
Red Hat Ansible Automation Platform
2.5

Using automation execution

Use automation execution deploy, define, operate, scale and delegate automation

Last Updated: 2024-10-15

Red Hat Ansible Automation Platform 2.5 Using automation execution

Use automation execution deploy, define, operate, scale and delegate automation

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows you how to use automation controller to define, operate, scale and delegate
automation across your enterprise.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. AUTOMATION CONTROLLER OVERVIEW
1.1. REAL-TIME PLAYBOOK OUTPUT AND EXPLORATION
1.2. "PUSH BUTTON" AUTOMATION
1.3. SIMPLIFIED ROLE-BASED ACCESS CONTROL AND AUDITING
1.4. CLOUD AND AUTOSCALING FLEXIBILITY
1.5. THE IDEAL RESTFUL API
1.6. BACKUP AND RESTORE
1.7. ANSIBLE GALAXY INTEGRATION
1.8. INVENTORY SUPPORT FOR OPENSTACK
1.9. REMOTE COMMAND EXECUTION
1.10. SYSTEM TRACKING
1.11. INTEGRATED NOTIFICATIONS
1.12. INTEGRATIONS
1.13. CUSTOM VIRTUAL ENVIRONMENTS
1.14. AUTHENTICATION ENHANCEMENTS
1.15. CLUSTER MANAGEMENT
1.16. WORKFLOW ENHANCEMENTS
1.17. JOB DISTRIBUTION
1.18. SUPPORT FOR DEPLOYMENT IN A FIPS-ENABLED ENVIRONMENT
1.19. LIMIT THE NUMBER OF HOSTS PER ORGANIZATION
1.20. INVENTORY PLUGINS
1.21. SECRET MANAGEMENT SYSTEM

CHAPTER 2. LOGGING INTO AUTOMATION CONTROLLER AFTER INSTALLATION

CHAPTER 3. THE USER INTERFACE
3.1. INFRASTRUCTURE MENU
3.2. ADMINISTRATION
3.3. THE SETTINGS MENU

CHAPTER 4. SEARCH
4.1. RULES FOR SEARCHING

4.1.1. Values for search fields
4.1.2. Searching using values from related fields
4.1.3. Other search considerations

4.2. SORT

CHAPTER 5. JOBS IN AUTOMATION CONTROLLER
5.1. INVENTORY SYNC JOBS

5.1.1. Inventory sync details
5.2. SCM INVENTORY JOBS

5.2.1. SCM inventory details
5.3. PLAYBOOK RUN JOBS

5.3.1. Search
5.3.2. Playbook run details
5.3.3. Playbook Access and Information Sharing
5.3.4. Isolation functionality and variables

5.4. AUTOMATION CONTROLLER CAPACITY DETERMINATION AND JOB IMPACT
5.4.1. Resource determination for capacity algorithm

10

11

12
12
12
12
12
13
13
13
13
13
13
13
14
14
14
15
15
15
16
16
16
16

17

18
18
18
18

20
20
20
21
21
22

23
24
24
25
26
26
27
28
30
30
31
32

Table of Contents

1

. .

. .

. .

5.4.1.1. Memory relative capacity
5.4.1.2. CPU relative capacity

5.4.2. Capacity job impacts
5.4.2.1. Impact of job types in automation controller
5.4.2.2. Selecting the correct capacity

5.5. JOB BRANCH OVERRIDING
5.5.1. Source tree copy behavior
5.5.2. Project revision behavior
5.5.3. Git Refspec

CHAPTER 6. JOB TEMPLATES
6.1. CREATING A JOB TEMPLATE
6.2. ADDING PERMISSIONS TO TEMPLATES
6.3. DELETING A JOB TEMPLATE
6.4. WORK WITH NOTIFICATIONS
6.5. VIEW COMPLETED JOBS
6.6. SCHEDULING JOB TEMPLATES
6.7. SURVEYS IN JOB TEMPLATES

6.7.1. Creating a survey
6.7.2. Optional survey questions

6.8. LAUNCHING A JOB TEMPLATE
6.9. COPYING A JOB TEMPLATE
6.10. SCAN JOB TEMPLATES

6.10.1. Fact scan playbooks
6.10.2. Supported OSes for scan_facts.yml
6.10.3. Pre-scan setup
6.10.4. Custom fact scans
6.10.5. Fact caching
6.10.6. Benefits of fact caching

6.11. USE CLOUD CREDENTIALS WITH A CLOUD INVENTORY
6.11.1. OpenStack
6.11.2. Amazon Web Services
6.11.3. Google
6.11.4. Azure
6.11.5. VMware

6.12. PROVISIONING CALLBACKS
6.12.1. Enabling Provisioning Callbacks
6.12.2. Passing extra variables to Provisioning Callbacks

6.13. EXTRA VARIABLES
6.13.1. Relaunch a job template

CHAPTER 7. JOB SLICING
7.1. JOB SLICE CONSIDERATIONS
7.2. JOB SLICE EXECUTION BEHAVIOR
7.3. SEARCHING JOB SLICES

CHAPTER 8. WORKFLOW JOB TEMPLATES
8.1. CREATING A WORKFLOW JOB TEMPLATE
8.2. WORK WITH PERMISSIONS
8.3. WORK WITH NOTIFICATIONS
8.4. VIEW COMPLETED WORKFLOW JOBS
8.5. SCHEDULING A WORKFLOW JOB TEMPLATE
8.6. SURVEYS IN WORKFLOW JOB TEMPLATES
8.7. WORKFLOW VISUALIZER

32
32
32
33
33
34
34
35
35

36
36
44
45
45
45
46
46
46
47
48
49
49
50
50
51
51
52
53
53
53
54
55
55
55
56
56
58
58
60

62
62
63
64

65
65
70
70
70
71
71
71

Red Hat Ansible Automation Platform 2.5 Using automation execution

2

. .

. .

. .

. .

. .

. .

8.7.1. Building a workflow
8.7.2. Approval nodes
8.7.3. Building nodes scenarios
8.7.4. Editing a node

8.8. LAUNCHING A WORKFLOW JOB TEMPLATE
8.9. COPYING A WORKFLOW JOB TEMPLATE
8.10. WORKFLOW JOB TEMPLATE EXTRA VARIABLES

CHAPTER 9. WORKFLOWS IN AUTOMATION CONTROLLER
9.1. WORKFLOW SCENARIOS AND CONSIDERATIONS
9.2. WORKFLOW EXTRA VARIABLES
9.3. WORKFLOW STATES
9.4. ROLE-BASED ACCESS CONTROLS

CHAPTER 10. SCHEDULES
10.1. ADDING A NEW SCHEDULE

10.1.1. Defining rules for the schedule
10.1.2. Setting exceptions to the schedule

CHAPTER 11. PROJECTS
11.1. ADDING A NEW PROJECT

11.1.1. Managing playbooks manually
11.1.2. Managing playbooks using source control

11.1.2.1. SCM Types - Configuring playbooks to use Git and Subversion
11.1.2.2. SCM Type - Configuring playbooks to use Red Hat Insights
11.1.2.3. SCM Type - Configuring playbooks to use a remote archive

11.2. UPDATING PROJECTS FROM SOURCE CONTROL
11.3. WORK WITH PERMISSIONS

11.3.1. Adding project permissions
11.3.2. Removing permissions from a project

11.4. ANSIBLE GALAXY SUPPORT
11.5. COLLECTIONS SUPPORT

11.5.1. Using collections with automation hub

CHAPTER 12. PROJECT SIGNING AND VERIFICATION
12.1. PREREQUISITES
12.2. ADDING A GPG KEY TO AUTOMATION CONTROLLER
12.3. INSTALLING THE ANSIBLE-SIGN CLI UTILITY
12.4. SIGN A PROJECT
12.5. VERIFY YOUR PROJECT
12.6. AUTOMATE SIGNING

CHAPTER 13. TOPOLOGY VIEW
13.1. ACCESSING THE TOPOLOGY VIEWER

CHAPTER 14. INVENTORIES
14.1. SMART INVENTORIES

14.1.1. Smart Host Filters
14.2. CONSTRUCTED INVENTORIES

14.2.1. Filtering on group name and variables
14.2.2. Debugging tips
14.2.3. Nested groups
14.2.4. Ansible facts

14.2.4.1. Filter on environment variables
14.2.4.2. Filter hosts by processor type

71
76
78
80
81
81

82

83
83
86
87
88

89
89
90
91

92
93
94
94
94
95
96
97
97
97
98
98
99

100

102
103
103
104
105
106
107

109
109

111
111

113
114
115
116
117
118
118
118

Table of Contents

3

. .

. .

. .

. .

14.3. INVENTORY PLUGINS
14.4. ADD A NEW INVENTORY

14.4.1. Adding permissions to inventories
14.4.2. Adding groups to inventories

14.4.2.1. Adding groups within groups
14.4.2.2. View or edit inventory groups

14.4.3. Adding hosts to an inventory
14.4.4. Adding a source
14.4.5. Configuring notifications for the source

14.4.5.1. Inventory sources
14.4.5.1.1. Sourcing from a Project
14.4.5.1.2. Amazon Web Services EC2
14.4.5.1.3. Google Compute Engine
14.4.5.1.4. Microsoft Azure resource manager
14.4.5.1.5. VMware vCenter
14.4.5.1.6. Red Hat Satellite 6
14.4.5.1.7. Red Hat Insights
14.4.5.1.8. OpenStack
14.4.5.1.9. Red Hat Virtualization
14.4.5.1.10. Red Hat Ansible Automation Platform
14.4.5.1.11. Terraform State

14.4.5.1.11.1. Terraform provider for Ansible Automation Platform
14.4.5.1.12. OpenShift Virtualization

14.4.5.2. Export old inventory scripts
14.5. VIEW COMPLETED JOBS
14.6. RUNNING AD HOC COMMANDS

CHAPTER 15. SUPPORTED INVENTORY PLUGIN TEMPLATES
15.1. AMAZON WEB SERVICES EC2
15.2. GOOGLE COMPUTE ENGINE
15.3. MICROSOFT AZURE RESOURCE MANAGER
15.4. VMWARE VCENTER
15.5. RED HAT SATELLITE 6
15.6. OPENSTACK
15.7. RED HAT VIRTUALIZATION
15.8. RED HAT ANSIBLE AUTOMATION PLATFORM

CHAPTER 16. HOSTS
16.1. CREATING A HOST
16.2. VIEWING THE HOST DETAILS

CHAPTER 17. MANAGING INSTANCE GROUPS
17.1. CREATING AN INSTANCE GROUP

17.1.1. Associating instances to an instance group
17.1.2. Viewing jobs associated with an instance group

CHAPTER 18. INSTANCE AND CONTAINER GROUPS
18.1. INSTANCE GROUPS

18.1.1. Group policies for automationcontroller
18.1.2. Configure instance groups from the API
18.1.3. Instance group policies
18.1.4. Notable policy considerations
18.1.5. Pinning instances manually to specific groups
18.1.6. Job runtime behavior

119
119
121
122
123
123
123
125
127
127
128
129
130
130
131
131
132
132
133
133
134
135
135
135
137
137

139
139
141

142
142
144
144
144
145

146
146
146

148
148
149
149

151
151
151

153
153
153
154
154

Red Hat Ansible Automation Platform 2.5 Using automation execution

4

. .

. .

. .

. .

18.1.7. Control where a job runs
18.1.8. Instance group capacity limits
18.1.9. Deprovisioning instance groups

18.2. CONTAINER GROUPS
18.2.1. Creating a container group
18.2.2. Customizing the pod specification
18.2.3. Verifying container group functions
18.2.4. Viewing container group jobs
18.2.5. Kubernetes API failure conditions
18.2.6. Container capacity limits

CHAPTER 19. MANAGING CAPACITY WITH INSTANCES
19.1. PREREQUISITES
19.2. PULLING THE SECRET
19.3. SETTING UP VIRTUAL MACHINES FOR USE IN AN AUTOMATION MESH
19.4. MANAGING INSTANCES
19.5. REMOVING INSTANCES

CHAPTER 20. EXECUTION ENVIRONMENTS
20.1. BUILDING AN EXECUTION ENVIRONMENT

20.1.1. Install ansible-builder
20.1.2. Content needed for an execution environment
20.1.3. Example YAML file to build an image
20.1.4. Execution environment mount options

20.1.4.1. Troubleshooting execution environment mount options
20.1.4.2. Mounting the directory in the execution node to the execution environment container

20.2. ADDING AN EXECUTION ENVIRONMENT TO A JOB TEMPLATE

CHAPTER 21. EXECUTION ENVIRONMENT SETUP REFERENCE
21.1. EXECUTION ENVIRONMENT DEFINITION EXAMPLE
21.2. CONFIGURATION OPTIONS

21.2.1. additional_build_files
21.2.2. additional_build_steps
21.2.3. build_arg_defaults
21.2.4. Dependencies
21.2.5. images
21.2.6. Image verification
21.2.7. options
21.2.8. version

21.3. DEFAULT EXECUTION ENVIRONMENT FOR AWX

CHAPTER 22. MANAGING USER CREDENTIALS
22.1. HOW CREDENTIALS WORK
22.2. CREATING NEW CREDENTIALS
22.3. ADDING NEW USERS AND JOB TEMPLATES TO EXISTING CREDENTIALS
22.4. CREDENTIAL TYPES

22.4.1. Amazon Web Services credential type
22.4.1.1. Access Amazon EC2 credentials in an Ansible Playbook

22.4.2. Ansible Galaxy/Automation Hub API token credential type
22.4.3. AWS secrets manager lookup
22.4.4. BitBucket data center HTTP access token
22.4.5. Centrify Vault Credential Provider Lookup credential type
22.4.6. Container Registry credential type
22.4.7. CyberArk Central Credential Provider Lookup credential type

155
156
157
158
158
159
160
162
162
162

164
164
164
165
166
170

171
171
171
171
172
172
173
174
175

177
177
177
178
178
179
180
182
183
183
184
184

186
186
186
187
188
189
190
190
190
190
191
191
191

Table of Contents

5

. .

. .

. .

22.4.8. CyberArk Conjur Secrets Manager Lookup credential type
22.4.9. GitHub Personal Access Token credential type
22.4.10. GitLab Personal Access Token credential type
22.4.11. Google Compute Engine credential type

22.4.11.1. Access Google Compute Engine credentials in an Ansible Playbook
22.4.12. GPG Public Key credential type
22.4.13. HashiCorp Vault Secret Lookup credential type
22.4.14. HashiCorp Vault Signed SSH credential type
22.4.15. Insights credential type
22.4.16. Machine credential type

22.4.16.1. Access machine credentials in an ansible playbook
22.4.17. Microsoft Azure Key Vault credential type
22.4.18. Microsoft Azure Resource Manager credential type

22.4.18.1. Access Microsoft Azure resource manager credentials in an ansible playbook
22.4.19. Network credential type
22.4.20. Access network credentials in an ansible playbook
22.4.21. OpenShift or Kubernetes API Bearer Token credential type

22.4.21.1. Creating a service account in an Openshift cluster
22.4.22. OpenStack credential type
22.4.23. Red Hat Ansible Automation Platform credential type

22.4.23.1. Access automation controller credentials in an Ansible Playbook
22.4.24. Red Hat Satellite 6 credential type
22.4.25. Red Hat Virtualization credential type

22.4.25.1. Access virtualization credentials in an Ansible Playbook
22.4.26. Source Control credential type
22.4.27. Terraform backend configuration
22.4.28. Thycotic DevOps Secrets Vault credential type
22.4.29. Thycotic secret server credential type
22.4.30. Ansible Vault credential type
22.4.31. VMware vCenter credential type

22.4.31.1. Access VMware vCenter credentials in an ansible playbook
22.5. USE AUTOMATION CONTROLLER CREDENTIALS IN A PLAYBOOK

Use 'delegate_to' and any lookup variable

CHAPTER 23. CUSTOM CREDENTIAL TYPES
23.1. CONTENT SOURCING FROM COLLECTIONS
23.2. BACKWARDS-COMPATIBLE API CONSIDERATIONS
23.3. CONTENT VERIFICATION
23.4. GETTING STARTED WITH CREDENTIAL TYPES
23.5. CREATING A NEW CREDENTIAL TYPE

CHAPTER 24. ACTIVITY STREAM

CHAPTER 25. NOTIFIERS
25.1. NOTIFICATION HIERARCHY
25.2. NOTIFICATION WORKFLOW
25.3. CREATING A NOTIFICATION TEMPLATE
25.4. NOTIFICATION TYPES

25.4.1. Email
25.4.2. Grafana
25.4.3. IRC
25.4.4. Mattermost
25.4.5. Pagerduty
25.4.6. Rocket.Chat

191
191
191
191

192
192
192
192
192
193
195
195
195
196
196
197
197
198
199
199

200
200
200
201
201

202
202
203
203
203
204
204
205

206
206
207
208
208
208

213

214
214
214
215
215
216
216
217
218
218
219

Red Hat Ansible Automation Platform 2.5 Using automation execution

6

. .

. .

. .

. .

. .

25.4.7. Slack
25.4.8. Twilio
25.4.9. Webhook

25.4.9.1. Webhook payloads
25.5. CREATING CUSTOM NOTIFICATIONS
25.6. ENABLE AND DISABLE NOTIFICATIONS
25.7. CONFIGURE THE HOST HOSTNAME FOR NOTIFICATIONS

25.7.1. Resetting TOWER_URL_BASE
25.8. NOTIFICATIONS API

CHAPTER 26. SUPPORTED ATTRIBUTES FOR CUSTOM NOTIFICATIONS

CHAPTER 27. WORKING WITH WEBHOOKS
27.1. SETTING UP A GITHUB WEBHOOK
27.2. SETTING UP A GITLAB WEBHOOK
27.3. VIEWING THE PAYLOAD OUTPUT

CHAPTER 28. SETTING UP RED HAT INSIGHTS FOR RED HAT ANSIBLE AUTOMATION PLATFORM
REMEDIATIONS

28.1. CREATING RED HAT INSIGHTS CREDENTIALS
28.2. CREATING A RED HAT INSIGHTS PROJECT
28.3. CREATE AN INSIGHTS INVENTORY
28.4. REMEDIATING A RED HAT INSIGHTS INVENTORY

CHAPTER 29. BEST PRACTICES FOR AUTOMATION CONTROLLER
29.1. USE SOURCE CONTROL
29.2. ANSIBLE FILE AND DIRECTORY STRUCTURE
29.3. USE DYNAMIC INVENTORY SOURCES
29.4. VARIABLE MANAGEMENT FOR INVENTORY
29.5. AUTOSCALING
29.6. LARGER HOST COUNTS
29.7. CONTINUOUS INTEGRATION / CONTINUOUS DEPLOYMENT

CHAPTER 30. GLOSSARY
Ad Hoc
Callback Plugin
Control Groups
Check Mode
Container Groups
Credentials
Credential Plugin
Distributed Job
External Credential Type
Facts
Forks
Group
Group Vars
Handlers
Host
Host Specifier
Instance Group
Inventory
Inventory Script
Inventory Source

220
221
222
223
224
229
229
229
230

231

236
236
239
240

242
242
243
244
244

247
247
247
247
247
247
248
248

249
249
249
249
249
249
249
249
249
249
249
249
250
250
250
250
250
250
250
250
250

Table of Contents

7

Job
Job Detail
Job Slice
Job Template
JSON
Mesh
Metadata
Node
Notification Template
Notification
Notify
Organization
Organization Administrator
Permissions
Plays
Playbook
Policy
Project
Roles
Secret Management System
Schedule
Sliced Job
Source Credential
Sudo
Superuser
Survey
Target Credential
Team
User
Webhook
Workflow Job Template
YAML

250
250
250
251
251
251
251
251
251
251
251

252
252
252
252
252
252
252
252
252
252
252
252
252
252
253
253
253
253
253
253
253

Red Hat Ansible Automation Platform 2.5 Using automation execution

8

Table of Contents

9

PREFACE
Thank you for your interest in Red Hat Ansible Automation Platform automation controller. Automation
controller helps teams manage complex multitiered deployments by adding control, knowledge, and
delegation to Ansible-powered environments.

Using automation controller describes all of the functionality available in automation controller. It
assumes moderate familiarity with Ansible, including concepts such as playbooks, variables, and tags.
For more information about these and other Ansible concepts, see the Ansible documentation.

Red Hat Ansible Automation Platform 2.5 Using automation execution

10

https://docs.ansible.com/

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
If you have a suggestion to improve this documentation, or find an error, you can contact technical
support at https://access.redhat.com to open a request.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

11

https://access.redhat.com

CHAPTER 1. AUTOMATION CONTROLLER OVERVIEW
With Ansible Automation Platform users across an organization can share, vet, and manage automation
content by means of a simple, powerful, and agentless technical implementation. IT managers can
provide guidelines on how automation is applied to individual teams. Automation developers can write
tasks that use existing knowledge, without the operational overhead of conforming to complex tools and
frameworks. It is a more secure and stable foundation for deploying end-to-end automation solutions,
from hybrid cloud to the edge.

Ansible Automation Platform includes automation controller, which enables users to define, operate,
scale, and delegate automation across their enterprise.

1.1. REAL-TIME PLAYBOOK OUTPUT AND EXPLORATION

With automation controller you can watch playbooks run in real time, seeing each host as they check in.
You can go back and explore the results for specific tasks and hosts in great detail, search for specific
plays or hosts and see just those results, or locate errors that need to be corrected.

1.2. "PUSH BUTTON" AUTOMATION

Use automation controller to access your favorite projects and re-trigger execution from the web
interface. Automation controller asks for input variables, prompts for your credentials, starts and
monitors jobs, and displays results and host history.

1.3. SIMPLIFIED ROLE-BASED ACCESS CONTROL AND AUDITING

With automation controller you can:

Grant permissions to perform a specific task to different teams or explicit users through role-
based access control (RBAC). Example tasks include viewing, creating, or modifying a file.

Keep some projects private, while enabling some users to edit inventories, and others to run
playbooks against certain systems, either in check (dry run) or live mode.

Enable certain users to use credentials without exposing the credentials to them.

Automation controller records the history of operations and who made them, including objects edited
and jobs launched.

If you want to give any user or team permissions to use a job template, you can assign permissions
directly on the job template. Credentials are full objects in the automation controller RBAC system, and
can be assigned to many users or teams for use.

Automation controller includes an auditor type. A system-level auditor can see all aspects of the
systems automation, but does not have permission to run or change automation. An auditor is useful for
a service account that scrapes automation information from the REST API.

Additional resources

For more information about user roles, see Managing access with role based access control .

1.4. CLOUD AND AUTOSCALING FLEXIBILITY

Automation controller includes a powerful optional provisioning callback feature that enables nodes to

Red Hat Ansible Automation Platform 2.5 Using automation execution

12

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/access_management_and_authentication/index#gw-managing-access

Automation controller includes a powerful optional provisioning callback feature that enables nodes to
request configuration on-demand. This is an ideal solution for a cloud auto-scaling scenario and includes
the following features:

It integrates with provisioning servers such as Cobbler and deals with managed systems with
unpredictable uptimes.

It requires no management software to be installed on remote nodes.

The callback solution can be triggered by a call to curl or wget, and can be embedded in init
scripts, kickstarts, or preseeds.

You can control access so that only machines listed in the inventory can request configuration.

1.5. THE IDEAL RESTFUL API

The automation controller REST API is the ideal RESTful API for a systems management application,
with all resources fully discoverable, paginated, searchable, and well modeled. A styled API browser
enables API exploration from the API root at http://<server name>/api/, showing off every resource and
relation. Everything that can be done in the user interface can be done in the API.

1.6. BACKUP AND RESTORE

Ansible Automation Platform can backup and restore your systems or systems, making it easy for you to
backup and replicate your instance as required.

1.7. ANSIBLE GALAXY INTEGRATION

By including an Ansible Galaxy requirements.yml file in your project directory, automation controller
automatically fetches the roles your playbook needs from Galaxy, GitHub, or your local source control.
For more information, see Ansible Galaxy Support .

1.8. INVENTORY SUPPORT FOR OPENSTACK

Dynamic inventory support is available for OpenStack. With this you can target any of the virtual
machines or images running in your OpenStack cloud.

For more information, see OpenStack credential type.

1.9. REMOTE COMMAND EXECUTION

Use remote command execution to perform a simple tasks, such as adding a single user, updating a
single security vulnerability, or restarting a failing service. Any task that you can describe as a single
Ansible play can be run on a host or group of hosts in your inventory. You can manage your systems
quickly and easily. Because of an RBAC engine and detailed audit logging, you know which user has
completed a specific task.

1.10. SYSTEM TRACKING

You can collect facts using the fact caching feature. For more information, see Fact Caching.

1.11. INTEGRATED NOTIFICATIONS

CHAPTER 1. AUTOMATION CONTROLLER OVERVIEW

13

Keep track of the status of your automation.

You can configure the following notifications:

stackable notifications for job templates, projects, or entire organizations

different notifications for job start, job success, job failure, and job approval (for workflow
nodes)

The following notification sources are supported:

Email

Grafana

IRC

Mattermost

PagerDuty

Rocket.Chat

Slack

Twilio

Webhook (post to an arbitrary webhook, for integration into other tools)

You can also customize notification messages for each of the preceding notification types.

1.12. INTEGRATIONS

Automation controller supports the following integrations:

Dynamic inventory sources for Red Hat Satellite 6.

For more information, see Red Hat Satellite 6 .

Red Hat Insights integration, enabling Insights playbooks to be used as an Ansible Automation
Platform project.

For more information, see Setting up Red Hat Insights for Red Hat Ansible Automation Platform
Remediations.

Automation hub acts as a content provider for automation controller, requiring both an
automation controller deployment and an automation hub deployment running alongside each
other.

1.13. CUSTOM VIRTUAL ENVIRONMENTS

With Custom Ansible environment support you can have different Ansible environments and specify
custom paths for different teams and jobs.

1.14. AUTHENTICATION ENHANCEMENTS

Red Hat Ansible Automation Platform 2.5 Using automation execution

14

Automation controller supports:

LDAP

SAML

token-based authentication

With LDAP and SAML support you can integrate your enterprise account information in a more flexible
manner.

Token-based authentication permits authentication of third-party tools and services with automation
controller through integrated OAuth 2 token support.

1.15. CLUSTER MANAGEMENT

Run time management of cluster groups enables configurable scaling.

1.16. WORKFLOW ENHANCEMENTS

To model your complex provisioning, deployment, and orchestration workflows, you can use automation
controller expanded workflows in several ways:

Inventory overrides for Workflows You can override an inventory across a workflow at
workflow definition time, or at launch time. Use automation controller to define your application
deployment workflows, and then re-use them in many environments.

Convergence nodes for Workflows When modeling complex processes, you must sometimes
wait for many steps to finish before proceeding. Automation controller workflows can replicate
this; workflow steps can wait for any number of earlier workflow steps to complete properly
before proceeding.

Workflow Nesting You can re-use individual workflows as components of a larger workflow.
Examples include combining provisioning and application deployment workflows into a single
workflow.

Workflow Pause and Approval You can build workflows containing approval nodes that require
user intervention. This makes it possible to pause workflows in between playbooks so that a user
can give approval (or denial) for continuing on to the next step in the workflow.

For more information, see Workflows in automation controller .

1.17. JOB DISTRIBUTION

Take a fact gathering or configuration job running across thousands of machines and divide it into slices
that can be distributed across your automation controller cluster. This increases reliability, offers faster
job completion, and improved cluster use.

For example, you can change a parameter across 15,000 switches at scale, or gather information across
your multi-thousand-node RHEL estate.

For more information, see Job Slicing.

1.18. SUPPORT FOR DEPLOYMENT IN A FIPS-ENABLED

CHAPTER 1. AUTOMATION CONTROLLER OVERVIEW

15

1.18. SUPPORT FOR DEPLOYMENT IN A FIPS-ENABLED
ENVIRONMENT

Automation controller deploys and runs in restricted modes such as FIPS.

1.19. LIMIT THE NUMBER OF HOSTS PER ORGANIZATION

Many large organizations have instances shared among many organizations. To ensure that one
organization cannot use all the licensed hosts, this feature enables superusers to set a specified upper
limit on how many licensed hosts can that you can allocate to each organization. The automation
controller algorithm factors changes in the limit for an organization and the number of total hosts across
all organizations. Inventory updates fail if an inventory synchronization brings an organization out of
compliance with the policy. Additionally, superusers are able to over-allocate their licenses, with a
warning.

1.20. INVENTORY PLUGINS

The following inventory plugins are used from upstream collections:

amazon.aws.aws_ec2

community.vmware.vmware_vm_inventory

azure.azcollection.azure_rm

google.cloud.gcp_compute

theforeman.foreman.foreman

openstack.cloud.openstack

ovirt.ovirt.ovirt

awx.awx.tower

1.21. SECRET MANAGEMENT SYSTEM

With a secret management system, external credentials are stored and supplied for use in automation
controller so you need not provide them directly.

Red Hat Ansible Automation Platform 2.5 Using automation execution

16

CHAPTER 2. LOGGING INTO AUTOMATION CONTROLLER
AFTER INSTALLATION

After you install automation controller, you must log in.

Procedure

1. With the login information provided after your installation completed, open a web browser and
log in to the automation controller by navigating to its server URL at:
https://<CONTROLLER_SERVER_NAME>/

2. Use the credentials specified during the installation process to login:

The default username is admin.

The password for admin is the value specified.

3. Click the More Actions icon ⋮ next to the desired user.

4. Click Edit.

5. Edit the required details and click Save.

CHAPTER 2. LOGGING INTO AUTOMATION CONTROLLER AFTER INSTALLATION

17

CHAPTER 3. THE USER INTERFACE
The Automation Execution User Interface (UI) provides a graphical framework for your IT orchestration
requirements.

Access your user profile, the About page, view related documentation, or log out using the icons in the
page header.

The navigation panel provides quick access to automation controller resources, such as Jobs,
Templates, Schedules, Projects, Infrastructure, and Administration.

Jobs

Job templates

Workflow job templates

Schedules

Projects

3.1. INFRASTRUCTURE MENU

The Infrastucture menu provides quick access to the following automation controller resources:

Topology View

Inventories

Hosts

Instance Groups

Instances

Execution Environments

Credentials

Credential Types

3.2. ADMINISTRATION

The Administration menu provides access to the administrative options of automation controller. From
here, you can create, view, and edit:

Activity Stream

Workflow Approvals

Notifiers

Management Jobs

3.3. THE SETTINGS MENU

Red Hat Ansible Automation Platform 2.5 Using automation execution

18

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/assembly-controller-management-jobs

You can configure some automation controller options by using the Settings menu of the User
Interface.

The Settings page enables an administrator to configure the following:

Configuring Subscriptions

Platform gateway

User Preferences

Configuring jobs

Setting up logging

Troubleshooting options

CHAPTER 3. THE USER INTERFACE

19

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/access_management_and_authentication/assembly-gw-settings#proc-controller-configure-subscriptions
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/access_management_and_authentication/assembly-gw-settings#proc-settings-platform-gateway
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/access_management_and_authentication/assembly-gw-settings#proc-settings-user-preferences
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/controller-config#controller-configure-jobs
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/assembly-controller-logging-aggregation#proc-controller-set-up-logging
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/access_management_and_authentication/assembly-gw-settings#proc-settings-troubleshooting

CHAPTER 4. SEARCH
Use automation controller’s search tool for search and filter capabilities across many functions. An
expandable list of search conditions is available from the Name menu in the search field.

4.1. RULES FOR SEARCHING

These searching tips assume that you are not searching hosts.

The typical syntax of a search consists of a field, followed by a value.

A colon is used to separate the field that you want to search from the value.

If the search has no colon (see example 3) it is treated as a simple string search where ?
search=foobar is sent.

The following are examples of syntax used for searching:

1. name:localhost In this example, the user is searching for the string localhost in the name
attribute. If that string does not match something from Fields or Related Fields, the entire
search is treated as a string.

2. organization.name:Default This example shows a Related Field Search. The period in
organization.name separates the model from the field. Depending on how deep or complex
the search is, you can have multiple periods in that part of the query.

3. foobar This is a simple string (key term) search that finds all instances of the search term using
an icontains search against the name and description fields. If you use a space between terms,
for example foo bar, then results that contain both terms are returned. If the terms are wrapped
in quotes, for example, "foo bar", automation controller searches for the string with the terms
appearing together.
Specific name searches search against the API name. For example, Management job in the
user interface is system_job in the API.

4. organization:Default This example shows a Related Field search but without specifying a field
to go along with the organization. This is supported by the API and is analogous to a simple
string search but carried out against the organization (does an icontains search against both
the name and description).

