1. Deploy the standalone Topic Operator

2. Deploy the standalone User Operator

4.1.1. Deploying the Cluster Operator

The Cluster Operator is responsible for deploying and managing Apache Kafka clusters within an
OpenShift cluster.

The procedures in this section show:

How to deploy the Cluster Operator to watch:

CHAPTER 4. DEPLOYING AMQ STREAMS

19

A single namespace

Multiple namespaces

All namespaces

Alternative deployment options:

How to deploy the Cluster Operator deployment from the OperatorHub .

4.1.1.1. Watch options for a Cluster Operator deployment

When the Cluster Operator is running, it starts to watch for updates of Kafka resources.

You can choose to deploy the Cluster Operator to watch Kafka resources from:

A single namespace (the same namespace containing the Cluster Operator)

Multiple namespaces

All namespaces

NOTE

AMQ Streams provides example YAML files to make the deployment process easier.

The Cluster Operator watches for changes to the following resources:

Kafka for the Kafka cluster.

KafkaConnect for the Kafka Connect cluster.

KafkaConnectS2I for the Kafka Connect cluster with Source2Image support.

KafkaConnector for creating and managing connectors in a Kafka Connect cluster.

KafkaMirrorMaker for the Kafka MirrorMaker instance.

KafkaBridge for the Kafka Bridge instance

When one of these resources is created in the OpenShift cluster, the operator gets the cluster
description from the resource and starts creating a new cluster for the resource by creating the
necessary OpenShift resources, such as StatefulSets, Services and ConfigMaps.

Each time a Kafka resource is updated, the operator performs corresponding updates on the OpenShift
resources that make up the cluster for the resource.

Resources are either patched or deleted, and then recreated in order to make the cluster for the
resource reflect the desired state of the cluster. This operation might cause a rolling update that might
lead to service disruption.

When a resource is deleted, the operator undeploys the cluster and deletes all related OpenShift
resources.

4.1.1.2. Deploying the Cluster Operator to watch a single namespace

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

20

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources in a single
namespace in your OpenShift cluster.

Prerequisites

This procedure requires use of an OpenShift user account which is able to create
CustomResourceDefinitions, ClusterRoles and ClusterRoleBindings. Use of Role Base
Access Control (RBAC) in the OpenShift cluster usually means that permission to create, edit,
and delete these resources is limited to OpenShift cluster administrators, such as
system:admin.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Deploy the Cluster Operator:

3. Verify that the Cluster Operator was successfully deployed:

4.1.1.3. Deploying the Cluster Operator to watch multiple namespaces

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across
multiple namespaces in your OpenShift cluster.

Prerequisites

This procedure requires use of an OpenShift user account which is able to create
CustomResourceDefinitions, ClusterRoles and ClusterRoleBindings. Use of Role Base
Access Control (RBAC) in the OpenShift cluster usually means that permission to create, edit,
and delete these resources is limited to OpenShift cluster administrators, such as
system:admin.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.

oc apply -f install/cluster-operator -n my-cluster-operator-namespace

oc get deployments

CHAPTER 4. DEPLOYING AMQ STREAMS

21

For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Edit the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file to add a
list of all the namespaces the Cluster Operator will watch to the STRIMZI_NAMESPACE
environment variable.
For example, in this procedure the Cluster Operator will watch the namespaces watched-
namespace-1, watched-namespace-2, watched-namespace-3.

3. For each namespace listed, install the RoleBindings.
In this example, we replace watched-namespace in these commands with the namespaces
listed in the previous step, repeating them for watched-namespace-1, watched-namespace-2,
watched-namespace-3:

4. Deploy the Cluster Operator:

5. Verify that the Cluster Operator was successfully deployed:

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:
 spec:
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq7/amq-streams-rhel7-operator:1.5.0
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: watched-namespace-1,watched-namespace-2,watched-namespace-3

oc apply -f install/cluster-operator/020-RoleBinding-strimzi-cluster-operator.yaml -n watched-
namespace
oc apply -f install/cluster-operator/031-RoleBinding-strimzi-cluster-operator-entity-operator-
delegation.yaml -n watched-namespace
oc apply -f install/cluster-operator/032-RoleBinding-strimzi-cluster-operator-topic-operator-
delegation.yaml -n watched-namespace

oc apply -f install/cluster-operator -n my-cluster-operator-namespace

oc get deployments

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

22

4.1.1.4. Deploying the Cluster Operator to watch all namespaces

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across all
namespaces in your OpenShift cluster.

When running in this mode, the Cluster Operator automatically manages clusters in any new
namespaces that are created.

Prerequisites

This procedure requires use of an OpenShift user account which is able to create
CustomResourceDefinitions, ClusterRoles and ClusterRoleBindings. Use of Role Base
Access Control (RBAC) in the OpenShift cluster usually means that permission to create, edit,
and delete these resources is limited to OpenShift cluster administrators, such as
system:admin.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Edit the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file to set
the value of the STRIMZI_NAMESPACE environment variable to *.

3. Create ClusterRoleBindings that grant cluster-wide access for all namespaces to the Cluster

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:
 spec:
 # ...
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq7/amq-streams-rhel7-operator:1.5.0
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: "*"
 # ...

CHAPTER 4. DEPLOYING AMQ STREAMS

23

3. Create ClusterRoleBindings that grant cluster-wide access for all namespaces to the Cluster
Operator.

Replace my-cluster-operator-namespace with the namespace you want to install the Cluster
Operator into.

4. Deploy the Cluster Operator to your OpenShift cluster.

5. Verify that the Cluster Operator was successfully deployed:

4.1.1.5. Deploying the Cluster Operator from the OperatorHub

You can deploy the Cluster Operator to your OpenShift cluster by installing the AMQ Streams Operator
from the OperatorHub. The OperatorHub is available in OpenShift 4 only.

Prerequisites

The Red Hat Operators OperatorSource is enabled in your OpenShift cluster. If you can see
Red Hat Operators in the OperatorHub, the correct OperatorSource is enabled. For more
information, see the Operators guide.

Installation requires a user with sufficient privileges to install Operators from the OperatorHub.

Procedure

1. In the OpenShift 4 web console, click Operators > OperatorHub.

2. Search or browse for the AMQ Streams Operator, in the Streaming & Messaging category.

oc create clusterrolebinding strimzi-cluster-operator-namespaced --clusterrole=strimzi-
cluster-operator-namespaced --serviceaccount my-cluster-operator-namespace:strimzi-
cluster-operator
oc create clusterrolebinding strimzi-cluster-operator-entity-operator-delegation --
clusterrole=strimzi-entity-operator --serviceaccount my-cluster-operator-namespace:strimzi-
cluster-operator
oc create clusterrolebinding strimzi-cluster-operator-topic-operator-delegation --
clusterrole=strimzi-topic-operator --serviceaccount my-cluster-operator-namespace:strimzi-
cluster-operator

oc apply -f install/cluster-operator -n my-cluster-operator-namespace

oc get deployments

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html/operators

3. Click the AMQ Streams tile and then, in the sidebar on the right, click Install.

4. On the Create Operator Subscription screen, choose from the following installation and update
options:

Installation Mode: Choose to install the AMQ Streams Operator to all (projects)
namespaces in the cluster (the default option) or a specific (project) namespace. It is good
practice to use namespaces to separate functions. We recommend that you dedicate a
specific namespace to the Kafka cluster and other AMQ Streams components.

Approval Strategy: By default, the AMQ Streams Operator is automatically upgraded to
the latest AMQ Streams version by the Operator Lifecycle Manager (OLM). Optionally,
select Manual if you want to manually approve future upgrades. For more information, see
the Operators guide in the OpenShift documentation.

5. Click Subscribe; the AMQ Streams Operator is installed to your OpenShift cluster.
The AMQ Streams Operator deploys the Cluster Operator, CRDs, and role-based access
control (RBAC) resources to the selected namespace, or to all namespaces.

6. On the Installed Operators screen, check the progress of the installation. The AMQ Streams
Operator is ready to use when its status changes to InstallSucceeded.

CHAPTER 4. DEPLOYING AMQ STREAMS

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html/operators

Next, you can deploy the other components of AMQ Streams, starting with a Kafka cluster, using the
YAML example files.

Additional resources

Section 1.5, “AMQ Streams installation methods”

Section 4.1.2.1, “Deploying the Kafka cluster”

4.1.2. Deploying Kafka

Apache Kafka is an open-source distributed publish-subscribe messaging system for fault-tolerant real-
time data feeds.

The procedures in this section show:

How to use the Cluster Operator to deploy:

An ephemeral or persistent Kafka cluster

The Topic Operator and User Operator by configuring the Kafka custom resource:

Topic Operator

User Operator

Alternative standalone deployment procedures for the Topic Operator and User Operator:

Deploy the standalone Topic Operator

Deploy the standalone User Operator

When installing Kafka, AMQ Streams also installs a ZooKeeper cluster and adds the necessary
configuration to connect Kafka with ZooKeeper.

4.1.2.1. Deploying the Kafka cluster

This procedure shows how to deploy a Kafka cluster to your OpenShift using the Cluster Operator.

The deployment uses a YAML file to provide the specification to create a Kafka resource.

AMQ Streams provides example YAMLs files for deployment in examples/kafka/:

kafka-persistent.yaml

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

26

Deploys a persistent cluster with three ZooKeeper and three Kafka nodes.

kafka-jbod.yaml

Deploys a persistent cluster with three ZooKeeper and three Kafka nodes (each using multiple
persistent volumes).

kafka-persistent-single.yaml

Deploys a persistent cluster with a single ZooKeeper node and a single Kafka node.

kafka-ephemeral.yaml

Deploys an ephemeral cluster with three ZooKeeper and three Kafka nodes.

kafka-ephemeral-single.yaml

Deploys an ephemeral cluster with three ZooKeeper nodes and a single Kafka node.

In this procedure, we use the examples for an ephemeral and persistent Kafka cluster deployment:

Ephemeral cluster

In general, an ephemeral (or temporary) Kafka cluster is suitable for development and testing
purposes, not for production. This deployment uses emptyDir volumes for storing broker
information (for ZooKeeper) and topics or partitions (for Kafka). Using an emptyDir volume means
that its content is strictly related to the pod life cycle and is deleted when the pod goes down.

Persistent cluster

A persistent Kafka cluster uses PersistentVolumes to store ZooKeeper and Kafka data. The
PersistentVolume is acquired using a PersistentVolumeClaim to make it independent of the actual
type of the PersistentVolume. For example, it can use Amazon EBS volumes in Amazon AWS
deployments without any changes in the YAML files. The PersistentVolumeClaim can use a
StorageClass to trigger automatic volume provisioning.

The example clusters are named my-cluster by default. The cluster name is defined by the name of the
resource and cannot be changed after the cluster has been deployed. To change the cluster name
before you deploy the cluster, edit the Kafka.metadata.name property of the Kafka resource in the
relevant YAML file.

For more information about configuring the Kafka resource, see Kafka cluster configuration

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Create and deploy an ephemeral or persistent cluster.
For development or testing, you might prefer to use an ephemeral cluster. You can use a
persistent cluster in any situation.

To create and deploy an ephemeral cluster:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
...

oc apply -f examples/kafka/kafka-ephemeral.yaml

CHAPTER 4. DEPLOYING AMQ STREAMS

27

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-kafka-str

To create and deploy a persistent cluster:

2. Verify that the Kafka cluster was successfully deployed:

4.1.2.2. Deploying the Topic Operator using the Cluster Operator

This procedure describes how to deploy the Topic Operator using the Cluster Operator.

You configure the entityOperator property of the Kafka resource to include the topicOperator.

If you want to use the Topic Operator with a Kafka cluster that is not managed by AMQ Streams, you
must deploy the Topic Operator as a standalone component .

For more information about configuring the entityOperator and topicOperator properties, see Entity
Operator.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Edit the entityOperator properties of the Kafka resource to include topicOperator:

2. Configure the Topic Operator spec using the properties described in
EntityTopicOperatorSpec schema reference.
Use an empty object ({}) if you want all properties to use their default values.

