
Red Hat AMQ Broker 7.11

Deploying AMQ Broker on OpenShift

For Use with AMQ Broker 7.11

Last Updated: 2024-06-10

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

For Use with AMQ Broker 7.11

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to install and deploy AMQ Broker on OpenShift Container Platform.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
1.1. VERSION COMPATIBILITY AND SUPPORT
1.2. UNSUPPORTED FEATURES
1.3. DOCUMENT CONVENTIONS

The sudo command
About the use of file paths in this document
Replaceable values

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
2.1. OVERVIEW OF HIGH AVAILABILITY (HA)
2.2. OVERVIEW OF THE AMQ BROKER OPERATOR CUSTOM RESOURCE DEFINITIONS
2.3. OVERVIEW OF THE AMQ BROKER OPERATOR SAMPLE CUSTOM RESOURCES
2.4. WATCH OPTIONS FOR A CLUSTER OPERATOR DEPLOYMENT
2.5. HOW THE OPERATOR DETERMINES THE CONFIGURATION TO USE TO DEPLOY IMAGES
2.6. HOW THE OPERATOR CHOOSES CONTAINER IMAGES

2.6.1. Environment variables for broker and init container images
2.7. OPERATOR DEPLOYMENT NOTES
2.8. IDENTIFYING NAMESPACES WATCHED BY EXISTING OPERATORS

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ
BROKER OPERATOR

3.1. PREREQUISITES
3.2. INSTALLING THE OPERATOR USING THE CLI

3.2.1. Preparing to deploy the Operator
3.2.2. Deploying the Operator using the CLI

3.3. INSTALLING THE OPERATOR USING OPERATORHUB
3.3.1. Overview of the Operator Lifecycle Manager
3.3.2. Deploying the Operator from OperatorHub

3.4. CREATING OPERATOR-BASED BROKER DEPLOYMENTS
3.4.1. Deploying a basic broker instance
3.4.2. Deploying clustered brokers
3.4.3. Applying Custom Resource changes to running broker deployments

3.5. CHANGING THE LOGGING LEVEL FOR THE OPERATOR
3.6. VIEWING STATUS INFORMATION FOR YOUR BROKER DEPLOYMENT

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS
4.1. HOW THE OPERATOR GENERATES THE BROKER CONFIGURATION

4.1.1. How the Operator generates the address settings configuration
4.1.2. Directory structure of a broker Pod

4.2. CONFIGURING ADDRESSES AND QUEUES FOR OPERATOR-BASED BROKER DEPLOYMENTS
4.2.1. Differences in configuration of address and queue settings between OpenShift and standalone broker
deployments
4.2.2. Creating addresses and queues for an Operator-based broker deployment
4.2.3. Deleting addresses and queues for an Operator-based broker deployment
4.2.4. Matching address settings to configured addresses in an Operator-based broker deployment

4.3. CONFIGURING AUTHENTICATION AND AUTHORIZATION
4.3.1. Configuring JAAS login modules in a secret
4.3.2. Configuring the default JAAS login module using the Security Custom Resource (CR)

4.3.2.1. Configuring the default JAAS login module using the Security Custom Resource (CR)
4.3.2.2. Storing user passwords in a secret

5

6
6
6
6
6
7
7

8
8
9

10
11
11

13
13
15
16

18
18
18
18
21

24
24
24
26
26
29
30
31

33

36
36
36
37
38

39
40
41

42
48
48
52
52
55

Table of Contents

1

. .

. .

4.4. CONFIGURING BROKER STORAGE REQUIREMENTS
4.4.1. Configuring broker storage size and storage class

4.5. CONFIGURING RESOURCE LIMITS AND REQUESTS FOR OPERATOR-BASED BROKER DEPLOYMENTS

4.5.1. Configuring broker resource limits and requests
4.6. ENABLING ACCESS TO AMQ MANAGEMENT CONSOLE
4.7. SETTING ENVIRONMENT VARIABLES FOR THE BROKER CONTAINERS
4.8. OVERRIDING THE DEFAULT MEMORY LIMIT FOR A BROKER
4.9. SPECIFYING A CUSTOM INIT CONTAINER IMAGE
4.10. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS FOR CLIENT CONNECTIONS

4.10.1. Configuring acceptors
4.10.2. Securing broker-client connections

4.10.2.1. Configuring a broker certificate for host name verification
4.10.2.2. Configuring one-way TLS
4.10.2.3. Configuring two-way TLS

4.10.3. Networking services in your broker deployments
4.10.4. Connecting to the broker from internal and external clients

4.10.4.1. Connecting to the broker from internal clients
4.10.4.2. Connecting to the broker from external clients
4.10.4.3. Connecting to the Broker using a NodePort
4.10.4.4. Caveats to load balancing client connections when you have durable subscription queues or
reply/request queues

4.11. CONFIGURING LARGE MESSAGE HANDLING FOR AMQP MESSAGES
4.11.1. Configuring AMQP acceptors for large message handling

4.12. CONFIGURING BROKER HEALTH CHECKS
4.12.1. Configuring a startup probe
4.12.2. Configuring liveness and readiness probes

4.13. ENABLING MESSAGE MIGRATION TO SUPPORT CLUSTER SCALEDOWN
4.13.1. Steps in message migration process
4.13.2. Enabling message migration

4.14. CONTROLLING PLACEMENT OF BROKER PODS ON OPENSHIFT CONTAINER PLATFORM NODES
4.14.1. Placing pods on specific nodes using node selectors
4.14.2. Controlling pod placement using tolerations
4.14.3. Controlling pod placement using affinity and anti-affinity rules

4.14.3.1. Controlling pod placement using node affinity rules
4.14.3.2. Placing pods relative to other pods using anti-affinity rules

4.15. CONFIGURING LOGGING FOR BROKERS
4.16. CONFIGURING A POD DISRUPTION BUDGET
4.17. CONFIGURING ITEMS NOT EXPOSED IN THE CUSTOM RESOURCE DEFINITION

CHAPTER 5. CONNECTING TO AMQ MANAGEMENT CONSOLE FOR AN OPERATOR-BASED BROKER
DEPLOYMENT

5.1. CONNECTING TO AMQ MANAGEMENT CONSOLE
5.2. ACCESSING AMQ MANAGEMENT CONSOLE LOGIN CREDENTIALS

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT
6.1. BEFORE YOU BEGIN
6.2. UPGRADING THE OPERATOR USING THE CLI

6.2.1. Prerequisites
6.2.2. Upgrading the Operator using the CLI

6.3. UPGRADING THE OPERATOR USING OPERATORHUB
6.3.1. Prerequisites
6.3.2. Before you begin
6.3.3. Upgrading the Operator from pre-7.10.0 to 7.11.x

57
57

60
61

63
64
66
68
70
70
73
74
74
76
78
78
78
78
80

80
82
82
83
84
85
89
89
90
92
93
94
96
96
98

100
103
104

107
107
108

110
110
110
111
111

114
114
114
115

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

2

. .

. .

6.3.4. Upgrading the Operator from 7.10.0 to 7.11.x
6.3.5. Upgrading the Operator from 7.10.1 to 7.11.x
6.3.6. Upgrading the Operator from 7.10.2 or later to 7.11.x

6.4. RESTRICTING AUTOMATIC UPGRADES OF BROKER CONTAINER IMAGES
6.4.1. Restricting automatic upgrades of images by using version numbers
6.4.2. Restricting automatic upgrades of images by using image URLs
6.4.3. Validation of restrictions applied to automatic upgrades

CHAPTER 7. MONITORING YOUR BROKERS
7.1. VIEWING BROKERS IN FUSE CONSOLE
7.2. MONITORING BROKER RUNTIME METRICS USING PROMETHEUS

7.2.1. Metrics overview
7.2.2. Enabling the Prometheus plugin using a CR
7.2.3. Enabling the Prometheus plugin for a running broker deployment using an environment variable
7.2.4. Accessing Prometheus metrics for a running broker Pod

7.3. MONITORING BROKER RUNTIME DATA USING JMX

CHAPTER 8. REFERENCE
8.1. CUSTOM RESOURCE CONFIGURATION REFERENCE

8.1.1. Broker Custom Resource configuration reference
8.1.2. Address Custom Resource configuration reference
8.1.3. Security Custom Resource configuration reference

8.2. EXAMPLE JAAS LOGIN MODULE CONFIGURATIONS
8.3. EXAMPLE: CONFIGURING AMQ BROKER TO USE RED HAT SINGLE SIGN-ON
8.4. LOGGING

115
118
119

120
120
123
125

126
126
127
128
129
131
131
132

134
134
134
180
181

195
197

202

Table of Contents

3

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO AMQ BROKER ON
OPENSHIFT CONTAINER PLATFORM

Red Hat AMQ Broker 7.11 is available as a containerized image for use with OpenShift Container
Platform (OCP) 4.12, 4.13, 4.14 or 4.15.

AMQ Broker is based on Apache ActiveMQ Artemis. It provides a message broker that is JMS-
compliant. After you have set up the initial broker pod, you can quickly deploy duplicates by using
OpenShift Container Platform features.

1.1. VERSION COMPATIBILITY AND SUPPORT

For details about OpenShift Container Platform image version compatibility, see:

OpenShift Container Platform 4.x Tested Integrations

NOTE

All deployments of AMQ Broker on OpenShift Container Platform now use RHEL 8 based
images.

1.2. UNSUPPORTED FEATURES

Master-slave-based high availability
High availability (HA) achieved by configuring master and slave pairs is not supported. Instead,
AMQ Broker uses the HA capabilities provided in OpenShift Container Platform.

External clients cannot use the topology information provided by AMQ Broker
When an AMQ Core Protocol JMS Client or an AMQ JMS Client connects to a broker in an
OpenShift Container Platform cluster, the broker can send the client the IP address and port
information for each of the other brokers in the cluster, which serves as a failover list for clients
if the connection to the current broker is lost.

The IP address provided for each broker is an internal IP address, which is not accessible to
clients that are external to the OpenShift Container Platform cluster. To prevent external clients
from trying to connect to a broker using an internal IP address, set the following configuration in
the URI used by the client to initially connect to a broker.

Client Configuration

AMQ Core Protocol JMS Client useTopologyForLoadBalancing=false

AMQ JMS Client failover.amqpOpenServerListAction=IGN
ORE

1.3. DOCUMENT CONVENTIONS

This document uses the following conventions for the sudo command, file paths, and replaceable
values.

The sudo command

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

6

https://access.redhat.com/articles/4128421

In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system. For more information
about using sudo, see Managing sudo access.

About the use of file paths in this document
In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/...). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows paths
(for example, C:\Users\...).

Replaceable values
This document sometimes uses replaceable values that you must replace with values specific to your
environment. Replaceable values are lowercase, enclosed by angle brackets (< >), and are styled using
italics and monospace font. Multiple words are separated by underscores (_) .

For example, in the following command, replace <project_name> with your own project name.

$ oc new-project <project_name>

CHAPTER 1. INTRODUCTION TO AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

7

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/managing-sudo-access_configuring-basic-system-settings

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER
ON OPENSHIFT CONTAINER PLATFORM

This section describes how to plan an Operator-based deployment.

Operators are programs that enable you to package, deploy, and manage OpenShift applications. Often,
Operators automate common or complex tasks. Commonly, Operators are intended to provide:

Consistent, repeatable installations

Health checks of system components

Over-the-air (OTA) updates

Managed upgrades

Operators enable you to make changes while your broker instances are running, because they are always
listening for changes to the Custom Resource (CR) instances that you used to configure your
deployment. When you make changes to a CR, the Operator reconciles the changes with the existing
broker deployment and updates the deployment to reflect the changes. In addition, the Operator
provides a message migration capability, which ensures the integrity of messaging data. When a broker
in a clustered deployment shuts down due to an intentional scaledown of the deployment, this capability
migrates messages to a broker Pod that is still running in the same broker cluster.

2.1. OVERVIEW OF HIGH AVAILABILITY (HA)

The term high availability refers to a system that can remain operational even when part of that system
fails or is shut down. For AMQ Broker on OpenShift Container Platform, this means ensuring the
integrity and availability of messaging data if a broker Pod fails.

AMQ Broker uses the HA capabilities provided in OpenShift Container Platform to mitigate Pod
failures:

If persistent storage is enabled on AMQ Broker, each broker Pod writes its data to a Persistent
Volume (PV) that was claimed by using a Persistent Volume Claim (PVC). A PV remains
available even after a Pod is deleted. If a broker Pod fails, OpenShift Container Platform
restarts the Pod with the same name and uses the existing PV that contains the messaging
data.

You can run multiple broker Pods in a cluster and distribute Pods on separate nodes to protect
against a node failure. In a cluster, each broker Pod writes its message data to its own PV which
is then available to that broker Pod if it is restarted on a different node.

The following figure shows a clustered broker deployment. In this case, the two broker Pods in the
broker cluster are still running.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

8

Additional resources

For information on how to use persistent storage, see Section 2.7, “Operator deployment notes” .

For information on how to distribute broker Pods on separate nodes, see Section 4.14.2, “Controlling
pod placement using tolerations”.

2.2. OVERVIEW OF THE AMQ BROKER OPERATOR CUSTOM
RESOURCE DEFINITIONS

In general, a Custom Resource Definition (CRD) is a schema of configuration items that you can modify
for a custom OpenShift object deployed with an Operator. By creating a corresponding Custom
Resource (CR) instance, you can specify values for configuration items in the CRD. If you are an
Operator developer, what you expose through a CRD essentially becomes the API for how a deployed
object is configured and used. You can directly access the CRD through regular HTTP curl commands,
because the CRD gets exposed automatically through Kubernetes.

You can install the AMQ Broker Operator using either the OpenShift command-line interface (CLI), or
the Operator Lifecycle Manager, through the OperatorHub graphical interface. In either case, the AMQ
Broker Operator includes the CRDs described below.

Main broker CRD

You deploy a CR instance based on this CRD to create and configure a broker deployment.
Based on how you install the Operator, this CRD is:

The broker_activemqartemis_crd file in the crds directory of the Operator installation
archive (OpenShift CLI installation method)

The ActiveMQArtemis CRD in the Custom Resource Definitions section of the OpenShift
Container Platform web console (OperatorHub installation method)

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

9

Address CRD

You deploy a CR instance based on this CRD to create addresses and queues for a broker
deployment.
Based on how you install the Operator, this CRD is:

The broker_activemqartemisaddress_crd file in the crds directory of the Operator
installation archive (OpenShift CLI installation method)

The ActiveMQArtemisAddresss CRD in the Custom Resource Definitions section of the
OpenShift Container Platform web console (OperatorHub installation method)

Security CRD

You deploy a CR instance based on this CRD to create users and associate those users with security
contexts.
Based on how you install the Operator, this CRD is:

The broker_activemqartemissecurity_crd file in the crds directory of the Operator
installation archive (OpenShift CLI installation method)

The ActiveMQArtemisSecurity CRD in the Custom Resource Definitions section of the
OpenShift Container Platform web console (OperatorHub installation method).

Scaledown CRD

The Operator automatically creates a CR instance based on this CRD when instantiating a scaledown
controller for message migration.
Based on how you install the Operator, this CRD is:

The broker_activemqartemisscaledown_crd file in the crds directory of the Operator
installation archive (OpenShift CLI installation method)

The ActiveMQArtemisScaledown CRD in the Custom Resource Definitions section of
the OpenShift Container Platform web console (OperatorHub installation method).

Additional resources

To learn how to install the AMQ Broker Operator (and all included CRDs) using:

The OpenShift CLI, see Section 3.2, “Installing the Operator using the CLI”

The Operator Lifecycle Manager and OperatorHub graphical interface, see Section 3.3,
“Installing the Operator using OperatorHub”.

For complete configuration references to use when creating CR instances based on the main
broker and address CRDs, see:

Section 8.1.1, “Broker Custom Resource configuration reference”

Section 8.1.2, “Address Custom Resource configuration reference”

2.3. OVERVIEW OF THE AMQ BROKER OPERATOR SAMPLE CUSTOM
RESOURCES

The AMQ Broker Operator archive that you download and extract during installation includes sample

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

10

The AMQ Broker Operator archive that you download and extract during installation includes sample
Custom Resource (CR) files in the deploy/crs directory. These sample CR files enable you to:

Deploy a minimal broker without SSL or clustering.

Define addresses.

The broker Operator archive that you download and extract also includes CRs for example deployments
in the deploy/examples/address and deploy/examples/artemis directories, as listed below.

address_queue.yaml

Deploys an address and queue with different names. Deletes the queue when the CR is undeployed.

address_topic.yaml

Deploys an address with a multicast routing type. Deletes the address when the CR is undeployed.

artemis_address_settings.yaml

Deploys a broker with specific address settings.

artemis_cluster_persistence.yaml

Deploys clustered brokers with persistent storage.

artemis_enable_metrics_plugin.yaml

Enables the Prometheus metrics plugin to collect metrics.

artemis_resources.yaml

Sets CPU and memory resource limits for the broker.

artemis_single.yaml

Deploys a single broker.

2.4. WATCH OPTIONS FOR A CLUSTER OPERATOR DEPLOYMENT

When the Cluster Operator is running, it starts to watch for updates of AMQ Broker custom resources
(CRs).

You can choose to deploy the Cluster Operator to watch CRs from:

A single namespace (the same namespace containing the Operator)

All namespaces

NOTE

If you have already installed a previous version of the AMQ Broker Operator in a
namespace on your cluster, Red Hat recommends that you do not install the AMQ Broker
Operator 7.11 version to watch that namespace to avoid potential conflicts.

2.5. HOW THE OPERATOR DETERMINES THE CONFIGURATION TO
USE TO DEPLOY IMAGES

In the ActiveMQArtemis CR, you can use any of the following configurations to deploy container
images:

Specify a version number in the spec.version attribute and allow the Operator to choose the
broker and init container images to deploy for that version number.

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

11

Specify the registry URLs of the specific broker and init container images that you want the
Operator to deploy in the spec.deploymentPlan.image and spec.deploymentPlan.initImage
attributes.

Set the value of the spec.deploymentPlan.image attribute to placeholder, which means that
the Operator chooses the latest broker and init container images that are known to the
Operator version.

NOTE

If you do not use any of these configurations to deploy container images, the Operator
chooses the latest broker and init container images that are known to the Operator
version.

After you save a CR, the Operator performs the following validation to determine the configuration to
use.

The Operator checks if the CR contains a spec.version attribute.

If the CR does not contain a spec.version attribute, the Operator checks if the CR contains
a spec.deploymentPlan.image and a spec.deployment.Plan.initImage attribute.

If the CR contains a spec.deploymentPlan.image and a
spec.deployment.Plan.initImage attribute, the Operator deploys the container images
that are identified by their registry URLs.

If the CR does not contain a spec.deploymentPlan.image and a
spec.deployment.Plan.initImage attribute, the Operator chooses the container
images to deploy. For more information, see Section 2.6, “How the Operator chooses
container images”.

If the CR contains a spec.version attribute, the Operator verifies that the version number
specified is within the valid range of versions that the Operator supports.

If the value of the spec.version attribute is not valid, the Operator stops the
deployment.

If the value of the spec.version attribute is valid, the Operator checks if the CR
contains a spec.deploymentPlan.image and a spec.deployment.Plan.initImage
attribute.

If the CR contains a spec.deploymentPlan.image and a
spec.deployment.Plan.initImage attribute, the Operator deploys the container
images that are identified by their registry URLs.

If the CR does not contain a spec.deploymentPlan.image and a
spec.deployment.Plan.initImage attribute, the Operator chooses the container
images to deploy. For more information, see Section 2.6, “How the Operator
chooses container images”.

NOTE

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

12

NOTE

If the CR contains only one of the spec.deploymentPlan.image and the
spec.deployment.Plan.initImage attributes, the Operator uses the spec.version
number attribute to choose an image for the attribute that is not in the CR, or chooses
the latest known image for that attribute if the spec.version attribute is not in the CR.

Red Hat recommends that you do not specify the spec.deploymentPlan.image
attribute without the spec.deployment.Plan.initImage attribute, or vice versa, to
prevent mismatched versions of broker and init container images from being deployed.

2.6. HOW THE OPERATOR CHOOSES CONTAINER IMAGES

If a CR does not contain a spec.deploymentPlan.image and a spec.deployment.Plan.initImage
attribute, which specify the registry URLs of specific container images the Operator must deploy, the
Operator automatically chooses the appropriate container images to deploy.

NOTE

If you install the Operator using the OpenShift command-line interface, the Operator
installation archive includes a sample CR file called broker_activemqartemis_cr.yaml. In
the sample CR, the spec.deploymentPlan.image property is included and set to its
default value of placeholder. This value indicates that the Operator does not choose a
broker container image until you deploy the CR.

The spec.deploymentPlan.initImage property, which specifies the Init Container image,
is not included in the broker_activemqartemis_cr.yaml sample CR file. If you do not
explicitly include the spec.deploymentPlan.initImage property in your CR and specify a
value, the Operator chooses a built-in Init Container image that matches the version of
the Operator container image chosen.

To choose broker and Init Container images, the Operator first determines an AMQ Broker version of
the images that is required. The Operator gets the version from the value of the spec.version property.
If the spec.version property is not set, the Operator uses the latest version of the images for AMQ
Broker.

The Operator then detects your container platform. The AMQ Broker Operator can run on the following
container platforms:

OpenShift Container Platform (x86_64)

OpenShift Container Platform on IBM Z (s390x)

OpenShift Container Platform on IBM Power Systems (ppc64le)

Based on the version of AMQ Broker and your container platform, the Operator then references two
sets of environment variables in the operator.yaml configuration file. These sets of environment
variables specify broker and Init Container images for various versions of AMQ Broker, as described in
the following section.

2.6.1. Environment variables for broker and init container images

The environment variables included in the operator.yaml have the following naming convention.

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

13

Container
platform

Naming convention

OpenShift
Container
Platform

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_<AMQ_Broker_
version>

OpenShift
Container
Platform on IBM
Z

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_<AMQ_Broker_
version>_s390x

OpenShift
Container
Platform on IBM
Power Systems

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_<AMQ_Broker_
version>_ppc64le

The following are examples of environment variable names for broker and init container images for each
supported container platform.

Container platform Environment variable names

OpenShift Container Platform RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_7117
RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_7117

OpenShift Container Platform
on IBM Z

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_7117
_s390x
RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_s390x_7117

OpenShift Container Platform
on IBM Power Systems

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_7117
_ppc64le
RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_ppc64le_711
7

The value of each environment variable specifies the address of a container image that is available from
Red Hat. The image name is represented by a Secure Hash Algorithm (SHA) value. For example:

Therefore, based on an AMQ Broker version and your container platform, the Operator determines the
applicable environment variable names for the broker and init container. The Operator uses the
corresponding image values when starting the broker container.

Additional resources

To learn how to use the AMQ Broker Operator to create a broker deployment, see Chapter 3,
Deploying AMQ Broker on OpenShift Container Platform using the AMQ Broker Operator .

For more information about how the Operator uses an Init Container to generate the broker

- name: RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_7117
 value: registry.redhat.io/amq7/amq-broker-
rhel8@sha256:1f7a173924ad77d018300d4109b91c45896407c13d6a70b37d8993a95e363521

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

14

For more information about how the Operator uses an Init Container to generate the broker
configuration, see Section 4.1, “How the Operator generates the broker configuration” .

To learn how to build and specify a custom Init Container image, see Section 4.9, “Specifying a
custom Init Container image”.

2.7. OPERATOR DEPLOYMENT NOTES

This section describes some important considerations when planning an Operator-based deployment

Deploying the Custom Resource Definitions (CRDs) that accompany the AMQ Broker Operator
requires cluster administrator privileges for your OpenShift cluster. When the Operator is
deployed, non-administrator users can create broker instances via corresponding Custom
Resources (CRs). To enable regular users to deploy CRs, the cluster administrator must first
assign roles and permissions to the CRDs. For more information, see Creating cluster roles for
Custom Resource Definitions in the OpenShift Container Platform documentation.

When you update your cluster with the CRDs for the latest Operator version, this update affects
all projects in the cluster. Any broker Pods deployed from previous versions of the Operator
might become unable to update their status. When you click the Logs tab of a running broker
Pod in the OpenShift Container Platform web console, you see messages indicating that
'UpdatePodStatus' has failed. However, the broker Pods and Operator in that project continue
to work as expected. To fix this issue for an affected project, you must also upgrade that project
to use the latest version of the Operator.

While you can create more than one broker deployment in a given OpenShift project by
deploying multiple Custom Resource (CR) instances, typically, you create a single broker
deployment in a project, and then deploy multiple CR instances for addresses.
Red Hat recommends you create broker deployments in separate projects.

If you intend to deploy brokers with persistent storage and do not have container-native
storage in your OpenShift cluster, you need to manually provision Persistent Volumes (PVs) and
ensure that these are available to be claimed by the Operator. For example, if you want to create
a cluster of two brokers with persistent storage (that is, by setting persistenceEnabled=true in
your CR), you need to have two persistent volumes available. By default, each broker instance
requires storage of 2 GiB.
If you specify persistenceEnabled=false in your CR, the deployed brokers uses ephemeral
storage. Ephemeral storage means that that every time you restart the broker Pods, any
existing data is lost.

For more information about provisioning persistent storage in OpenShift Container Platform,
see:

Understanding persistent storage

You must add configuration for the items listed below to the main broker CR instance before
deploying the CR for the first time. You cannot add configuration for these items to a broker
deployment that is already running.

The size and storage class of the Persistent Volume Claim (PVC) required by each broker in
a deployment for persistent storage

Limits and requests for memory and CPU for each broker in a deployment

If you update a parameter in your CR that the Operator is unable to dynamically update in the
StatefulSet, the Operator deletes the StatefulSet and recreates it with the updated parameter

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

15

https://docs.openshift.com/container-platform/4.15/operators/understanding/crds/crd-extending-api-with-crds.html#crd-creating-aggregated-cluster-role_crd-extending-api-with-crds
https://docs.openshift.com/container-platform/4.15/storage/understanding-persistent-storage.html

value. Deleting the StatefulSet causes all pods to be deleted and recreated, which causes a
temporary broker outage. An example of a CR update that the Operator cannot dynamically
update in the StatefulSet is if you change persistenceEnabled=false to
persistenceEnabled=true.

2.8. IDENTIFYING NAMESPACES WATCHED BY EXISTING OPERATORS

If the cluster already contains installed Operators for AMQ Broker, and you want a new Operator to
watch all or multiple namespaces, you must ensure that the new Operator does not watch any of the
same namespaces as existing Operators. Use the following procedure to identify the namespaces
watched by existing Operators.

Procedure

1. In the left pane of the OpenShift Container Platform web console, click Workloads →
Deployments.

2. In the Project drop-down list, select All Projects.

3. In the Filter Name box, specify a string, for example, amq, to display the Operators for AMQ
Broker that are installed on the cluster.

NOTE

The namespace column displays the namespace where each operator is
deployed.

4. Check the namespaces that each installed Operator for AMQ Broker is configured to watch.

a. Click the Operator name to display the Operator details and click the YAML tab.

b. Search for WATCH_NAMESPACE and note the namespaces that the Operator watches.

If the WATCH_NAMESPACE section has a fieldPath field that has a value of
metadata.namespace, the Operator is watching the namespace where it is deployed.

If the WATCH_NAMESPACE section has a value field that has list of namespaces, the
Operator is watching the specified namespaces. For example:

If the WATCH_NAMESPACE section has a value field that is empty or has an asterisk,
the Operator is watching all the namespaces on the cluster. For example:

In this case, before you deploy the new Operator, you must either uninstall the existing
Operator or reconfigure it to watch specific namespaces.

The procedures in the next section show you how to install the Operator and use Custom Resources
(CRs) to create broker deployments on OpenShift Container Platform. After you complete the
procedures, the Operator runs in an individual Pod and each broker instance that you create runs as an

- name: WATCH_NAMESPACE
 value: "namespace1, namespace2"

- name: WATCH_NAMESPACE
 value: ""

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

16

individual Pod in a StatefulSet in the same project as the Operator. Later, you will see how to use a
dedicated addressing CR to define addresses in your broker deployment.

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

17

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT
CONTAINER PLATFORM USING THE AMQ BROKER

OPERATOR

3.1. PREREQUISITES

Before you install the Operator and use it to create a broker deployment, you should consult the
Operator deployment notes in Section 2.7, “Operator deployment notes” .

3.2. INSTALLING THE OPERATOR USING THE CLI

NOTE

Each Operator release requires that you download the latest AMQ Broker 7.11.7
Operator Installation and Example Files as described below.

The procedures in this section show how to use the OpenShift command-line interface (CLI) to install
and deploy the latest version of the Operator for AMQ Broker 7.11 in a given OpenShift project. In
subsequent procedures, you use this Operator to deploy some broker instances.

For an alternative method of installing the AMQ Broker Operator that uses the OperatorHub
graphical interface, see Section 3.3, “Installing the Operator using OperatorHub” .

To learn about upgrading existing Operator-based broker deployments, see Chapter 6,
Upgrading an Operator-based broker deployment .

3.2.1. Preparing to deploy the Operator

Before you deploy the Operator using the CLI, you must download the Operator installation files and
prepare the deployment.

Procedure

1. In your web browser, navigate to the Software Downloads page for AMQ Broker 7.11.7 releases .

2. Ensure that the value of the Version drop-down list is set to 7.11.7 and the Releases tab is
selected.

3. Next to the latest AMQ Broker 7.11.7 Operator Installation and Example Files, click Download.
Download of the amq-broker-operator-7.11.7-ocp-install-examples.zip compressed archive
automatically begins.

4. Move the archive to your chosen directory. The following example moves the archive to a
directory called ~/broker/operator.

5. In your chosen directory, extract the contents of the archive. For example:

$ mkdir ~/broker/operator
$ mv amq-broker-operator-7.11.7-ocp-install-examples.zip ~/broker/operator

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

18

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.amq.broker&downloadType=distributions&version=7.11.7

6. Switch to the directory that was created when you extracted the archive. For example:

7. Log in to OpenShift Container Platform as a cluster administrator. For example:

8. Specify the project in which you want to install the Operator. You can create a new project or
switch to an existing one.

a. Create a new project:

b. Or, switch to an existing project:

9. Specify a service account to use with the Operator.

a. In the deploy directory of the Operator archive that you extracted, open the
service_account.yaml file.

b. Ensure that the kind element is set to ServiceAccount.

c. If you want to change the default service account name, in the metadata section, replace
amq-broker-controller-manager with a custom name.

d. Create the service account in your project.

10. Specify a role name for the Operator.

a. Open the role.yaml file. This file specifies the resources that the Operator can use and
modify.

b. Ensure that the kind element is set to Role.

c. If you want to change the default role name, in the metadata section, replace amq-broker-
operator-role with a custom name.

d. Create the role in your project.

11. Specify a role binding for the Operator. The role binding binds the previously-created service
account to the Operator role, based on the names you specified.

a. Open the role_binding.yaml file.

$ cd ~/broker/operator
$ unzip amq-broker-operator-7.11.7-ocp-install-examples.zip

$ cd amq-broker-operator-7.11.7-ocp-install-examples

$ oc login -u system:admin

$ oc new-project <project_name>

$ oc project <project_name>

$ oc create -f deploy/service_account.yaml

$ oc create -f deploy/role.yaml

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

19

b. Ensure that the name values for ServiceAccount and Role match those specified in the
service_account.yaml and role.yaml files. For example:

c. Create the role binding in your project.

12. Specify a leader election role binding for the Operator. The role binding binds the previously-
created service account to the leader election role, based on the names you specified.

a. Create a leader election role for the Operator.

b. Create the leader election role binding in your project.

13. (Optional) If you want the Operator to watch multiple namespaces, complete the following
steps:

NOTE

If the OpenShift Container Platform cluster already contains installed Operators
for AMQ Broker, you must ensure the new Operator does not watch any of the
same namespaces as existing Operators. For information on how to identify the
namespaces that are watched by existing Operators, see, Identifying namespaces
watched by existing Operators.

a. In the deploy directory of the Operator archive that you downloaded and extracted, open
the operator_yaml file.

b. If you want the Operator to watch all namespaces in the cluster, in the
WATCH_NAMESPACE section, add a value attribute and set the value to an asterisk.
Comment out the existing attributes in the WATCH_NAMESPACE section. For example:

NOTE

metadata:
 name: amq-broker-operator-rolebinding
subjects:
 kind: ServiceAccount
 name: amq-broker-controller-manager
roleRef:
 kind: Role
 name: amq-broker-operator-role

$ oc create -f deploy/role_binding.yaml

$ oc create -f deploy/election_role.yaml

$ oc create -f deploy/election_role_binding.yaml

- name: WATCH_NAMESPACE
 value: "*"
valueFrom:
fieldRef:
fieldPath: metadata.namespace

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

20

NOTE

To avoid conflicts, ensure that multiple Operators do not watch the same
namespace. For example, if you deploy an Operator to watch all namespaces
on the cluster, you cannot deploy another Operator to watch individual
namespaces. If Operators are already deployed on the cluster, you can
specify a list of namespaces that the new Operator watches, as described in
the following step.

c. If you want the Operator to watch multiple, but not all, namespaces on the cluster, in the
WATCH_NAMESPACE section, specify a list of namespaces. Ensure that you exclude any
namespaces that are watched by existing Operators. For example:

d. In the deploy directory of the Operator archive that you downloaded and extracted, open
the cluster_role_binding.yaml file.

e. In the Subjects section, specify a namespace that corresponds to the OpenShift Container
Platform project to which you are deploying the Operator. For example:

NOTE

If you previously deployed brokers using an earlier version of the Operator,
and you want to deploy the Operator to watch multiple namespaces, see
Before you upgrade.

f. Create a cluster role in your project.

g. Create a cluster role binding in your project.

In the procedure that follows, you deploy the Operator in your project.

3.2.2. Deploying the Operator using the CLI

The procedure in this section shows how to use the OpenShift command-line interface (CLI) to deploy
the latest version of the Operator for AMQ Broker 7.11 in your OpenShift project.