4.1.1. Values for search fields

To find values for certain fields, refer to the API endpoint for extensive options and their valid values.
For example, if you want to search against /api/v2/jobs > type field, you can find the values by
performing an OPTIONS request to /api/v2/jobs and look for entries in the API for "type". Additionally,
you can view the related searches by scrolling to the bottom of each screen. In the example for
/api/v2/jobs, the related search shows:

"related_search_fields": [
 "modified_by__search",
 "project__search",
 "project_update__search",
 "credentials__search",
 "unified_job_template__search",
 "created_by__search",
 "inventory__search",

Red Hat Ansible Automation Platform 2.5 Using automation execution

20

 "labels__search",
 "schedule__search",
 "webhook_credential__search",
 "job_template__search",
 "job_events__search",
 "dependent_jobs__search",
 "launch_config__search",
 "unifiedjob_ptr__search",
 "notifications__search",
 "unified_job_node__search",
 "instance_group__search",
 "hosts__search",
 "job_host_summaries__search"

The values for Fields come from the keys in a GET request. url, related, and summary_fields are not
used. The values for Related Fields also come from the OPTIONS response, but from a different
attribute. Related Fields is populated by taking all the values from related_search_fields and stripping
off the __search from the end.

Any search that does not start with a value from Fields or a value from the Related Fields, is treated as a
generic string search. Searching for localhost, for example, results in the UI sending ?search=localhost
as a query parameter to the API endpoint. This is a shortcut for an icontains search on the name and
description fields.

4.1.2. Searching using values from related fields

Searching a Related Field requires you to start the search string with the Related Field. The following
example describes how to search using values from the Related Field, organization.

The left-hand side of the search string must start with organization, for example, organization:Default.
Depending on the related field, you can provide more specific direction for the search by providing
secondary and tertiary fields. An example of this is to specify that you want to search for all job
templates that use a project matching a certain name. The syntax on this would look like:
job_template.project.name:"A Project".

NOTE

This query executes against the unified_job_templates endpoint which is why it starts
with job_template. If you were searching against the job_templates endpoint, then you
would not need the job_template portion of the query.

4.1.3. Other search considerations

Be aware of the following issues when searching in automation controller:

There is currently no supported syntax for OR queries. All search terms are ANDed in the query
parameters.

The left part of a search parameter can be wrapped in quotes to support searching for strings
with spaces. For more information, see Rules for searching.

Currently, the values in the Fields are direct attributes expected to be returned in a GET
request. Whenever you search against one of the values, automation controller carries out an
__icontains search. So, for example, name:localhost sends back ?

CHAPTER 4. SEARCH

21

name__icontains=localhost. Automation controller currently performs this search for every
Field value, even id.

4.2. SORT

Where applicable, use the arrows in each column to sort by ascending order. The following is an example
from the schedules list:

The direction of the arrow indicates the sort order of the column.

Red Hat Ansible Automation Platform 2.5 Using automation execution

22

CHAPTER 5. JOBS IN AUTOMATION CONTROLLER
A job is an instance of automation controller launching an Ansible Playbook against an inventory of
hosts.

The Jobs list view displays a list of jobs and their statuses, shown as completed successfully, failed, or as
an active (running) job. The default view is collapsed (Compact) with the job name, status, job type,

start, and finish times. You can click the arrow icon to expand and see more information. You can
sort this list by various criteria, and perform a search to filter the jobs of interest.

From this screen you can complete the following tasks:

View details and standard output of a particular job

Relaunch jobs

Cancel or Remove selected jobs

The relaunch operation only applies to relaunches of playbook runs and does not apply to project or
inventory updates, system jobs, and workflow jobs. When a job relaunches, the Jobs Output view is
displayed. Selecting any type of job also takes you to the Job Output view for that job, where you can
filter jobs by various criteria:

CHAPTER 5. JOBS IN AUTOMATION CONTROLLER

23

The Event option in the Search output list enables you to filter by the events of interest, such
as errors, host failures, host retries, and items skipped. You can include as many events in the
filter as necessary. For more information about using the search, see the Search section.

5.1. INVENTORY SYNC JOBS

When an inventory synchronization is executed, the results display in the Output tab.

For more information about inventory synchronization, see Constructed inventories.

If used, the Ansible CLI displays the same information. This can be useful for debugging. The
ANSIBLE_DISPLAY_ARGS_TO_STDOUT parameter is set to False for all playbook runs. This
parameter matches Ansible’s default behavior and does not display task arguments in task headers in
the Job Detail interface to avoid leaking certain sensitive module parameters to stdout. To restore the
earlier behavior, set ANSIBLE_DISPLAY_ARGS_TO_STDOUT to True through the AWX_TASK_ENV
configuration setting.

For more information, see ANSIBLE_DISPLAY_ARGS_TO_STDOUT in the ansible documentation.

You can Relaunch job, Cancel job, download the job output, or delete the job.

NOTE

You can perform an inventory update while a related job is running. In cases where you
have a large project (around 10 GB), disk space on /tmp can be an issue.

5.1.1. Inventory sync details

Access the Details tab to view details about the job execution:

Red Hat Ansible Automation Platform 2.5 Using automation execution

24

http://docs.ansible.com/ansible/latest/reference_appendices/config.html#envvar-ANSIBLE_DISPLAY_ARGS_TO_STDOUT

You can view the following details for an executed job:

Status: It can be any of the following:

Pending: The inventory sync has been created, but not queued or started yet. Any job, not
just inventory source syncs, stays in pending until it is ready to be run by the system.
Reasons for inventory source syncs not being ready include:

Dependencies that are currently running (all dependencies must be completed before
the next step can execute).

Insufficient capacity to run in the locations it is configured for.

Waiting: The inventory sync is in the queue waiting to be executed.

Running: The inventory sync is currently in progress.

Successful: The inventory sync job succeeded.

Failed: The inventory sync job failed.

Inventory: The name of the associated inventory group.

Source: The type of cloud inventory.

Inventory Source Project: The project used as the source of this inventory sync job.

Execution Environment: The execution environment used.

Execution node: The node used to execute the job.

Instance Group: The name of the instance group used with this job (automation controller is
the default instance group).

Selecting these items enables you to view the corresponding job templates, projects, and other objects.

5.2. SCM INVENTORY JOBS

When an inventory sourced from an SCM, for example git, is executed, the results are displayed in the
Output tab. If used, the Ansible CLI displays the same information. This can be useful for debugging.

Use the navigation menu to Relaunch job, Cancel job, download the job output, or delete the
job.

CHAPTER 5. JOBS IN AUTOMATION CONTROLLER

25

5.2.1. SCM inventory details

To view details about the job execution and its associated project, select the Details tab.

You can view the following details for an executed job:

Status: It can be any of the following:

Pending: The SCM job has been created, but not queued or started yet. Any job, not just
SCM jobs, stay in pending until it is ready to be run by the system. Reasons for SCM jobs not
being ready include dependencies that are currently running (all dependencies must be
completed before the next step can execute), or there is not enough capacity to run in the
locations it is configured to.

Waiting: The SCM job is in the queue waiting to be executed.

Running: The SCM job is currently in progress.

Successful: The last SCM job succeeded.

Failed: The last SCM job failed.

Job Type: SCM jobs display Source Control Update.

Project: The name of the project.

Project Status: Indicates whether the associated project was successfully updated.

Revision: Indicates the revision number of the sourced project that was used in this job.

Execution Environment: Specifies the execution environment used to run this job.

Execution Node: Indicates the node on which the job ran.

Instance Group: Indicates the instance group on which the job ran, if specified.

Job Tags: Tags show the various job operations executed.

Select these items to view the corresponding job templates, projects, and other objects.

5.3. PLAYBOOK RUN JOBS

When a playbook is executed, the results display in the Output tab. If used, the Ansible CLI displays the
same information. This can be useful for debugging.

The events summary displays the following events that are run as part of this playbook:

The number of times this playbook has run is shown in the Plays field

The number of tasks associated with this playbook is shown in the Tasks field

The number of hosts associated with this playbook is shown in the Hosts field

The amount of time it took to complete the playbook run is shown in the Elapsed field

Red Hat Ansible Automation Platform 2.5 Using automation execution

26

You can Relaunch job, Cancel job, download the job output, or delete the job.

Hover over a section of the host status bar in the Output view and the number of hosts associated with
that status displays.

The output for a playbook job is also available after launching a job from the Jobs tab of its Jobs
Templates page. View its host details by clicking the line item tasks in the output.

5.3.1. Search

Use Search to look up specific events, hostnames, and their statuses. To filter only certain hosts with a
particular status, specify one of the following valid statuses:

ok

Indicates that a task completed successfully but no change was executed on the host.

changed

The playbook task executed. Since Ansible tasks should be written to be idempotent, tasks can exit
successfully without executing anything on the host. In these cases, the task returns ok, but not
changed.

failed

The task failed. Further playbook execution stopped for this host.

unreachable

The host is unreachable from the network or has another unrecoverable error associated with it.

skipped

The playbook task skipped because no change was necessary for the host to reach the target state.

rescued

This shows the tasks that failed and then executes a rescue section.

ignored

This shows the tasks that failed and have ignore_errors: yes configured.

The following example shows a search with only unreachable hosts:

CHAPTER 5. JOBS IN AUTOMATION CONTROLLER

27

For more information on using the search, see the Search section.

The standard output view displays the events that occur on a particular job. By default, all rows are

expanded so that the details are displayed. Use the collapse-all () icon to switch to a view that only

contains the headers for plays and tasks. Click the plus () icon to view all the lines of the standard
output.

You can display all the details of a specific play or task by clicking the arrow icons next to them. Click an
arrow from sideways to downward to expand the lines associated with that play or task. Click the arrow
back to the sideways position to collapse and hide the lines.

When viewing details in the expand or collapse mode, note the following:

Each displayed line that is not collapsed has a corresponding line number and start time.

An expand or collapse icon is at the start of any play or task after the play or task has
completed.

If querying for a particular play or task, it appears collapsed at the end of its completed process.

In some cases, an error message appears, stating that the output may be too large to display.
This occurs when there are more than 4000 events. Use the search and filter for specific events
to bypass the error.

Click on a line of an event from the Stdout pane and a Host Events window displays in a separate
window. This window shows the host that was affected by that particular event.

NOTE

Upgrading to the latest versions of Ansible Automation Platform involves progressively
migrating all historical playbook output and events. This migration process is gradual, and
happens automatically in the background after installation is complete. Installations with
very large amounts of historical job output (tens or hundreds of GB of output) can have
missing job output until migration is complete. The most recent data shows up at the top
of the output, followed by older events.

5.3.2. Playbook run details

Access the Details tab to view details about the job execution:

Red Hat Ansible Automation Platform 2.5 Using automation execution

28

You can view the following details for an executed job:

Status: It can be any of the following:

Pending: The playbook run has been created, but not queued or started yet. Any job, not
just playbook runs, stay in pending until it is ready to be run by the system. Reasons for
playbook runs not being ready include dependencies that are currently running (all
dependencies must be completed before the next step can execute), or there is not enough
capacity to run in the locations it is configured to.

Waiting: The playbook run is in the queue waiting to be executed.

Running: The playbook run is currently in progress.

Successful: The last playbook run succeeded.

Failed: The last playbook run failed.

Job Template: The name of the job template from which this job launched.

Inventory: The inventory selected to run this job against.

Project: The name of the project associated with the launched job.

Project Status: The status of the project associated with the launched job.

Playbook: The playbook used to launch this job.

Execution Environment: The name of the execution environment used in this job.

Container Group: The name of the container group used in this job.

Credentials: The credentials used in this job.

CHAPTER 5. JOBS IN AUTOMATION CONTROLLER

29

Extra Variables: Any extra variables passed when creating the job template are displayed here.

Select one of these items to view the corresponding job templates, projects, and other objects.

5.3.3. Playbook Access and Information Sharing

Automation controller’s use of automation execution environments and Linux containers prevents
playbooks from reading files outside of their project directory.

By default, the only data exposed to the ansible-playbook process inside the container is the current
project being used.

You can customize this in the Job Settings and expose additional directories from the host into the
container.

5.3.4. Isolation functionality and variables

Automation controller uses container technology to isolate jobs from each other. By default, only the
current project is exposed to the container running a job template.

If you need to expose additional directories, you must customize your playbook runs. To configure job
isolation, you can set variables.

By default, automation controller uses the system’s tmp directory (/tmp by default) as its staging area.
This can be changed in the Job Execution Path field of the Jobs settings page, or in the REST API at
/api/v2/settings/jobs:

AWX_ISOLATION_BASE_PATH = "/opt/tmp"

If there are any additional directories that should specifically be exposed from the host to the container
that playbooks run in, you can specify those in the Paths to expose to isolated jobs field of the Jobs
Settings page, or in the REST API at /api/v2/settings/jobs:

AWX_ISOLATION_SHOW_PATHS = ['/list/of/', '/paths']

NOTE

If your playbooks need to use keys or settings defined in
AWX_ISOLATION_SHOW_PATHS, then add this file to /var/lib/awx/.ssh.

The fields described here can be found on the Jobs settings page:

Red Hat Ansible Automation Platform 2.5 Using automation execution

30

5.4. AUTOMATION CONTROLLER CAPACITY DETERMINATION AND
JOB IMPACT

The automation controller capacity system determines how many jobs can run on an instance given the
amount of resources available to the instance and the size of the jobs that are running (referred to as
Impact). The algorithm used to determine this is based on the following two things:

How much memory is available to the system (mem_capacity)

How much processing capacity is available to the system (cpu_capacity)

Capacity also impacts instance groups. Since groups are made up of instances, instances can also be
assigned to multiple groups. This means that impact to one instance can affect the overall capacity of
other groups.

Instance groups, not instances themselves, can be assigned to be used by jobs at various levels. For
more information, see Clustering in Configuring automation execution.

When the Task Manager prepares its graph to determine which group a job runs on, it commits the
capacity of an instance group to a job that is not ready to start yet.

In smaller configurations, if only one instance is available for a job to run, the Task Manager enables that
job to run on the instance even if it pushes the instance over capacity. This guarantees that jobs do not
get stuck as a result of an under-provisioned system.

Additional resources

For information about container groups, see Capacity settings for instance group and container
group in Configuring automation execution.

CHAPTER 5. JOBS IN AUTOMATION CONTROLLER

31

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/controller-clustering
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/assembly-controller-improving-performance#ref-controller-settings-control-execution-nodes

For information about sliced jobs and their impact to capacity, see Job slice execution behavior .

5.4.1. Resource determination for capacity algorithm

Capacity algorithms determine how many forks a system is capable of running simultaneously. These
algorithms control how many systems Ansible can communicate with simultaneously. Increasing the
number of forks an automation controller system is running enables jobs to run faster by performing
more work in parallel. However, this increases the load on the system, which can cause work to slow
down.

The default, mem_capacity, enables you to over-commit processing resources while protecting the
system from running out of memory. If most of your work is not processor-bound, then selecting this
mode maximizes the number of forks.

5.4.1.1. Memory relative capacity

mem_capacity is calculated relative to the amount of memory needed per fork. Taking into account the
overhead for internal components, this is approximately 100MB per fork. When considering the amount
of memory available to Ansible jobs, the capacity algorithm reserves 2GB of memory to account for the
presence of other services. The algorithm formula for this is:

(mem - 2048) / mem_per_fork

The following is an example:

(4096 - 2048) / 100 == ~20

A system with 4GB of memory is capable of running 20 forks. The value mem_per_fork is controlled by
setting the value of SYSTEM_TASK_FORKS_MEM, which defaults to 100.

5.4.1.2. CPU relative capacity

Ansible workloads are often processor-bound. In such cases, you can reduce the simultaneous workload
to enable more tasks to run faster and reduce the average time-to-completion of those jobs.

Just as the mem_capacity algorithm adjusts the amount of memory required per fork, the
cpu_capacity algorithm adjusts the amount of processing resources required per fork. The baseline
value for this is four forks per core. The algorithm formula for this is:

cpus * fork_per_cpu

For example, a 4-core system looks like the following:

4 * 4 == 16

You can control the value of fork_per_cpu by setting the value of SYSTEM_TASK_FORKS_CPU which
defaults to 4.

5.4.2. Capacity job impacts

When selecting the capacity, it is important to understand how each job type affects capacity.

The default forks value for Ansible is five. However, if you set up automation controller to run against

Red Hat Ansible Automation Platform 2.5 Using automation execution

32

The default forks value for Ansible is five. However, if you set up automation controller to run against
fewer systems than that, then the actual concurrency value is lower.

When a job is run in automation controller, the number of forks selected is incremented by 1, to
compensate for the Ansible parent process.

Example

If you run a playbook against five systems with forks value of 5, then the actual forks value from the Job
Impact perspective is 6.

5.4.2.1. Impact of job types in automation controller

Jobs and ad hoc jobs follow the preceding model, forks +1. If you set a fork value on your job template,
your job capacity value is the minimum of the forks value supplied and the number of hosts that you
have, plus one. The +1 is to account for the parent Ansible process.

Instance capacity determines which jobs get assigned to any specific instance. Jobs and ad hoc
commands use more capacity if they have a higher forks value.

Job types including the following, have a fixed impact:

Inventory updates: 1

Project updates: 1

System jobs: 5

NOTE

If you do not set a forks value on your job template, your job uses Ansible’s default forks
value of five. However, it uses fewer if your job has fewer than five hosts. In general,
setting a forks value higher than what the system is capable of can cause issues by
running out of memory or over-committing CPU. The job template fork values that you
use must fit on the system. If you have playbooks using 1000 forks but none of your
systems individually has that much capacity, then your systems are undersized and at risk
of performance or resource issues.

5.4.2.2. Selecting the correct capacity

Selecting a capacity out of the CPU-bound or the memory-bound capacity limits is selecting between
the minimum or maximum number of forks. In the previous examples, the CPU capacity permits a
maximum of 16 forks while the memory capacity permits 20. For some systems, the disparity between
these can be large and you might want to have a balance between these two.

The instance field capacity_adjustment enables you to select how much you want to consider. It is
represented as a value between 0.0 and 1.0. If set to a value of 1.0, then the largest value is used. The
previous example involves memory capacity, so a value of 20 forks can be selected. If set to a value of
0.0 then the smallest value is used. A value of 0.5 is a 50/50 balance between the two algorithms, which
is 18:

16 + (20 - 16) * 0.5 = 18

Procedure

CHAPTER 5. JOBS IN AUTOMATION CONTROLLER

33

View or edit the capacity:

1. From the navigation panel, select Automation Execution → Infrastructure → Instance
Groups.

2. On the Instance Groups list view, select the required instance.

3. Select the Instances tab and adjust the Capacity adjustment slider.

NOTE

The slider adjusts whether the instance capacity algorithm yields less forks
(towards the left) or yields more forks (towards the right).

5.5. JOB BRANCH OVERRIDING

Projects specify the branch, tag, or reference to use from source control in the scm_branch field.
These are represented by the values specified in the Type Details fields:

When creating or editing a job you have the option to Allow branch override. When this option is
checked, project administrators can delegate branch selection to the job templates that use that
project, requiring only project use_role.

5.5.1. Source tree copy behavior

Every job run has its own private data directory. This directory contains a copy of the project source tree
for the given scm_branch that the job is running. Jobs are free to make changes to the project folder
and make use of those changes while it is still running. This folder is temporary and is removed at the
end of the job run.

If you check the Clean option, modified files are removed in automation controller’s local copy of the
repository. This is done through use of the force parameter in its corresponding Ansible modules
pertaining to git or Subversion.

Additional resources

For more information, see the Parameters section of the Ansible documentation.

Red Hat Ansible Automation Platform 2.5 Using automation execution

34

https://docs.ansible.com/ansible/latest/modules/git_module.html#parameters

5.5.2. Project revision behavior

During a project update, the revision of the default branch (specified in the Source control branch field
of the project) is stored when updated. If providing a non-default Source control branch (not a commit
hash or tag) in a job, the newest revision is pulled from the source control remote immediately before
the job starts. This revision is shown in the Source control revision field of the job and its project
update.

As a result, offline job runs are impossible for non-default branches. To ensure that a job is running a
static version from source control, use tags or commit hashes. Project updates do not save all branches,
only the project default branch.

The Source control branch field is not validated, so the project must update to assure it is valid. If this
field is provided or prompted for, the Playbook field of job templates is not validated, and you have to
launch the job template to verify presence of the expected playbook.

5.5.3. Git Refspec

The Source control refspec field specifies which extra references the update should download from the
remote. Examples include the following:

refs/:refs/remotes/origin/: This fetches all references, including remotes of the remote

refs/pull/:refs/remotes/origin/pull/ (GitHub-specific): This fetches all refs for all pull requests

refs/pull/62/head:refs/remotes/origin/pull/62/head: This fetches the ref for one GitHub pull
request

For large projects, consider performance impact when using the first or second examples.

The Source control refspec parameter affects the availability of the project branch, and can enable
access to references not otherwise available. Use the earlier examples to supply a pull request from the
Source control branch, which is not possible without the Source control refspec field.

The Ansible git module fetches refs/heads/ by default. This means that you can use a project’s
branches, tags and commit hashes, as the Source control branch if Source control refspec is blank.
The value specified in the Source control refspec field affects which Source control branch fields can
be used as overrides. Project updates (of any type) perform an extra git fetch command to pull that
refspec from the remote.

Example

You can set up a project that enables branch override with the first or second refspec example. Use this
in a job template that prompts for the Source control branch. A client can then launch the job template
when a new pull request is created, providing the branch pull/N/head and the job template can run
against the provided GitHub pull request reference.

Additional resources

For more information, see the Ansible git module .

CHAPTER 5. JOBS IN AUTOMATION CONTROLLER

35

https://docs.ansible.com/ansible/latest/modules/git_module.html

CHAPTER 6. JOB TEMPLATES
You can create both Job templates and Workflow job templates from Automation Execution →
Templates.

For Workflow job templates, see Workflow job templates.

A job template is a definition and set of parameters for running an Ansible job. Job templates are useful
to run the same job many times. They also encourage the reuse of Ansible Playbook content and
collaboration between teams.

The Templates page shows both job templates and workflow job templates that are currently available.
The default view is collapsed (Compact), showing the template name, template type, and the timestamp

of the last job that ran using that template. You can click the arrow icon next to each entry to expand
and view more information. This list is sorted alphabetically by name, but you can sort by other criteria, or
search by various fields and attributes of a template.

From this screen you can launch , edit , copy and delete a job template.

Workflow templates have the workflow visualizer icon as a shortcut for accessing the workflow editor.

NOTE

You can use job templates to build a workflow template. Templates that show the

Workflow Visualizer icon next to them are workflow templates. Clicking the icon
allows you to build a workflow graphically. Many parameters in a job template enable you
to select Prompt on Launch that you can change at the workflow level, and do not affect
the values assigned at the job template level. For instructions, see the Workflow
Visualizer section.

6.1. CREATING A JOB TEMPLATE

Procedure

1. From the navigation panel, select Automation Execution → Templates.

2. On the Templates page, select Create job template from the Create template list.

3. Enter the appropriate details in the following fields:

NOTE

If a field has the Prompt on launch checkbox selected, launching the job prompts
you for the value for that field when launching.

Most prompted values override any values set in the job template.

Exceptions are noted in the following table.

Field Options Prompt on Launch

Red Hat Ansible Automation Platform 2.5 Using automation execution

36

Name Enter a name for the job. N/A

Description Enter an arbitrary description
as appropriate (optional).

N/A

Job type Choose a job type:

Run: Start the playbook
when launched, running
Ansible tasks on the
selected hosts.

Check: Perform a "dry run"
of the playbook and report
changes that would be
made without actually
making them. Tasks that
do not support check
mode are missed and do
not report potential
changes.

For more information about job
types see the Playbooks
section of the Ansible
documentation.

Yes

Inventory Choose the inventory to use
with this job template from the
inventories available to the
logged in user.

A System Administrator must
grant you or your team
permissions to be able to use
certain inventories in a job
template.

Yes.

Inventory prompts show up as
its own step in a later prompt
window.

Project Select the project to use with
this job template from the
projects available to the user
that is logged in.

N/A

Field Options Prompt on Launch

CHAPTER 6. JOB TEMPLATES

37

https://docs.ansible.com/ansible/latest/playbook_guide/index.html

Source control branch This field is only present if you
chose a project that allows
branch override. Specify the
overriding branch to use in
your job run. If left blank, the
specified SCM branch (or
commit hash or tag) from the
project is used.

For more information, see Job
branch overriding.

Yes

Execution Environment Select the container image to
be used to run this job. You
must select a project before
you can select an execution
environment.

Yes.

Execution environment
prompts show up as its own
step in a later prompt window.

Playbook Choose the playbook to be
launched with this job template
from the available playbooks.
This field automatically
populates with the names of
the playbooks found in the
project base path for the
selected project. Alternatively,
you can enter the name of the
playbook if it is not listed, such
as the name of a file (such as
foo.yml) you want to use to run
with that playbook. If you enter
a filename that is not valid, the
template displays an error, or
causes the job to fail.

N/A

Field Options Prompt on Launch

Red Hat Ansible Automation Platform 2.5 Using automation execution

38

Credentials Select the icon to open a
separate window.

Choose the credential from the
available options to use with
this job template.

Use the drop-down menu list
to filter by credential type if
the list is extensive. Some
credential types are not listed
because they do not apply to
certain job templates.

If selected, when
launching a job template
that has a default
credential and supplying
another credential
replaces the default
credential if it is the same
type. The following is an
example this message:

Job Template default
credentials must be
replaced with one of the
same type. Please select a
credential for the
following types in order to
proceed: Machine.

You can add more
credentials as you see fit.

Credential prompts show
up as its own step in a
later prompt window.

Field Options Prompt on Launch

CHAPTER 6. JOB TEMPLATES

39

Labels
Optionally supply labels
that describe this job
template, such as dev or
test.

Use labels to group and
filter job templates and
completed jobs in the
display.

Labels are created when
they are added to the job
template. Labels are
associated with a single
Organization by using the
Project that is provided in
the job template.
Members of the
Organization can create
labels on a job template if
they have edit permissions
(such as the admin role).

Once you save the job
template, the labels
appear in the Job
Templates overview in the
Expanded view.

Select beside a label to
remove it. When a label is
removed, it is no longer
associated with that
particular Job or Job
Template, but it remains
associated with any other
jobs that reference it.

Jobs inherit labels from
the Job Template at the
time of launch. If you
delete a label from a Job
Template, it is also deleted
from the Job.

If selected, even if a
default value is supplied,
you are prompted when
launching to supply
additional labels, if
needed.

You cannot delete existing
labels, selecting only
removes the newly added
labels, not existing default
labels.

Forks The number of parallel or
simultaneous processes to use
while executing the playbook. A
value of zero uses the Ansible
default setting, which is five
parallel processes unless
overridden in
/etc/ansible/ansible.cfg.

Yes

Field Options Prompt on Launch

Red Hat Ansible Automation Platform 2.5 Using automation execution

40

Limit A host pattern to further
constrain the list of hosts
managed or affected by the
playbook. You can separate
many patterns by colons (:). As
with core Ansible:

a:b means "in group a or
b"

a:b:&c means "in a or b but
must be in c"

a:!b means "in a, and
definitely not in b"

For more information, see
Patterns: targeting hosts and
groups in the Ansible
documentation.

Yes

If not selected, the job
template executes against all
nodes in the inventory or only
the nodes predefined on the
Limit field. When running as
part of a workflow, the
workflow job template limit is
used instead.

Verbosity Control the level of output
Ansible produces as the
playbook executes. Choose
the verbosity from Normal to
various Verbose or Debug
settings. This only appears in
the details report view.
Verbose logging includes the
output of all commands. Debug
logging is exceedingly verbose
and includes information about
SSH operations that can be
useful in certain support
instances.

Verbosity 5 causes automation
controller to block heavily
when jobs are running, which
could delay reporting that the
job has finished (even though it
has) and can cause the browser
tab to lock up.

Yes

Job slicing Specify the number of slices
you want this job template to
run. Each slice runs the same
tasks against a part of the
inventory. For more
information about job slices,
see Job Slicing.

Yes

Field Options Prompt on Launch

CHAPTER 6. JOB TEMPLATES

41

https://docs.ansible.com/ansible/latest/inventory_guide/intro_patterns.html

Timeout This enables you to specify the
length of time (in seconds)
that the job can run before it is
canceled. Consider the
following for setting the
timeout value:

There is a global timeout
defined in the settings
which defaults to 0,
indicating no timeout.

A negative timeout (<0)
on a job template is a true
"no timeout" on the job.

A timeout of 0 on a job
template defaults the job
to the global timeout
(which is no timeout by
default).

A positive timeout sets the
timeout for that job
template.

Yes

Show changes Enables you to see the
changes made by Ansible tasks.

Yes

Instance groups Choose Instance and
Container Groups to associate
with this job template. If the list

is extensive, use the icon to
narrow the options. Job
template instance groups
contribute to the job
scheduling criteria, see Job
Runtime Behavior and Control
where a job runs for rules. A
System Administrator must
grant you or your team
permissions to be able to use
an instance group in a job
template. Use of a container
group requires admin rights.

Yes.

If selected, you are providing
the jobs preferred instance
groups in order of preference.
If the first group is out of
capacity, later groups in the list
are considered until one with
capacity is available, at which
point that is selected to run the
job.

If you prompt for an
instance group, what you
enter replaces the normal
instance group hierarchy
and overrides all of the
organizations' and
inventories' instance
groups.

The Instance Groups
prompt shows up as its
own step in a later prompt
window.

Field Options Prompt on Launch

Red Hat Ansible Automation Platform 2.5 Using automation execution

42

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/controller-clustering#controller-cluster-job-runtime

Job tags Type and select the Create
menu to specify which parts of
the playbook should be
executed. For more
information and examples see
Tags in the Ansible
documentation.

Yes

Skip tags Type and select the Create
menu to specify certain tasks
or parts of the playbook to
skip. For more information and
examples see Tags in the
Ansible documentation.

Yes

Extra variables
Pass extra command line
variables to the playbook.
This is the "-e" or "-extra-
vars" command line
parameter for ansible-
playbook that is
documented in the Ansible
documentation at Defining
variables at runtime.

Give key or value pairs by
using either YAML or
JSON. These variables
have a maximum value of
precedence and overrides
other variables specified
elsewhere. The following is
an example value:
git_branch:
production
release_version: 1.5

Yes.

If you want to be able to
specify extra_vars on a
schedule, you must select
Prompt on launch for
Variables on the job template,
or enable a survey on the job
template. Those answered
survey questions become
extra_vars.

Field Options Prompt on Launch

4. You can set the following options for launching this template, if necessary:

Privilege escalation: If checked, you enable this playbook to run as an administrator. This is
the equal of passing the --become option to the ansible-playbook command.

Provisioning callback: If checked, you enable a host to call back to automation controller
through the REST API and start a job from this job template. For more information, see
Provisioning Callbacks.

Enable webhook: If checked, you turn on the ability to interface with a predefined SCM
system web service that is used to launch a job template. GitHub and GitLab are the
supported SCM systems.

If you enable webhooks, other fields display, prompting for additional information:

Webhook service: Select which service to listen for webhooks from.

CHAPTER 6. JOB TEMPLATES

43

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_tags.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_tags.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html#defining-variables-at-runtime

Webhook URL: Automatically populated with the URL for the webhook service to
POST requests to.

Webhook key: Generated shared secret to be used by the webhook service to sign
payloads sent to automation controller. You must configure this in the settings on the
webhook service in order for automation controller to accept webhooks from this
service.

Webhook credential: Optionally, give a GitHub or GitLab personal access token (PAT)
as a credential to use to send status updates back to the webhook service.
Before you can select it, the credential must exist.

See Credential types to create one.

For additional information about setting up webhooks, see Working with Webhooks.

Concurrent jobs: If checked, you are allowing jobs in the queue to run simultaneously if not
dependent on one another. Check this box if you want to run job slices simultaneously. For
more information, see Automation controller capacity determination and job impact .

Enable fact storage: If checked, automation controller stores gathered facts for all hosts in
an inventory related to the job running.

Prevent instance group fallback: Check this option to allow only the instance groups listed
in the Instance Groups field to run the job. If clear, all available instances in the execution
pool are used based on the hierarchy described in Control where a job runs .

5. Click Create job template, when you have completed configuring the details of the job
template.

Creating the template does not exit the job template page but advances to the Job Template Details
tab. After saving the template, you can click Launch template to start the job. You can also click Edit to
add or change the attributes of the template, such as permissions, notifications, view completed jobs,
and add a survey (if the job type is not a scan). You must first save the template before launching,
otherwise, Launch template remains disabled.

Verification

1. From the navigation panel, select Automation Execution → Templates.

2. Verify that the newly created template appears on the Templates page.

6.2. ADDING PERMISSIONS TO TEMPLATES

Use the following steps to add permissions for the team.

Procedure

1. From the navigation panel, select Automation Execution → Templates.

2. Select a template, and in the Team Access or User Access tab, click Add roles.

3. Select Teams or Users and click Next.

Select one or more users or teams from the list by clicking the check boxes next to the
names to add them as members and click Next.