3. Create or update the resource:
Use oc apply:

4.1.2.3. Deploying the User Operator using the Cluster Operator

This procedure describes how to deploy the User Operator using the Cluster Operator.

You configure the entityOperator property of the Kafka resource to include the userOperator.

If you want to use the User Operator with a Kafka cluster that is not managed by AMQ Streams, you

oc apply -f examples/kafka/kafka-persistent.yaml

oc get deployments

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 #...
 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f <your-file>

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

28

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-kafka-entity-operator-deployment-configuration-kafka
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#type-EntityTopicOperatorSpec-reference

If you want to use the User Operator with a Kafka cluster that is not managed by AMQ Streams, you
must deploy the User Operator as a standalone component .

For more information about configuring the entityOperator and userOperator properties, see Entity
Operator.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Edit the entityOperator properties of the Kafka resource to include userOperator:

2. Configure the User Operator spec using the properties described in EntityUserOperatorSpec
schema reference.
Use an empty object ({}) if you want all properties to use their default values.

3. Create or update the resource:

4.1.3. Alternative standalone deployment options for AMQ Streams Operators

When deploying a Kafka cluster using the Cluster Operator, you can also deploy the Topic Operator and
User Operator. Alternatively, you can perform a standalone deployment.

A standalone deployment means the Topic Operator and User Operator can operate with a Kafka cluster
that is not managed by AMQ Streams.

4.1.3.1. Deploying the standalone Topic Operator

This procedure shows how to deploy the Topic Operator as a standalone component.

A standalone deployment requires configuration of environment variables, and is more complicated than
deploying the Topic Operator using the Cluster Operator . However, a standalone deployment is more
flexible as the Topic Operator can operate with any Kafka cluster, not necessarily one deployed by the
Cluster Operator.

Prerequisites

You need an existing Kafka cluster for the Topic Operator to connect to.

Procedure

1. Edit the Deployment.spec.template.spec.containers[0].env properties in the install/topic-

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 #...
 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f <your-file>

CHAPTER 4. DEPLOYING AMQ STREAMS

29

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-kafka-entity-operator-deployment-configuration-kafka
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#type-EntityUserOperatorSpec-reference

1. Edit the Deployment.spec.template.spec.containers[0].env properties in the install/topic-
operator/05-Deployment-strimzi-topic-operator.yaml file by setting:

a. STRIMZI_KAFKA_BOOTSTRAP_SERVERS to list the bootstrap brokers in your Kafka
cluster, given as a comma-separated list of hostname: ​port pairs.

b. STRIMZI_ZOOKEEPER_CONNECT to list the ZooKeeper nodes, given as a comma-
separated list of hostname: ​port pairs. This should be the same ZooKeeper cluster that your
Kafka cluster is using.

c. STRIMZI_NAMESPACE to the OpenShift namespace in which you want the operator to
watch for KafkaTopic resources.

d. STRIMZI_RESOURCE_LABELS to the label selector used to identify the KafkaTopic
resources managed by the operator.

e. STRIMZI_FULL_RECONCILIATION_INTERVAL_MS to specify the interval between
periodic reconciliations, in milliseconds.

f. STRIMZI_TOPIC_METADATA_MAX_ATTEMPTS to specify the number of attempts at
getting topic metadata from Kafka. The time between each attempt is defined as an
exponential back-off. Consider increasing this value when topic creation could take more
time due to the number of partitions or replicas. Default 6.

g. STRIMZI_ZOOKEEPER_SESSION_TIMEOUT_MS to the ZooKeeper session timeout, in
milliseconds. For example, 10000. Default 20000 (20 seconds).

h. STRIMZI_TOPICS_PATH to the Zookeeper node path where the Topic Operator stores its
metadata. Default /strimzi/topics.

i. STRIMZI_TLS_ENABLED to enable TLS support for encrypting the communication with
Kafka brokers. Default true.

j. STRIMZI_TRUSTSTORE_LOCATION to the path to the truststore containing certificates
for enabling TLS based communication. Mandatory only if TLS is enabled through
STRIMZI_TLS_ENABLED.

k. STRIMZI_TRUSTSTORE_PASSWORD to the password for accessing the truststore
defined by STRIMZI_TRUSTSTORE_LOCATION. Mandatory only if TLS is enabled
through STRIMZI_TLS_ENABLED.

l. STRIMZI_KEYSTORE_LOCATION to the path to the keystore containing private keys for
enabling TLS based communication. Mandatory only if TLS is enabled through
STRIMZI_TLS_ENABLED.

m. STRIMZI_KEYSTORE_PASSWORD to the password for accessing the keystore defined by
STRIMZI_KEYSTORE_LOCATION. Mandatory only if TLS is enabled through
STRIMZI_TLS_ENABLED.

n. STRIMZI_LOG_LEVEL to the level for printing logging messages. The value can be set to:
ERROR, WARNING, INFO, DEBUG, and TRACE. Default INFO.

o. STRIMZI_JAVA_OPTS (optional) to the Java options used for the JVM running the Topic
Operator. An example is -Xmx=512M -Xms=256M.

p. STRIMZI_JAVA_SYSTEM_PROPERTIES (optional) to list the -D options which are set to
the Topic Operator. An example is -Djavax.net.debug=verbose -DpropertyName=value.

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

30

2. Deploy the Topic Operator:

3. Verify that the Topic Operator has been deployed successfully:

The Topic Operator is deployed when the Replicas: entry shows 1 available.

NOTE

You may experience a delay with the deployment if you have a slow connection to
the OpenShift cluster and the images have not been downloaded before.

4.1.3.2. Deploying the standalone User Operator

This procedure shows how to deploy the User Operator as a standalone component.

A standalone deployment requires configuration of environment variables, and is more complicated than
deploying the User Operator using the Cluster Operator . However, a standalone deployment is more
flexible as the User Operator can operate with any Kafka cluster, not necessarily one deployed by the
Cluster Operator.

Prerequisites

You need an existing Kafka cluster for the User Operator to connect to.

Procedure

1. Edit the following Deployment.spec.template.spec.containers[0].env properties in the
install/user-operator/05-Deployment-strimzi-user-operator.yaml file by setting:

a. STRIMZI_KAFKA_BOOTSTRAP_SERVERS to list the Kafka brokers, given as a comma-
separated list of hostname: ​port pairs.

b. STRIMZI_ZOOKEEPER_CONNECT to list the ZooKeeper nodes, given as a comma-
separated list of hostname: ​port pairs. This must be the same ZooKeeper cluster that your
Kafka cluster is using. Connecting to ZooKeeper nodes with TLS encryption is not
supported.

c. STRIMZI_NAMESPACE to the OpenShift namespace in which you want the operator to
watch for KafkaUser resources.

d. STRIMZI_LABELS to the label selector used to identify the KafkaUser resources managed
by the operator.

e. STRIMZI_FULL_RECONCILIATION_INTERVAL_MS to specify the interval between
periodic reconciliations, in milliseconds.

f. STRIMZI_ZOOKEEPER_SESSION_TIMEOUT_MS to the ZooKeeper session timeout, in
milliseconds. For example, 10000. Default 20000 (20 seconds).

g. STRIMZI_CA_CERT_NAME to point to an OpenShift Secret that contains the public key

oc apply -f install/topic-operator

oc describe deployment strimzi-topic-operator

CHAPTER 4. DEPLOYING AMQ STREAMS

31

g. STRIMZI_CA_CERT_NAME to point to an OpenShift Secret that contains the public key
of the Certificate Authority for signing new user certificates for TLS client authentication.
The Secret must contain the public key of the Certificate Authority under the key ca.crt.

h. STRIMZI_CA_KEY_NAME to point to an OpenShift Secret that contains the private key of
the Certificate Authority for signing new user certificates for TLS client authentication. The
Secret must contain the private key of the Certificate Authority under the key ca.key.

i. STRIMZI_CLUSTER_CA_CERT_SECRET_NAME to point to an OpenShift Secret
containing the public key of the Certificate Authority used for signing Kafka brokers
certificates for enabling TLS-based communication. The Secret must contain the public
key of the Certificate Authority under the key ca.crt. This environment variable is optional
and should be set only if the communication with the Kafka cluster is TLS based.

j. STRIMZI_EO_KEY_SECRET_NAME to point to an OpenShift Secret containing the
private key and related certificate for TLS client authentication against the Kafka cluster.
The Secret must contain the keystore with the private key and certificate under the key
entity-operator.p12, and the related password under the key entity-operator.password.
This environment variable is optional and should be set only if TLS client authentication is
needed when the communication with the Kafka cluster is TLS based.

k. STRIMZI_CA_VALIDITY the validity period for the Certificate Authority. Default is 365
days.

l. STRIMZI_CA_RENEWAL the renewal period for the Certificate Authority.

m. STRIMZI_LOG_LEVEL to the level for printing logging messages. The value can be set to:
ERROR, WARNING, INFO, DEBUG, and TRACE. Default INFO.

n. STRIMZI_GC_LOG_ENABLED to enable garbage collection (GC) logging. Default true.
Default is 30 days to initiate certificate renewal before the old certificates expire.

o. STRIMZI_JAVA_OPTS (optional) to the Java options used for the JVM running User
Operator. An example is -Xmx=512M -Xms=256M.

p. STRIMZI_JAVA_SYSTEM_PROPERTIES (optional) to list the -D options which are set to
the User Operator. An example is -Djavax.net.debug=verbose -DpropertyName=value.

2. Deploy the User Operator:

3. Verify that the User Operator has been deployed successfully:

The User Operator is deployed when the Replicas: entry shows 1 available.

NOTE

You may experience a delay with the deployment if you have a slow connection to
the OpenShift cluster and the images have not been downloaded before.

4.2. DEPLOY KAFKA CONNECT

oc apply -f install/user-operator

oc describe deployment strimzi-user-operator

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

32

Kafka Connect is a tool for streaming data between Apache Kafka and external systems.

In AMQ Streams, Kafka Connect is deployed in distributed mode. Kafka Connect can also work in
standalone mode, but this is not supported by AMQ Streams.

Using the concept of connectors, Kafka Connect provides a framework for moving large amounts of
data into and out of your Kafka cluster while maintaining scalability and reliability.

Kafka Connect is typically used to integrate Kafka with external databases and storage and messaging
systems.

The procedures in this section show how to:

Deploy a Kafka Connect cluster using a KafkaConnect resource

Create a Kafka Connect image containing the connectors you need to make your connection

Create and manage connectors using a KafkaConnector resource or the Kafka Connect REST
API

Deploy a KafkaConnector resource to Kafka Connect

NOTE

The term connector is used interchangeably to mean a connector instance running within
a Kafka Connect cluster, or a connector class. In this guide, the term connector is used
when the meaning is clear from the context.

4.2.1. Deploying Kafka Connect to your OpenShift cluster

This procedure shows how to deploy a Kafka Connect cluster to your OpenShift cluster using the Cluster
Operator.

A Kafka Connect cluster is implemented as a Deployment with a configurable number of nodes (also
called workers) that distribute the workload of connectors as tasks so that the message flow is highly
scalable and reliable.

The deployment uses a YAML file to provide the specification to create a KafkaConnect resource.

In this procedure, we use the example file provided with AMQ Streams:

examples/kafka-connect/kafka-connect.yaml

For more information about configuring the KafkaConnect resource, see:

Kafka Connect cluster configuration

Kafka Connect cluster configuration with Source2Image support

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Deploy Kafka Connect to your OpenShift cluster.

CHAPTER 4. DEPLOYING AMQ STREAMS

33

https://kafka.apache.org/documentation/#connect
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-kafka-connect-str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-kafka-connect-s2i-str

2. Verify that Kafka Connect was successfully deployed:

4.2.2. Extending Kafka Connect with connector plug-ins

The AMQ Streams container images for Kafka Connect include two built-in file connectors for moving
file-based data into and out of your Kafka cluster.

File Connector Description

FileStreamSourceConnector Transfers data to your Kafka cluster from a file (the
source).