Prerequisites

You must have already prepared your OpenShift project for the Operator deployment. See
Section 3.2.1, “Preparing to deploy the Operator” .

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Ecosystem Catalog to access

- name: WATCH_NAMESPACE
 value: "namespace1, namespace2"`.

Subjects:
- kind: ServiceAccount
 name: amq-broker-controller-manager
 namespace: operator-project

$ oc create -f deploy/cluster_role.yaml

$ oc create -f deploy/cluster_role_binding.yaml

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

21

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Ecosystem Catalog to access
container images. This new version of the registry requires you to become an authenticated user
before you can access images. Before you can follow the procedure in this section, you must
first complete the steps described in Red Hat Container Registry Authentication .

If you intend to deploy brokers with persistent storage and do not have container-native
storage in your OpenShift cluster, you need to manually provision Persistent Volumes (PVs) and
ensure that they are available to be claimed by the Operator. For example, if you want to create
a cluster of two brokers with persistent storage (that is, by setting persistenceEnabled=true in
your Custom Resource), you need to have two PVs available. By default, each broker instance
requires storage of 2 GiB.
If you specify persistenceEnabled=false in your Custom Resource, the deployed brokers uses
ephemeral storage. Ephemeral storage means that that every time you restart the broker Pods,
any existing data is lost.

For more information about provisioning persistent storage, see:

Understanding persistent storage

Procedure

1. In the OpenShift command-line interface (CLI), log in to OpenShift as a cluster administrator.
For example:

2. Switch to the project that you previously prepared for the Operator deployment. For example:

3. Switch to the directory that was created when you previously extracted the Operator
installation archive. For example:

4. Deploy the CRDs that are included with the Operator. You must install the CRDs in your
OpenShift cluster before deploying and starting the Operator.

a. Deploy the main broker CRD.

b. Deploy the address CRD.

c. Deploy the scaledown controller CRD.

d. Deploy the security CRD:

$ oc login -u system:admin

$ oc project <project_name>

$ cd ~/broker/operator/amq-broker-operator-7.11.7-ocp-install-examples

$ oc create -f deploy/crds/broker_activemqartemis_crd.yaml

$ oc create -f deploy/crds/broker_activemqartemisaddress_crd.yaml

$ oc create -f deploy/crds/broker_activemqartemisscaledown_crd.yaml

$ oc create -f deploy/crds/broker_activemqartemissecurity_crd.yaml

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

22

https://access.redhat.com/RegistryAuthentication
https://docs.openshift.com/container-platform/4.15/storage/understanding-persistent-storage.html

5. Link the pull secret associated with the account used for authentication in the Red Hat
Ecosystem Catalog with the default, deployer, and builder service accounts for your OpenShift
project.

6. In the deploy directory of the Operator archive that you downloaded and extracted, open the
operator.yaml file. Ensure that the value of the spec.containers.image property corresponds
to version 7.11.7-opr-1 of the Operator, as shown below.

NOTE

In the operator.yaml file, the Operator uses an image that is represented by a
Secure Hash Algorithm (SHA) value. The comment line, which begins with a
number sign (#) symbol, denotes that the SHA value corresponds to a specific
container image tag.

7. Deploy the Operator.

In your OpenShift project, the Operator starts in a new Pod.

In the OpenShift Container Platform web console, the information on the Events tab of the
Operator Pod confirms that OpenShift has deployed the Operator image that you specified, has
assigned a new container to a node in your OpenShift cluster, and has started the new container.

In addition, if you click the Logs tab within the Pod, the output should include lines resembling
the following:

...
{"level":"info","ts":1553619035.8302743,"logger":"kubebuilder.controller","msg":"Starting
Controller","controller":"activemqartemisaddress-controller"}
{"level":"info","ts":1553619035.830541,"logger":"kubebuilder.controller","msg":"Starting
Controller","controller":"activemqartemis-controller"}
{"level":"info","ts":1553619035.9306898,"logger":"kubebuilder.controller","msg":"Starting
workers","controller":"activemqartemisaddress-controller","worker count":1}
{"level":"info","ts":1553619035.9311671,"logger":"kubebuilder.controller","msg":"Starting
workers","controller":"activemqartemis-controller","worker count":1}

The preceding output confirms that the newly-deployed Operator is communicating with
Kubernetes, that the controllers for the broker and addressing are running, and that these
controllers have started some workers.

$ oc secrets link --for=pull default <secret_name>
$ oc secrets link --for=pull deployer <secret_name>
$ oc secrets link --for=pull builder <secret_name>

spec:
 template:
 spec:
 containers:
 #image: registry.redhat.io/amq7/amq-broker-rhel8-operator:7.10
 image: registry.redhat.io/amq7/amq-broker-rhel8-
operator@sha256:f3d643304199d1a39097a87387a687cc05947d0740007f005cd6ae562d4624
dd

$ oc create -f deploy/operator.yaml

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

23

NOTE

It is recommended that you deploy only a single instance of the AMQ Broker Operator in
a given OpenShift project. Setting the spec.replicas property of your Operator
deployment to a value greater than 1, or deploying the Operator more than once in the
same project is not recommended.

Additional resources

For an alternative method of installing the AMQ Broker Operator that uses the OperatorHub
graphical interface, see Section 3.3, “Installing the Operator using OperatorHub” .

3.3. INSTALLING THE OPERATOR USING OPERATORHUB

3.3.1. Overview of the Operator Lifecycle Manager

In OpenShift Container Platform 4.5 and later, the Operator Lifecycle Manager (OLM) helps users
install, update, and generally manage the lifecycle of all Operators and their associated services running
across their clusters. It is part of the Operator Framework, an open source toolkit designed to manage
Kubernetes-native applications (Operators) in an effective, automated, and scalable way.

The OLM runs by default in OpenShift Container Platform 4.5 and later, which aids cluster
administrators in installing, upgrading, and granting access to Operators running on their cluster. The
OpenShift Container Platform web console provides management screens for cluster administrators to
install Operators, as well as grant specific projects access to use the catalog of Operators available on
the cluster.

OperatorHub is the graphical interface that OpenShift cluster administrators use to discover, install, and
upgrade Operators using the OLM. With one click, these Operators can be pulled from OperatorHub,
installed on the cluster, and managed by the OLM, ready for engineering teams to self-service manage
the software in development, test, and production environments.

When you have deployed the Operator, you can use Custom Resource (CR) instances to create broker
deployments such as standalone and clustered brokers.

3.3.2. Deploying the Operator from OperatorHub

This procedure shows how to use OperatorHub to deploy the latest version of the Operator for AMQ
Broker to a specified OpenShift project.

NOTE

In OperatorHub, you can install only the latest Operator version that is provided in each
channel. If you want to install an earlier version of an Operator, you must install the
Operator by using the CLI. For more information, see Section 3.2, “Installing the Operator
using the CLI”.

Prerequisites

The Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) Operator must be available in
OperatorHub.

You have cluster administrator privileges.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

24

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. In left navigation menu, click Operators → OperatorHub.

3. On the Project drop-down menu at the top of the OperatorHub page, select the project in
which you want to deploy the Operator.

4. On the OperatorHub page, use the Filter by keyword… box to find the Red Hat Integration -
AMQ Broker for RHEL 8 (Multiarch) Operator.

NOTE

In OperatorHub, you might find more than one Operator than includes AMQ
Broker in its name. Ensure that you click the Red Hat Integration - AMQ Broker
for RHEL 8 (Multiarch) Operator. When you click this Operator, review the
information pane that opens. For AMQ Broker 7.11, the latest minor version tag of
this Operator is 7.11.7-opr-1.

5. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) Operator. On the dialog
box that appears, click Install.

6. On the Install Operator page:

a. Under Update Channel, select the 7.11.x channel to receive updates for version 7.11 only.
The 7.11.x channel is a Long Term Support (LTS) channel.
Depending on when your OpenShift Container Platform cluster was installed, you may also
see channels for older versions of AMQ Broker. The only other supported channel is 7.10.x,
which is also an LTS channel.

b. Under Installation Mode, choose which namespaces the Operator watches:

A specific namespace on the cluster - The Operator is installed in that namespace and
only monitors that namespace for CR changes.

All namespaces - The Operator monitors all namespaces for CR changes.

NOTE

If you previously deployed brokers using an earlier version of the Operator,
and you want deploy the Operator to watch many namespaces, see Before
you upgrade.

7. From the Installed Namespace drop-down menu, select the project in which you want to install
the Operator.

8. Under Approval Strategy, ensure that the radio button entitled Automatic is selected. This
option specifies that updates to the Operator do not require manual approval for installation to
take place.

9. Click Install.

When the Operator installation is complete, the Installed Operators page opens. You should see that
the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) Operator is installed in the project
namespace that you specified.

Additional resources

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

25

Additional resources

To learn how to create a broker deployment in a project that has the Operator for AMQ Broker
installed, see Section 3.4.1, “Deploying a basic broker instance” .

3.4. CREATING OPERATOR-BASED BROKER DEPLOYMENTS

3.4.1. Deploying a basic broker instance

The following procedure shows how to use a Custom Resource (CR) instance to create a basic broker
deployment.

NOTE

While you can create more than one broker deployment in a given OpenShift
project by deploying multiple Custom Resource (CR) instances, typically, you
create a single broker deployment in a project, and then deploy multiple CR
instances for addresses.
Red Hat recommends you create broker deployments in separate projects.

In AMQ Broker 7.11, if you want to configure the following items, you must add the
appropriate configuration to the main broker CR instance before deploying the
CR for the first time.

The size and storage class of the Persistent Volume Claim (PVC) required by
each broker in a deployment for persistent storage

Limits and requests for memory and CPU for each broker in a deployment

Prerequisites

You must have already installed the AMQ Broker Operator.

To use the OpenShift command-line interface (CLI) to install the AMQ Broker Operator,
see Section 3.2, “Installing the Operator using the CLI” .

To use the OperatorHub graphical interface to install the AMQ Broker Operator, see
Section 3.3, “Installing the Operator using OperatorHub” .

You should understand how the Operator chooses a broker container image to use for your
broker deployment. For more information, see Section 2.6, “How the Operator chooses
container images”.

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Ecosystem Catalog to access
container images. This new version of the registry requires you to become an authenticated user
before you can access images. Before you can follow the procedure in this section, you must
first complete the steps described in Red Hat Container Registry Authentication .

Procedure

When you have successfully installed the Operator, the Operator is running and listening for changes
related to your CRs. This example procedure shows how to use a CR instance to deploy a basic broker in
your project.

1. Start configuring a Custom Resource (CR) instance for the broker deployment.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

26

https://access.redhat.com/RegistryAuthentication

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

For a basic broker deployment, a configuration might resemble that shown below.

Observe that in the broker_activemqartemis_cr.yaml sample CR file, the image property is
set to a default value of placeholder. This value indicates that, by default, the image property
does not specify a broker container image to use for the deployment. To learn how the
Operator determines the appropriate broker container image to use, see Section 2.6, “How the
Operator chooses container images”.

NOTE

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

27

NOTE

The broker_activemqartemis_cr.yaml sample CR uses a naming convention of
ex-aao. This naming convention denotes that the CR is an example resource for
the AMQ Broker Operator. AMQ Broker is based on the ActiveMQ Artemis
project. When you deploy this sample CR, the resulting StatefulSet uses the
name ex-aao-ss. Furthermore, broker Pods in the deployment are directly based
on the StatefulSet name, for example, ex-aao-ss-0, ex-aao-ss-1, and so on. The
application name in the CR appears in the deployment as a label on the
StatefulSet. You might use this label in a Pod selector, for example.

2. The size property specifies the number of brokers to deploy. A value of 2 or greater specifies a
clustered broker deployment. However, to deploy a single broker instance, ensure that the value
is set to 1.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4. In the OpenShift Container Platform web console, click Workloads → StatefulSets. You see a
new StatefulSet called ex-aao-ss.

a. Click the ex-aao-ss StatefulSet. You see that there is one Pod, corresponding to the single
broker that you defined in the CR.

b. Within the StatefulSet, click the Pods tab. Click the ex-aao-ss Pod. On the Events tab of
the running Pod, you see that the broker container has started. The Logs tab shows that
the broker itself is running.

5. To test that the broker is running normally, access a shell on the broker Pod to send some test
messages.

a. Using the OpenShift Container Platform web console:

i. Click Workloads → Pods.

ii. Click the ex-aao-ss Pod.

iii. Click the Terminal tab.

b. Using the OpenShift command-line interface:

i. Get the Pod names and internal IP addresses for your project.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

28

$ oc get pods -o wide

NAME STATUS IP
amq-broker-operator-54d996c Running 10.129.2.14
ex-aao-ss-0 Running 10.129.2.15

ii. Access the shell for the broker Pod.

$ oc rsh ex-aao-ss-0

6. From the shell, use the artemis command to send some test messages. Specify the internal IP
address of the broker Pod in the URL. For example:

sh-4.2$./amq-broker/bin/artemis producer --url tcp://10.129.2.15:61616 --destination
queue://demoQueue

The preceding command automatically creates a queue called demoQueue on the broker and
sends a default quantity of 1000 messages to the queue.

You should see output that resembles the following:

Connection brokerURL = tcp://10.129.2.15:61616
Producer ActiveMQQueue[demoQueue], thread=0 Started to calculate elapsed time ...

Producer ActiveMQQueue[demoQueue], thread=0 Produced: 1000 messages
Producer ActiveMQQueue[demoQueue], thread=0 Elapsed time in second : 3 s
Producer ActiveMQQueue[demoQueue], thread=0 Elapsed time in milli second : 3492 milli
seconds

Additional resources

For a complete configuration reference for the main broker Custom Resource (CR), see
Section 8.1, “Custom Resource configuration reference” .

To learn how to connect a running broker to AMQ Management Console, see Chapter 5,
Connecting to AMQ Management Console for an Operator-based broker deployment .

3.4.2. Deploying clustered brokers

If there are two or more broker Pods running in your project, the Pods automatically form a broker
cluster. A clustered configuration enables brokers to connect to each other and redistribute messages
as needed, for load balancing.

The following procedure shows you how to deploy clustered brokers. By default, the brokers in this
deployment use on demand load balancing, meaning that brokers will forward messages only to other
brokers that have matching consumers.

Prerequisites

A basic broker instance is already deployed. See Section 3.4.1, “Deploying a basic broker
instance”.

Procedure

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

29

1. Open the CR file that you used for your basic broker deployment.

2. For a clustered deployment, ensure that the value of deploymentPlan.size is 2 or greater. For
example:

NOTE

In the metadata section, you need to include the namespace property and
specify a value only if you are using the OpenShift Container Platform web
console to create your CR instance. The value that you should specify is the
name of the OpenShift project for your broker deployment.

3. Save the modified CR file.

4. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which you
previously created your basic broker deployment.

$ oc login -u <user> -p <password> --server=<host:port>

5. Switch to the project in which you previously created your basic broker deployment.

$ oc project <project_name>

6. At the command line, apply the change:

In the OpenShift Container Platform web console, additional broker Pods starts in your project,
according to the number specified in your CR. By default, the brokers running in the project are
clustered.

7. Open the Logs tab of each Pod. The logs show that OpenShift has established a cluster
connection bridge on each broker. Specifically, the log output includes a line like the following:

targetConnector=ServerLocatorImpl (identity=(Cluster-connection-
bridge::ClusterConnectionBridge@6f13fb88

3.4.3. Applying Custom Resource changes to running broker deployments

The following are some important things to note about applying Custom Resource (CR) changes to
running broker deployments:

You cannot dynamically update the persistenceEnabled attribute in your CR. To change this

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 4
 image: placeholder
 ...

$ oc apply -f <path/to/custom_resource_instance>.yaml

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

30

You cannot dynamically update the persistenceEnabled attribute in your CR. To change this
attribute, scale your cluster down to zero brokers. Delete the existing CR. Then, recreate and
redeploy the CR with your changes, also specifying a deployment size.

As described in Section 3.2.2, “Deploying the Operator using the CLI” , if you create a broker
deployment with persistent storage (that is, by setting persistenceEnabled=true in your CR),
you might need to provision Persistent Volumes (PVs) for the AMQ Broker Operator to claim
for your broker Pods. If you scale down the size of your broker deployment, the Operator
releases any PVs that it previously claimed for the broker Pods that are now shut down.
However, if you remove your broker deployment by deleting your CR, AMQ Broker Operator
does not release Persistent Volume Claims (PVCs) for any broker Pods that are still in the
deployment when you remove it. In addition, these unreleased PVs are unavailable to any new
deployment. In this case, you need to manually release the volumes. For more information, see
Release a persistent volume in the OpenShift documentation.

In AMQ Broker 7.11, if you want to configure the following items, you must add the appropriate
configuration to the main CR instance before deploying the CR for the first time.

The size and storage class of the Persistent Volume Claim (PVC) required by each broker in
a deployment for persistent storage.

Limits and requests for memory and CPU for each broker in a deployment .

During an active scaling event, any further changes that you apply are queued by the Operator
and executed only when scaling is complete. For example, suppose that you scale the size of
your deployment down from four brokers to one. Then, while scaledown is taking place, you also
change the values of the broker administrator user name and password. In this case, the
Operator queues the user name and password changes until the deployment is running with one
active broker.

All CR changes – apart from changing the size of your deployment, or changing the value of the
expose attribute for acceptors, connectors, or the console – cause existing brokers to be
restarted. If you have multiple brokers in your deployment, only one broker restarts at a time.

3.5. CHANGING THE LOGGING LEVEL FOR THE OPERATOR

The default logging level for AMQ Broker Operator is info, which logs information and error messages.
You can change the default logging level to increase or decrease the detail that is written to the
Operator logs.

If you use the OpenShift Container Platform command-line interface to install the Operator, you can set
the new logging level in the Operator configuration file, operator.yaml, either before or after you install
the Operator. If you use Operator Hub, you can use the OpenShift Container Platform web console to
set the logging level in the Operator subscription after you install the Operator.

The other available logging levels for the Operator are:

error

Writes error messages only to the log.

debug

Write all messages to the log including debugging messages.

Procedure

1. Using the OpenShift Container Platform command-line interface:

a. Log in as a cluster administrator. For example:

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

31

https://docs.openshift.com/container-platform/4.15/storage/understanding-persistent-storage.html#releasing_understanding-persistent-storage

a. Log in as a cluster administrator. For example:

b. If the Operator is not installed, complete the following steps to change the logging level.

i. In the deploy directory of the Operator archive that you downloaded and extracted,
open the operator.yaml file.

ii. Change the value of the zap-log-level attribute to debug or error. For example:

iii. Save the operator.yaml file.

iv. Install the Operator.

c. If the Operator is already installed, use the sed command to change the logging level in the
deploy/operator.yaml file and redeploy the Operator. For example, the following command
changes the logging level from info to error and redeploys the Operator:

2. Using the OpenShift Container Platform web console:

a. Log in to the OpenShift Container Platform as a cluster administrator.

b. In the left pane, click Operators → Installed Operators.

c. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) Operator.

d. Click the Subscriptions tab.

e. Click Actions.

f. Click Edit Subscription.

g. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to edit the subscription.

h. In the config element, add an environment variable called ARGS and specify a logging level
of info, debug or error. In the following example, an ARGS environment variable that
specifies a logging level of debug is passed to the Operator container.

$ oc login -u system:admin

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 control-plane: controller-manager
 name: amq-broker-controller-manager
 spec:
 containers:
 - args:
 - --zap-log-level=error
 ...

$ sed 's/--zap-log-level=info/--zap-log-level=error/' deploy/operator.yaml | oc apply -f -

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

32

i. Click Save.

3.6. VIEWING STATUS INFORMATION FOR YOUR BROKER
DEPLOYMENT

You can view the status of a series of standard conditions reported by OpenShift Container Platform for
your broker deployment. You can also view additional status information provided in the Custom
Resource (CR) for your broker deployment.

Procedure

1. Open the CR instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift Container Platform as a user that has privileges to view CRs in the
project for the broker deployment.

ii. View the CR for your deployment.

 oc get ActiveMQArtemis <CR instance name> -n <namespace> -o yaml

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the ActiveMQ Artemis tab.

v. Click the name of the ActiveMQ Artemis instance.

2. View the status of the OpenShift Container Platform conditions for your broker deployment.

a. Using the OpenShift command-line interface:

i. Go to the status section of the CR and view the conditions details.

b. Using the OpenShift Container Platform web console:

i. In the Details tab, scroll down to the Conditions section.
A condition has a status and a type. It might also have a reason, a message and other
details. A condition has a status value of True if the condition is met, False if the
condition is not met, or Unknown if the status of the condition cannot be determined.

NOTE

spec:
 ...
 config:
 env:
 - name: ARGS
 value: "--zap-log-level=debug"
 ...

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

33

NOTE

The Valid condition also has a status of Unknown if the CR does not
comply with the recommended use of the spec.deploymentPlan.image,
spec.deploymentPlan.initImage and the spec.version attribute in a
CR. For more information, see Section 6.4.3, “Validation of restrictions
applied to automatic upgrades”.

Status information is provided for the following conditions:

Condition name Displays the status of…

Valid The validation of the CR. If the status of the Valid condition is
False, the Operator does not complete the reconciliation and
update the StatefulSet until you first resolve the issue that
caused the false status.

Deployed The availability of the StatefulSet, Pods and other resources.

Ready A top-level condition which summarizes the other more
detailed conditions. The Ready condition has a status of True
only if none of the other conditions have a status of False.

BrokerPropertiesApplied The properties configured in the CR that use the
brokerProperties attribute. For more information about the
BrokerPropertiesApplied condition, see Section 4.17,
“Configuring items not exposed in the Custom Resource
Definition”.

JaasPropertiesApplied The Java Authentication and Authorization Service (JAAS)
login modules configured in the CR. For more information
about the JaasPropertiesApplied condition, see
Section 4.3.1, “Configuring JAAS login modules in a secret”.

3. View additional status information for your broker deployment in the status section of the CR.
The following additional status information is displayed:

deploymentPlanSize

The number of broker Pods in the deployment.

podstatus

The status and name of each broker Pod in the deployment.

version

The version of the broker and the registry URLs of the broker and init container images that
are deployed.

upgrade

The ability of the Operator to apply major, minor, patch and security updates to the
deployment, which is determined by the values of the spec.deploymentPlan.image and
spec.version attributes in the CR.

If the spec.deploymentPlan.image attribute specifies the registry URL of a broker
container image, the status of all upgrade types is False, which means that the Operator

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

34

container image, the status of all upgrade types is False, which means that the Operator
cannot upgrade the existing container images.

If the spec.deploymentPlan.image attribute is not in the CR or has a value of
placeholder, the configuration of the spec.version attribute affects the upgrade
status as follows:

The status of securityUpdates is True, irrespective of whether the spec.version
attribute is configured or its value.

The status of patchUpdates is True if the value of the spec.version attribute has
only a major and a minor version, for example, '7.10', so the Operator can upgrade to
the latest patch version of the container images.

The status of minorUpdates is True if the value of the spec.version attribute has
only a major version, for example, '7', so the Operator can upgrade to the latest
minor and patch versions of the container images.

The status of majorUpdates is True if the spec.version attribute is not in the CR,
so any available upgrades can be deployed, including an upgrade from 7.x.x to 8.x.x,
if this version is available.

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

35

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER
DEPLOYMENTS

4.1. HOW THE OPERATOR GENERATES THE BROKER
CONFIGURATION

Before you use Custom Resource (CR) instances to configure your broker deployment, you should
understand how the Operator generates the broker configuration.

When you create an Operator-based broker deployment, a Pod for each broker runs in a StatefulSet in
your OpenShift project. An application container for the broker runs within each Pod.

The Operator runs a type of container called an Init Container when initializing each Pod. In OpenShift
Container Platform, Init Containers are specialized containers that run before application containers. Init
Containers can include utilities or setup scripts that are not present in the application image.

By default, the AMQ Broker Operator uses a built-in Init Container. The Init Container uses the main CR
instance for your deployment to generate the configuration used by each broker application container.

If you have specified address settings in the CR, the Operator generates a default configuration and
then merges or replaces that configuration with the configuration specified in the CR. This process is
described in the section that follows.

4.1.1. How the Operator generates the address settings configuration

If you have included an address settings configuration in the main Custom Resource (CR) instance for
your deployment, the Operator generates the address settings configuration for each broker as
described below.

1. The Operator runs the Init Container before the broker application container. The Init Container
generates a default address settings configuration. The default address settings configuration
is shown below.

<address-settings>
 <!--
 if you define auto-create on certain queues, management has to be auto-create
 -->
 <address-setting match="activemq.management#">
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!--
 with -1 only the global-max-size is in use for limiting
 -->
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>

 <!-- default for catch all -->

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

36

2. If you have also specified an address settings configuration in your Custom Resource (CR)
instance, the Init Container processes that configuration and converts it to XML.

3. Based on the value of the applyRule property in the CR, the Init Container merges or replaces
the default address settings configuration shown above with the configuration that you have
specified in the CR. The result of this merge or replacement is the final address settings
configuration that the broker will use.

4. When the Init Container has finished generating the broker configuration (including address
settings), the broker application container starts. When starting, the broker container copies its
configuration from the installation directory previously used by the Init Container. You can
inspect the address settings configuration in the broker.xml configuration file. For a running
broker, this file is located in the /home/jboss/amq-broker/etc directory.

Additional resources

For an example of using the applyRule property in a CR, see Section 4.2.4, “Matching address
settings to configured addresses in an Operator-based broker deployment”.

4.1.2. Directory structure of a broker Pod

When you create an Operator-based broker deployment, a Pod for each broker runs in a StatefulSet in
your OpenShift project. An application container for the broker runs within each Pod.

The Operator runs a type of container called an Init Container when initializing each Pod. In OpenShift
Container Platform, Init Containers are specialized containers that run before application containers. Init
Containers can include utilities or setup scripts that are not present in the application image.

When generating the configuration for a broker instance, the Init Container uses files contained in a
default installation directory. This installation directory is on a volume that the Operator mounts to the
broker Pod and which the Init Container and broker container share. The path that the Init Container
uses to mount the shared volume is defined in an environment variable called
CONFIG_INSTANCE_DIR. The default value of CONFIG_INSTANCE_DIR is /amq/init/config. In the
documentation, this directory is referred to as <install_dir>.

NOTE

You cannot change the value of the CONFIG_INSTANCE_DIR environment variable.

 <address-setting match="#">
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!--
 with -1 only the global-max-size is in use for limiting
 -->
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>
<address-settings>

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

37

By default, the installation directory has the following sub-directories:

Sub-directory Contents

<install_dir>/bin Binaries and scripts needed to run the broker.

<install_dir>/etc Configuration files.

<install_dir>/data The broker journal.

<install_dir>/lib JARs and libraries needed to run the broker.

<install_dir>/log Broker log files.

<install_dir>/tmp Temporary web application files.

When the Init Container has finished generating the broker configuration, the broker application
container starts. When starting, the broker container copies its configuration from the installation
directory previously used by the Init Container. When the broker Pod is initialized and running, the
broker configuration is located in the /home/jboss/amq-broker directory (and subdirectories) of the
broker.

Additional resources

For more information about how the Operator chooses a container image for the built-in Init
Container, see Section 2.6, “How the Operator chooses container images” .

To learn how to build and specify a custom Init Container image, see Section 4.9, “Specifying a
custom Init Container image”.

4.2. CONFIGURING ADDRESSES AND QUEUES FOR OPERATOR-
BASED BROKER DEPLOYMENTS

For an Operator-based broker deployment, you use two separate Custom Resource (CR) instances to
configure address and queues and their associated settings.

To create address and queues on your brokers, you deploy a CR instance based on the address
Custom Resource Definition (CRD).

If you used the OpenShift command-line interface (CLI) to install the Operator, the address
CRD is the broker_activemqartemisaddress_crd.yaml file that was included in the
deploy/crds of the Operator installation archive that you downloaded and extracted.

If you used OperatorHub to install the Operator, the address CRD is the
ActiveMQArtemisAddress CRD listed under Administration → Custom Resource
Definitions in the OpenShift Container Platform web console.

To configure address and queue settings that you then match to specific addresses, you include
configuration in the main Custom Resource (CR) instance used to create your broker
deployment .

If you used the OpenShift CLI to install the Operator, the main broker CRD is the

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

38

If you used the OpenShift CLI to install the Operator, the main broker CRD is the
broker_activemqartemis_crd.yaml file that was included in the deploy/crds of the
Operator installation archive that you downloaded and extracted.

If you used OperatorHub to install the Operator, the main broker CRD is the
ActiveMQArtemis CRD listed under Administration → Custom Resource Definitions in
the OpenShift Container Platform web console.

In general, the address and queue settings that you can configure for a broker deployment on
OpenShift Container Platform are fully equivalent to those of standalone broker deployments
on Linux or Windows. However, you should be aware of some differences in how those settings
are configured. Those differences are described in the following sub-section.

4.2.1. Differences in configuration of address and queue settings between
OpenShift and standalone broker deployments

To configure address and queue settings for broker deployments on OpenShift Container
Platform, you add configuration to an addressSettings section of the main Custom Resource
(CR) instance for the broker deployment. This contrasts with standalone deployments on Linux
or Windows, for which you add configuration to an address-settings element in the broker.xml
configuration file.

The format used for the names of configuration items differs between OpenShift Container
Platform and standalone broker deployments. For OpenShift Container Platform deployments,
configuration item names are in camel case , for example, defaultQueueRoutingType. By
contrast, configuration item names for standalone deployments are in lower case and use a dash
(-) separator, for example, default-queue-routing-type.
The following table shows some further examples of this naming difference.

Configuration item for standalone broker
deployment

Configuration item for OpenShift broker
deployment

address-full-policy addressFullPolicy

auto-create-queues autoCreateQueues

default-queue-routing-type defaultQueueRoutingType

last-value-queue lastValueQueue

Additional resources

For examples of creating addresses and queues and matching settings for OpenShift Container
Platform broker deployments, see:

Creating addresses and queues for a broker deployment on OpenShift Container Platform

Matching address settings to configured addresses for a broker deployment on OpenShift
Container Platform

To learn about all of the configuration options for addresses, queues, and address settings for
OpenShift Container Platform broker deployments, see Section 8.1, “Custom Resource
configuration reference”.

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

39

For comprehensive information about configuring addresses, queues, and associated address
settings for standalone broker deployments, see Configuring addresses and queues in
Configuring AMQ Broker. You can use this information to create equivalent configurations for
broker deployments on OpenShift Container Platform.

4.2.2. Creating addresses and queues for an Operator-based broker deployment

The following procedure shows how to use a Custom Resource (CR) instance to add an address and
associated queue to an Operator-based broker deployment.

NOTE

To create multiple addresses and/or queues in your broker deployment, you need to
create separate CR files and deploy them individually, specifying new address and/or
queue names in each case. In addition, the name attribute of each CR instance must be
unique.

Prerequisites

You must have already installed the AMQ Broker Operator, including the dedicated Custom
Resource Definition (CRD) required to create addresses and queues on your brokers. For
information on two alternative ways to install the Operator, see:

Section 3.2, “Installing the Operator using the CLI” .

Section 3.3, “Installing the Operator using OperatorHub” .

You should be familiar with how to use a CR instance to create a basic broker deployment. For
more information, see Section 3.4.1, “Deploying a basic broker instance” .

Procedure

1. Start configuring a Custom Resource (CR) instance to define addresses and queues for the
broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemisaddress_cr.yaml that was
included in the deploy/crs directory of the Operator installation archive that you
downloaded and extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the address CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemisAddresss CRD.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

40

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker//index#assembly-br-configuring-addresses-and-queues_configuring

iv. Click the Instances tab.

v. Click Create ActiveMQArtemisAddress.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the spec section of the CR, add lines to define an address, queue, and routing type. For
example:

The preceding configuration defines an address named myAddress0 with a queue named
myQueue0 and an anycast routing type.

NOTE

In the metadata section, you need to include the namespace property and
specify a value only if you are using the OpenShift Container Platform web
console to create your CR instance. The value that you should specify is the
name of the OpenShift project for your broker deployment.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project for the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/address_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4.2.3. Deleting addresses and queues for an Operator-based broker deployment

The following procedure shows how to use a Custom Resource (CR) instance to delete an address and
associated queue from an Operator-based broker deployment.

Procedure

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemisAddress
metadata:
 name: myAddressDeployment0
 namespace: myProject
spec:
 ...
 addressName: myAddress0
 queueName: myQueue0
 routingType: anycast
 ...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

41

1. Ensure that you have an address CR file with the details, for example, the name, addressName
and queueName, of the address and queue you want to delete. For example:

2. In the spec section of the address CR, add the removeFromBrokerOnDelete attribute and set
to a value of true.

Setting the removeFromBrokerOnDelete attribute to true causes the Operator to remove the
address and any associated message for all brokers in the deployment when you delete the
address CR.

3. Apply the updated address CR to set the removeFromBrokerOnDelete attribute for the
address you want to delete.

$ oc apply -f <path/to/address_custom_resource_instance>.yaml

4. Delete the address CR to delete the address from the brokers in the deployment.

$ oc delete -f <path/to/address_custom_resource_instance>.yaml

4.2.4. Matching address settings to configured addresses in an Operator-based
broker deployment

If delivery of a message to a client is unsuccessful, you might not want the broker to make ongoing
attempts to deliver the message. To prevent infinite delivery attempts, you can define a dead letter
address and an associated dead letter queue. After a specified number of delivery attempts, the broker
removes an undelivered message from its original queue and sends the message to the configured dead
letter address. A system administrator can later consume undelivered messages from a dead letter
queue to inspect the messages.

The following example shows how to configure a dead letter address and queue for an Operator-based
broker deployment. The example demonstrates how to:

Use the addressSetting section of the main broker Custom Resource (CR) instance to
configure address settings.

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemisAddress
metadata:
 name: myAddressDeployment0
 namespace: myProject
spec:
 ...
 addressName: myAddress0
 queueName: myQueue0
 routingType: anycast
 ...

