& RedHat

Red Hat Ansible Automation Platform
2.5

Creating and using execution environments

Create and use execution environment containers

Last Updated: 2024-10-04

Red Hat Ansible Automation Platform 2.5 Creating and using execution
environments

Create and use execution environment containers

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows how to create consistent and reproducible automation execution environments
for your Red Hat Ansible Automation Platform. This document includes content from the upstream
docs.ansible.com documentation, which is covered by the Apache 2.0 license.

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO AUTOMATION EXECUTION ENVIRONMENTS

CHAPTER 2. USING ANSIBLE BUILDER

CHAPTER 3. COMMON AUTOMATION EXECUTION ENVIRONMENT SCENARIOS

CHAPTER 4. PUBLISHING AN AUTOMATION EXECUTION ENVIRONMENT

CHAPTER 6. SETTING UP YOUR CONTAINER REPOSITORY

CHAPTER 7. PULLING IMAGES FROM A CONTAINER REPOSITORY

PART I. OPEN SOURCE LICENSE

Table of Contents

11. ABOUT AUTOMATION EXECUTION ENVIRONMENTS
1.1.1. Why use automation execution environments?

2.1. WHY USE ANSIBLE BUILDER?
2.2. INSTALLING ANSIBLE BUILDER
2.3. BUILDING AN EXECUTION ENVIRONMENT IN A DISCONNECTED ENVIRONMENT
2.4. BUILDING A DEFINITION FILE
2.5. BUILDING THE AUTOMATION EXECUTION ENVIRONMENT IMAGE
2.6. BREAKDOWN OF DEFINITION FILE CONTENT
2.6.1. Build args and base image
2.6.1.1. Galaxy
2.6.1.2. Python
2.6.1.3. System
2.6.2. Images
2.6.3. Additional build files
2.6.4. Additional custom build steps
2.6.5. Additional resources
2.7. OPTIONAL BUILD COMMAND ARGUMENTS
2.8. CONTAINERFILE
2.9. CREATING A CONTAINERFILE WITHOUT BUILDING AN IMAGE

3.1. UPDATING THE AUTOMATION HUB CA CERTIFICATE

Table of Contents

N

O 00 N N N

3.2. USING AUTOMATION HUB AUTHENTICATION DETAILS WHEN BUILDING AUTOMATION EXECUTION

ENVIRONMENTS
3.3. ADDITIONAL RESOURCES

4.1. CUSTOMIZING AN EXISTING AUTOMATION EXECUTION ENVIRONMENTS IMAGE
4.2. ADDITIONAL RESOURCES (OR NEXT STEPS)

CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION HUB CONTAINER REGISTRY

5.1. PULLING EXECUTION ENVIRONMENTS FOR USE IN AUTOMATION HUB
5.2. TAGGING EXECUTION ENVIRONMENTS FOR USE IN AUTOMATION HUB
5.3. PUSHING AN EXECUTION ENVIRONMENT TO PRIVATE AUTOMATION HUB

6.1. PREREQUISITES TO SETTING UP YOUR REMOTE REGISTRY

6.2. ADDING A README TO YOUR CONTAINER REPOSITORY

6.3. PROVIDING ACCESS TO YOUR AUTOMATION EXECUTION ENVIRONMENTSS
6.4. TAGGING CONTAINER IMAGES

6.5. CREATING A CREDENTIAL

7.1. PULLING AN IMAGE
7.2. SYNCING IMAGES FROM A CONTAINER REPOSITORY

................ 21

21
23
23

................ 25

25
25
25
26
26

................ 28

28
28

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

APPENDIX A. AUTOMATION EXECUTION ENVIRONMENTS PRECEDENCE ...t

Table of Contents

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

PREFACE

Use execution environment builder to create consistent and reproducible containers for your Red Hat
Ansible Automation Platform needs.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

If you have a suggestion to improve this documentation, or find an error, you can contact technical
support at https://access.redhat.com to open a request.

https://access.redhat.com

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

CHAPTER 1. INTRODUCTION TO AUTOMATION EXECUTION
ENVIRONMENTS

Using Ansible content that depends on non-default dependencies can be complicated because the
packages must be installed on each node, interact with other software installed on the host system, and
be kept in sync.

Automation execution environments help simplify this process and can easily be created with Ansible
Builder.

1.1. ABOUT AUTOMATION EXECUTION ENVIRONMENTS

All automation in Red Hat Ansible Automation Platform runs on container images called automation
execution environments. Automation execution environments create a common language for
communicating automation dependencies, and offer a standard way to build and distribute the
automation environment.

An automation execution environment should contain the following:
® Ansible Core 2.15 or later
® Python 3.8-3.11
® Ansible Runner
® Ansible content collections and their dependencies

® System dependencies

1.1.1. Why use automation execution environments?

With automation execution environments, Red Hat Ansible Automation Platform has transitioned to a
distributed architecture by separating the control plane from the execution plane. Keeping automation
execution independent of the control plane results in faster development cycles and improves
scalability, reliability, and portability across environments. Red Hat Ansible Automation Platform also
includes access to Ansible content tools, making it easy to build and manage automation execution
environments.

In addition to speed, portability, and flexibility, automation execution environments provide the
following benefits:

® They ensure that automation runs consistently across multiple platforms and make it possible to
incorporate system-level dependencies and collection-based content.

® They give Red Hat Ansible Automation Platform administrators the ability to provide and
manage automation environments to meet the needs of different teams.

® They allow automation to be easily scaled and shared between teams by providing a standard
way of building and distributing the automation environment.