FileStreamSinkConnector Transfers data from your Kafka cluster to a file (the
sink).

The Cluster Operator can also use images that you have created to deploy a Kafka Connect cluster to
your OpenShift cluster.

The procedures in this section show how to add your own connector classes to connector images by:

Creating a container image from the Kafka Connect base image (manually or using continuous
integration)

Creating a container image using OpenShift builds and Source-to-Image (S2I) (available only
on OpenShift)

IMPORTANT

You create the configuration for connectors directly using the Kafka Connect REST API
or KafkaConnector custom resources.

4.2.2.1. Creating a Docker image from the Kafka Connect base image

This procedure shows how to create a custom image and add it to the /opt/kafka/plugins directory.

You can use the Kafka container image on Red Hat Ecosystem Catalog as a base image for creating
your own custom image with additional connector plug-ins.

At startup, the AMQ Streams version of Kafka Connect loads any third-party connector plug-ins
contained in the /opt/kafka/plugins directory.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Create a new Dockerfile using registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0 as

oc apply -f examples/kafka-connect/kafka-connect.yaml

oc get deployments

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

34

https://access.redhat.com/containers/#/product/RedHatAmq

1. Create a new Dockerfile using registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0 as
the base image:

FROM registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Example plug-in file

$ tree ./my-plugins/
./my-plugins/
├── debezium-connector-mongodb
│ ├── bson-3.4.2.jar
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mongodb-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mongodb-driver-3.4.2.jar
│ ├── mongodb-driver-core-3.4.2.jar
│ └── README.md
├── debezium-connector-mysql
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mysql-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mysql-binlog-connector-java-0.13.0.jar
│ ├── mysql-connector-java-5.1.40.jar
│ ├── README.md
│ └── wkb-1.0.2.jar
└── debezium-connector-postgres
 ├── CHANGELOG.md
 ├── CONTRIBUTE.md
 ├── COPYRIGHT.txt
 ├── debezium-connector-postgres-0.7.1.jar
 ├── debezium-core-0.7.1.jar
 ├── LICENSE.txt
 ├── postgresql-42.0.0.jar
 ├── protobuf-java-2.6.1.jar
 └── README.md

2. Build the container image.

3. Push your custom image to your container registry.

4. Point to the new container image.
You can either:

Edit the KafkaConnect.spec.image property of the KafkaConnect custom resource.
If set, this property overrides the STRIMZI_KAFKA_CONNECT_IMAGES variable in the
Cluster Operator.

CHAPTER 4. DEPLOYING AMQ STREAMS

35

1

2

3

The specification for the Kafka Connect cluster .

The docker image for the pods.

Configuration of the Kafka Connect workers (not connectors).

or

In the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file, edit
the STRIMZI_KAFKA_CONNECT_IMAGES variable to point to the new container image,
and then reinstall the Cluster Operator.

Additional resources

For more information on the KafkaConnect.spec.image property, see Container images.

For more information on the STRIMZI_KAFKA_CONNECT_IMAGES variable, see Cluster
Operator Configuration.

4.2.2.2. Creating a container image using OpenShift builds and Source-to-Image

This procedure shows how to use OpenShift builds and the Source-to-Image (S2I) framework to create
a new container image.

An OpenShift build takes a builder image with S2I support, together with source code and binaries
provided by the user, and uses them to build a new container image. Once built, container images are
stored in OpenShift’s local container image repository and are available for use in deployments.

A Kafka Connect builder image with S2I support is provided on the Red Hat Ecosystem Catalog as part
of the registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0 image. This S2I image takes your
binaries (with plug-ins and connectors) and stores them in the /tmp/kafka-plugins/s2i directory. It
creates a new Kafka Connect image from this directory, which can then be used with the Kafka Connect
deployment. When started using the enhanced image, Kafka Connect loads any third-party plug-ins
from the /tmp/kafka-plugins/s2i directory.

Procedure

1. On the command line, use the oc apply command to create and deploy a Kafka Connect S2I
cluster:

2. Create a directory with Kafka Connect plug-ins:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec: 1
 #...
 image: my-new-container-image 2
 config: 3
 #...

oc apply -f examples/connect/kafka-connect-s2i.yaml

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

36

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#type-KafkaConnectSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-configuring-container-images-deployment-configuration-kafka-connect
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#ref-operators-cluster-operator-configuration-deploying-co
https://docs.okd.io/3.9/dev_guide/builds/index.html
https://docs.okd.io/3.9/creating_images/s2i.html
https://access.redhat.com/containers/#/product/RedHatAmq

$ tree ./my-plugins/
./my-plugins/
├── debezium-connector-mongodb
│ ├── bson-3.4.2.jar
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mongodb-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mongodb-driver-3.4.2.jar
│ ├── mongodb-driver-core-3.4.2.jar
│ └── README.md
├── debezium-connector-mysql
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mysql-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mysql-binlog-connector-java-0.13.0.jar
│ ├── mysql-connector-java-5.1.40.jar
│ ├── README.md
│ └── wkb-1.0.2.jar
└── debezium-connector-postgres
 ├── CHANGELOG.md
 ├── CONTRIBUTE.md
 ├── COPYRIGHT.txt
 ├── debezium-connector-postgres-0.7.1.jar
 ├── debezium-core-0.7.1.jar
 ├── LICENSE.txt
 ├── postgresql-42.0.0.jar
 ├── protobuf-java-2.6.1.jar
 └── README.md

3. Use the oc start-build command to start a new build of the image using the prepared directory:

NOTE

The name of the build is the same as the name of the deployed Kafka Connect
cluster.

4. When the build has finished, the new image is used automatically by the Kafka Connect
deployment.

4.2.3. Creating and managing connectors

When you have created a container image for your connector plug-in, you need to create a connector
instance in your Kafka Connect cluster. You can then configure, monitor, and manage a running
connector instance.

A connector is an instance of a particular connector class that knows how to communicate with the

oc start-build my-connect-cluster-connect --from-dir ./my-plugins/

CHAPTER 4. DEPLOYING AMQ STREAMS

37

A connector is an instance of a particular connector class that knows how to communicate with the
relevant external system in terms of messages. Connectors are available for many external systems, or
you can create your own.

You can create source and sink types of connector.

Source connector

A source connector is a runtime entity that fetches data from an external system and feeds it to
Kafka as messages.

Sink connector

A sink connector is a runtime entity that fetches messages from Kafka topics and feeds them to an
external system.

AMQ Streams provides two APIs for creating and managing connectors:

KafkaConnector resources (referred to as KafkaConnectors)

Kafka Connect REST API

Using the APIs, you can:

Check the status of a connector instance

Reconfigure a running connector

Increase or decrease the number of tasks for a connector instance

Restart failed tasks (not supported by KafkaConnector resource)

Pause a connector instance

Resume a previously paused connector instance

Delete a connector instance

4.2.3.1. KafkaConnector resources

KafkaConnectors allow you to create and manage connector instances for Kafka Connect in an
OpenShift-native way, so an HTTP client such as cURL is not required. Like other Kafka resources, you
declare a connector’s desired state in a KafkaConnector YAML file that is deployed to your OpenShift
cluster to create the connector instance.

You manage a running connector instance by updating its corresponding KafkaConnector, and then
applying the updates. You remove a connector by deleting its corresponding KafkaConnector.

To ensure compatibility with earlier versions of AMQ Streams, KafkaConnectors are disabled by
default. To enable them for a Kafka Connect cluster, you must use annotations on the KafkaConnect
resource. For instructions, see Enabling KafkaConnector resources.

When KafkaConnectors are enabled, the Cluster Operator begins to watch for them. It updates the
configurations of running connector instances to match the configurations defined in their
KafkaConnectors.

AMQ Streams includes an example KafkaConnector, named examples/connect/source-
connector.yaml. You can use this example to create and manage a FileStreamSourceConnector.

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

38

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#proc-enabling-kafkaconnectors-deployment-configuration-kafka-connect

1

2

3

4

5

4.2.3.2. Availability of the Kafka Connect REST API

The Kafka Connect REST API is available on port 8083 as the <connect-cluster-name>-connect-api
service.

If KafkaConnectors are enabled, manual changes made directly using the Kafka Connect REST API are
reverted by the Cluster Operator.

The operations supported by the REST API are described in the Apache Kafka documentation.

4.2.4. Deploying a KafkaConnector resource to Kafka Connect

This procedure describes how to deploy the example KafkaConnector to a Kafka Connect cluster.

The example YAML will create a FileStreamSourceConnector to send each line of the license file to
Kafka as a message in a topic named my-topic.

Prerequisites

A Kafka Connect deployment in which KafkaConnectors are enabled

A running Cluster Operator

Procedure

1. Edit the examples/connect/source-connector.yaml file:

Enter a name for the KafkaConnector resource. This will be used as the name of the
connector within Kafka Connect. You can choose any name that is valid for an OpenShift
resource.

Enter the name of the Kafka Connect cluster in which to create the connector.

The name or alias of the connector class. This should be present in the image being used
by the Kafka Connect cluster.

The maximum number of tasks that the connector can create.

Configuration settings for the connector. Available configuration options depend on the
connector class.

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaConnector
metadata:
 name: my-source-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster 2
spec:
 class: org.apache.kafka.connect.file.FileStreamSourceConnector 3
 tasksMax: 2 4
 config: 5
 file: "/opt/kafka/LICENSE"
 topic: my-topic
 # ...

CHAPTER 4. DEPLOYING AMQ STREAMS

39

https://kafka.apache.org/documentation/#connect_rest
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#proc-enabling-kafkaconnectors-deployment-configuration-kafka-connect

2. Create the KafkaConnector in your OpenShift cluster:

3. Check that the resource was created:

4.3. DEPLOY KAFKA MIRRORMAKER

The Cluster Operator deploys one or more Kafka MirrorMaker replicas to replicate data between Kafka
clusters. This process is called mirroring to avoid confusion with the Kafka partitions replication concept.
MirrorMaker consumes messages from the source cluster and republishes those messages to the target
cluster.

4.3.1. Deploying Kafka MirrorMaker to your OpenShift cluster

This procedure shows how to deploy a Kafka MirrorMaker cluster to your OpenShift cluster using the
Cluster Operator.

The deployment uses a YAML file to provide the specification to create a KafkaMirrorMaker or
KafkaMirrorMaker2 resource depending on the version of MirrorMaker deployed.

In this procedure, we use the example files provided with AMQ Streams:

examples/mirror-maker/kafka-mirror-maker.yaml

examples/mirror-maker/kafka-mirror-maker-2.yaml

For information about configuring KafkaMirrorMaker or KafkaMirrorMaker2 resources, see Kafka
MirrorMaker configuration.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Deploy Kafka MirrorMaker to your OpenShift cluster:
For MirrorMaker:

For MirrorMaker 2.0:

2. Verify that MirrorMaker was successfully deployed:

4.4. DEPLOY KAFKA BRIDGE

oc apply -f examples/connect/source-connector.yaml

oc get kctr --selector strimzi.io/cluster=my-connect-cluster -o name

oc apply -f examples/mirror-maker/kafka-mirror-maker.yaml

oc apply -f examples/mirror-maker/kafka-mirror-maker-2.yaml

oc get deployments

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

40

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-kafka-mirror-maker-str

The Cluster Operator deploys one or more Kafka bridge replicas to send data between Kafka clusters
and clients via HTTP API.

4.4.1. Deploying Kafka Bridge to your OpenShift cluster

This procedure shows how to deploy a Kafka Bridge cluster to your OpenShift cluster using the Cluster
Operator.

The deployment uses a YAML file to provide the specification to create a KafkaBridge resource.

In this procedure, we use the example file provided with AMQ Streams:

examples/bridge/kafka-bridge.yaml

For information about configuring the KafkaBridge resource, see Kafka Bridge configuration .