Red Hat Ansible Automation Platform 2.5 Using automation execution

44

4. Choose the roles that you want users or teams to have. Ensure that you scroll down for a
complete list of roles. Each resource has different options available.

5. Click Finish to apply the roles to the selected users or teams and to add them as members.

The window to add users and teams closes to display the updated roles assigned for each user and team

To remove roles for a particular user, click the icon next to its resource.

This launches a confirmation dialog, asking you to confirm the disassociation.

6.3. DELETING A JOB TEMPLATE

Before deleting a job template, ensure that it is not used in a workflow job template.

Procedure

1. Delete a job template by using one of these methods:

Select the checkbox next to one or more job templates. Click and select Delete
template.

Select the required job template, on the Details page click and select Delete template.

NOTE

If deleting items that are used by other work items, a message opens listing the items
that are affected by the deletion and prompts you to confirm the deletion. Some screens
contain items that are invalid or previously deleted, and will fail to run. The following is an
example of that message:

6.4. WORK WITH NOTIFICATIONS

From the navigation panel, select Automation Execution → Administration → Notifiers. You can
review any notification integrations you have set up and their statuses, if they have run.

Use the toggles to enable or disable the notifications to use with your particular template. For more
information, see Enable and disable notifications .

If no notifications have been set up, click Add notifier to create a new notification. For more information
about configuring various notification types and extended messaging, see Notification types.

6.5. VIEW COMPLETED JOBS

The Jobs tab provides the list of job templates that have run. Click the expand icon next to each job to
view the following details:

Status

ID and name

Type of job

Time started and completed

CHAPTER 6. JOB TEMPLATES

45

Who started the job and which template, inventory, project, and credential were used.

You can filter the list of completed jobs using any of these criteria.

Sliced jobs that display on this list are labeled accordingly, with the number of sliced jobs that have run.

6.6. SCHEDULING JOB TEMPLATES

Access the schedules for a particular job template from the Schedules tab.

Procedure

To schedule a job template, select the Schedules tab from the job template, and select the
appropriate method:

If schedules are already set up, review, edit, enable or disable your schedule preferences.

If schedules have not been set up, see Schedules for more information.

If you select Prompt on Launch for the Credentials field, and you create or edit scheduling information
for your job template, a Prompt option displays on the Schedules form.

You cannot remove the default machine credential in the Prompt dialog without replacing it with
another machine credential before you can save it.

NOTE

To set extra_vars on schedules, you must select Prompt on Launch for Variables on the
job template, or configure and enable a survey on the job template.

The answered survey questions then become extra_vars.

6.7. SURVEYS IN JOB TEMPLATES

Job types of Run or Check provide a way to set up surveys in the Job Template creation or editing
screens. Surveys set extra variables for the playbook similar to Prompt for Extra Variables does, but in
a user-friendly question and answer way. Surveys also permit for validation of user input. Select the
Survey tab to create a survey.

Example

You can use surveys for several situations. For example, operations want to give developers a "push to
stage" button that they can run without advance knowledge of Ansible. When launched, this task could
prompt for answers to questions such as "What tag should we release?".

You can ask many types of questions, including multiple-choice questions.

6.7.1. Creating a survey

Procedure

1. From the navigation panel, select Automation Execution → Templates.

2. Select the job template you want to create a survey for.

Red Hat Ansible Automation Platform 2.5 Using automation execution

46

3. From the Survey tab, click Create survey question.

4. A survey can consist of any number of questions. For each question, enter the following
information:

Question: The question to ask the user.

Optional: Description: A description of what is being asked of the user.

Answer variable name: The Ansible variable name to store the user’s response in. This is the
variable to be used by the playbook. Variable names cannot contain spaces.

Answer type: Choose from the following question types:

Text: A single line of text. You can set the minimum and maximum length (in
characters) for this answer.

Textarea: A multi-line text field. You can set the minimum and maximum length (in
characters) for this answer.

Password: Responses are treated as sensitive information, much like an actual password
is treated. You can set the minimum and maximum length (in characters) for this
answer.

Multiple Choice (single select): A list of options, of which only one can be selected at a
time. Enter the options, one per line, in the Multiple Choice Options field.

Multiple Choice (multiple select): A list of options, any number of which can be
selected at a time. Enter the options, one per line, in the Multiple Choice Options field.

Integer: An integer number. You can set the minimum and maximum length (in
characters) for this answer.

Float: A decimal number. You can set the minimum and maximum length (in characters)
for this answer.

Required: Whether or not an answer to this question is required from the user.

Minimum length and Maximum length: Specify if a certain length in the answer is required.

Default answer: The default answer to the question. This value is pre-filled in the interface
and is used if the answer is not provided by the user.

5. Once you have entered the question information, click Create question to add the question.

The survey question displays in the Survey list. For any question, you can click to edit it.

Check the box next to each question and click Delete to delete the question, or use the toggle
option in the menu bar to enable or disable the survey prompts.

If you have more than one survey question, click Edit Order to rearrange the order of the
questions by clicking and dragging on the grid icon.

6. To add more questions, click Add.

6.7.2. Optional survey questions

The Required setting on a survey question determines whether the answer is optional or not for the

CHAPTER 6. JOB TEMPLATES

47

The Required setting on a survey question determines whether the answer is optional or not for the
user interacting with it.

Optional survey variables can also be passed to the playbook in extra_vars.

If a non-text variable (input type) is marked as optional, and is not filled in, no survey extra_var
is passed to the playbook.

If a text input or text area input is marked as optional, is not filled in, and has a minimum length >
0, no survey extra_var is passed to the playbook.

If a text input or text area input is marked as optional, is not filled in, and has a minimum length
=== 0, that survey extra_var is passed to the playbook, with the value set to an empty string
("").

6.8. LAUNCHING A JOB TEMPLATE

A benefit of automation controller is the push-button deployment of Ansible playbooks. You can
configure a template to store all the parameters that you would normally pass to the Ansible Playbook
on the command line. In addition to the playbooks, the template passes the inventory, credentials, extra
variables, and all options and settings that you can specify on the command line.

Easier deployments drive consistency, by running your playbooks the same way each time, and allowing
you to delegate responsibilities.

Procedure

Launch a job template by using one of these methods:

From the navigation panel, select Automation Execution → Templates and click Launch

template next to the job template.

In the job template Details tab of the job template you want to launch, click Launch
template.

A job can require additional information to run. The following data can be requested at launch:

Credentials that were setup

The option Prompt on Launch is selected for any parameter

Passwords or passphrases that have been set to Ask

A survey, if one has been configured for the job templates

Extra variables, if requested by the job template

NOTE

If a job has user-provided values, then those are respected upon relaunch. If the user did
not specify a value, then the job uses the default value from the job template. Jobs are
not relaunched as-is. They are relaunched with the user prompts re-applied to the job
template.

If you give values on one tab, return to a previous tab, continuing to the next tab results in having to re-

Red Hat Ansible Automation Platform 2.5 Using automation execution

48

If you give values on one tab, return to a previous tab, continuing to the next tab results in having to re-
provide values on the rest of the tabs. Ensure that you complete the tabs in the order that the prompts
appear.

When launching, automation controller automatically redirects the web browser to the Job Status page
for this job under the Jobs tab.

You can re-launch the most recent job from the list view to re-run on all hosts or just failed hosts in the
specified inventory. For more information, see the Jobs in automation controller section.

When slice jobs are running, job lists display the workflow and job slices, and a link to view their details
individually.

NOTE

You can launch jobs in bulk by using the newly added endpoint in the API,
/api/v2/bulk/job_launch. This endpoint accepts JSON and you can specify a list of
unified job templates (such as job templates and project updates) to launch. The user
must have the appropriate permission to launch all the jobs. If all jobs are not launched an
error is returned indicating why the operation was not able to complete. Use the
OPTIONS request to return relevant schema. For more information, see the Bulk
endpoint of the Reference section of the Automation Controller API Guide.

6.9. COPYING A JOB TEMPLATE

If you copy a job template, it does not copy any associated schedule, notifications, or permissions.
Schedules and notifications must be recreated by the user or administrator creating the copy of the job
template. The user copying the Job Template is granted administrator permission, but no permissions
are assigned (copied) to the job template.

Procedure

1. From the navigation panel, select Automation Execution → Templates.

2. Click and the copy icon associated with the template that you want to copy.

The new template with the name of the template from which you copied and a timestamp
displays in the list of templates.

3. Click to open the new template and click Edit template.

4. Replace the contents of the Name field with a new name, and give or change the entries in the
other fields to complete this page.

5. Click Save job template.

6.10. SCAN JOB TEMPLATES

Scan jobs are no longer supported starting with automation controller 3.2. This system tracking feature
was used as a way to capture and store facts as historical data. Facts are now stored in the controller
through fact caching. For more information, see Fact Caching.

Job template scan jobs in your system before automation controller 3.2, are converted to type run, like
normal job templates. They retain their associated resources, such as inventories and credentials. By
default, job template scan jobs that do not have a related project are assigned a special playbook. You

CHAPTER 6. JOB TEMPLATES

49

https://docs.ansible.com/automation-controller/latest/html/controllerapi/api_ref.html#/Bulk

can also specify a project with your own scan playbook. A project is created for each organization that
points to awx-facts-playbooks and the job template was set to the playbook:
https://github.com/ansible/tower-fact-modules/blob/master/scan_facts.yml.

6.10.1. Fact scan playbooks

The scan job playbook, scan_facts.yml, contains invocations of three fact scan modules - packages,
services, and files, along with Ansible’s standard fact gathering. The scan_facts.yml playbook file is
similar to this:

- hosts: all
 vars:
 scan_use_checksum: false
 scan_use_recursive: false
 tasks:
 - scan_packages:
 - scan_services:
 - scan_files:
 paths: '{{ scan_file_paths }}'
 get_checksum: '{{ scan_use_checksum }}'
 recursive: '{{ scan_use_recursive }}'
 when: scan_file_paths is defined

The scan_files fact module is the only module that accepts parameters, passed through extra_vars on
the scan job template:

scan_file_paths: /tmp/scan_use_checksum: true scan_use_recursive: true

The scan_file_paths parameter can have multiple settings (such as /tmp/ or /var/log).

The scan_use_checksum and scan_use_recursive parameters can also be set to false or
omitted. An omission is the same as a false setting.

Scan job templates should enable become and use credentials for which become is a possibility. You
can enable become by checking Privilege Escalation from the options list:

6.10.2. Supported OSes for scan_facts.yml

If you use the scan_facts.yml playbook with use fact cache, ensure that you are using one of the
following supported operating systems:

Red Hat Enterprise Linux 5, 6, 7, 8, and 9

Ubuntu 23.04 (Support for Ubuntu is deprecated and will be removed in a future release)

OEL 6 and 7

SLES 11 and 12

Debian 6, 7, 8, 9, 10, 11, and 12

Fedora 22, 23, and 24

Red Hat Ansible Automation Platform 2.5 Using automation execution

50

https://github.com/ansible/tower-fact-modules
https://github.com/ansible/tower-fact-modules/blob/master/scan_facts.yml

Amazon Linux 2023.1.20230912

Some of these operating systems require initial configuration to run python or have access to the
python packages, such as python-apt, which the scan modules depend on.

6.10.3. Pre-scan setup

The following are examples of playbooks that configure certain distributions so that scan jobs can be
run against them:

Bootstrap Ubuntu (16.04)

- name: Get Ubuntu 16, and on ready
 hosts: all
 sudo: yes
 gather_facts: no
 tasks:
 - name: install python-simplejson
 raw: sudo apt-get -y update
 raw: sudo apt-get -y install python-simplejson
 raw: sudo apt-get install python-apt

Bootstrap Fedora (23, 24)

- name: Get Fedora ready
 hosts: all
 sudo: yes
 gather_facts: no
 tasks:
 - name: install python-simplejson
 raw: sudo dnf -y update
 raw: sudo dnf -y install python-simplejson
 raw: sudo dnf -y install rpm-python

6.10.4. Custom fact scans

A playbook for a custom fact scan is similar to the example in the Fact scan playbooks section. For
example, a playbook that only uses a custom scan_foo Ansible fact module looks similar to this:

scan_foo.py:
def main():
 module = AnsibleModule(
 argument_spec = dict())

 foo = [
 {
 "hello": "world"
 },
 {
 "foo": "bar"
 }
]
 results = dict(ansible_facts=dict(foo=foo))
 module.exit_json(**results)

CHAPTER 6. JOB TEMPLATES

51

main()

To use a custom fact module, ensure that it lives in the /library/ subdirectory of the Ansible project used
in the scan job template. This fact scan module returns a hard-coded set of facts:

[
 {
 "hello": "world"
 },
 {
 "foo": "bar"
 }
]

For more information, see the Developing modules section of the Ansible documentation.

6.10.5. Fact caching

Automation controller can store and retrieve facts on a per-host basis through an Ansible Fact Cache
plugin. This behavior is configurable on a per-job template basis. Fact caching is turned off by default
but can be enabled to serve fact requests for all hosts in an inventory related to the job running. This
enables you to use job templates with --limit while still having access to the entire inventory of host
facts. You can specify a global timeout setting that the plugin enforces per-host, (in seconds) from the
navigation panel, select Settings → Job and edit the Per-Host Ansible Fact Cache Timeout field.

After launching a job that uses fact cache (use_fact_cache=True), each host’s ansible_facts are all
stored by the controller in the job’s inventory.

The Ansible Fact Cache plugin that includes automation controller is enabled on jobs with fact cache
enabled (use_fact_cache=True).

When a job that has fact cache enabled (use_fact_cache=True) has run, automation controller restores
all records for the hosts in the inventory. Any records with update times newer than the currently stored
facts per-host are updated in the database.

New and changed facts are logged through automation controller’s logging facility. Specifically, to the
system_tracking namespace or logger. The logging payload includes the following fields:

host_name

inventory_id

ansible_facts

ansible facts is a dictionary of all Ansible facts for host_name in the automation controller inventory,
inventory_id.

NOTE

If a hostname includes a forward slash (/), fact cache does not work for that host. If you
have an inventory with 100 hosts and one host has a / in the name, the remaining 99 hosts
still collect facts.

Red Hat Ansible Automation Platform 2.5 Using automation execution

52

https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html#developing-modules

6.10.6. Benefits of fact caching

Fact caching saves you time over running fact gathering. If you have a playbook in a job that runs against
a thousand hosts and forks, you can spend 10 minutes gathering facts across all of those hosts.
However, if you run a job on a regular basis, the first run of it caches these facts and the next run pulls
them from the database. This reduces the runtime of jobs against large inventories, including Smart
Inventories.

NOTE

Do not change the ansible.cfg file to apply fact caching. Custom fact caching could
conflict with the controller’s fact caching feature. You must use the fact caching module
that includes automation controller.

You can select to use cached facts in your job by checking the Enable fact storage option when you
create or edit a job template.

To clear facts, run the Ansible clear_facts meta task. The following is an example playbook that uses the
Ansible clear_facts meta task.

- hosts: all
 gather_facts: false
 tasks:
 - name: Clear gathered facts from all currently targeted hosts
 meta: clear_facts

You can find the API endpoint for fact caching at:

http://<controller server name>/api/v2/hosts/x/ansible_facts

6.11. USE CLOUD CREDENTIALS WITH A CLOUD INVENTORY

Cloud Credentials can be used when syncing a cloud inventory. They can also be associated with a job
template and included in the runtime environment for use by a playbook. The following Cloud
Credentials are supported:

Openstack

Amazon Web Services

Google

Azure

VMware

6.11.1. OpenStack

The following sample playbook invokes the nova_compute Ansible OpenStack cloud module and
requires credentials:

auth_url

username

CHAPTER 6. JOB TEMPLATES

53

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/meta_module.html#examples

password

project name

These fields are made available to the playbook through the environmental variable
OS_CLIENT_CONFIG_FILE, which points to a YAML file written by the controller based on the contents
of the cloud credential. The following sample playbooks load the YAML file into the Ansible variable
space:

OS_CLIENT_CONFIG_FILE example:

clouds:
 devstack:
 auth:
 auth_url: http://devstack.yoursite.com:5000/v2.0/
 username: admin
 password: your_password_here
 project_name: demo

Playbook example:

- hosts: all
 gather_facts: false
 vars:
 config_file: "{{ lookup('env', 'OS_CLIENT_CONFIG_FILE') }}"
 nova_tenant_name: demo
 nova_image_name: "cirros-0.3.2-x86_64-uec"
 nova_instance_name: autobot
 nova_instance_state: 'present'
 nova_flavor_name: m1.nano

 nova_group:
 group_name: antarctica
 instance_name: deceptacon
 instance_count: 3
 tasks:
 - debug: msg="{{ config_file }}"
 - stat: path="{{ config_file }}"
 register: st
 - include_vars: "{{ config_file }}"
 when: st.stat.exists and st.stat.isreg

 - name: "Print out clouds variable"
 debug: msg="{{ clouds|default('No clouds found') }}"

 - name: "Setting nova instance state to: {{ nova_instance_state }}"
 local_action:
 module: nova_compute
 login_username: "{{ clouds.devstack.auth.username }}"
 login_password: "{{ clouds.devstack.auth.password }}"

6.11.2. Amazon Web Services

Red Hat Ansible Automation Platform 2.5 Using automation execution

54

Amazon Web Services (AWS) cloud credentials are exposed as the following environment variables
during playbook execution (in the job template, choose the cloud credential needed for your setup):

AWS_ACCESS_KEY_ID

AWS-SECRET_ACCESS_KEY

Each AWS module implicitly uses these credentials when run through the controller without having to
set the aws_access_key_id or aws_secret_access_key module options.

6.11.3. Google

Google cloud credentials are exposed as the following environment variables during playbook execution
(in the job template, choose the cloud credential needed for your setup):

GCE_EMAIL

GCE_PROJECT

GCE_CREDENTIALS_FILE_PATH

Each Google module implicitly uses these credentials when run through the controller without having to
set the service_account_email, project_id, or pem_file module options.

6.11.4. Azure

Azure cloud credentials are exposed as the following environment variables during playbook execution
(in the job template, choose the cloud credential needed for your setup):

AZURE_SUBSCRIPTION_ID

AZURE_CERT_PATH

Each Azure module implicitly uses these credentials when run via the controller without having to set the
subscription_id or management_cert_path module options.

6.11.5. VMware

VMware cloud credentials are exposed as the following environment variables during playbook
execution (in the job template, choose the cloud credential needed for your setup):

VMWARE_USER

VMWARE_PASSWORD

VMWARE_HOST

The following sample playbook demonstrates the usage of these credentials:

- vsphere_guest:
 vcenter_hostname: "{{ lookup('env', 'VMWARE_HOST') }}"
 username: "{{ lookup('env', 'VMWARE_USER') }}"
 password: "{{ lookup('env', 'VMWARE_PASSWORD') }}"
 guest: newvm001
 from_template: yes
 template_src: linuxTemplate

CHAPTER 6. JOB TEMPLATES

55

 cluster: MainCluster
 resource_pool: "/Resources"
 vm_extra_config:
 folder: MyFolder

6.12. PROVISIONING CALLBACKS

Provisioning Callbacks are a feature of automation controller that enable a host to start a playbook run
against itself, rather than waiting for a user to launch a job to manage the host from the automation
controller console.

Provisioning Callbacks are only used to run playbooks on the calling host and are meant for cloud
bursting. Cloud bursting is a cloud computing configuration that enables a private cloud to access public
cloud resources by "bursting" into a public cloud when computing demand spikes.

Example

New instances with a need for client to server communication for configuration, such as transmitting an
authorization key, not to run a job against another host. This provides for automatically configuring the
following:

A system after it has been provisioned by another system (such as AWS auto-scaling, or an OS
provisioning system like kickstart or preseed).

Launching a job programmatically without invoking the automation controller API directly.

The job template launched only runs against the host requesting the provisioning.

This is often accessed with a firstboot type script or from cron.

6.12.1. Enabling Provisioning Callbacks

Procedure

To enable callbacks, check the Provisioning callback option in the job template. This displays
Provisioning callback details for the job template.

NOTE

If you intend to use automation controller’s provisioning callback feature with a
dynamic inventory, set Update on Launch for the inventory group used in the job
template.

Callbacks also require a host config key, to ensure that foreign hosts with the URL cannot request
configuration. Give a custom value for the Host config key. The host key can be reused across many
hosts to apply this job template against multiple hosts. If you want to control what hosts are able to
request configuration, you can change the key can at any time.

To callback manually using REST:

Procedure

1. Examine the callback URL in the UI, in the form:
https://<CONTROLLER_SERVER_NAME>/api/v2/job_templates/7/callback/

Red Hat Ansible Automation Platform 2.5 Using automation execution

56

The "7" in the sample URL is the job template ID in automation controller.

2. Ensure that the request from the host is a POST. The following is an example using curl (all on a
single line):

curl -k -f -i -H 'Content-Type:application/json' -XPOST -d '{"host_config_key": "redhat"}' \
 https://<CONTROLLER_SERVER_NAME>/api/v2/job_templates/7/callback/

3. Ensure that the requesting host is defined in your inventory for the callback to succeed.

Troubleshooting

If automation controller fails to locate the host either by name or IP address in one of your defined
inventories, the request is denied. When running a job template in this way, ensure that the host
initiating the playbook run against itself is in the inventory. If the host is missing from the inventory, the
job template fails with a No Hosts Matched type error message.

If your host is not in the inventory and Update on Launch is checked for the inventory group,
automation controller attempts to update cloud based inventory sources before running the callback.

Verification

Successful requests result in an entry on the Jobs tab, where you can view the results and history. You
can access the callback by using REST, but the suggested method of using the callback is to use one of
the example scripts that includes automation controller:

/usr/share/awx/request_tower_configuration.sh (Linux/UNIX)

/usr/share/awx/request_tower_configuration.ps1 (Windows)

Their usage is described in the source code of the file by passing the -h flag, as the following shows:

./request_tower_configuration.sh -h
Usage: ./request_tower_configuration.sh <options>

Request server configuration from Ansible Tower.

OPTIONS:
 -h Show this message
 -s Controller server (e.g. https://ac.example.com) (required)
 -k Allow insecure SSL connections and transfers
 -c Host config key (required)
 -t Job template ID (required)
 -e Extra variables

This script can retry commands and is therefore a more robust way to use callbacks than a simple curl
request. The script retries once per minute for up to ten minutes.

NOTE

This is an example script. Edit this script if you need more dynamic behavior when
detecting failure scenarios, as any non-200 error code may not be a transient error
requiring retry.

CHAPTER 6. JOB TEMPLATES

57

You can use callbacks with dynamic inventory in automation controller. For example, when pulling cloud
inventory from one of the supported cloud providers. In these cases, along with setting Update On
Launch, ensure that you configure an inventory cache timeout for the inventory source, to avoid
hammering of your cloud’s API endpoints. Since the request_tower_configuration.sh script polls once
per minute for up to ten minutes, a suggested cache invalidation time for inventory (configured on the
inventory source itself) would be one or two minutes.

Running the request_tower_configuration.sh script from a cron job is not recommended, however, a
suggested cron interval is every 30 minutes. Repeated configuration can be handled by scheduling
automation controller so that the primary use of callbacks by most users is to enable a base image that
is bootstrapped into the latest configuration when coming online. Running at first boot is best practice.
First boot scripts are init scripts that typically self-delete, so you set up an init script that calls a copy of
the request_tower_configuration.sh script and make that into an auto scaling image.

6.12.2. Passing extra variables to Provisioning Callbacks

You can pass extra_vars in Provisioning Callbacks the same way you can in a regular job template. To
pass extra_vars, the data sent must be part of the body of the POST as application or JSON, as the
content type.

Procedure

Pass extra variables by using one of these methods:

Use the following JSON format as an example when adding your own extra_vars to be
passed:

'{"extra_vars": {"variable1":"value1","variable2":"value2",...}}'

Pass extra variables to the job template call using curl:

root@localhost:~$ curl -f -H 'Content-Type: application/json' -XPOST \
-d '{"host_config_key": "redhat", "extra_vars": "{\"foo\": \"bar\"}"}' \
https://<CONTROLLER_SERVER_NAME>/api/v2/job_templates/7/callback

For more information, see Launching Jobs with Curl in Configuring automation execution.

6.13. EXTRA VARIABLES

When you pass survey variables, they are passed as extra variables (extra_vars) within automation
controller. However, passing extra variables to a job template (as you would do with a survey) can
override other variables being passed from the inventory and project.

By default, extra_vars are marked as !unsafe unless you specify them on the Job Template’s Extra
Variables section. These are trusted, because they can only be added by users with enough privileges to
add or edit a Job Template. For example, nested variables do not expand when entered as a prompt, as
the Jinja brackets are treated as a string. For more information about unsafe variables, see Unsafe or
raw strings.

NOTE

Red Hat Ansible Automation Platform 2.5 Using automation execution

58

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/controller-tips-and-tricks#ref-controller-launch-jobs-with-curl
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_advanced_syntax.html#unsafe-or-raw-strings

NOTE

extra_vars passed to the job launch API are only honored if one of the following is true:

They correspond to variables in an enabled survey.

ask_variables_on_launch is set to True.

Example

You have a defined variable for an inventory for debug = true. It is possible that this variable, debug =
true, can be overridden in a job template survey.

To ensure the variables that you pass are not overridden, ensure they are included by redefining them in
the survey. You can define extra variables at the inventory, group, and host levels.

If you are specifying the ALLOW_JINJA_IN_EXTRA_VARS parameter, see the The
ALLOW_JINJA_IN_EXTRA_VARS variable section of Configuring automation execution to configure it.

The job template extra variables dictionary is merged with the survey variables.

The following are some simplified examples of extra_vars in YAML and JSON formats:

The configuration in YAML format:

launch_to_orbit: true
satellites:
 - sputnik
 - explorer
 - satcom

The configuration in JSON format:

{
 "launch_to_orbit": true,
 "satellites": ["sputnik", "explorer", "satcom"]
}

The following table notes the behavior (hierarchy) of variable precedence in automation controller as it
compares to variable precedence in Ansible.

Table 6.1. Automation controller Variable Precedence Hierarchy (last listed wins)

Ansible automation controller

role defaults role defaults

dynamic inventory variables dynamic inventory variables

inventory variables automation controller inventory variables

inventory group_vars automation controller group variables

CHAPTER 6. JOB TEMPLATES

59

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/controller-tips-and-tricks#ref-controller-allow-jinja-in-extra-vars

inventory host_vars automation controller host variables

playbook group_vars playbook group_vars

playbook host_vars playbook host_vars

host facts host facts

registered variables registered variables

set facts set facts

play variables play variables

play vars_prompt (not supported)

play vars_files play vars_files

role and include variables role and include variables

block variables block variables

task variables task variables

extra variables Job Template extra variables

 Job Template Survey (defaults)

 Job Launch extra variables

Ansible automation controller

6.13.1. Relaunch a job template

Instead of manually relaunching a job, a relaunch is denoted by setting launch_type to relaunch. The
relaunch behavior deviates from the launch behavior in that it does not inherit extra_vars.

Job relaunching does not go through the inherit logic. It uses the same extra_vars that were calculated
for the job being relaunched.

Example

You launch a job template with no extra_vars which results in the creation of a job called j1. Then you
edit the job template and add extra_vars (such as adding "{ "hello": "world" }").

Relaunching j1 results in the creation of j2, but because there is no inherit logic and j1 has no extra_vars,
j2 does not have any extra_vars.

If you launch the job template with the extra_vars that you added after the creation of j1, the relaunch

Red Hat Ansible Automation Platform 2.5 Using automation execution

60

If you launch the job template with the extra_vars that you added after the creation of j1, the relaunch
job created (j3) includes the extra_vars. Relaunching j3 results in the creation of j4, which also includes
extra_vars.

CHAPTER 6. JOB TEMPLATES

61

CHAPTER 7. JOB SLICING
A sliced job refers to the concept of a distributed job. Use distributed jobs for running a job across a
large number of hosts. You can then run many ansible-playbooks, each on a subset of an inventory that
you can be schedule in parallel across a cluster.

By default, Ansible runs jobs from a single control instance. For jobs that do not require cross-host
orchestration, job slicing takes advantage of automation controller’s ability to distribute work to many
nodes in a cluster.

Job slicing works by adding a Job Template field job_slice_count, which specifies the number of jobs
into which to slice the Ansible run. When this number is greater than 1, automation controller generates a
workflow from a job template instead of a job. The inventory is distributed evenly among the slice jobs.
The workflow job is then started, and proceeds as though it were a normal workflow.

When launching a job, the API returns either a job resource (if job_slice_count = 1) or a workflow job
resource. The corresponding User Interface (UI) redirects to the appropriate screen to display the status
of the run.

7.1. JOB SLICE CONSIDERATIONS

When setting up job slices, consider the following:

A sliced job creates a workflow job, which then creates jobs.

A job slice consists of a job template, an inventory, and a slice count.

When executed, a sliced job splits each inventory into several "slice size" chunks. It then queues
jobs of ansible-playbook runs on each chunk of the appropriate inventory. The inventory fed
into ansible-playbook is a shortened version of the original inventory that only has the hosts in
that particular slice. The completed sliced job that displays on the Jobs list are labeled
accordingly, with the number of sliced jobs that have run:

These sliced jobs follow normal scheduling behavior (number of forks, queuing due to capacity,
assignation to instance groups based on inventory mapping).

NOTE

Red Hat Ansible Automation Platform 2.5 Using automation execution

62

NOTE

Job slicing is intended to scale job executions horizontally. Enabling job slicing on
a job template divides an inventory to be acted upon in the number of slices
configured at launch time and then starts a job for each slice.

Normally, the number of slices is equal to or less than the number of automation
controller nodes. You can set an extremely high number of job slices but it can
cause performance degradation. The job scheduler is not designed to
simultaneously schedule thousands of workflow nodes, which are what the sliced
jobs become.

Sliced job templates with prompts or extra variables behave the same as
standard job templates, applying all variables and limits to the entire set of
slice jobs in the resulting workflow job. However, when passing a limit to a
sliced job, if the limit causes slices to have no hosts assigned, those slices will
fail, causing the overall job to fail.

A job slice job status of a distributed job is calculated in the same manner as
workflow jobs. It fails if there are any unhandled failures in its sub-jobs.

Any job that intends to orchestrate across hosts (rather than just applying changes to individual
hosts) must not be configured as a slice job.

Any job that does, can fail, and automation controller does not try to discover or account for
playbooks that fail when run as slice jobs.

7.2. JOB SLICE EXECUTION BEHAVIOR

When jobs are sliced, they can run on any node. Insufficient capacity in the system can cause some to
run at a different time. When slice jobs are running, job details display the workflow and job slices
currently running, and a link to view their details individually.

By default, job templates are not normally configured to execute simultaneously (you must check
allow_simultaneous in the API or Concurrent jobs in the UI). Slicing overrides this behavior and implies
allow_simultaneous even if that setting is clear. See Job templates for information about how to
specify this, and the number of job slices on your job template configuration.

CHAPTER 7. JOB SLICING

63

The Job templates section provides additional detail on performing the following operations in the UI:

Launch workflow jobs with a job template that has a slice number greater than one.

Cancel the whole workflow or individual jobs after launching a slice job template.

Relaunch the whole workflow or individual jobs after slice jobs finish running.

View the details about the workflow and slice jobs after launching a job template.

Search slice jobs specifically after you create them, according to the next section, "Searching
job slices").

7.3. SEARCHING JOB SLICES

To make it easier to find slice jobs, use the search functionality to apply a search filter to:

Job lists to show only slice jobs

Job lists to show only parent workflow jobs of job slices

Job template lists to only show job templates that produce slice jobs

Procedure

Search for slice jobs by using one of the following methods:

To show only slice jobs in job lists, as with most cases, you can filter either on the type (jobs
here) or unified_jobs:

/api/v2/jobs/?job_slice_count__gt=1

To show only parent workflow jobs of job slices:

/api/v2/workflow_jobs/?job_template__isnull=false

To show only job templates that produce slice jobs:

/api/v2/job_templates/?job_slice_count__gt=1

Red Hat Ansible Automation Platform 2.5 Using automation execution

64

CHAPTER 8. WORKFLOW JOB TEMPLATES
You can create both Job templates and Workflow job templates from Automation Execution →
Templates.

For Job templates, see Job templates.

A workflow job template links together a sequence of disparate resources that tracks the full set of jobs
that were part of the release process as a single unit. These resources include the following:

Job templates

Workflow job templates

Project syncs

Inventory source syncs

The Templates page shows the workflow and job templates that are currently available. The default
view is collapsed (Compact), showing the template name, template type, and the statuses of the jobs
that have run by using that template. You can click the arrow next to each entry to expand and view
more information. This list is sorted alphabetically by name, but you can sort by other criteria, or search

by various fields and attributes of a template. From this screen you can launch , edit , and copy

 a workflow job template.