® They enable automation teams to define, build, and update their automation environments
themselves.

® Automation execution environments provide a common language to communicate automation
dependencies.

CHAPTER 2. USING ANSIBLE BUILDER

CHAPTER 2. USING ANSIBLE BUILDER

Ansible Builder is a command line tool that automates the process of building automation execution
environments by using metadata defined in various Ansible Collections or created by the user.

2.1. WHY USE ANSIBLE BUILDER?

Before Ansible Builder was developed, Red Hat Ansible Automation Platform users could run into
dependency issues and errors when creating custom virtual environments or containers that included all
of the required dependencies installed.

Now, with Ansible Builder, you can easily create a customizable automation execution environments
definition file that specifies the content you want included in your automation execution environments
such as Ansible Core, Python, Collections, third-party Python requirements, and system level packages.
This allows you to fulfill all of the necessary requirements and dependencies to get jobs running.

2.2. INSTALLING ANSIBLE BUILDER

Prerequisites

® You have installed the Podman container runtime.

® You have valid subscriptions attached on the host. Doing so allows you to access the
subscription-only resources needed to install ansible-builder, and ensures that the necessary
repository for ansible-builder is automatically enabled. See Attaching your Red Hat Ansible
Automation Platform subscription for more information.

Procedure

® |nyour terminal, run the following command to install Ansible Builder and activate your Ansible
Automation Platform repo:

I # dnf install --enablerepo=ansible-automation-platform-2.5-for-rhel-9-x86_64-rpms ansible-
builder

2.3. BUILDING AN EXECUTION ENVIRONMENT IN A DISCONNECTED
ENVIRONMENT

Creating execution environments for Ansible Automation Platform is a common task which works
differently in disconnected environments. When building a custom execution environment, the ansible-

builder tool defaults to downloading content from the following locations on the internet:

® Red Hat Automation hub (console.redhat.com) or Ansible Galaxy (galaxy.ansible.com) for any
Ansible content collections added to the execution environment image.

® PyPI (pypi.org) for any python packages required as collection dependencies.

® RPM repositories such as the RHEL or UBI repositories (cdn.redhat.com) for adding or updating
RPMs to the execution environment image, if needed.

® registry.redhat.io for access to the base container images.

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/access_management_and_authentication/index#proc-attaching-subscriptions

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

Building an execution environment image in a disconnected environment requires mirroring content
from these locations. For information about importing collections from Ansible Galaxy or automation
hub into a private automation hub, see Importing an automation content collection in automation hub

Mirrored PyPI content once transferred into the disconnected network can be made available by using a
web server or an artifact repository such as Nexus. The RHEL and UBI repository content can be
exported from an internet-facing Red Hat Satellite Server, copied into the disconnected environment,
then imported into a disconnected Satellite so it is available for building custom execution
environments. See ISS Export Sync in an Air-Gapped Scenario for details.

The default base container image, ee-minimal-rhel8, is used to create custom execution environment
images and is included with the bundled installer. This image is added to the private automation hub at
install time. If a different base container image such as ee-minimal-rhel9 is required, it must be imported
to the disconnected network and added to the private automation hub container registry.

Once all of the prerequisites are available on the disconnected network, the ansible-builder command
can be used to create custom execution environment images.

2.4. BUILDING A DEFINITION FILE

After you install Ansible Builder, you can create a definition file that Ansible Builder uses to create your
automation execution environment image. Ansible Builder makes an automation execution environment
image by reading and validating your definition file, then creating a Containerfile, and finally passing the
Containerfile to Podman, which then packages and creates your automation execution environment
image. The definition file that you create must be in yaml format and contain different sections. The
default definition filename, if not provided, is execution-environment.yml. For more information on the
parts of a definition file, see Breakdown of definition file content.

The following is an example of a version 3 definition file. Each definition file must specify the major
version number of the Ansible Builder feature set it uses. If not specified, Ansible Builder defaults to
version 1, making most new features and definition keywords unavailable.

galaxy: requirements.yml|
python:

Example 2.1. Definition file example
version: 3
build_arg_defaults:)
ANSIBLE_GALAXY_CLI_COLLECTION_OPTS: "--pre'
dependencies: g
- siX

- psutil
system: bindep.ixt

images: 6
base_image:
name: registry.redhat.io/ansible-automation-platform-24/ee-minimal-rhel9:latest

Custom package manager path for the RHEL based images
options:

package_manager_path: /usr/bin/microdnf

additional_build_steps: @)

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/managing_automation_content/managing-collections-hub#proc-import-collection
https://docs.redhat.com/en/documentation/red_hat_satellite/6.15/html-single/installing_satellite_server_in_a_disconnected_network_environment/index#iss_export_sync_in_an_air_gapped_scenario

CHAPTER 2. USING ANSIBLE BUILDER

prepend_base:
- RUN echo This is a prepend base command!

prepend_galaxy:

Environment variables used for Galaxy client configurations

- ENV ANSIBLE_GALAXY_SERVER_LIST=automation_hub

- ENV
ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_URL=https://console.redhat.com/api/automati
on-hub/content/xxxxxxx-synclist/

- ENV
ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_AUTH_URL=https://sso.redhat.com/auth/real
ms/redhat-external/protocol/openid-connect/token

define a custom build arg env passthru - we still also have to pass

--build-arg ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN' to get it to pick it
up from the env

- ARG ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN

prepend_final: |
RUN whoami
RUN cat /etc/os-release
append_final:
- RUN echo This is a post-install command!
- RUN Is -la /etc

Lists default values for build arguments.
Specifies the location of various requirements files.