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Deploy Kafka Bridge to your OpenShift cluster:

2. Verify that Kafka Bridge was successfully deployed:

oc apply -f examples/bridge/kafka-bridge.yaml

oc get deployments

CHAPTER 4. DEPLOYING AMQ STREAMS

41

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-deployment-configuration-kafka-bridge-str

CHAPTER 5. VERIFYING THE AMQ STREAMS DEPLOYMENT
Having deployed AMQ Streams , the procedure in this section shows how to deploy example producer
and consumer clients.

The procedure assumes a AMQ Streams is available and running in an OpenShift cluster.

5.1. DEPLOYING EXAMPLE CLIENTS

This procedure shows how to deploy example producer and consumer clients that use the Kafka cluster
you created to send and receive messages.

Prerequisites

The Kafka cluster is available for the clients.

Procedure

1. Deploy a Kafka producer.

2. Type a message into the console where the producer is running.

3. Press Enter to send the message.

4. Deploy a Kafka consumer.

5. Confirm that you see the incoming messages in the consumer console.

oc run kafka-producer -ti --image=registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0
--rm=true --restart=Never -- bin/kafka-console-producer.sh --broker-list cluster-name-kafka-
bootstrap:9092 --topic my-topic

oc run kafka-consumer -ti --image=registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0
--rm=true --restart=Never -- bin/kafka-console-consumer.sh --bootstrap-server cluster-name-
kafka-bootstrap:9092 --topic my-topic --from-beginning

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

42

CHAPTER 6. INTRODUCING METRICS TO KAFKA
This section describes setup options for monitoring your AMQ Streams deployment.

Depending on your requirements, you can:

Set up and deploy Prometheus and Grafana

Configure the Kafka resource to deploy Kafka Exporter with your Kafka cluster

When you have Prometheus and Grafana enabled, Kafka Exporter provides additional monitoring
related to consumer lag.

Additionally, you can configure your deployment to track messages end-to-end by setting up distributed
tracing.

Additional resources

For more information about Prometheus, see the Prometheus documentation.

For more information about Grafana, see the Grafana documentation.

Apache Kafka Monitoring describes JMX metrics exposed by Apache Kafka.

ZooKeeper JMX describes JMX metrics exposed by Apache ZooKeeper.

6.1. ADD PROMETHEUS AND GRAFANA

This section describes how to monitor AMQ Streams Kafka, ZooKeeper, Kafka Connect, and Kafka
MirrorMaker and MirrorMaker 2.0 clusters using Prometheus to provide monitoring data for example
Grafana dashboards.

Prometheus and Grafana can be also used to monitor the operators. The example Grafana dashboard
for operators provides:

Information about the operator such as the number of reconciliations or number of Custom
Resources they are processing

JVM metrics from the operators

In order to run the example Grafana dashboards, you must:

1. Add metrics configuration to your Kafka cluster resource

2. Deploy Prometheus and Prometheus Alertmanager

3. Deploy Grafana

NOTE

The resources referenced in this section are intended as a starting point for setting up
monitoring, but they are provided as examples only. If you require further support on
configuring and running Prometheus or Grafana in production, try reaching out to their
respective communities.

CHAPTER 6. INTRODUCING METRICS TO KAFKA

43

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-distributed-tracing-str
https://prometheus.io/docs/introduction/overview/
https://grafana.com/docs/guides/getting_started/
http://kafka.apache.org/documentation/#monitoring
https://zookeeper.apache.org/doc/current/zookeeperJMX.html

1

2

3

4

5

6

7

8

9

10

11

12

6.1.1. Example Metrics files

You can find the example metrics configuration files in the examples/metrics directory.

metrics
├── grafana-install
│ ├── grafana.yaml 1
├── grafana-dashboards 2
│ ├── strimzi-kafka-connect.json
│ ├── strimzi-kafka.json
│ ├── strimzi-zookeeper.json
│ ├── strimzi-kafka-mirror-maker-2.json
│ ├── strimzi-operators.json
│ └── strimzi-kafka-exporter.json 3
├── kafka-connect-metrics.yaml 4
├── kafka-metrics.yaml 5
├── prometheus-additional-properties
│ └── prometheus-additional.yaml 6
├── prometheus-alertmanager-config
│ └── alert-manager-config.yaml 7
└── prometheus-install
 ├── alert-manager.yaml 8
 ├── prometheus-rules.yaml 9
 ├── prometheus.yaml 10
 ├── strimzi-pod-monitor.yaml 11
 └── strimzi-service-monitor.yaml 12

Installation file for the Grafana image

Grafana dashboards

Grafana dashboard specific to Kafka Exporter

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka Connect

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka and
ZooKeeper

Configuration to add roles for service monitoring

Hook definitions for sending notifications through Alertmanager

Resources for deploying and configuring Alertmanager

Alerting rules examples for use with Prometheus Alertmanager (deployed with Prometheus)

Installation file for the Prometheus image

Prometheus job definitions to scrape metrics data from pods

Prometheus job definitions to scrape metrics data from services

6.1.2. Exposing Prometheus metrics

AMQ Streams uses the Prometheus JMX Exporter to expose JMX metrics from Kafka and ZooKeeper

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

44

AMQ Streams uses the Prometheus JMX Exporter to expose JMX metrics from Kafka and ZooKeeper
using an HTTP endpoint, which is then scraped by the Prometheus server.

6.1.2.1. Prometheus metrics configuration

AMQ Streams provides example configuration files for Grafana .

Grafana dashboards are dependent on Prometheus JMX Exporter relabeling rules, which are defined
for:

Kafka and ZooKeeper as a Kafka resource configuration in the example kafka-metrics.yaml file

Kafka Connect as KafkaConnect and KafkaConnectS2I resources in the example kafka-
connect-metrics.yaml file

A label is a name-value pair. Relabeling is the process of writing a label dynamically. For example, the
value of a label may be derived from the name of a Kafka server and client ID.

NOTE

We show metrics configuration using kafka-metrics.yaml in this section, but the process
is the same when configuring Kafka Connect using the kafka-connect-metrics.yaml file.

Additional resources

For more information on the use of relabeling, see Configuration in the Prometheus documentation.

6.1.2.2. Prometheus metrics deployment options

To apply the example metrics configuration of relabeling rules to your Kafka cluster, do one of the
following:

Copy the example configuration to your own Kafka resource definition

Deploy an example Kafka cluster with the metrics configuration

6.1.2.3. Copying Prometheus metrics configuration to a Kafka resource

To use Grafana dashboards for monitoring, you can copy the example metrics configuration to a Kafka
resource.

Procedure

Execute the following steps for each Kafka resource in your deployment.

1. Update the Kafka resource in an editor.

2. Copy the example configuration in kafka-metrics.yaml to your own Kafka resource definition.

3. Save the file, exit the editor and wait for the updated resource to be reconciled.

6.1.2.4. Deploying a Kafka cluster with Prometheus metrics configuration

oc edit kafka my-cluster

CHAPTER 6. INTRODUCING METRICS TO KAFKA

45

https://github.com/prometheus/jmx_exporter
https://prometheus.io/docs/prometheus/latest/configuration/configuration

To use Grafana dashboards for monitoring, you can deploy an example Kafka cluster with metrics
configuration.

Procedure

Deploy the Kafka cluster with the metrics configuration:

6.1.3. Setting up Prometheus

Prometheus provides an open source set of components for systems monitoring and alert notification.

We describe here how you can use the CoreOS Prometheus Operator to run and manage a Prometheus
server that is suitable for use in production environments, but with the correct configuration you can run
any Prometheus server.

NOTE

The Prometheus server configuration uses service discovery to discover the pods in the
cluster from which it gets metrics. For this feature to work correctly, the service account
used for running the Prometheus service pod must have access to the API server so it
can retrieve the pod list.

For more information, see Discovering services.

6.1.3.1. Prometheus configuration

AMQ Streams provides example configuration files for the Prometheus server .

A Prometheus image is provided for deployment:

prometheus.yaml

Additional Prometheus-related configuration is also provided in the following files:

prometheus-additional.yaml

prometheus-rules.yaml

strimzi-pod-monitor.yaml

strimzi-service-monitor.yaml

For Prometheus to obtain monitoring data:

Deploy the Prometheus Operator

Then use the configuration files to:

Deploy Prometheus

Alerting rules

The prometheus-rules.yaml file provides example alerting rule examples for use with Alertmanager .

oc apply -f kafka-metrics.yaml

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

46

https://prometheus.io/
https://github.com/coreos/prometheus-operator
https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services

6.1.3.2. Prometheus resources

When you apply the Prometheus configuration, the following resources are created in your OpenShift
cluster and managed by the Prometheus Operator:

A ClusterRole that grants permissions to Prometheus to read the health endpoints exposed by
the Kafka and ZooKeeper pods, cAdvisor and the kubelet for container metrics.

A ServiceAccount for the Prometheus pods to run under.

A ClusterRoleBinding which binds the ClusterRole to the ServiceAccount.

A Deployment to manage the Prometheus Operator pod.

A ServiceMonitor to manage the configuration of the Prometheus pod.

A Prometheus to manage the configuration of the Prometheus pod.

A PrometheusRule to manage alerting rules for the Prometheus pod.

A Secret to manage additional Prometheus settings.

A Service to allow applications running in the cluster to connect to Prometheus (for example,
Grafana using Prometheus as datasource).

6.1.3.3. Deploying the CoreOS Prometheus Operator

To deploy the Prometheus Operator to your Kafka cluster, apply the YAML bundle resources file from
the Prometheus CoreOS repository.

Procedure

1. Download the bundle.yaml resources file from the repository.
On Linux, use:

On MacOS, use:

Replace the example namespace with your own.

NOTE

If using OpenShift, specify a release of the OpenShift fork of the
Prometheus Operator repository.

2. (Optional) If it is not required, you can manually remove the
spec.template.spec.securityContext property from the prometheus-operator-
deployment.yaml file.

curl -s https://raw.githubusercontent.com/coreos/prometheus-operator/master/bundle.yaml |
sed -e 's/namespace: .*/namespace: my-namespace/' > prometheus-operator-
deployment.yaml

curl -s https://raw.githubusercontent.com/coreos/prometheus-operator/master/bundle.yaml |
sed -e '' 's/namespace: .*/namespace: my-namespace/' > prometheus-operator-
deployment.yaml

CHAPTER 6. INTRODUCING METRICS TO KAFKA

47

https://github.com/coreos/prometheus-operator
https://github.com/openshift/prometheus-operator

3. Deploy the Prometheus Operator:

6.1.3.4. Deploying Prometheus

To deploy Prometheus to your Kafka cluster to obtain monitoring data, apply the example resource file
for the Prometheus docker image and the YAML files for Prometheus-related resources.

The deployment process creates a ClusterRoleBinding and discovers an Alertmanager instance in the
namespace specified for the deployment.

NOTE

By default, the Prometheus Operator only supports jobs that include an endpoints role
for service discovery. Targets are discovered and scraped for each endpoint port address.
For endpoint discovery, the port address may be derived from service (role: service) or
pod (role: pod) discovery.

Prerequisites

Check the example alerting rules provided

Procedure

1. Modify the Prometheus installation file (prometheus.yaml) according to the namespace
Prometheus is going to be installed into:
On Linux, use:

On MacOS, use:

2. Edit the ServiceMonitor resource in strimzi-service-monitor.yaml to define Prometheus jobs
that will scrape the metrics data from services. ServiceMonitor is used to scrape metrics
through services and is used for Apache Kafka, ZooKeeper.

3. Edit the PodMonitor resource in strimzi-pod-monitor.yaml to define Prometheus jobs that will
scrape the metrics data from pods. PodMonitor is used to scrape data directly from pods and is
used for Operators.

4. To use another role:

a. Create a Secret resource:

b. Edit the additionalScrapeConfigs property in the prometheus.yaml file to include the
name of the Secret and the YAML file (prometheus-additional.yaml) that contains the
additional configuration.

oc apply -f prometheus-operator-deployment.yaml

sed -i 's/namespace: .*/namespace: my-namespace/' prometheus.yaml

sed -i '' 's/namespace: .*/namespace: my-namespace/' prometheus.yaml

oc create secret generic additional-scrape-configs --from-file=prometheus-
additional.yaml

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

48

5. Deploy the Prometheus resources:

6.1.4. Setting up Prometheus Alertmanager

Prometheus Alertmanager is a plugin for handling alerts and routing them to a notification service.
Alertmanager supports an essential aspect of monitoring, which is to be notified of conditions that
indicate potential issues based on alerting rules.