..
spec:
 addressName: myAddress1
 queueName: myQueue1
 routingType: anycast
 removeFromBrokerOnDelete: true

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

42

Match those address settings to addresses in your broker deployment.

Prerequisites

You created an ActiveMQArtemis CR instance to deploy a broker. For more information, see
Section 3.4.1, “Deploying a basic broker instance” .

You are familiar with the default address settings configuration that the Operator merges or
replaces with the configuration specified in your CR instance. For more information, see
Section 4.1.1, “How the Operator generates the address settings configuration” .

Procedure

1. Start configuring an address CR instance to add a dead letter address and queue to receive
undelivered messages for each broker in the deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemisaddress_cr.yaml that was
included in the deploy/crs directory of the Operator installation archive that you
downloaded and extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the address CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemisAddresss CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemisAddress.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the spec section of the CR, add lines to specify a dead letter address and queue to receive
undelivered messages. For example:

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemisAddress
metadata:
 name: ex-aaoaddress
spec:
 ...
 addressName: myDeadLetterAddress
 queueName: myDeadLetterQueue
 routingType: anycast
 ...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

43

The preceding configuration defines a dead letter address named myDeadLetterAddress with
a dead letter queue named myDeadLetterQueue and an anycast routing type.

NOTE

In the metadata section, you need to include the namespace property and
specify a value only if you are using the OpenShift Container Platform web
console to create your CR instance. The value that you should specify is the
name of the OpenShift project for your broker deployment.

3. Deploy the address CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project for the broker deployment.

$ oc project <project_name>

iii. Create the address CR.

$ oc create -f <path/to/address_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4. Edit the main broker CR instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to edit and deploy CRs in the project
for the broker deployment.

$ oc login -u <user> -p <password> --server=<host:port>

ii. Edit the CR.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name.

vi. Click the YAML tab.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

44

Within the console, a YAML editor opens, enabling you to edit the CR instance.

NOTE

In the metadata section, you need to include the namespace property
and specify a value only if you are using the OpenShift Container
Platform web console to create your CR instance. The value that you
should specify is the name of the OpenShift project for your broker
deployment.

5. In the spec section of the CR, add a new addressSettings section that contains a single
addressSetting section, as shown below.

6. Add a single instance of the match property to the addressSetting block. Specify an address-
matching expression. For example:

match

Specifies the address, or set of address to which the broker applies the configuration that
follows. In this example, the value of the match property corresponds to a single address
called myAddress.

7. Add properties related to undelivered messages and specify values. For example:

spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 addressSettings:
 addressSetting:

spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 addressSettings:
 addressSetting:
 - match: myAddress

spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

45

deadLetterAddress

Address to which the broker sends undelivered messages.

maxDeliveryAttempts

Maximum number of delivery attempts that a broker makes before moving a message to the
configured dead letter address.
In the preceding example, if the broker makes five unsuccessful attempts to deliver a
message to an address that begins with myAddress, the broker moves the message to the
specified dead letter address, myDeadLetterAddress.

8. (Optional) Apply similar configuration to another address or set of addresses. For example:

In this example, the value of the second match property includes a hash wildcard character. The
wildcard character means that the preceding configuration is applied to any address that begins
with the string myOtherAddresses.

NOTE

If you use a wildcard expression as a value for the match property, you must
enclose the value in single quotation marks, for example, 'myOtherAddresses#'.

9. At the beginning of the addressSettings section, add the applyRule property and specify a
value. For example:

 addressSettings:
 addressSetting:
 - match: myAddress
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 5

spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 addressSettings:
 addressSetting:
 - match: myAddress
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 5
 - match: 'myOtherAddresses#'
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 3

spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

46

The applyRule property specifies how the Operator applies the configuration that you add to
the CR for each matching address or set of addresses. The values that you can specify are:

merge_all

For address settings specified in both the CR and the default configuration that match
the same address or set of addresses:

Replace any property values specified in the default configuration with those
specified in the CR.

Keep any property values that are specified uniquely in the CR or the default
configuration. Include each of these in the final, merged configuration.

For address settings specified in either the CR or the default configuration that uniquely
match a particular address or set of addresses, include these in the final, merged
configuration.

merge_replace

For address settings specified in both the CR and the default configuration that match
the same address or set of addresses, include the settings specified in the CR in the
final, merged configuration. Do not include any properties specified in the default
configuration, even if these are not specified in the CR.

For address settings specified in either the CR or the default configuration that uniquely
match a particular address or set of addresses, include these in the final, merged
configuration.

replace_all

Replace all address settings specified in the default configuration with those specified in the
CR. The final, merged configuration corresponds exactly to that specified in the CR.

NOTE

If you do not explicitly include the applyRule property in your CR, the Operator
uses a default value of merge_all.

10. Save the CR instance.

Additional resources

To learn about all of the configuration options for addresses, queues, and address settings for

 messageMigration: true
 addressSettings:
 applyRule: merge_all
 addressSetting:
 - match: myAddress
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 5
 - match: 'myOtherAddresses#'
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 3

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

47

To learn about all of the configuration options for addresses, queues, and address settings for
OpenShift Container Platform broker deployments, see Section 8.1, “Custom Resource
configuration reference”.

If you installed the AMQ Broker Operator using the OpenShift command-line interface (CLI),
the installation archive that you downloaded and extracted contains some additional examples
of configuring address settings. In the deploy/examples folder of the installation archive, see:

artemis-basic-address-settings-deployment.yaml

artemis-merge-replace-address-settings-deployment.yaml

artemis-replace-address-settings-deployment.yaml

For comprehensive information about configuring addresses, queues, and associated address
settings for standalone broker deployments, see Configuring addresses and queues in
Configuring AMQ Broker. You can use this information to create equivalent configurations for
broker deployments on OpenShift Container Platform.

For more information about Init Containers in OpenShift Container Platform, see Using Init
Containers to perform tasks before a pod is deployed in the OpenShift Container Platform
documentation.

4.3. CONFIGURING AUTHENTICATION AND AUTHORIZATION

By default, AMQ Broker uses a Java Authentication and Authorization Service (JAAS) properties login
module to authenticate and authorize users. The configuration for the default JAAS login module is
stored in a /home/jboss/amq-broker/etc/login.config file on each broker Pod and reads user and role
information from the artemis-users.properties and artemis-roles.properties files in the same
directory. You add the user and role information to the properties files in the default login module by
updating the ActiveMQArtemisSecurity Custom Resource (CR).

An alternative to updating the ActiveMQArtemisSecurity CR to add user and role information to the
default properties files is to configure one or more JAAS login modules in a secret. This secret is
mounted as a file on each broker Pod. Configuring JAAS login modules in a secret offers the following
advantages over using the ActiveMQArtemisSecurity CR to add user and role information.

If you configure a properties login module in a secret, the brokers do not need to restart each
time you update the property files. For example, when you add a new user to a properties file
and update the secret, the changes take effect without requiring a restart of the broker.

You can configure JAAS login modules that are not defined in the ActiveMQArtemisSecurity
CRD to authenticate users. For example, you can configure an LDAP login module or any other
JAAS login module.

Both methods of configuring authentication and authorization for AMQ Broker are described in the
following sections.

4.3.1. Configuring JAAS login modules in a secret

You can configure JAAS login modules in a secret to authenticate users with AMQ Broker. After you
create the secret, you must add a reference to the secret in the main broker Custom Resource (CR) and
also configure permissions in the CR to grant users access to AMQ Broker.

Procedure

1. Create a text file with your new JAAS login modules configuration and save the file as

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

48

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker//index#assembly-br-configuring-addresses-and-queues_configuring
https://docs.openshift.com/container-platform/4.15/nodes/containers/nodes-containers-init.html

1. Create a text file with your new JAAS login modules configuration and save the file as
login.config. By saving the file as login.config, the correct key is inserted in the secret that you
create from the text file. The following is an example login module configuration:

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule sufficient
 reload=true
 org.apache.activemq.jaas.properties.user="new-users.properties"
 org.apache.activemq.jaas.properties.role="new-roles.properties";

 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule sufficient
 reload=false
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties"
 baseDir="/home/jboss/amq-broker/etc";
};

After you configure JAAS login modules in a secret and add a reference to the secret in the CR,
the default login module is no longer used by AMQ Broker. However, a user in the artemis-
users.properties file, which is referenced in the default login module, is required by the
Operator to authenticate with the broker. To ensure that the Operator can authenticate with
the broker after you configure a new JAAS login module, you must either:

Include the default properties login module in the new login module configuration, as shown
in the example above. In the example, the default properties login module uses the artemis-
users.properties and artemis-roles.properties files. If you include the default login
module in the new login module configuration, you must set the baseDir to the
/home/jboss/amq-broker/etc directory, which contains the default properties files on each
broker Pod.

Add the user and role information required by the Operator to authenticate with the broker
to a properties file referenced in the new login module configuration. You can copy this
information from the default artemis-users.properties and artemis-roles.properties files,
which are in the /home/jboss/amq-broker/etc directory on a broker Pod.

NOTE

The properties files referenced in a login module are loaded only when the
broker calls the login module for the first time. A broker calls the login
modules in the order that they are listed in the login.config file until it finds
the login module to authenticate a user. By placing the login module that
contains the credentials used by the Operator at the end of the login.config
file, all preceding login modules are called when the broker authenticates the
Operator. As a result, any status message which states that property files are
not visible on the broker is cleared.

2. If the login.config file you created includes a properties login module, ensure that the users
and roles files specified in the module contain user and role information. For example:

new-users.properties

ruben=ruben01!
anne=anne01!
rick=rick01!
bob=bob01!

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

49

new-roles.properties

admin=ruben, rick
group1=bob
group2=anne

3. Use the oc create secret command to create a secret from the text file that you created with
the new login module configuration. If the login module configuration includes a properties login
module, also include the associated users and roles files in the secret. For example:

oc create secret generic custom-jaas-config --from-file=login.config --from-file=new-
users.properties --from-file=new-roles.properties

NOTE

The secret name must have a suffix of -jaas-config so the Operator can
recognize that the secret contains login module configuration and propagate any
updates to each broker Pod.

For more information about how to create secrets, see Secrets in the Kubernetes
documentation.

4. Add the secret you created to the Custom Resource (CR) instance for your broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Edit the CR for your deployment.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name.

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

5. Create an extraMounts element and a secrets element and add the name of the secret. The
following example adds a secret named custom-jaas-config to the CR.

deploymentPlan:
 ...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

50

https://kubernetes.io/docs/concepts/configuration/secret/

6. In the CR, grant permissions to the roles that are configured on the broker.

a. In the spec section of the CR, add a brokerProperties element and add the permissions.
You can grant a role permissions to a single address. Or, you can specify a wildcard match
using the # sign to grant a role permissions to all addresses. For example:

In the example, the group2 role is assigned send permissions to all addresses and the
group1 role is assigned consume, createAddress, createNonDurableQueue and browse
permissions to all addresses.

7. Save the CR.
The Operator mounts the login.config file in the secret in a /amq/extra/secrets/secret name
directory on each Pod and configures the broker JVM to read the mounted login.config file
instead of the default login.config file. If the login.config file contains a properties login
module, the referenced users and roles properties file are also mounted on each Pod.

8. View the status information in the CR to verify that the brokers in your deployment are using the
JAAS login modules in the secret for authentication.

a. Using the OpenShift command-line interface:

i. Get the status conditions in the CR for your brokers.

$ oc get activemqartemis -o yaml

b. Using the OpenShift web console:

i. In the CR, navigate to the status section.

c. In the status information, verify that a JaasPropertiesApplied type is present, which
indicates that the broker is using the JAAS login modules configured in the secret. For
example:

When you update any of the files in the secret, the value of the reason field shows
OutofSync until OpenShift Container Platform propagates the latest files in the secret to

 extraMounts:
 secrets:
 - "custom-jaas-config"
 ...

spec:
 ...
 brokerProperties:
 - securityRoles.#.group2.send=true
 - securityRoles.#.group1.consume=true
 - securityRoles.#.group1.createAddress=true
 - securityRoles.#.group1.createNonDurableQueue=true
 - securityRoles.#.group1.browse=true
 ...

- lastTransitionTime: "2023-02-06T20:50:01Z"
 message: ""
 reason: Applied
 status: "True"
 type: JaasPropertiesApplied

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

51

each broker Pod. For example, if you add a new user to the new-users-properties file and
update the secret, you see the following status information until the updated file is
propagated to each Pod:

9. When you update user or role information in a properties file that is referenced in the secret, use
the oc set data command to update the secret. You must readd all the files to the secret again,
including the login.config file. For example, if you add a new user to the new-users.properties
file that you created earlier in this procedure, use the following command to update the
custom-jaas-config secret:

oc set data secret/custom-jaas-config --from-file=login.config=login.config --from-file=new-
users.properties=new-users.properties --from-file=new-roles.properties=new-roles.properties

NOTE

The broker JVM reads the configuration in the login.config file only when it starts. If you
change the configuration in the login.config file, for example, to add a new login module,
and update the secret, the broker does not use the new configuration until the broker is
restarted.

Additional Resources

Section 8.2, “Example JAAS login module configurations”

Section 8.3, “Example: configuring AMQ Broker to use Red Hat Single Sign-On”

For information about the JAAS login module format, see JAAS Login Configuration File .

4.3.2. Configuring the default JAAS login module using the Security Custom
Resource (CR)

You can use the ActiveMQArtemisSecurity Custom Resource (CR) to configure user and role
information in the default JAAS properties login module to authenticate users with AMQ Broker. For an
alternative method of configuring authentication and authorization on AMQ Broker by using secrets, see
Section 4.3.1, “Configuring JAAS login modules in a secret” .

4.3.2.1. Configuring the default JAAS login module using the Security Custom Resource
(CR)

The following procedure shows how to configure the default JAAS login module using the Security
Custom Resource (CR).

Prerequisites

You must have already installed the AMQ Broker Operator. For information on two alternative
ways to install the Operator, see:

- lastTransitionTime: "2023-02-06T20:55:20Z"
 message: 'new-users.properties status out of sync, expected: 287641156, current:
2177044732'
 reason: OutOfSync
 status: "False"
 type: JaasPropertiesApplied

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

52

https://docs.oracle.com/en/java/javase/11/security/appendix-b-jaas-login-configuration-file.html#GUID-7EB80FA5-3C16-4016-AED6-0FC619F86F8E

Section 3.2, “Installing the Operator using the CLI” .

Section 3.3, “Installing the Operator using OperatorHub” .

You should be familiar with broker security as described in Securing brokers

PROCEDURE

You can deploy the security CR before or after you create a broker deployment.
However, if you deploy the security CR after creating the broker deployment, the broker
pod is restarted to accept the new configuration.

1. Start configuring a Custom Resource (CR) instance to define users and associated security
configuration for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Edit the CR for your deployment.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the spec section of the CR, add lines to define users and roles. For example:

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemisSecurity
metadata:
 name: ex-prop
spec:
 loginModules:
 propertiesLoginModules:
 - name: "prop-module"
 users:
 - name: "sam"
 password: "samspassword"

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

53

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#assembly-br-securing-brokers_configuring

NOTE

Always specify values for the elements in the preceding example. For example, if
you do not specify values for securityDomains.brokerDomain or values for
roles, the resulting configuration might cause unexpected results.

The preceding configuration defines two users:

a propertiesLoginModule named prop-module that defines a user named sam with a role
named sender.

a propertiesLoginModule named prop-module that defines a user named rob with a role
named receiver.

The properties of these roles are defined in the brokerDomain and broker sections of the
securityDomains section. For example, the send role is defined to allow users with that role to
create a durable queue on any address. By default, the configuration applies to all deployed
brokers defined by CRs in the current namespace. To limit the configuration to particular broker
deployments, use the applyToCrNames option described in Section 8.1.3, “Security Custom
Resource configuration reference”.

NOTE

 roles:
 - "sender"
 - name: "rob"
 password: "robspassword"
 roles:
 - "receiver"
 securityDomains:
 brokerDomain:
 name: "activemq"
 loginModules:
 - name: "prop-module"
 flag: "sufficient"
 securitySettings:
 broker:
 - match: "#"
 permissions:
 - operationType: "send"
 roles:
 - "sender"
 - operationType: "createAddress"
 roles:
 - "sender"
 - operationType: "createDurableQueue"
 roles:
 - "sender"
 - operationType: "consume"
 roles:
 - "receiver"
 ...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

54

NOTE

In the metadata section, you need to include the namespace property and
specify a value only if you are using the OpenShift Container Platform web
console to create your CR instance. The value that you should specify is the
name of the OpenShift project for your broker deployment.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project for the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/security_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

Additional resources

Section 8.1.3, “Security Custom Resource configuration reference”

Section 3.4.1, “Deploying a basic broker instance”

4.3.2.2. Storing user passwords in a secret

In the Section 4.3.2.1, “Configuring the default JAAS login module using the Security Custom Resource
(CR)” procedure, user passwords are stored in clear text in the ActiveMQArtemisSecurity CR. If you do
not want to store passwords in clear text in the CR, you can exclude the passwords from the CR and
store them in a secret. When you apply the CR, the Operator retrieves each user’s password from the
secret and inserts it in the artemis-users.properties file on the broker pod.

Procedure

1. Use the oc create secret command to create a secret and add each user’s name and password.
The secret name must follow a naming convention of security-properties-module name, where
module name is the name of the login module configured in the CR. For example:

oc create secret generic security-properties-prop-module \
 --from-literal=sam=samspassword \
 --from-literal=rob=robspassword

2. In the spec section of the CR, add the user names that you specified in the secret along with
the role information, but do not include each user’s password. For example:

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemisSecurity

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

55

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project for the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/address_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you finish configuring the CR, click Create.

Additional resources

metadata:
 name: ex-prop
spec:
 loginModules:
 propertiesLoginModules:
 - name: "prop-module"
 users:
 - name: "sam"
 roles:
 - "sender"
 - name: "rob"
 roles:
 - "receiver"
 securityDomains:
 brokerDomain:
 name: "activemq"
 loginModules:
 - name: "prop-module"
 flag: "sufficient"
 securitySettings:
 broker:
 - match: "#"
 permissions:
 - operationType: "send"
 roles:
 - "sender"
 - operationType: "createAddress"
 roles:
 - "sender"
 - operationType: "createDurableQueue"
 roles:
 - "sender"
 - operationType: "consume"
 roles:
 - "receiver"
 ...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

56

For more information about secrets in OpenShift Container Platform, see Providing sensitive data to
pods in the OpenShift Container Platform documentation.

4.4. CONFIGURING BROKER STORAGE REQUIREMENTS

To use persistent storage in an Operator-based broker deployment, you set persistenceEnabled to
true in the Custom Resource (CR) instance used to create the deployment. If you do not have
container-native storage in your OpenShift cluster, you need to manually provision Persistent Volumes
(PVs) and ensure that these are available to be claimed by the Operator using a Persistent Volume
Claim (PVC). If you want to create a cluster of two brokers with persistent storage, for example, then
you need to have two PVs available.

IMPORTANT

When you manually provision PVs in OpenShift Container Platform, ensure that you set
the reclaim policy for each PV to Retain. If the reclaim policy for a PV is not set to Retain
and the PVC that the Operator used to claim the PV is deleted, the PV is also deleted.
Deleting a PV results in the loss of any data on the volume. For more information, about
setting the reclaim policy, see Understanding persistent storage in the OpenShift
Container Platform documentation.

By default, a PVC obtains 2 GiB of storage for each broker from the default storage class configured for
the cluster. You can override the default size and storage class requested in the PVC, but only by
configuring new values in the CR before deploying the CR for the first time.

4.4.1. Configuring broker storage size and storage class

The following procedure shows how to configure the Custom Resource (CR) instance for your broker
deployment to specify the size and storage class of the Persistent Volume Claim (PVC) required by
each broker for persistent message storage.

NOTE

If you change the storage configuration in the CR after you deploy AMQ Broker, the
updated configuration is not applied retrospectively to existing Pods. However, the
updated configuration is applied to new Pods that are created if you scale up the
deployment.

Prerequisites

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

You must have already provisioned Persistent Volumes (PVs) and made these available to be
claimed by the Operator. For example, if you want to create a cluster of two brokers with
persistent storage, you need to have two PVs available.
For more information about provisioning persistent storage, see Understanding persistent
storage in the OpenShift Container Platform documentation.

Procedure

1. Start configuring a Custom Resource (CR) instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

57

https://docs.openshift.com/container-platform/4.15/nodes/pods/nodes-pods-secrets.html
https://docs.openshift.com/container-platform/4.15/storage/understanding-persistent-storage.html
https://docs.openshift.com/container-platform/4.15/storage/understanding-persistent-storage.html

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

For a basic broker deployment, a configuration might resemble that shown below.

Observe that in the broker_activemqartemis_cr.yaml sample CR file, the image property is
set to a default value of placeholder. This value indicates that, by default, the image property
does not specify a broker container image to use for the deployment. To learn how the
Operator determines the appropriate broker container image to use, see Section 2.6, “How the
Operator chooses container images”.

2. To specify the broker storage size, in the deploymentPlan section of the CR, add a storage
section. Add a size property and specify a value. For example:

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

58

storage.size

Size, in bytes, of the Persistent Volume Claim (PVC) that each broker Pod requires for
persistent storage. This property applies only when persistenceEnabled is set to true. The
value that you specify must include a unit using byte notation (for example, K, M, G), or the
binary equivalents (Ki, Mi, Gi).

3. To specify the storage class that each broker Pod requires for persistent storage, in the
storage section, add a storageClassName property and specify a value. For example:

storage.storageClassName

The name of the storage class to request in the Persistent Volume Claim (PVC). Storage
classes provide a way for administrators to describe and classify the available storage. For
example, different storage classes might map to specific quality-of-service levels, backup
policies and so on.
If you do do not specify a storage class, a persistent volume with the default storage class
configured for the cluster is claimed by the PVC.

NOTE

If you specify a storage class, a persistent volume is claimed by the PVC only if
the volume’s storage class matches the specified storage class.

4. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

 messageMigration: true
 storage:
 size: 4Gi

spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 storage:
 size: 4Gi
 storageClassName: gp3

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

59

i. When you have finished configuring the CR, click Create.

4.5. CONFIGURING RESOURCE LIMITS AND REQUESTS FOR
OPERATOR-BASED BROKER DEPLOYMENTS

When you create an Operator-based broker deployment, the broker Pods in the deployment run in a
StatefulSet on a node in your OpenShift cluster. You can configure the Custom Resource (CR) instance
for the deployment to specify the host-node compute resources used by the broker container that runs
in each Pod. By specifying limit and request values for CPU and memory (RAM), you can ensure
satisfactory performance of the broker Pods.

IMPORTANT

You must add configuration for limits and requests to the CR instance for your
broker deployment before deploying the CR for the first time. You cannot add
the configuration to a broker deployment that is already running.

It is not possible for Red Hat to recommend values for limits and requests
because these are based on your specific messaging system use-cases and the
resulting architecture that you have implemented. However, it is recommended
that you test and tune these values in a development environment before
configuring them for your production environment.

The Operator runs a type of container called an Init Container when initializing
each broker Pod. Any resource limits and requests that you configure for each
broker container also apply to each Init Container. For more information about
the use of Init Containers in broker deployments, see Section 4.1, “How the
Operator generates the broker configuration”.

You can specify the following limit and request values:

CPU limit

For each broker container running in a Pod, this value is the maximum amount of host-node CPU
that the container can consume. If a broker container attempts to exceed the specified CPU limit,
OpenShift throttles the container. This ensures that containers have consistent performance,
regardless of the number of Pods running on a node.

Memory limit

For each broker container running in a Pod, this value is the maximum amount of host-node memory
that the container can consume. If a broker container attempts to exceed the specified memory limit,
OpenShift terminates the container. The broker Pod restarts.

CPU request

For each broker container running in a Pod, this value is the amount of host-node CPU that the
container requests. The OpenShift scheduler considers the CPU request value during Pod
placement, to bind the broker Pod to a node with sufficient compute resources.
The CPU request value is the minimum amount of CPU that the broker container requires to run.
However, if there is no contention for CPU on the node, the container can use all available CPU. If
you have specified a CPU limit, the container cannot exceed that amount of CPU usage. If there is
CPU contention on the node, CPU request values provide a way for OpenShift to weigh CPU usage
across all containers.

Memory request

For each broker container running in a Pod, this value is the amount of host-node memory that the

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

60

For each broker container running in a Pod, this value is the amount of host-node memory that the
container requests. The OpenShift scheduler considers the memory request value during Pod
placement, to bind the broker Pod to a node with sufficient compute resources.
The memory request value is the minimum amount of memory that the broker container requires to
run. However, the container can consume as much available memory as possible. If you have specified
a memory limit, the broker container cannot exceed that amount of memory usage.

CPU is measured in units called millicores. Each node in an OpenShift cluster inspects the operating
system to determine the number of CPU cores on the node. Then, the node multiplies that value by
1000 to express the total capacity. For example, if a node has two cores, the CPU capacity of the node
is expressed as 2000m. Therefore, if you want to use one-tenth of a single core, you specify a value of
100m.

Memory is measured in bytes. You can specify the value using byte notation (E, P, T, G, M, K) or the
binary equivalents (Ei, Pi, Ti, Gi, Mi, Ki). The value that you specify must include a unit.

4.5.1. Configuring broker resource limits and requests

The following example shows how to configure the main Custom Resource (CR) instance for your
broker deployment to set limits and requests for CPU and memory for each broker container that runs
in a Pod in the deployment.

IMPORTANT

You must add configuration for limits and requests to the CR instance for your
broker deployment before deploying the CR for the first time. You cannot add
the configuration to a broker deployment that is already running.

It is not possible for Red Hat to recommend values for limits and requests
because these are based on your specific messaging system use-cases and the
resulting architecture that you have implemented. However, it is recommended
that you test and tune these values in a development environment before
configuring them for your production environment.

Prerequisites

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

Procedure

1. Start configuring a Custom Resource (CR) instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

61

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

For a basic broker deployment, a configuration might resemble that shown below.

Observe that in the broker_activemqartemis_cr.yaml sample CR file, the image property is
set to a default value of placeholder. This value indicates that, by default, the image property
does not specify a broker container image to use for the deployment. To learn how the
Operator determines the appropriate broker container image to use, see Section 2.6, “How the
Operator chooses container images”.

2. In the deploymentPlan section of the CR, add a resources section. Add limits and requests
sub-sections. In each sub-section, add a cpu and memory property and specify values. For
example:

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 resources:
 limits:
 cpu: "500m"
 memory: "1024M"
 requests:
 cpu: "250m"
 memory: "512M"

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

62

limits.cpu

Each broker container running in a Pod in the deployment cannot exceed this amount of
host-node CPU usage.

limits.memory

Each broker container running in a Pod in the deployment cannot exceed this amount of
host-node memory usage.

requests.cpu

Each broker container running in a Pod in the deployment requests this amount of host-node
CPU. This value is the minimum amount of CPU required for the broker container to run.

requests.memory

Each broker container running in a Pod in the deployment requests this amount of host-node
memory. This value is the minimum amount of memory required for the broker container to
run.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4.6. ENABLING ACCESS TO AMQ MANAGEMENT CONSOLE

Each broker Pod in an Operator-based deployment hosts its own instance of AMQ Management
Console at port 8161. You can enable access to the console in the Custom Resource instance for your
broker deployment. After you enable access to the console, you can use the console to view and
manage the broker in your web browser.

Procedure

1. Edit the Custom Resource (CR) instance for your broker deployment .

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Edit the CR for your deployment.

oc edit ActiveMQArtemis <CR instance name> -n <namespace>

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

63

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name.

vi. Click the YAML tab.
Within the console, a YAML editor opens, which enables you to configure the CR
instance.

2. In the spec section of the CR, add a console section. In the console section, add the expose
attribute and set the value to. true. For example:

3. Save the CR.

Additional resources

For information about how to connect to AMQ Management Console, see Chapter 5, Connecting to
AMQ Management Console for an Operator-based broker deployment

4.7. SETTING ENVIRONMENT VARIABLES FOR THE BROKER
CONTAINERS

In the Custom Resource (CR) instance for your broker deployment, you can set environment variables
that are passed to a AMQ Broker container.

For example, you can use standard environment variables such as TZ to set the timezone or
JDK_JAVA_OPTIONS to prepend arguments to the command line arguments used by the Java
launcher at startup. Or, you can use a custom variable for AMQ Broker, JAVA_ARGS_APPEND, to
append custom arguments to the command line arguments used by the Java launcher.

Procedure

1. Edit the Custom Resource (CR) instance for your broker deployment.

a. Using the OpenShift command-line interface:

spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 console:
 expose: true

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

64

i. Enter the following command:

oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name.

vi. Click the YAML tab.
Within the console, a YAML editor opens, which enables you to configure the CR
instance.

2. In the spec section of the CR, add an env element and add the environment variables that you
want to set for the AMQ Broker container. For example:

In the example, the CR configuration includes the following environment variables:

TZ to set the timezone of the AMQ Broker container.

JAVA_ARGS_APPEND to configure AMQ Management Console to use a realm named
console for authentication.

JDK_JAVA_OPTIONS to set the Java -XshowSettings:system parameter, which displays
system property settings for the Java Virtual Machine.

NOTE

Values configured using the JDK_JAVA_OPTIONS environment variable are
prepended to the command line arguments used by the Java launcher.
Values configured using the JAVA_ARGS_APPEND environment variable
are appended to the arguments used by the launcher. If an argument is
duplicated, the rightmost argument takes precedence.

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 ...
 env:
 - name: TZ
 value: Europe/Vienna
 - name: JAVA_ARGS_APPEND
 value: --Hawtio.realm=console
 - name: JDK_JAVA_OPTIONS
 value: -XshowSettings:system
 ...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

65

3. Save the CR.

NOTE

Red Hat recommends that you do not change AMQ Broker environment
variables that have an AMQ_ prefix and that you exercise caution if you want to
change the POD_NAMESPACE variable.

Additional resources

For more information about defining environment variables, see Define Environment Variables
for a Container.

4.8. OVERRIDING THE DEFAULT MEMORY LIMIT FOR A BROKER

You can override the default memory limit that is set for a broker. By default, a broker is assigned half of
the maximum memory that is available to the broker’s Java Virtual Machine. The following procedure
shows how to configure the Custom Resource (CR) instance for your broker deployment to override the
default memory limit.

Prerequisites

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

Procedure

1. Start configuring a Custom Resource (CR) instance to create a basic broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

66

https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

For example, the CR for a basic broker deployment might resemble the following:

2. In the spec section of the CR, add a brokerProperties section. Within the brokerProperties
section, add a globalMaxSize property and specify a memory limit. For example:

The default unit for the globalMaxSize property is bytes. To change the default unit, add a
suffix of m (for MB) or g (for GB) to the value.

3. Apply the changes to the CR.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project for the broker deployment.

$ oc project <project_name>

iii. Apply the CR.

$ oc apply -f <path/to/broker_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you finish editing the CR, click Save.

4. (Optional) Verify that the new value you set for the globalMaxSize property overrides the
default memory limit assigned to the broker.

a. Connect to the AMQ Management Console. For more information, see Chapter 5,
Connecting to AMQ Management Console for an Operator-based broker deployment .

b. From the menu, select JMX.

c. Select org.apache.activemq.artemis.

d. Search for global.
e. In the table that is displayed, confirm that the value in the Global max column is the same as

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

spec:
 ...
 brokerProperties:
 - globalMaxSize=500m
 ...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

67

e. In the table that is displayed, confirm that the value in the Global max column is the same as
the value that you configured for the globalMaxSize property.

4.9. SPECIFYING A CUSTOM INIT CONTAINER IMAGE

As described in Section 4.1, “How the Operator generates the broker configuration” , the AMQ Broker
Operator uses a default, built-in Init Container to generate the broker configuration. To generate the
configuration, the Init Container uses the main Custom Resource (CR) instance for your deployment. In
certain situations, you might need to use a custom Init Container. For example, if you want to include
extra runtime dependencies, .jar files, in the broker installation directory.

When you build a custom Init Container image, you must follow these important guidelines:

In the build script (for example, a Docker Dockerfile or Podman Containerfile) that you create
for the custom image, the FROM instruction must specify the latest version of the AMQ Broker
Operator built-in Init Container as the base image. In your script, include the following line:

FROM registry.redhat.io/amq7/amq-broker-init-rhel8:7.11

The custom image must include a script called post-config.sh that you include in a directory
called /amq/scripts. The post-config.sh script is where you can modify or add to the initial
configuration that the Operator generates. When you specify a custom Init Container, the
Operator runs the post-config.sh script after it uses your CR instance to generate a
configuration, but before it starts the broker application container.

As described in Section 4.1.2, “Directory structure of a broker Pod” , the path to the installation
directory used by the Init Container is defined in an environment variable called
CONFIG_INSTANCE_DIR. The post-config.sh script should use this environment variable
name when referencing the installation directory (for example,
${CONFIG_INSTANCE_DIR}/lib) and not the actual value of this variable (for example,
/amq/init/config/lib).

If you want to include additional resources (for example, .xml or .jar files) in your custom broker
configuration, you must ensure that these are included in the custom image and accessible to
the post-config.sh script.

The following procedure describes how to specify a custom Init Container image.

Prerequisites

You must have built a custom Init Container image that meets the guidelines described above.
For a complete example of building and specifying a custom Init Container image for the
ArtemisCloud Operator, see custom Init Container image for JDBC-based persistence .

To provide a custom Init Container image for the AMQ Broker Operator, you need to be able to
add the image to a repository in a container registry such as the Quay container registry.

You should understand how the Operator uses an Init Container to generate the broker
configuration. For more information, see Section 4.1, “How the Operator generates the broker
configuration”.

You should be familiar with how to use a CR to create a broker deployment. For more
information, see Section 3.4, “Creating Operator-based broker deployments” .