Specifies the base image to be used. Red Hat support is only provided for the redhat.registry.io
base image.

Specifies options that can affect builder runtime functionality.

®0 009

Commands for additional custom build steps.

Additional resources

® [For more information about the definition file content, see Breakdown of definition file content.

® To read more about the differences between Ansible Builder versions 2 and 3, see the Ansible 3
Porting Guide.

2.5. BUILDING THE AUTOMATION EXECUTION ENVIRONMENT IMAGE

After you create a definition file, you can proceed to build an automation execution environment image.

NOTE

When building an execution environment image, it must support the architecture that
Ansible Automation Platform is deployed with.

Prerequisites

https://docs.ansible.com/ansible/latest/porting_guides/porting_guide_3.html

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

® You have created a definition file.

Procedure

To build an automation execution environment image, run the following from the command line:

I $ ansible-builder build

By default, Ansible Builder looks for a definition file named execution-environment.yml but a different
file path can be specified as an argument with the -f flag:

I $ ansible-builder build -f definition-file-name.yml

where definition-file-name specifies the name of your definition file.

2.6. BREAKDOWN OF DEFINITION FILE CONTENT

A definition file is required for building automation execution environments with Ansible Builder,
because it specifies the content that is included in the automation execution environment container
image.

The following sections breaks down the different parts of a definition file.

2.6.1. Build args and base image

The build_arg_defaults section of the definition file is a dictionary whose keys can provide default
values for arguments to Ansible Builder. See the following table for a list of values that can be used in
build_arg_defaults:

Value Description

ANSIBLE_GALAXY_CLI_COLLECTION_OPT Allows the user to pass arbitrary arguments to the

S ansible-galaxy CLI during the collection installation
phase. For example, the —pre flag to enable the
installation of pre-release collections, or -c to disable
verification of the server’s SSL certificate.

ANSIBLE_GALAXY_CLI_ROLE_OPTS Allows the user to pass any flags, such as -no-deps,
to the role installation.

The values given inside build_arg_defaults will be hard-coded into the Containerfile, so these values
will persist if podman build is called manually.

NOTE

If the same variable is specified in the CLI --build-arg flag, the CLI value will take higher
precedence.

You can include dependencies that must be installed into the final image in the dependencies section of
your definition file.

10

CHAPTER 2. USING ANSIBLE BUILDER

To avoid issues with your automation execution environment image, make sure that the entries for
Galaxy, Python, and system point to a valid requirements file, or are valid content for their respective file
types.

2.6.1.1. Galaxy

The galaxy entry points to a valid requirements file or includes inline content for the ansible-galaxy
collection install -r ... command.

The entry requirements.yml can be a relative path from the directory of the automation execution
environment definition’s folder, or an absolute path.

The content might look like the following:

Example 2.2. Galaxy entry

collections:
- community.aws

- kubernetes.core

2.6.1.2. Python

The python entry in the definition file points to a valid requirements file or to an inline list of Python
requirements in PEP508 format for the pip install -r ... command.

The entry requirements.txt is a file that installs extra Python requirements on top of what the
Collections already list as their Python dependencies. It may be listed as a relative path from the
directory of the automation execution environment definition’s folder, or an absolute path. The contents
of arequirements.txt file should be formatted like the following example, similar to the standard output
from a pip freeze command:

Example 2.3. Python entry
boto>=2.49.0
botocore>=1.12.249
pytz
python-dateutil>=2.7.0
awxkit

packaging

requests>=2.4.2

xmltodict

azure-cli-core==2.11.1
openshift>=0.6.2
requests-oauthlib
openstacksdk>=0.13
ovirt-engine-sdk-python>=4.4.10

2.6.1.3. System

The system entry in the definition points to a bindep requirements file or to an inline list of bindep
entries, which install system-level dependencies that are outside of what the collections already include

1

https://docs.opendev.org/opendev/bindep/latest/readme.html

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

as their dependencies. It can be listed as a relative path from the directory of the automation execution
environment definition’s folder, or as an absolute path. At a minimum, the the collection(s) must specify
necessary requirements for [platform:rpm].

To demonstrate this, the following is an example bindep.txt file that adds the libxmlI2 and subversion
packages to a container:

Example 2.4. System entry

libxml2-devel [platform:rpm]
subversion [platform:rpm]

Entries from multiple collections are combined into a single file. This is processed by bindep and then
passed to dnf. Only requirements with no profiles or no runtime requirements will be installed to the
image.

2.6.2.Images

The images section of the definition file identifies the base image. Verification of signed container
images is supported with the podman container runtime.

See the following table for a list of values that you can use in images:

Value Description

base_image Specifies the parent image for the automation
execution environment which enables a new image
to be built that is based on an existing image. This is
typically a supported execution environment base
image such as ee-minimal or ee-supported, but it can
also be an execution environment image that you
have created and want to customize further.

A name key is required for the container image to
use. Specify the signature _original_name key if
the image is mirrored within your repository, but is
signed with the image's original signature key. Image
names must contain a tag, such as :latest.

The defaultimage is registry.redhat.io/ansible-

automation-platform-24/ee-minimal-
rhel8:latest.

NOTE

If the same variable is specified in the CLI --build-arg flag, the CLI value will take higher
precedence.

2.6.3. Additional build files

12

CHAPTER 2. USING ANSIBLE BUILDER

You can add any external file to the build context directory by referring or copying them to the
additional_build_steps section of the definition file. The format is a list of dictionary values, each with a
src and dest key and value.