6.1.4.1. Alertmanager configuration

AMQ Streams provides example configuration files for Prometheus Alertmanager .

A configuration file defines the resources for deploying Alertmanager:

alert-manager.yaml

An additional configuration file provides the hook definitions for sending notifications from your Kafka
cluster.

alert-manager-config.yaml

For Alertmanger to handle Prometheus alerts, use the configuration files to:

Deploy Alertmanager

6.1.4.2. Alerting rules

Alerting rules provide notifications about specific conditions observed in the metrics. Rules are declared
on the Prometheus server, but Prometheus Alertmanager is responsible for alert notifications.

Prometheus alerting rules describe conditions using PromQL expressions that are continuously
evaluated.

When an alert expression becomes true, the condition is met and the Prometheus server sends alert
data to the Alertmanager. Alertmanager then sends out a notification using the communication method
configured for its deployment.

Alertmanager can be configured to use email, chat messages or other notification methods.

Additional resources

For more information about setting up alerting rules, see Configuration in the Prometheus
documentation.

6.1.4.3. Alerting rule examples

Example alerting rules for Kafka and ZooKeeper metrics are provided with AMQ Streams for use in a
Prometheus deployment.

General points about the alerting rule definitions:

A for property is used with the rules to determine the period of time a condition must persist

oc apply -f strimzi-service-monitor.yaml
oc apply -f strimzi-pod-monitor.yaml
oc apply -f prometheus-rules.yaml
oc apply -f prometheus.yaml

CHAPTER 6. INTRODUCING METRICS TO KAFKA

49

https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/configuration/configuration

A for property is used with the rules to determine the period of time a condition must persist
before an alert is triggered.

A tick is a basic ZooKeeper time unit, which is measured in milliseconds and configured using the
tickTime parameter of Kafka.spec.zookeeper.config. For example, if ZooKeeper
tickTime=3000, 3 ticks (3 x 3000) equals 9000 milliseconds.

The availability of the ZookeeperRunningOutOfSpace metric and alert is dependent on the
OpenShift configuration and storage implementation used. Storage implementations for
certain platforms may not be able to supply the information on available space required for the
metric to provide an alert.

Kafka alerting rules

UnderReplicatedPartitions

Gives the number of partitions for which the current broker is the lead replica but which have fewer
replicas than the min.insync.replicas configured for their topic. This metric provides insights about
brokers that host the follower replicas. Those followers are not keeping up with the leader. Reasons
for this could include being (or having been) offline, and over-throttled interbroker replication. An
alert is raised when this value is greater than zero, providing information on the under-replicated
partitions for each broker.

AbnormalControllerState

Indicates whether the current broker is the controller for the cluster. The metric can be 0 or 1. During
the life of a cluster, only one broker should be the controller and the cluster always needs to have an
active controller. Having two or more brokers saying that they are controllers indicates a problem. If
the condition persists, an alert is raised when the sum of all the values for this metric on all brokers is
not equal to 1, meaning that there is no active controller (the sum is 0) or more than one controller
(the sum is greater than 1).

UnderMinIsrPartitionCount

Indicates that the minimum number of in-sync replicas (ISRs) for a lead Kafka broker, specified using
min.insync.replicas, that must acknowledge a write operation has not been reached. The metric
defines the number of partitions that the broker leads for which the in-sync replicas count is less than
the minimum in-sync. An alert is raised when this value is greater than zero, providing information on
the partition count for each broker that did not achieve the minimum number of acknowledgments.

OfflineLogDirectoryCount

Indicates the number of log directories which are offline (for example, due to a hardware failure) so
that the broker cannot store incoming messages anymore. An alert is raised when this value is greater
than zero, providing information on the number of offline log directories for each broker.

KafkaRunningOutOfSpace

Indicates the remaining amount of disk space that can be used for writing data. An alert is raised
when this value is lower than 5GiB, providing information on the disk that is running out of space for
each persistent volume claim. The threshold value may be changed in prometheus-rules.yaml.

ZooKeeper alerting rules

AvgRequestLatency

Indicates the amount of time it takes for the server to respond to a client request. An alert is raised
when this value is greater than 10 (ticks), providing the actual value of the average request latency for
each server.

OutstandingRequests

Indicates the number of queued requests in the server. This value goes up when the server receives

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

50

Indicates the number of queued requests in the server. This value goes up when the server receives
more requests than it can process. An alert is raised when this value is greater than 10, providing the
actual number of outstanding requests for each server.

ZookeeperRunningOutOfSpace

Indicates the remaining amount of disk space that can be used for writing data to ZooKeeper. An
alert is raised when this value is lower than 5GiB., providing information on the disk that is running out
of space for each persistent volume claim.

6.1.4.4. Deploying Alertmanager

To deploy Alertmanager, apply the example configuration files .

The sample configuration provided with AMQ Streams configures the Alertmanager to send
notifications to a Slack channel.

The following resources are defined on deployment:

An Alertmanager to manage the Alertmanager pod.

A Secret to manage the configuration of the Alertmanager.

A Service to provide an easy to reference hostname for other services to connect to
Alertmanager (such as Prometheus).

Prerequisites

Metrics are configured for the Kafka cluster resource

Prometheus is deployed

Procedure

1. Create a Secret resource from the Alertmanager configuration file (alert-manager-
config.yaml):

2. Update the alert-manager-config.yaml file to replace the:

slack_api_url property with the actual value of the Slack API URL related to the application
for the Slack workspace

channel property with the actual Slack channel on which to send notifications

3. Deploy Alertmanager:

6.1.5. Setting up Grafana

Grafana provides visualizations of Prometheus metrics.

You can deploy and enable the example Grafana dashboards provided with AMQ Streams.

oc create secret generic alertmanager-alertmanager --from-file=alertmanager.yaml=alert-
manager-config.yaml

oc apply -f alert-manager.yaml

CHAPTER 6. INTRODUCING METRICS TO KAFKA

51

6.1.5.1. Grafana configuration

AMQ Streams provides example dashboard configuration files for Grafana .

A Grafana docker image is provided for deployment:

grafana.yaml

Example dashboards are also provided as JSON files:

strimzi-kafka.json

strimzi-kafka-connect.json

strimzi-zookeeper.json

strimzi-kafka-mirror-maker-2.json

strimzi-kafka-exporter.json

strimzi-operators.json

The example dashboards are a good starting point for monitoring key metrics, but they do not represent
all available metrics. You may need to modify the example dashboards or add other metrics, depending
on your infrastructure.

For Grafana to present the dashboards, use the configuration files to:

Deploy Grafana

6.1.5.2. Deploying Grafana

To deploy Grafana to provide visualizations of Prometheus metrics, apply the example configuration
file.

Prerequisites

Metrics are configured for the Kafka cluster resource

Prometheus and Prometheus Alertmanager are deployed

Procedure

1. Deploy Grafana:

2. Enable the Grafana dashboards .

6.1.5.3. Enabling the example Grafana dashboards

Set up a Prometheus data source and example dashboards to enable Grafana for monitoring.

NOTE

oc apply -f grafana.yaml

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

52

NOTE

No alert notification rules are defined.

When accessing a dashboard, you can use the port-forward command to forward traffic from the
Grafana pod to the host.

For example, you can access the Grafana user interface by:

1. Running oc port-forward svc/grafana 3000:3000

2. Pointing a browser to http://localhost:3000

NOTE

The name of the Grafana pod is different for each user.

Procedure

1. Access the Grafana user interface using admin/admin credentials.
On the initial view choose to reset the password.

2. Click the Add data source button.

CHAPTER 6. INTRODUCING METRICS TO KAFKA

53

http://localhost:3000

3. Add Prometheus as a data source.

Specify a name

Add Prometheus as the type

Specify the connection string to the Prometheus server (http://prometheus-
operated:9090) in the URL field

4. Click Add to test the connection to the data source.

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

54

http://prometheus-operated:9090

5. Click Dashboards, then Import to open the Import Dashboard window and import the example
dashboards (or paste the JSON).

After importing the dashboards, the Grafana dashboard homepage presents Kafka and ZooKeeper
dashboards.

When the Prometheus server has been collecting metrics for a AMQ Streams cluster for some time, the
dashboards are populated.

Figure 6.1. Kafka dashboard

CHAPTER 6. INTRODUCING METRICS TO KAFKA

55

Figure 6.1. Kafka dashboard

Figure 6.2. ZooKeeper dashboard

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

56

Figure 6.2. ZooKeeper dashboard

6.2. ADD KAFKA EXPORTER

Kafka Exporter is an open source project to enhance monitoring of Apache Kafka brokers and clients.
Kafka Exporter is provided with AMQ Streams for deployment with a Kafka cluster to extract additional
metrics data from Kafka brokers related to offsets, consumer groups, consumer lag, and topics.

The metrics data is used, for example, to help identify slow consumers.

Lag data is exposed as Prometheus metrics, which can then be presented in Grafana for analysis.

If you are already using Prometheus and Grafana for monitoring of built-in Kafka metrics, you can
configure Prometheus to also scrape the Kafka Exporter Prometheus endpoint.

6.2.1. Monitoring Consumer lag

Consumer lag indicates the difference in the rate of production and consumption of messages.
Specifically, consumer lag for a given consumer group indicates the delay between the last message in
the partition and the message being currently picked up by that consumer.

The lag reflects the position of the consumer offset in relation to the end of the partition log.

Consumer lag between the producer and consumer offset

This difference is sometimes referred to as the delta between the producer offset and consumer offset:
the read and write positions in the Kafka broker topic partitions.

CHAPTER 6. INTRODUCING METRICS TO KAFKA

57

https://github.com/danielqsj/kafka_exporter

Suppose a topic streams 100 messages a second. A lag of 1000 messages between the producer offset
(the topic partition head) and the last offset the consumer has read means a 10-second delay.

The importance of monitoring consumer lag
For applications that rely on the processing of (near) real-time data, it is critical to monitor consumer lag
to check that it does not become too big. The greater the lag becomes, the further the process moves
from the real-time processing objective.

Consumer lag, for example, might be a result of consuming too much old data that has not been purged,
or through unplanned shutdowns.

Reducing consumer lag
Typical actions to reduce lag include:

Scaling-up consumer groups by adding new consumers

Increasing the retention time for a message to remain in a topic

Adding more disk capacity to increase the message buffer

Actions to reduce consumer lag depend on the underlying infrastructure and the use cases AMQ
Streams is supporting. For instance, a lagging consumer is less likely to benefit from the broker being
able to service a fetch request from its disk cache. And in certain cases, it might be acceptable to
automatically drop messages until a consumer has caught up.

6.2.2. Example Kafka Exporter alerting rules

If you performed the steps to introduce metrics to your deployment, you will already have your Kafka
cluster configured to use the alert notification rules that support Kafka Exporter.

The rules for Kafka Exporter are defined in prometheus-rules.yaml, and are deployed with Prometheus.
For more information, see Prometheus.

The sample alert notification rules specific to Kafka Exporter are as follows:

UnderReplicatedPartition

An alert to warn that a topic is under-replicated and the broker is not replicating to enough
partitions. The default configuration is for an alert if there are one or more under-replicated
partitions for a topic. The alert might signify that a Kafka instance is down or the Kafka cluster is
overloaded. A planned restart of the Kafka broker may be required to restart the replication process.

TooLargeConsumerGroupLag

An alert to warn that the lag on a consumer group is too large for a specific topic partition. The
default configuration is 1000 records. A large lag might indicate that consumers are too slow and are
falling behind the producers.

NoMessageForTooLong

An alert to warn that a topic has not received messages for a period of time. The default
configuration for the time period is 10 minutes. The delay might be a result of a configuration issue
preventing a producer from publishing messages to the topic.