Procedure

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

68

https://github.com/artemiscloud/artemiscloud-examples/tree/main/operator/init/jdbc
http://quay.io

1. Edit the CR instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. Edit the CR for your deployment.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. In the left pane, click Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click the instance for your broker deployment.

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to edit the CR instance.

2. In the deploymentPlan section of the CR, add an initImage attribute and set the value to the
URL of your custom Init Container image.

initImage

Specifies the full URL for your custom Init Container image, which must be available from a
container registry.

IMPORTANT

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 1
 image: placeholder
 initImage: <custom_init_container_image_url>
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

69

IMPORTANT

If a CR has a custom init container image specified in the
spec.deploymentPlan.initImage attribute, Red Hat recommends that you
also specify the URL of the corresponding broker container image in the
spec.deploymentPlan.image attribute to prevent automatic upgrades of the
broker image. If you do not specify the URL of a specific broker container
image in the spec.deploymentPlan.image attribute, the broker image can be
automatically upgraded. After the broker image is upgraded, the versions of
the broker and custom init container image are different, which might prevent
the broker from running.

If you have a working deployment that has a custom init container, you can prevent any
further upgrades of the broker container image to eliminate the risk of a newer broker image
not working with your custom init container image. For more information about preventing
upgrades to the broker image, see, Section 6.4.2, “Restricting automatic upgrades of images
by using image URLs”.

3. Save the CR.

Additional resources

For a complete example of building and specifying a custom Init Container image for the
ArtemisCloud Operator, see custom Init Container image for JDBC-based persistence .

4.10. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS
FOR CLIENT CONNECTIONS

4.10.1. Configuring acceptors

To enable client connections to broker Pods in your OpenShift deployment, you define acceptors for
your deployment. Acceptors define how a broker Pod accepts connections. You define acceptors in the
main Custom Resource (CR) used for your broker deployment. When you create an acceptor, you
specify information such as the messaging protocols to enable on the acceptor, and the port on the
broker Pod to use for these protocols.

The following procedure shows how to define a new acceptor in the CR for your broker deployment.

Procedure

1. In the deploy/crs directory of the Operator archive that you downloaded and extracted during
your initial installation, open the broker_activemqartemis_cr.yaml Custom Resource (CR) file.

2. In the acceptors element, add a named acceptor. Add the protocols and port parameters. Set
values to specify the messaging protocols to be used by the acceptor and the port on each
broker Pod to expose for those protocols. For example:

spec:
...
 acceptors:
 - name: my-acceptor

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

70

https://github.com/artemiscloud/artemiscloud-examples/tree/main/operator/init/jdbc

The configured acceptor exposes port 5672 to AMQP clients. The full set of values that you can
specify for the protocols parameter is shown in the table.

Protocol Value

Core Protocol core

AMQP amqp

OpenWire openwire

MQTT mqtt

STOMP stomp

All supported protocols all

NOTE

For each broker Pod in your deployment, the Operator also creates a default
acceptor that uses port 61616. This default acceptor is required for broker
clustering and has Core Protocol enabled.

By default, the AMQ Broker management console uses port 8161 on the
broker Pod. Each broker Pod in your deployment has a dedicated Service
that provides access to the console. For more information, see Chapter 5,
Connecting to AMQ Management Console for an Operator-based broker
deployment.

3. To use another protocol on the same acceptor, modify the protocols parameter. Specify a
comma-separated list of protocols. For example:

The configured acceptor now exposes port 5672 to AMQP and OpenWire clients.

4. To specify the number of concurrent client connections that the acceptor allows, add the
connectionsAllowed parameter and set a value. For example:

 protocols: amqp
 port: 5672
...

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
...

spec:
...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

71

5. By default, an acceptor is exposed only to clients in the same OpenShift cluster as the broker
deployment. To also expose the acceptor to clients outside OpenShift, add the expose
parameter and set the value to true.

When you expose an acceptor to clients outside OpenShift, the Operator automatically creates
a dedicated Service and Route for each broker Pod in the deployment.

6. To enable secure connections to the acceptor from clients outside OpenShift, add the
sslEnabled parameter and set the value to true.

When you enable SSL (that is, Secure Sockets Layer) security on an acceptor (or connector),
you can add related configuration, such as:

The secret name used to store authentication credentials in your OpenShift cluster. A
secret is required when you enable SSL on the acceptor. For more information on
generating this secret, see Section 4.10.2, “Securing broker-client connections” .

The Transport Layer Security (TLS) protocols to use for secure network communication.
TLS is an updated, more secure version of SSL. You specify the TLS protocols in the
enabledProtocols parameter.

Whether the acceptor uses two-way TLS, also known as mutual authentication, between the
broker and the client. You specify this by setting the value of the needClientAuth
parameter to true.

 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
 connectionsAllowed: 5
...

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
 connectionsAllowed: 5
 expose: true
 ...
...

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
 connectionsAllowed: 5
 expose: true
 sslEnabled: true
 ...
...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

72

Additional resources

To learn how to configure TLS to secure broker-client connections, including generating a
secret to store authentication credentials, see Section 4.10.2, “Securing broker-client
connections”.

For a complete Custom Resource configuration reference, including configuration of acceptors
and connectors, see Section 8.1, “Custom Resource configuration reference” .

4.10.2. Securing broker-client connections

If you have enabled security on your acceptor or connector (that is, by setting sslEnabled to true), you
must configure Transport Layer Security (TLS) to allow certificate-based authentication between the
broker and clients. TLS is an updated, more secure version of SSL. There are two primary TLS
configurations:

One-way TLS

Only the broker presents a certificate. The certificate is used by the client to authenticate the broker.
This is the most common configuration.

Two-way TLS

Both the broker and the client present certificates. This is sometimes called mutual authentication.

NOTE

The following procedures describe how to use self-signed certificates to configure one-
way and two-way TLS. If a self-signed certificate is listed as a trusted certificate in a Java
Virtual Machine (JVM) truststore, the JVM does not validate the expiry date of the
certificate. In a production environment, Red Hat recommends that you use a certificate
that is signed by a Certificate Authority.

The sections that follow describe:

Configuration requirements for the broker certificate used by one-way and two-way TLS

How to configure one-way TLS

How to configure two-way TLS

For both one-way and two-way TLS, you complete the configuration by generating a secret that stores
the credentials required for a successful TLS handshake between the broker and the client. This is the
secret name that you must specify in the sslSecret parameter of your secured acceptor or connector.
The secret must contain a Base64-encoded broker key store (both one-way and two-way TLS), a
Base64-encoded broker trust store (two-way TLS only), and the corresponding passwords for these
files, also Base64-encoded. The one-way and two-way TLS configuration procedures show how to
generate this secret.

NOTE

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

73

NOTE

If you do not explicitly specify a secret name in the sslSecret parameter of a secured
acceptor or connector, the acceptor or connector assumes a default secret name. The
default secret name uses the format <custom_resource_name>-<acceptor_name>-
secret or <custom_resource_name>-<connector_name>-secret. For example, my-
broker-deployment-my-acceptor-secret.

Even if the acceptor or connector assumes a default secrete name, you must still
generate this secret yourself. It is not automatically created.

4.10.2.1. Configuring a broker certificate for host name verification

NOTE

This section describes some requirements for the broker certificate that you must
generate when configuring one-way or two-way TLS.

When a client tries to connect to a broker Pod in your deployment, the verifyHost option in the client
connection URL determines whether the client compares the Common Name (CN) of the broker’s
certificate to its host name, to verify that they match. The client performs this verification if you specify
verifyHost=true or similar in the client connection URL.

You might omit this verification in rare cases where you have no concerns about the security of the
connection, for example, if the brokers are deployed on an OpenShift cluster in an isolated network.
Otherwise, for a secure connection, it is advisable for a client to perform this verification. In this case,
correct configuration of the broker key store certificate is essential to ensure successful client
connections.

In general, when a client is using host verification, the CN that you specify when generating the broker
certificate must match the full host name for the Route on the broker Pod that the client is connecting
to. For example, if you have a deployment with a single broker Pod, the CN might look like the following:

CN=my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain

To ensure that the CN can resolve to any broker Pod in a deployment with multiple brokers, you can
specify an asterisk (*) wildcard character in place of the ordinal of the broker Pod. For example:

CN=my-broker-deployment-*-svc-rte-my-openshift-project.my-openshift-domain

The CN shown in the preceding example successfully resolves to any broker Pod in the my-broker-
deployment deployment.

In addition, the Subject Alternative Name (SAN) that you specify when generating the broker certificate
must individually list all broker Pods in the deployment, as a comma-separated list. For example:

"SAN=DNS:my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain,DNS:my-
broker-deployment-1-svc-rte-my-openshift-project.my-openshift-domain,..."

4.10.2.2. Configuring one-way TLS

The procedure in this section shows how to configure one-way Transport Layer Security (TLS) to secure
a broker-client connection.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

74

In one-way TLS, only the broker presents a certificate. This certificate is used by the client to
authenticate the broker.

Prerequisites

You should understand the requirements for broker certificate generation when clients use host
name verification. For more information, see Section 4.10.2.1, “Configuring a broker certificate
for host name verification”.

Procedure

1. Generate a self-signed certificate for the broker key store.

2. Export the certificate from the broker key store, so that it can be shared with clients. Export the
certificate in the Base64-encoded .pem format. For example:

3. On the client, create a client trust store that imports the broker certificate.

4. Log in to OpenShift Container Platform as an administrator. For example:

5. Switch to the project that contains your broker deployment. For example:

6. Create a secret to store the TLS credentials. For example:

NOTE

When generating a secret, OpenShift requires you to specify both a key store
and a trust store. The trust store key is generically named client.ts. For one-way
TLS between the broker and a client, a trust store is not actually required.
However, to successfully generate the secret, you need to specify some valid
store file as a value for client.ts. The preceding step provides a "dummy" value
for client.ts by reusing the previously-generated broker key store file. This is
sufficient to generate a secret with all of the credentials required for one-way
TLS.

7. Link the secret to the service account that you created when installing the Operator. For

$ keytool -genkey -alias broker -keyalg RSA -keystore ~/broker.ks

$ keytool -export -alias broker -keystore ~/broker.ks -file ~/broker_cert.pem

$ keytool -import -alias broker -keystore ~/client.ts -file ~/broker_cert.pem

$ oc login -u system:admin

$ oc project <my_openshift_project>

$ oc create secret generic my-tls-secret \
--from-file=broker.ks=~/broker.ks \
--from-file=client.ts=~/client.ks \
--from-literal=keyStorePassword=<password> \
--from-literal=trustStorePassword=<password>

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

75

7. Link the secret to the service account that you created when installing the Operator. For
example:

8. Specify the secret name in the sslSecret parameter of your secured acceptor or connector. For
example:

4.10.2.3. Configuring two-way TLS

The procedure in this section shows how to configure two-way Transport Layer Security (TLS) to secure
a broker-client connection.

In two-way TLS, both the broker and client presents certificates. The broker and client use these
certificates to authenticate each other in a process sometimes called mutual authentication.

Prerequisites

You should understand the requirements for broker certificate generation when clients use host
name verification. For more information, see Section 4.10.2.1, “Configuring a broker certificate
for host name verification”.

Procedure

1. Generate a self-signed certificate for the broker key store.

2. Export the certificate from the broker key store, so that it can be shared with clients. Export the
certificate in the Base64-encoded .pem format. For example:

3. On the client, create a client trust store that imports the broker certificate.

4. On the client, generate a self-signed certificate for the client key store.

$ oc secrets link sa/amq-broker-operator secret/my-tls-secret

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
 sslEnabled: true
 sslSecret: my-tls-secret
 expose: true
 connectionsAllowed: 5
...

$ keytool -genkey -alias broker -keyalg RSA -keystore ~/broker.ks

$ keytool -export -alias broker -keystore ~/broker.ks -file ~/broker_cert.pem

$ keytool -import -alias broker -keystore ~/client.ts -file ~/broker_cert.pem

$ keytool -genkey -alias broker -keyalg RSA -keystore ~/client.ks

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

76

5. On the client, export the certificate from the client key store, so that it can be shared with the
broker. Export the certificate in the Base64-encoded .pem format. For example:

6. Create a broker trust store that imports the client certificate.

7. Log in to OpenShift Container Platform as an administrator. For example:

8. Switch to the project that contains your broker deployment. For example:

9. Create a secret to store the TLS credentials. For example:

NOTE

When generating a secret, OpenShift requires you to specify both a key store
and a trust store. The trust store key is generically named client.ts. For two-way
TLS between the broker and a client, you must generate a secret that includes
the broker trust store, because this holds the client certificate. Therefore, in the
preceding step, the value that you specify for the client.ts key is actually the
broker trust store file.

10. Link the secret to the service account that you created when installing the Operator. For
example:

11. Specify the secret name in the sslSecret parameter of your secured acceptor or connector. For
example:

$ keytool -export -alias broker -keystore ~/client.ks -file ~/client_cert.pem

$ keytool -import -alias broker -keystore ~/broker.ts -file ~/client_cert.pem

$ oc login -u system:admin

$ oc project <my_openshift_project>

$ oc create secret generic my-tls-secret \
--from-file=broker.ks=~/broker.ks \
--from-file=client.ts=~/broker.ts \
--from-literal=keyStorePassword=<password> \
--from-literal=trustStorePassword=<password>

$ oc secrets link sa/amq-broker-operator secret/my-tls-secret

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
 sslEnabled: true
 sslSecret: my-tls-secret
 expose: true
 connectionsAllowed: 5
...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

77

4.10.3. Networking services in your broker deployments

On the Networking pane of the OpenShift Container Platform web console for your broker
deployment, there are two running services; a headless service and a ping service. The default name of
the headless service uses the format <custom_resource_name>-hdls-svc, for example, my-broker-
deployment-hdls-svc. The default name of the ping service uses a format of
<custom_resource_name>-ping-svc, for example, `my-broker-deployment-ping-svc.

The headless service provides access to port 61616, which is used for internal broker clustering.

The ping service is used by the brokers for discovery, and enables brokers to form a cluster within the
OpenShift environment. Internally, this service exposes port 8888.

4.10.4. Connecting to the broker from internal and external clients

The examples in this section show how to connect to the broker from internal clients (that is, clients in
the same OpenShift cluster as the broker deployment) and external clients (that is, clients outside the
OpenShift cluster).

4.10.4.1. Connecting to the broker from internal clients

To connect an internal client to a broker, in the client connection details, specify the DNS resolvable
name of the broker pod. For example:

$ tcp://ex–aao-ss-0:<port>

If the internal client is using the Core protocol and the useTopologyForLoadBalancing=false key was
not set in the connection URL, after the client connects to the broker for the first time, the broker can
inform the client of the addresses of all the brokers in the cluster. The client can then load balance
connections across all brokers.

If your brokers have durable subscription queues or request/reply queues, be aware of the caveats
associated with using these queues when client connections are load balanced. For more information,
see Section 4.10.4.4, “Caveats to load balancing client connections when you have durable subscription
queues or reply/request queues”.

4.10.4.2. Connecting to the broker from external clients

When you expose an acceptor to external clients (that is, by setting the value of the expose parameter
to true), the Operator automatically creates a dedicated service and route for each broker pod in the
deployment.

An external client can connect to the broker by specifying the full host name of the route created for
the broker pod. You can use a basic curl command to test external access to this full host name. For
example:

$ curl https://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain

The full host name of the route for the broker pod must resolve to the node that is hosting the
OpenShift router. The OpenShift router uses the host name to determine where to send the traffic
inside the OpenShift internal network. By default, the OpenShift router listens to port 80 for non-

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

78

secured (that is, non-SSL) traffic and port 443 for secured (that is, SSL-encrypted) traffic. For an
HTTP connection, the router automatically directs traffic to port 443 if you specify a secure connection
URL (that is, https), or to port 80 if you specify a non-secure connection URL (that is, http).

If you want external clients to load balance connections across the brokers in the cluster:

Enable load balancing by configuring the haproxy.router.openshift.io/balance roundrobin
option on the OpenShift route for each broker pod.

If an external client uses the Core protocol, set the useTopologyForLoadBalancing=false key
in the client’s connection URL.
Setting the useTopologyForLoadBalancing=false key prevents a client from using the AMQ
Broker Pod DNS names that are in the cluster topology information provided by the broker. The
Pod DNS names resolve to internal IP addresses, which an external client cannot access.

If your brokers have durable subscription queues or request/reply queues, be aware of the caveats
associated with using these queues when load balancing client connections. For more information, see
Section 4.10.4.4, “Caveats to load balancing client connections when you have durable subscription
queues or reply/request queues”.

If you don’t want external clients to load balance connections across the brokers in the cluster:

In each client’s connection URL, specify the full host name of the route for each broker pod.
The client attempts to connect to the first host name in the connection URL. However, if the
first host name is unavailable, the client automatically connects to the next host name in the
connection URL, and so on.

If an external client uses the Core protocol, set the useTopologyForLoadBalancing=false key
in the client’s connection URL to prevent the client from using the cluster topology information
provided by the broker.

For non-HTTP connections:

Clients must explicitly specify the port number (for example, port 443) as part of the connection
URL.

For one-way TLS, the client must specify the path to its trust store and the corresponding
password, as part of the connection URL.

For two-way TLS, the client must also specify the path to its key store and the corresponding
password, as part of the connection URL.

Some example client connection URLs, for supported messaging protocols, are shown below.

External Core client, using one-way TLS

tcp://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443?
useTopologyForLoadBalancing=false&sslEnabled=true \
&trustStorePath=~/client.ts&trustStorePassword=<password>

NOTE

The useTopologyForLoadBalancing key is explicitly set to false in the connection URL
because an external Core client cannot use topology information returned by the broker.
If this key is set to true or you do not specify a value, it results in a DEBUG log message.

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

79

External Core client, using two-way TLS

tcp://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443?
useTopologyForLoadBalancing=false&sslEnabled=true \
&keyStorePath=~/client.ks&keyStorePassword=<password> \
&trustStorePath=~/client.ts&trustStorePassword=<password>

External OpenWire client, using one-way TLS

ssl://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443"

Also, specify the following JVM flags
-Djavax.net.ssl.trustStore=~/client.ts -Djavax.net.ssl.trustStorePassword=<password>

External OpenWire client, using two-way TLS

ssl://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443"

Also, specify the following JVM flags
-Djavax.net.ssl.keyStore=~/client.ks -Djavax.net.ssl.keyStorePassword=<password> \
-Djavax.net.ssl.trustStore=~/client.ts -Djavax.net.ssl.trustStorePassword=<password>

External AMQP client, using one-way TLS

amqps://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443?
transport.verifyHost=true \
&transport.trustStoreLocation=~/client.ts&transport.trustStorePassword=<password>

External AMQP client, using two-way TLS

amqps://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443?
transport.verifyHost=true \
&transport.keyStoreLocation=~/client.ks&transport.keyStorePassword=<password> \
&transport.trustStoreLocation=~/client.ts&transport.trustStorePassword=<password>

4.10.4.3. Connecting to the Broker using a NodePort

As an alternative to using a route, an OpenShift administrator can configure a NodePort to connect to a
broker pod from a client outside OpenShift. The NodePort should map to one of the protocol-specific
ports specified by the acceptors configured for the broker.

By default, NodePorts are in the range 30000 to 32767, which means that a NodePort typically does
not match the intended port on the broker Pod.

To connect from a client outside OpenShift to the broker via a NodePort, you specify a URL in the
format <protocol>://<ocp_node_ip>:<node_port_number>.

4.10.4.4. Caveats to load balancing client connections when you have durable subscription
queues or reply/request queues

Durable subscriptions

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

80

A durable subscription is represented as a queue on a broker and is created when a durable subscriber
first connects to the broker. This queue exists and receives messages until the client unsubscribes. If the
client reconnects to a different broker, another durable subscription queue is created on that broker.
This can cause the following issues.

Issue Mitigation

Messages may get stranded in the original
subscription queue.

Ensure that message redistribution is enabled. For
more information, see Enabling message
redistribution.

Messages may be received in the wrong order as
there is a window during message redistribution
when other messages are still routed.

None.

When a client unsubscribes, it deletes the queue only
on the broker it last connected to. This means that
the other queues can still exist and receive messages.

To delete other empty queues that may exist for a
client that unsubscribed, configure both of the
following properties:

Set the auto-delete-queues-message-count
property to 0 so that a queue can only be deleted if
there are no messages in the queue. Set the auto-
delete-queues-delay property to delete a queue
that has no messages after it has not been used for a
specified number of milliseconds.

For more information, see Configuring automatic
creation and deletion of addresses and queues.

Request/Reply queues

When a JMS Producer creates a temporary reply queue, the queue is created on the broker. If the client
that is consuming from the work queue and replying to the temporary queue connects to a different
broker, the following issues can occur.

Issue Mitigation

Since the reply queue does not exist on the broker
that the client is connected to, the client may
generate an error.

Ensure that the auto-create-queues property is
set to true. For more information, see Configuring
automatic creation and deletion of addresses and
queues.

Messages sent to the work queue may not be
distributed.

Ensure that messages are load balanced on demand
by setting the message-load-balancing property
to ON-DEMAND. Also, ensure that message
redistribution is enabled. For more information, see
Enabling message redistribution.

Additional resources

For more information about using methods such as Routes and NodePorts for communicating
from outside an OpenShift cluster with services running in the cluster, see:

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

81

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#assembly_br-enabling-message-redistribution_configuring
https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#proc-br-configuring-automatic-creation-and-deletion-of-addresses-and-queues_configuring
https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#proc-br-configuring-automatic-creation-and-deletion-of-addresses-and-queues_configuring
https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#assembly_br-enabling-message-redistribution_configuring

Configuring ingress cluster traffic overview in the OpenShift Container Platform
documentation.

4.11. CONFIGURING LARGE MESSAGE HANDLING FOR AMQP
MESSAGES

Clients might send large AMQP messages that can exceed the size of the broker’s internal buffer,
causing unexpected errors. To prevent this situation, you can configure the broker to store messages as
files when the messages are larger than a specified minimum value. Handling large messages in this way
means that the broker does not hold the messages in memory. Instead, the broker stores the messages
in a dedicated directory used for storing large message files.

For a broker deployment on OpenShift Container Platform, the large messages directory is
/opt/<custom_resource_name>/data/large-messages on the Persistent Volume (PV) used by the
broker for message storage. When the broker stores a message as a large message, the queue retains a
reference to the file in the large messages directory.

NOTE

You can configure the large message size limit in the broker configuration for the AMQP
protocol only. For the AMQ Core and Openwire protocols, you can configure large
message size limits in the client connection configuration. For more information, see the
Red Hat AMQ Clients documentation .

4.11.1. Configuring AMQP acceptors for large message handling

The following procedure shows how to configure an acceptor to handle an AMQP message larger than a
specified size as a large message.

Prerequisites

You should be familiar with how to configure acceptors for Operator-based broker
deployments. See Section 4.10.1, “Configuring acceptors”.

To store large AMQP messages in a dedicated large messages directory, your broker
deployment must be using persistent storage (that is, persistenceEnabled is set to true in the
Custom Resource (CR) instance used to create the deployment). For more information about
configuring persistent storage, see:

Section 2.7, “Operator deployment notes”

Section 8.1, “Custom Resource configuration reference”

Procedure

1. Open the Custom Resource (CR) instance in which you previously defined an AMQP acceptor.

a. Using the OpenShift command-line interface:

b. Using the OpenShift Container Platform web console:

i. In the left navigation menu, click Administration → Custom Resource Definitions

$ oc edit -f <path/to/custom_resource_instance>.yaml

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

82

https://docs.openshift.com/container-platform/4.15/networking/configuring_ingress_cluster_traffic/overview-traffic.html
https://access.redhat.com/documentation/en-us/red_hat_amq_clients

ii. Click the ActiveMQArtemis CRD.

iii. Click the Instances tab.

iv. Locate the CR instance that corresponds to your project namespace.

A previously-configured AMQP acceptor might resemble the following:

2. Specify the minimum size, in bytes, of an AMQP message that the broker handles as a large
message. For example:

In the preceding example, the broker is configured to accept AMQP messages on port 5672.
Based on the value of amqpMinLargeMessageSize, if the acceptor receives an AMQP
message with a body larger than or equal to 204800 bytes (that is, 200 kilobytes), the broker
stores the message as a large message.

The broker stores the message in the large messages directory
(/opt/<custom_resource_name>/data/large-messages, by default) on the persistent volume
(PV) used by the broker for message storage.

If you do not explicitly specify a value for the amqpMinLargeMessageSize property, the broker
uses a default value of 102400 (that is, 100 kilobytes).

If you set amqpMinLargeMessageSize to a value of -1, large message handling for AMQP
messages is disabled.

4.12. CONFIGURING BROKER HEALTH CHECKS

You can configure health checks on AMQ Broker by using startup, liveness and readiness probes.

A startup probe indicates whether the application within a container is started.

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp
 port: 5672
 connectionsAllowed: 5
 expose: true
 sslEnabled: true
...

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp
 port: 5672
 connectionsAllowed: 5
 expose: true
 sslEnabled: true
 amqpMinLargeMessageSize: 204800
 ...
...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

83

A liveness probe determines if a container is still running.

A readiness probe determines if a container is ready to accept service requests

If a startup probe or a liveness probe check of a Pod fails, the probe restarts the Pod.

AMQ Broker includes default readiness and liveness probes. The default liveness probe checks if the
broker is running by pinging the broker’s HTTP port. The default readiness probe checks if the broker
can accept network traffic by opening a connection to each of the acceptor ports configured for the
broker.

A limitation of using the default liveness and readiness probes is that they are unable to identify
underlying issues, for example, issues with the broker’s file system. You can create custom liveness and
readiness probes that use the broker’s command-line utility, artemis, to run more comprehensive health
checks.

AMQ Broker does not include a default startup probe. You can configure a startup probe in the
ActiveMQArtemis Custom Resource (CR).

4.12.1. Configuring a startup probe

You can configure a startup probe to check if the AMQ Broker application within the broker container
has started.

Procedure

1. Edit the CR instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. Edit the CR for your deployment.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. In the left pane, click Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click the instance for your broker deployment.

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to edit the CR instance.

2. In the deploymentPlan section of the CR, add a startupProbe section. For example:

spec:

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

84

command

The startup probe command to run within the container. In the example, the startup probe
uses the artemis check node command to verify that AMQ Broker has started in the
container for a broker Pod.

initialDelaySeconds

The delay, in seconds, before the probe runs after the container starts. The default is 0.

periodSeconds

The interval, in seconds, at which the probe runs. The default is 10.

timeoutSeconds

Time, in seconds, that the startup probe command waits for a reply from the broker. If a
response to the command is not received, the command is terminated. The default value is 1.

failureThreshold

The minimum consecutive failures, including timeouts, of the startup probe after which the
probe is deemed to have failed. When the probe is deemed to have failed, it restarts the Pod.
The default value is 3.
Depending on the resources of the cluster and the size of the broker journal, you might need
to increase the failure threshold to allow the broker sufficient time to start and pass the
probe check. Otherwise, the broker enters a loop condition whereby the failure threshold is
reached repeatedly and the broker is restarted each time by the startup probe. For example,
if you set the failureThreshold to 30 and the probe runs at the default interval of 10
seconds, the broker has 300 seconds to start and pass the probe check.

3. Save the CR.

Additional resources

For more information about liveness and readiness probes in OpenShift Container Platform, see
Monitoring application health by using health checks in the OpenShift Container Platform
documentation.

4.12.2. Configuring liveness and readiness probes

The following example shows how to configure the main Custom Resource (CR) instance for your
broker deployment to run health checks by using liveness and readiness probes.

Prerequisites

 deploymentPlan:
 startupProbe:
 exec:
 command:
 - /bin/bash
 - '-c'
 - /opt/amq/bin/artemis
 - 'check'
 - 'node'
 - '--up'
 - '--url'
 - 'tcp://$HOSTNAME:61616'
 initialDelaySeconds: 5
 periodSeconds: 10
 timeoutSeconds: 3
 failureThreshold: 30

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

85

https://docs.openshift.com/container-platform/4.15/applications/application-health.html

Prerequisites

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

Procedure

1. Edit the CR instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. Edit the CR for your deployment.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. In the left pane, click Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click the instance for your broker deployment.

vi. Click the YAML tab.

2. To configure a liveness probe, in the deploymentPlan section of the CR, add a livenessProbe
section. For example:

initialDelaySeconds

The delay, in seconds, before the probe runs after the container starts. The default is 5.

NOTE

If the deployment also has a startup probe configured, you can set the delay
to 0 for both a liveness and a readiness probe. Both of these probes run only
after the startup probe has passed. If the startup probe has already passed, it
confirms that the broker has started successfully, so a delay in running the
liveness and readiness probes is not required.

periodSeconds

spec:
 deploymentPlan:
 livenessProbe:
 initialDelaySeconds: 5
 periodSeconds: 5
 failureThreshold: 30

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

86

The interval, in seconds, at which the probe runs. The default is 5.

failureThreshold

The minimum consecutive failures, including timeouts, of the liveness probe that signify the
probe has failed. When the probe fails, it restarts the Pod. The default value is 3.
If your deployment does not have a startup probe configured, which verifies that the broker
application is started before the liveness probe runs, you might need to increase the failure
threshold to allow the broker sufficient time to start and pass the liveness probe check.
Otherwise, the broker can enter a loop condition whereby the failure threshold is reached
repeatedly and the broker Pod is restarted each time by the liveness probe.

The time required by the broker to start and pass a liveness probe check depends on the
resources of the cluster and the size of the broker journal. For example, if you set the
failureThreshold to 30 and the probe runs at the default interval of 5 seconds, the broker
has 150 seconds to start and pass the liveness probe check.

NOTE

If you do not configure a liveness probe or if the handler is missing from a
configured probe, the AMQ Broker Operator creates a default TCP probe
that has the following configuration. The default TCP probe attempts to
open a socket to the broker container on the specified port.

3. To configure a readiness probe, in the deploymentPlan section of the CR, add a
readinessProbe section. For example:

If you don’t configure a readiness probe, a built-in script checks if all acceptors can accept
connections.

4. If you want to configure more comprehensive health checks, add the artemis check command-
line utility to the liveness or readiness probe configuration.

a. If you want to configure a health check that creates a full client connection to the broker, in
the livenessProbe or readinessProbe section, add an exec section. In the exec section,
add a command section. In the command section, add the artemis check node command
syntax. For example:

spec:
 deploymentPlan:
 livenessProbe:
 tcpSocket:
 port: 8181
 initialDelaySeconds: 30
 timeoutSeconds: 5

spec:
 deploymentPlan:
 readinessProbe:
 initialDelaySeconds: 5
 periodSeconds: 5

spec:
 deploymentPlan:
 readinessProbe:

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

87

https://github.com/artemiscloud/activemq-artemis-broker-kubernetes-image/blob/main/modules/activemq-artemis-launch/added/readinessProbe.sh

By default, the artemis check node command uses the URI of an acceptor called artemis. If
the broker has an acceptor called artemis, you can exclude the --acceptor <acceptor
name> option from the command.

NOTE

$AMQ_USER and $AMQ_PASSWORD are environment variables that are
configured by the AMQ Operator.

b. If you want to configure a health check that produces and consumes messages, which also
validates the health of the broker’s file system, in the livenessProbe or readinessProbe
section, add an exec section. In the exec section, add a command section. In the command
section, add the artemis check queue command syntax. For example:

NOTE

 exec:
 command:
 - bash
 - '-c'
 - /home/jboss/amq-broker/bin/artemis
 - check
 - node
 - '--silent'
 - '--acceptor'
 - <acceptor name>
 - '--user'
 - $AMQ_USER
 - '--password'
 - $AMQ_PASSWORD
 initialDelaySeconds: 30
 timeoutSeconds: 5

spec:
 deploymentPlan:
 readinessProbe:
 exec:
 command:
 - bash
 - '-c'
 - /home/jboss/amq-broker/bin/artemis
 - check
 - queue
 - '--name'
 - livenessqueue
 - '--produce'
 - "1"
 - '--consume'
 - "1"
 - '--silent'
 - '--user'
 - $AMQ_USER
 - '--password'
 - $AMQ_PASSWORD
 initialDelaySeconds: 30
 timeoutSeconds: 5

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

88

NOTE

The queue name that you specify must be configured on the broker and have
a routingType of anycast. For example:

5. Save the CR.

Additional resources

For more information about liveness and readiness probes in OpenShift Container Platform, see
Monitoring application health by using health checks in the OpenShift Container Platform
documentation.

4.13. ENABLING MESSAGE MIGRATION TO SUPPORT CLUSTER
SCALEDOWN

If you want to be able to scale down the number of brokers in a cluster and migrate messages to
remaining Pods in the cluster, you must enable message migration.

When you scale down a cluster that has message migration enabled, a scaledown controller manages the
message migration process.

4.13.1. Steps in message migration process

The message migration process follows these steps:

1. When a broker Pod in the deployment shuts down due to an intentional scaledown of the
deployment, the Operator automatically deploys a scaledown Custom Resource to prepare for
message migration.

2. To check for Persistent Volumes (PVs) that have been orphaned, the scaledown controller looks
at the ordinal on the volume claim. The controller compares the ordinal on the volume claim to
that of the broker Pods that are still running in the StatefulSet (that is, the broker cluster) in the
project.
If the ordinal on the volume claim is higher than the ordinal on any of the broker Pods still
running in the broker cluster, the scaledown controller determines that the broker Pod at that
ordinal has been shut down and that messaging data must be migrated to another broker Pod.

3. The scaledown controller starts a drainer Pod. The drainer Pod connects to one of the other live
broker Pods in the cluster and migrates messages to that live broker Pod.

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemisAddress
metadata:
 name: livenessqueue
 namespace: activemq-artemis-operator
spec:
 addressName: livenessqueue
 queueConfiguration:
 purgeOnNoConsumers: false
 maxConsumers: -1
 durable: true
 enabled: true
 queueName: livenessqueue
 routingType: anycast

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

89

https://docs.openshift.com/container-platform/4.15/applications/application-health.html

The following figure illustrates how the scaledown controller (also known as a drain controller) migrates
messages to a running broker Pod.