Each list item must be a dictionary containing the following required keys:

Src

Specifies the source files to copy into the build context directory. This can be an absolute path (for
example, /home/user/.ansible.cfg), or a path that is relative to the execution environment file.
Relative paths can be glob expressions matching one or more files (for example, files/*.cfg).

NOTE

Absolute paths can not include a regular expression. If srcis a directory, the entire
contents of that directory are copied to dest.

dest

Specifies a subdirectory path underneath the _build subdirectory of the build context directory that
contains the source files (for example, files/configs). This can not be an absolute path or contain ..
within the path. Ansible Builder creates this directory for you if it does not already exist.

2.6.4. Additional custom build steps

You can specify custom build commands for any build phase in the additional_build_steps section of
the definition file. This allows fine-grained control over the build phases.

Use the prepend_and append_ commands to add directives to the Containerfile that run either
before or after the main build steps are executed. The commands must conform to any rules required

for the runtime system.

See the following table for a list of values that can be used in additional_build_steps:

Value Description

prepend_base Allows you to insert commands before building the
base image.

append_base Allows you to insert commands after building the
base image.

prepend_galaxy Allows you to insert before building the galaxy image.

append_galaxy Allows you to insert after building the galaxy image.

prepend_builder Allows you to insert commands before building the

Python builder image.

append_builder Allows you to insert commands after building the
Python builder image.

prepend_final Allows you to insert before building the final image.

13

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

Value Description

append_final Allows you to insert after building the final image.

The syntax for additional_build_steps supports both multi-line strings and lists. See the following
examples:

Example 2.5. A multi-line string entry

RUN whoami

prepend_final: |
RUN cat /etc/os-release

Example 2.6. A list entry

- RUN echo This is a post-install command!

append_final:
- RUN Is -la /etc

2.6.5. Additional resources

® For example definition files for common scenarios, see the Common scenarios section of the
Ansible Builder Documentation

2.7. OPTIONAL BUILD COMMAND ARGUMENTS

The -t flag will tag your automation execution environment image with a specific name. For example, the
following command will build an image named my_first_ee_image:

I $ ansible-builder build -t my_first_ee_image

NOTE

If you do not use -t with build, an image called ansible-execution-env is created and
loaded into the local container registry.

If you have multiple definition files, you can specify which one to use by including the -f flag:
I $ ansible-builder build -f another-definition-file.yml -t another_ee_image

In this example, Ansible Builder will use the specifications provided in the file named another-definition-
file.yml instead of the default execution-environment.yml to build an automation execution
environment image named another_ee_image.

For other specifications and flags that you can use with the build command, enter ansible-builder
build --help to see a list of additional options.

14

https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_copy/

CHAPTER 2. USING ANSIBLE BUILDER

2.8. CONTAINERFILE

After your definition file is created, Ansible Builder reads and validates it, creates a Containerfile and
container build context, and optionally passes these to Podman to build your automation execution
environment image. The container build occurs in several distinct stages: base , galaxy, builder, and
final. The image build steps (along with any corresponding custom prepend_and append_ steps
defined in additional_build_steps) are:

1. During the base build stage, the specified base image is (optionally) customized with
components required by other build stages, including Python, pip, ansible-core, and ansible-
runner. The resulting image is then validated to ensure that the required components are
available (as they may have already been present in the base image). Ephemeral copies of the
resulting customized base image are used as the base for all other build stages.

2. During the galaxy build stage, collections specified by the definition file are downloaded and
stored for later installation during the final build stage. Python and system dependencies
declared by the collections, if any, are also collected for later analysis.

3. During the builder build stage, Python dependencies declared by collections are merged with
those listed in the definition file. This final set of Python dependencies is downloaded and built

as Python wheels and stored for later installation during the final build stage.

4. During the final build stage, the previously-downloaded collections are installed, along with
system packages and any previously-built Python packages that were declared as dependencies
by the collections or listed in the definition file.

2.9. CREATING A CONTAINERFILE WITHOUT BUILDING AN IMAGE

If you are required to use shared container images built in sandboxed environments for security reasons,
you can create a shareable Containerfile.

I $ ansible-builder create

15

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

CHAPTER 3. COMMON AUTOMATION EXECUTION
ENVIRONMENT SCENARIOS

Use the following example definition files to address common configuration scenarios.

3.1. UPDATING THE AUTOMATION HUB CA CERTIFICATE

Use this example to customize the default definition file to include a CA certificate to the additional-
build-files section, move the file to the appropriate directory and, finally, run the command to update
the dynamic configuration of CA certificates to allow the system to trust this CA certificate.

Prerequisites

® A custom CA certificate, for example rootCA.crt.

NOTE

Customizing the CA certificate using prepend_base means that the resulting CA
configuration appears in all other build stages and the final image, because all other build
stages inherit from the base image.

additional_build_files:
copy the CA public key into the build context, we will copy and use it in the base image later
- src: files/rootCA.crt
dest: configs

additional_build_steps:
prepend_base:
copy a custom CA cert into the base image and recompute the trust database
because this is in "base", all stages will inherit (including the final EE)
- COPY _build/configs/rootCA.crt /usr/share/pki/ca-trust-source/anchors
- RUN update-ca-trust

options:
package_manager_path: /usr/bin/microdnf # downstream images use non-standard package
manager

[galaxy]
server_list = automation_hub

3.2. USING AUTOMATION HUB AUTHENTICATION DETAILS WHEN
BUILDING AUTOMATION EXECUTION ENVIRONMENTS

Use the following example to customize the default definition file to pass automation hub
authentication details into the automation execution environment build without exposing them in the
final automation execution environment image.