Only workflow templates have the workflow visualizer icon as a shortcut for accessing the workflow
editor.

NOTE

Workflow templates can be used as building blocks for another workflow template. You
can enable Prompt on Launch by setting up several settings in a workflow template,
which you can edit at the workflow job template level. These do not affect the values
assigned at the individual workflow template level. For further instructions, see the
Workflow Visualizer section.

8.1. CREATING A WORKFLOW JOB TEMPLATE

To create a new workflow job template, complete the following steps:

CHAPTER 8. WORKFLOW JOB TEMPLATES

65

IMPORTANT

If you set a limit to a workflow template, it is not passed down to the job template unless
you check Prompt on launch for the limit. This can lead to playbook failures if the limit is
mandatory for the playbook that you are running.

Procedure

1. From the navigation panel, select Automation Execution → Templates.

2. On the Templates list view, select Create workflow job template from the Create template
list.

3. Enter the appropriate details in the following fields:

NOTE

If a field has the Prompt on launch checkbox selected, either launching the
workflow template, or using the workflow template within another workflow
template, you are prompted for the value for that field. Most prompted values
override any values set in the job template. Exceptions are noted in the following
table.

Field Options Prompt on Launch

Name Enter a name for the job. N/A

Description Enter an arbitrary description
as appropriate (optional).

N/A

Organization Choose the organization to use
with this template from the
organizations available to the
logged in user.

N/A

Inventory Optionally, select the inventory
to use with this template from
the inventories available to the
logged in user.

Yes

Red Hat Ansible Automation Platform 2.5 Using automation execution

66

Limit A host pattern to further
constrain the list of hosts
managed or affected by the
playbook. You can separate
many patterns by colons (:). As
with core Ansible:

a:b means "in group a or
b"

a:b:&c means "in a or b but
must be in c"

a:!b means "in a, and
definitely not in b"

For more information see,
Patterns: targeting hosts and
groups in the Ansible
documentation.

Yes

If selected, even if a default
value is supplied, you are
prompted upon launch to
select a limit.

Source control branch Select a branch for the
workflow. This branch is
applied to all workflow job
template nodes that prompt
for a branch.

Yes

Field Options Prompt on Launch

CHAPTER 8. WORKFLOW JOB TEMPLATES

67

https://docs.ansible.com/ansible/latest/inventory_guide/intro_patterns.html

Labels
Optionally, supply labels
that describe this workflow
job template, such as dev
or test. Use labels to
group and filter workflow
job templates and
completed jobs in the
display.

Labels are created when
they are added to the
workflow template. Labels
are associated to a single
Organization using the
Project that is provided in
the workflow template.
Members of the
Organization can create
labels on a workflow
template if they have edit
permissions (such as the
admin role).

Once you save the job
template, the labels
appear in the workflow job
template Details view.

Labels are only applied to
the workflow templates
not the job template
nodes that are used in the
workflow.

Select beside a label to
remove it. When a label is
removed, it is no longer
associated with that
particular Job or Job
Template, but it remains
associated with any other
jobs that reference it.

Yes

If selected, even if a default
value is supplied, you are
prompted when launching to
supply additional labels, if
needed. - You cannot delete
existing labels, selecting
only removes the newly added
labels, not existing default
labels.

Job tags Type and select the Create
drop-down to specify which
parts of the playbook should
run. For more information and
examples see Tags in the
Ansible documentation.

Yes

Field Options Prompt on Launch

Red Hat Ansible Automation Platform 2.5 Using automation execution

68

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_tags.html

Skip tags Type and select the Create
drop-down to specify certain
tasks or parts of the playbook
to skip. For more information
and examples see Tags in the
Ansible documentation.

Yes

Extra variables
Pass extra command line
variables to the playbook.

This is the "-e" or "-extra-vars"
command line parameter for
ansible-playbook that is
documented in the Ansible
documentation at Controlling
how Ansible behaves:
precedence rules. - Give key or
value pairs by using either
YAML or JSON. These
variables have a maximum
value of precedence and
overrides other variables
specified elsewhere. The
following is an example value:
git_branch: production
release_version: 1.5

Yes

If you want to be able to
specify extra_vars on a
schedule, you must select
Prompt on launch for Extra
variables on the workflow job
template, or enable a survey
on the job template. Those
answered survey questions
become extra_vars. For more
information about extra
variables, see Extra Variables.

Field Options Prompt on Launch

4. Specify the following Options for launching this template, if necessary:

Check Enable webhook to turn on the ability to interface with a predefined SCM system
web service that is used to launch a workflow job template. GitHub and GitLab are the
supported SCM systems.

If you enable webhooks, other fields display, prompting for additional information:

Webhook service: Select which service to listen for webhooks from.

Webhook URL: Automatically populated with the URL for the webhook service to
POST requests to.

Webhook key: Generated shared secret to be used by the webhook service to sign
payloads sent to automation controller. You must configure this in the settings on
the webhook service so that webhooks from this service are accepted in automation
controller. For additional information about setting up webhooks, see Working with
Webhooks.

Check Enable concurrent jobs to allow simultaneous runs of this workflow. For more
information, see Automation controller capacity determination and job impact .

5. When you have completed configuring the workflow template, click Create workflow job
template.

Saving the template exits the workflow template page and the workflow visualizer opens where you can

CHAPTER 8. WORKFLOW JOB TEMPLATES

69

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_tags.html
https://docs.ansible.com/ansible/latest/reference_appendices/general_precedence.html

Saving the template exits the workflow template page and the workflow visualizer opens where you can
build a workflow. For more information, see the Workflow visualizer section. Otherwise, select one of
these methods:

Close the workflow visualizer to return to the Details tab of the newly saved template. There
you can complete the following tasks:

Review, edit, add permissions, notifications, schedules, and surveys

View completed jobs

Build a workflow template

Click Launch template to start the workflow.

NOTE

Save the template before launching, or Launch template remains disabled. The
Notifications tab is only present after you save the template.

8.2. WORK WITH PERMISSIONS

Click the Team Access or User Access tab to review, grand, edit, and remove associated permissions
for users along with team members.

Click Add roles to create new permissions for this workflow template by following the prompts to assign
them.

8.3. WORK WITH NOTIFICATIONS

For information on working with notifications in workflow job templates, see Work with notifications.

8.4. VIEW COMPLETED WORKFLOW JOBS

The Jobs tab provides the list of job templates that have run. Click the expand icon next to each job
to view the details of each job.

From this view, you can click the job ID, name of the workflow job and see its graphical representation.
The following example shows the job details of a workflow job:

Red Hat Ansible Automation Platform 2.5 Using automation execution

70

The nodes are marked with labels to help you identify them. For more information, see the legend in the
Workflow visualizer section.

8.5. SCHEDULING A WORKFLOW JOB TEMPLATE

Select the Schedules tab to access the schedules for a particular workflow job template..

For more information about scheduling a workflow job template run, see the Scheduling job templates
section.

If a workflow job template used in a nested workflow has a survey, or the Prompt on launch is selected
for the inventory option, the PROMPT option displays next to the SAVE and CANCEL options on the
schedule form. Click PROMPT to show an optional INVENTORY step where you can give or remove an
inventory or skip this step without any changes.

8.6. SURVEYS IN WORKFLOW JOB TEMPLATES

Workflows containing job types of Run or Check provide a way to set up surveys in the workflow job
template creation or editing screens.

For more information on job surveys, including how to create a survey and optional survey questions in
workflow job templates, see the Surveys in job templates section.

8.7. WORKFLOW VISUALIZER

The Workflow Visualizer provides a graphical way of linking together job templates, workflow templates,
project syncs, and inventory syncs to build a workflow template. Before you build a workflow template,
see the Workflows section for considerations associated with various scenarios on parent, child, and
sibling nodes.

8.7.1. Building a workflow

CHAPTER 8. WORKFLOW JOB TEMPLATES

71

You can set up any combination of two or more of the following node types to build a workflow:

Template (Job Template or Workflow Job Template)

Project Sync

Inventory Sync

Approval

Each node is represented by a rectangle while the relationships and their associated edge types are
represented by a line (or link) that connects them.

Procedure

1. To launch the workflow visualizer, use one of these methods:

From the navigation panel, select Automation Execution → Templates.

i. Select a workflow template, in the Details tab click Edit template.

ii. Select the Visualizer tab.

From the Templates list view, click the icon.

2. Click Start to display a list of nodes to add to your workflow.

3. From the Node Type list, select the type of node that you want to add.

If you select an Approval node, see Approval nodes for more information.
Selecting a node provides the available valid options associated with it.

NOTE

If you select a job template that does not have a default inventory when
populating a workflow graph, the inventory of the parent workflow is used.
Though a credential is not required in a job template, you cannot select a job
template for your workflow if it has a credential that requires a password,
unless the credential is replaced by a prompted credential.

4. When you select a node type, the workflow begins to build, and you must specify the type of
action to be taken for the selected node. This action is also referred to as edge type.

5. If the node is a root node, the edge type defaults to Always and is non-editable. For
subsequent nodes, you can select one of the following scenarios (edge type) to apply to each:

Always: Continue to execute regardless of success or failure.

On Success: After successful completion, execute the next template.

On Failure: After failure, execute a different template.

6. Select the behavior of the node if it is a convergent node from the Convergence field:

Any is the default behavior, allowing any of the nodes to complete as specified, before
triggering the next converging node. If the status of one parent meets one of those run
conditions, an any child node will run. An any node requires all nodes to complete, but only

Red Hat Ansible Automation Platform 2.5 Using automation execution

72

one node must complete with the expected outcome.

Choose All to ensure that all nodes complete as specified, before converging and triggering
the next node. The purpose of all* nodes is to make sure that every parent meets its
expected outcome to run the child node. The workflow checks to make sure every parent
behaves as expected to run the child node. Otherwise, it will not run the child node.
If selected, the node is labeled as ALL in the graphical view:

NOTE

If a node is a root node, or a node that does not have any nodes converging
into it, setting the Convergence rule does not apply, as its behavior is
dictated by the action that triggers it.

7. If a job template used in the workflow has Prompt on launch selected for any of its parameters,
a PROMPT option appears, enabling you to change those values at the node level. Use the
wizard to change the values in each of the tabs and click Confirm in the Preview tab.
If a workflow template used in the workflow has Prompt on launch selected for the inventory
option, use the wizard to supply the inventory at the prompt. If the parent workflow has its own
inventory, it overrides any inventory that is supplied here.

NOTE

CHAPTER 8. WORKFLOW JOB TEMPLATES

73

NOTE

For workflow job templates with required fields that prompt details, but do not
have a default, you must give those values when creating a node before the
SELECT option is enabled.

The following two cases disable the SELECT option until a value is provided by
the PROMPT option:

a. When you select the Prompt on launch checkbox in a workflow job template,
but do not give a default.

b. When you create a survey question that is required but do not give a default
answer.

However, this is not the case with credentials. Credentials that require a password
on launch are not permitted when creating a workflow node, because everything
required to launch the node must be provided when the node is created. If you
are prompted for credentials in a workflow job template, it is not possible to
select a credential that requires a password in automation controller.

You must also click SELECT when the prompt wizard closes, to apply the
changes at that node. Otherwise, any changes you make revert back to the
values set in the job template.

When the node is created, it is labeled with its job type. A template that is associated with each

workflow node runs based on the selected run scenario as it proceeds. Click the compass ()
icon to display the legend for each run scenario and their job types.

Red Hat Ansible Automation Platform 2.5 Using automation execution

74

8. Hover over a node to add another node, view info about the node, edit the node details, edit an
existing link, or delete the selected node:

9. When you have added or edited a node, click SELECT to save any modifications and render it
on the graphical view. For possible ways to build your workflow, see Building nodes scenarios .

10. When you have built your workflow job template, click Create workflow job template to save
your entire workflow template and return to the new workflow job template details page.

IMPORTANT

CHAPTER 8. WORKFLOW JOB TEMPLATES

75

IMPORTANT

Clicking Close does not save your work, but instead, it closes the entire Workflow
Visualizer so that you have to start again.

8.7.2. Approval nodes

Choosing an Approval node requires your intervention in order to advance a workflow. This functions as
a means to pause the workflow in between playbooks so that you can give approval to continue on to the
next playbook in the workflow. This gives the user a specified amount of time to intervene, but also
enables you to continue as quickly as possible without having to wait on another trigger.

The default for the timeout is none, but you can specify the length of time before the request expires
and is automatically denied. After you select and supply the information for the approval node, it displays
on the graphical view with a pause icon beside it.

The approver is anyone who meets the following criteria:

A user that can execute the workflow job template containing the approval nodes.

A user who has organization administrator or above privileges (for the organization associated
with that workflow job template).

A user who has the Approve permission explicitly assigned to them within that specific workflow
job template.

Red Hat Ansible Automation Platform 2.5 Using automation execution

76

If pending approval nodes are not approved within the specified time limit (if an expiration was assigned)
or they are denied, then they are marked as "timed out" or "failed", and move on to the next "on fail
node" or "always node". If approved, the "on success" path is taken. If you try to POST in the API to a
node that has already been approved, denied or timed out, an error message notifies you that this action
is redundant, and no further steps are taken.

The following table shows the various levels of permissions allowed on approval workflows:

CHAPTER 8. WORKFLOW JOB TEMPLATES

77

8.7.3. Building nodes scenarios

Learn how to manage nodes in the following scenarios.

Procedure

Click the () icon on the parent node to add a sibling node:

Hover over the line that connects two nodes and click the plus (), to insert another node in

between nodes. Clicking the plus () icon automatically inserts the node between the two
nodes:

Click START again, to add a root node to depict a split scenario:

Red Hat Ansible Automation Platform 2.5 Using automation execution

78

At any node where you want to create a split scenario, hover over the node from which the split

scenario begins and click the plus () icon. This adds multiple nodes from the same parent
node, creating sibling nodes:

NOTE

When adding a new node, the PROMPT option also applies to workflow templates.
Workflow templates prompt for inventory and surveys.

You can undo the last inserted node by using one of these methods:

Click on another node without making a selection.

Click Cancel.

The following example workflow contains all three types of jobs initiated by a job template. If it fails to
run, you must protect the sync job. Regardless of whether it fails or succeeds, proceed to the inventory
sync job:

Refer to the key by clicking the compass () icon to identify the meaning of the symbols and colors
associated with the graphical depiction.

NOTE

CHAPTER 8. WORKFLOW JOB TEMPLATES

79

NOTE

If you remove a node that has a follow-on node attached to it in a workflow with a set of
sibling nodes that has varying edge types, the attached node automatically joins the set
of sibling nodes and retains its edge type:

8.7.4. Editing a node

Procedure

Edit a node by using one of these methods:

If you want to edit a node, click on the node you want to edit. The pane displays the current
selections. Make your changes and click Select to apply them to the graphical view.

To edit the edge type for an existing link, (success, failure, always), click the link. The pane
displays the current selection. Make your changes and click Save to apply them to the
graphical view.

Click the link () icon that appears on each node, to add a new link from one node to
another. Doing this highlights the nodes that are possible to link to. These options are
indicated by the dotted lines. Invalid options are indicated by disabled boxes (nodes) that
would otherwise produce an invalid link. The following example shows the Demo Project as
a possible option for the e2e-ec20de52-project to link to, indicated by the arrows:

Red Hat Ansible Automation Platform 2.5 Using automation execution

80

To remove a link, click the link and click UNLINK. This option only appears in the pane if the
target or child node has more than one parent. All nodes must be linked to at least one other
node at all times so you must create a new link before removing an old one.

Edit the view of the workflow diagram by using one of these methods:

Click the settings icon to zoom, pan, or reposition the view.

Drag the workflow diagram to reposition it on the screen or use the scroll on your mouse to
zoom.

8.8. LAUNCHING A WORKFLOW JOB TEMPLATE

Procedure

Launch a workflow job template by using one of these methods:

From the navigation panel, select Automation Execution → Templates and click the
icon next to the job template.

Click Launch template in the Details tab of the workflow job template that you want to
launch.

Variables added for a workflow job template are automatically added in automation controller when
launching, along with any extra variables set in the workflow job template and survey.

Events related to approvals on workflows are displayed in the activity stream () with detailed
information about the approval requests, if any.

8.9. COPYING A WORKFLOW JOB TEMPLATE

With automation controller you can copy a workflow job template. When you copy a workflow job
template, it does not copy any associated schedule, notifications, or permissions. Schedules and
notifications must be recreated by the user or system administrator creating the copy of the workflow
template. The user copying the workflow template is granted the administrator permission, but no
permissions are assigned (copied) to the workflow template.

Procedure

CHAPTER 8. WORKFLOW JOB TEMPLATES

81

1. Open the workflow job template that you want to copy by using one of these methods:

From the navigation panel, select Automation Execution → Templates.

In the workflow job template Details view, click next to the desired template.

Click the copy () icon.
The new template with the name of the template from which you copied and a
timestamp displays in the list of templates.

2. Select the copied template and click Edit template.

3. Replace the contents of the Name field with a new name, and give or change the entries in the
other fields to complete this template.

4. Click Save job template.

NOTE

If a resource has a related resource that you do not have the right level of permission to,
you cannot copy the resource. For example, in the case where a project uses a credential
that a current user only has Read access. However, for a workflow job template, if any of
its nodes use an unauthorized job template, inventory, or credential, the workflow
template can still be copied. But in the copied workflow job template, the corresponding
fields in the workflow template node are absent.

8.10. WORKFLOW JOB TEMPLATE EXTRA VARIABLES

For more information see the Extra variables section.

Red Hat Ansible Automation Platform 2.5 Using automation execution

82

CHAPTER 9. WORKFLOWS IN AUTOMATION CONTROLLER
Workflows enable you to configure a sequence of disparate job templates (or workflow templates) that
may or may not share inventory, playbooks, or permissions.

Workflows have admin and execute permissions, similar to job templates. A workflow accomplishes the
task of tracking the full set of jobs that were part of the release process as a single unit.

Job or workflow templates are linked together using a graph-like structure called nodes. These nodes
can be jobs, project syncs, or inventory syncs. A template can be part of different workflows or used
multiple times in the same workflow. A copy of the graph structure is saved to a workflow job when you
launch the workflow.

The following example shows a workflow that contains all three, as well as a workflow job template:

As the workflow runs, jobs are spawned from the node’s linked template. Nodes linking to a job template
which has prompt-driven fields (job_type, job_tags, skip_tags, limit) can contain those fields, and is not
prompted on launch. Job templates that prompt for a credential or inventory, without defaults, are not
available for inclusion in a workflow.

9.1. WORKFLOW SCENARIOS AND CONSIDERATIONS

When building workflows, consider the following:

A root node is set to ALWAYS by default and cannot be edited.

A node can have multiple parents, and children can be linked to any of the states of success,
failure, or always. If always, then the state is neither success nor failure. States apply at the node
level, not at the workflow job template level. A workflow job is marked as successful unless it is
canceled or encounters an error.

CHAPTER 9. WORKFLOWS IN AUTOMATION CONTROLLER

83

If you remove a job or workflow template within the workflow, the nodes previously connected
to those deleted, automatically get connected upstream and retain the edge type as in the
following example:

You can have a convergent workflow, where multiple jobs converge into one. In this scenario,
any of the jobs or all of them must complete before the next one runs, as shown in the following
example:

Red Hat Ansible Automation Platform 2.5 Using automation execution

84

In this example, automation controller runs the first two job templates in parallel. When they
both finish and succeed as specified, the third downstream (convergence node), triggers.

Prompts for inventory and surveys apply to workflow nodes in workflow job templates.

If you launch from the API, running a get command displays a list of warnings and highlights
missing components. The following image illustrates a basic workflow for a workflow job
template:

It is possible to launch several workflows simultaneously, and set a schedule for when to launch
them. You can set notifications on workflows, such as when a job completes, similar to that of
job templates.

NOTE

CHAPTER 9. WORKFLOWS IN AUTOMATION CONTROLLER

85

NOTE

Job slicing is intended to scale job executions horizontally.

If you enable job slicing on a job template, it divides the inventory to be acted on in the
number of slices configured at launch time. Then starts a job for each slice.

For more information see the Job slicing section.

You can build a recursive workflow, but if automation controller detects an error, it stops at the
time the nested workflow attempts to run.

Artifacts gathered in jobs in the sub-workflow are passed to downstream nodes.

An inventory can be set at the workflow level, or prompt for inventory on launch.

When launched, all job templates in the workflow that have ask_inventory_on_launch=true
use the workflow level inventory.

Job templates that do not prompt for inventory ignore the workflow inventory and run against
their own inventory.

If a workflow prompts for inventory, schedules and other workflow nodes can provide the
inventory.

In a workflow convergence scenario, set_stats data is merged in an undefined way, therefore
you must set unique keys.

9.2. WORKFLOW EXTRA VARIABLES

Workflows use surveys to specify variables to be used in the playbooks in the workflow, called
extra_vars. Survey variables are combined with extra_vars defined on the workflow job template, and
saved to the workflow job extra_vars. extra_vars in the workflow job are combined with job template
variables when spawning jobs within the workflow.

Workflows use the same behavior (hierarchy) of variable precedence as job templates with the
exception of three additional variables. See the Automation controller Variable Precedence Hierarchy in
the Extra variables section of Job templates. The three additional variables include:

Workflow job template extra variables

Workflow job template survey (defaults)

Workflow job launch extra variables

Workflows included in a workflow follow the same variable precedence, they only inherit variables if they
are specifically prompted for, or defined as part of a survey.

In addition to the workflow extra_vars, jobs and workflows run as part of a workflow can inherit variables
in the artifacts dictionary of a parent job in the workflow (also combining with ancestors further
upstream in its branch). These can be defined by the set_stats Ansible module.

If you use the set_stats module in your playbook, you can produce results that can be consumed
downstream by another job.

Example

Red Hat Ansible Automation Platform 2.5 Using automation execution

86

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/set_stats_module.html

Notifying users as to the success or failure of an integration run. In this example, there are two playbooks
that can be combined in a workflow to exercise artifact passing:

invoke_set_stats.yml: first playbook in the workflow:

- hosts: localhost
 tasks:
 - name: "Artifact integration test results to the web"
 local_action: 'shell curl -F "file=@integration_results.txt" https://file.io'
 register: result

 - name: "Artifact URL of test results to Workflows"
 set_stats:
 data:
 integration_results_url: "{{ (result.stdout|from_json).link }}"

use_set_stats.yml: second playbook in the workflow:

- hosts: localhost
 tasks:
 - name: "Get test results from the web"
 uri:
 url: "{{ integration_results_url }}"
 return_content: true
 register: results

 - name: "Output test results"
 debug:
 msg: "{{ results.content }}"

The set_stats module processes this workflow as follows:

1. The contents of an integration result is uploaded to the web.

2. Through the invoke_set_stats playbook, set_stats is then invoked to artifact the URL of the
uploaded integration_results.txt into the Ansible variable "integration_results_url".

3. The second playbook in the workflow consumes the Ansible extra variable
"integration_results_url". It calls out to the web using the uri module to get the contents of the
file uploaded by the previous job template job. Then, it prints out the contents of the obtained
file.

NOTE

For artifacts to work, keep the default setting, per_host = False in the set_stats module.

9.3. WORKFLOW STATES

The workflow job can have the following states (no Failed state):

Waiting

CHAPTER 9. WORKFLOWS IN AUTOMATION CONTROLLER

87

Running

Success (finished)

Cancel

Error

Failed

In the workflow scheme, canceling a job cancels the branch, while canceling the workflow job cancels the
entire workflow.

9.4. ROLE-BASED ACCESS CONTROLS

To edit and delete a workflow job template, you must have the administrator role. To create a workflow
job template, you must be an organization administrator or a system administrator. However, you can run
a workflow job template that contains job templates that you do not have permissions for. System
administrators can create a blank workflow and then grant an admin_role to a low-level user, after
which they can delegate more access and build the graph. You must have execute access to a job
template to add it to a workflow job template.

You can also perform other tasks, such as making a duplicate copy or re-launching a workflow,
depending on which permissions are granted to a user. You must have permissions to all the resources
used in a workflow, such as job templates, before relaunching or making a copy.

For more information, see Managing access with role based access control .

For more information about performing the tasks described, see Workflow job templates.

Red Hat Ansible Automation Platform 2.5 Using automation execution

88

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/access_management_and_authentication/index#gw-managing-access

CHAPTER 10. SCHEDULES
From the navigation panel, click Automation Execution → Schedules to access your configured
schedules. The schedules list can be sorted by any of the attributes from each column using the
directional arrows. You can also search by name, date, or the name of the month in which a schedule
runs.

Use the On or Off toggle to stop an active schedule or activate a stopped schedule.

Click the Edit icon to edit a schedule.

If you are setting up a template, a project, or an inventory source, click the Schedules tab on the Details
page for that resource, to configure schedules for these resources. When you create a schedule, it has
the following parameters:

Name

Click the schedule name to open its details.

Related resource

Describes the function of the schedule.

Type

This identifies whether the schedule is associated with a source control update or a system-managed
job schedule.

Next run

The next scheduled run of this task.

10.1. ADDING A NEW SCHEDULE

You can create schedules from a template, project, or inventory source, and directly on the main
Schedules page.

To create a new schedule on the Schedules page:

Procedure

1. From the navigation panel, select Automation Execution → Schedules.

2. Click Create schedule. This opens the Create Schedule window.

3. Select a Resource type onto which this schedule is applied.
Select from:

CHAPTER 10. SCHEDULES

89

Job template

For Job template select a Job template from the menu.

Workflow job template

For Workflow job template select a Workflow job template from the menu.

Inventory source

For Inventory source select an Inventory and an Inventory source from the
appropriate menu.

Project sync

For Project sync select a Project from the menu.

Management job template

For Management job template select a Workflow job template from the menu.

To create a new schedule from a resource page:

Procedure

1. Click the Schedules tab of the resource that you are configuring. This can be a template,
project, or inventory source.

2. Click Create schedule. This opens the Create Schedule window.

For both procedures

1. For Job template and Project sync enter the appropriate details into the following fields:

Schedule name: Enter the name.

Optional: Description: Enter a description.

Start date/time: Enter the date and time to start the schedule.

Time zone: Select the time zone. The Start date/time that you enter must be in this time
zone.
The Schedule Details display when you establish a schedule, enabling you to review the
schedule settings and a list of the scheduled occurrences in the selected Local Time Zone.

IMPORTANT

Jobs are scheduled in UTC. Repeating jobs that run at a specific time of day
can move relative to a local time zone when Daylight Savings Time shifts
occur. The system resolves the local time zone based time to UTC when the
schedule is saved. To ensure your schedules are correctly created, set your
schedules in UTC time.

2. Click Next. The Define rules page is displayed.

10.1.1. Defining rules for the schedule

Red Hat Ansible Automation Platform 2.5 Using automation execution

90

Enter the following information:

Frequency: Enter how frequently the schedule runs.

Interval:

Week Start: Select the day of the week that you want the week to begin.

Weekdays: Select the days of the week on which to run the schedule.

Months: Select the months of the year on which to run the schedule

Annual week(s) number: This field is used to declare numbered weeks of the year that the
schedule should run.

Minute(s) of hour: This field is used to declare minute(s) of the hour that the schedule should
run.

Hour of day: This field is used to declare the hours of day that the schedule should run.

Monthly day(s) number: This field is used to declare ordinal days number of the month that the
schedule should run.

Annual day(s) number: This field is used to declare ordinal number days of the year that the
schedule should run.

Occurences: Use this field to filter down indexed rules based on those declared using the form
fields in the Rule section.
For more information, see the link to the iCalendar RFC for bysetpos field in the iCalendar
documentation when you have set the rules for the schedule.

Count: The number of times this rule should be used.

Until: Use this rule until the specified date and time

Click Save rule The Schedule Rules summary page is displayed.

Click Add rule to add additional rules. Click Next.

The Schedule Exceptions summary page is displayed.

10.1.2. Setting exceptions to the schedule

On the Create Schedule page, click Create exception.

Use the same format as for the schedule rules to create a schedule exception.

Click Next to save and review both the schedule and the exception.

CHAPTER 10. SCHEDULES

91

https://datatracker.ietf.org/doc/html/rfc5545

CHAPTER 11. PROJECTS
A Project is a logical collection of Ansible playbooks, represented in automation controller. You can
manage playbooks and playbook directories different ways:

By placing them manually under the Project Base Path on your automation controller server.

By placing your playbooks into a source code management (SCM) system supported by the
automation controller. These include Git, Subversion, Mercurial and Red Hat Insights.

For more information on creating a Red Hat Insights project, see Setting up Red Hat Insights for Red
Hat Ansible Automation Platform Remediations.

NOTE

The Project Base Path is /var/lib/awx/projects. However, this can be modified by the
system administrator. It is configured in /etc/tower/conf.d/custom.py.

Use caution when editing this file, as incorrect settings can disable your installation.

The Projects page displays the list of the projects that are currently available.

A Demo Project is provided that you can work with initially.

The default view is collapsed (Compact) with project name and its status, but you can use the next
to each entry to expand for more information.

For each project listed, you can get the latest SCM revision , edit the project, or copy the
project attributes, using the icons next to each project.

Projects can be updated while a related job is running.

In cases where you have a large project (around 10 GB), disk space on /tmp may be an issue.

Status indicates the state of the project and may be one of the following (note that you can also filter
your view by specific status types):

Pending - The source control update has been created, but not queued or started yet. Any job
(not just source control updates) stays in pending until it is ready to be run by the system.
Possible reasons for it not being ready are:

It has dependencies that are currently running so it has to wait until they are done.

There is not enough capacity to run in the locations it is configured to.

Waiting - The source control update is in the queue waiting to be executed.

Running - The source control update is currently in progress.

Successful - The last source control update for this project succeeded.

Failed - The last source control update for this project failed.

Error - The last source control update job failed to run at all.

Canceled - The last source control update for the project was canceled.

Red Hat Ansible Automation Platform 2.5 Using automation execution

92

Never updated - The project is configured for source control, but has never been updated.

OK - The project is not configured for source control, and is correctly in place.

Missing - Projects are absent from the project base path of /var/lib/awx/projects. This is
applicable for manual or source control managed projects.

NOTE

Projects of credential type Manual cannot update or schedule source control-based
actions without being reconfigured as an SCM type credential.

11.1. ADDING A NEW PROJECT

You can create a logical collection of playbooks, called projects in automation controller.

Procedure

1. From the navigation panel, select Automation Execution → Projects.

2. On the Projects page, click Create project to launch the Create Project window.

3. Enter the appropriate details into the following required fields:

Name (required)

Optional: Description

Organization (required): A project must have at least one organization. Select one
organization now to create the project. When the project is created you can add additional
organizations.

Optional: Execution environment: Enter the name of the execution environment or search
from a list of existing ones to run this project. For more information, see Creating and using
execution environments.

Source control type (required): Select an SCM type associated with this project from the
menu. Options in the following sections become available depending on the type chosen.
For more information, see Managing playbooks manually or Managing playbooks using
source control.

Optional: Content signature validation credential: Use this field to enable content
verification. Specify the GPG key to use for validating content signature during project
synchronization. If the content has been tampered with, the job will not run. For more
information, see Project signing and verification .

4. Click Create project.

Additional resources

The following describe the ways projects are sourced:

Managing playbooks manually

Managing playbooks using source control

SCM Types - Configuring playbooks to use Git and Subversion

CHAPTER 11. PROJECTS

93

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/creating_and_using_execution_environments/index

SCM Types - Configuring playbooks to use Git and Subversion

SCM Type - Configuring playbooks to use Red Hat Insights

SCM Type - Configuring playbooks to use a remote archive

11.1.1. Managing playbooks manually

Procedure

Create one or more directories to store playbooks under the Project Base Path, for example,
/var/lib/awx/projects/.

Create or copy playbook files into the playbook directory.

Ensure that the playbook directory and files are owned by the same UNIX user and group that
the service runs as.

Ensure that the permissions are appropriate for the playbook directories and files.

Troubleshooting

If you have not added any Ansible Playbook directories to the base project path an error
message is displayed. Choose one of the following options to troubleshoot this error:

Create the appropriate playbook directories and check out playbooks from your (Source
code management) SCM.

Copy playbooks into the appropriate playbook directories.

11.1.2. Managing playbooks using source control

Choose one of the following options when managing playbooks using source control:

SCM Types - Configuring playbooks to use Git and Subversion

SCM Type - Configuring playbooks to use Red Hat Insights

SCM Type - Configuring playbooks to use a remote archive

11.1.2.1. SCM Types - Configuring playbooks to use Git and Subversion

Procedure

1. From the navigation panel, select Automation Execution → Projects.

2. Click the project name you want to use.

3. In the project Details tab, click Edit project.

4. Select the appropriate option (Git or Subversion) from the Source control type menu.

5. Enter the appropriate details into the following fields:

Source control URL - See an example in the tooltip .