After the messages are migrated successfully to an operational broker Pod, the drainer Pod shuts down
and the scaledown controller removes the PVC for the orphaned PV. The PV is returned to a "Released"
state.

NOTE

If the reclaim policy for the PV is set to retain, the PV cannot be used by another Pod
until you delete and recreate the PV. For example, if you scale the cluster up after scaling
it down, the PV is not available to a Pod started until you delete and recreate the PV.

Additional resources

For an example of message migration when you scale down a broker deployment, see
Section 4.13.2, “Enabling message migration” .

4.13.2. Enabling message migration

You can enable message migration in the ActiveMQArtemis Custom Resource (CR).

Prerequisites

You already have a basic broker deployment. See Section 3.4.1, “Deploying a basic broker
instance”.

You understand how message migration works. For more information, see Section 4.13.1, “Steps
in message migration process”.

NOTE

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

90

NOTE

A scaledown controller operates only within a single OpenShift project. The
controller cannot migrate messages between brokers in separate projects.

If you scale a broker deployment down to 0 (zero), message migration does not
occur, since there is no running broker Pod to which messaging data can be
migrated. However, if you scale a deployment down to zero and then back up to a
size that is smaller than the original deployment, drainer Pods are started for the
brokers that remain shut down.

Procedure

1. Edit the CR instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. Edit the CR for your deployment.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. In the left pane, click Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click the instance for your broker deployment.

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to edit the CR instance.

2. In the deploymentPlan section of the CR, add a messageMigration attribute and set to true. If
not already configured, add a persistenceEnabled attribute and also set to true. For example:

These settings mean that when you later scale down the size of your clustered broker
deployment, the Operator automatically starts a scaledown controller and migrates messages to
a broker Pod that is still running.

3. Save the CR.

4. (Optional) Complete the following steps to scale down the cluster and view the message
migration process.

spec:
 deploymentPlan:
 messageMigration: true
 persistenceEnabled: true
 ...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

91

a. In your existing broker deployment, verify which Pods are running.

You see output that looks like the following.

activemq-artemis-operator-8566d9bf58-9g25l 1/1 Running 0 3m38s
ex-aao-ss-0 1/1 Running 0 112s
ex-aao-ss-1 1/1 Running 0 8s

The preceding output shows that there are three Pods running; one for the broker Operator
itself, and a separate Pod for each broker in the deployment.

b. Log into each Pod and send some messages to each broker.

i. Supposing that Pod ex-aao-ss-0 has a cluster IP address of 172.17.0.6, run the
following command:

c. Supposing that Pod ex-aao-ss-1 has a cluster IP address of 172.17.0.7, run the following
command:

The preceding commands create a queue called TEST on each broker and add 1000
messages to each queue.

d. Scale the cluster down from two brokers to one.

i. Open the main broker CR, broker_activemqartemis_cr.yaml.

ii. In the CR, set deploymentPlan.size to 1.

iii. At the command line, apply the change:

You see that the Pod ex-aao-ss-1 starts to shut down. The scaledown controller starts
a new drainer Pod of the same name. This drainer Pod also shuts down after it migrates
all messages from broker Pod ex-aao-ss-1 to the other broker Pod in the cluster, ex-
aao-ss-0.

e. When the drainer Pod is shut down, check the message count on the TEST queue of broker
Pod ex-aao-ss-0. You see that the number of messages in the queue is 2000, indicating
that the drainer Pod successfully migrated 1000 messages from the broker Pod that shut
down.

4.14. CONTROLLING PLACEMENT OF BROKER PODS ON OPENSHIFT
CONTAINER PLATFORM NODES

You can control the placement of AMQ Broker pods on OpenShift Container Platform nodes by using

$ oc get pods

$ /opt/amq/bin/artemis producer --url tcp://172.17.0.6:61616 --user admin --password
admin

$ /opt/amq/bin/artemis producer --url tcp://172.17.0.7:61616 --user admin --password
admin

$ oc apply -f deploy/crs/broker_activemqartemis_cr.yaml

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

92

You can control the placement of AMQ Broker pods on OpenShift Container Platform nodes by using
node selectors, tolerations, or affinity and anti-affinity rules.

Node selectors

A node selector allows you to schedule a broker pod on a specific node.

Tolerations

A toleration enables a broker pod to be scheduled on a node if the toleration matches a taint
configured for the node. Without a matching pod toleration, a taint allows a node to refuse to accept
a pod.

Affinity/Anti-affinity

Node affinity rules control which nodes a pod can be scheduled on based on the node’s labels. Pod
affinity and anti-affinity rules control which nodes a pod can be scheduled on based on the
pods already running on that node.

4.14.1. Placing pods on specific nodes using node selectors

A node selector specifies a key-value pair that requires the broker pod to be scheduled on a node that
has matching key-value pair in the node label.

The following example shows how to configure a node selector to schedule a broker pod on a specific
node.

Prerequisites

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

Add a label to the OpenShift Container Platform node on which you want to schedule the broker
pod. For more information about adding node labels, see Using node selectors to control pod
placement in the OpenShift Container Platform documentation.

Procedure

1. Create a Custom Resource (CR) instance based on the main broker CRD.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

93

https://docs.openshift.com/container-platform/4.15/nodes/pods/nodes-pods-node-selectors.html

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the deploymentPlan section of the CR, add a nodeSelector section and add the node label
that you want to match to select a node for the pod. For example:

In this example, the broker pod is scheduled on a node that has a app: broker1 label.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

Additional resources

For more information about node selectors in OpenShift Container Platform, see Placing pods on
specific nodes using node selectors in the OpenShift Container Platform documentation.

4.14.2. Controlling pod placement using tolerations

Taints and tolerations control whether pods can or cannot be scheduled on specific nodes. A taint allows
a node to refuse to schedule a pod unless the pod has a matching toleration. You can use taints to
exclude pods from a node so the node is reserved for specific pods, such as broker pods, that have a
matching toleration.

Having a matching toleration permits a broker pod to be scheduled on a node but does not guarantee
that the pod is scheduled on that node. To guarantee that the broker pod is scheduled on the node that
has a taint configured, you can configure affinity rules. For more information, see Section 4.14.3,
“Controlling pod placement using affinity and anti-affinity rules”

The following example shows how to configure a toleration to match a taint that is configured on a node.

Prerequisites

spec:
 deploymentPlan:
 nodeSelector:
 app: broker1

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

94

https://docs.openshift.com/container-platform/4.15/nodes/scheduling/nodes-scheduler-node-selectors.html

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

Apply a taint to the nodes which you want to reserve for scheduling broker pods. A taint consists
of a key, value, and effect. The taint effect determines if:

existing pods on the node are evicted

existing pods are allowed to remain on the node but new pods cannot be scheduled unless
they have a matching toleration

new pods can be scheduled on the node if necessary, but preference is to not schedule new
pods on the node.

For more information about applying taints, see Controlling pod placement using node taints in the
OpenShift Container Platform documentation.

Procedure

1. Create a Custom Resource (CR) instance based on the main broker CRD.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the deploymentPlan section of the CR, add a tolerations section. In the tolerations section,
add a toleration for the node taint that you want to match. For example:

spec:
 deploymentPlan:
 tolerations:
 - key: "app"
 value: "amq-broker"
 effect: "NoSchedule"

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

95

https://docs.openshift.com/container-platform/4.15/nodes/scheduling/nodes-scheduler-taints-tolerations.html

In this example, the toleration matches a node taint of app=amq-broker:NoSchedule, so the
pod can be scheduled on a node that has this taint configured.

NOTE

To ensure that the broker pods are scheduled correctly, do not specify a
tolerationsSeconds attribute in the tolerations section of the CR.

1. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

Additional resources

For more information about taints and tolerations in OpenShift Container Platform, see Controlling pod
placement using node taints in the OpenShift Container Platform documentation.

4.14.3. Controlling pod placement using affinity and anti-affinity rules

You can control pod placement using node affinity, pod affinity, or pod anti-affinity rules. Node affinity
allows a pod to specify an affinity towards a group of target nodes. Pod affinity and anti-affinity allows
you to specify rules about how pods can or cannot be scheduled relative to other pods that are already
running on a node.

4.14.3.1. Controlling pod placement using node affinity rules

Node affinity allows a broker pod to specify an affinity towards a group of nodes that it can be placed
on. A broker pod can be scheduled on any node that has a label with the same key-value pair as the
affinity rule that you create for a pod.

The following example shows how to configure a broker to control pod placement by using node affinity
rules.

Prerequisites

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

Assign a common label to the nodes in your OpenShift Container Platform cluster that can
schedule the broker pod, for example, zone: emea.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

96

https://docs.openshift.com/container-platform/4.15/nodes/scheduling/nodes-scheduler-taints-tolerations.html

Procedure

1. Create a Custom Resource (CR) instance based on the main broker CRD.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the deploymentPlan section of the CR, add the following sections: affinity, nodeAffinity,
requiredDuringSchedulingIgnoredDuringExecution, and nodeSelectorTerms. In the
nodeSelectorTerms section, add the - matchExpressions parameter and specify the key-
value string of a node label to match. For example:

In this example, the affinity rule allows the pod to be scheduled on any node that has a label with
a key of zone and a value of emea.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

spec:
 deploymentPlan:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: zone
 operator: In
 values:
 - emea

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

97

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

Additional resources

For more information about affinity rules in OpenShift Container Platform, see Controlling pod
placement on nodes using node affinity rules in the OpenShift Container Platform documentation.

4.14.3.2. Placing pods relative to other pods using anti-affinity rules

Anti-affinity rules allow you to constrain which nodes the broker pods can be scheduled on based on the
labels of pods already running on that node.

A use case for using anti-affinity rules is to ensure that multiple broker pods in a cluster are not
scheduled on the same node, which creates a single point of failure. If you do not control the placement
of pods, 2 or more broker pods in a cluster can be scheduled on the same node.

The following example shows how to configure anti-affinity rules to prevent 2 broker pods in a cluster
from being scheduled on the same node.

Prerequisites

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

Procedure

1. Create a CR instance for the first broker in the cluster based on the main broker CRD.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

98

https://docs.openshift.com/container-platform/4.15/nodes/scheduling/nodes-scheduler-node-affinity.html

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the deploymentPlan section of the CR, add a labels section. Create an identifying label for
the first broker pod so that you can create an anti-affinity rule on the second broker pod to
prevent both pods from being scheduled on the same node. For example:

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4. Create a CR instance for the second broker in the cluster based on the main broker CRD.

a. In the deploymentPlan section of the CR, add the following sections: affinity,
podAntiAffinity, requiredDuringSchedulingIgnoredDuringExecution, and labelSelector.
In the labelSelector section, add the - matchExpressions parameter and specify the key-
value string of the broker pod label to match, so this pod is not scheduled on the same
node.

In this example, the pod anti-affinity rule prevents the pod from being placed on the same
node as a pod that has a label with a key of name and a value of broker1, which is the label
assigned to the first broker in the cluster.

spec:
 deploymentPlan:
 labels:
 name: broker1

spec:
 deploymentPlan:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 labelSelector:
 - matchExpressions:
 - key: name
 operator: In
 values:
 - broker1
 topologyKey: topology.kubernetes.io/zone

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

99

5. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

Additional resources

For more information about affinity rules in OpenShift Container Platform, see Controlling pod
placement on nodes using node affinity rules in the OpenShift Container Platform documentation.

4.15. CONFIGURING LOGGING FOR BROKERS

AMQ Broker uses the Log4j 2 logging utility to provide message logging. When you deploy a broker, it
uses a default Log4j 2 configuration. If you want to change the default configuration, you must create a
new Log4j 2 configuration in either a secret or a configMap. After you add the name of the secret or
configMap to the main broker Custom Resource (CR), the Operator configures each broker to use the
new logging configuration, which is stored in a file that the Operator mounts on each Pod.

Prerequisite

You are familiar with the Log4j 2 configuration options.

Procedure

1. Prepare a file that contains the log4j 2 configuration that you want to use with AMQ Broker.
The default Log4j 2 configuration file that is used by a broker is located in the
/home/jboss/amq-broker/etc/log4j2.properties file on each broker Pod. You can use the
contents of the default configuration file as the basis for creating a new Log4j 2 configuration in
a secret or configMap. To get the contents of the default Log4j 2 configuration file, complete
the following steps.

a. Using the OpenShift Container Platform web console:

i. Click Workloads → Pods.

ii. Click the ex-aao-ss Pod.

iii. Click the Terminal tab.

iv. Use the cat command to display the contents of the /home/jboss/amq-
broker/etc/log4j2.properties file on a broker Pod and copy the contents.

v. Paste the contents into a local file, where the OpenShift Container Platform CLI is

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

100

https://docs.openshift.com/container-platform/4.15/nodes/scheduling/nodes-scheduler-node-affinity.html

v. Paste the contents into a local file, where the OpenShift Container Platform CLI is
installed, and save the file as logging.properties.

b. Using the OpenShift command-line interface:

i. Get the name of a Pod in your deployment.

$ oc get pods -o wide

NAME STATUS IP
amq-broker-operator-54d996c Running 10.129.2.14
ex-aao-ss-0 Running 10.129.2.15

ii. Use the oc cp command to copy the log configuration file from a Pod to your local
directory.

$ oc cp <pod name>:/home/jboss/amq-broker/etc/log4j2.properties
logging.properties -c <name>-container

Where the <name> part of the container name is the prefix before the -ss string in the
Pod name. For example:

$ oc cp ex-aao-ss-0:/home/jboss/amq-broker/etc/log4j2.properties logging.properties
-c ex-aao-container

NOTE

When you create a configMap or secret from a file, the key in the
configMap or secret defaults to the file name and the value defaults to
the file content. By creating a secret from a file named
logging.properties, the required key for the new logging configuration is
inserted in the secret or configMap.

2. Edit the logging.properties file and create the Log4j 2 configuration that you want to use with
AMQ Broker.
For example, with the default configuration, AMQ Broker logs messages to the console only.
You might want to update the configuration so that AMQ Broker logs messages to disk also.

3. Add the updated Log4j 2 configuration to a secret or a ConfigMap.

a. Log in to OpenShift as a user that has privileges to create secrets or ConfigMaps in the
project for the broker deployment.

oc login -u <user> -p <password> --server=<host:port>

b. If you want to configure the log settings in a secret, use the oc create secret command. For
example:

oc create secret generic newlog4j-logging-config --from-file=logging.properties

c. If you want to configure the log settings in a ConfigMap, use the oc create configmap
command. For example:

oc create configmap newlog4j-logging-config --from-file=logging.properties

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

101

The configMap or secret name must have a suffix of -logging-config, so the Operator can
recognize that the secret contains new logging configuration.

4. Add the secret or ConfigMap to the Custom Resource (CR) instance for your broker
deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Edit the CR.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

c. Add the secret or configMap that contains the Log4j 2 logging configuration to the CR. The
following examples show a secret and a configMap added to the CR.

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 ...
 extraMounts:
 secrets:
 - "newlog4j-logging-config"
 ...

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 ...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

102

5. Save the CR.

In each broker Pod, the Operator mounts a logging.properties file that contains the logging
configuration in the secret or configMap that you created. In addition, the Operator configures each
broker to use the mounted log configuration file instead of the default log configuration file.

NOTE

If you update the logging configuration in a configMap or secret, each broker
automatically uses the updated logging configuration.

4.16. CONFIGURING A POD DISRUPTION BUDGET

A Pod disruption budget specifies the minimum number of Pods in a cluster that must be available
simultaneously during a voluntary disruption, such as a maintenance window.

Procedure

1. Edit the CR instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. Edit the CR for your deployment.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to OpenShift Container Platform as a user that has privileges to deploy CRs in
the project for the broker deployment.

ii. In the left pane, click Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click the instance for your broker deployment.

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to edit the CR instance.

2. In the spec section of the CR, add a podDisruptionBudget element and specify the minimum
number of Pods in your deployment that must be available during a voluntary disruption. In the
following example, a minimum of one Pod must be available:

 extraMounts:
 configMaps:
 - "newlog4j-logging-config"
 ...

spec:

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

103

3. Save the CR.

Additional resources

For more information about Pod disruption budgets, see Understanding how to use pod disruption
budgets to specify the number of pods that must be up in the OpenShift Container Platform
documentation.

4.17. CONFIGURING ITEMS NOT EXPOSED IN THE CUSTOM
RESOURCE DEFINITION

A Custom Resource Definition (CRD) is a schema of configuration items that you can modify for AMQ
Broker. You can specify values for configuration items that are in the CRD in a corresponding Custom
Resource (CR) instance. The Operator generates the configuration for each broker container from the
CR instance.

You can include configuration items in the CR that are not exposed in the CRD by adding the items to a
brokerProperties attribute. Items included in a brokerProperties attribute are stored in a secret, which
is mounted as a properties file on the broker Pod. At startup, the properties file is applied to the internal
java configuration bean after the XML configuration is applied.

In the following example, a single property is applied to the configuration bean.

In the following example, multiple properties are applied to nested collections of configuration beans to
create a broker connection named target that mirror messages with another broker.

IMPORTANT

Using the brokerProperties attribute provides access to many configuration items that
you cannot otherwise configure for AMQ Broker on OpenShift Container Platform. If
used incorrectly, some properties can have serious consequences for your deployment.
Always exercise caution when configuring properties by using this method.

 ...
 podDisruptionBudget:
 minAvailable: 1
 ...

spec:
 ...
 brokerProperties:
 - globalMaxSize=500m
 ...

spec:
 ...
 brokerProperties
 - "AMQPConnections.target.uri=tcp://<hostname>:<port>"
 - "AMQPConnections.target.connectionElements.mirror.type=MIRROR"
 - "AMQPConnections.target.connectionElements.mirror.messageAcknowledgements=true"
 - "AMQPConnections.target.connectionElements.mirror.queueCreation=true"
 - "AMQPConnections.target.connectionElements.mirror.queueRemoval=true"
 ...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

104

https://docs.openshift.com/container-platform/4.15/nodes/pods/nodes-pods-configuring.html

Procedure

1. Edit the CR for your deployment.

a. Using the OpenShift web console:

i. Enter the following command:

oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name.

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to edit the CR instance.

2. In the spec section of the CR, add a brokerProperties element and add a list of properties in
camel-case format. For example:

3. Save the CR.

4. (Optional) Check the status of the configuration.

a. Using the OpenShift command-line interface:

i. Get the status conditions for your brokers.

$ oc get activemqartemis -o yaml

b. Using the OpenShift web console:

i. Navigate to the status section of the CR for your broker deployment.

c. Check the value of the reason field in the BrokerPropertiesApplied status information.
For example:

spec:
 ...
 brokerProperties:
 - globalMaxSize=500m
 - maxDiskUsage=85
 ...

- lastTransitionTime: "2023-02-06T20:50:01Z"
 message: ""
 reason: Applied

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

105

The possible values are:

Applied

OpenShift Container Platform propagated the updated secret to the properties file on
each broker Pod.

AppliedWithError

OpenShift Container Platform propagated the updated secret to the properties file on
each broker Pod. However, an error was found in the brokerProperties configuration. In
the status section of the CR, check the message field to identify the invalid property
and correct it in the CR.

OutOfSync

OpenShift Container Platform has not yet propagated the updated secret to the
properties file on each broker Pod. When OpenShift Container Platform propagates the
updated secret to each Pod, the status is updated.

NOTE

The broker checks periodically for configuration changes, including updates to the
properties file that is mounted on the Pod, and reloads the configuration if it detects any
changes. However, updates to properties that are read only when the broker starts, for
example, JVM settings, are not reloaded until you restart the broker. For more
information about which properties are reloaded, see Reloading configuration updates in
Configuring AMQ Broker.

Additional Information

For a list of properties that you can configure in the brokerProperties element in a CR, see Broker
Properties in Configuring AMQ Broker.

 status: "True"
 type: BrokerPropertiesApplied

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

106

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker//index#reloading-configuration-updates-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker//index#ref-br-broker-properties_configuring

CHAPTER 5. CONNECTING TO AMQ MANAGEMENT
CONSOLE FOR AN OPERATOR-BASED BROKER

DEPLOYMENT
Each broker Pod in an Operator-based deployment hosts its own instance of AMQ Management
Console at port 8161.

The following procedures describe how to connect to AMQ Management Console for a deployed broker.

Prerequisites

You created a broker deployment using the AMQ Broker Operator. For example, to learn how to
use a sample CR to create a basic broker deployment, see Section 3.4.1, “Deploying a basic
broker instance”.

You enabled access to AMQ Management Console for the brokers in your deployment. For
more information about enabling access to AMQ Management Console, see Section 4.6,
“Enabling access to AMQ Management Console”.

5.1. CONNECTING TO AMQ MANAGEMENT CONSOLE

When you enable access to AMQ Management Console in the Custom Resource (CR) instance for your
broker deployment, the Operator automatically creates a dedicated Service and Route for each broker
Pod to provide access to AMQ Management Console.

The default name of the automatically-created Service is in the form <custom-resource-name>-
wconsj-<broker-pod-ordinal>-svc. For example, my-broker-deployment-wconsj-0-svc. The default
name of the automatically-created Route is in the form <custom-resource-name>-wconsj-<broker-
pod-ordinal>-svc-rte. For example, my-broker-deployment-wconsj-0-svc-rte.

This procedure shows you how to access the console for a running broker Pod.

Procedure

1. In the OpenShift Container Platform web console, click Networking → Routes.
On the Routes page, identify the wconsj Route for the given broker Pod. For example, my-
broker-deployment-wconsj-0-svc-rte.

2. Under Location, click the link that corresponds to the Route.
A new tab opens in your web browser.

3. Click the Management Console link.
The AMQ Management Console login page opens.

NOTE

Credentials are required to log in to AMQ Management Console only if the
requireLogin property of the CR is set to true. This property specifies whether
login credentials are required to log in to the broker and AMQ Management
Console. By default, the requireLogin property is set to false. If requireLogin is
set to false, you can log in to AMQ Management Console without supplying a
valid username and password by entering any text when prompted for a
username and password.

CHAPTER 5. CONNECTING TO AMQ MANAGEMENT CONSOLE FOR AN OPERATOR-BASED BROKER DEPLOYMENT

107

4. If the requireLogin property is set to true, enter a username and password.
You can enter the credentials for a preconfigured user that is available for connecting to the
broker and AMQ Management Console. You can find these credentials in the adminUser and
adminPassword properties if these properties are configured in the Custom Resource (CR)
instance. It these properties are not configured in the CR, the Operator automatically generates
the credentials. To obtain the automatically generated credentials, see Section 5.2, “Accessing
AMQ Management Console login credentials”.

If you want to log in as any other user, note that a user must belong to a security role specified
for the hawtio.role system property to have the permissions required to log in to AMQ
Management Console. The default role for the hawtio.role system property is admin, which the
preconfigured user belongs to.

5.2. ACCESSING AMQ MANAGEMENT CONSOLE LOGIN
CREDENTIALS

If you do not specify a value for adminUser and adminPassword in the Custom Resource (CR)
instance used for your broker deployment, the Operator automatically generates these credentials and
stores them in a secret. The default secret name is in the form <custom-resource-name>-credentials-
secret, for example, my-broker-deployment-credentials-secret.

NOTE

Values for adminUser and adminPassword are required to log in to the management
console only if the requireLogin parameter of the CR is set to true.

If requireLogin is set to false, you can log in to the console without supplying a valid
username password by entering any text when prompted for username and password.

This procedure shows how to access the login credentials.

Procedure

1. See the complete list of secrets in your OpenShift project.

a. From the OpenShift Container Platform web console, click Workload → Secrets.

b. From the command line:

$ oc get secrets

2. Open the appropriate secret to reveal the Base64-encoded console login credentials.

a. From the OpenShift Container Platform web console, click the secret that includes your
broker Custom Resource instance in its name. Click the YAML tab.

b. From the command line:

$ oc edit secret <my-broker-deployment-credentials-secret>

3. To decode a value in the secret, use a command such as the following:

$ echo 'dXNlcl9uYW1l' | base64 --decode
console_admin

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

108

Additional resources

To learn more about using AMQ Management Console to view and manage brokers, see
Managing brokers using AMQ Management Console in Managing AMQ Broker.

CHAPTER 5. CONNECTING TO AMQ MANAGEMENT CONSOLE FOR AN OPERATOR-BASED BROKER DEPLOYMENT

109

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/managing_amq_broker/index#assembly-br-managing-broker_managing

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER
DEPLOYMENT

The procedures in this section show how to upgrade:

The AMQ Broker Operator version, using both the OpenShift command-line interface (CLI) and
OperatorHub

The broker container image for an Operator-based broker deployment

6.1. BEFORE YOU BEGIN

This section describes some important considerations before you upgrade the Operator and broker
container images for an Operator-based broker deployment.

Upgrading the Operator using either the OpenShift command-line interface (CLI) or
OperatorHub requires cluster administrator privileges for your OpenShift cluster.

If you originally used the CLI to install the Operator, you should also use the CLI to upgrade the
Operator. If you originally used OperatorHub to install the Operator (that is, it appears under
Operators → Installed Operators for your project in the OpenShift Container Platform web
console), you should also use OperatorHub to upgrade the Operator. For more information
about these upgrade methods, see:

Section 6.2, “Upgrading the Operator using the CLI”

Section 6.3, “Upgrading the Operator using OperatorHub”

If the redeliveryDelayMultiplier and the redeliveryCollisionAvoidanceFactor attributes are
configured in the main broker CR in a 7.8.x or 7.9.x deployment, the new Operator is unable to
reconcile any CR after you upgrade to 7.10.x. The reconcile fails because the data type of both
attributes changed from float to string in 7.10.x.
You can work around this issue by deleting the redeliveryDelayMultiplier and the
redeliveryCollisionAvoidanceFactor attributes from the
spec.deploymentPlan.addressSettings.addressSetting attribute. Then, configure the
attributes under the brokerProperties attribute. For example:

NOTE

Under the brokerProperties attribute, use the redeliveryMultiplier attribute
name instead of the redeliveryDelayMultiplier attribute name that you deleted.

6.2. UPGRADING THE OPERATOR USING THE CLI

The procedures in this section show how to use the OpenShift command-line interface (CLI) to upgrade
different versions of the Operator to the latest version available for AMQ Broker 7.11.

spec:
 ...
 brokerProperties:
 - "addressSettings.#.redeliveryMultiplier=2.1"
 - "addressSettings.#.redeliveryCollisionAvoidanceFactor=1.2"

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

110

6.2.1. Prerequisites

You should use the CLI to upgrade the Operator only if you originally used the CLI to install the
Operator. If you originally used OperatorHub to install the Operator (that is, the Operator
appears under Operators → Installed Operators for your project in the OpenShift Container
Platform web console), you should use OperatorHub to upgrade the Operator. To learn how to
upgrade the Operator using OperatorHub, see Section 6.3, “Upgrading the Operator using
OperatorHub”.

6.2.2. Upgrading the Operator using the CLI

You can use the OpenShift command-line interface (CLI) to upgrade the Operator to the latest version
for AMQ Broker 7.11.

Procedure

1. In your web browser, navigate to the Software Downloads page for AMQ Broker 7.11.7 .

2. Ensure that the value of the Version drop-down list is set to 7.11.7 and the Releases tab is
selected.

3. Next to AMQ Broker 7.11.7 Operator Installation and Example Files, click Download.
Download of the amq-broker-operator-7.11.7-ocp-install-examples.zip compressed archive
automatically begins.

4. When the download has completed, move the archive to your chosen installation directory. The
following example moves the archive to a directory called ~/broker/operator.

5. In your chosen installation directory, extract the contents of the archive. For example:

6. Log in to OpenShift Container Platform as an administrator for the project that contains your
existing Operator deployment.

7. Switch to the OpenShift project in which you want to upgrade your Operator version.

8. In the deploy directory of the latest Operator archive that you downloaded and extracted, open
the operator.yaml file.

NOTE

In the operator.yaml file, the Operator uses an image that is represented by a
Secure Hash Algorithm (SHA) value. The comment line, which begins with a
number sign (#) symbol, denotes that the SHA value corresponds to a specific
container image tag.

$ mkdir ~/broker/operator
$ mv amq-broker-operator-7.11.7-ocp-install-examples.zip ~/broker/operator

$ cd ~/broker/operator
$ unzip amq-broker-operator-operator-7.11.7-ocp-install-examples.zip

$ oc login -u <user>

$ oc project <project-name>

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

111

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.amq.broker&downloadType=distributions&version=7.11.7

9. Open the operator.yaml file for your previous Operator deployment. Check that any non-
default values that you specified in your previous configuration are replicated in the new
operator.yaml configuration file.

10. In the new operator.yaml file, the Operator is named amq-broker-controller-manager by
default. If the name of the Operator in your previous deployment is not amq-broker-controller-
manager, replace all instances of amq-broker-controller-manager with the previous Operator
name. For example:

11. In the new operator.yaml file, the service account for the Operator is named amq-broker-
controller-manager. In previous versions, the service account for the Operator was named
amq-broker-operator.

a. If you want to use the service account name in your previous deployment, replace the name
of the service account in the new operator.yaml file with the name used in the previous
deployment. For example:

b. If you want to use the new service account name, amq-broker-controller-manager for the
Operator, update the service account, role, and role binding in your project.

12. Update the CRDs that are included with the Operator.

a. Update the main broker CRD.

b. Update the address CRD.

c. Update the scaledown controller CRD.

d. Update the security CRD.

spec:
 ...
 selector
 matchLabels
 name: amq-broker-operator
 ...

spec:
 ...
 serviceAccountName: amq-broker-operator
 ...

$ oc apply -f deploy/service_account.yaml

$ oc apply -f deploy/role.yaml

$ oc apply -f deploy/role_binding.yaml

$ oc apply -f deploy/crds/broker_activemqartemis_crd.yaml

$ oc apply -f deploy/crds/broker_activemqartemisaddress_crd.yaml

$ oc apply -f deploy/crds/broker_activemqartemisscaledown_crd.yaml

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

112

13. If you are upgrading from AMQ Broker Operator 7.10.0 only, delete the Operator and the
StatefulSet.
By default, the new Operator deletes the StatefulSet to remove custom and Operator metering
labels, which were incorrectly added to the StatefulSet selector by the Operator in 7.10.0. When
the Operator deletes the StatefulSet, it also deletes the existing broker Pods, which causes a
temporary broker outage. If you want to avoid an outage, complete the following steps to delete
the Operator and the StatefulSet without deleting the broker Pods.

a. Delete the Operator.

b. Delete the StatefulSet with the --cascade=orphan option to orphan the broker Pods. The
orphaned broker Pods continue to run after the StatefulSet is deleted.

14. If you are upgrading from AMQ Broker Operator 7.10.0 or 7.10.1, check if your main broker CR
has labels called application or ActiveMQArtemis configured in the deploymentPlan.labels
attribute.
These labels are reserved for the Operator to assign labels to Pods and are not permitted as
custom labels after 7.10.1. If these custom labels were configured in the main broker CR, the
Operator-assigned labels on the Pods were overwritten by the custom labels. If either of these
custom labels are configured in the main broker CR, complete the following steps to restore the
correct labels on the Pods and remove the labels from the CR.

a. If you are upgrading from 7.10.0, you deleted the Operator in the previous step. If you are
upgrading from 7.10.1, delete the Operator.

b. Run the following command to restore the correct Pod labels. In the following example, 'ex-
aao' is the name of the StatefulSet deployed.

c. Delete the application and ActiveMQArtemis labels from the deploymentPlan.labels
attribute in the CR.

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

iii. In the deploymentPlan.labels attribute in the CR, delete any custom labels called
application or ActiveMQArtemis.

$ oc apply -f deploy/crds/broker_activemqartemissecurity_crd.yaml

$ oc delete -f deploy/operator.yaml

$ oc delete statefulset <statefulset-name> --cascade=orphan

$ oc delete -f deploy/operator.yaml

$ for pod in $(oc get pods | grep -o '^ex-aao[^]*'); do oc label --overwrite pods $pod
ActiveMQArtemis=ex-aao application=ex-aao-app; done

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

113

iv. Save the CR file.

v. Deploy the CR instance.

A. Switch to the project for the broker deployment.

$ oc project <project_name>

B. Apply the CR.

$ oc apply -f <path/to/broker_custom_resource_instance>.yaml

d. If you deleted the previous Operator, deploy the new Operator.

15. Apply the updated Operator configuration.

16. The new Operator can recognize and manage your previous broker deployments. If you set
values in the image or version field in the CR, the Operator’s reconciliation process upgrades
the broker Pods to the corresponding images when the Operator starts. For more information,
see Section 6.4, “Restricting automatic upgrades of broker container images” . Otherwise, the
Operator upgrades each broker Pod to the latest container image.

NOTE

If the reconciliation process does not start, you can start the process by scaling
the deployment. For more information, see Section 3.4.1, “Deploying a basic
broker instance”.

17. Add attributes to the CR for the new features that are available in the upgraded broker, as
required.

6.3. UPGRADING THE OPERATOR USING OPERATORHUB

This section describes how to use OperatorHub to upgrade the Operator for AMQ Broker.

6.3.1. Prerequisites

Use OperatorHub to upgrade the Operator only if you originally used OperatorHub to install the
Operator (that is, the Operator appears under Operators → Installed Operators for your
project in the OpenShift Container Platform web console). By contrast, if you originally used the
OpenShift command-line interface (CLI) to install the Operator, you should also use the CLI to
upgrade the Operator. To learn how to upgrade the Operator using the CLI, see Section 6.2,
“Upgrading the Operator using the CLI”.

Upgrading the AMQ Broker Operator using OperatorHub requires cluster administrator
privileges for your OpenShift cluster.

6.3.2. Before you begin

This section describes some important considerations before you use OperatorHub to upgrade an

 $ oc create -f deploy/operator.yaml

$ oc apply -f deploy/operator.yaml

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

114

This section describes some important considerations before you use OperatorHub to upgrade an
instance of the AMQ Broker Operator.