Prerequisites

® You have created an API token, as in Retrieving the API token for your Red Hat Certified
Collection and stored it in a secure location, for example in a file named token.txt.

16

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/managing_automation_content/managing-cert-valid-content#proc-create-api-token

CHAPTER 3. COMMON AUTOMATION EXECUTION ENVIRONMENT SCENARIOS

® Define a build argument that gets populated with the automation hub API token:

I export ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN=$(cat <token.txt>)

additional_build_steps:
prepend_galaxy:

define a custom build arg env passthru- we still also have to pass

--build-arg ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN' to get it to pick it up
from the host env

- ARG ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN

- ENV ANSIBLE_GALAXY_SERVER_LIST=automation_hub

- ENV
ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_URL=https://console.redhat.com/api/automation-
hub/content/<yourhuburl>-synclist/

- ENV
ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_AUTH_URL=https://sso.redhat.com/auth/realms/
redhat-external/protocol/openid-connect/token

3.3. ADDITIONAL RESOURCES

e Forinformation regarding the different parts of an automation execution environment
definition file, see Breakdown of definition file content.

® For additional example definition files for common scenarios, see Common scenarios section of
the Ansible Builder Documentation

17

https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_copy/

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

CHAPTER 4. PUBLISHING AN AUTOMATION EXECUTION
ENVIRONMENT

4.1. CUSTOMIZING AN EXISTING AUTOMATION EXECUTION
ENVIRONMENTS IMAGE

Ansible Controller includes the following default execution environments:

® Minimal - Includes the latest Ansible-core 2.15 release along with Ansible Runner, but does not
include collections or other content

® EE Supported - Minimal, plus all Red Hat-supported collections and dependencies
While these environments cover many automation use cases, you can add additional items to customize

these containers for your specific needs. The following procedure adds the kubernetes.core collection
to the ee-minimal default image:

Procedure

1. Login to registry.redhat.io via Podman:
I $ podman login -u="[username]" -p="[token/hash]" registry.redhat.io
2. Ensure that you can pull the required automation execution environment base image:

I podman pull registry.redhat.io/ansible-automation-platform-24/ee-minimal-rhel8:latest

3. Configure your Ansible Builder files to specify the required base image and any additional
content to add to the new execution environment image.

a. For example, to add the Kubernetes Core Collection from Galaxy to the image, use the
Galaxy entry:

collections:
- kubernetes.core

b. For more information about definition files and their content, see the definition file
breakdown section.

4. In the execution environment definition file, specify the original ee-minimal container’'s URL
and tag in the EE_BASE_IMAGE field. In doing so, your final execution-environment.yml file
will look like the following:

‘ Example 4.1. A customized execution-environment.yml file

version: 3
images:
base_image: 'registry.redhat.io/ansible-automation-platform-25/ee-minimal-rhel9:latest'
dependencies:

18

https://galaxy.ansible.com/kubernetes/core

CHAPTER 4. PUBLISHING AN AUTOMATION EXECUTION ENVIRONMENT

galaxy:
collections:
- kubernetes.core

NOTE

Since this example uses the community version of kubernetes.core and not a
certified collection from automation hub, we do not need to create an
ansible.cfg file or reference that in our definition file.

5. Build the new execution environment image by using the following command:
I $ ansible-builder build -t [username]/new-ee

where [username] specifies your username, and new-ee specifies the name of your new
container image.

NOTE

If you do not use -t with build, an image called ansible-execution-env is created
and loaded into the local container registry.

e Use the podman images command to confirm that your new container image is in that list:

Example 4.2. Output of apodman images command with the imagenew-ee

REPOSITORY TAG IMAGEID CREATED SIZE
localhost/new-ee latest f5509587efbb 3 minutes ago 769 MB

6. Verify that the collection is installed:

I $ podman run [username]/new-ee ansible-doc - kubernetes.core

7. Tag the image for use in your automation hub:

I $ podman tag [username]/new-ee [automation-hub-IP-address]/[username]/new-ee

8. Login to your automation hub using Podman:

NOTE

You must have admin or appropriate container repository permissions for
automation hub to push a container. For more information, see Manage
containers in private automation hub.

I $ podman login -u="[username]" -p="[token/hash]" [automation-hub-IP-address]

9. Push yourimage to the container registry in automation hub:

19

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/managing_automation_content/index#managing-containers-hub

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

I $ podman push [automation-hub-IP-address]/[username]/new-ee

10. Pull your new image into your automation controller instance:

a.

b.

Go to automation controller.

From the navigation panel, select Automation Execution = Infrastructure = Execution
Environments.

. Click Add.

Enter the appropriate information then click Save to pull in the new image.

NOTE

If your instance of automation hub is password or token protected, ensure
that you have the appropriate container registry credential set up.

4.2. ADDITIONAL RESOURCES (OR NEXT STEPS)

For more details on customizing execution environments based on common scenarios, see the following
topics in the Ansible Builder Documentation:

® Copying arbitratory files to an execution environment

® Building execution environments with environment variables

® Building execution environments with environment variables and ansible.cfg

20

https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_copy/
https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_using_env/
https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_custom/

CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION HUB CONTAINER REGISTRY

CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION
HUB CONTAINER REGISTRY

By default, private automation hub does not include execution environments. To populate your
container registry, you must push a execution environment to it.