Adapt the default configuration of these rules according to your specific needs.

Additional resources

Section 6.1, “Add Prometheus and Grafana”

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

58

Section 6.1.1, “Example Metrics files”

Section 6.1.4.2, “Alerting rules”

6.2.3. Exposing Kafka Exporter metrics

Lag information is exposed by Kafka Exporter as Prometheus metrics for presentation in Grafana.

Kafka Exporter exposes metrics data for brokers, topics and consumer groups.

The data extracted is described here.

Table 6.1. Broker metrics output

Name Information

kafka_brokers Number of brokers in the Kafka cluster

Table 6.2. Topic metrics output

Name Information

kafka_topic_partitions Number of partitions for a topic

kafka_topic_partition_current_offset Current topic partition offset for a broker

kafka_topic_partition_oldest_offset Oldest topic partition offset for a broker

kafka_topic_partition_in_sync_replica Number of in-sync replicas for a topic partition

kafka_topic_partition_leader Leader broker ID of a topic partition

kafka_topic_partition_leader_is_preferred Shows 1 if a topic partition is using the preferred
broker

kafka_topic_partition_replicas Number of replicas for this topic partition

kafka_topic_partition_under_replicated_parti
tion

Shows 1 if a topic partition is under-replicated

Table 6.3. Consumer group metrics output

Name Information

kafka_consumergroup_current_offset Current topic partition offset for a consumer group

kafka_consumergroup_lag Current approximate lag for a consumer group at a
topic partition

CHAPTER 6. INTRODUCING METRICS TO KAFKA

59

6.2.4. Configuring Kafka Exporter

This procedure shows how to configure Kafka Exporter in the Kafka resource through KafkaExporter
properties.

For more information about configuring the Kafka resource, see the sample Kafka YAML configuration .

The properties relevant to the Kafka Exporter configuration are shown in this procedure.

You can configure these properties as part of a deployment or redeployment of the Kafka cluster.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the KafkaExporter properties for the Kafka resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 kafkaExporter:
 image: my-org/my-image:latest 1
 groupRegex: ".*" 2
 topicRegex: ".*" 3
 resources: 4
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 logging: debug 5
 enableSaramaLogging: true 6
 template: 7
 pod:
 metadata:
 labels:
 label1: value1
 imagePullSecrets:
 - name: my-docker-credentials
 securityContext:
 runAsUser: 1000001
 fsGroup: 0
 terminationGracePeriodSeconds: 120
 readinessProbe: 8
 initialDelaySeconds: 15
 timeoutSeconds: 5

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

60

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#ref-sample-kafka-resource-config-deployment-configuration-kafka

1

2

3

4

5

6

7

8

9

ADVANCED OPTION: Container image configuration, which is recommended only in
special situations.

A regular expression to specify the consumer groups to include in the metrics.

A regular expression to specify the topics to include in the metrics.

CPU and memory resources to reserve .

Logging configuration, to log messages with a given severity (debug, info, warn, error,
fatal) or above.

Boolean to enable Sarama logging, a Go client library used by Kafka Exporter.

Customization of deployment templates and pods.

Healthcheck readiness probes.

Healthcheck liveness probes.

2. Create or update the resource:

What to do next

After configuring and deploying Kafka Exporter, you can enable Grafana to present the Kafka Exporter
dashboards.

Additional resources

KafkaExporterTemplate schema reference.

6.2.5. Enabling the Kafka Exporter Grafana dashboard

If you deployed Kafka Exporter with your Kafka cluster, you can enable Grafana to present the metrics
data it exposes.

A Kafka Exporter dashboard is provided in the examples/metrics directory as a JSON file:

strimzi-kafka-exporter.json

Prerequisites

Kafka cluster is deployed with Kafka Exporter metrics configuration

Prometheus and Prometheus Alertmanager are deployed to the Kafka cluster

Grafana is deployed to the Kafka cluster

This procedure assumes you already have access to the Grafana user interface and Prometheus has

 livenessProbe: 9
 initialDelaySeconds: 15
 timeoutSeconds: 5
...

oc apply -f kafka.yaml

CHAPTER 6. INTRODUCING METRICS TO KAFKA

61

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-configuring-container-images-deployment-configuration-kafka
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-resource-limits-and-requests-deployment-configuration-kafka
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-customizing-deployments-str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-healthchecks-deployment-configuration-kafka
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-healthchecks-deployment-configuration-kafka
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#proc-kafka-exporter-enabling-str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#type-KafkaExporterTemplate-reference

This procedure assumes you already have access to the Grafana user interface and Prometheus has
been added as a data source. If you are accessing the user interface for the first time, see Grafana.

Procedure

1. Access the Grafana user interface.

2. Click Dashboards, then Import to open the Import Dashboard window and import the example
Kafka Exporter dashboard (or paste the JSON).
When metrics data has been collected for some time, the Kafka Exporter charts are populated.

Kafka Exporter Grafana charts

From the metrics, you can create charts to display:

Message in per second (from topics)

Message in per minute (from topics)

Lag by consumer group

Messages consumed per minute (by consumer groups)

Use the Grafana charts to analyze lag and to check if actions to reduce lag are having an impact on an
affected consumer group. If, for example, Kafka brokers are adjusted to reduce lag, the dashboard will
show the Lag by consumer group chart going down and the Messages consumed per minute chart going
up.

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

62

CHAPTER 7. UPGRADING AMQ STREAMS
AMQ Streams can be upgraded with no cluster downtime. Each version of AMQ Streams supports one
or more versions of Apache Kafka. You can upgrade to a higher Kafka version as long as it is supported
by your version of AMQ Streams. In some cases, you can also downgrade to a lower supported Kafka
version.

Newer versions of AMQ Streams may support newer versions of Kafka, but you need to upgrade AMQ
Streams before you can upgrade to a higher supported Kafka version.

IMPORTANT

If applicable, Resource upgrades must be performed after upgrading AMQ Streams and
Kafka.

7.1. AMQ STREAMS AND KAFKA UPGRADES

Upgrading AMQ Streams is a two-stage process. To upgrade brokers and clients without downtime, you
must complete the upgrade procedures in the following order:

1. Update your Cluster Operator to the latest AMQ Streams version.

Section 7.1.2, “Upgrading the Cluster Operator”

2. Upgrade all Kafka brokers and client applications to the latest Kafka version.

Section 7.1.3, “Upgrading Kafka”

7.1.1. Kafka versions

Kafka’s log message format version and inter-broker protocol version specify the log format version
appended to messages and the version of protocol used in a cluster. As a result, the upgrade process
involves making configuration changes to existing Kafka brokers and code changes to client applications
(consumers and producers) to ensure the correct versions are used.

The following table shows the differences between Kafka versions:

Kafka version Interbroker protocol
version

Log message format
version

ZooKeeper version

2.4.0 2.4 2.4 3.5.7

2.5.0 2.5 2.5 3.5.8

Message format version

When a producer sends a message to a Kafka broker, the message is encoded using a specific format.
The format can change between Kafka releases, so messages include a version identifying which version
of the format they were encoded with. You can configure a Kafka broker to convert messages from
newer format versions to a given older format version before the broker appends the message to the
log.

In Kafka, there are two different methods for setting the message format version:

CHAPTER 7. UPGRADING AMQ STREAMS

63

The message.format.version property is set on topics.

The log.message.format.version property is set on Kafka brokers.

The default value of message.format.version for a topic is defined by the
log.message.format.version that is set on the Kafka broker. You can manually set the
message.format.version of a topic by modifying its topic configuration.

The upgrade tasks in this section assume that the message format version is defined by the
log.message.format.version.

7.1.2. Upgrading the Cluster Operator

The steps to upgrade your Cluster Operator deployment to use AMQ Streams 1.5 are outlined in this
section.

The availability of Kafka clusters managed by the Cluster Operator is not affected by the upgrade
operation.

NOTE

Refer to the documentation supporting a specific version of AMQ Streams for
information on how to upgrade to that version.

7.1.2.1. Upgrading the Cluster Operator to a later version

This procedure describes how to upgrade a Cluster Operator deployment to a later version.

Prerequisites

An existing Cluster Operator deployment is available.

You have downloaded the installation files for the new version .

Procedure

1. Take note of any configuration changes made to the existing Cluster Operator resources (in the
/install/cluster-operator directory). Any changes will be overwritten by the new version of the
Cluster Operator.

2. Update the Cluster Operator.

a. Modify the installation files for the new version according to the namespace the Cluster
Operator is running in.
On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

b. If you modified one or more environment variables in your existing Cluster Operator

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

64

b. If you modified one or more environment variables in your existing Cluster Operator
Deployment, edit the install/cluster-operator/050-Deployment-cluster-operator.yaml
file to use those environment variables.

3. When you have an updated configuration, deploy it along with the rest of the installation
resources:

Wait for the rolling updates to complete.

4. Get the image for the Kafka pod to ensure the upgrade was successful:

The image tag shows the new AMQ Streams version followed by the Kafka version. For example,
<New AMQ Streams version>-kafka-<Current Kafka version>.

5. Update existing resources to handle deprecated custom resource properties.

AMQ Streams resource upgrades

You now have an updated Cluster Operator, but the version of Kafka running in the cluster it manages is
unchanged.

What to do next

Following the Cluster Operator upgrade, you can perform a Kafka upgrade.

7.1.3. Upgrading Kafka

After you have upgraded your Cluster Operator, you can upgrade your brokers to a higher supported
version of Kafka.

Kafka upgrades are performed using the Cluster Operator. How the Cluster Operator performs an
upgrade depends on the differences between versions of:

Interbroker protocol

Log message format

ZooKeeper

When the versions are the same for the current and target Kafka version, as is typically the case for a
patch level upgrade, the Cluster Operator can upgrade through a single rolling update of the Kafka
brokers.

When one or more of these versions differ, the Cluster Operator requires two or three rolling updates of
the Kafka brokers to perform the upgrade.

Additional resources

Section 7.1.2, “Upgrading the Cluster Operator”

7.1.3.1. Kafka version and image mappings

When upgrading Kafka, consider your settings for the STRIMZI_KAFKA_IMAGES and

oc apply -f install/cluster-operator

oc get po my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'

CHAPTER 7. UPGRADING AMQ STREAMS

65

When upgrading Kafka, consider your settings for the STRIMZI_KAFKA_IMAGES and
Kafka.spec.kafka.version properties.

Each Kafka resource can be configured with a Kafka.spec.kafka.version.

The Cluster Operator’s STRIMZI_KAFKA_IMAGES environment variable provides a mapping
between the Kafka version and the image to be used when that version is requested in a given
Kafka resource.

If Kafka.spec.kafka.image is not configured, the default image for the given version is
used.

If Kafka.spec.kafka.image is configured, the default image is overridden.

WARNING

The Cluster Operator cannot validate that an image actually contains a Kafka broker
of the expected version. Take care to ensure that the given image corresponds to
the given Kafka version.

7.1.3.2. Strategies for upgrading clients

The best approach to upgrading your client applications (including Kafka Connect connectors) depends
on your particular circumstances.

Consuming applications need to receive messages in a message format that they understand. You can
ensure that this is the case in one of two ways:

By upgrading all the consumers for a topic before upgrading any of the producers.

By having the brokers down-convert messages to an older format.

Using broker down-conversion puts extra load on the brokers, so it is not ideal to rely on down-
conversion for all topics for a prolonged period of time. For brokers to perform optimally they should not
be down converting messages at all.

Broker down-conversion is configured in two ways:

The topic-level message.format.version configures it for a single topic.

The broker-level log.message.format.version is the default for topics that do not have the
topic-level message.format.version configured.

Messages published to a topic in a new-version format will be visible to consumers, because brokers
perform down-conversion when they receive messages from producers, not when they are sent to
consumers.