The Operator Lifecycle Manager automatically updates the CRDs in your OpenShift cluster
when you install the latest Operator version from OperatorHub. You do not need to remove
existing CRDs. If you remove existing CRDs, all CRs and broker instances are also removed.

When you update your cluster with the CRDs for the latest Operator version, this update affects
all projects in the cluster. Any broker Pods deployed from previous versions of the Operator
might become unable to update their status in the OpenShift Container Platform web console.
When you click the Logs tab of a running broker Pod, you see messages indicating that
'UpdatePodStatus' has failed. However, the broker Pods and Operator in that project continue
to work as expected. To fix this issue for an affected project, you must also upgrade that project
to use the latest version of the Operator.

The procedure to follow depends on the Operator version that you are upgrading from. Ensure
that you follow the upgrade procedure that is for your current version.

6.3.3. Upgrading the Operator from pre-7.10.0 to 7.11.x

You must uninstall and reinstall the Operator to upgrade from pre-7.10.0 to 7.11.x.

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. Uninstall the existing AMQ Broker Operator from your project.

3. In the left navigation menu, click Operators → Installed Operators.

4. From the Project drop-down menu at the top of the page, select the project in which you want
to uninstall the Operator.

5. Locate the Red Hat Integration - AMQ Broker instance that you want to uninstall.

6. For your Operator instance, click the More Options icon (three vertical dots) on the right-hand
side. Select Uninstall Operator.

7. On the confirmation dialog box, click Uninstall.

8. Use OperatorHub to install the latest version of the Operator for AMQ Broker 7.11. For more
information, see Section 3.3.2, “Deploying the Operator from OperatorHub” .
The new Operator can recognize and manage your previous broker deployments. If you set
values in the image or version field in the CR, the Operator’s reconciliation process upgrades
the broker Pods to the corresponding container images when the Operator starts. For more
information, see Section 6.4, “Restricting automatic upgrades of broker container images” .
Otherwise, the Operator upgrades each broker Pod to the latest container image.

NOTE

If the reconciliation process does not start, you can start the process by scaling
the deployment. For more information, see Section 3.4.1, “Deploying a basic
broker instance”.

6.3.4. Upgrading the Operator from 7.10.0 to 7.11.x

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

115

You must uninstall and reinstall the Operator to upgrade from 7.10.0 to 7.11.x.

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. Uninstall the existing AMQ Broker Operator from your project.

a. In the left navigation menu, click Operators → Installed Operators.

b. From the Project drop-down menu at the top of the page, select the project in which you
want to uninstall the Operator.

c. Locate the Red Hat Integration - AMQ Broker instance that you want to uninstall.

d. For your Operator instance, click the More Options icon (three vertical dots) on the right-
hand side. Select Uninstall Operator.

e. On the confirmation dialog box, click Uninstall.

3. When you upgrade a 7.10.0 Operator, the new Operator deletes the StatefulSet to remove
custom and Operator metering labels, which were incorrectly added to the StatefulSet selector
by the Operator in 7.10.0. When the Operator deletes the StatefulSet, it also deletes the
existing broker pods, which causes a temporary broker outage. If you want to avoid the outage,
complete the following steps to delete the StatefulSet and orphan the broker pods so that they
continue to run.

i. Log in to OpenShift Container Platform CLI as an administrator for the project that
contains your existing Operator deployment:

ii. Switch to the OpenShift project in which you want to upgrade your Operator version.

iii. Delete the StatefulSet with the --cascade=orphan option to orphan the broker Pods. The
orphaned broker Pods continue to run after the StatefulSet is deleted.

4. Check if your main broker CR has labels called application or ActiveMQArtemis configured in
the deploymentPlan.labels attribute.
In 7.10.0, it was possible to configure these custom labels in the CR. These labels are reserved
for the Operator to assign labels to Pods and cannot be added as custom labels after 7.10.0. If
these custom labels were configured in the main broker CR in 7.10.0, the Operator-assigned
labels on the Pods were overwritten by the custom labels. If the CR has either of these labels,
complete the following steps to restore the correct labels on the Pods and remove the labels
from the CR.

a. In the OpenShift command-line interface (CLI), run the following command to restore the
correct Pod labels. In the following example, 'ex-aao' is the name of the StatefulSet
deployed.

$ oc login -u <user>

$ oc project <project-name>

$ oc delete statefulset <statefulset-name> --cascade=orphan

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

116

b. Delete the application and ActiveMQArtemis labels from the deploymentPlan.labels
attribute in the CR.

i. Using the OpenShift command-line interface:

A. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

B. Edit the CR for your deployment.

oc edit ActiveMQArtemis <statefulset name> -n <namespace>

C. In the deploymentPlan.labels element in the CR, delete any custom labels called
application or ActiveMQArtemis.

D. Save the CR.

ii. Using the OpenShift Container Platform web console:

A. Log in to the console as a user that has privileges to deploy CRs in the project for
the broker deployment.

B. In the left pane, click Administration → Custom Resource Definitions.

C. Click the ActiveMQArtemis CRD.

D. Click the Instances tab.

E. Click the instance for your broker deployment.

F. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

G. In the deploymentPlan.labels element in the CR, delete any custom labels called
application or ActiveMQArtemis.

H. Click Save.

5. Use OperatorHub to install the latest version of the Operator for AMQ Broker 7.11. For more
information, see Section 3.3.2, “Deploying the Operator from OperatorHub” .
The new Operator can recognize and manage your previous broker deployments. If you set
values in the image or version field in the CR, the Operator’s reconciliation process upgrades
the broker Pods to the corresponding images when the Operator starts. For more information,
see Section 6.4, “Restricting automatic upgrades of broker container images” . Otherwise, the
Operator upgrades each broker Pod to the latest container image.

NOTE

If the reconciliation process does not start, you can start the process by scaling
the deployment. For more information, see Section 3.4.1, “Deploying a basic
broker instance”.

$ for pod in $(oc get pods | grep -o '^ex-aao[^]*'); do oc label --overwrite pods $pod
ActiveMQArtemis=ex-aao application=ex-aao-app; done

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

117

6. Add attributes to the CR for the new features that are available in the upgraded broker, as
required.

6.3.5. Upgrading the Operator from 7.10.1 to 7.11.x

You must uninstall and reinstall the Operator to upgrade from 7.10.1 to 7.11.x.

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. Check if your main broker CR has labels called application or ActiveMQArtemis configured in
the deploymentPlan.labels attribute.
These labels are reserved for the Operator to assign labels to Pods and cannot be used after
7.10.1. If these custom labels were configured in the main broker CR, the Operator-assigned
labels on the Pods were overwritten by the custom labels.

3. If these custom labels are not configured in the main broker CR, use OperatorHub to install the
latest version of the Operator for AMQ Broker 7.11. For more information, see Section 3.3.2,
“Deploying the Operator from OperatorHub”.

4. If either of these custom labels are configured in the main broker CR, complete the following
steps to uninstall the existing Operator, restore the correct Pod labels and remove the labels
from the CR, before you install the new Operator.

NOTE

By uninstalling the Operator, you can remove the custom labels without the
Operator deleting the StatefulSet, which also deletes the existing broker pods
and causes a temporary broker outage.

a. Uninstall the existing AMQ Broker Operator from your project.

i. In the left navigation menu, click Operators → Installed Operators.

ii. From the Project drop-down menu at the top of the page, select the project from
which you want to uninstall the Operator.

iii. Locate the Red Hat Integration - AMQ Broker instance that you want to uninstall.

iv. For your Operator instance, click the More Options icon (three vertical dots) on the
right-hand side. Select Uninstall Operator.

v. On the confirmation dialog box, click Uninstall.

b. In the OpenShift command-line interface (CLI), run the following command to restore the
correct Pod labels. In the following example, 'ex-aao' is the name of the StatefulSet
deployed.

c. Delete the application and ActiveMQArtemis labels from the deploymentPlan.labels
attribute in the CR.

$ for pod in $(oc get pods | grep -o '^ex-aao[^]*'); do oc label --overwrite pods $pod
ActiveMQArtemis=ex-aao application=ex-aao-app; done

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

118

i. Using the OpenShift command-line interface:

A. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

B. Edit the CR for your deployment.

oc edit ActiveMQArtemis <statefulset name> -n <namespace>

C. In the deploymentPlan.labels attribute in the CR, delete any custom labels called
application or ActiveMQArtemis.

D. Save the CR file.

ii. Using the OpenShift Container Platform web console:

A. Log in to the console as a user that has privileges to deploy CRs in the project for
the broker deployment.

B. In the left pane, click Administration → Custom Resource Definitions.

C. Click the ActiveMQArtemis CRD.

D. Click the Instances tab.

E. Click the instance for your broker deployment.

F. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

G. In the deploymentPlan.labels attribute in the CR, delete any custom labels called
application or ActiveMQArtemis.

H. Click Save.

5. Use OperatorHub to install the latest version of the Operator for AMQ Broker 7.11. For more
information, see Section 3.3.2, “Deploying the Operator from OperatorHub” .
The new Operator can recognize and manage your previous broker deployments. If you set
values in the image or version field in the CR, the Operator’s reconciliation process upgrades
the broker Pods to the corresponding images when the Operator starts. For more information,
see Section 6.4, “Restricting automatic upgrades of broker container images” . Otherwise, the
Operator upgrades each broker Pod to the latest container image.

NOTE

If the reconciliation process does not start, you can start the process by scaling
the deployment. For more information, see Section 3.4.1, “Deploying a basic
broker instance”.

6. Add attributes to the CR for the new features that are available in the upgraded broker, as
required.

6.3.6. Upgrading the Operator from 7.10.2 or later to 7.11.x

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

119

You must uninstall and reinstall the Operator to upgrade from 7.10.2 or later to 7.11.x.

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. Uninstall the existing AMQ Broker Operator from your project.

3. In the left navigation menu, click Operators → Installed Operators.

4. From the Project drop-down menu at the top of the page, select the project in which you want
to uninstall the Operator.

5. Locate the Red Hat Integration - AMQ Broker instance that you want to uninstall.

6. For your Operator instance, click the More Options icon (three vertical dots) on the right-hand
side. Select Uninstall Operator.

7. On the confirmation dialog box, click Uninstall.

8. Use OperatorHub to install the latest version of the Operator for AMQ Broker 7.11. For more
information, see Section 3.3.2, “Deploying the Operator from OperatorHub” .
The new Operator can recognize and manage your previous broker deployments. If you set
values in the image or version field in the CR, the Operator’s reconciliation process upgrades
the broker Pods to the corresponding images when the Operator starts. For more information,
see Section 6.4, “Restricting automatic upgrades of broker container images” . Otherwise, the
Operator upgrades each broker Pod to the latest container image.

NOTE

If the reconciliation process does not start, you can start the process by scaling
the deployment. For more information, see Section 3.4.1, “Deploying a basic
broker instance”.

6.4. RESTRICTING AUTOMATIC UPGRADES OF BROKER CONTAINER
IMAGES

By default, the Operator automatically upgrades each broker in the deployment to use the latest
available container images. In the Custom Resource (CR) for your deployment, you can restrict the
ability of the Operator to upgrade the images by specifying a version number or the URLs of specific
container images.

NOTE

If you want to restrict automatic upgrades of broker container images, ensure that your
CR has either a version number or the combined URLs of the broker and init container
images.

6.4.1. Restricting automatic upgrades of images by using version numbers

You can restrict the version of the container images to which the brokers are automatically upgraded as
new versions become available.

NOTE

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

120

NOTE

When you restrict upgrades based on version numbers, the Operator continues to
automatically upgrade the brokers to use any new images that contain security fixes for
the version deployed.

Procedure

1. Edit the main broker CR instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to edit and deploy CRs in the project
for the broker deployment.

$ oc login -u <user> -p <password> --server=<host:port>

ii. Edit the CR.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name.

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to edit the CR instance.

NOTE

In the status section of the CR, the .status.version.brokerVersion field
shows the version of AMQ Broker that is currently deployed.

2. In the spec.version attribute, specify the version to which the Operator can upgrade the broker
and init container images in your deployment. The following are examples of values that you can
specify.

Examples

In the following example, the Operator upgrades the current container images in your
deployment to 7.11.0.

In the following example, the Operator upgrades the current container images in your

spec:
 version: '7.11.0'
 ...

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

121

deployment to the latest available 7.10.x images. For example, if your deployment is using
7.10.1 container images, the Operator automatically upgrades the images to 7.10.2 but not to
7.11.7.

In the following example, the Operator upgrades the current container images in your
deployment to the latest 7.x.x images. For example, if your deployment is using 7.10.2 images,
the Operator automatically upgrades the images to 7.11.7.

NOTE

To upgrade between minor versions of the container images, for example,
from 7.10.x to 7.11.x, you require an Operator that has the same minor version
as that of the new container images. For example, to upgrade from 7.10.2 to
7.11.7, a 7.11.x Operator must be installed.

3. Save the CR.

IMPORTANT

Ensure that the CR does not contain a spec.deploymentPlan.image or a
spec.deploymentPlan.initImage attribute in addition to a spec.version attribute. Both
of these attributes override the spec.version attribute. If the CR has one of these
attributes as well as the spec.version attribute, the versions of the broker and init
images deployed can diverge, which might prevent the broker from running.

When you save the CR, the Operator first validates that an upgrade to the AMQ Broker version specified
for spec.version is available for your existing deployment. If you specified an invalid version of AMQ
Broker to which to upgrade, for example, a version that is not yet available, the Operator logs a warning
message, and takes no further action.

However, if an upgrade to the specified version is available, then the Operator upgrades each broker in
the deployment to use the broker container images that correspond to the new AMQ Broker version.

The broker container image that the Operator uses is defined in an environment variable in the
operator.yaml configuration file of the Operator deployment. The environment variable name includes
an identifier for the AMQ Broker version. For example, the environment variable
RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_7117 corresponds to AMQ Broker 7.11.7.

When the Operator has applied the CR change, it restarts each broker Pod in your deployment so that
each Pod uses the specified image version. If you have multiple brokers in your deployment, only one
broker Pod shuts down and restarts at a time.

Additional resources

To learn how the Operator uses environment variables to choose a broker container image, see

spec:
 version: '7.10'
 ...

spec:
 version: '7'
 ...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

122

To learn how the Operator uses environment variables to choose a broker container image, see
Section 2.6, “How the Operator chooses container images” .

To view the status of the deployment, see Section 6.4.3, “Validation of restrictions applied to
automatic upgrades”

6.4.2. Restricting automatic upgrades of images by using image URLs

If you want to upgrade the brokers in your deployment to use specific container images, you can specify
the registry URLs of the images in the CR. After the Operator upgrades the brokers to the specified
container images, no further upgrades occur until you replace the image URLs in the CR. For example,
the Operator does not automatically upgrade the brokers to use newer images that contain security
fixes for the images deployed.

IMPORTANT

If you want to restrict automatic upgrades by using image URLs, specify URLs for both
the spec.deploymentPlan.image and the spec.deploymentPlan.initImage attributes in
the CR to ensure that the broker and init container images match. If you specify the URL
of one container image only, the broker and init container image can diverge, which might
prevent the broker from running.

NOTE

If a CR has a spec.version attribute in addition to spec.deploymentPlan.image and
spec.deploymentPlan.initImage attributes, the Operator ignores the spec.version
attribute.

Procedure

1. Obtain the URLs of the broker and init container images to which the Operator can upgrade the
current images.

a. In the Red Hat Catalog, open the broker container component page: AMQ Broker for RHEL
8 (Multiarch).

b. In the Architecture drop-down, select your architecture.

c. In the Tag drop-down, select the tag that corresponds to the image you want to install.
Tags are displayed in chronological order based on the release date. A tag consists of the
release version and an assigned tag.

d. Open the Get this image tab.

e. In the Manifest field, click the Copy icon.

f. Paste the URL into a text file.

g. In the Red Hat Catalog, open the init container component page: AMQ Broker Init for RHEL
8 (Multiarch)

h. To obtain the URL of the init container image, repeat the steps that you followed to obtain
the URL of the broker container image.

2. Edit the main broker CR instance for the broker deployment.

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

123

https://catalog.redhat.com/software/containers/amq7/amq-broker-rhel8/5e46b4edd70cc54b02be4e9a
https://catalog.redhat.com/software/containers/detail/603e1e97f6eacfd45bdb1363?push_date=1670340978000&architecture=amd64&tag=7.10-37

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to edit and deploy CRs in the project
for the broker deployment.

$ oc login -u <user> -p <password> --server=<host:port>

ii. Edit the CR.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name.

vi. Click the YAML tab.
Within the console, a YAML editor opens, which enables you to configure the CR
instance

c. Copy the URLs of the broker and init container images that you recorded in the text file and
insert them in the spec.deploymentPlan.image and spec.deploymentPlan.initImage
fields in the CR. For example:

3. Save the CR.
When you save the CR, the Operator upgrades the brokers to use the new images and uses
these images until you update the values of the spec.deploymentPlan.image and
spec.deploymentPlan.initImage attributes again.

NOTE

spec:
 ...
 deploymentPlan:
 image: registry.redhat.io/amq7/amq-broker-
rhel8@1f7a173924ad77d018300d4109b91c45896407c13d6a70b37d8993a95e363521
 initImage: registry.redhat.io/amq7/amq-broker-init-
rhel8@b402d076f7c280bb2328f680d0876a8c09ab31b488f86663a6a757b35f97216e
 ...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

124

NOTE

If you already deployed AMQ Broker without setting image URLs, you can set the image
URLs retrospectively to prevent the Operator from upgrading the current images
deployed. You can find the registry URLs for the images deployed in the
.status.version.image and .status.version.initImage attributes, which are in the status
section of the CR.

If you copy the image URLs from the .status.version.image and
.status.version.initImage attributes and insert them in the
spec.deploymentPlan.image and the spec.deploymentPlan.initImage attributes
respectively, the Operator does not upgrade the images currently deployed.

Additional Resources

To view the status of the deployment, see Section 6.4.3, “Validation of restrictions applied to
automatic upgrades”.

6.4.3. Validation of restrictions applied to automatic upgrades

After you save a CR, the Operator validates that the CR does not contain either of the following:

A spec.deploymentPlan.image attribute without a spec.deploymentPlan.initImage attribute
or vice versa.

A spec.version attribute with either a spec.deploymentPlan.image and a
spec.deploymentPlan.initImage attribute, or both.

Either of these configurations can result in different versions of the broker and init container images
after an upgrade, which might prevent your broker from starting. If a CR has either of these
configurations, the Operator sets the status of the Valid condition to Unknown as a warning. For
example, if a CR has a spec.deploymentPlan.image attribute without a
spec.deploymentPlan.initImage attribute or vice versa, the Operator displays the following status
information for the Valid condition in the CR.

A Valid condition that has a status value of Unknown does not prevent the Operator from updating the
StatefulSet. However, Red Hat recommends that you fix the status of the Valid condition by specifying
the combined spec.deploymentPlan.image `and `spec.deploymentPlan.initImage attributes or the
spec.version attribute, but not both, in the CR.

NOTE

If a CR has a spec.version attribute, the Operator also validates that the version format
is correct and that the version is within the valid range that the Operator supports.

status:
 conditions:
 - lastTransitionTime: "2023-05-18T15:17:22Z"
 message: Init image and broker image must both be configured as an interdependent pair
 observedGeneration: 1
 reason: InitImageMustBePairedWithBrokerImage
 status: "Unknown"
 type: Valid

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

125

CHAPTER 7. MONITORING YOUR BROKERS

7.1. VIEWING BROKERS IN FUSE CONSOLE

You can configure an Operator-based broker deployment to use Fuse Console for OpenShift instead of
the AMQ Management Console. When you have configured your broker deployment appropriately, Fuse
Console discovers the brokers and displays them on a dedicated Artemis tab. You can view the same
broker runtime data that you do in the AMQ Management Console. You can also perform the same
basic management operations, such as creating addresses and queues.

The following procedure describes how to configure the Custom Resource (CR) instance for a broker
deployment to enable Fuse Console for OpenShift to discover and display brokers in the deployment.

Prerequisites

Fuse Console for OpenShift must be deployed to an OCP cluster, or to a specific namespace on
that cluster. If you have deployed the console to a specific namespace, your broker deployment
must be in the same namespace, to enable the console to discover the brokers. Otherwise, it is
sufficient for Fuse Console and the brokers to be deployed on the same OCP cluster. For more
information on installing Fuse Online on OCP, see Installing and Operating Fuse Online on
OpenShift Container Platform.

You must have already created a broker deployment. For example, to learn how to use a
Custom Resource (CR) instance to create a basic Operator-based deployment, see
Section 3.4.1, “Deploying a basic broker instance” .

Procedure

1. Open the CR instance that you used for your broker deployment. For example, the CR for a
basic deployment might resemble the following:

2. In the deploymentPlan section, add the jolokiaAgentEnabled and
managementRBACEnabled properties and specify values, as shown below.

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 4
 image: registry.redhat.io/amq7/amq-broker-rhel8:7.11
 ...

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 4
 image: registry.redhat.io/amq7/amq-broker-rhel8:7.11

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

126

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.8/html/installing_and_operating_fuse_online_on_openshift_container_platform/index

jolokiaAgentEnabled

Specifies whether Fuse Console can discover and display runtime data for the brokers in the
deployment. To use Fuse Console, set the value to true.

managementRBACEnabled

Specifies whether role-based access control (RBAC) is enabled for the brokers in the
deployment. You must set the value to false to use Fuse Console because Fuse Console
uses its own role-based access control.

IMPORTANT

If you set the value of managementRBACEnabled to false to enable use of
Fuse Console, management MBeans for the brokers no longer require
authorization. You should not use the AMQ management console while
managementRBACEnabled is set to false because this potentially exposes
all management operations on the brokers to unauthorized use.

3. Save the CR instance.

4. Switch to the project in which you previously created your broker deployment.

$ oc project <project_name>

5. At the command line, apply the change.

6. In Fuse Console, to view Fuse applications, click the Online tab. To view running brokers, in the
left navigation menu, click Artemis.

Additional resources

For more information about using Fuse Console for OpenShift, see Monitoring and managing
Red Hat Fuse applications on OpenShift.

To learn about using AMQ Management Console to view and manage brokers in the same way
that you can in Fuse Console, see Managing brokers using AMQ Management Console .

7.2. MONITORING BROKER RUNTIME METRICS USING PROMETHEUS

The sections that follow describe how to configure the Prometheus metrics plugin for AMQ Broker on
OpenShift Container Platform. You can use the plugin to monitor and store broker runtime metrics. You
might also use a graphical tool such as Grafana to configure more advanced visualizations and
dashboards of the data that the Prometheus plugin collects.

NOTE

 ...
 jolokiaAgentEnabled: true
 managementRBACEnabled: false

$ oc apply -f <path/to/custom_resource_instance>.yaml

CHAPTER 7. MONITORING YOUR BROKERS

127

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.8/html/managing_fuse/manage-monitor-fuse-openshift
https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/managing_amq_broker/index#assembly-br-managing-broker_managing

NOTE

The Prometheus metrics plugin enables you to collect and export broker metrics in
Prometheus format. However, Red Hat does not provide support for installation or
configuration of Prometheus itself, nor of visualization tools such as Grafana. If you
require support with installing, configuring, or running Prometheus or Grafana, visit the
product websites for resources such as community support and documentation.

7.2.1. Metrics overview

To monitor the health and performance of your broker instances, you can use the Prometheus plugin for
AMQ Broker to monitor and store broker runtime metrics. The AMQ Broker Prometheus plugin exports
the broker runtime metrics to Prometheus format, enabling you to use Prometheus itself to visualize
and run queries on the data.

You can also use a graphical tool, such as Grafana, to configure more advanced visualizations and
dashboards for the metrics that the Prometheus plugin collects.

The metrics that the plugin exports to Prometheus format are described below.

Broker metrics

artemis_address_memory_usage

Number of bytes used by all addresses on this broker for in-memory messages.

artemis_address_memory_usage_percentage

Memory used by all the addresses on this broker as a percentage of the global-max-size parameter.

artemis_connection_count

Number of clients connected to this broker.

artemis_total_connection_count

Number of clients that have connected to this broker since it was started.

Address metrics

artemis_routed_message_count

Number of messages routed to one or more queue bindings.

artemis_unrouted_message_count

Number of messages not routed to any queue bindings.

Queue metrics

artemis_consumer_count

Number of clients consuming messages from a given queue.

artemis_delivering_durable_message_count

Number of durable messages that a given queue is currently delivering to consumers.

artemis_delivering_durable_persistent_size

Persistent size of durable messages that a given queue is currently delivering to consumers.

artemis_delivering_message_count

Number of messages that a given queue is currently delivering to consumers.

artemis_delivering_persistent_size

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

128

Persistent size of messages that a given queue is currently delivering to consumers.

artemis_durable_message_count

Number of durable messages currently in a given queue. This includes scheduled, paged, and in-
delivery messages.

artemis_durable_persistent_size

Persistent size of durable messages currently in a given queue. This includes scheduled, paged, and
in-delivery messages.

artemis_messages_acknowledged

Number of messages acknowledged from a given queue since the queue was created.

artemis_messages_added

Number of messages added to a given queue since the queue was created.

artemis_message_count

Number of messages currently in a given queue. This includes scheduled, paged, and in-delivery
messages.

artemis_messages_killed

Number of messages removed from a given queue since the queue was created. The broker kills a
message when the message exceeds the configured maximum number of delivery attempts.

artemis_messages_expired

Number of messages expired from a given queue since the queue was created.

artemis_persistent_size

Persistent size of all messages (both durable and non-durable) currently in a given queue. This
includes scheduled, paged, and in-delivery messages.

artemis_scheduled_durable_message_count

Number of durable, scheduled messages in a given queue.

artemis_scheduled_durable_persistent_size

Persistent size of durable, scheduled messages in a given queue.

artemis_scheduled_message_count

Number of scheduled messages in a given queue.

artemis_scheduled_persistent_size

Persistent size of scheduled messages in a given queue.

For higher-level broker metrics that are not listed above, you can calculate these by aggregating lower-
level metrics. For example, to calculate total message count, you can aggregate the
artemis_message_count metrics from all queues in your broker deployment.

For an on-premise deployment of AMQ Broker, metrics for the Java Virtual Machine (JVM) hosting the
broker are also exported to Prometheus format. This does not apply to a deployment of AMQ Broker on
OpenShift Container Platform.

7.2.2. Enabling the Prometheus plugin using a CR

When you install AMQ Broker, a Prometheus metrics plugin is included in your installation. When enabled,
the plugin collects runtime metrics for the broker and exports these to Prometheus format.

The following procedure shows how to enable the Prometheus plugin for AMQ Broker using a CR. This
procedure supports new and existing deployments of AMQ Broker 7.9 or later.

See Section 7.2.3, “Enabling the Prometheus plugin for a running broker deployment using an

CHAPTER 7. MONITORING YOUR BROKERS

129

See Section 7.2.3, “Enabling the Prometheus plugin for a running broker deployment using an
environment variable” for an alternative procedure with running brokers.

Procedure

1. Open the CR instance that you use for your broker deployment. For example, the CR for a basic
deployment might resemble the following:

2. In the deploymentPlan section, add the enableMetricsPlugin property and set the value to
true, as shown below.

enableMetricsPlugin

Specifies whether the Prometheus plugin is enabled for the brokers in the deployment.

3. Save the CR instance.

4. Switch to the project in which you previously created your broker deployment.

$ oc project <project_name>

5. At the command line, apply the change.

The metrics plugin starts to gather broker runtime metrics in Prometheus format.

Additional resources

For information about updating a running broker, see Section 3.4.3, “Applying Custom Resource
changes to running broker deployments”.

7.2.3. Enabling the Prometheus plugin for a running broker deployment using an

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 4
 image: registry.redhat.io/amq7/amq-broker-rhel8:7.11
 ...

apiVersion: broker.amq.io/v1beta1
kind: ActiveMQArtemis
metadata:
 name: ex-aao
spec:
 deploymentPlan:
 size: 4
 image: registry.redhat.io/amq7/amq-broker-rhel8:7.11
 ...
 enableMetricsPlugin: true

$ oc apply -f <path/to/custom_resource_instance>.yaml

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

130

7.2.3. Enabling the Prometheus plugin for a running broker deployment using an
environment variable

The following procedure shows how to enable the Prometheus plugin for AMQ Broker using an
environment variable. See Section 7.2.2, “Enabling the Prometheus plugin using a CR” for an alternative
procedure.

Prerequisites

You can enable the Prometheus plugin for a broker Pod created with the AMQ Broker
Operator. However, your deployed broker must use the broker container image for AMQ Broker
7.7 or later.

Procedure

1. Log in to the OpenShift Container Platform web console with administrator privileges for the
project that contains your broker deployment.

2. In the web console, click Home → Projects. Choose the project that contains your broker
deployment.

3. To see the StatefulSets or DeploymentConfigs in your project, click Workloads → StatefulSets
or Workloads → DeploymentConfigs.

4. Click the StatefulSet or DeploymentConfig that corresponds to your broker deployment.

5. To access the environment variables for your broker deployment, click the Environment tab.

6. Add a new environment variable, AMQ_ENABLE_METRICS_PLUGIN. Set the value of the
variable to true.
When you set the AMQ_ENABLE_METRICS_PLUGIN environment variable, OpenShift
restarts each broker Pod in the StatefulSet or DeploymentConfig. When there are multiple
Pods in the deployment, OpenShift restarts each Pod in turn. When each broker Pod restarts,
the Prometheus plugin for that broker starts to gather broker runtime metrics.

7.2.4. Accessing Prometheus metrics for a running broker Pod

This procedure shows how to access Prometheus metrics for a running broker Pod.

Prerequisites

You must have already enabled the Prometheus plugin for your broker Pod. See Section 7.2.3,
“Enabling the Prometheus plugin for a running broker deployment using an environment
variable”.

Procedure

1. For the broker Pod whose metrics you want to access, you need to identify the Route you
previously created to connect the Pod to the AMQ Broker management console. The Route
name forms part of the URL needed to access the metrics.

a. Click Networking → Routes.

b. For your chosen broker Pod, identify the Route created to connect the Pod to the AMQ

CHAPTER 7. MONITORING YOUR BROKERS

131

b. For your chosen broker Pod, identify the Route created to connect the Pod to the AMQ
Broker management console. Under Hostname, note the complete URL that is shown. For
example:

http://rte-console-access-pod1.openshiftdomain

2. To access Prometheus metrics, in a web browser, enter the previously noted Route name
appended with “/metrics”. For example:

http://rte-console-access-pod1.openshiftdomain/metrics

NOTE

If your console configuration does not use SSL, specify http in the URL. In this case, DNS
resolution of the host name directs traffic to port 80 of the OpenShift router. If your
console configuration uses SSL, specify https in the URL. In this case, your browser
defaults to port 443 of the OpenShift router. This enables a successful connection to the
console if the OpenShift router also uses port 443 for SSL traffic, which the router does
by default.

7.3. MONITORING BROKER RUNTIME DATA USING JMX

This example shows how to monitor a broker using the Jolokia REST interface to JMX.

Prerequisites

Completion of Deploying a basic broker is recommended.

Procedure

1. Get the list of running pods:

$ oc get pods

NAME READY STATUS RESTARTS AGE
ex-aao-ss-1 1/1 Running 0 14d

2. Run the oc logs command:

$ oc logs -f ex-aao-ss-1

...
Running Broker in /home/jboss/amq-broker
...
2021-09-17 09:35:10,813 INFO [org.apache.activemq.artemis.integration.bootstrap]
AMQ101000: Starting ActiveMQ Artemis Server
2021-09-17 09:35:10,882 INFO [org.apache.activemq.artemis.core.server] AMQ221000: live
Message Broker is starting with configuration Broker Configuration
(clustered=true,journalDirectory=data/journal,bindingsDirectory=data/bindings,largeMessagesDi
rectory=data/large-messages,pagingDirectory=data/paging)
2021-09-17 09:35:10,971 INFO [org.apache.activemq.artemis.core.server] AMQ221013:
Using NIO Journal
2021-09-17 09:35:11,114 INFO [org.apache.activemq.artemis.core.server] AMQ221057:

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

132

Global Max Size is being adjusted to 1/2 of the JVM max size (-Xmx). being defined as
2,566,914,048
2021-09-17 09:35:11,369 WARNING [org.jgroups.stack.Configurator] JGRP000014:
BasicTCP.use_send_queues has been deprecated: will be removed in 4.0
2021-09-17 09:35:11,385 WARNING [org.jgroups.stack.Configurator] JGRP000014:
Discovery.timeout has been deprecated: GMS.join_timeout should be used instead
2021-09-17 09:35:11,480 INFO [org.jgroups.protocols.openshift.DNS_PING] serviceName
[ex-aao-ping-svc] set; clustering enabled
2021-09-17 09:35:24,540 INFO [org.openshift.ping.common.Utils] 3 attempt(s) with a
1000ms sleep to execute [GetServicePort] failed. Last failure was
[javax.naming.CommunicationException: DNS error]
...
2021-09-17 09:35:25,044 INFO [org.apache.activemq.artemis.core.server] AMQ221034:
Waiting indefinitely to obtain live lock
2021-09-17 09:35:25,045 INFO [org.apache.activemq.artemis.core.server] AMQ221035:
Live Server Obtained live lock
2021-09-17 09:35:25,206 INFO [org.apache.activemq.artemis.core.server] AMQ221080:
Deploying address DLQ supporting [ANYCAST]
2021-09-17 09:35:25,240 INFO [org.apache.activemq.artemis.core.server] AMQ221003:
Deploying ANYCAST queue DLQ on address DLQ
2021-09-17 09:35:25,360 INFO [org.apache.activemq.artemis.core.server] AMQ221080:
Deploying address ExpiryQueue supporting [ANYCAST]
2021-09-17 09:35:25,362 INFO [org.apache.activemq.artemis.core.server] AMQ221003:
Deploying ANYCAST queue ExpiryQueue on address ExpiryQueue
2021-09-17 09:35:25,656 INFO [org.apache.activemq.artemis.core.server] AMQ221020:
Started EPOLL Acceptor at ex-aao-ss-1.ex-aao-hdls-svc.broker.svc.cluster.local:61616 for
protocols [CORE]
2021-09-17 09:35:25,660 INFO [org.apache.activemq.artemis.core.server] AMQ221007:
Server is now live
2021-09-17 09:35:25,660 INFO [org.apache.activemq.artemis.core.server] AMQ221001:
Apache ActiveMQ Artemis Message Broker version 2.16.0.redhat-00022 [amq-broker,
nodeID=8d886031-179a-11ec-9e02-0a580ad9008b]
2021-09-17 09:35:26,470 INFO [org.apache.amq.hawtio.branding.PluginContextListener]
Initialized amq-broker-redhat-branding plugin
2021-09-17 09:35:26,656 INFO [org.apache.activemq.hawtio.plugin.PluginContextListener]
Initialized artemis-plugin plugin
...