You must follow a specific workflow to populate your private automation hub remote registry:
® Pull execution environments from the Red Hat Ecosystem Catalog (registry.redhat.io)
® Tagthem

® Push them to your private automation hub remote registry

IMPORTANT

Image manifests and filesystem blobs were both originally served directly from
registry.redhat.io and registry.access.redhat.com. As of 1 May 2023, filesystem blobs
are served from quay.io instead.

® Ensure that the Network ports and protocols listed in Table 5.4. Execution
Environments (EE) are available to avoid problems pulling container images.

Make this change to any firewall configuration that specifically enables outbound
connections to registry.redhat.io or registry.access.redhat.com.

Use the hostnames instead of IP addresses when configuring firewall rules.

After making this change you can continue to pull execution environments from
registry.redhat.io and registry.access.redhat.com. You do not require a quay.io login,
or need to interact with the quay.io registry directly in any way to continue pulling Red
Hat container images.

However, manifests, sometimes called “subscription allocations”, on the web-based Red
Hat Subscription Management are no longer supported as of early 2024 with one
exception: If a system is part of a closed network or “air gapped” system that does not
receive its updates from Red Hat's servers directly, manifests are supported until the
release of Red Hat Satellite 6.16. Keep up to date with Red Hat Satellite Release Dates
for the announcement for Red Hat Satellite 6.16's release date announcement.

5.1. PULLING EXECUTION ENVIRONMENTS FOR USE IN AUTOMATION
HUB

Before you can push execution environments to your private automation hub, you must first pull them
from an existing registry and tag them for use. The following example details how to pull an execution
environment from the Red Hat Ecosystem Catalog (registry.redhat.io).

21

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/planning_your_installation/ref-network-ports-protocols_planning
access.redhat.com/articles/1365633

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

IMPORTANT

As of early 2024, Red Hat no longer supports manifests or manifest lists on the Red Hat
Subscription Management web platform, which has also been used interchangeably with
“subscription allocations.” Red Hat also no longer supports most manifest functionality in
Red Hat Satellite with one exception: * Red Hat Satellite users in closed network or “air
gapped” networks that do not receive their updates directly from Red Hat servers can
currently still use access.redhat.com until the release of Red Hat Satellite 6.16.

New Red Hat accounts automatically use Simple Content Access for their subscription
tooling. New Red Hat accounts and existing Satellite customers who can connect to Red
Hat's servers can find their manifests at console.redhat.com.

Prerequisites

® You have permissions to pull execution environments from registry.redhat.io.

® A Red Hat account with Simple Content Access enabled.

Procedure

1. If you need to access your manifest for your container images log in to Red Hat Console.

2. Click the three-dot menu for the manifest you need for your execution environments, and click
Export manifest.

3. Login to Podman by using your registry.redhat.io credentials:
I $ podman login registry.redhat.io

4. Enter your username and password.

5. Pull an execution environment:

I $ podman pull registry.redhat.io/<ee_name>:<tag>

Verification

To verify that the execution environment you recently pulled is contained in the list, take these steps:

1. List the images in local storage:
I $ podman images
2. Check the execution environment name, and verify that the tag is correct.

Additional resources

® See Red Hat Ecosystem Catalog Help for information on registering and getting execution
environments.

® See Creating and managing manifests for a connected Satellite Server to learn more about the
changes coming to Red Hat subscription tooling.

22

console.redhat.com/subscriptions/manifests
redhat-connect.gitbook.io/catalog-help/
https://docs.redhat.com/en/documentation/subscription_central/1-latest/html/creating_and_managing_manifests_for_a_connected_satellite_server/index

CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION HUB CONTAINER REGISTRY

5.2. TAGGING EXECUTION ENVIRONMENTS FOR USE IN
AUTOMATION HUB

After you pull execution environments from a registry, tag them for use in your private automation hub
remote registry.

Prerequisites

® You have pulled an execution environment from an external registry.

® You have the FQDN or IP address of the automation hub instance.
Procedure
® Tag alocal execution environment with the automation hub container repository:

$ podman tag registry.redhat.io/<ee_name>:<tag>
<automation_hub_hostname>/<ee _name>

Verification

1. List the images in local storage:
I $ podman images

2. Verify that the execution environment you recently tagged with your automation hub
information is contained in the list.

5.3. PUSHING AN EXECUTION ENVIRONMENT TO PRIVATE
AUTOMATION HUB

You can push tagged execution environments to private automation hub to create new containers and
populate the remote registry.

Prerequisites

® You have permissions to create new containers.

® You have the FQDN or IP address of the automation hub instance.

Procedure

1. Log in to Podman using your automation hub location and credentials:

I $ podman login -u=<username> -p=<password> <automation_hub_url>

23

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

' WARNING
A Let Podman prompt you for your password when you log in. Entering your

password at the same time as your username can expose your password to
the shell history.

2. Push your execution environment to your automation hub remote registry:

I $ podman push <automation_hub_url>/<ee_name>

Troubleshooting
The push operation re-compresses image layers during the upload, which is not guaranteed to be
reproducible and is client-implementation dependent. This may lead to image-layer digest changes and

a failed push operation, resulting in Error: Copying this image requires changing layer
representation, which is not possible (image is signed or the destination specifies a digest).

Verification
1. Login to your Ansible Automation Platform.
2. Navigate to Automation Content - Execution Environments.

3. Locate the container in the container repository list.

24

CHAPTER 6. SETTING UP YOUR CONTAINER REPOSITORY

CHAPTER 6. SETTING UP YOUR CONTAINER REPOSITORY

When you set up your container repository, you must add a description, include a README, add teams
that can access the repository, and tag automation execution environmentss.