Red Hat Ansible Automation Platform 2.5 Using automation execution

94

Optional: Source control branch/tag/commit: Enter the SCM branch, tags, commit
hashes, arbitrary refs, or revision number (if applicable) from the source control (Git or
Subversion) to checkout. Some commit hashes and references might not be available unless
you also give a custom refspec in the next field. If left blank, the default is HEAD which is the
last checked out Branch, Tag, or Commit for this project.

Source control refspec - This field is an option specific to git source control and only
advanced users familiar and comfortable with git should specify which references to
download from the remote repository. For more information, see Job branch overriding.

Source control credential - If authentication is required, select the appropriate source
control credential.

6. Optional: Options - select the launch behavior, if applicable:

Clean - Removes any local modifications before performing an update.

Delete - Deletes the local repository in its entirety before performing an update.
Depending on the size of the repository this can significantly increase the amount of time
required to complete an update.

Track submodules - Tracks the latest commit. There is more information in the tooltip .

Update revision on launch - Updates the revision of the project to the current revision in
the remote source control, and caching the roles directory from Galaxy or Collections
support. Automation controller ensures that the local revision matches and that the roles
and collections are up-to-date with the last update. In addition, to avoid job overflows if jobs
are spawned faster than the project can synchronize, selecting this enables you to configure
a Cache Timeout to cache previous project synchronizations for a given number of seconds.

Allow branch override - Enables a job template or an inventory source that uses this
project to start with a specified SCM branch or revision other than that of the project. For
more information, see Job branch overriding.

7. Click Save project.

TIP

Using a GitHub link is an easy way to use a playbook. To help get you started, use the helloworld.yml
file available here.

11.1.2.2. SCM Type - Configuring playbooks to use Red Hat Insights

Procedure

1. From the navigation panel, select Automation Execution → Projects.

2. Click the project name you want to use.

3. In the project Details tab, click Edit project.

4. Select Red Hat Insights from the Source Control Type menu.

5. In the Insights credential field, select the appropriate credential for use with Insights, as Red
Hat Insights requires a credential for authentication.

CHAPTER 11. PROJECTS

95

https://docs.ansible.com/automation-controller/latest/html/userguide/projects.html#ug-galaxy
https://github.com/ansible/tower-example.git

6. Optional: In the Options field, select the launch behavior, if applicable:

Clean - Removes any local modifications before performing an update.

Delete - Deletes the local repository in its entirety before performing an update.
Depending on the size of the repository this can significantly increase the amount of time
required to complete an update.

Update revision on launch - Updates the revision of the project to the current revision in
the remote source control, and caches the roles directory from Ansible Galaxy support or
Collections support. Automation controller ensures that the local revision matches, and that
the roles and collections are up-to-date. If jobs are spawned faster than the project can
synchronize, selecting this enables you to configure a Cache Timeout to cache previous
project synchronizations for a certain number of seconds, to avoid job overflow.

7. Click Save project.

11.1.2.3. SCM Type - Configuring playbooks to use a remote archive

Playbooks that use a remote archive enable projects to be based on a build process that produces a
versioned artifact, or release, containing all the requirements for that project in a single archive.

Procedure

1. From the navigation panel, select Automation Execution → Projects.

2. Click the project name you want to use.

3. In the project Details tab, click Edit project.

4. Select Remote Archive from the Source control type menu.

5. Enter the appropriate details into the following fields:

Source control URL - requires a URL to a remote archive, such as a GitHub Release or a
build artifact stored in Artifactory and unpacks it into the project path for use.

Source control credential - If authentication is required, select the appropriate source
control credential.

6. Optional: In the Options field, select the launch behavior, if applicable:

Clean - Removes any local modifications before performing an update.

Delete - Deletes the local repository in its entirety before performing an update.
Depending on the size of the repository this can significantly increase the amount of time
required to complete an update.

Update revision on launch - Not recommended. This option updates the revision of the
project to the current revision in the remote source control, and caches the roles directory
from Ansible Galaxy support or Collections support.

Allow branch override - Not recommended. This option enables a job template that uses
this project to launch with a specified SCM branch or revision other than that of the
project’s.

NOTE

Red Hat Ansible Automation Platform 2.5 Using automation execution

96

NOTE

Since this source control type is intended to support the concept of
unchanging artifacts, it is advisable to disable Galaxy integration (for roles, at
a minimum).

7. Click Save project.

11.2. UPDATING PROJECTS FROM SOURCE CONTROL

Procedure

1. From the navigation panel, select Automation Execution → Projects.

2. Click the sync icon next to the project that you want to update.

NOTE

Immediately after adding a project setup to use source control, a sync starts that
fetches the project details from the configured source control.

Click the project’s status under the Status column for further information about the update
process. This brings you to the Output tab of the Jobs section.

11.3. WORK WITH PERMISSIONS

The set of permissions assigned to a project (role-based access controls) that provide the ability to
read, change, and administer projects, inventories, job templates, and other elements are privileges.

To access the project permissions, select the Access tab of the Projects page. This screen displays a
list of users that currently have permissions to this project.

You can sort and search this list by Username, First Name, or Last Name.

11.3.1. Adding project permissions

Manage the permissions that users and teams have to access a project.

Procedure

1. From the navigation panel, select Automation Execution → Projects.

2. Select the project that you want to update and click the User Access or Team Access tab.

3. Click Add roles.

4. Select a user or team to add and click Next.

5. Select one or more users or teams from the list by clicking the checkbox next to the name to
add them as members.

6. Click Next.

7. Select the roles you want the selected users or teams to have. Different resources have

CHAPTER 11. PROJECTS

97

7. Select the roles you want the selected users or teams to have. Different resources have
different options available.

8. Click Finish to apply the roles to the selected users or teams and to add them as members. The
updated roles assigned for each user and team are displayed.

11.3.2. Removing permissions from a project

Remove roles for a particular user.

Procedure

1. From the navigation panel, select Automation Execution → Projects.

2. Select the project that you want to update and click the User Access or Team Access tab.

3. Click the icon next to the user role in the Roles column.

4. Click Delete in the confirmation window to confirm the disassociation.

11.4. ANSIBLE GALAXY SUPPORT

At the end of a project update, automation controller searches for the requirements.yml file in the
roles directory, located at <project-top-level-directory>/roles/requirements.yml.

If this file is found, the following command automatically runs:

ansible-galaxy role install -r roles/requirements.yml -p <project-specific cache
location>/requirements_roles -vvv

This file enables you to reference Ansible Galaxy roles or roles within other repositories which can be
checked out in conjunction with your own project. The addition of Ansible Galaxy access eliminates the
need to create git submodules to achieve this result. Given that SCM projects, along with roles or
collections, are pulled into and executed from a private job environment, a <private job directory>
specific to the project within /tmp is created by default.

The cache directory is a subdirectory inside the global projects folder. You can copy the content from
the cache location to <job private directory>/requirements_roles.

By default, automation controller has a system-wide setting that enables you to dynamically download
roles from the roles/requirements.yml file for SCM projects. You can turn off this setting in the Job
Settings screen from the navigation panel Settings → Job, by switching the Enable Role Download
toggle to Off.

Whenever a project synchronization runs, automation controller determines if the project source and
any roles from Galaxy or Collections are out of date with the project. Project updates download the roles
inside the update.

If jobs need to pick up a change made to an upstream role, updating the project ensures that this
happens. A change to the role means that a new commit was pushed to the provision-role source
control.

To make this change take effect in a job, you do not have to push a new commit to the playbooks
repository. You must update the project, which downloads roles to a local cache.

For instance, say you have two git repositories in source control. The first one is playbooks and the

Red Hat Ansible Automation Platform 2.5 Using automation execution

98

For instance, say you have two git repositories in source control. The first one is playbooks and the
project in automation controller points to this URL. The second one is provision-role and it is referenced
by the roles/requirements.yml file inside of the playbooks git repository.

Jobs download the most recent roles before every job run. Roles and collections are locally cached for
performance reasons. You must select Update Revision on Launch in the project Options to ensure
that the upstream role is re-downloaded before each job run:

The update happens much earlier in the process than the sync, so this identifies errors and details faster
and in a more logical location.

For more information and examples on the syntax of the requirements.yml file, see the role
requirements section in the Ansible documentation.

If there are any directories that must be specifically exposed, you can specify those in the Job Settings
screen from the navigation panel Settings → Job, in Paths to Expose to isolated Jobs. You can also
update the following entry in the settings file:

AWX_ISOLATION_SHOW_PATHS = ['/list/of/', '/paths']

NOTE

If your playbooks need to use keys or settings defined in
AWX_ISOLATION_SHOW_PATHS, you must add AWX_ISOLATION_SHOW_PATHS to
/var/lib/awx/.ssh.

If you made changes in the settings file, be sure to restart services with the automation-controller-
service restart command after your changes have been saved.

In the UI, you can configure these settings in the Jobs Settings window.

11.5. COLLECTIONS SUPPORT

Automation controller supports project-specific Ansible collections in job runs. If you specify a
collections requirements file in the SCM at collections/requirements.yml, automation controller
installs collections in that file in the implicit project synchronization before a job run.

Automation controller has a system-wide setting that enables collections to be dynamically downloaded
from the collections/requirements.yml file for SCM projects. You can turn off this setting in the Job
Settings screen from the navigation panel Settings → Job, by switching the Enable Collection(s)
Download toggle button to Off.

Roles and collections are locally cached for performance reasons, and you select Update Revision on
Launch in the project Options to ensure this:

NOTE

CHAPTER 11. PROJECTS

99

https://docs.ansible.com/ansible/latest/galaxy/user_guide.html#installing-multiple-roles-from-a-file
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html

NOTE

If you also have collections installed in your execution environment, the collections
specified in the project’s requirements.yml file will take precedence when running a job.
This precedence applies regardless of the version of the collection. For example, if the
collection specified in requirements.yml is older than the collection within the execution
environment, the collection specified in requirements.yml is used.

11.5.1. Using collections with automation hub

Before automation controller can use automation hub as the default source for collections content, you
must create an API token in the automation hub UI. You then specify this token in automation controller.

Use the following procedure to connect to private automation hub or automation hub, the only
difference is which URL you specify.

Procedure

1. Go to https://console.redhat.com/ansible/automation-hub/token.

2. Click Load token.

3. Click the copy icon to copy the API token to the clipboard.

4. Create a credential by choosing one of the following options:

a. To use automation hub, create an automation hub credential by using the copied token and
pointing to the URLs shown in the Server URL and SSO URL fields of the token page:

Galaxy Server URL = https://console.redhat.com/ansible/automation-hub/token

b. To use private automation hub, create an automation hub credential using a token retrieved
from the Repo Management dashboard of your private automation hub and pointing to the
published repository URL as shown:

You can create different repositories with different namespaces or collections in them. For
each repository in automation hub you must create a different credential.

c. Copy the Ansible CLI URL from the UI in the format of
/https://$<hub_url>/api/galaxy/content/<repo you want to pull from> into the Galaxy
Server URL field of Create Credential:
For UI specific instructions, see Red Hat Certified, validated, and Ansible Galaxy content in
automation hub.

5. Go to the organization for which you want to synchronize content from and add the new

Red Hat Ansible Automation Platform 2.5 Using automation execution

100

https://console.redhat.com/ansible/automation-hub/token
https://console.redhat.com/ansible/automation-hub/token
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/managing_automation_content/managing-cert-valid-content

5. Go to the organization for which you want to synchronize content from and add the new
credential to the organization. This enables you to associate each organization with the
credential, or repository, that you want to use content from.

Example

You have two repositories:

Prod: Namespace 1 and Namespace 2, each with collection A and B so:
namespace1.collectionA:v2.0.0 and namespace2.collectionB:v2.0.0

Stage: Namespace 1 with only collection A so: namespace1.collectionA:v1.5.0 on , you
have a repository URL for Prod and Stage.
You can create a credential for each one.

Then you can assign different levels of access to different organizations. For example, you
can create a Developers organization that has access to both repository, while an
Operations organization just has access to the Prod repository only.

For UI specific instructions, see Configuring user access for container repositories in private
automation hub.

6. If automation hub has self-signed certificates, use the toggle to enable the setting Ignore
Ansible Galaxy SSL Certificate Verification in Job Settings. For automation hub, which uses a
signed certificate, use the toggle to disable it instead. This is a global setting:

7. Create a project, where the source repository specifies the necessary collections in a
requirements file located in the collections/requirements.yml file. For information about the
syntax to use, see Using Ansible collections in the Ansible documentation.

8. In the Projects list view, click the sync icon to update this project. Automation controller
fetches the Galaxy collections from the collections/requirements.yml file and reports it as
changed. The collections are installed for any job template using this project.

NOTE

If updates are required from Galaxy or Collections, a sync is performed that downloads
the required roles, consuming that much more space in your /tmp file. In cases where you
have a large project (around 10 GB), disk space on /tmp may be an issue.

Additional resources

For more information about collections, see Using Ansible Collections .

For more information about how Red Hat publishes one of these official collections, which can be used
to automate your install directly, see the AWX Ansible Collection documentation.

CHAPTER 11. PROJECTS

101

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/managing_automation_content/index#configuring-user-access-containers
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html#install-multiple-collections-with-a-requirements-file
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html
https://github.com/ansible/awx/blob/devel/awx_collection/README.md

CHAPTER 12. PROJECT SIGNING AND VERIFICATION
Project signing and verification lets you sign files in your project directory, then verify whether or not
that content has changed in any way, or files have been added or removed from the project
unexpectedly. To do this, you require a private key for signing and a matching public key for verifying.

For project maintainers, the supported way to sign content is to use the ansible-sign utility, using the
command-line interface (CLI) supplied with it.

The CLI aims to make it easy to use cryptographic technology such as GNU Privacy Guard (GPG) to
validate that files within a project have not been tampered with in any way. Currently, GPG is the only
supported means of signing and validation.

Automation controller is used to verify the signed content. After a matching public key has been
associated with the signed project, automation controller verifies that the files included during signing
have not changed, and that files have been added or removed unexpectedly. If the signature is not valid
or a file has changed, the project fails to update, and jobs making use of the project will not launch.
Verification status of the project ensures that only secure, untampered content can be run in jobs.

If the repository has already been configured for signing and verification, the usual workflow for altering
the project becomes the following:

1. You have a project repository set up already and want to make a change to a file.

2. You make the change, and run the following command:

ansible-sign project gpg-sign /path/to/project

This command updates a checksum manifest and signs it.

3. You commit the change, the updated checksum manifest, and the signature to the repository.

When you synchronize the project, automation controller pulls in the new changes, checks that the
public key associated with the project in automation controller matches the private key that the
checksum manifest was signed with (this prevents tampering with the checksum manifest itself), then
re-calculates the checksums of each file in the manifest to ensure that the checksum matches (and thus
that no file has changed). It also ensures that all files are accounted for:

Files must be included in, or excluded from, the MANIFEST.in file. For more information on this file, see
Sign a project If files have been added or removed unexpectedly, verification fails.

Red Hat Ansible Automation Platform 2.5 Using automation execution

102

12.1. PREREQUISITES

RHEL nodes must properly be subscribed to:

RHEL subscription with baseos and appstream repositories must be enabled.

Your Red Hat Ansible Automation Platform subscription and the proper channel must be
enabled:

ansible-automation-platform-2.4-for-rhel-8-x86_64-rpms for RHEL 8
ansible-automation-platform-2.4-for-rhel-9-x86_64-rpms for RHEL 9

A valid GPG public or private keypair is required for signing content. For more information, see
How to create GPG keypairs .
For more information about GPG keys, see the GnuPG documentation.

Verify that you have a valid GPG keypair in your default GnuPG keyring, with the following
command:

gpg --list-secret-keys

If this command produces no output, or one line of output that states, trustdb was created,
then you do not have a secret key in your default keyring. In this case, refer to How to create
GPG keypairs to learn how to create a new keypair before proceeding. If it produces any other
output, you have a valid secret key and are ready to use ansible-sign.

12.2. ADDING A GPG KEY TO AUTOMATION CONTROLLER

To use the GPG key for content signing and validation in automation controller, add it by running the
following command in the CLI:

$ gpg --list-keys
$ gpg --export --armour <key fingerprint> > my_public_key.asc

CHAPTER 12. PROJECT SIGNING AND VERIFICATION

103

https://www.redhat.com/sysadmin/creating-gpg-keypairs
https://www.gnupg.org/documentation/index.html
https://www.redhat.com/sysadmin/creating-gpg-keypairs

1. From the navigation panel, select Automation Execution → Infrastructure → Credentials.

2. Click Create credential.

3. Give a meaningful name for the new credential, for example, "Infrastructure team public GPG
key".

4. In the Credential type field, select GPG Public Key.

5. Click Browse to locate and select the public key file, for example, my_public_key.asc.

6. Click Create credential.
You can select this credential in projects <ug_projects_add>, and content verification
automatically takes place on future project synchronizations.

NOTE

Use the project cache SCM timeout to control how often you want automation controller
to re-validate the signed content. When a project is configured to update on launch (of
any job template configured to use that project), you can enable the cache timeout
setting, which sets it to update after N seconds have passed since the last update. If
validation is running too often, you can slow down how often project updates occur by
specifying the time in the Cache Timeout field of the Options Details view of the
project.

12.3. INSTALLING THE ANSIBLE-SIGN CLI UTILITY

Use the ansible-sign utility to provide options for the user to sign and verify whether the project is
signed.

Procedure

1. Run the following command to install ansible-sign:

$ dnf install ansible-sign

2. Verify that ansible-sign was successfully installed using the following command:

$ ansible-sign --version

Output similar to the following indicates that you have successfully installed ansible-sign:

ansible-sign 0.1

Red Hat Ansible Automation Platform 2.5 Using automation execution

104

12.4. SIGN A PROJECT

Signing a project involves an Ansible project directory. For more information on project directory
structures, see Sample Ansible setup in the Ansible documentation.

The following sample project has a very simple structure: an inventory file, and two small playbooks
under a playbooks directory:

$ cd sample-project/
$ tree -a .
.
├── inventory
└── playbooks
 └── get_uptime.yml
 └── hello.yml

 1 directory, 3 files

NOTE

The commands used assume that your working directory is the root of your project.
ansible-sign project commands take the project root directory as their last argument.

Use . to indicate the current working directory.

ansible-sign protects content from tampering by taking checksums (SHA256) of all of the secured files
in the project, compiling those into a checksum manifest file, and then signing that manifest file.

To sign content, create a MANIFEST.in file in the project root directory that tells ansible-sign which
files to protect.

Internally, ansible-sign uses the distlib.manifest module of Python’s distlib library, therefore
MANIFEST.in must follow the syntax that this library specifies. For an explanation of the MANIFEST.in
file directives, see the Python Packaging User Guide .

In the sample project, two directives are included, resulting in the following MANIFEST.in file:

include inventory
recursive-include playbooks *.yml

With this file in place, generate your checksum manifest file and sign it. Both of these steps are achieved
in a single ansible-sign command:

$ ansible-sign project gpg-sign .

Successful execution displays output similar to the following:

[OK] GPG signing successful!
[NOTE] Checksum manifest: ./.ansible-sign/sha256sum.txt
[NOTE] GPG summary: signature created

The project has now been signed.

Note that the gpg-sign subcommand resides under the project subcommand.

CHAPTER 12. PROJECT SIGNING AND VERIFICATION

105

https://docs.ansible.com/ansible/latest/tips_tricks/sample_setup.html
https://setuptools.pypa.io/en/latest/userguide/miscellaneous.html

For signing project content, every command starts with ansible-sign project.

Every ansible-sign project command takes the project root directory . as its final argument.

ansible-sign makes use of your default keyring and looks for the first available secret key that it can
find, to sign your project. You can specify a specific secret key to use with the --fingerprint option, or
even a completely independent GPG home directory with the --gnupg-home option.

NOTE

If you are using a desktop environment, GnuPG automatically prompts you for your secret
key’s passphrase.

If this functionality does not work, or you are working without a desktop environment, for
example, through SSH, you can use the -p --prompt-passphrase flag after gpg-sign ,
which causes ansible-sign to prompt for the password instead.

Note that an .ansible-sign directory was created in the project directory. This directory contains the
checksum manifest and a detached GPG signature for it.

$ tree -a .
.
├── .ansible-sign
│ ├── sha256sum.txt
│ └── sha256sum.txt.sig
├── inventory
├── MANIFEST.in
└── playbooks
 ├── get_uptime.yml
 └── hello.yml

12.5. VERIFY YOUR PROJECT

To verify that a signed Ansible project has not been altered, you can use ansible-sign to check whether
the signature is valid and that the checksums of the files match what the checksum manifest says they
should be. The ansible-sign project gpg-verify command can be used to automatically verify both of
these conditions.

$ ansible-sign project gpg-verify .
[OK] GPG signature verification succeeded.
[OK] Checksum validation succeeded.

NOTE

By default, ansible-sign makes use of your default GPG keyring to look for a matching
public key. You can specify a keyring file with the --keyring option, or a different GPG
home with the --gnugpg-home option.

If verification fails for any reason, information is displayed to help you debug the cause. More verbosity
can be enabled by passing the global --debug flag, immediately after ansible-sign in your commands.

NOTE

Red Hat Ansible Automation Platform 2.5 Using automation execution

106

NOTE

When a GPG credential is used in a project, content verification automatically takes place
on future project synchronizations.

12.6. AUTOMATE SIGNING

In environments with highly-trusted Continuous Integration (CI) environments such as OpenShift or
Jenkins, it is possible to automate the signing process.

For example, you can store your GPG private key in a CI platform of choice as a secret, and import that
into GnuPG in the CI environment. You can then run through the signing workflow within the normal CI
environment.

When signing a project using GPG, the environment variable ANSIBLE_SIGN_GPG_PASSPHRASE
can be set to the passphrase of the signing key. This can be injected and masked or secured in a CI
pipeline.

Depending on the scenario, ansible-sign returns with a different exit-code, during both signing and
verification. This can also be useful in the context of CI and automation, as a CI environment can act
differently based on the failure. For example, it can send alerts for some errors, but fail silently for
others.

These are the current exit codes used in ansible-sign, which can be considered stable:

Exit
code

Approximate meaning Example scenarios

0 Success
Signing was successful

Verification was successful

1 General failure
The checksum manifest file contained a syntax
error during verification

The signature file did not exist during verification

MANIFEST.in did not exist during signing

2 Checksum verification failure
The checksum hashes calculated during
verification differed from what was in the signed
checksum manifest, for example, a project file was
changed but the signing process was not re-
completed.

CHAPTER 12. PROJECT SIGNING AND VERIFICATION

107

3 Signature verification failure
The signer’s public key was not in the user’s GPG
keyring

The wrong GnuPG home directory or keyring file
was specified

The signed checksum manifest file was modified in
some way

4 Signing process failure
The signer’s private key was not found in the GPG
keyring

The wrong GnuPG home directory or keyring file
was specified

Exit
code

Approximate meaning Example scenarios

Red Hat Ansible Automation Platform 2.5 Using automation execution

108

CHAPTER 13. TOPOLOGY VIEW
Use the Topology View to view node type, node health, and specific details about each node if you
already have a mesh topology deployed.

To access the topology viewer from the automation controller UI, you must have System Administrator
permissions.

For more information about automation mesh on a VM-based installation, see the Automation mesh for
VM environments.

For more information about automation mesh on an operator-based installation, see the Automation
mesh for managed cloud or operator environments.

13.1. ACCESSING THE TOPOLOGY VIEWER

Use the following procedure to access the topology viewer from the automation controller UI.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Topology View.
The Topology View opens and displays a graphical representation of how each receptor node
links together.

2. To adjust the zoom levels, or manipulate the graphic views, use the control icons: zoom-in (

), zoom-out (), expand (), and reset () on the toolbar.
You can also click and drag to pan around; and scroll using your mouse or trackpad to zoom. The
fit-to-screen feature automatically scales the graphic to fit on the screen and repositions it in
the center. It is particularly useful when you want to see a large mesh in its entirety.

To reset the view to its default view, click the Reset view () icon.

3. Refer to the Legend to identify the type of nodes that are represented.
For VM-based installations, see Control and execution planes.

For operator-based installations, see Control and execution planes for more information about
each type of node.

The Legend shows the node status <node_statuses> by color, which is indicative of the health
of the node. An Error status in the Legend includes the Unavailable state (as displayed in the
Instances list view) plus any future error conditions encountered in later versions of automation
controller.

The following link statuses are also shown in the Legend:

Established: This is a link state that indicates a peer connection between nodes that are
either ready, unavailable, or disabled.

Adding: This is a link state indicating a peer connection between nodes that were selected
to be added to the mesh topology.

Removing: This is a link state indicating a peer connection between nodes that were
selected to be removed from the topology.

4. Hover over a node and the connectors highlight to show its immediate connected nodes

CHAPTER 13. TOPOLOGY VIEW

109

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/automation_mesh_for_vm_environments/index
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/automation_mesh_for_managed_cloud_or_operator_environments/index
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/automation_mesh_for_vm_environments/assembly-planning-mesh#con-automation-mesh-node-types
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/automation_mesh_for_managed_cloud_or_operator_environments/assembly-planning-mesh#con-automation-mesh-node-types

4. Hover over a node and the connectors highlight to show its immediate connected nodes
(peers) or click a node to retrieve details about it, such as its hostname, node type, and status.

5. Click the link for instance hostname from the details displayed to be redirected to its Details
page that provides more information about that node, most notably for information about an
Error status, as in the following example.
You can use the Details page to remove the instance, run a health check on the instance on an
as-needed basis, or unassign jobs from the instance. By default, jobs can be assigned to each
node. However, you can disable it to exclude the node from having any jobs running on it.

6. Additional resources For more information about creating new nodes and scaling the mesh, see
Managing Capacity with Instances.

Red Hat Ansible Automation Platform 2.5 Using automation execution

110

CHAPTER 14. INVENTORIES
Red Hat Ansible Automation Platform works against a list of managed nodes or hosts in your
infrastructure that are logically organized, using an inventory file. You can use the Red Hat Ansible
Automation Platform installer inventory file to specify your installation scenario and describe host
deployments to Ansible. By using an inventory file, Ansible can manage a large number of hosts with a
single command. Inventories also help you use Ansible more efficiently by reducing the number of
command line options you have to specify. Inventories are divided into groups and these groups contain
the hosts.

Groups can be sourced manually, by entering host names into automation controller, or from one of its
supported cloud providers.

NOTE

If you have a custom dynamic inventory script, or a cloud provider that is not yet
supported natively in automation controller, you can also import that into automation
controller.

For more information, see Inventory file importing in Configuring automation execution.

From the navigation panel, select Automation Execution → Infrastructure → Inventories. The
Inventories window displays a list of the inventories that are currently available.

The Inventory details page includes:

Name: The inventory name.

Status
The statuses are:

Success: When the inventory source sync completed successfully

Disabled: No inventory source added to the inventory

Error: When the inventory source sync completed with error

Type: Identifies whether it is a standard inventory, a Smart inventory, or a constructed inventory.

Organization: The organization to which the inventory belongs. The following actions are
available for the selected inventory:

Edit : Edit the properties for the selected inventory

Copy : Makes a copy of an existing inventory as a template for creating a new one

Delete inventory: Delete the selected inventory

Click the Inventory name to display the Details page for the selected inventory, which shows the
inventory’s groups and hosts.

14.1. SMART INVENTORIES

Smart Inventories are collections of hosts defined by a stored search that can be viewed like a standard

CHAPTER 14. INVENTORIES

111

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/index#assembly-inventory-file-importing

Smart Inventories are collections of hosts defined by a stored search that can be viewed like a standard
inventory and can be easily used with job runs. Organization administrators have admin permission for
inventories in their organization and can create Smart Inventories.

A Smart Inventory is identified by KIND=smart.

You can define a Smart Inventory using the same method being used with Search. InventorySource is
directly associated with an Inventory.

NOTE

Smart inventories are deprecated and will be removed in a future release. Consider
moving to constructed inventories for enhancements and replacement.

The Inventory model has the following new fields that are blank by default but are set accordingly for
Smart Inventories:

kind is set to smart for Smart Inventories.

host_filter is set AND kind is set to smart for Smart Inventories.

The host model has a related endpoint, smart_inventories that identifies a set of all the Smart
Inventories a host is associated with. The membership table is updated every time a job runs against a
smart inventory.

NOTE

To update the memberships more frequently, you can change the
AWX_REBUILD_SMART_MEMBERSHIP file-based setting to True. (The default is
False). This updates memberships if the following events occur:

A new host is added

An existing host is modified (updated or deleted)

A new Smart Inventory is added

An existing Smart Inventory is modified (updated or deleted)

You can view inventories without being editable:

Names of Host and Group created as a result of an inventory source synchronization.

Group records cannot be edited or moved.

You cannot create hosts from a Smart Inventory host endpoint (/inventories/N/hosts/) as with a normal
inventory. The administrator of a Smart Inventory has permission to edit fields such as the name,
description, variables, and the ability to delete, but does not have the permission to modify the
host_filter, because that affects which hosts (that have a primary membership inside another inventory)
are included in the smart inventory.

host_filter only applies to hosts inside of inventories inside the Smart Inventory’s organization.

To modify host_filter, you must be the organization administrator of the inventory’s organization.
Organization administrators have implicit "admin" access to all inventories inside the organization,
therefore, this does not convey any permissions they did not already possess.

Red Hat Ansible Automation Platform 2.5 Using automation execution

112

Administrators of the Smart Inventory can grant other users (who are not also admins of your
organization) permissions such as "use" and "adhoc" to the smart inventory. These permit the actions
indicated by the role, as with other standard inventories. However, this does not grant any special
permissions to hosts (which live in a different inventory). It does not permit direct read permission to
hosts, or permit them to see additional hosts under /#/hosts/, although they can still view the hosts
under the smart inventory host list.

In some situations, you can modify the following:

A new Host created manually on Inventory with Inventory sources.

Groups that were created as a result of inventory source synchronizations.

Variables on Host and Group are not changeable, even as the local System Administrator.

Hosts associated with the Smart Inventory are manifested at view time. If the results of a Smart
Inventory contains more than one host with identical hostnames, only one of the matching hosts is
included as part of the Smart Inventory, ordered by Host ID.

14.1.1. Smart Host Filters

You can use a search filter to populate hosts for an inventory. This feature uses the fact searching
feature.

Automation controller stores facts generated by an Ansible Playbook during a Job Template in the
database whenever use_fact_cache=True is set per-Job Template. New facts are merged with existing
facts and are per-host. These stored facts can be used to filter hosts with the /api/v2/hosts endpoint,
using the GET query parameter host_filter.

For example:

/api/v2/hosts?host_filter=ansible_facts__ansible_processor_vcpus=8

The host_filter parameter permits:

grouping with ()

use of the boolean and operator:

__ to reference related fields in relational fields

__ is used on ansible_facts to separate keys in a JSON key path

`[] is used to denote a json array in the path specification

"" can be used in the value when spaces are wanted in the value

"classic" Django queries may be embedded in the host_filter

Examples:

/api/v2/hosts/?host_filter=name=localhost
/api/v2/hosts/?host_filter=ansible_facts__ansible_date_time__weekday_number="3"
/api/v2/hosts/?host_filter=ansible_facts__ansible_processor[]="GenuineIntel"
/api/v2/hosts/?host_filter=ansible_facts__ansible_lo__ipv6[]__scope="host"
/api/v2/hosts/?host_filter=ansible_facts__ansible_processor_vcpus=8

CHAPTER 14. INVENTORIES

113

/api/v2/hosts/?host_filter=ansible_facts__ansible_env__PYTHONUNBUFFERED="true"
/api/v2/hosts/?host_filter=(name=localhost or name=database) and (groups__name=east or
groups__name="west coast") and ansible_facts__an

You can search host_filter by host name, group name, and Ansible facts.

Group search has the following format:

groups.name:groupA

Fact search has the following format:

ansible_facts.ansible_fips:false

You can also perform Smart Search searches, which consist of a host name and host description.

host_filter=name=my_host

NOTE

If a search term in host_filter is of string type, to make the value a number (for example,
2.66) or a JSON keyword (for example, null, true or false) valid, add double quotations
around the value to prevent the controller from parsing it as a non-string:

host_filter=ansible_facts__packages__dnsmasq[]__version="2.66"

14.2. CONSTRUCTED INVENTORIES

You can create a new inventory (called a constructed inventory) from a list of input inventories.

A constructed inventory has copies of hosts and groups in its input inventories, permitting jobs to target
groups of servers across many inventories. Groups and hostvars can be added to the inventory content,
and hosts can be filtered to limit the size of the constructed inventory.

Constructed inventories use the ansible.builtin.constructed inventory model.

The key factors of a constructed inventory are:

The normal Ansible hostvars namespace is available

They provide groups

Constructed inventories take source_vars and limit as inputs and transform its input_inventories into
a new inventory, complete with groups. Groups (existing or constructed) can then be referenced in the
limit field to reduce the number of hosts produced.