3. Run your query to monitor your broker for MaxConsumers:

$ curl -k -u admin:admin http://console-broker.amq-
demo.apps.example.com/console/jolokia/read/org.apache.activemq.artemis:broker=%22amq-
broker%22,component=addresses,address=%22TESTQUEUE%22,subcomponent=queues,ro
uting-type=%22anycast%22,queue=%22TESTQUEUE%22/MaxConsumers

{"request":{"mbean":"org.apache.activemq.artemis:address=\"TESTQUEUE\",broker=\"amq-
broker\",component=addresses,queue=\"TESTQUEUE\",routing-
type=\"anycast\",subcomponent=queues","attribute":"MaxConsumers","type":"read"},"value":-
1,"timestamp":1528297825,"status":200}

CHAPTER 7. MONITORING YOUR BROKERS

133

CHAPTER 8. REFERENCE

8.1. CUSTOM RESOURCE CONFIGURATION REFERENCE

A Custom Resource Definition (CRD) is a schema of configuration items for a custom OpenShift object
deployed with an Operator. By deploying a corresponding Custom Resource (CR) instance, you specify
values for configuration items shown in the CRD.

The following sub-sections detail the configuration items that you can set in Custom Resource
instances based on the main broker CRD.

8.1.1. Broker Custom Resource configuration reference

A CR instance based on the main broker CRD enables you to configure brokers for deployment in an
OpenShift project. The following table describes the items that you can configure in the CR instance.

IMPORTANT

Configuration items marked with an asterisk (*) are required in any corresponding
Custom Resource (CR) that you deploy. If you do not explicitly specify a value for a non-
required item, the configuration uses the default value.

Entry Sub-entry Description and usage

adminUser* Administrator user name
required for connecting to
the broker and
management console.

If you do not specify a
value, the value is
automatically generated
and stored in a secret. The
default secret name has a
format of
<custom_resource_na
me>-credentials-
secret. For example, my-
broker-deployment-
credentials-secret.

Type: string

Example: my-user

Default value:
Automatically-generated,
random value

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

134

adminPassword* Administrator password
required for connecting to
the broker and
management console.

If you do not specify a
value, the value is
automatically generated
and stored in a secret. The
default secret name has a
format of
<custom_resource_na
me>-credentials-
secret. For example, my-
broker-deployment-
credentials-secret.

Type: string

Example: my-password

Default value:
Automatically-generated,
random value

deploymentPlan* Broker deployment
configuration

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

135

 image* Full path of the broker
container image used for
each broker in the
deployment.

You do not need to
explicitly specify a value
for image in your CR. The
default value of
placeholder indicates
that the Operator has not
yet determined the
appropriate image to use.

To learn how the Operator
chooses a broker container
image to use, see
Section 2.6, “How the
Operator chooses
container images”.

Type: string

Example:
registry.redhat.io/amq7/a
mq-broker-
rhel8@sha256:1f7a173924a
d77d018300d4109b91c45
896407c13d6a70b37d89
93a95e363521

Default value: placeholder

 size* Number of broker Pods to
create in the deployment.

If you specify a value of 2
or greater, your broker
deployment is clustered by
default. The cluster user
name and password are
automatically generated
and stored in the same
secret as adminUser and
adminPassword, by
default.

Type: int

Example: 1

Default value: 1

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

136

 requireLogin Specify whether login
credentials are required to
connect to the broker.

Type: Boolean

Example: false

Default value: true

 persistenceEnabled Specify whether to use
journal storage for each
broker Pod in the
deployment. If set to true,
each broker Pod requires
an available Persistent
Volume (PV) that the
Operator can claim using a
Persistent Volume Claim
(PVC).

Type: Boolean

Example: false

Default value: true

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

137

 initImage Init Container image used
to configure the broker.

You do not need to
explicitly specify a value
for initImage in your CR,
unless you want to provide
a custom image.

To learn how the Operator
chooses a built-in Init
Container image to use,
see Section 2.6, “How the
Operator chooses
container images”.

To learn how to specify a
custom Init Container
image, see Section 4.9,
“Specifying a custom Init
Container image”.

Type: string

Example:
registry.redhat.io/amq7/a
mq-broker-init-
rhel8@sha256:b402d076f
7c280bb2328f680d0876
a8c09ab31b488f86663a6
a757b35f97216e

Default value: Not
specified

 journalType Specify whether to use
asynchronous I/O (AIO) or
non-blocking I/O (NIO).

Type: string

Example: aio

Default value: nio

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

138

 messageMigration When a broker Pod shuts
down due to an intentional
scaledown of the broker
deployment, specify
whether to migrate
messages to another
broker Pod that is still
running in the broker
cluster.

Type: Boolean

Example: false

Default value: true

 resources.limits.cpu Maximum amount of host-
node CPU, in millicores,
that each broker container
running in a Pod in a
deployment can consume.

Type: string

Example: "500m"

Default value: Uses the
same default value that
your version of OpenShift
Container Platform uses.
Consult a cluster
administrator.

 resources.limits.memory Maximum amount of host-
node memory, in bytes,
that each broker container
running in a Pod in a
deployment can consume.
Supports byte notation
(for example, K, M, G), or
the binary equivalents (Ki,
Mi, Gi).

Type: string

Example: "1024M"

Default value: Uses the
same default value that
your version of OpenShift
Container Platform uses.
Consult a cluster
administrator.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

139

 resources.requests.cpu Amount of host-node
CPU, in millicores, that
each broker container
running in a Pod in a
deployment explicitly
requests.

Type: string

Example: "250m"

Default value: Uses the
same default value that
your version of OpenShift
Container Platform uses.
Consult a cluster
administrator.

 resources.requests.memory Amount of host-node
memory, in bytes, that
each broker container
running in a Pod in a
deployment explicitly
requests. Supports byte
notation (for example, K,
M, G), or the binary
equivalents (Ki, Mi, Gi).

Type: string

Example: "512M"

Default value: Uses the
same default value that
your version of OpenShift
Container Platform uses.
Consult a cluster
administrator.

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

140

 storage.size Size, in bytes, of the
Persistent Volume Claim
(PVC) that each broker in
a deployment requires for
persistent storage. This
property applies only when
persistenceEnabled is
set to true. The value that
you specify must include a
unit. Supports byte
notation (for example, K,
M, G), or the binary
equivalents (Ki, Mi, Gi).

Type: string

Example: 4Gi

Default value: 2Gi

 jolokiaAgentEnabled Specifies whether the
Jolokia JVM Agent is
enabled for the brokers in
the deployment. If the
value of this property is set
to true, Fuse Console can
discover and display
runtime data for the
brokers.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

141

 managementRBACEnabled Specifies whether role-
based access control
(RBAC) is enabled for the
brokers in the deployment.
To use Fuse Console, you
must set the value to
false, because Fuse
Console uses its own role-
based access control.

Type: Boolean

Example: false

Default value: true

 affinity Specifies scheduling
constraints for pods. For
information about affinity
properties, see the
properties in the
OpenShift Container
Platform documentation.

 tolerations Specifies the pod’s
tolerations. For
information about
tolerations properties, see
the properties in the
OpenShift Container
Platform documentation.

 nodeSelector Specify a label that
matches a node’s labels for
the pod to be scheduled
on that node.

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

142

https://docs.openshift.com/container-platform/4.10/rest_api/operatorhub_apis/clusterserviceversion-operators-coreos-com-v1alpha1.html#spec-install-spec-deployments-spec-template-spec-affinity
https://docs.openshift.com/container-platform/4.10/rest_api/operatorhub_apis/clusterserviceversion-operators-coreos-com-v1alpha1.html#spec-install-spec-deployments-spec-template-spec-tolerations

 storageClassName Specifies the name of the
storage class to use for the
Persistent Volume Claim
(PVC). Storage classes
provide a way for
administrators to describe
and classify the available
storage. For example, a
storage class might have
specific quality-of-service
levels, backup policies, or
other administrative
policies associated with it.

Type: string

Example: gp3

Default value: Not
specified

 startupProbe Configure a startup probe
to check if the AMQ Broker
application within the
broker container has
started. For information
about startup probe
properties, see the
properties in the
OpenShift Container
Platform documentation.

 livenessProbe Configures a periodic
health check on a running
broker container to check
that the broker is running.
For information about
liveness probe properties,
see the properties in the
OpenShift Container
Platform documentation.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

143

https://docs.openshift.com/container-platform/4.13/rest_api/operatorhub_apis/clusterserviceversion-operators-coreos-com-v1alpha1.html#spec-install-spec-deployments-spec-template-spec-containers-startupprobe-grpc
https://docs.openshift.com/container-platform/4.15/rest_api/operatorhub_apis/clusterserviceversion-operators-coreos-com-v1alpha1.html#spec-install-spec-deployments-spec-template-spec-containers-livenessprobe

 readinessProbe Configures a periodic
health check on a running
broker container to check
that the broker is accepting
network traffic. For
information about
readiness probe
properties, see the
properties in the
OpenShift Container
Platform documentation.

 extraMounts Mounts a secret or
configMAP, that contains
configuration information,
as a file on a broker Pod.
For example, you can
mount a secret that
contains customized
logging configuration for
AMQ Broker.

Type: object

Example See Section 4.15,
“Configuring logging for
brokers”

Default value: Not
specified

 labels Assign labels to a broker
pod.

Type: string

Example: location:
"production"

Default value: Not
specified

 podSecurity.serviceAccountNam
e

Specify a service account
name for the broker pod.

Type: string

Example: amq-broker-
controller-manager

Default value: default

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

144

https://docs.openshift.com/container-platform/4.15/rest_api/operatorhub_apis/clusterserviceversion-operators-coreos-com-v1alpha1.html#spec-install-spec-deployments-spec-template-spec-containers-readinessprobe

 podSecurityContext Specify the following pod-
level security attributes
and common container
settings.

* fsGroup

* fsGroupChangePolicy

* runAsGroup

* runAsUser

* runAsNonRoot

* seLinuxOptions

* seccompProfile

* supplementalGroups

* sysctls

* windowsOptions

For information on
podSecurityContext
properties, see the
properties in the
OpenShift Container
Platform documentation.

console Configuration of broker
management console.

 expose Specify whether to expose
the management console
port for each broker in a
deployment.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

145

https://docs.openshift.com/container-platform/4.15/rest_api/operatorhub_apis/clusterserviceversion-operators-coreos-com-v1alpha1.html#spec-install-spec-deployments-spec-template-spec-containers-securitycontext

 sslEnabled Specify whether to use
SSL on the management
console port.

Type: Boolean

Example: true

Default value: false

 sslSecret Secret where broker key
store, trust store, and their
corresponding passwords
(all Base64-encoded) are
stored. If you do not
specify a value for
sslSecret, the console
uses a default secret name.
The default secret name is
in the form of
<custom_resource_na
me>-console-secret.
This property applies only
when the sslEnabled
property is set to true.

Type: string

Example: my-broker-
deployment-console-
secret

Default value: Not
specified

 useClientAuth Specify whether the
management console
requires client
authorization.

Type: Boolean

Example: true

Default value: false

acceptors.acceptor A single acceptor
configuration instance.

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

146

 name* Name of acceptor.

Type: string

Example: my-acceptor

Default value: Not
applicable

 port Port number to use for the
acceptor instance.

Type: int

Example: 5672

Default value: 61626 for
the first acceptor that you
define. The default value
then increments by 10 for
every subsequent acceptor
that you define.

 protocols Messaging protocols to be
enabled on the acceptor
instance.

Type: string

Example: amqp,core

Default value: all

 sslEnabled Specify whether SSL is
enabled on the acceptor
port. If set to true, look in
the secret name specified
in sslSecret for the
credentials required by
TLS/SSL.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

147

 sslSecret Secret where broker key
store, trust store, and their
corresponding passwords
(all Base64-encoded) are
stored.

If you do not specify a
custom secret name for
sslSecret, the acceptor
assumes a default secret
name. The default secret
name has a format of
<custom_resource_na
me>-<acceptor_name>
-secret.

You must always create
this secret yourself, even
when the acceptor
assumes a default name.

Type: string

Example: my-broker-
deployment-my-acceptor-
secret

Default value:
<custom_resource_name>-
<acceptor_name>-secret

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

148

 enabledCipherSuites Comma-separated list of
cipher suites to use for
TLS communication.

Specify the most secure
cipher suite(s) supported
by your client application.
If you specify a comma-
separated list of cipher
suites that are common to
both the broker and the
client, or you do not
specify any cipher suites,
the broker and client
mutually negotiate a
cipher suite to use. If you
do not know which cipher
suites to specify, you can
first establish a broker-
client connection with your
client running in debug
mode to verify the cipher
suites that are common to
both the broker and the
client. Then, configure
enabledCipherSuites
on the broker.

The cipher suites available
depend on the TLS
protocol versions used by
the broker and clients. If
the default TLS protocol
version changes after you
upgrade the broker, you
might need to select an
earlier TLS protocol
version to ensure that the
broker and the clients can
use a common cipher suite.
For more information, see
enabledProtocols.

Type: string

Default value: Not
specified

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

149

 enabledProtocols Comma-separated list of
protocols to use for TLS
communication.

Type: string

Example:
TLSv1,TLSv1.1,TLSv1.2

Default value: Not
specified

If you don’t specify a TLS
protocol version, the
broker uses the JVM’s
default version. If the
broker uses the JVM’s
default TLS protocol
version and that version
changes after you upgrade
the broker, the TLS
protocol versions used by
the broker and clients
might be incompatible.
While it is recommended
that you use the later TLS
protocol version, you can
specify an earlier version in
enabledProtocols to
interoperate with clients
that do not support a
newer TLS protocol
version.

 keyStoreProvider The name of the provider
of the keystore that the
broker uses.

Type: string

Example: SunJCE

Default value: Not
specified

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

150

 trustStoreProvider The name of the provider
of the truststore that the
broker uses.

Type: string

Example: SunJCE

Default value: Not
specified

 trustStoreType The type of truststore that
the broker uses.

Type: string

Example: JCEKS

Default value: JKS

 needClientAuth Specify whether the broker
informs clients that two-
way TLS is required on the
acceptor. This property
overrides
wantClientAuth.

Type: Boolean

Example: true

Default value: Not
specified

 wantClientAuth Specify whether the broker
informs clients that two-
way TLS is requested on
the acceptor, but not
required. This property is
overridden by
needClientAuth.

Type: Boolean

Example: true

Default value: Not
specified

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

151

 verifyHost Specify whether to
compare the Common
Name (CN) of a client’s
certificate to its host
name, to verify that they
match. This option applies
only when two-way TLS is
used.

Type: Boolean

Example: true

Default value: Not
specified

 sslProvider Specify whether the SSL
provider is JDK or
OPENSSL.

Type: string

Example: OPENSSL

Default value: JDK

 sniHost Regular expression to
match against the
server_name extension
on incoming connections.
If the names don’t match,
connection to the acceptor
is rejected.

Type: string

Example:
some_regular_expression

Default value: Not
specified

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

152

 expose Specify whether to expose
the acceptor to clients
outside OpenShift
Container Platform.

When you expose an
acceptor to clients outside
OpenShift, the Operator
automatically creates a
dedicated Service and
Route for each broker Pod
in the deployment.

Type: Boolean

Example: true

Default value: false

 anycastPrefix Prefix used by a client to
specify that the anycast
routing type should be
used.

Type: string

Example: jms.queue

Default value: Not
specified

 multicastPrefix Prefix used by a client to
specify that the multicast
routing type should be
used.

Type: string

Example: /topic/

Default value: Not
specified

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

153

 connectionsAllowed Number of connections
allowed on the acceptor.
When this limit is reached,
a DEBUG message is
issued to the log, and the
connection is refused. The
type of client in use
determines what happens
when the connection is
refused.

Type: integer

Example: 2

Default value: 0 (unlimited
connections)

 amqpMinLargeMessageSize Minimum message size, in
bytes, required for the
broker to handle an AMQP
message as a large
message. If the size of an
AMQP message is equal or
greater to this value, the
broker stores the message
in a large messages
directory
(/opt/<custom_resourc
e_name>/data/large-
messages, by default) on
the persistent volume (PV)
used by the broker for
message storage. Setting
the value to -1 disables
large message handling for
AMQP messages.

Type: integer

Example: 204800

Default value: 102400
(100 KB)

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

154

 BindToAllInterfaces If set to true, configures
the broker acceptors with
a 0.0.0.0 IP address
instead of the internal IP
address of the pod. When
the broker acceptors have
a 0.0.0.0 IP address, they
bind to all interfaces
configured for the pod and
clients can direct traffic to
the broker by using
OpenShift Container
Platform port-forwarding.
Normally, you use this
configuration to debug a
service. For more
information about port-
forwarding, see Using port-
forwarding to access
applications in a container
in the OpenShift Container
Platform documentation.

NOTE

If port-
forwarding
is used
incorrectly,
it can
create a
security
risk for
your
environme
nt. Where
possible,
Red Hat
recommen
ds that
you do not
use port-
forwarding
in a
production
environme
nt.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

155

https://docs.openshift.com/container-platform/4.15/nodes/containers/nodes-containers-port-forwarding.html

connectors.connector A single connector
configuration instance.

 name* Name of connector.

Type: string

Example: my-connector

Default value: Not
applicable

 type The type of connector to
create; tcp or vm.

Type: string

Example: vm

Default value: tcp

 host* Host name or IP address to
connect to.

Type: string

Example: 192.168.0.58

Default value: Not
specified

 port* Port number to be used
for the connector instance.

Type: int

Example: 22222

Default value: Not
specified

 sslEnabled Specify whether SSL is
enabled on the connector
port. If set to true, look in
the secret name specified
in sslSecret for the
credentials required by
TLS/SSL.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

156

 sslSecret Secret where broker key
store, trust store, and their
corresponding passwords
(all Base64-encoded) are
stored.

If you do not specify a
custom secret name for
sslSecret, the connector
assumes a default secret
name. The default secret
name has a format of
<custom_resource_na
me>-<connector_name
>-secret.

You must always create
this secret yourself, even
when the connector
assumes a default name.

Type: string

Example: my-broker-
deployment-my-
connector-secret

Default value:
<custom_resource_name>-
<connector_name>-secret

 enabledCipherSuites Comma-separated list of
cipher suites to use for
TLS communication.

Type: string

NOTE: For a connector, it
is recommended that you
do not specify a list of
cipher suites.

Default value: Not
specified

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

157

 keyStoreProvider The name of the provider
of the keystore that the
broker uses.

Type: string

Example: SunJCE

Default value: Not
specified

 trustStoreProvider The name of the provider
of the truststore that the
broker uses.

Type: string

Example: SunJCE

Default value: Not
specified

 trustStoreType The type of truststore that
the broker uses.

Type: string

Example: JCEKS

Default value: JKS

 enabledProtocols Comma-separated list of
protocols to use for TLS
communication.

Type: string

Example:
TLSv1,TLSv1.1,TLSv1.2

Default value: Not
specified

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

158

 needClientAuth Specify whether the broker
informs clients that two-
way TLS is required on the
connector. This property
overrides
wantClientAuth.

Type: Boolean

Example: true

Default value: Not
specified

 wantClientAuth Specify whether the broker
informs clients that two-
way TLS is requested on
the connector, but not
required. This property is
overridden by
needClientAuth.

Type: Boolean

Example: true

Default value: Not
specified

 verifyHost Specify whether to
compare the Common
Name (CN) of client’s
certificate to its host
name, to verify that they
match. This option applies
only when two-way TLS is
used.

Type: Boolean

Example: true

Default value: Not
specified

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

159

 sslProvider Specify whether the SSL
provider is JDK or
OPENSSL.

Type: string

Example: OPENSSL

Default value: JDK

 sniHost Regular expression to
match against the
server_name extension
on outgoing connections.
If the names don’t match,
the connector connection
is rejected.

Type: string

Example:
some_regular_expression

Default value: Not
specified

 expose Specify whether to expose
the connector to clients
outside OpenShift
Container Platform.

Type: Boolean

Example: true

Default value: false

addressSettings.applyRule Specifies how the
Operator applies the
configuration that you add
to the CR for each
matching address or set of
addresses.

The values that you can
specify are:

merge_all
For address settings
specified in both the
CR and the default
configuration that

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

160

match the same
address or set of
addresses:

Replace any
property
values
specified in
the default
configuration
with those
specified in
the CR.

Keep any
property
values that
are specified
uniquely in the
CR or the
default
configuration.
Include each
of these in the
final, merged
configuration.

For address settings
specified in either the
CR or the default
configuration that
uniquely match a
particular address or
set of addresses,
include these in the
final, merged
configuration.

merge_replace
For address settings
specified in both the
CR and the default
configuration that
match the same
address or set of
addresses, include the
settings specified in
the CR in the final,
merged configuration.
Do not include any
properties specified in
the default
configuration, even if
these are not specified
in the CR.
+ For address settings
specified in either the
CR or the default
configuration that
uniquely match a
particular address or
set of addresses,
include these in the
final, merged
configuration.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

161

replace_all
Replace all address
settings specified in
the default
configuration with
those specified in
the CR. The final,
megred
configuration
corresponds exactly
to that specified in
the CR.

Type: string

Example: replace_all

Default value: merge_alladdressSettings.addressSettin
g

 Address settings for a
matching address or set of
addresses.

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

162

 addressFullPolicy Specify what happens
when an address
configured with
maxSizeBytes becomes
full. The available policies
are:

PAGE
Messages sent to a full
address are paged to
disk.

DROP
Messages sent to a full
address are silently
dropped.

FAIL
Messages sent to a full
address are dropped
and the message
producers receive an
exception.

BLOCK
Message producers will
block when they try to
send any further
messages.
The BLOCK policy
works only for AMQP,
OpenWire, and Core
Protocol, because
those protocols
support flow control.

Type: string

Example: DROP

Default value: PAGE

 autoCreateAddresses Specify whether the broker
automatically creates an
address when a client
sends a message to, or
attempts to consume a
message from, a queue
that is bound to an address
that does not exist.

Type: Boolean

Example: false

Default value: true

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

163

 autoCreateDeadLetterResources Specify whether the broker
automatically creates a
dead letter address and
queue to receive
undelivered messages.

If the parameter is set to
true, the broker
automatically creates a
dead letter address and an
associated dead letter
queue. The name of the
automatically-created
address matches the value
that you specify for
deadLetterAddress.

Type: Boolean

Example: true

Default value: false

 autoCreateExpiryResources Specify whether the broker
automatically creates an
address and queue to
receive expired messages.

If the parameter is set to
true, the broker
automatically creates an
expiry address and an
associated expiry queue.
The name of the
automatically-created
address matches the value
that you specify for
expiryAddress.

Type: Boolean

Example: true

Default value: false

 autoCreateJmsQueues This property is
deprecated. Use
autoCreateQueues
instead.

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

164

 autoCreateJmsTopics This property is
deprecated. Use
autoCreateQueues
instead.

 autoCreateQueues Specify whether the broker
automatically creates a
queue when a client sends
a message to, or attempts
to consume a message
from, a queue that does
not yet exist.

Type: Boolean

Example: false

Default value: true

 autoDeleteAddresses Specify whether the broker
automatically deletes
automatically-created
addresses when the broker
no longer has any queues.

Type: Boolean

Example: false

Default value: true

 autoDeleteAddressDelay Time, in milliseconds, that
the broker waits before
automatically deleting an
automatically-created
address when the address
has no queues.

Type: integer

Example: 100

Default value: 0

 autoDeleteJmsQueues This property is
deprecated. Use
autoDeleteQueues
instead.

 autoDeleteJmsTopics This property is
deprecated. Use
autoDeleteQueues
instead.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

165

 autoDeleteQueues Specify whether the broker
automatically deletes an
automatically-created
queue when the queue has
no consumers and no
messages.

Type: Boolean

Example: false

Default value: true

 autoDeleteCreatedQueues Specify whether the broker
automatically deletes a
manually-created queue
when the queue has no
consumers and no
messages.

Type: Boolean

Example: true

Default value: false

 autoDeleteQueuesDelay Time, in milliseconds, that
the broker waits before
automatically deleting an
automatically-created
queue when the queue has
no consumers.

Type: integer

Example: 10

Default value: 0

 autoDeleteQueuesMessageCoun
t

Maximum number of
messages that can be in a
queue before the broker
evaluates whether the
queue can be
automatically deleted.

Type: integer

Example: 5

Default value: 0

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

166

 configDeleteAddresses When the configuration file
is reloaded, this parameter
specifies how to handle an
address (and its queues)
that has been deleted
from the configuration file.
You can specify the
following values:

OFF
The broker does not
delete the address
when the configuration
file is reloaded.

FORCE
The broker deletes the
address and its queues
when the configuration
file is reloaded. If there
are any messages in
the queues, they are
removed also.

Type: string

Example: FORCE

Default value: OFF

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

167

 configDeleteQueues When the configuration file
is reloaded, this setting
specifies how the broker
handles queues that have
been deleted from the
configuration file. You can
specify the following
values:

OFF
The broker does not
delete the queue when
the configuration file is
reloaded.

FORCE
The broker deletes the
queue when the
configuration file is
reloaded. If there are
any messages in the
queue, they are
removed also.

Type: string

Example: FORCE

Default value: OFF

 deadLetterAddress The address to which the
broker sends dead (that is,
undelivered) messages.

Type: string

Example: DLA

Default value: None

 deadLetterQueuePrefix Prefix that the broker
applies to the name of an
automatically-created
dead letter queue.

Type: string

Example: myDLQ.

Default value: DLQ.

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

168

 deadLetterQueueSuffix Suffix that the broker
applies to an
automatically-created
dead letter queue.

Type: string

Example: .DLQ

Default value: None

 defaultAddressRoutingType Routing type used on
automatically-created
addresses.

Type: string

Example: ANYCAST

Default value:
MULTICAST

 defaultConsumersBeforeDispatc
h

Number of consumers
needed before message
dispatch can begin for
queues on an address.

Type: integer

Example: 5

Default value: 0

 defaultConsumerWindowSize Default window size, in
bytes, for a consumer.

Type: integer

Example: 300000

Default value: 1048576
(1024*1024)

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

169

 defaultDelayBeforeDispatch Default time, in
milliseconds, that the
broker waits before
dispatching messages if
the value specified for
defaultConsumersBefo
reDispatch has not been
reached.

Type: integer

Example: 5

Default value: -1 (no
delay)

 defaultExclusiveQueue Specifies whether all
queues on an address are
exclusive queues by
default.

Type: Boolean

Example: true

Default value: false

 defaultGroupBuckets Number of buckets to use
for message grouping.

Type: integer

Example: 0 (message
grouping disabled)

Default value: -1 (no limit)

 defaultGroupFirstKey Key used to indicate to a
consumer which message
in a group is first.

Type: string

Example: firstMessageKey

Default value: None

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

170

 defaultGroupRebalance Specifies whether to
rebalance groups when a
new consumer connects to
the broker.

Type: Boolean

Example: true

Default value: false

 defaultGroupRebalancePauseDis
patch

Specifies whether to pause
message dispatch while
the broker is rebalancing
groups.

Type: Boolean

Example: true

Default value: false

 defaultLastValueQueue Specifies whether all
queues on an address are
last value queues by
default.

Type: Boolean

Example: true

Default value: false

 defaultLastValueKey Default key to use for a
last value queue.

Type: string

Example: stock_ticker

Default value: None

 defaultMaxConsumers Maximum number of
consumers allowed on a
queue at any time.

Type: integer

Example: 100

Default value: -1 (no limit)

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

171

 defaultNonDestructive Specifies whether all
queues on an address are
non-destructive by default.

Type: Boolean

Example: true

Default value: false

 defaultPurgeOnNoConsumers Specifies whether the
broker purges the contents
of a queue once there are
no consumers.

Type: Boolean

Example: true

Default value: false

 defaultQueueRoutingType Routing type used on
automatically-created
queues. The default value
is MULTICAST.

Type: string

Example: ANYCAST

Default value:
MULTICAST

 defaultRingSize Default ring size for a
matching queue that does
not have a ring size
explicitly set.

Type: integer

Example: 3

Default value: -1 (no size
limit)

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

172

 enableMetrics Specifies whether a
configured metrics plugin
such as the Prometheus
plugin collects metrics for
a matching address or set
of addresses.

Type: Boolean

Example: false

Default value: true

 expiryAddress Address that receives
expired messages.

Type: string

Example:
myExpiryAddress

Default value: None

 expiryDelay Expiration time, in
milliseconds, applied to
messages that are using
the default expiration time.

Type: integer

Example: 100

Default value: -1 (no
expiration time applied)

 expiryQueuePrefix Prefix that the broker
applies to the name of an
automatically-created
expiry queue.

Type: string

Example: myExp.

Default value: EXP.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

173

 expiryQueueSuffix Suffix that the broker
applies to the name of an
automatically-created
expiry queue.

Type: string

Example: .EXP

Default value: None

 lastValueQueue Specify whether a queue
uses only last values or not.

Type: Boolean

Example: true

Default value: false

 managementBrowsePageSize Specify how many
messages a management
resource can browse.

Type: integer

Example: 100

Default value: 200

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

174

 match* String that matches
address settings to
addresses configured on
the broker. You can specify
an exact address name or
use a wildcard expression
to match the address
settings to a set of
addresses.

If you use a wildcard
expression as a value for
the match property, you
must enclose the value in
single quotation marks, for
example,
'myAddresses*'.

Type: string

Example: 'myAddresses*'

Default value: None

 maxDeliveryAttempts Specifies how many times
the broker attempts to
deliver a message before
sending the message to
the configured dead letter
address.

Type: integer

Example: 20

Default value: 10

 maxExpiryDelay Expiration time, in
milliseconds, applied to
messages that are using an
expiration time greater
than this value.

Type: integer

Example: 20

Default value: -1 (no
maximum expiration time
applied)

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

175

 maxRedeliveryDelay Maximum value, in
milliseconds, between
message redelivery
attempts made by the
broker.

Type: integer

Example: 100

Default value: The default
value is ten times the value
of redeliveryDelay,
which has a default value
of 0.

 maxSizeBytes Maximum memory size, in
bytes, for an address. Used
when addressFullPolicy
is set to PAGING,
BLOCK, or FAIL. Also
supports byte notation
such as "K", "Mb", and
"GB".

Type: string

Example: 10Mb

Default value: -1 (no limit)

 maxSizeBytesRejectThreshold Maximum size, in bytes,
that an address can reach
before the broker begins
to reject messages. Used
when the address-full-
policy is set to BLOCK.
Works in combination with
maxSizeBytes for the
AMQP protocol only.

Type: integer

Example: 500

Default value: -1 (no
maximum size)

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

176

 messageCounterHistoryDayLimit Number of days for which
a broker keeps a message
counter history for an
address.

Type: integer

Example: 5

Default value: 0

 minExpiryDelay Expiration time, in
milliseconds, applied to
messages that are using an
expiration time lower than
this value.

Type: integer

Example: 20

Default value: -1 (no
minimum expiration time
applied)

 pageMaxCacheSize Number of page files to
keep in memory to
optimize I/O during paging
navigation.

Type: integer

Example: 10

Default value: 5

 pageSizeBytes Paging size in bytes. Also
supports byte notation
such as K, Mb, and GB.

Type: string

Example: 20971520

Default value: 10485760
(approximately 10.5 MB)

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

177

 redeliveryDelay Time, in milliseconds, that
the broker waits before
redelivering a cancelled
message.

Type: integer

Example: 100

Default value: 0

 redistributionDelay Time, in milliseconds, that
the broker waits after the
last consumer is closed on
a queue before
redistributing any
remaining messages.

Type: integer

Example: 100

Default value: -1 (not set)

 retroactiveMessageCount Number of messages to
keep for future queues
created on an address.

Type: integer

Example: 100

Default value: 0

 sendToDlaOnNoRoute Specify whether a
message will be sent to the
configured dead letter
address if it cannot be
routed to any queues.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

178

 slowConsumerCheckPeriod How often, in seconds,
that the broker checks for
slow consumers.

Type: integer

Example: 15

Default value: 5

 slowConsumerPolicy Specifies what happens
when a slow consumer is
identified. Valid options
are KILL or NOTIFY.
KILL kills the consumer’s
connection, which impacts
any client threads using
that same connection.
NOTIFY sends a
CONSUMER_SLOW
management notification
to the client.

Type: string

Example: KILL

Default value: NOTIFY

 slowConsumerThreshold Minimum rate of message
consumption, in messages
per second, before a
consumer is considered
slow.

Type: integer

Example: 100

Default value: -1 (not set)

env Set environment variables
for the broker.

 <property name>=<value> A list of property names
and values to configure for
the broker.

Type: array

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

179

`name:<variable name>
value:<variable value>

A list of environment variable names
and values to configure for the broker.

Type: array

Example:

name: TZ
value: Europe/Vienna

Default value: Not applicable

brokerProperties

 Configure broker properties that are
not exposed in the broker’s Custom
Resource Definitions (CRDs) and are,
otherwise, not configurable in a
Custom Resource(CR).