6.1. PREREQUISITES TO SETTING UP YOUR REMOTE REGISTRY
® You are logged in to Ansible Automation Platform.

® You have permissions to change the repository.

6.2. ADDING A README TO YOUR CONTAINER REPOSITORY
Add a README to your container repository to provide instructions to your users on how to work with

the container. Automation hub container repositories support Markdown for creating a README. By
default, the README is empty.

Prerequisites

® You have permissions to change containers.

Procedure

1. Login to Ansible Automation Platform.
2. From the navigation panel, select Automation Content - Execution Environments.
3. Select your execution environment.
4. On the Detail tab, click Add.
5. In the Raw Markdown text field, enter your README text in Markdown.
6. Click Save when you are finished.

After you add a README, you can edit it at any time by clicking Edit and repeating steps 4 and 5.
6.3. PROVIDING ACCESS TO YOUR AUTOMATION EXECUTION
ENVIRONMENTSS

Provide access to your automation execution environmentss for users who need to work with the

images. Adding a team allows you to modify the permissions the team can have to the container
repository. You can use this option to extend or restrict permissions based on what the team is assigned.

Prerequisites

® You have change container namespace permissions.

Procedure

1. Login to Ansible Automation Platform.

2. From the navigation panel, select Automation Content - Execution Environments.

25

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

w

. Select your automation execution environments.

4. From the Team Access tab, click Add roles.

ul

. Select the team or teams to which you want to grant access and click Next.

6. Select the roles that you want to add to this execution environment and click Next.

N

. Click Finish.

6.4. TAGGING CONTAINER IMAGES
Tag automation execution environmentss to add an additional name to automation execution

environmentss stored in your automation hub container repository. If no tag is added to an automation
execution environments, automation hub defaults to latest for the name.

Prerequisites

® You have change automation execution environments tags permissions.

Procedure

1. From the navigation panel, select Automation Content - Execution Environments.
2. Select your automation execution environments.

3. Click the Images tab.

4. Click the More Actions icon &, and click Manage tags.

5. Add a new tag in the text field and click Add.

6. Optional: Remove current tags by clicking x on any of the tags for that image.

Verification

® Click the Activity tab and review the latest changes.

6.5. CREATING A CREDENTIAL

To pull automation execution environments images from a password or token-protected registry, you
must create a credential.

In earlier versions of Ansible Automation Platform, you were required to deploy a registry to store
execution environment images. On Ansible Automation Platform 2.0 and later, the system operates as if

you already have a remote registry up and running. To store execution environment images, add the
credentials of only your selected remote registries.

Procedure

1. Login to Ansible Automation Platform.
2. From the navigation panel, select Automation Execution = Infrastructure - Credentials.

3. Click Create credential to create a new credential.

26

8.

S.

CHAPTER 6. SETTING UP YOUR CONTAINER REPOSITORY

Enter an authorization Name, Description, and Organization.

In the Credential Type drop-down, select Container Registry.

Enter the Authentication URL. This is the remote registry address.

Enter the Username and Password or Token required to log in to the remote registry.
Optional: To enable SSL verification, select Verify SSL.

Click Create credential.

Filling in at least one of the fields organization, user, or team is mandatory, and can be done through the
user interface.

27

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

CHAPTER 7. PULLING IMAGES FROM A CONTAINER
REPOSITORY

Pull automation execution environmentss from the automation hub remote registry to make a copy to
your local machine. Automation hub provides the podman pull command for each latest automation
execution environments in the container repository. You can copy and paste this command into your
terminal, or use podman pull to copy an automation execution environments based on an automation
execution environments tag.

7.1. PULLING AN IMAGE

You can pull automation execution environmentss from the automation hub remote registry to make a
copy to your local machine.

Prerequisites

® You must have permission to view and pull from a private container repository.

Procedure

1. If you are pulling automation execution environmentss from a password or token-protected
registry, create a credential before pulling the automation execution environments.

2. From the navigation panel, select Automation Content - Execution Environments.
3. Select your automation execution environments.
4. In the Pull this imageentry, click Copy to clipboard.

5. Paste and run the command in your terminal.

Verification

® Run podman images to view images on your local machine.

7.2. SYNCING IMAGES FROM A CONTAINER REPOSITORY
You can pull automation execution environmentss from the automation hub remote registry to sync an

image to your local machine. To sync an automation execution environments from a remote registry, you
must first configure a remote registry.

Prerequisites

You must have permission to view and pull from a private container repository.

Procedure

1. From the navigation panel, select Automation Content - Execution Environments.
2. Add https://registry.redhat.io to the registry.

3. Add any required credentials to authenticate.

28

https://registry.redhat.io

CHAPTER 7. PULLING IMAGES FROM A CONTAINER REPOSITORY

NOTE

Some remote registries are aggressive with rate limiting. Set a rate limit under
Advanced Options.

4. From the navigation panel, select Automation Content - Execution Environments.
5. Click Create execution environment in the page header.

6. Select the registry you want to pull from. The Name field displays the name of the automation
execution environments displayed on your local registry.

NOTE

The Upstream name field is the name of the image on the remote server. For
example, if the upstream name is set to "alpine" and the Name field is
"local/alpine”, the alpine image is downloaded from the remote and renamed to
"local/alpine”.

7. Set alist of tags to include or exclude. Syncing automation execution environmentss with a
large number of tags is time consuming and uses a lot of disk space.

Additional resources

® See Red Hat Container Registry Authentication for a list of registries.

® See the What is Podman? documentation for options to use when pulling images.