You can construct groups based on these host properties:

RHEL major or minor versions

Windows hosts

Cloud based instances tagged in a certain region

Red Hat Ansible Automation Platform 2.5 Using automation execution

114

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/constructed_inventory.html#ansible-builtin-constructed-inventory-uses-jinja2-to-construct-vars-and-groups-based-on-existing-inventory

other

The examples described in later sections are organized by the structure of the input inventories.

14.2.1. Filtering on group name and variables

You can filter on a combination of groups and variables. For example, you can filter hosts that match a
group variable value and also match a host variable value.

There are two approaches to executing this filter:

Define two groups: one group to match the group variable and the other group to match the
host variable value. Use the limit pattern to return the hosts that are in both groups. This is the
recommended approach.

Define one group. In the definition, include the condition that the group and host variables must
match specific values. Use the limit pattern to return all the hosts in the new group.

Example:

The following inventory file defines four hosts and sets group and host variables. It defines a product
group, a sustaining group, and it sets two hosts to a shutdown state.

The goal is to create a filter that returns only production hosts that are shutdown.

[account_1234]
host1
host2 state=shutdown

[account_4321]
host3
host4 state=shutdown

[account_1234:vars]
account_alias=product_dev

[account_4321:vars]
account_alias=sustaining

The goal here is to return only shutdown hosts that are present in the group with the account_alias
variable equal to product_dev. There are two approaches to this, both shown in YAML format. The first
one suggested is recommended.

1. Construct 2 groups, limit to intersection:
source_vars:

plugin: constructed
strict: true
groups:
 is_shutdown: state | default("running") == "shutdown"
 product_dev: account_alias == "product_dev"

limit: is_shutdown:&product_dev

This constructed inventory input creates a group for both categories and uses the limit (host

CHAPTER 14. INVENTORIES

115

This constructed inventory input creates a group for both categories and uses the limit (host
pattern) to only return hosts that are in the intersection of those two groups, which is
documented in Patterns:targeting hosts and groups .

When a variable is or is not defined (depending on the host), you can give a default. For
example, use | default("running") if you know what value it should have when it is not defined.
This helps with debugging, as described in Debugging tips.

2. Construct 1 group, limit to group:
source_vars:

plugin: constructed
strict: true
groups:
 shutdown_in_product_dev: state | default("running") == "shutdown" and account_alias ==
"product_dev"

limit: shutdown_in_product_dev

This input creates one group that only includes hosts that match both criteria. The limit is then
just the group name by itself, returning host2. The same as the earlier approach.

14.2.2. Debugging tips

It is important to set the strict parameter to true so that you can debug problems with your templates. If
the template fails to render, an error occurs in the associated inventory update for that constructed
inventory.

When encountering errors, increase verbosity to get more details.

Giving a default, such as | default("running") is a generic use of Jinja2 templates in Ansible. Doing this
avoids errors from the template when you set strict: true.

You can also set strict: false, and so enable the template to produce an error, which results in the host
not getting included in that group. However, doing this makes it difficult to debug issues in the future if
your templates continue to grow in complexity.

You might still have to debug the intended function of the templates if they are not producing the
expected inventory content. For example, if a groups group has a complex filter (like
shutdown_in_product_dev) but does not contain any hosts in the resultant constructed inventory,
then use the compose parameter to help debug.

For example:

source_vars:

plugin: constructed
strict: true
groups:
 shutdown_in_product_dev: state | default("running") == "shutdown" and account_alias ==
"product_dev"
compose:
 resolved_state: state | default("running")
 is_in_product_dev: account_alias == "product_dev"

limit: ``

Red Hat Ansible Automation Platform 2.5 Using automation execution

116

https://docs.ansible.com/ansible/latest/inventory_guide/intro_patterns.html

Running with a blank limit returns all hosts. You can use this to inspect specific variables on specific
hosts, giving insight into where problems in the groups lie.

14.2.3. Nested groups

A nested group consists of two groups where one is a child of the other. In the following example, the
child group has another host inside of it, and the parent group has a variable defined.

Because of the way Ansible core operates, the variable of the parent group is available in the
namespace as a playbook is running, and can be used for filtering.

The following example inventory file, nested.yml is in YAML format:

all:
 children:
 groupA:
 vars:
 filter_var: filter_val
 children:
 groupB:
 hosts:
 host1: {}
 ungrouped:
 hosts:
 host2: {}

Because host1 is in groupB, it is also in groupA.

Filter on nested group names

Use the following YAML format to filter on nested group names:

`source_vars`:

plugin: constructed

`limit`: `groupA`

Filter on nested group property

Use the following YAML format to filter on a group variable, even if the host is indirectly a member of
that group.

In the inventory content, note that host2 is not expected to have the variable filter_var defined,
because it is not in any of the groups. Because strict: true is used, use a default value so that hosts
without that variable are defined. Using this, host2, returns false from the expression, instead of
producing an error. host1 inherits the variable from its groups, and is returned.

source_vars:

plugin: constructed
strict: true
groups:

CHAPTER 14. INVENTORIES

117

 filter_var_is_filter_val: filter_var | default("") == "filter_val"

limit: filter_var_is_filter_val

14.2.4. Ansible facts

To create an inventory with Ansible facts, you must run a playbook against the inventory that has the
setting gather_facts: true. The facts differ system-to-system. The following examples are not intended
to address all known scenarios.

14.2.4.1. Filter on environment variables

The following example involves filtering on environmental variables using the YAML format:

source_vars:

plugin: constructed
strict: true
groups:
 hosts_using_xterm: ansible_env.TERM == "xterm"

limit: hosts_using_xterm

14.2.4.2. Filter hosts by processor type

The following example involves filtering hosts by processor type (Intel) using the YAML format:

source_vars:

plugin: constructed
strict: true
groups:
 intel_hosts: "GenuineIntel" in ansible_processor

limit: intel_hosts

NOTE

Hosts in constructed inventories are not counted against your license allotment because
they are referencing the original inventory host. Additionally, hosts that are disabled in
the original inventories are not included in the constructed inventory.

An inventory update run using ansible-inventory creates the constructed inventory contents.

This is always configured to update-on-launch before a job, but you can still select a cache timeout value
in case this takes too long.

When creating a constructed inventory, the API ensures that it always has one inventory source
associated with it. All inventory updates have an associated inventory source, and the fields needed for
constructed inventory (source_vars and limit) are fields already present on the inventory source
model.

Red Hat Ansible Automation Platform 2.5 Using automation execution

118

14.3. INVENTORY PLUGINS

Inventory updates use dynamically-generated YAML files which are parsed by their inventory plugin. In
automation controller v4.4, you can provide the inventory plugin configuration directly to automation
controller using the inventory source source_vars for the following inventory sources:

Amazon Web Services EC2

Google Compute Engine

Microsoft Azure Resource Manager

VMware vCenter

Red Hat Satellite 6

Red Hat Insights

OpenStack

Red Hat Virtualization

Red Hat Ansible Automation Platform

Terraform State

OpenShift Virtualization

Newly created configurations for inventory sources contain the default plugin configuration values. If
you want your newly created inventory sources to match the output of a legacy source, you must apply a
specific set of configuration values for that source. To ensure backward compatibility, automation
controller uses "templates" for each of these sources to force the output of inventory plugins into the
legacy format.

For more information about sources and their templates, see Supported inventory plugin templates .

source_vars that contain plugin: foo.bar.baz as a top-level key are replaced with the fully-qualified
inventory plugin name at runtime based on the InventorySource source. For example, if you select ec2
for the InventorySource then, at run-time, plugin is set to amazon.aws.aws_ec2.

14.4. ADD A NEW INVENTORY

Adding a new inventory involves the following components:

Adding permissions to inventories

Adding groups to inventories

Adding a host

Adding a source

View completed jobs

Use the following procedure to create a inventory:

CHAPTER 14. INVENTORIES

119

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories. The
Inventories window displays a list of the inventories that are currently available.

2. Click Create inventory, and select the type of inventory to create.

3. Enter the appropriate details into the following fields:

Name: Enter a name appropriate for this inventory.

Optional: Description: Enter an arbitrary description as appropriate.

Organization: Required. Choose among the available organizations.

Only applicable to Smart Inventories: Smart host filter: Populate the hosts for this
inventory by using a search filter.
Example

name__icontains=RedHat.

These options are based on the organization you chose.

Filters are similar to tags in that tags are used to filter certain hosts that contain those
names. Therefore, to populate the Smart host filter field, specify a tag that has the hosts
you want, not the hosts themselves.

Filters are case-sensitive.

Instance groups: Select the instance group or groups for this inventory to run on.
You can select many instance groups and sort them in the order that you want them run.

Optional: Labels: Supply labels that describe this inventory, so they can be used to group
and filter inventories and jobs.

Only applicable to constructed inventories: Input inventories: Specify the source
inventories to include in this constructed inventory. Empty groups from input inventories
are copied into the constructed inventory.

Optional:(Only applicable to constructed inventories): Cached timeout (seconds): Set the
length of time you want the cache plugin data to timeout.

Only applicable to constructed inventories: Verbosity: Control the level of output that
Ansible produces as the playbook executes related to inventory sources associated with
constructed inventories.
Select the verbosity from:

Normal

Verbose

More verbose

Debug

Connection Debug

WinRM Debug

Red Hat Ansible Automation Platform 2.5 Using automation execution

120

Verbose logging includes the output of all commands.

More verbose provides more detail than Verbose.

Debug logging is exceedingly verbose and includes information about SSH operations
that can be useful in certain support instances. Most users do not need to see debug
mode output.

Connection Debug enables you to run SSH in verbose mode, providing debugging
information about the SSH connection progress.

WinRM Debug used for verbosity specific to windows remote management

Click the icon for information on How to use the constructed inventory plugin.

Only applicable to constructed inventories: Limit: Restricts the number of returned hosts
for the inventory source associated with the constructed inventory. You can paste a group
name into the limit field to only include hosts in that group. For more information, see the
Source vars setting.

Only applicable to standard inventories: Options: Check the Prevent Instance Group
Fallback option to enable only the instance groups listed in the Instance Groups field to
execute the job. If unchecked, all available instances in the execution pool are used based on
the hierarchy described in Control where a job runs .

Variables (Source vars for constructed inventories):

Variables Variable definitions and values to apply to all hosts in this inventory. Enter
variables by using either JSON or YAML syntax. Use the radio button to toggle between
the two.

Source vars for constructed inventories creates groups, specifically under the groups
key of the data. It accepts Jinja2 template syntax, renders it for every host, makes a
true or false evaluation, and includes the host in the group (from the key of the entry)
if the result is true. This is particularly useful because you can paste that group name
into the limit field to only include hosts in that group.

4. Click Create inventory.

After saving the new inventory, you can proceed with configuring permissions, groups, hosts, sources,
and view completed jobs, if applicable to the type of inventory.

14.4.1. Adding permissions to inventories

Use the following procedure to add permissions to inventories:

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select a template, and in the User Access or Team Access tab, click Add roles.

3. Select a user or team to add and click Next.

4. Select the checkbox next to a name to add one or more users or teams from the list as
members.

CHAPTER 14. INVENTORIES

121

5. Click Next.

6. Select the roles you want the selected users or teams to have. Different resources have
different options available.

7. Click Finish to apply the roles to the selected users or teams and to add them as members.

The updated roles assigned for each user and team are displayed.

Removing a permission

To remove roles for a particular user, click the icon next to its resource.

This launches a confirmation window, asking you to confirm the disassociation.

14.4.2. Adding groups to inventories

Inventories are divided into groups, which can contain hosts and other groups. Groups are only
applicable to standard inventories and are not a configurable directly through a Smart Inventory. You
can associate an existing group through hosts that are used with standard inventories.

The following actions are available for standard inventories:

Create a new Group

Create a new Host

Run a command on the selected Inventory

Edit Inventory properties

View activity streams for Groups and Hosts

Obtain help building your Inventory

NOTE

Inventory sources are not associated with groups. Spawned groups are top-level and can
still have child groups. All of these spawned groups can have hosts.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the Inventory name you want to add groups to.

3. In the Inventory Details page, select the Groups tab.

4. Click Create group.

5. Enter the appropriate details:

Name: Required

Optional: Description: Enter a description as appropriate.

Optional: Variables: Enter definitions and values to be applied to all hosts in this group.

Red Hat Ansible Automation Platform 2.5 Using automation execution

122

Optional: Variables: Enter definitions and values to be applied to all hosts in this group.
Enter variables by using either JSON or YAML syntax. Use the radio button to toggle
between the two.

6. Click Create group.

When you have added a group to a template, the Group Details page is displayed.

14.4.2.1. Adding groups within groups

When you have added a group to a template, the Group Details page is displayed.

Procedure

1. Select the Related Groups tab.

2. Click Add existing group to add a group that already exists in your configuration or Create
group to create a new group.

3. If creating a new group, enter the appropriate details into the required and optional fields:

Name (required):

Optional: Description: Enter a description as appropriate.

Optional: Variables: Enter definitions and values to be applied to all hosts in this group.
Enter variables using either JSON or YAML syntax. Use the radio button to toggle between
the two.

4. Click Create group.

5. The Create group window closes and the newly created group is displayed as an entry in the list
of groups associated with the group that it was created for.

If you select to add an existing group, available groups appear in a separate selection window.

When you select a group, it is displayed in the list of groups associated with the group.

To configure additional groups and hosts under the subgroup, click the name of the subgroup
from the list of groups and repeat the steps listed in this section.

14.4.2.2. View or edit inventory groups

The groups list view displays all your inventory groups, or you can filter it to only display the root groups.
An inventory group is considered a root group if it is not a subset of another group.

You can delete a subgroup without concern for dependencies, because automation controller looks for
dependencies such as child groups or hosts. If any exist, a confirmation window displays for you to select
whether to delete the root group and all of its subgroups and hosts; or to promote the subgroups so
they become the top-level inventory groups, along with their hosts.

14.4.3. Adding hosts to an inventory

You can configure hosts for the inventory and for groups and groups within groups.

Procedure

CHAPTER 14. INVENTORIES

123

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want to add groups to.

3. In the Inventory Details page, select the Hosts tab.

4. Click Create host.

5. Select whether to add a host that already exists in your configuration or create a new host.

6. If creating a new host, set the toggle to On to include this host while running jobs.

7. Enter the appropriate details:

Name (required):

Optional: Description: Enter a description as appropriate.

Optional: Variables: Enter definitions and values to be applied to all hosts in this group, as in
the following example:

{
 ansible_user : <username to ssh into>
 ansible_ssh_pass : <password for the username>
 ansible_become_pass: <password for becoming the root>
}

Enter variables by using either JSON or YAML syntax. Use the radio button to toggle
between the two.

8. Click Create host.

9. The Create host window closes and the newly created host is displayed in the list of hosts
associated with the group that it was created for.
If you select to add an existing host, available hosts appear in a separate selection window.

When you select a host, it is displayed in the list of hosts associated with the group.

10. You can disassociate a host from this screen by selecting the host and clicking the icon.

NOTE

You can also run ad hoc commands from this screen. For more information, see
Running Ad Hoc commands .

11. To configure additional groups for the host, click the name of the host from the list of hosts.
This opens the Details tab of the selected host.

12. Select the Groups tab to configure groups for the host.

13. Click Associate groups to associate the host with an existing group. Available groups appear in
a separate selection window.

14. Select the groups to associate with the host and click Confirm.
When a group is associated, it is displayed in the list of groups associated with the host.

15. If you used a host to run a job, you can view details about those jobs in the Completed Jobs tab

Red Hat Ansible Automation Platform 2.5 Using automation execution

124

15. If you used a host to run a job, you can view details about those jobs in the Completed Jobs tab
of the host.

16. Click Expanded to view details about each job.

NOTE

You can create hosts in bulk by using the newly added endpoint in the API,
/api/v2/bulk/host_create. This endpoint accepts JSON and you can specify the target
inventory and a list of hosts to add to the inventory. These hosts must be unique within
the inventory. Either all hosts are added, or an error is returned indicating why the
operation was not able to complete. Use the OPTIONS request to return the relevant
schema.

For more information, see Bulk endpoints in the Automation Controller API Guide .

14.4.4. Adding a source

Inventory sources are not associated with groups. Spawned groups are top-level and can still have child
groups. All of these spawned groups can have hosts. Adding a source to an inventory only applies to
standard inventories.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want to add a source to.

3. In the Inventory Details page, select the Sources tab.

4. Click Create source.

5. Enter the appropriate details:

Name (required):

Optional: Description: Enter a description as appropriate.

Optional: Execution Environment: Click the icon or enter the name of the execution
environment with which you want to run your inventory imports. For more information on
building an execution environment, see Execution environments.

Source: Choose a source for your inventory. For more information about sources, and
supplying the appropriate information, see Inventory sources.

6. When the information for your chosen Inventory sources is complete, you can optionally specify
other common parameters, such as verbosity, host filters, and variables.

7. Use the Verbosity menu to select the level of output on any inventory source’s update jobs.

8. Use the Host filter field to specify only matching host names to be imported into automation
controller.

9. In the Enabled variable field, specify that automation controller retrieves the enabled state
from the dictionary of host variables. You can specify the enabled variable by using dot notation
as 'foo.bar', in which case the lookup searches nested dictionaries, equivalent to:

CHAPTER 14. INVENTORIES

125

https://docs.ansible.com/automation-controller/latest/html/controllerapi/api_ref.html#/Bulk

from_dict.get('foo', {}).get('bar', default).

10. If you specified a dictionary of host variables in the Enabled variable field, you can give a value
to enable on import. For example, for enabled_var='status.power_state' and
'enabled_value='powered_on' in the following host variables, the host is marked enabled:

{
"status": {
"power_state": "powered_on",
"created": "2020-08-04T18:13:04+00:00",
"healthy": true
},
"name": "foobar",
"ip_address": "192.168.2.1"
}

If power_state is any value other than powered_on, then the host is disabled when imported
into automation controller. If the key is not found, then the host is enabled.

11. All cloud inventory sources have the following update options:

Overwrite: If checked, any hosts and groups that were previously present on the external
source but are now removed, are removed from the automation controller inventory. Hosts
and groups that were not managed by the inventory source are promoted to the next
manually created group, or, if there is no manually created group to promote them into, they
are left in the "all" default group for the inventory.
When not checked, local child hosts and groups not found on the external source remain
untouched by the inventory update process.

Overwrite variables: If checked, all variables for child groups and hosts are removed and
replaced by those found on the external source.
When not checked, a merge is performed, combining local variables with those found on the
external source.

Update on launch: Each time a job runs using this inventory, refresh the inventory from the
selected source before executing job tasks.
To avoid job overflows if jobs are spawned faster than the inventory can synchronize,
selecting this enables you to configure a Cache Timeout to previous cache inventory
synchronizations for a certain number of seconds.

The Update on launch setting refers to a dependency system for projects and inventory,
and does not specifically exclude two jobs from running at the same time.

If a cache timeout is specified, then the dependencies for the second job are created, and it
uses the project and inventory update that the first job spawned.

Both jobs then wait for that project or inventory update to finish before proceeding. If they
are different job templates, they can then both start and run at the same time, if the system
has the capacity to do so. If you intend to use automation controller’s provisioning callback
feature with a dynamic inventory source, Update on launch must be set for the inventory
group.

If you synchronize an inventory source that uses a project that has Update On launch set,
then the project might automatically update (according to cache timeout rules) before the
inventory update starts.

You can create a job template that uses an inventory that sources from the same project

Red Hat Ansible Automation Platform 2.5 Using automation execution

126

You can create a job template that uses an inventory that sources from the same project
that the template uses. In such a case, the project updates and then the inventory updates
(if updates are not already in progress, or if the cache timeout has not already expired).

12. Review your entries and selections. This enables you to configure additional details, such as
schedules and notifications.

13. To configure schedules associated with this inventory source, click the Schedules tab:

If schedules are already set up, then review, edit, enable or disable your schedule
preferences.

If schedules have not been set up, for more information about setting up schedules, see
Schedules.

14.4.5. Configuring notifications for the source

Use the following procedure to configure notifications for the source:

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want to configure notifications for.

3. In the inventory Details page, select the Notifications tab.

NOTE

The Notifications tab is only present when you have saved the newly-created
source.

4. If notifications are already set up, use the toggles to enable or disable the notifications to use
with your particular source. For more information, see Enable and Disable Notifications .

5. If you have not set up notifications, see Notifications for more information.

6. Review your entries and selections.

7. Click Save.

When you define a source, it is displayed in the list of sources associated with the inventory. From the
Sources tab you can perform a sync on a single source, or sync all of them at once. You can also
perform additional actions such as scheduling a sync process, and edit or delete the source.

14.4.5.1. Inventory sources

Choose a source which matches the inventory type against which a host can be entered:

Sourcing from a Project

Amazon Web Services EC2

Google Compute Engine

Microsoft Azure Resource Manager

CHAPTER 14. INVENTORIES

127

VMware vCenter

Red Hat Satellite 6

Red Hat Insights

OpenStack

Red Hat Virtualization

Red Hat Ansible Automation Platform

Terraform State

14.4.5.1.1. Sourcing from a Project

An inventory that is sourced from a project means that it uses the SCM type from the project it is tied
to. For example, if the project’s source is from GitHub, then the inventory uses the same source.

Use the following procedure to configure a project-sourced inventory:

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

4. In the Create source page, select Sourced from a Project from the Source list.

5. Enter the following details in the additional fields:

Optional: Source control branch/tag/commit: Enter the SCM branch, tags, commit
hashes, arbitrary refs, or revision number (if applicable) from the source control (Git or
Subversion) to checkout.
This field only displays if the sourced project has the Allow branch override option checked.
For further information, see SCM Types - Git and Subversion .

Some commit hashes and refs might not be available unless you also give a custom refspec
in the next field. If left blank, the default is HEAD which is the last checked out
Branch/Tag/Commit for this project.

Optional: Credential: Specify the credential to use for this source.

Project (required): Pre-populates with a default project, otherwise, specify the project this

inventory is using as its source. Click the icon to choose from a list of projects. If the list
is extensive, use the search to narrow the options.

Inventory file (required): Select an inventory file associated with the sourced project. If not
already populated, you can type it into the text field within the menu to filter extraneous file
types. In addition to a flat file inventory, you can point to a directory or an inventory script.

Red Hat Ansible Automation Platform 2.5 Using automation execution

128

6. Optional: You can specify the verbosity, host filter, enabled variable/value, and update options
as described in Adding a source .

7. Optional: To pass to the custom inventory script, you can set environment variables in the
Source variables field. You can also place inventory scripts in source control and then run it
from a project. For more information, see Inventory File Importing in Configuring automation
execution.

NOTE

If you are executing a custom inventory script from SCM, ensure that you set the
execution bit (chmod +x) for the script in your upstream source control.

If you do not, automation controller throws a [Error 13] Permission denied error on
execution.

14.4.5.1.2. Amazon Web Services EC2

Use the following procedure to configure an AWS EC2-sourced inventory.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

4. In the Create source page, select Amazon EC2 from the Source list.

5. The Create source window expands with additional fields. Enter the following details:

Optional: Credential: Choose from an existing AWS credential. For more information, see
Managing user credentials.
If automation controller is running on an EC2 instance with an assigned IAM Role, the
credential can be omitted, and the security credentials from the instance metadata are used
instead. For more information about using IAM Roles, see IAM roles for Amazon
EC2_documentation_at_Amazon documentation at Amazon.

6. Optional: You can specify the verbosity, host filter, enabled variables or values, and update
options as described in Adding a source .

7. Use the Source variables field to override variables used by the aws_ec2 inventory plugin.
Enter variables by using either JSON or YAML syntax. Use the radio button to toggle between
the two. For more information about these variables, see the aws inventory plugin

CHAPTER 14. INVENTORIES

129

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/assembly-inventory-file-importing
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://console.redhat.com/ansible/automation-hub/repo/published/amazon/aws/content/inventory/aws_ec2

documentation.

NOTE

If you only use include_filters, the AWS plugin always returns all the hosts. To use this
correctly, the first condition on the or must be on filters and then build the rest of the OR
conditions on a list of include_filters.

14.4.5.1.3. Google Compute Engine

Use the following procedure to configure a Google-sourced inventory:

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

4. In the Add new source page, select Google Compute Engine from the Source list.

5. The Create source window expands with the required Credential field. Choose from an existing
GCE Credential. For more information, see [Credentials].

6. Optional: You can specify the verbosity, host filter, enabled variables or values, and update
options as described in Adding a source .

7. Use the Source Variables field to override variables used by the gcp_compute inventory
plugin. Enter variables by using either JSON or YAML syntax. Use the radio button to toggle
between the two. For more information about these variables, see the gcp_compute inventory
plugin documentation.

14.4.5.1.4. Microsoft Azure resource manager

Use the following procedure to configure an Microsoft Azure Resource Manager-sourced inventory.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

4. In the Create source page, select Microsoft Azure Resource Manager from the Source list.

5. Enter the following details in the additional fields:

6. Optional: Credential: Choose from an existing Azure Credential. For more information, see
Managing user credentials..

7. Optional: You can specify the verbosity, host filter, enabled variables or values, and update
options as described in Adding a source .

8. Use the Source variables field to override variables used by the azure_rm inventory plugin.

Red Hat Ansible Automation Platform 2.5 Using automation execution

130

https://console.redhat.com/ansible/automation-hub/repo/published/google/cloud/content/inventory/gcp_compute

Enter variables by using either JSON or YAML syntax. Use the radio button to toggle between
the two. For more information about these variables, see the azure_rm inventory plugin
documentation.

14.4.5.1.5. VMware vCenter

Use the following procedure to configure a VMWare-sourced inventory.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

4. In the Create source page, select VMware vCenter from the Source list.

5. The Create source window expands with additional fields. Enter the following details:

Optional: Credential: Choose from an existing VMware credential. For more information,
see Managing user credentials.

6. Optional: You can specify the verbosity, host filter, enabled variables or values, and update
options as described in Adding a source .

7. Use the Source Variables field to override variables used by the vmware_inventory inventory
plugin. Enter variables by using either JSON or YAML syntax. Use the radio button to toggle
between the two. For more information about these variables, see the vmware_inventory
inventory plugin.

NOTE

VMWare properties have changed from lower case to camel case. Automation controller
provides aliases for the top-level keys, but lower case keys in nested properties have
been discontinued. For a list of valid and supported properties, see Using Virtual machine
attributes in VMware dynamic inventory plugin.

14.4.5.1.6. Red Hat Satellite 6

Use the following procedure to configure a Red Hat Satellite-sourced inventory.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

4. In the Create source page,, select Red Hat Satellite 6 from the Source list.

5. The Create source window expands with additional fields. Enter the following details:

Optional: Credential: Choose from an existing Satellite Credential. For more information,
see Managing user credentials.

CHAPTER 14. INVENTORIES

131

https://console.redhat.com/ansible/automation-hub/repo/published/azure/azcollection/content/inventory/azure_rm
https://github.com/ansible-collections/community.vmware/blob/main/plugins/inventory/vmware_vm_inventory.py
https://docs.ansible.com/ansible/4/scenario_guides/vmware_scenarios/vmware_inventory_vm_attributes.html

6. Optional: You can specify the verbosity, host filter, enabled variables or values, and update
options as described in Adding a source .

7. Use the Source Variables field to specify parameters used by the foreman inventory source.
Enter variables by using either JSON or YAML syntax. Use the radio button to toggle between
the two. For more information about these variables, see the Foreman inventory source in the
Ansible documentation.

If you meet an issue with the automation controller inventory not having the "related groups" from
Satellite, you might need to define these variables in the inventory source. For more information, see
Red Hat Satellite 6 .

If you see the message, "no foreman.id" variable(s) when syncing the inventory, see the solution on
the Red Hat Customer Portal at: https://access.redhat.com/solutions/5826451. Be sure to login with
your customer credentials to access the full article.

14.4.5.1.7. Red Hat Insights

Use the following procedure to configure a Red Hat Insights-sourced inventory.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

4. In the Create source page, select Red Hat Insights from the Source list.

5. The Create source window expands with additional fields. Enter the following details:

Optional: Credential: Choose from an existing Red Hat Insights Credential. For more
information, see Managing user credentials.

6. Optional: You can specify the verbosity, host filter, enabled variables or values, and update
options as described in Adding a source .

7. Use the Source Variables field to override variables used by the insights inventory plugin.
Enter variables by using either JSON or YAML syntax. Use the radio button to toggle between
the two. For more information about these variables, see insights inventory plugin.

14.4.5.1.8. OpenStack

Use the following procedure to configure an OpenStack-sourced inventory.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

4. In the Create source page, select OpenStack from the Source list.

Red Hat Ansible Automation Platform 2.5 Using automation execution

132

https://docs.ansible.com/ansible/latest/collections/theforeman/foreman/foreman_inventory.html
https://access.redhat.com/solutions/5826451
https://console.redhat.com/ansible/automation-hub/repo/published/redhat/insights/content/inventory/insights

5. The Create source window expands with additional fields. Enter the following details:

Optional: Credential: Choose from an existing OpenStack Credential. For more information,
see Managing user credentials.

6. Optional: You can specify the verbosity, host filter, enabled variables or values, and update
options as described in Adding a source .

7. Use the Source Variables field to override variables used by the openstack inventory plugin.
Enter variables by using either JSON or YAML syntax. Use the radio button to toggle between
the two. For more information about these variables, see openstack inventory plugin .

14.4.5.1.9. Red Hat Virtualization

Use the following procedure to configure a Red Hat virtualization-sourced inventory.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

4. In the Create source page, select Red Hat Virtualization from the Source list.

5. The Create source window expands with additional fields. Enter the following details:

Optional: Credential: Choose from an existing Red Hat Virtualization Credential. For more
information, see Managing user credentials.

6. Optional: You can specify the verbosity, host filter, enabled variables or values, and update
options as described in Adding a source .

7. Use the Source Variables field to override variables used by the ovirt inventory plugin. Enter
variables by using either JSON or YAML syntax. Use the radio button to toggle between the two.
For more information about these variables, see ovirt inventory plugin

NOTE

Red Hat Virtualization (ovirt) inventory source requests are secure by default. To change
this default setting, set the key ovirt_insecure to true in source_variables, which is only
available from the API details of the inventory source at the
/api/v2/inventory_sources/N/ endpoint.

14.4.5.1.10. Red Hat Ansible Automation Platform

Use the following procedure to configure an automation controller-sourced inventory.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want a source to and click the Sources tab.

3. Click Create source.

CHAPTER 14. INVENTORIES

133

https://docs.ansible.com/ansible/latest/collections/openstack/cloud/openstack_inventory.html
https://console.redhat.com/ansible/automation-hub/repo/published/redhat/rhv/content/inventory/ovirt

4. In the Create source page, select Red Hat Ansible Automation Platform from the Source list.

5. The Create source window expands with additional fields. Enter the following details:

Optional: Credential: Choose from an existing Red Hat Ansible Automation Platform
Credential. For more information, see Managing user credentials.

6. Optional: You can specify the verbosity, host filter, enabled variables or values, and update
options as described in Adding a source .

7. Use the Source Variables field to override variables used by the controller inventory plugin.
Enter variables by using either JSON or YAML syntax. Use the radio button to toggle between
the two. For more information about these variables, see Controller inventory plugin . This
requires your Red Hat Customer login.

14.4.5.1.11. Terraform State

This inventory source uses the terraform_state inventory plugin from the cloud.terraform collection.
The plugin parses a terraform state file and add hosts for AWS EC2, GCE, and Microsoft Azure
instances.

Procedure

1. From the navigation panel, select Automation Execution → Projects.

2. On the Projects page, click Create project to start the Create Project window.

Enter the appropriate details according to the steps in Adding a new project .

3. From the navigational panel, select Automation Execution → Infrastructure → Inventories.

4. Select the inventory that you want to add a source to.

5. In the Sources tab, click Create source.

6. From the Source menu, select Terraform State.

The Create source window expands with the optional Credential field.
Choose an existing Terraform backend configuration credential. For more information, see
Terraform backend configuration .

7. Enable the options to Overwrite and Update on Launch.

8. Use the Source Variables field to override variables used by the terraform_state inventory
plugin. Enter variables by using either JSON or YAML syntax. Use the radio button to toggle
between the two. For more information about these variables, see the terraform_state file.
The backend_type variable is required by the Terraform State inventory plugin. This should
match the remote backend configured in the Terraform backend credential. The following is
an example Amazon S3 backend:

backend_type: s3

9. Select an Execution Environment that has a Terraform binary. This is required for the inventory
plugin to run the Terraform commands that read inventory data from the Terraform state file.

Additional resources

Red Hat Ansible Automation Platform 2.5 Using automation execution

134

https://console.redhat.com/ansible/automation-hub/repo/published/ansible/controller/content/inventory/controller
https://console.redhat.com/ansible/automation-hub/repo/published/cloud/terraform/content/inventory/terraform_state/
https://console.redhat.com/ansible/automation-hub/repo/published/cloud/terraform/content/inventory/terraform_state/

For more information, see the Terraform EE readme that has an example execution environment
configuration with a Terraform binary.