<property name>=<value> A list of property names and values to
configure for the broker. One
property, globalMaxSize, is currently
configurable in the
brokerProperties section. Setting
the globalMaxSize property
overrides the default amount of
memory assigned to the broker. By
default, a broker is assigned half of the
maximum memory available to the
broker’s Java Virtual Machine.

The default unit for the
globalMaxSize property is bytes. To
change the default unit, add a suffix of
m (for MB) or g (for GB) to the value.

Type: string

Example: globalMaxSize=512m

Default value: Not applicable

version

Entry Sub-entry Description and usage

8.1.2. Address Custom Resource configuration reference

A CR instance based on the address CRD enables you to define addresses and queues for the brokers in
your deployment. The following table details the items that you can configure.

IMPORTANT

Configuration items marked with an asterisk (*) are required in any corresponding
Custom Resource (CR) that you deploy. If you do not explicitly specify a value for a non-
required item, the configuration uses the default value.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

180

Entry Description and usage

addressName* Address name to be created on broker.

Type: string

Example: address0

Default value: Not specified

queueName Queue name to be created on broker. If
queueName is not specified, the CR creates only
the address.

Type: string

Example: queue0

Default value: Not specified

removeFromBrokerOnDelete* Specify whether the Operator removes existing
addresses for all brokers in a deployment when you
remove the address CR instance for that
deployment. The default value is false, which means
the Operator does not delete existing addresses
when you remove the CR.

Type: Boolean

Example: true

Default value: false

routingType* Routing type to be used; anycast or multicast.

Type: string

Example: anycast

Default value: multicast

8.1.3. Security Custom Resource configuration reference

A CR instance based on the security CRD enables you to define the security configuration for the
brokers in your deployment, including:

users and roles

login modules, including propertiesLoginModule, guestLoginModule and
keycloakLoginModule

role based access control

console access control

NOTE

CHAPTER 8. REFERENCE

181

NOTE

Many of the options require you understand the broker security concepts described in
Securing brokers

The following table details the items that you can configure.

IMPORTANT

Configuration items marked with an asterisk (*) are required in any corresponding
Custom Resource (CR) that you deploy. If you do not explicitly specify a value for a non-
required item, the configuration uses the default value.

Entry Sub-entry Description and usage

loginModules One or more login module configurations.

A login module can be one of the
following types:

propertiesLoginModule -
allows you define broker users
directly.

guestLoginModule - for a
user who does not have login
credentials, or whose credentials
fail authentication, you can grant
limited access to the broker
using a guest account.

keycloakLoginModule. -
allows you secure brokers using
Red Hat Single Sign-On.

propertiesLoginModule name* Name of login module.

Type: string

Example: my-login

Default value: Not applicable

 users.name* Name of user.

Type: string

Example: jdoe

Default value: Not applicable

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

182

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#assembly-br-securing-brokers_configuring

 users.password* password of user.

Type: string

Example: password

Default value: Not applicable

 users.roles Names of roles.

Type: string

Example: viewer

Default value: Not applicable

guestLoginModule name* Name of guest login module.

Type: string

Example: guest-login

Default value: Not applicable

 guestUser Name of guest user.

Type: string

Example: myguest

Default value: Not applicable

 guestRole Name of role for guest user.

Type: string

Example: guest

Default value: Not applicable

keycloakLoginModule name Name for KeycloakLoginModule

Type: string

Example: sso

Default value: Not applicable

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

183

 moduleType Type of KeycloakLoginModule
(directAccess or bearerToken)

Type: string

Example: bearerToken

Default value: Not applicable

 configuration The following configuration items are
related to Red Hat Single Sign-On and
detailed information is available from the
OpenID Connect documentation.

 configuration.realm* Realm for KeycloakLoginModule

Type: string

Example: myrealm

Default value: Not applicable

 configuration.realmPublicKey Public key for the realm

Type: string

Default value: Not applicable

 configuration.authServerUrl* URL of the keycloak authentication
server

Type: string

Default value: Not applicable

 configuration.sslRequired Specify whether SSL is required

Type: string

Valid values are 'all', 'external' and 'none'.

 configuration.resource* Resource Name

The client-id of the application. Each
application has a client-id that is used to
identify the application.

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

184

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/index#openid_connect_3

 configuration.publicClient Specify whether it is public client.

Type: Boolean

Default value: false

Example: false

 configuration.credentials.key Specify the credentials key.

Type: string

Default value: Not applicable

Type: string

Default value: Not applicable

 configuration.credentials.valu
e

Specify the credentials value

Type: string

Default value: Not applicable

 configuration.useResourceRol
eMappings

Specify whether to use resource role
mappings

Type: Boolean

Example: false

 configuration.enableCors Specify whether to enable Cross-Origin
Resource Sharing (CORS)

It will handle CORS preflight requests. It
will also look into the access token to
determine valid origins.

Type: Boolean

Default value: false

 configuration.corsMaxAge CORS max age

If CORS is enabled, this sets the value of
the Access-Control-Max-Age header.

 configuration.corsAllowedMet
hods

CORS allowed methods

If CORS is enabled, this sets the value of
the Access-Control-Allow-Methods
header. This should be a comma-
separated string.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

185

 configuration.corsAllowedHea
ders

CORS allowed headers

If CORS is enabled, this sets the value of
the Access-Control-Allow-Headers
header. This should be a comma-
separated string.

 configuration.corsExposedHe
aders

CORS exposed headers

If CORS is enabled, this sets the value of
the Access-Control-Expose-Headers
header. This should be a comma-
separated string.

 configuration.exposeToken Specify whether to expose access token

Type: Boolean

Default value: false

 configuration.bearerOnly Specify whether to verify bearer token

Type: Boolean

Default value: false

 configuration.autoDetectBear
erOnly

Specify whether to only auto-detect
bearer token

Type: Boolean

Default value: false

 configuration.connectionPool
Size

Size of the connection pool

Type: Integer

Default value: 20

 configuration.allowAnyHostNa
me

Specify whether to allow any host name

Type: Boolean

Default value: false

 configuration.disableTrustMa
nager

Specify whether to disable trust manager

Type: Boolean

Default value: false

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

186

 configuration.trustStore* Path of a trust store

This is REQUIRED unless ssl-required is
none or disable-trust-manager is true.

 configuration.trustStorePass
word*

Truststore password

This is REQUIRED if truststore is set and
the truststore requires a password.

 configuration.clientKeyStore Path of a client keystore

Type: string

Default value: Not applicable

 configuration.clientKeyStoreP
assword

Client keystore password

Type: string

Default value: Not applicable

 configuration.clientKeyPassw
ord

Client key password

Type: string

Default value: Not applicable

 configuration.alwaysRefreshT
oken

Specify whether to always refresh token

Type: Boolean

Example: false

 configuration.registerNodeAt
Startup

Specify whether to register node at
startup

Type: Boolean

Example: false

 configuration.registerNodePe
riod

Period for re-registering node

Type: string

Default value: Not applicable

 configuration.tokenStore Type of token store (session or cookie)

Type: string

Default value: Not applicable

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

187

 configuration.tokenCookiePat
h

Cookie path for a cookie store

Type: string

Default value: Not applicable

 configuration.principalAttribut
e

OpenID Connect ID Token attribute to
populate the UserPrincipal name with

OpenID Connect ID Token attribute to
populate the UserPrincipal name with. If
token attribute is null, defaults to sub.
Possible values are sub,
preferred_username, email, name,
nickname, given_name, family_name.

 configuration.proxyUrl The proxy URL

 configuration.turnOffChange
SessionIdOnLogin

Specify whether to change session id on
a successful login

Type: Boolean

Example: false

 configuration.tokenMinimumT
imeToLive

Minimum time to refresh an active access
token

Type: Integer

Default value: 0

 configuration.minTimeBetwee
nJwksRequests

Minimum interval between two requests
to Keycloak to retrieve new public keys

Type: Integer

Default value: 10

 configuration.publicKeyCache
Ttl

Maximum interval between two requests
to Keycloak to retrieve new public keys

Type: Integer

Default value: 86400

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

188

 configuration.ignoreOauthQu
eryParameter

Whether to turn off processing of the
access_token query parameter for bearer
token processing

Type: Boolean

Example: false

 configuration.verifyTokenAudi
ence

Verify whether the token contains this
client name (resource) as an audience

Type: Boolean

Example: false

 configuration.enableBasicAut
h

Whether to support basic authentication

Type: Boolean

Default value: false

 configuration.confidentialPort The confidential port used by the
Keycloak server for secure connections
over SSL/TLS

Type: Integer

Example: 8443

 configuration.redirectRewrite
Rules.key

The regular expression used to match the
Redirect URI.

Type: string

Default value: Not applicable

 configuration.redirectRewrite
Rules.value

The replacement String

Type: string

Default value: Not applicable

 configuration.scope The OAuth2 scope parameter for
DirectAccessGrantsLoginModule

Type: string

Default value: Not applicable

securityDomains Broker security domains

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

189

 brokerDomain.name Broker domain name

Type: string

Example: activemq

Default value: Not applicable

 brokerDomain.loginModules One or more login modules. Each entry
must be previously defined in the
loginModules section above.

 brokerDomain.loginModules.n
ame

Name of login module

Type: string

Example: prop-module

Default value: Not applicable

 brokerDomain.loginModules.fl
ag

Same as propertiesLoginModule,
required, requisite, sufficient and
optional are valid values.

Type: string

Example: sufficient

Default value: Not applicable

 brokerDomain.loginModules.d
ebug

Debug

 brokerDomain.loginModules.r
eload

Reload

 consoleDomain.name Broker domain name

Type: string

Example: activemq

Default value: Not applicable

 consoleDomain.loginModules A single login module configuration.

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

190

 consoleDomain.loginModules.
name

Name of login module

Type: string

Example: prop-module

Default value: Not applicable

 consoleDomain.loginModules.
flag

Same as propertiesLoginModule,
required, requisite, sufficient and
optional are valid values.

Type: string

Example: sufficient

Default value: Not applicable

 consoleDomain.loginModules.
debug

Debug

Type: Boolean

Example: false

 consoleDomain.loginModules.
reload

Reload

Type: Boolean

Example: true

Default: false

securitySettings Additional security settings to add to
broker.xml or management.xml

 broker.match The address match pattern for a security
setting section. See AMQ Broker wildcard
syntax for details about the match
pattern syntax.

 broker.permissions.operation
Type

The operation type of a security setting,
as described in Setting permissions.

Type: string

Example: createAddress

Default value: Not applicable

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

191

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#con-br-broker-wildcard-syntax_configuring
https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#assembly-br-setting-permissions_configuring

 broker.permissions.roles The security settings are applied to these
roles, as described in Setting permissions.

Type: string

Example: root

Default value: Not applicable

securitySettings.management Options to configure
management.xml.

 hawtioRoles The roles allowed to log into the Broker
console.

Type: string

Example: root

Default value: Not applicable

 connector.host The connector host for connecting to the
management API.

Type: string

Example: myhost

Default value: localhost

 connector.port The connector port for connecting to the
management API.

Type: integer

Example: 1099

Default value: 1099

 connector.jmxRealm The JMX realm of the management API.

Type: string

Example: activemq

Default value: activemq

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

192

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#assembly-br-setting-permissions_configuring

 connector.objectName The JMX object name of the
management API.

Type: String

Example: connector:name=rmi

Default: connector:name=rmi

 connector.authenticatorType The management API authentication
type.

Type: String

Example: password

Default: password

 connector.secured Whether the management API connection
is secured.

Type: Boolean

Example: true

Default value: false

 connector.keyStoreProvider The keystore provider for the
management connector. Required if you
have set connector.secured="true". The
default value is JKS.

 connector.keyStorePath Location of the keystore. Required if you
have set connector.secured="true".

 connector.keyStorePassword The keystore password for the
management connector. Required if you
have set connector.secured="true".

 connector.trustStoreProvider The truststore provider for the
management connector Required if you
have set connector.secured="true".

Type: String

Example: JKS

Default: JKS

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

193

 connector.trustStorePath Location of the truststore for the
management connector. Required if you
have set connector.secured="true".

Type: string

Default value: Not applicable

 connector.trustStorePasswor
d

The truststore password for the
management connector. Required if you
have set connector.secured="true".

Type: string

Default value: Not applicable

 connector.passwordCodec The password codec for management
connector The fully qualified class name
of the password codec to use as
described in Encrypting a password in a
configuration file.

 authorisation.allowedList.dom
ain

The domain of allowedList

Type: string

Default value: Not applicable

 authorisation.allowedList.key The key of allowedList

Type: string

Default value: Not applicable

 authorisation.defaultAccess.m
ethod

The method of defaultAccess List

Type: string

Default value: Not applicable

 authorisation.defaultAccess.ro
les

The roles of defaultAccess List

Type: string

Default value: Not applicable

 authorisation.roleAccess.dom
ain

The domain of roleAccess List

Type: string

Default value: Not applicable

Entry Sub-entry Description and usage

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

194

https://access.redhat.com/documentation/en-us/red_hat_amq_broker/7.11/html-single/configuring_amq_broker/#proc_br-encrypting-passwords-configuration-files-configuring

 authorisation.roleAccess.key The key of roleAccess List

Type: string

Default value: Not applicable

 authorisation.roleAccess.acce
ssList.method

The method of roleAccess List

Type: string

Default value: Not applicable

 authorisation.roleAccess.acce
ssList.roles

The roles of roleAccess List

Type: string

Default value: Not applicable

 applyToCrNames Apply this security config to the brokers
defined by the named CRs in the current
namespace. A value of * or empty string
means applying to all brokers.

Type: string

Example: my-broker

Default value: All brokers defined by CRs
in the current namespace.

Entry Sub-entry Description and usage

8.2. EXAMPLE JAAS LOGIN MODULE CONFIGURATIONS

The following example shows a JAAS login module configuration that has both a properties login module
and an LDAP login module configured. The properties login module references the default login module
that contains the credentials used by the Operator to authenticate with the broker.

 activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule required
 debug=true
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connectionURL="LDAP://localhost:389"
 connectionUsername="CN=Administrator,CN=Users,OU=System,DC=example,DC=com"
 connectionPassword=redhat.123
 connectionProtocol=s
 connectionTimeout="5000"
 authentication=simple
 userBase="dc=example,dc=com"
 userSearchMatching="(CN={0})"
 userSearchSubtree=true
 readTimeout="5000"

CHAPTER 8. REFERENCE

195

The following example shows a JAAS login module configuration that has two properties login modules
in separate realms.

The default properties login module is in a realm named console and has the properties files
that are used by the Operator and AMQ Management Console to authenticate with the broker.

The login module in the activemq realm has new properties files, which, for example, could
contain the credentials to authenticate users for messaging.

You might want to create separate realms to, for example, apply specific security controls to the realm
that contains the login module used by the Operator to authenticate with the broker.

NOTE

By default, AMQ Management Console uses the default properties login module in the
activemq realm for authentication. If the default properties login module is configured in
another realm, as in the example, you must set an environment variable in the broker CR
to configure AMQ Management Console to use that realm. For example:

For more information about setting environment variables in a CR, see Section 4.7, “Setting

 roleBase="dc=example,dc=com"
 roleName=cn
 roleSearchMatching="(member={0})"
 roleSearchSubtree=true;

 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule
 reload=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties"
 baseDir="/home/jboss/amq-broker/etc";
};

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule
 reload=true
 org.apache.activemq.jaas.properties.user="new-users.properties"
 org.apache.activemq.jaas.properties.role="new-roles.properties"
};

console {
org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule
 reload=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties"
 baseDir="/home/jboss/amq-broker/etc";
};

spec:
 ...
 env:
 - name: JAVA_ARGS_APPEND
 value: --Hawtio.realm=console
 ...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

196

For more information about setting environment variables in a CR, see Section 4.7, “Setting
environment variables for the broker containers”.

8.3. EXAMPLE: CONFIGURING AMQ BROKER TO USE RED HAT SINGLE
SIGN-ON

This example shows how to configure AMQ Broker to use Red Hat Single Sign-On for authentication
and authorization by using JAAS login modules.

Prerequisites

A Red Hat Single Sign-On instance integrated with an LDAP directory.

The LDAP directory is populated with users and role information for AMQ Broker.

Red Hat Single Sign-On is configured to federate users from the LDAP server.

Red Hat Single Sign-On is configured to use the role-ldap-mapper to map role information
from LDAP to Red Hat Single Sign-On.

A Red Hat Single Sign-On realm that has:

A client configured with the following settings for applications, such as AMQ Management
Console, that can use the oAuth protocol to obtain a token:
Authentication flow: Standard flow

Valid Redirect URIs: An OpenShift Container Platform route for AMQ Management
Console. For example, http://artemis-wconsj-0-svc-rte-kc-ldap-tests-
0eae49.apps.redhat-412t.broker.app-services-dev.net/console/*

A separate client configured with the following settings if you have messaging client
applications that cannot use the oAuth protocol to obtain a token:
Authentication flow: Direct Access Grants

Valid Redirect URIs: *

NOTE

Each realm in Red Hat Single Sign-On includes a client named Broker. This client is not
related to AMQ Broker.

Procedure

1. Create a text file named login.config and add the JAAS login module configuration to connect
AMQ Broker with Red Hat Single Sign-On. For example:

console {
 // ensure the operator can connect to the broker by referencing the existing properties
config
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule sufficient
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties"
 baseDir="/home/jboss/amq-broker/etc";

 org.keycloak.adapters.jaas.BearerTokenLoginModule sufficient

CHAPTER 8. REFERENCE

197

http://artemis-wconsj-0-svc-rte-kc-ldap-tests-0eae49.apps.redhat-412t.broker.app-services-dev.net/console/*

 keycloak-config-file="/amq/extra/secrets/sso-jaas-config/_keycloak-bearer-token.json"
 role-principal-class=org.apache.activemq.artemis.spi.core.security.jaas.RolePrincipal;
};
activemq {
 org.keycloak.adapters.jaas.BearerTokenLoginModule sufficient
 keycloak-config-file="/amq/extra/secrets/sso-jaas-config/_keycloak-bearer-token.json"
 role-principal-class=org.apache.activemq.artemis.spi.core.security.jaas.RolePrincipal;

 org.keycloak.adapters.jaas.DirectAccessGrantsLoginModule sufficient
 keycloak-config-file="/amq/extra/secrets/sso-jaas-config/_keycloak-direct-access.json"
 role-principal-class=org.apache.activemq.artemis.spi.core.security.jaas.RolePrincipal;

 org.apache.activemq.artemis.spi.core.security.jaas.PrincipalConversionLoginModule
required
 principalClassList=org.keycloak.KeycloakPrincipal;
};

NOTE

The path to the .json configuration files must be in the format
/amq/extra/secrets/name-jaas-config. For name, specify a string value. You
must use the same string value and a -jaas-config suffix to name the secret
that you create later in this procedure.

In the example login.config file, a realm named console is used to
authenticate AMQ Management Console users and a realm named activemq
to authenticate messaging clients.

The following login modules are configured in the example login.config file.

Login module Description and usage

org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLogi
nModule

This is the default login module and
contains the artemis-
users.properties file, which contains a
default user that is required by the
Operator to authenticate with the
broker.

org.keycloak.adapters.jaas.BearerTokenLoginModule This login module is for applications, for
example, AMQ Management Console,
that can use the oAuth protocol to
obtain a token. When a user opens AMQ
Management Console in a browser
window, they are redirected to the Red
Hat Single Sign-On console to log in to
obtain a bearer token.

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

198

org.keycloak.adapters.jaas.DirectAccessGrantsLoginModule This login module is required for non-
HTTP applications, such as messaging
clients, which cannot use the oAuth
protocol. Using this login module, the
broker first authenticates the client
using a secret that is configured in Red
Hat Single Sign-On and then obtains a
token on behalf of the client.

org.apache.activemq.artemis.spi.core.security.jaas.PrincipalConve
rsionLoginModule

This login module is required to convert
the Keycloak principal received into a
JAAS principal that can be used by AMQ
Broker.

Login module Description and usage

NOTE

In the login.config file example, each .json properties file name has an underscore prefix.
The Operator ignores files prefixed with an underscore when it reports the status of the
JaasPropertiesApplied condition. If the file names do not have an underscore prefix, the
status of the JaasPropertiesApplied condition shows OutofSync permanently because
the broker does not recognize properties files used by third party login modules. For more
information about status reporting, see Section 4.3.2.1, “Configuring the default JAAS
login module using the Security Custom Resource (CR)”.

1. Create text files for each of the .json properties files that are referenced in the login modules
and configure the details required to connect AMQ Broker to Red Hat Single Sign-On. For
example:

_keycloak-bearer-token.json

{
 "realm": "amq-broker-ldap",
 "resource": "amq-console",
 "auth-server-url": "https://keycloak-svc-rte-kc-ldap-tests-0eae49.apps.412t.broker.app-
services-dev.net",
 "principal-attribute": "preferred_username",
 "use-resource-role-mappings": false,
 "ssl-required": "external",
 "confidential-port": 0
}

_keycloak-direct-access.json

{
 "realm": "amq-broker-ldap",
 "resource": "amq-broker",
 "auth-server-url": "https://keycloak-svc-rte-kc-ldap-tests-0eae49.apps.412t.broker.app-
services-dev.net",
 "principal-attribute": "preferred_username",

CHAPTER 8. REFERENCE

199

 "use-resource-role-mappings": false,
 "ssl-required": "external",
 "credentials": {
 "secret": "Lfk6g1ZKlGzNT6eRkz0d1scM4M29Ohmn"
 }
}

realm

The realm configured to authenticate the AMQ Broker applications and services in Red Hat
Single Sign-On.

resource

The client ID of a client that is configured in Red Red Hat Single Sign-On.

auth-server-url

The base URL of the Red Hat Single Sign-On server.

principal-attribute

The token attribute with which to populate the UserPrincipal name.

use-resource-role-mappings

If set to true, Red Hat Single Sign-On looks inside the token for application level role
mappings for the user. If false, it looks at the realm level for user role mappings. The default
value is false.

ssl-required

Ensures that all communication to and from the Red Hat Single Sign-On server is over
HTTPS. The default value is external, which means that HTTPS is required by default for
external requests.

credentials

A secret configured in Red Hat Single Sign-On which the broker uses to log in to Red Hat
Single Sign-On and obtain a token on behalf of the client.

2. Create a text file named _keycloak-js-client.json and add the configuration required for AMQ
Management Console to redirect users to the URL of the Red Hat Single Sign-On Admin
Console, where they enter their credentials. For example:

{
 "realm": "amq-broker-ldap",
 "clientId": "amq-console",
 "url": "https://keycloak-svc-rte-kc-ldap-tests-0eae49.apps.412t.broker.app-services-dev.net"
}

3. Use the oc create secret command to create a secret that contains the files that are
referenced in the login module configuration. For example:

oc create secret generic sso-jaas-config --from-file=login.config --from-file=artemis-
users.properties --from-file=artemis-roles.properties --from-file=_keycloak-bearer-token.json
--from-file=_keycloak-direct-access.json --from-file=_keycloak-js-client.json

NOTE

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

200

NOTE

The secret name must have a suffix of -jaas-config so the Operator can
recognize that the secret contains login module configuration and propagate
any updates to each broker Pod.

The secret name must match the last directory name in the path to the .json
configuration files, which you specified in the login.config file. For example,
if the path to the configuration files is /amq/extra/secrets/sso-jaas-config,
you must specify a secret name of sso-jaas-config.

For more information about how to create secrets, see Secrets in the Kubernetes
documentation.

4. Add the secret you created to the ActiveMQArtemis Custom Resource (CR) instance for your
broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Edit the CR for your deployment.

 oc edit ActiveMQArtemis <CR instance name> -n <namespace>

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. In the left pane, click Operators → Installed Operator.

iii. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) operator.

iv. Click the AMQ Broker tab.

v. Click the name of the ActiveMQArtemis instance name.

vi. Click the YAML tab.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

5. Create an extraMounts attribute and a secrets attribute and add the name of the secret. The
following example adds a secret named custom-jaas-config to the CR.

6. In the ActiveMQArtemis CR, create an environment variable that contains the hawtio settings
required by AMQ Management Console to use Red Hat Single Sign-On for authentication. The
contents of the environment variable are passed as arguments to the Java application launcher
when the JVM that hosts a broker is started. For example:

deploymentPlan:
 ...
 extraMounts:
 secrets:
 - "sso-jaas-config"
 ...

CHAPTER 8. REFERENCE

201

https://kubernetes.io/docs/concepts/configuration/secret/

For more information on hawtio settings, see the hawtio documentation.

7. In the spec section of the ActiveMQArtemis CR, add a brokerProperties attribute and add
permissions for the roles configured in the LDAP directory. You can grant a role permissions to a
single address. Or, you can specify a wildcard match using the # sign to grant a role permissions
to all addresses. For example:

8. Save the CR.
The Operator mounts the files in the secret in a /amq/extra/secrets/secret name directory on
each Pod and configures the broker JVM to read the mounted login.config file, which contains
the SSO configuration, instead of the default login.config file.

8.4. LOGGING

In addition to viewing the OpenShift logs, you can troubleshoot a running AMQ Broker on OpenShift
Container Platform image by viewing the AMQ logs that are output to the container’s console.

Procedure

At the command line, run the following command:

$ oc logs -f <pass:quotes[<pod-name>]> <pass:quotes[<container-name>]>

Revised on 2024-06-10 15:29:56 UTC

env:
- name: JAVA_ARGS_APPEND
 value: -
Dhawtio.rolePrincipalClasses=org.apache.activemq.artemis.spi.core.security.jaas.RolePrincipal

 -Dhawtio.keycloakEnabled=true -Dhawtio.keycloakClientConfig=/amq/extra/secrets/sso-
jaas-config/_keycloak-js-client.json
 -Dhawtio.authenticationEnabled=true -Dhawtio.realm=console

spec:
 ...
 brokerProperties:
 - securityRoles.#.producers.send=true
 - securityRoles.#.consumers.consume=true
 ...

Red Hat AMQ Broker 7.11 Deploying AMQ Broker on OpenShift

202

https://hawt.io/docs/configuration/

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
	1.1. VERSION COMPATIBILITY AND SUPPORT
	1.2. UNSUPPORTED FEATURES
	1.3. DOCUMENT CONVENTIONS
	The sudo command
	About the use of file paths in this document
	Replaceable values

	CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
	2.1. OVERVIEW OF HIGH AVAILABILITY (HA)
	2.2. OVERVIEW OF THE AMQ BROKER OPERATOR CUSTOM RESOURCE DEFINITIONS
	2.3. OVERVIEW OF THE AMQ BROKER OPERATOR SAMPLE CUSTOM RESOURCES
	2.4. WATCH OPTIONS FOR A CLUSTER OPERATOR DEPLOYMENT
	2.5. HOW THE OPERATOR DETERMINES THE CONFIGURATION TO USE TO DEPLOY IMAGES
	2.6. HOW THE OPERATOR CHOOSES CONTAINER IMAGES
	2.6.1. Environment variables for broker and init container images

	2.7. OPERATOR DEPLOYMENT NOTES
	2.8. IDENTIFYING NAMESPACES WATCHED BY EXISTING OPERATORS

	CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR
	3.1. PREREQUISITES
	3.2. INSTALLING THE OPERATOR USING THE CLI
	3.2.1. Preparing to deploy the Operator
	3.2.2. Deploying the Operator using the CLI

	3.3. INSTALLING THE OPERATOR USING OPERATORHUB
	3.3.1. Overview of the Operator Lifecycle Manager
	3.3.2. Deploying the Operator from OperatorHub

	3.4. CREATING OPERATOR-BASED BROKER DEPLOYMENTS
	3.4.1. Deploying a basic broker instance
	3.4.2. Deploying clustered brokers
	3.4.3. Applying Custom Resource changes to running broker deployments

	3.5. CHANGING THE LOGGING LEVEL FOR THE OPERATOR
	3.6. VIEWING STATUS INFORMATION FOR YOUR BROKER DEPLOYMENT

	CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS
	4.1. HOW THE OPERATOR GENERATES THE BROKER CONFIGURATION
	4.1.1. How the Operator generates the address settings configuration
	4.1.2. Directory structure of a broker Pod

	4.2. CONFIGURING ADDRESSES AND QUEUES FOR OPERATOR-BASED BROKER DEPLOYMENTS
	4.2.1. Differences in configuration of address and queue settings between OpenShift and standalone broker deployments
	4.2.2. Creating addresses and queues for an Operator-based broker deployment
	4.2.3. Deleting addresses and queues for an Operator-based broker deployment
	4.2.4. Matching address settings to configured addresses in an Operator-based broker deployment

	4.3. CONFIGURING AUTHENTICATION AND AUTHORIZATION
	4.3.1. Configuring JAAS login modules in a secret
	4.3.2. Configuring the default JAAS login module using the Security Custom Resource (CR)
	4.3.2.1. Configuring the default JAAS login module using the Security Custom Resource (CR)
	4.3.2.2. Storing user passwords in a secret

	4.4. CONFIGURING BROKER STORAGE REQUIREMENTS
	4.4.1. Configuring broker storage size and storage class

	4.5. CONFIGURING RESOURCE LIMITS AND REQUESTS FOR OPERATOR-BASED BROKER DEPLOYMENTS
	4.5.1. Configuring broker resource limits and requests

	4.6. ENABLING ACCESS TO AMQ MANAGEMENT CONSOLE
	4.7. SETTING ENVIRONMENT VARIABLES FOR THE BROKER CONTAINERS
	4.8. OVERRIDING THE DEFAULT MEMORY LIMIT FOR A BROKER
	4.9. SPECIFYING A CUSTOM INIT CONTAINER IMAGE
	4.10. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS FOR CLIENT CONNECTIONS
	4.10.1. Configuring acceptors
	4.10.2. Securing broker-client connections
	4.10.2.1. Configuring a broker certificate for host name verification
	4.10.2.2. Configuring one-way TLS
	4.10.2.3. Configuring two-way TLS

	4.10.3. Networking services in your broker deployments
	4.10.4. Connecting to the broker from internal and external clients
	4.10.4.1. Connecting to the broker from internal clients
	4.10.4.2. Connecting to the broker from external clients
	4.10.4.3. Connecting to the Broker using a NodePort
	4.10.4.4. Caveats to load balancing client connections when you have durable subscription queues or reply/request queues

	4.11. CONFIGURING LARGE MESSAGE HANDLING FOR AMQP MESSAGES
	4.11.1. Configuring AMQP acceptors for large message handling

	4.12. CONFIGURING BROKER HEALTH CHECKS
	4.12.1. Configuring a startup probe
	4.12.2. Configuring liveness and readiness probes

	4.13. ENABLING MESSAGE MIGRATION TO SUPPORT CLUSTER SCALEDOWN
	4.13.1. Steps in message migration process
	4.13.2. Enabling message migration

	4.14. CONTROLLING PLACEMENT OF BROKER PODS ON OPENSHIFT CONTAINER PLATFORM NODES
	4.14.1. Placing pods on specific nodes using node selectors
	4.14.2. Controlling pod placement using tolerations
	4.14.3. Controlling pod placement using affinity and anti-affinity rules
	4.14.3.1. Controlling pod placement using node affinity rules
	4.14.3.2. Placing pods relative to other pods using anti-affinity rules

	4.15. CONFIGURING LOGGING FOR BROKERS
	4.16. CONFIGURING A POD DISRUPTION BUDGET
	4.17. CONFIGURING ITEMS NOT EXPOSED IN THE CUSTOM RESOURCE DEFINITION

	CHAPTER 5. CONNECTING TO AMQ MANAGEMENT CONSOLE FOR AN OPERATOR-BASED BROKER DEPLOYMENT
	5.1. CONNECTING TO AMQ MANAGEMENT CONSOLE
	5.2. ACCESSING AMQ MANAGEMENT CONSOLE LOGIN CREDENTIALS

	CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT
	6.1. BEFORE YOU BEGIN
	6.2. UPGRADING THE OPERATOR USING THE CLI
	6.2.1. Prerequisites
	6.2.2. Upgrading the Operator using the CLI

	6.3. UPGRADING THE OPERATOR USING OPERATORHUB
	6.3.1. Prerequisites
	6.3.2. Before you begin
	6.3.3. Upgrading the Operator from pre-7.10.0 to 7.11.x
	6.3.4. Upgrading the Operator from 7.10.0 to 7.11.x
	6.3.5. Upgrading the Operator from 7.10.1 to 7.11.x
	6.3.6. Upgrading the Operator from 7.10.2 or later to 7.11.x

	6.4. RESTRICTING AUTOMATIC UPGRADES OF BROKER CONTAINER IMAGES
	6.4.1. Restricting automatic upgrades of images by using version numbers
	6.4.2. Restricting automatic upgrades of images by using image URLs
	6.4.3. Validation of restrictions applied to automatic upgrades

	CHAPTER 7. MONITORING YOUR BROKERS
	7.1. VIEWING BROKERS IN FUSE CONSOLE
	7.2. MONITORING BROKER RUNTIME METRICS USING PROMETHEUS
	7.2.1. Metrics overview
	7.2.2. Enabling the Prometheus plugin using a CR
	7.2.3. Enabling the Prometheus plugin for a running broker deployment using an environment variable
	7.2.4. Accessing Prometheus metrics for a running broker Pod

	7.3. MONITORING BROKER RUNTIME DATA USING JMX

	CHAPTER 8. REFERENCE
	8.1. CUSTOM RESOURCE CONFIGURATION REFERENCE
	8.1.1. Broker Custom Resource configuration reference
	8.1.2. Address Custom Resource configuration reference
	8.1.3. Security Custom Resource configuration reference

	8.2. EXAMPLE JAAS LOGIN MODULE CONFIGURATIONS
	8.3. EXAMPLE: CONFIGURING AMQ BROKER TO USE RED HAT SINGLE SIGN-ON
	8.4. LOGGING