There are a number of strategies you can use to upgrade your clients:

Consumers first

1. Upgrade all the consuming applications.



Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

66

2. Change the broker-level log.message.format.version to the new version.

3. Upgrade all the producing applications.
This strategy is straightforward, and avoids any broker down-conversion. However, it
assumes that all consumers in your organization can be upgraded in a coordinated way, and it
does not work for applications that are both consumers and producers. There is also a risk
that, if there is a problem with the upgraded clients, new-format messages might get added
to the message log so that you cannot revert to the previous consumer version.

Per-topic consumers first

For each topic:

1. Upgrade all the consuming applications.

2. Change the topic-level message.format.version to the new version.

3. Upgrade all the producing applications.
This strategy avoids any broker down-conversion, and means you can proceed on a topic-
by-topic basis. It does not work for applications that are both consumers and producers of
the same topic. Again, it has the risk that, if there is a problem with the upgraded clients,
new-format messages might get added to the message log.

Per-topic consumers first, with down conversion

For each topic:

1. Change the topic-level message.format.version to the old version (or rely on the topic
defaulting to the broker-level log.message.format.version).

2. Upgrade all the consuming and producing applications.

3. Verify that the upgraded applications function correctly.

4. Change the topic-level message.format.version to the new version.
This strategy requires broker down-conversion, but the load on the brokers is minimized
because it is only required for a single topic (or small group of topics) at a time. It also works
for applications that are both consumers and producers of the same topic. This approach
ensures that the upgraded producers and consumers are working correctly before you
commit to using the new message format version.

The main drawback of this approach is that it can be complicated to manage in a cluster with
many topics and applications.

Other strategies for upgrading client applications are also possible.

NOTE

It is also possible to apply multiple strategies. For example, for the first few applications
and topics the "per-topic consumers first, with down conversion" strategy can be used.
When this has proved successful another, more efficient strategy can be considered
acceptable to use instead.

7.1.3.3. Upgrading Kafka brokers and client applications

This procedure describes how to upgrade a AMQ Streams Kafka cluster to a higher version of Kafka.

CHAPTER 7. UPGRADING AMQ STREAMS

67

Prerequisites

For the Kafka resource to be upgraded, check:

The Cluster Operator, which supports both versions of Kafka, is up and running.

The Kafka.spec.kafka.config does not contain options that are not supported in the version of
Kafka that you are upgrading to.

Whether the log.message.format.version for the current Kafka version needs to be updated
for the new version.
Consult the Kafka versions table .

Procedure

1. Update the Kafka cluster configuration in an editor, as required:

a. If the log.message.format.version of the current Kafka version is the same as that of the
new Kafka version, proceed to the next step.
Otherwise, ensure that Kafka.spec.kafka.config has the log.message.format.version
configured to the default for the current version.

For example, if upgrading from Kafka 2.4.1:

If the log.message.format.version is unset, set it to the current version.

NOTE

The value of log.message.format.version must be a string to prevent it
from being interpreted as a floating point number.

b. Change the Kafka.spec.kafka.version to specify the new version (leaving the
log.message.format.version as the current version).
For example, if upgrading from Kafka 2.4.1 to 2.5.0:

oc edit kafka my-cluster

kind: Kafka
spec:
 # ...
 kafka:
 version: 2.4.1
 config:
 log.message.format.version: "2.4"
 # ...

apiVersion: v1alpha1
kind: Kafka
spec:
 # ...
 kafka:
 version: 2.5.0 1

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

68

1

2

This is changed to the new version

This remains at the current version

c. If the image for the Kafka version is different from the image defined in
STRIMZI_KAFKA_IMAGES for the Cluster Operator, update Kafka.spec.kafka.image.
See Section 7.1.3.1, “Kafka version and image mappings”

2. Save and exit the editor, then wait for rolling updates to complete.

NOTE

Additional rolling updates occur if the new version of Kafka has a new ZooKeeper
version.

Check the update in the logs or by watching the pod state transitions:

If the current and new versions of Kafka have different interbroker protocol versions, check the
Cluster Operator logs for an INFO level message:

Alternatively, if the current and new versions of Kafka have the same interbroker protocol
version, check for:

The rolling updates:

Ensure each pod is using the broker binaries for the new version of Kafka

Configure the brokers to send messages using the interbroker protocol of the new version
of Kafka

NOTE

Clients are still using the old version, so brokers will convert messages to the
old version before sending them to the clients. To minimize this additional
load, update the clients as quickly as possible.

3. Depending on your chosen strategy for upgrading clients, upgrade all client applications to use

 config:
 log.message.format.version: "2.4" 2
 # ...

oc logs -f <cluster-operator-pod-name> | grep -E "Kafka version upgrade from [0-9.]+ to [0-
9.]+, phase ([0-9]+) of \1 completed"

oc get po -w

Reconciliation #<num>(watch) Kafka(<namespace>/<name>): Kafka version upgrade from
<from-version> to <to-version>, phase 2 of 2 completed

Reconciliation #<num>(watch) Kafka(<namespace>/<name>): Kafka version upgrade from
<from-version> to <to-version>, phase 1 of 1 completed

CHAPTER 7. UPGRADING AMQ STREAMS

69

3. Depending on your chosen strategy for upgrading clients, upgrade all client applications to use
the new version of the client binaries.
See Section 7.1.3.2, “Strategies for upgrading clients”

WARNING

You cannot downgrade after completing this step. If you need to revert the
update at this point, follow the procedure Section 7.1.4.2, “Downgrading
Kafka brokers and client applications”.

If required, set the version property for Kafka Connect and MirrorMaker as the new version of
Kafka:

a. For Kafka Connect, update KafkaConnect.spec.version

b. For MirrorMaker, update KafkaMirrorMaker.spec.version

4. If the log.message.format.version identified in step 1 is the same as the new version proceed
to the next step.
Otherwise change the log.message.format.version in Kafka.spec.kafka.config to the default
version for the new version of Kafka now being used.

For example, if upgrading to 2.5.0:

5. Wait for the Cluster Operator to update the cluster.
The Kafka cluster and clients are now using the new Kafka version.

Additional resources

See Section 7.1.4.2, “Downgrading Kafka brokers and client applications” for the procedure to
downgrade a AMQ Streams Kafka cluster from one version to a lower version.

7.1.3.4. Upgrading consumers and Kafka Streams applications to cooperative rebalancing

You can upgrade Kafka consumers and Kafka Streams applications to use the incremental cooperative
rebalance protocol for partition rebalances instead of the default eager rebalance protocol. The new
protocol was added in Kafka 2.4.0.

Consumers keep their partition assignments in a cooperative rebalance and only revoke them at the end



apiVersion: v1alpha1
kind: Kafka
spec:
 # ...
 kafka:
 version: 2.5.0
 config:
 log.message.format.version: "2.5"
 # ...

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

70

Consumers keep their partition assignments in a cooperative rebalance and only revoke them at the end
of the process, if needed to achieve a balanced cluster. This reduces the unavailability of the consumer
group or Kafka Streams application.

NOTE

Upgrading to the incremental cooperative rebalance protocol is optional. The eager
rebalance protocol is still supported.

Prerequisites

You have upgraded Kafka brokers and client applications to Kafka 2.5.0.

Procedure

To upgrade a Kafka consumer to use the incremental cooperative rebalance protocol:

1. Replace the Kafka clients .jar file with the new version.

2. In the consumer configuration, append cooperative-sticky to the
partition.assignment.strategy. For example, if the range strategy is set, change the
configuration to range, cooperative-sticky.

3. Restart each consumer in the group in turn, waiting for the consumer to rejoin the group after
each restart.

4. Reconfigure each consumer in the group by removing the earlier
partition.assignment.strategy from the consumer configuration, leaving only the cooperative-
sticky strategy.

5. Restart each consumer in the group in turn, waiting for the consumer to rejoin the group after
each restart.

To upgrade a Kafka Streams application to use the incremental cooperative rebalance protocol:

1. Replace the Kafka Streams .jar file with the new version.

2. In the Kafka Streams configuration, set the upgrade.from configuration parameter to the Kafka
version you are upgrading from (for example, 2.3).

3. Restart each of the stream processors (nodes) in turn.

4. Remove the upgrade.from configuration parameter from the Kafka Streams configuration.

5. Restart each consumer in the group in turn.

Additional resources

Notable changes in 2.4.0 in the Apache Kafka documentation.

7.1.4. Downgrading Kafka

Kafka version downgrades are performed using the Cluster Operator.

Whether and how the Cluster Operator performs a downgrade depends on the differences between
versions of:

CHAPTER 7. UPGRADING AMQ STREAMS

71

https://kafka.apache.org/documentation/#upgrade_240_notable

Interbroker protocol

Log message format

ZooKeeper

7.1.4.1. Target downgrade version

How the Cluster Operator handles a downgrade operation depends on the
log.message.format.version.

If the target downgrade version of Kafka has the same log.message.format.version as the
current version, the Cluster Operator downgrades by performing a single rolling restart of the
brokers.

If the target downgrade version of Kafka has a different log.message.format.version,
downgrading is only possible if the running cluster has always had log.message.format.version
set to the version used by the downgraded version.
This is typically only the case if the upgrade procedure was aborted before the
log.message.format.version was changed. In this case, the downgrade requires:

Two rolling restarts of the brokers if the interbroker protocol of the two versions is different

A single rolling restart if they are the same

7.1.4.2. Downgrading Kafka brokers and client applications

This procedure describes how you can downgrade a AMQ Streams Kafka cluster to a lower (previous)
version of Kafka, such as downgrading from 2.5.0 to 2.4.1.

IMPORTANT

Downgrading is not possible if the new version has ever used a
log.message.format.version that is not supported by the previous version, including
when the default value for log.message.format.version is used. For example, this
resource can be downgraded to Kafka version 2.4.1 because the
log.message.format.version has not been changed:

The downgrade would not be possible if the log.message.format.version was set at
"2.5" or a value was absent (so that the parameter took the default value for a 2.5.0
broker of 2.5).

Prerequisites

For the Kafka resource to be downgraded, check:

apiVersion: v1alpha1
kind: Kafka
spec:
 # ...
 kafka:
 version: 2.5.0
 config:
 log.message.format.version: "2.4"
 # ...

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

72

1

2

The Cluster Operator, which supports both versions of Kafka, is up and running.

The Kafka.spec.kafka.config does not contain options that are not supported in the version of
Kafka you are downgrading to.

The Kafka.spec.kafka.config has a log.message.format.version that is supported by the
version being downgraded to.

Procedure

1. Update the Kafka cluster configuration in an editor, as required:
Use oc edit:

a. Change the Kafka.spec.kafka.version to specify the previous version.
For example, if downgrading from Kafka 2.5.0 to 2.4.1:

This is changed to the previous version

This is unchanged

NOTE

You must format the value of log.message.format.version as a string to
prevent it from being interpreted as a floating point number.

b. If the image for the Kafka version is different from the image defined in
STRIMZI_KAFKA_IMAGES for the Cluster Operator, update Kafka.spec.kafka.image.
See Section 7.1.3.1, “Kafka version and image mappings”

2. Save and exit the editor, then wait for rolling updates to complete.
Check the update in the logs or by watching the pod state transitions:

If the previous and current versions of Kafka have different interbroker protocol versions, check
the Cluster Operator logs for an INFO level message:

oc edit kafka my-cluster

apiVersion: v1alpha1
kind: Kafka
spec:
 # ...
 kafka:
 version: 2.4.1 1
 config:
 log.message.format.version: "2.4" 2
 # ...

oc logs -f <cluster-operator-pod-name> | grep -E "Kafka version downgrade from [0-9.]+ to
[0-9.]+, phase ([0-9]+) of \1 completed"

oc get po -w

CHAPTER 7. UPGRADING AMQ STREAMS

73

Alternatively, if the previous and current versions of Kafka have the same interbroker protocol
version, check for:

3. Downgrade all client applications (consumers) to use the previous version of the client binaries.
The Kafka cluster and clients are now using the previous Kafka version.

7.2. AMQ STREAMS RESOURCE UPGRADES

The kafka.strimzi.io/v1alpha1 API version is deprecated. Resources that use the API version
kafka.strimzi.io/v1alpha1 must be updated to use kafka.strimzi.io/v1beta1.