14.4.5.1.11.1. Terraform provider for Ansible Automation Platform

Inventories created this way are managed by Terraform and you must not edit them in Ansible
Automation Platform as it can introduce drift to the Terraform deployment.

You can create inventories and hosts within the Terraform configuration by using the Terraform
provider for Ansible Automation Platform. For more information, see the AAP Provider section of the
Terraform documentation.

14.4.5.1.12. OpenShift Virtualization

This inventory source uses a cluster that is able to deploy Red Hat OpenShift Container Platform
Virtualization. To configure a Red Hat OpenShift Container Platform Virtualization, you need a virtual
machine deployed in a specific namespace and an OpenShift or Kubernetes API Bearer Token
credential.

Procedure

1. From the navigational panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory that you want to add a source to.

3. In the Sources tab, click Add source.

4. From the Source menu, select OpenShift Virtualization.

The Add new source window expands with the required Credential field.
Choose from an existing Kubernetes API Bearer Token credential. For more information,
see OpenShift or Kubernetes API Bearer Token credential type . In this example, the
cmv2.engineering.redhat.com credential is used.

5. You can optionally specify the Verbosity, Host Filter, Enabled Variable/Value, and Update
options as described in the Adding a source steps.

6. Use the Source Variables field to override variables used by the kubernetes inventory plugin.
Enter variables by using either JSON or YAML syntax. Use the radio button to toggle between
the two. For more information about these variables, see the kubevirt.core.kubevirt inventory
source documentation.
In the following example, the connections variable is used to specify access to a particular
namespace in a cluster:

connections:
- namespaces:
 - hao-test

7. Click Save and then click Sync to sync the inventory.

14.4.5.2. Export old inventory scripts

Despite the removal of the custom inventory scripts API, the scripts are still saved in the database. The

CHAPTER 14. INVENTORIES

135

https://github.com/ansible-cloud/terraform_ee
https://registry.terraform.io/providers/ansible/aap/latest/docs
https://kubevirt.io/kubevirt.core/main/plugins/kubevirt.html#parameters

Despite the removal of the custom inventory scripts API, the scripts are still saved in the database. The
commands described in this section enable you to recover the scripts from the database in a format that
is suitable for you to subsequently check into source control.

Use the following commands:

$ awx-manage export_custom_scripts --filename=my_scripts.tar

Dump of old custom inventory scripts at my_scripts.tar

Making use of the output:

$ mkdir my_scripts
$ tar -xf my_scripts.tar -C my_scripts

The name of the scripts has the form: <pk>_<name>. This is the naming scheme used for project
folders.

$ ls my_scripts
10inventory_script_rawhook _19 _30inventory_script_listenhospital _11inventory_script_upperorder
_1inventory_script_commercialinternet45 _4inventory_script_whitestring
_12inventory_script_eastplant _22inventory_script_pinexchange
_5inventory_script_literaturepossession _13inventory_script_governmentculture
_23inventory_script_brainluck _6inventory_script_opportunitytelephone
_14inventory_script_bottomguess _25inventory_script_buyerleague _7inventory_script_letjury
_15inventory_script_wallisland _26inventory_script_lifesport _8random_inventory_script
16inventory_script_wallisland _27inventory_script_exchangesomewhere _9random_inventory_script
_17inventory_script_bidstory _28inventory_script_boxchild _18p
_29__inventory_script_wearstress

Each file contains a script. Scripts can be bash/python/ruby/more, so the extension is not included.
They are all directly executable. Executing the script dumps the inventory data.

$./my_scripts/11__inventory_script_upperorder
{"group\ud801\udcb0\uc20e\u7b0e\ud81c\udfeb\ub12b\ub4d0\u9ac6\ud81e\udf07\u6ff9\uc17b":
{"hosts":
["host_\ud821\udcad\u68b6\u7a51\u93b4\u69cf\uc3c2\ud81f\uddbe\ud820\udc92\u3143\u62c7",
"host_\u6057\u3985\u1f60\ufefb\u1b22\ubd2d\ua90c\ud81a\udc69\u1344\u9d15",
"host_\u78a0\ud820\udef3\u925e\u69da\ua549\ud80c\ude7e\ud81e\udc91\ud808\uddd1\u57d6\ud801\
ude57",
"host_\ud83a\udc2d\ud7f7\ua18a\u779a\ud800\udf8b\u7903\ud820\udead\u4154\ud808\ude15\u9711",

"host_\u18a1\u9d6f\u08ac\u74c2\u54e2\u740e\u5f02\ud81d\uddee\ufbd6\u4506"], "vars":
{"ansible_host": "127.0.0.1", "ansible_connection":
"local"}}}

You can verify functionality with ansible-inventory. This gives the same data, but reformatted.

$ ansible-inventory -i ./my_scripts/_11__inventory_script_upperorder --list --export

In the preceding example, you can cd into my_scripts and then issue a git init command, add the
scripts you want, push it to source control, and then create an SCM inventory source in the user
interface.

Red Hat Ansible Automation Platform 2.5 Using automation execution

136

For more information about syncing or using custom inventory scripts, see Inventory file importing in
Configuring automation execution.

14.5. VIEW COMPLETED JOBS

If you use an inventory to run a job, you can view details about those jobs in the Jobs tab of the
inventory and click Expanded to view details about each job.

14.6. RUNNING AD HOC COMMANDS

Ad hoc refers to using Ansible to perform a quick command, using /usr/bin/ansible, rather than the
orchestration language, which is /usr/bin/ansible-playbook. An example of an ad hoc command might
be rebooting 50 machines in your infrastructure. Anything you can do ad hoc can be accomplished by
writing a playbook. Playbooks can also glue many other operations together.

Use the following procedure to run an ad hoc command:

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Inventories.

2. Select the inventory name you want to run an ad hoc command with.

3. Select an inventory source from the Hosts or Groups tab. The inventory source can be a single
group or host, a selection of many hosts, or a selection of many groups.

4. Click Run Command. The Run command window opens.

5. Enter the following information:

Module: Select one of the modules that the supports running commands against.

command apt_repository mount win_service

shell apt_rpm ping win_updates

yum service selinux win_group

apt group setup win_user

apt_key user win_ping win_user

Arguments: Provide arguments to be used with the module you selected.

Limit: Enter the limit used to target hosts in the inventory. To target all hosts in the
inventory enter all or *, or leave the field blank. This is automatically populated with
whatever was selected in the previous view before clicking the launch button.

Machine Credential: Select the credential to use when accessing the remote hosts to run
the command. Choose the credential containing the username and SSH key or password
that Ansible needs to log in to the remote hosts.

Verbosity: Select a verbosity level for the standard output.

Forks: If needed, select the number of parallel or simultaneous processes to use while

CHAPTER 14. INVENTORIES

137

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/assembly-inventory-file-importing

Forks: If needed, select the number of parallel or simultaneous processes to use while
executing the command.

Show Changes: Select to enable the display of Ansible changes in the standard output. The
default is OFF.

Enable Privilege Escalation: If enabled, the playbook is run with administrator privileges.
This is the equivalent of passing the --become option to the ansible command.

Extra Variables: Provide extra command line variables to be applied when running this
inventory. Enter variables using either JSON or YAML syntax. Use the radio button to toggle
between the two.

6. Click Next to select the execution environment you want the ad hoc command to be run
against.

7. Click Next to select the credential you want to use.

8. Click Launch. The results display in the Output tab of the module’s job window.

Red Hat Ansible Automation Platform 2.5 Using automation execution

138

CHAPTER 15. SUPPORTED INVENTORY PLUGIN TEMPLATES
After upgrade to 4.x, existing configurations are migrated to the new format that produces a backwards
compatible inventory output. Use the following templates to aid in migrating your inventories to the new
style inventory plugin output.

Amazon Web Services EC2

Google Compute Engine

Microsoft Azure Resource Manager

VMware vCenter

Red Hat Satellite 6

OpenStack

Red Hat Virtualization

Red Hat Ansible Automation Platform

15.1. AMAZON WEB SERVICES EC2

compose:
 ansible_host: public_ip_address
 ec2_account_id: owner_id
 ec2_ami_launch_index: ami_launch_index | string
 ec2_architecture: architecture
 ec2_block_devices: dict(block_device_mappings | map(attribute='device_name') | list |
zip(block_device_mappings | map(attribute='ebs.volume_id') | list))
 ec2_client_token: client_token
 ec2_dns_name: public_dns_name
 ec2_ebs_optimized: ebs_optimized
 ec2_eventsSet: events | default("")
 ec2_group_name: placement.group_name
 ec2_hypervisor: hypervisor
 ec2_id: instance_id
 ec2_image_id: image_id
 ec2_instance_profile: iam_instance_profile | default("")
 ec2_instance_type: instance_type
 ec2_ip_address: public_ip_address
 ec2_kernel: kernel_id | default("")
 ec2_key_name: key_name
 ec2_launch_time: launch_time | regex_replace(" ", "T") | regex_replace("(\+)(\d\d):(\d)(\d)$",
".\g<2>\g<3>Z")
 ec2_monitored: monitoring.state in ['enabled', 'pending']
 ec2_monitoring_state: monitoring.state
 ec2_persistent: persistent | default(false)
 ec2_placement: placement.availability_zone
 ec2_platform: platform | default("")
 ec2_private_dns_name: private_dns_name
 ec2_private_ip_address: private_ip_address
 ec2_public_dns_name: public_dns_name
 ec2_ramdisk: ramdisk_id | default("")

CHAPTER 15. SUPPORTED INVENTORY PLUGIN TEMPLATES

139

 ec2_reason: state_transition_reason
 ec2_region: placement.region
 ec2_requester_id: requester_id | default("")
 ec2_root_device_name: root_device_name
 ec2_root_device_type: root_device_type
 ec2_security_group_ids: security_groups | map(attribute='group_id') | list | join(',')
 ec2_security_group_names: security_groups | map(attribute='group_name') | list | join(',')
 ec2_sourceDestCheck: source_dest_check | default(false) | lower | string
 ec2_spot_instance_request_id: spot_instance_request_id | default("")
 ec2_state: state.name
 ec2_state_code: state.code
 ec2_state_reason: state_reason.message if state_reason is defined else ""
 ec2_subnet_id: subnet_id | default("")
 ec2_tag_Name: tags.Name
 ec2_virtualization_type: virtualization_type
 ec2_vpc_id: vpc_id | default("")
filters:
 instance-state-name:
 - running
groups:
 ec2: true
hostnames:
 - network-interface.addresses.association.public-ip
 - dns-name
 - private-dns-name
keyed_groups:
 - key: image_id | regex_replace("[^A-Za-z0-9_]", "_")
 parent_group: images
 prefix: ''
 separator: ''
 - key: placement.availability_zone
 parent_group: zones
 prefix: ''
 separator: ''
 - key: ec2_account_id | regex_replace("[^A-Za-z0-9_]", "_")
 parent_group: accounts
 prefix: ''
 separator: ''
 - key: ec2_state | regex_replace("[^A-Za-z0-9_]", "_")
 parent_group: instance_states
 prefix: instance_state
 - key: platform | default("undefined") | regex_replace("[^A-Za-z0-9_]", "_")
 parent_group: platforms
 prefix: platform
 - key: instance_type | regex_replace("[^A-Za-z0-9_]", "_")
 parent_group: types
 prefix: type
 - key: key_name | regex_replace("[^A-Za-z0-9_]", "_")
 parent_group: keys
 prefix: key
 - key: placement.region
 parent_group: regions
 prefix: ''
 separator: ''
 - key: security_groups | map(attribute="group_name") | map("regex_replace", "[^A-Za-z0-9_]", "_") |
list

Red Hat Ansible Automation Platform 2.5 Using automation execution

140

 parent_group: security_groups
 prefix: security_group
 - key: dict(tags.keys() | map("regex_replace", "[^A-Za-z0-9_]", "_") | list | zip(tags.values()
 | map("regex_replace", "[^A-Za-z0-9_]", "_") | list))
 parent_group: tags
 prefix: tag
 - key: tags.keys() | map("regex_replace", "[^A-Za-z0-9_]", "_") | list
 parent_group: tags
 prefix: tag
 - key: vpc_id | regex_replace("[^A-Za-z0-9_]", "_")
 parent_group: vpcs
 prefix: vpc_id
 - key: placement.availability_zone
 parent_group: '{{ placement.region }}'
 prefix: ''
 separator: ''
plugin: amazon.aws.aws_ec2
use_contrib_script_compatible_sanitization: true

15.2. GOOGLE COMPUTE ENGINE

auth_kind: serviceaccount
compose:
 ansible_ssh_host: networkInterfaces[0].accessConfigs[0].natIP |
default(networkInterfaces[0].networkIP)
 gce_description: description if description else None
 gce_id: id
 gce_image: image
 gce_machine_type: machineType
 gce_metadata: metadata.get("items", []) | items2dict(key_name="key", value_name="value")
 gce_name: name
 gce_network: networkInterfaces[0].network.name
 gce_private_ip: networkInterfaces[0].networkIP
 gce_public_ip: networkInterfaces[0].accessConfigs[0].natIP | default(None)
 gce_status: status
 gce_subnetwork: networkInterfaces[0].subnetwork.name
 gce_tags: tags.get("items", [])
 gce_zone: zone
hostnames:
- name
- public_ip
- private_ip
keyed_groups:
- key: gce_subnetwork
 prefix: network
- key: gce_private_ip
 prefix: ''
 separator: ''
- key: gce_public_ip
 prefix: ''
 separator: ''
- key: machineType
 prefix: ''
 separator: ''
- key: zone

CHAPTER 15. SUPPORTED INVENTORY PLUGIN TEMPLATES

141

 prefix: ''
 separator: ''
- key: gce_tags
 prefix: tag
- key: status | lower
 prefix: status
- key: image
 prefix: ''
 separator: ''
plugin: google.cloud.gcp_compute
retrieve_image_info: true
use_contrib_script_compatible_sanitization: true

15.3. MICROSOFT AZURE RESOURCE MANAGER

conditional_groups:
 azure: true
default_host_filters: []
fail_on_template_errors: false
hostvar_expressions:
 computer_name: name
 private_ip: private_ipv4_addresses[0] if private_ipv4_addresses else None
 provisioning_state: provisioning_state | title
 public_ip: public_ipv4_addresses[0] if public_ipv4_addresses else None
 public_ip_id: public_ip_id if public_ip_id is defined else None
 public_ip_name: public_ip_name if public_ip_name is defined else None
 tags: tags if tags else None
 type: resource_type
keyed_groups:
- key: location
 prefix: ''
 separator: ''
- key: tags.keys() | list if tags else []
 prefix: ''
 separator: ''
- key: security_group
 prefix: ''
 separator: ''
- key: resource_group
 prefix: ''
 separator: ''
- key: os_disk.operating_system_type
 prefix: ''
 separator: ''
- key: dict(tags.keys() | map("regex_replace", "^(.*)$", "\1_") | list | zip(tags.values() | list)) if tags else
[]
 prefix: ''
 separator: ''
plain_host_names: true
plugin: azure.azcollection.azure_rm
use_contrib_script_compatible_sanitization: true

15.4. VMWARE VCENTER

Red Hat Ansible Automation Platform 2.5 Using automation execution

142

compose:
 ansible_host: guest.ipAddress
 ansible_ssh_host: guest.ipAddress
 ansible_uuid: 99999999 | random | to_uuid
 availablefield: availableField
 configissue: configIssue
 configstatus: configStatus
 customvalue: customValue
 effectiverole: effectiveRole
 guestheartbeatstatus: guestHeartbeatStatus
 layoutex: layoutEx
 overallstatus: overallStatus
 parentvapp: parentVApp
 recenttask: recentTask
 resourcepool: resourcePool
 rootsnapshot: rootSnapshot
 triggeredalarmstate: triggeredAlarmState
filters:
- runtime.powerState == "poweredOn"
keyed_groups:
- key: config.guestId
 prefix: ''
 separator: ''
- key: '"templates" if config.template else "guests"'
 prefix: ''
 separator: ''
plugin: community.vmware.vmware_vm_inventory
properties:
- availableField
- configIssue
- configStatus
- customValue
- datastore
- effectiveRole
- guestHeartbeatStatus
- layout
- layoutEx
- name
- network
- overallStatus
- parentVApp
- permission
- recentTask
- resourcePool
- rootSnapshot
- snapshot
- triggeredAlarmState
- value
- capability
- config
- guest
- runtime
- storage
- summary
strict: false
with_nested_properties: true

CHAPTER 15. SUPPORTED INVENTORY PLUGIN TEMPLATES

143

15.5. RED HAT SATELLITE 6

group_prefix: foreman_
keyed_groups:
- key: foreman['environment_name'] | lower | regex_replace(' ', '') | regex_replace('[^A-Za-z0-9_]', '_') |
regex_replace('none', '')
 prefix: foreman_environment_
 separator: ''
- key: foreman['location_name'] | lower | regex_replace(' ', '') | regex_replace('[^A-Za-z0-9_]', '_')
 prefix: foreman_location_
 separator: ''
- key: foreman['organization_name'] | lower | regex_replace(' ', '') | regex_replace('[^A-Za-z0-9_]', '_')
 prefix: foreman_organization_
 separator: ''
- key: foreman['content_facet_attributes']['lifecycle_environment_name'] | lower | regex_replace(' ', '') |
regex_replace('[^A-Za-z0-9_]', '_')
 prefix: foreman_lifecycle_environment_
 separator: ''
- key: foreman['content_facet_attributes']['content_view_name'] | lower | regex_replace(' ', '') |
regex_replace('[^A-Za-z0-9_]', '_')
 prefix: foreman_content_view_
 separator: ''
legacy_hostvars: true
plugin: theforeman.foreman.foreman
validate_certs: false
want_facts: true
want_hostcollections: false
want_params: true

15.6. OPENSTACK

expand_hostvars: true
fail_on_errors: true
inventory_hostname: uuid
plugin: openstack.cloud.openstack

15.7. RED HAT VIRTUALIZATION

compose:
 ansible_host: (devices.values() | list)[0][0] if devices else None
keyed_groups:
- key: cluster
 prefix: cluster
 separator: _
- key: status
 prefix: status
 separator: _
- key: tags
 prefix: tag
 separator: _
ovirt_hostname_preference:
- name

Red Hat Ansible Automation Platform 2.5 Using automation execution

144

- fqdn
ovirt_insecure: false
plugin: ovirt.ovirt.ovirt

15.8. RED HAT ANSIBLE AUTOMATION PLATFORM

include_metadata: true
inventory_id: <inventory_id or url_quoted_named_url>
plugin: awx.awx.tower
validate_certs: <true or false>

CHAPTER 15. SUPPORTED INVENTORY PLUGIN TEMPLATES

145

CHAPTER 16. HOSTS
A host is a system managed by Ansible Automation Platform, which may include a physical, virtual, cloud-
based server, or other device.

Typically a host is an operating system instance.

Hosts are grouped in inventories and are sometimes referred to as a “nodes”.

Ansible works against multiple managed nodes or “hosts” in your infrastructure at the same time, using a
list or group of lists known as an inventory.

Once your inventory is defined, use patterns to select the hosts or groups you want Ansible to run
against.

16.1. CREATING A HOST

To create a new host.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Hosts.

2. Click Create host.

3. On the Create Host page enter the following information:

Name: Enter a name for your host.

(Optional) Description: Enter a description for your host.

Variables: Enter the inventory file variables associated with your host.

4. Click Create host to save your changes.

16.2. VIEWING THE HOST DETAILS

To view the Host details for a job run.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Hosts. The
Hosts page displays the following information about the host or hosts affected by recent job
runs.

2. Selecting a particular host displays the Details page for that host, with the following
information:

The Name of the Host.

The Inventory associated with that host. Selecting this inventory displays details of the
inventory.

When the Host was Created and who by. Selecting the creator displays details of the
creator.

Red Hat Ansible Automation Platform 2.5 Using automation execution

146

When the Host was Last modified. Selecting the creator displays details of the creator.

Variables associated with the Host. You can display the variables in YAML or JSON format.

3. Click Edit host to edit details of the host.

Select the Facts tab to display facts associated with the host.

Select the Groups tab to display the Groups associated with the host.

Click Associate groups to associate a group with the host.

Select the Jobs tab to display the Jobs which ran on the host.

Click the icon to display details of the job.

CHAPTER 16. HOSTS

147

CHAPTER 17. MANAGING INSTANCE GROUPS
An Instance Group enables you to group instances in a clustered environment. Policies dictate how
instance groups behave and how jobs are executed. The following view displays the capacity levels
based on policy algorithms:

Additional resources

For more information about the policy or rules associated with instance groups, see the Instance
Groups section of the Configuring automation execution.

For more information about connecting your instance group to a container, see Container
Groups.

17.1. CREATING AN INSTANCE GROUP

Use the following procedure to create a new instance group.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Instance
Groups.

2. Click Create group and select Create instance group from the list.

3. Enter the appropriate details into the following fields:

Name: Names must be unique and must not be named "controller".

Policy instance minimum: Enter the minimum number of instances to automatically assign
to this group when new instances come online.

Policy instance percentage: Use the slider to select a minimum percentage of instances to
automatically assign to this group when new instances come online.

NOTE

Policy instance fields are not required to create a new instance group. If you
do not specify values, then the Policy instance minimum and Policy
instance percentage default to 0.

Max concurrent jobs: Specify the maximum number of forks that can be run for any given
job.

Max forks: Specify the maximum number of concurrent jobs that can be run for any given

Red Hat Ansible Automation Platform 2.5 Using automation execution

148

Max forks: Specify the maximum number of concurrent jobs that can be run for any given
job.

NOTE

The default value of 0 for Max concurrent jobs and Max forks denotes no
limit. For more information, see Instance group capacity limits .

4. Click Create instance group, or, if you have edited an existing Instance Group click Save
instance group

When you have successfully created the instance group the Details tab of the newly created instance
group enables you to review and edit your instance group information.

You can also edit Instances and review Jobs associated with this instance group:

17.1.1. Associating instances to an instance group

Procedure

1. Select the Instances tab on the Details page of an Instance Group.

2. Click Associate instance.

3. Click the checkbox next to one or more available instances from the list to select the instances
you want to associate with the instance group and click Confirm

17.1.2. Viewing jobs associated with an instance group

Procedure

1. Select the Jobs tab of the Instance Group window.

2. Click the arrow icon next to a job to expand the view and show details about each job.
Each job displays the following details:

The job status

The ID and name

The type of job

CHAPTER 17. MANAGING INSTANCE GROUPS

149

The time it started and completed

Who started the job and applicable resources associated with it, such as the template,
inventory, project, and execution environment

Additional resources

The instances are run in accordance with instance group policies. For more information, see Instance
Group Policies.

Red Hat Ansible Automation Platform 2.5 Using automation execution

150

CHAPTER 18. INSTANCE AND CONTAINER GROUPS
Automation controller enables you to execute jobs through Ansible playbooks run directly on a member
of the cluster or in a namespace of an OpenShift cluster with the necessary service account provisioned.
This is called a container group. You can execute jobs in a container group only as-needed per playbook.
For more information, see Container groups.

For execution environments, see Execution environments.

18.1. INSTANCE GROUPS

Instances can be grouped into one or more instance groups. Instance groups can be assigned to one or
more of the following listed resources:

Organizations

Inventories

Job templates

When a job associated with one of the resources executes, it is assigned to the instance group
associated with the resource. During the execution process, instance groups associated with job
templates are checked before those associated with inventories. Instance groups associated with
inventories are checked before those associated with organizations. Therefore, instance group
assignments for the three resources form the hierarchy:

Job Template > Inventory > Organization

Consider the following when working with instance groups:

You can define other groups and group instances in those groups. These groups must be
prefixed with instance_group_. Instances are required to be in the automationcontroller or
execution_nodes group alongside other instance_group_ groups. In a clustered setup, at
least one instance must be present in the automationcontroller group, which appears as
controlplane in the API instance groups. For more information and example scenarios, see
Group policies for automationcontroller.

You cannot modify the controlplane instance group, and attempting to do so results in a
permission denied error for any user.
Therefore, the Disassociate option is not available in the Instances tab of controlplane.

A default API instance group is automatically created with all nodes capable of running jobs.
This is like any other instance group but if a specific instance group is not associated with a
specific resource, then the job execution always falls back to the default instance group. The
default instance group always exists, and you cannot delete or rename it.

Do not create a group named instance_group_default.

Do not name any instance the same as a group name.

18.1.1. Group policies for automationcontroller

Use the following criteria when defining nodes:

Nodes in the automationcontroller group can define node_type hostvar to be hybrid (default)
or control.

CHAPTER 18. INSTANCE AND CONTAINER GROUPS

151

Nodes in the execution_nodes group can define node_type hostvar to be execution (default)
or hop.

You can define custom groups in the inventory file by naming groups with instance_group_* where *
becomes the name of the group in the API. You can also create custom instance groups in the API after
the install has finished.

The current behavior expects a member of an instance_group_* to be part of automationcontroller or
execution_nodes group.

Example

[automationcontroller]
126-addr.tatu.home ansible_host=192.168.111.126 node_type=control

[automationcontroller:vars]
peers=execution_nodes

[execution_nodes]

[instance_group_test]
110-addr.tatu.home ansible_host=192.168.111.110 receptor_listener_port=8928

After you run installation program, the following error appears:

TASK [ansible.automation_platform_installer.check_config_static : Validate mesh topology] ***
fatal: [126-addr.tatu.home -> localhost]: FAILED! => {"msg": "The host '110-addr.tatu.home' is not
present in either [automationcontroller] or [execution_nodes]"}

To fix this, move the box 110-addr.tatu.home to an execution_node group:

[automationcontroller]
126-addr.tatu.home ansible_host=192.168.111.126 node_type=control

[automationcontroller:vars]
peers=execution_nodes

[execution_nodes]
110-addr.tatu.home ansible_host=192.168.111.110 receptor_listener_port=8928

[instance_group_test]
110-addr.tatu.home

This results in:

TASK [ansible.automation_platform_installer.check_config_static : Validate mesh topology] ***
ok: [126-addr.tatu.home -> localhost] => {"changed": false, "mesh": {"110-addr.tatu.home":
{"node_type": "execution", "peers": [], "receptor_control_filename": "receptor.sock",
"receptor_control_service_name": "control", "receptor_listener": true, "receptor_listener_port": 8928,
"receptor_listener_protocol": "tcp", "receptor_log_level": "info"}, "126-addr.tatu.home": {"node_type":
"control", "peers": ["110-addr.tatu.home"], "receptor_control_filename": "receptor.sock",
"receptor_control_service_name": "control", "receptor_listener": false, "receptor_listener_port":
27199, "receptor_listener_protocol": "tcp", "receptor_log_level": "info"}}}

Red Hat Ansible Automation Platform 2.5 Using automation execution

152

After you upgrade from automation controller 4.0 or earlier, the legacy instance_group_ member likely
has the awx code installed. This places that node in the automationcontroller group.

18.1.2. Configure instance groups from the API

You can create instance groups by POSTing to /api/v2/instance_groups as a system administrator.

Once created, you can associate instances with an instance group using:

HTTP POST /api/v2/instance_groups/x/instances/ {'id': y}`

An instance that is added to an instance group automatically reconfigures itself to listen on the group’s
work queue. For more information, see the following section Instance group policies .

18.1.3. Instance group policies

You can configure automation controller instances to automatically join instance groups when they
come online by defining a policy. These policies are evaluated for every new instance that comes online.

Instance group policies are controlled by the following three optional fields on an Instance Group:

policy_instance_percentage: This is a number between 0 - 100. It guarantees that this
percentage of active automation controller instances are added to this instance group. As new
instances come online, if the number of instances in this group relative to the total number of
instances is less than the given percentage, then new ones are added until the percentage
condition is satisfied.

policy_instance_minimum: This policy attempts to keep at least this many instances in the
instance group. If the number of available instances is lower than this minimum, then all
instances are placed in this instance group.

policy_instance_list: This is a fixed list of instance names to always include in this instance
group.

The Instance Groups list view from the automation controller user interface (UI) provides a summary of
the capacity levels for each instance group according to instance group policies:

Additional resources

For more information, see the Managing Instance Groups section.

18.1.4. Notable policy considerations

CHAPTER 18. INSTANCE AND CONTAINER GROUPS

153

Take the following policy considerations into account:

Both policy_instance_percentage and policy_instance_minimum set minimum allocations.
The rule that results in more instances assigned to the group takes effect. For example, if you
have a policy_instance_percentage of 50% and a policy_instance_minimum of 2 and you
start 6 instances, 3 of them are assigned to the instance group. If you reduce the number of
total instances in the cluster to 2, then both of them are assigned to the instance group to
satisfy policy_instance_minimum. This enables you to set a lower limit on the amount of
available resources.

Policies do not actively prevent instances from being associated with multiple instance groups,
but this can be achieved by making the percentages add up to 100. If you have 4 instance
groups, assign each a percentage value of 25 and the instances are distributed among them
without any overlap.

18.1.5. Pinning instances manually to specific groups

If you have a special instance which needs to be only assigned to a specific instance group but do not
want it to automatically join other groups by "percentage" or "minimum" policies:

Procedure

1. Add the instance to one or more instance groups' policy_instance_list.

2. Update the instance’s managed_by_policy property to be False.

This prevents the instance from being automatically added to other groups based on percentage and
minimum policy. It only belongs to the groups you have manually assigned it to:

HTTP PATCH /api/v2/instance_groups/N/
{
"policy_instance_list": ["special-instance"]
}
HTTP PATCH /api/v2/instances/X/
{
"managed_by_policy": False
}

18.1.6. Job runtime behavior

When you run a job associated with an instance group, note the following behaviors:

If you divide a cluster into separate instance groups, then the behavior is similar to the cluster as
a whole. If you assign two instances to a group then either one is as likely to receive a job as any
other in the same group.

As automation controller instances are brought online, it effectively expands the work capacity
of the system. If you place those instances into instance groups, then they also expand that
group’s capacity. If an instance is performing work and it is a member of multiple groups, then
capacity is reduced from all groups for which it is a member. De-provisioning an instance
removes capacity from the cluster wherever that instance was assigned. For more information,
see the Deprovisioning instance groups section for more detail.

NOTE

Red Hat Ansible Automation Platform 2.5 Using automation execution

154

NOTE

Not all instances are required to be provisioned with an equal capacity.

18.1.7. Control where a job runs

If you associate instance groups with a job template, inventory, or organization, a job run from that job
template is not eligible for the default behavior. This means that if all of the instances inside of the
instance groups associated with these three resources are out of capacity, the job remains in the
pending state until capacity becomes available.

The order of preference in determining which instance group to submit the job to is as follows:

1. Job template

2. Inventory

3. Organization (by way of project)

If you associate instance groups with the job template, and all of these are at capacity, then the job is
submitted to instance groups specified on the inventory, and then the organization. Jobs must execute
in those groups in preferential order as resources are available.

You can still associate the global default group with a resource, such as any of the custom instance
groups defined in the playbook. You can use this to specify a preferred instance group on the job
template or inventory, but still enable the job to be submitted to any instance if those are out of
capacity.

Examples

If you associate group_a with a job template and also associate the default group with its
inventory, you enable the default group to be used as a fallback in case group_a gets out of
capacity.

In addition, it is possible to not associate an instance group with one resource but choose
another resource as the fallback. For example, not associating an instance group with a job
template and having it fall back to the inventory or the organization’s instance group.

This presents the following two examples:

1. Associating instance groups with an inventory (omitting assigning the job template to an
instance group) ensures that any playbook run against a specific inventory runs only on the
group associated with it. This is useful in the situation where only those instances have a direct
link to the managed nodes.

2. An administrator can assign instance groups to organizations. This enables the administrator to
segment out the entire infrastructure and guarantee that each organization has capacity to run
jobs without interfering with any other organization’s ability to run jobs.
An administrator can assign multiple groups to each organization, similar to the following
scenario:

There are three instance groups: A, B, and C. There are two organizations: Org1 and Org2.

The administrator assigns group A to Org1, group B to Org2 and then assigns group C to
both Org1 and Org2 as an overflow for any extra capacity that might be needed.

The organization administrators are then free to assign inventory or job templates to

CHAPTER 18. INSTANCE AND CONTAINER GROUPS

155

The organization administrators are then free to assign inventory or job templates to
whichever group they want, or let them inherit the default order from the organization.

Arranging resources this way offers you flexibility. You can also create instance groups with only one
instance, enabling you to direct work towards a very specific Host in the automation controller cluster.

18.1.8. Instance group capacity limits

There is external business logic that can drive the need to limit the concurrency of jobs sent to an
instance group, or the maximum number of forks to be consumed.