29

https://access.redhat.com/RegistryAuthentication
http://docs.podman.io/en/latest/index.html

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

PART I. OPEN SOURCE LICENSE

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting
the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled
by, or are under common control with that entity. For the purposes of this definition, "control" means (i)
the power, direct or indirect, to cause the direction or management of such entity, whether by contract
or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this
License.

"Source" form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source
form, including but not limited to compiled object code, generated documentation, and conversions to
other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the
License, as indicated by a copyright notice that is included in or attached to the work (an example is
provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived
from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any
modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to
Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized
to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its representatives,
including but not limited to communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."”

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution
has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.Subject to the terms and conditions of this License, each Contributor

30

http://www.apache.org/licenses/

PART I. OPEN SOURCE LICENSE

hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except
as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise
transfer the Work, where such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall terminate as of the date such litigation is
filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet the
following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this License; and

b. You must cause any modified files to carry prominent notices stating that You changed the files;
and

c. You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in
at least one of the following places: within a NOTICE text file distributed as part of the
Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications, or for
any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work
otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in

describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT

31

Red Hat Ansible Automation Platform 2.5 Creating and using execution environments

WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation,
any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this
License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts)
or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect,
special, incidental, or consequential damages of any character arising as a result of this License or out of
the use or inability to use the Work (including but not limited to damages for loss of goodwill, work
stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if
such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for
any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any
such warranty or additional liability.

END OF TERMS AND CONDITIONS

32

APPENDIX A. AUTOMATION EXECUTION ENVIRONMENTS PRECEDENCE

APPENDIX A. AUTOMATION EXECUTION ENVIRONMENTS
PRECEDENCE

Project updates will always use the control plane automation execution environments by default,
however, jobs will use the first available automation execution environments as follows:

1. The execution_environment defined on the template (job template or inventory source) that
created the job.

2. The default_environment defined on the project that the job uses.
3. The default_environment defined on the organization of the job.
4. The default_environment defined on the organization of the inventory the job uses.

5. The current DEFAULT_EXECUTION_ENVIRONMENT setting (configurable at
api/v2/settings/system/)

6. Anyimage from the GLOBAL_JOB_EXECUTION_ENVIRONMENTS setting.

7. Any other global execution environment.

NOTE

If more than one execution environment fits a criteria (applies for 6 and 7), the most
recently created one is used.

33

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO AUTOMATION EXECUTION ENVIRONMENTS
	1.1. ABOUT AUTOMATION EXECUTION ENVIRONMENTS
	1.1.1. Why use automation execution environments?

	CHAPTER 2. USING ANSIBLE BUILDER
	2.1. WHY USE ANSIBLE BUILDER?
	2.2. INSTALLING ANSIBLE BUILDER
	2.3. BUILDING AN EXECUTION ENVIRONMENT IN A DISCONNECTED ENVIRONMENT
	2.4. BUILDING A DEFINITION FILE
	2.5. BUILDING THE AUTOMATION EXECUTION ENVIRONMENT IMAGE
	2.6. BREAKDOWN OF DEFINITION FILE CONTENT
	2.6.1. Build args and base image
	2.6.1.1. Galaxy
	2.6.1.2. Python
	2.6.1.3. System

	2.6.2. Images
	2.6.3. Additional build files
	2.6.4. Additional custom build steps
	2.6.5. Additional resources

	2.7. OPTIONAL BUILD COMMAND ARGUMENTS
	2.8. CONTAINERFILE
	2.9. CREATING A CONTAINERFILE WITHOUT BUILDING AN IMAGE

	CHAPTER 3. COMMON AUTOMATION EXECUTION ENVIRONMENT SCENARIOS
	3.1. UPDATING THE AUTOMATION HUB CA CERTIFICATE
	3.2. USING AUTOMATION HUB AUTHENTICATION DETAILS WHEN BUILDING AUTOMATION EXECUTION ENVIRONMENTS
	3.3. ADDITIONAL RESOURCES

	CHAPTER 4. PUBLISHING AN AUTOMATION EXECUTION ENVIRONMENT
	4.1. CUSTOMIZING AN EXISTING AUTOMATION EXECUTION ENVIRONMENTS IMAGE
	4.2. ADDITIONAL RESOURCES (OR NEXT STEPS)

	CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION HUB CONTAINER REGISTRY
	5.1. PULLING EXECUTION ENVIRONMENTS FOR USE IN AUTOMATION HUB
	5.2. TAGGING EXECUTION ENVIRONMENTS FOR USE IN AUTOMATION HUB
	5.3. PUSHING AN EXECUTION ENVIRONMENT TO PRIVATE AUTOMATION HUB

	CHAPTER 6. SETTING UP YOUR CONTAINER REPOSITORY
	6.1. PREREQUISITES TO SETTING UP YOUR REMOTE REGISTRY
	6.2. ADDING A README TO YOUR CONTAINER REPOSITORY
	6.3. PROVIDING ACCESS TO YOUR AUTOMATION EXECUTION ENVIRONMENTSS
	6.4. TAGGING CONTAINER IMAGES
	6.5. CREATING A CREDENTIAL

	CHAPTER 7. PULLING IMAGES FROM A CONTAINER REPOSITORY
	7.1. PULLING AN IMAGE
	7.2. SYNCING IMAGES FROM A CONTAINER REPOSITORY

	PART I. OPEN SOURCE LICENSE
	APPENDIX A. AUTOMATION EXECUTION ENVIRONMENTS PRECEDENCE