This section describes the upgrade steps for the resources.

IMPORTANT

The upgrade of resources must be performed after upgrading the Cluster Operator , so
the Cluster Operator can understand the resources.

What if the resource upgrade does not take effect?

If the upgrade does not take effect, a warning is given in the logs on reconciliation to indicate that the
resource cannot be updated until the apiVersion is updated.

To trigger the update, make a cosmetic change to the custom resource, such as adding an annotation.

Example annotation:

7.2.1. Upgrading Kafka resources

Prerequisites

A Cluster Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each Kafka resource in your deployment.

1. Update the Kafka resource in an editor.

2. Replace:

Reconciliation #<num>(watch) Kafka(<namespace>/<name>): Kafka version downgrade from
<from-version> to <to-version>, phase 2 of 2 completed

Reconciliation #<num>(watch) Kafka(<namespace>/<name>): Kafka version downgrade from
<from-version> to <to-version>, phase 1 of 1 completed

metadata:
 # ...
 annotations:
 upgrade: "Upgraded to kafka.strimzi.io/v1beta1"

oc edit kafka my-cluster

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

74

with:

3. If the Kafka resource has:

Replace it with:

For example, replace:

with:

4. If present, move:

to:

For example, move:

to:

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

Kafka.spec.topicOperator

Kafka.spec.entityOperator.topicOperator

spec:
 # ...
 topicOperator: {}

spec:
 # ...
 entityOperator:
 topicOperator: {}

Kafka.spec.entityOperator.affinity

Kafka.spec.entityOperator.tolerations

Kafka.spec.entityOperator.template.pod.affinity

Kafka.spec.entityOperator.template.pod.tolerations

spec:
 # ...
 entityOperator:
 affinity {}
 tolerations {}

spec:
 # ...

CHAPTER 7. UPGRADING AMQ STREAMS

75

5. If present, move:

to:

For example, move:

to:

6. If present, move:

to:

For example, move:

 entityOperator:
 template:
 pod:
 affinity {}
 tolerations {}

Kafka.spec.kafka.affinity

Kafka.spec.kafka.tolerations

Kafka.spec.kafka.template.pod.affinity

Kafka.spec.kafka.template.pod.tolerations

spec:
 # ...
 kafka:
 affinity {}
 tolerations {}

spec:
 # ...
 kafka:
 template:
 pod:
 affinity {}
 tolerations {}

Kafka.spec.zookeeper.affinity

Kafka.spec.zookeeper.tolerations

Kafka.spec.zookeeper.template.pod.affinity

Kafka.spec.zookeeper.template.pod.tolerations

spec:

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

76

to:

7. Save the file, exit the editor and wait for the updated resource to be reconciled.

7.2.2. Upgrading Kafka Connect resources

Prerequisites

A Cluster Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaConnect resource in your deployment.

1. Update the KafkaConnect resource in an editor.

2. Replace:

with:

3. If present, move:

to:

For example, move:

 # ...
 zookeeper:
 affinity {}
 tolerations {}

spec:
 # ...
 zookeeper:
 template:
 pod:
 affinity {}
 tolerations {}

oc edit kafkaconnect my-connect

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

KafkaConnect.spec.affinity

KafkaConnect.spec.tolerations

KafkaConnect.spec.template.pod.affinity

KafkaConnect.spec.template.pod.tolerations

CHAPTER 7. UPGRADING AMQ STREAMS

77

to:

4. Save the file, exit the editor and wait for the updated resource to be reconciled.

7.2.3. Upgrading Kafka Connect S2I resources

Prerequisites

A Cluster Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaConnectS2I resource in your deployment.

1. Update the KafkaConnectS2I resource in an editor.

2. Replace:

with:

3. If present, move:

to:

For example, move:

spec:
 # ...
 affinity {}
 tolerations {}

spec:
 # ...
 template:
 pod:
 affinity {}
 tolerations {}

oc edit kafkaconnects2i my-connect

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

KafkaConnectS2I.spec.affinity

KafkaConnectS2I.spec.tolerations

KafkaConnectS2I.spec.template.pod.affinity

KafkaConnectS2I.spec.template.pod.tolerations

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

78

to:

4. Save the file, exit the editor and wait for the updated resource to be reconciled.

7.2.4. Upgrading Kafka MirrorMaker resources

Prerequisites

A Cluster Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaMirrorMaker resource in your deployment.

1. Update the KafkaMirrorMaker resource in an editor.

2. Replace:

with:

3. If present, move:

to:

For example, move:

spec:
 # ...
 affinity {}
 tolerations {}

spec:
 # ...
 template:
 pod:
 affinity {}
 tolerations {}

oc edit kafkamirrormaker my-connect

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

KafkaConnectMirrorMaker.spec.affinity

KafkaConnectMirrorMaker.spec.tolerations

KafkaConnectMirrorMaker.spec.template.pod.affinity

KafkaConnectMirrorMaker.spec.template.pod.tolerations

CHAPTER 7. UPGRADING AMQ STREAMS

79

to:

4. Save the file, exit the editor and wait for the updated resource to be reconciled.

7.2.5. Upgrading Kafka Topic resources

Prerequisites

A Topic Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaTopic resource in your deployment.

1. Update the KafkaTopic resource in an editor.

2. Replace:

with:

3. Save the file, exit the editor and wait for the updated resource to be reconciled.

7.2.6. Upgrading Kafka User resources

Prerequisites

A User Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaUser resource in your deployment.

1. Update the KafkaUser resource in an editor.

spec:
 # ...
 affinity {}
 tolerations {}

spec:
 # ...
 template:
 pod:
 affinity {}
 tolerations {}

oc edit kafkatopic my-topic

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

oc edit kafkauser my-user

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

80

2. Replace:

with:

3. Save the file, exit the editor and wait for the updated resource to be reconciled.

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

CHAPTER 7. UPGRADING AMQ STREAMS

81

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Streams entries in the JBOSS INTEGRATION AND AUTOMATION
category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Revised on 2020-10-28 15:48:11 UTC

Red Hat AMQ 7.7 Deploying and Upgrading AMQ Streams on OpenShift

82

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	CHAPTER 1. DEPLOYMENT OVERVIEW
	1.1. HOW AMQ STREAMS SUPPORTS KAFKA
	1.2. AMQ STREAMS OPERATORS
	Operators
	1.2.1. Cluster Operator
	1.2.2. Topic Operator
	1.2.3. User Operator

	1.3. AMQ STREAMS CUSTOM RESOURCES
	1.3.1. AMQ Streams custom resource example

	1.4. PROMETHEUS SUPPORT IN AMQ STREAMS
	1.5. AMQ STREAMS INSTALLATION METHODS
	AMQ Streams installation artifacts
	OperatorHub

	CHAPTER 2. WHAT IS DEPLOYED WITH AMQ STREAMS
	2.1. ORDER OF DEPLOYMENT
	2.2. ADDITIONAL DEPLOYMENT CONFIGURATION OPTIONS
	2.2.1. Securing Kafka
	2.2.2. Monitoring your deployment

	CHAPTER 3. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT
	3.1. DEPLOYMENT PREREQUISITES
	3.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS
	3.3. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY
	3.4. DESIGNATING AMQ STREAMS ADMINISTRATORS

	CHAPTER 4. DEPLOYING AMQ STREAMS
	4.1. CREATE THE KAFKA CLUSTER
	Deploying a Kafka cluster with the Topic Operator and User Operator
	Deploying a standalone Topic Operator and User Operator
	4.1.1. Deploying the Cluster Operator
	4.1.1.1. Watch options for a Cluster Operator deployment
	4.1.1.2. Deploying the Cluster Operator to watch a single namespace
	4.1.1.3. Deploying the Cluster Operator to watch multiple namespaces
	4.1.1.4. Deploying the Cluster Operator to watch all namespaces
	4.1.1.5. Deploying the Cluster Operator from the OperatorHub

	4.1.2. Deploying Kafka
	4.1.2.1. Deploying the Kafka cluster
	4.1.2.2. Deploying the Topic Operator using the Cluster Operator
	4.1.2.3. Deploying the User Operator using the Cluster Operator

	4.1.3. Alternative standalone deployment options for AMQ Streams Operators
	4.1.3.1. Deploying the standalone Topic Operator
	4.1.3.2. Deploying the standalone User Operator

	4.2. DEPLOY KAFKA CONNECT
	4.2.1. Deploying Kafka Connect to your OpenShift cluster
	4.2.2. Extending Kafka Connect with connector plug-ins
	4.2.2.1. Creating a Docker image from the Kafka Connect base image
	4.2.2.2. Creating a container image using OpenShift builds and Source-to-Image

	4.2.3. Creating and managing connectors
	4.2.3.1. KafkaConnector resources
	4.2.3.2. Availability of the Kafka Connect REST API

	4.2.4. Deploying a KafkaConnector resource to Kafka Connect

	4.3. DEPLOY KAFKA MIRRORMAKER
	4.3.1. Deploying Kafka MirrorMaker to your OpenShift cluster

	4.4. DEPLOY KAFKA BRIDGE
	4.4.1. Deploying Kafka Bridge to your OpenShift cluster

	CHAPTER 5. VERIFYING THE AMQ STREAMS DEPLOYMENT
	5.1. DEPLOYING EXAMPLE CLIENTS

	CHAPTER 6. INTRODUCING METRICS TO KAFKA
	6.1. ADD PROMETHEUS AND GRAFANA
	6.1.1. Example Metrics files
	6.1.2. Exposing Prometheus metrics
	6.1.2.1. Prometheus metrics configuration
	6.1.2.2. Prometheus metrics deployment options
	6.1.2.3. Copying Prometheus metrics configuration to a Kafka resource
	6.1.2.4. Deploying a Kafka cluster with Prometheus metrics configuration

	6.1.3. Setting up Prometheus
	6.1.3.1. Prometheus configuration
	6.1.3.2. Prometheus resources
	6.1.3.3. Deploying the CoreOS Prometheus Operator
	6.1.3.4. Deploying Prometheus

	6.1.4. Setting up Prometheus Alertmanager
	6.1.4.1. Alertmanager configuration
	6.1.4.2. Alerting rules
	6.1.4.3. Alerting rule examples
	6.1.4.4. Deploying Alertmanager

	6.1.5. Setting up Grafana
	6.1.5.1. Grafana configuration
	6.1.5.2. Deploying Grafana
	6.1.5.3. Enabling the example Grafana dashboards

	6.2. ADD KAFKA EXPORTER
	6.2.1. Monitoring Consumer lag
	The importance of monitoring consumer lag
	Reducing consumer lag

	6.2.2. Example Kafka Exporter alerting rules
	6.2.3. Exposing Kafka Exporter metrics
	6.2.4. Configuring Kafka Exporter
	6.2.5. Enabling the Kafka Exporter Grafana dashboard

	CHAPTER 7. UPGRADING AMQ STREAMS
	7.1. AMQ STREAMS AND KAFKA UPGRADES
	7.1.1. Kafka versions
	7.1.2. Upgrading the Cluster Operator
	7.1.2.1. Upgrading the Cluster Operator to a later version

	7.1.3. Upgrading Kafka
	7.1.3.1. Kafka version and image mappings
	7.1.3.2. Strategies for upgrading clients
	7.1.3.3. Upgrading Kafka brokers and client applications
	7.1.3.4. Upgrading consumers and Kafka Streams applications to cooperative rebalancing

	7.1.4. Downgrading Kafka
	7.1.4.1. Target downgrade version
	7.1.4.2. Downgrading Kafka brokers and client applications

	7.2. AMQ STREAMS RESOURCE UPGRADES
	7.2.1. Upgrading Kafka resources
	7.2.2. Upgrading Kafka Connect resources
	7.2.3. Upgrading Kafka Connect S2I resources
	7.2.4. Upgrading Kafka MirrorMaker resources
	7.2.5. Upgrading Kafka Topic resources
	7.2.6. Upgrading Kafka User resources

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files