For traditional instances and instance groups, you might want to enable two organizations to run jobs on
the same underlying instances, but limit each organization’s total number of concurrent jobs. This can be
achieved by creating an instance group for each organization and assigning the value for
max_concurrent_jobs.

For automation controller groups, automation controller is generally not aware of the resource limits of
the OpenShift cluster. You can set limits on the number of pods on a namespace, or only resources
available to schedule a certain number of pods at a time if no auto-scaling is in place. In this case, you
can adjust the value for max_concurrent_jobs.

Another parameter available is max_forks. This provides additional flexibility for capping the capacity
consumed on an instance group or container group. You can use this if jobs with a wide variety of
inventory sizes and "forks" values are being run. You can limit an organization to run up to 10 jobs
concurrently, but consume no more than 50 forks at a time:

max_concurrent_jobs: 10
max_forks: 50

Red Hat Ansible Automation Platform 2.5 Using automation execution

156

If 10 jobs that use 5 forks each are run, an eleventh job waits until one of these finishes to run on that
group (or be scheduled on a different group with capacity).

If 2 jobs are running with 20 forks each, then a third job with a task_impact of 11 or more waits until one
of these finishes to run on that group (or be scheduled on a different group with capacity).

For container groups, using the max_forks value is useful given that all jobs are submitted using the
same pod_spec with the same resource requests, irrespective of the "forks" value of the job. The
default pod_spec sets requests and not limits, so the pods can "burst" above their requested value
without being throttled or reaped. By setting the max_forks value, you can help prevent a scenario
where too many jobs with large forks values get scheduled concurrently and cause the OpenShift nodes
to be oversubscribed with multiple pods using more resources than their requested value.

To set the maximum values for the concurrent jobs and forks in an instance group, see Creating an
instance group.

18.1.9. Deprovisioning instance groups

Re-running the setup playbook does not deprovision instances since clusters do not currently distinguish
between an instance that you took offline intentionally or due to failure. Instead, shut down all services
on the automation controller instance and then run the deprovisioning tool from any other instance.

Procedure

1. Shut down the instance or stop the service with the following command:

automation-controller-service stop

2. Run the following deprovision command from another instance to remove it from the controller
cluster registry:

awx-manage deprovision_instance --hostname=<name used in inventory file>

Example

awx-manage deprovision_instance --hostname=hostB

Deprovisioning instance groups in automation controller does not automatically deprovision or remove
instance groups, even though re-provisioning often causes these to be unused. They can still show up in
API endpoints and stats monitoring. You can remove these groups with the following command:

awx-manage unregister_queue --queuename=<name>

Removing an instance’s membership from an instance group in the inventory file and re-running the
setup playbook does not ensure that the instance is not added back to a group. To be sure that an
instance is not added back to a group, remove it through the API and also remove it in your inventory
file. You can also stop defining instance groups in the inventory file. You can manage instance group
topology through the automation controller UI. For more information about managing instance groups
in the UI, see Managing Instance Groups.

NOTE

CHAPTER 18. INSTANCE AND CONTAINER GROUPS

157

NOTE

If you have isolated instance groups created in older versions of automation controller
(3.8.x and earlier) and want to migrate them to execution nodes to make them
compatible for use with the automation mesh architecture, see Migrate isolated
instances to execution nodes in the Ansible Automation Platform Upgrade and Migration
Guide.

18.2. CONTAINER GROUPS

Ansible Automation Platform supports container groups, which enable you to execute jobs in
automation controller regardless of whether automation controller is installed as a standalone, in a
virtual environment, or in a container. Container groups act as a pool of resources within a virtual
environment. You can create instance groups to point to an OpenShift container. These are job
environments that are provisioned on-demand as a pod that exists only for the duration of the playbook
run. This is known as the ephemeral execution model and ensures a clean environment for every job run.

In some cases, you might want to set container groups to be "always-on", which you can configure
through the creation of an instance.

NOTE

Container groups upgraded from versions before automation controller 4.0 revert back
to default and remove the old pod definition, clearing out all custom pod definitions in
the migration.

Container groups are different from execution environments in that execution environments are
container images and do not use a virtual environment. For more information, see Execution
environments.

18.2.1. Creating a container group

A ContainerGroup is a type of InstanceGroup that has an associated credential that enables you to
connect to an OpenShift cluster.

Prerequisites

A namespace that you can launch into. Every cluster has a "default" namespace, but you can use
a specific namespace.

A service account that has the roles that enable it to launch and manage pods in this
namespace.

If you are using execution environments in a private registry, and have a container registry
credential associated with them in automation controller, the service account also needs the
roles to get, create, and delete secrets in the namespace. If you do not want to give these roles
to the service account, you can pre-create the ImagePullSecrets and specify them on the pod
spec for the ContainerGroup. In this case, the execution environment must not have a
container registry credential associated, or automation controller attempts to create the secret
for you in the namespace.

A token associated with that service account. An OpenShift or Kubernetes Bearer Token.

A CA certificate associated with the cluster.

Red Hat Ansible Automation Platform 2.5 Using automation execution

158

https://docs.ansible.com/automation-controller/4.4/html/upgrade-migration-guide/upgrade_to_ees.html#migrate-iso-to-exe

The following procedure explains how to create a service account in an OpenShift cluster or Kubernetes,
to be used to run jobs in a container group through automation controller. After the service account is
created, its credentials are provided to automation controller in the form of an OpenShift or Kubernetes
API Bearer Token credential.

Procedure

1. To create a service account, download and use the sample service account, containergroup sa
and modify it as needed to obtain the credentials.

2. Apply the configuration from containergroup-sa.yml:

oc apply -f containergroup-sa.yml

3. Get the secret name associated with the service account:

export SA_SECRET=$(oc get sa containergroup-service-account -o json | jq
'.secrets[0].name' | tr -d '"')

4. Get the token from the secret:

oc get secret $(echo ${SA_SECRET}) -o json | jq '.data.token' | xargs | base64 --decode >
containergroup-sa.token

5. Get the CA certificate:

oc get secret $SA_SECRET -o json | jq '.data["ca.crt"]' | xargs | base64 --decode >
containergroup-ca.crt

6. Use the contents of containergroup-sa.token and containergroup-ca.crt to provide the
information for the OpenShift or Kubernetes API Bearer Token required for the container
group.

To create a container group, create an OpenShift or Kubernetes API Bearer Token credential to use with
your container group. For more information, see Creating a credential .

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Instance
Groups.

2. Click Create group and select Create container group.

3. Enter a name for your new container group and select the credential previously created to
associate it to the container group.

4. Click Create container group.

18.2.2. Customizing the pod specification

Ansible Automation Platform provides a simple default pod specification, however, you can provide a
custom YAML or JSON document that overrides the default pod specification. This field uses any
custom fields such as ImagePullSecrets, that can be "serialized" as valid pod JSON or YAML. A full list
of options can be found in the Pods and Services section of the OpenShift documentation.

CHAPTER 18. INSTANCE AND CONTAINER GROUPS

159

https://docs.openshift.com/online/pro/architecture/core_concepts/pods_and_services.html

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Instance
Groups.

2. Click Create group and select Create container group.

3. Check the option for Customize pod spec.

4. Enter a custom Kubernetes or OpenShift Pod specification in the Pod spec override field.

5. Click Create container group.

NOTE

The image when a job launches is determined by which execution environment is
associated with the job. If you associate a container registry credential with the execution
environment, then automation controller attempts to make an ImagePullSecret to pull
the image. If you prefer not to give the service account permission to manage secrets,
you must pre-create the ImagePullSecret and specify it on the pod specification, and
omit any credential from the execution environment used.

For more information, see the Allowing Pods to Reference Images from Other Secured
Registries section of the Red Hat Container Registry Authentication article.

Once you have created the container group successfully, the Details tab of the newly created container
group remains, which enables you to review and edit your container group information. This is the same

menu that is opened if you click the icon from the Instance Groups list view.

You can also edit Instances and review Jobs associated with this instance group.

Container groups and instance groups are labeled accordingly.

18.2.3. Verifying container group functions

To verify the deployment and termination of your container:

Red Hat Ansible Automation Platform 2.5 Using automation execution

160

https://access.redhat.com/RegistryAuthentication#allowing-pods-to-reference-images-from-other-secured-registries-8

Procedure

1. Create a mock inventory and associate the container group to it by populating the name of the
container group in the Instance groups field. For more information, see Add a new inventory .

2. Create the localhost host in the inventory with the following variables:

{'ansible_host': '127.0.0.1', 'ansible_connection': 'local'}

3. Launch an ad hoc job against the localhost using the ping or setup module. Even though the
Machine Credential field is required, it does not matter which one is selected for this test:

CHAPTER 18. INSTANCE AND CONTAINER GROUPS

161

You can see in the Jobs details view that the container was reached successfully by using one of the ad
hoc jobs.

If you have an OpenShift UI, you can see pods appear and disappear as they deploy and end. You can
also use the CLI to perform a get pod operation on your namespace to watch these same events
occurring in real-time.

18.2.4. Viewing container group jobs

When you run a job associated with a container group, you can see the details of that job in the Details
tab. You can also view its associated container group and the execution environment that spun up.

Procedure

1. From the navigation panel, select Automation Execution → Jobs.

2. Click a job for which you want to view a container group job.

3. Click the Details tab.

18.2.5. Kubernetes API failure conditions

When running a container group and the Kubernetes API responds that the resource quota has been
exceeded, automation controller keeps the job in pending state. Other failures result in the traceback of
the Error Details field showing the failure reason, similar to the following example:

Error creating pod: pods is forbidden: User "system: serviceaccount: aap:example" cannot create
resource "pods" in API group "" in the namespace "aap"

18.2.6. Container capacity limits

Capacity limits and quotas for containers are defined by objects in the Kubernetes API:

To set limits on all pods within a given namespace, use the LimitRange object. For more
information see the Quotas and Limit Ranges section of the OpenShift documentation.

Red Hat Ansible Automation Platform 2.5 Using automation execution

162

https://docs.openshift.com/online/pro/dev_guide/compute_resources.html#overview

To set limits directly on the pod definition launched by automation controller, see Customizing
the pod specification and the Compute Resources section of the OpenShift documentation.

NOTE

Container groups do not use the capacity algorithm that normal nodes use. You need to
set the number of forks at the job template level. If you configure forks in automation
controller, that setting is passed along to the container.

CHAPTER 18. INSTANCE AND CONTAINER GROUPS

163

https://docs.openshift.com/online/pro/dev_guide/compute_resources.html#dev-compute-resources

CHAPTER 19. MANAGING CAPACITY WITH INSTANCES
Scaling your automation mesh is available on OpenShift deployments of Red Hat Ansible Automation
Platform and is possible through adding or removing nodes from your cluster dynamically, using the
Instances resource of the UI, without running the installation script.

Instances serve as nodes in your mesh topology. Automation mesh enables you to extend the footprint
of your automation. The location where you launch a job can be different from the location where the
ansible-playbook runs.

To manage instances from the UI, you must have System Administrator or System Auditor permissions.

In general, the more processor cores (CPU) and memory (RAM) a node has, the more jobs that can be
scheduled to run on that node at once.

For more information, see Automation controller capacity determination and job impact .

19.1. PREREQUISITES

The automation mesh is dependent on hop and execution nodes running on Red Hat Enterprise Linux
(RHEL). Your Red Hat Ansible Automation Platform subscription grants you ten Red Hat Enterprise
Linux licenses that can be used for running components of Ansible Automation Platform.

For more information about Red Hat Enterprise Linux subscriptions, see Registering the system and
managing subscriptions in the Red Hat Enterprise Linux documentation.

The following steps prepare the RHEL instances for deployment of the automation mesh.

1. You require a Red Hat Enterprise Linux operating system. Each node in the mesh requires a
static IP address, or a resolvable DNS hostname that Ansible Automation Platform can access.

2. Ensure that you have the minimum requirements for the RHEL virtual machine before
proceeding. For more information, see the System requirements.

3. Deploy the RHEL instances within the remote networks where communication is required. For
information about creating virtual machines, see Creating Virtual Machines in the Red Hat
Enterprise Linux documentation. Remember to scale the capacity of your virtual machines
sufficiently so that your proposed tasks can run on them.

RHEL ISOs can be obtained from access.redhat.com.

RHEL cloud images can be built using Image Builder from console.redhat.com.

19.2. PULLING THE SECRET

If you are using the default execution environment (provided with automation controller) to run on
remote execution nodes, you must add a pull secret in the automation controller that contains the
credential for pulling the execution environment image.

To do this, create a pull secret on the automation controller namespace and configure the
ee_pull_credentials_secret parameter in the Operator as follows:

Procedure

1. Create a secret:

Red Hat Ansible Automation Platform 2.5 Using automation execution

164

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/assembly_registering-the-system-and-managing-subscriptions_configuring-basic-system-settings
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/planning_your_installation/platform-system-requirements
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/assembly_creating-virtual-machines_configuring-and-managing-virtualization

oc create secret generic ee-pull-secret \
 --from-literal=username=<username> \
 --from-literal=password=<password> \
 --from-literal=url=registry.redhat.io

oc edit automationcontrollers <instance name>

2. Add ee_pull_credentials_secret ee-pull-secret to the specification:

spec.ee_pull_credentials_secret=ee-pull-secret

NOTE

To manage instances from the automation controller UI, you must have System
administrator permissions.

19.3. SETTING UP VIRTUAL MACHINES FOR USE IN AN AUTOMATION
MESH

Procedure

1. SSH into each of the RHEL instances and perform the following steps. Depending on your
network access and controls, SSH proxies or other access models might be required.
Use the following command:

ssh [username]@[host_ip_address]

For example, for an Ansible Automation Platform instance running on Amazon Web Services.

ssh ec2-user@10.0.0.6

2. Create or copy an SSH key that can be used to connect from the hop node to the execution
node in later steps. This can be a temporary key used just for the automation mesh
configuration, or a long-lived key. The SSH user and key are used in later steps.

3. Enable your RHEL subscription with baseos and appstream repositories. Ansible Automation
Platform RPM repositories are only available through subscription-manager, not the Red Hat
Update Infrastructure (RHUI). If you attempt to use any other Linux footprint, including RHEL
with RHUI, this causes errors.

sudo subscription-manager register --auto-attach

If Simple Content Access is enabled for your account, use:

sudo subscription-manager register

For more information about Simple Content Access, see Getting started with simple content
access.

4. Enable Ansible Automation Platform subscriptions and the proper Red Hat Ansible Automation
Platform channel:

CHAPTER 19. MANAGING CAPACITY WITH INSTANCES

165

https://docs.redhat.com/en/documentation/subscription_central/1-latest/html/getting_started_with_simple_content_access/index

For RHEL 8

subscription-manager repos --enable ansible-automation-platform-2.5-for-rhel-8-x86_64-
rpms

For RHEL 9

subscription-manager repos --enable ansible-automation-platform-2.5-for-rhel-9-x86_64-
rpms

For ARM

subscription-manager repos --enable ansible-automation-platform-2.5-for-rhel-aarch64-
rpms

5. Ensure the packages are up to date:

sudo dnf upgrade -y

6. Install the ansible-core packages on the machine where the downloaded bundle is to run:

sudo dnf install -y ansible-core

NOTE

Ansible core is required on the machine that runs the automation mesh
configuration bundle playbooks. This document assumes that happens on the
execution node. However, this step can be omitted if you run the playbook from a
different machine. You cannot run directly from the control node, this is not
currently supported, but future support expects that the control node has direct
connectivity to the execution node.

19.4. MANAGING INSTANCES

To expand job capacity, create a standalone execution node that can be added to run alongside a
deployment of automation controller. These execution nodes are not part of the automation controller
Kubernetes cluster.

The control nodes run in the cluster connect and submit work to the execution nodes through Receptor.

These execution nodes are registered in automation controller as type execution instances, meaning
they are only used to run jobs, not dispatch work or handle web requests as control nodes do.

Hop nodes can be added to sit between the control plane of automation controller and standalone
execution nodes. These hop nodes are not part of the Kubernetes cluster and are registered in
automation controller as an instance of type hop, meaning they only handle inbound and outbound
traffic for otherwise unreachable nodes in different or more strict networks.

The following procedure demonstrates how to set the node type for the hosts.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Instances.

Red Hat Ansible Automation Platform 2.5 Using automation execution

166

2. On the Instances list page, click Add instance. The Add Instance window opens.

An instance requires the following attributes:

Host name: (required) Enter a fully qualified domain name (public DNS) or IP address for
your instance. This field is equivalent to hostname for installer-based deployments.

NOTE

If the instance uses private DNS that cannot be resolved from the control
cluster, DNS lookup routing fails, and the generated SSL certificates is
invalid. Use the IP address instead.

Optional: Description: Enter a description for the instance.

Instance state: This field is auto-populated, indicating that it is being installed, and cannot
be modified.

Listener port: This port is used for the receptor to listen on for incoming connections. You
can set the port to one that is appropriate for your configuration. This field is equivalent to
listener_port in the API. The default value is 27199, though you can set your own port value.

Instance type: Only execution and hop nodes can be created. Operator based
deployments do not support Control or Hybrid nodes.
Options:

Enable instance: Check this box to make it available for jobs to run on an execution
node.

Check the Managed by policy box to enable policy to dictate how the instance is
assigned.

Check the Peers from control nodes box to enable control nodes to peer to this
instance automatically. For nodes connected to automation controller, check the Peers
from Control nodes box to create a direct communication link between that node and
automation controller. For all other nodes:

If you are not adding a hop node, make sure Peers from Control is checked.

If you are adding a hop node, make sure Peers from Control is not checked.

For execution nodes that communicate with hop nodes, do not check this box.

To peer an execution node with a hop node, select the execution node, then select
Peers tab.
The Select Peers window is displayed.

CHAPTER 19. MANAGING CAPACITY WITH INSTANCES

167

Select the execution node to peer to the hop node.

Click Associate peers.

3. To view a graphical representation of your updated topology, see Topology view.

NOTE

Execute the following steps from any computer that has SSH access to the newly
created instance.

4. Click the icon next to Download Bundle to download the tar file that includes this new
instance and the files necessary to install the created node into the automation mesh.
The install bundle contains TLS certificates and keys, a certificate authority, and a proper
Receptor configuration file.

receptor-ca.crt
work-public-key.pem
receptor.key
install_receptor.yml
inventory.yml
group_vars/all.yml
requirements.yml

5. Extract the downloaded tar.gz Install Bundle from the location where you downloaded it. To
ensure that these files are in the correct location on the remote machine, the install bundle
includes the install_receptor.yml playbook.

6. Before running the ansible-playbook command, edit the following fields in the inventory.yml
file:

all:
 hosts:
 remote-execution:
 ansible_host: localhost # change to the mesh node host name
 ansible_user: <username> # user provided
 ansible_ssh_private_key_file: ~/.ssh/<id_rsa>

Ensure ansible_host is set to the IP address or DNS of the node.

Set ansible_user to the username running the installation.

Set ansible_ssh_private_key_file to contain the filename of the private key used to
connect to the instance.

The content of the inventory.yml file serves as a template and contains variables for roles
that are applied during the installation and configuration of a receptor node in a mesh
topology. You can modify some of the other fields, or replace the file in its entirety for
advanced scenarios. For more information, see Role Variables.

7. For a node that uses a private DNS, add the following line to inventory.yml:

 ansible_ssh_common_args: <your ssh ProxyCommand setting>

Red Hat Ansible Automation Platform 2.5 Using automation execution

168

https://github.com/ansible/receptor-collection/blob/main/README.md

This instructs the install-receptor.yml playbook to use the proxy command to connect through
the local DNS node to the private node.

8. When the attributes are configured, click Save. The Details page of the created instance opens.

9. Save the file to continue.

10. The system that is going to run the install bundle to setup the remote node and run ansible-
playbook requires the ansible.receptor collection to be installed:

ansible-galaxy collection install ansible.receptor

or

ansible-galaxy install -r requirements.yml

Installing the receptor collection dependency from the requirements.yml file consistently
retrieves the receptor version specified there. Additionally, it retrieves any other collection
dependencies that might be needed in the future.

Install the receptor collection on all nodes where your playbook will run, otherwise an error
occurs.

11. If receptor_listener_port is defined, the machine also requires an available open port on which
to establish inbound TCP connections, for example, 27199. Run the following command to open
port 27199 for receptor communication (Make sure you have port 27199 open in your firewall):

sudo firewall-cmd --permanent --zone=public --add-port=27199/tcp

12. Run the following playbook on the machine where you want to update your automation mesh:

ansible-playbook -i inventory.yml install_receptor.yml

OpenSSL is required for this playbook. You can install it by running the following command:

openssl -v

If it returns then a version OpenSSL is installed. Otherwise you need to install OpenSSL with:

sudo dnf install -y openssl

After this playbook runs, your automation mesh is configured.

CHAPTER 19. MANAGING CAPACITY WITH INSTANCES

169

To remove an instance from the mesh, see Removing instances.

19.5. REMOVING INSTANCES

From the Instances page, you can add, remove or run health checks on your nodes.

NOTE

You must follow the procedures for installing RHEL packages for any additional nodes
you create. If you peer this additional node to an existing hop node, you must also install
the Install Bundle on each node.

Use the check boxes next to an instance to select it to remove it, or run a health check against it.

NOTE

If a node is removed using the UI, then the node is "removed" and does not show
a status. If you delete the VM of the node before it is removed in the UI, it will
show an error.

You only need to reinstall the Install Bundle if the topology changes the
communication pattern, that is, hop nodes change or you add nodes.

When a button is disabled, you do not have permission for that particular action. Contact your
Administrator to grant you the required level of access.

If you are able to remove an instance, you receive a prompt for confirmation.

NOTE

You can still remove an instance even if it is active and jobs are running on it. Automation
controller waits for jobs running on this node to complete before removing it.

Red Hat Ansible Automation Platform 2.5 Using automation execution

170

CHAPTER 20. EXECUTION ENVIRONMENTS
Unlike legacy virtual environments, execution environments are container images that make it possible
to incorporate system-level dependencies and collection-based content. Each execution environment
enables you to have a customized image to run jobs and has only what is necessary when running the
job.

20.1. BUILDING AN EXECUTION ENVIRONMENT

If your Ansible content depends on custom virtual environments instead of a default environment, you
must take additional steps. You must install packages on each node, interact well with other software
installed on the host system, and keep them in synchronization.

To simplify this process, you can build container images that serve as Ansible Control nodes. These
container images are referred to as automation execution environments, which you can create with
ansible-builder. Ansible-runner can then make use of those images.

20.1.1. Install ansible-builder

To build images, you must have Podman or Docker installed, along with the ansible-builder Python
package.

The --container-runtime option must correspond to the Podman or Docker executable you intend to
use.

When building an execution environment image, it must support the architecture that Ansible
Automation Platform is deployed with.

For more information, see Quickstart for Ansible Builder , or Creating and consuming execution
environments.

20.1.2. Content needed for an execution environment

Ansible-builder is used to create an execution environment.

An execution environment must contain:

Ansible

Ansible Runner

Ansible Collections

Python and system dependencies of:

modules or plugins in collections

content in ansible-base

custom user needs

Building a new execution environment involves a definition that specifies which content you want to
include in your execution environment, such as collections, Python requirements, and system-level
packages. The definition must be a .yml file

The content from the output generated from migrating to execution environments has some of the

CHAPTER 20. EXECUTION ENVIRONMENTS

171

https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html#control-node
https://ansible.readthedocs.io/projects/builder/en/latest/#quickstart-for-ansible-builder
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/creating_and_using_execution_environments/index

The content from the output generated from migrating to execution environments has some of the
required data that can be piped to a file or pasted into this definition file.

Additional resources

For more information, see Migrate legacy venvs to execution environments . If you did not migrate from
a virtual environment, you can create a definition file with the required data described in the Execution
Environment Setup Reference.

Collection developers can declare requirements for their content by providing the appropriate
metadata.

For more information, see Dependencies.

20.1.3. Example YAML file to build an image

The ansible-builder build command takes an execution environment definition as an input. It outputs
the build context necessary for building an execution environment image, and then builds that image.
The image can be re-built with the build context elsewhere, and produces the same result. By default,
the builder searches for a file named execution-environment.yml in the current directory.

The following example execution-environment.yml file can be used as a starting point:

version: 3
dependencies:
 galaxy: requirements.yml

The content of requirements.yml:

collections:
 - name: awx.awx

To build an execution environment using the preceding files and run the following command:

ansible-builder build
...
STEP 7: COMMIT my-awx-ee
--> 09c930f5f6a
09c930f5f6ac329b7ddb321b144a029dbbfcc83bdfc77103968b7f6cdfc7bea2
Complete! The build context can be found at: context

In addition to producing a ready-to-use container image, the build context is preserved. This can be
rebuilt at a different time or location with the tools of your choice, such as docker build or podman
build.

Additional resources

For additional information about the ansible-builder build command, see Ansible’s CLI Usage
documentation.

20.1.4. Execution environment mount options

Rebuilding an execution environment is one way to add certificates, but inheriting certificates from the

Red Hat Ansible Automation Platform 2.5 Using automation execution

172

https://docs.ansible.com/automation-controller/4.4/html/upgrade-migration-guide/upgrade_to_ees.html#migrate-new-venv
https://ansible.readthedocs.io/projects/builder/en/latest/usage/#cli-usage

Rebuilding an execution environment is one way to add certificates, but inheriting certificates from the
host provides a more convenient solution. For VM-based installations, automation controller
automatically mounts the system truststore in the execution environment when jobs run.

You can customize execution environment mount options and mount paths in the Paths to expose to
isolated jobs field of the Job Settings page, where Podman-style volume mount syntax is supported.

Additional resources

For more information, see the Podman documentation.

20.1.4.1. Troubleshooting execution environment mount options

In some cases where the /etc/ssh/* files were added to the execution environment image due to
customization of an execution environment, an SSH error can occur. For example, exposing the
/etc/ssh/ssh_config.d:/etc/ssh/ssh_config.d:O path enables the container to be mounted, but the
ownership permissions are not mapped correctly.

Use the following procedure if you meet this error, or have upgraded from an older version of
automation controller:

Procedure

1. Change the container ownership on the mounted volume to root.

2. From the navigation panel, select Settings → Job.

3. Click Edit.

4. Expose the path in the Paths to expose to isolated jobs field, using the current example:

[
 "/ssh_config:/etc/ssh/ssh_config.d/:0"
]

NOTE

The :O option is only supported for directories. Be as detailed as possible,
especially when specifying system paths. Mounting /etc or /usr directly has an
impact that makes it difficult to troubleshoot.

This informs Podman to run a command similar to the following example, where the
configuration is mounted and the ssh command works as expected:

podman run -v /ssh_config:/etc/ssh/ssh_config.d/:O ...

To expose isolated paths in OpenShift or Kubernetes containers as HostPath, use the following
configuration:

[
 "/mnt2:/mnt2",
 "/mnt3",
 "/mnt4:/mnt4:0"
]

CHAPTER 20. EXECUTION ENVIRONMENTS

173

https://docs.podman.io/en/latest/markdown/podman-run.1.html#volume-v-source-volume-host-dir-container-dir-options

Set Expose host paths for Container Groups to On to enable it.

When the playbook runs, the resulting Pod specification is similar to the following example. Note the
details of the volumeMounts and volumes sections.

20.1.4.2. Mounting the directory in the execution node to the execution environment
container

With Ansible Automation Platform 2.1.2, only O and z options were available. Since Ansible Automation
Platform 2.2, further options such as rw are available. This is useful when using NFS storage.

Procedure

1. From the navigation panel, select Settings → Job.

2. Edit the Paths to expose to isolated jobs field:

Enter a list of paths that volumes are mounted from the execution node or the hybrid node
to the container.

Enter one path per line.

The supported format is HOST-DIR[:CONTAINER-DIR[:OPTIONS]. The allowed paths are

Red Hat Ansible Automation Platform 2.5 Using automation execution

174

The supported format is HOST-DIR[:CONTAINER-DIR[:OPTIONS]. The allowed paths are
z, O, ro, and rw.

Example

[
 "/var/lib/awx/.ssh:/root/.ssh:O"
]

For the rw option, configure the SELinux label correctly. For example, to mount the /foo
directory, complete the following commands:

sudo su

mkdir /foo

chmod 777 /foo

semanage fcontext -a -t container_file_t "/foo(/.*)?"

restorecon -vvFR /foo

The awx user must be permitted to read or write in this directory at least. Set the permissions as 777 at
this time.

Additional resources

For more information about mount volumes, see the --volume option of the podman-run(1) section of
the Podman documentation.

20.2. ADDING AN EXECUTION ENVIRONMENT TO A JOB TEMPLATE

Prerequisites

An execution environment must have been created using ansible-builder as described in Build
an execution environment. When an execution environment has been created, you can use it to
run jobs. Use the automation controller UI to specify the execution environment to use in your
job templates.

Depending on whether an execution environment is made available for global use or tied to an
organization, you must have the appropriate level of administrator privileges to use an execution
environment in a job. Execution environments tied to an organization require Organization
administrators to be able to run jobs with those execution environments.

Before running a job or job template that uses an execution environment that has a credential
assigned to it, ensure that the credential contains a username, host, and password.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Execution
Environments.

CHAPTER 20. EXECUTION ENVIRONMENTS

175

https://docs.podman.io/en/stable/markdown/podman-run.1.html#volume-v-source-volume-host-dir-container-dir-options
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/using_automation_execution/assembly-controller-execution-environments#ref-controller-build-exec-envs

2. Click Create execution environment to add an execution environment.

3. Enter the appropriate details into the following fields:

Name (required): Enter a name for the execution environment.

Image (required): Enter the image name. The image name requires its full location
(repository), the registry, image name, and version tag in the example format of
quay.io/ansible/awx-ee:latestrepo/project/image-name:tag.

Optional: Pull: Choose the type of pull when running jobs:

Always pull container before running: Pulls the latest image file for the container.

Only pull the image if not present before running: Only pulls the latest image if none
is specified.

Never pull container before running: Never pull the latest version of the container
image.

NOTE

If you do not set a type for pull, the value defaults to Only pull the image
if not present before running.

Optional: Description:

Optional: Organization: Assign the organization to specifically use this execution
environment. To make the execution environment available for use across multiple
organizations, leave this field blank.

Registry Credential: If the image has a protected container registry, give the credential to
access it.

4. Click Create execution environment.
Your newly added execution environment is ready to be used in a job template.

5. To add an execution environment to a job template, specify it in the Execution Environment
field of the job template.

When you have added an execution environment to a job template, those templates are listed in the
Templates tab of the execution environment:

Red Hat Ansible Automation Platform 2.5 Using automation execution

176

CHAPTER 21. EXECUTION ENVIRONMENT SETUP REFERENCE
This section contains reference information associated with the definition of an execution environment.
You define the content of your execution environment in a YAML file. By default, this file is called
execution_environment.yml. This file tells Ansible Builder how to create the build instruction file
(Containerfile for Podman, Dockerfile for Docker) and build context for your container image.

NOTE

The definition schema for Ansible Builder 3.x is documented here. If you are running an
older version of Ansible Builder, you need an older schema version. For more information,
see older versions of this documentation. We recommend using version 3, which offers
substantially more configurable options and functionality than previous versions.

21.1. EXECUTION ENVIRONMENT DEFINITION EXAMPLE

You must create a definition file to build an image for an execution environment. The file is in YAML
format.

You must specify the version of Ansible Builder in the definition file. The default version is 1.

The following definition file is using Ansible Builder version 3:

version: 3
build_arg_defaults:
 ANSIBLE_GALAXY_CLI_COLLECTION_OPTS: '--pre'
dependencies:
 galaxy: requirements.yml
 python:
 - six
 - psutil
 system: bindep.txt
images:
 base_image:
 name: registry.redhat.io/ansible-automation-platform-24/ee-minimal-rhel8:latest
additional_build_files:
 - src: files/ansible.cfg
 dest: configs
additional_build_steps:
 prepend_galaxy:
 - ADD _build/configs/ansible.cfg /home/runner/.ansible.cfg
 prepend_final: |
 RUN whoami
 RUN cat /etc/os-release
 append_final:
 - RUN echo This is a post-install command!
 - RUN ls -la /etc

21.2. CONFIGURATION OPTIONS

Use the following configuration YAML keys in your definition file.

The Ansible Builder 3.x execution environment definition file accepts seven top-level sections:

CHAPTER 21. EXECUTION ENVIRONMENT SETUP REFERENCE

177

https://ansible.readthedocs.io/projects/builder/en/latest/

additional_build_files

additional_build_steps

build_arg_defaults

dependencies

images

image verification

options

version

21.2.1. additional_build_files

The build files specify what are to be added to the build context directory. These can then be referenced
or copied by additional_build_steps during any build stage.

The format is a list of dictionary values, each with a src and dest key and value.

Each list item must be a dictionary containing the following required keys:

src Specifies the source files to copy into the build context directory.

This can be an absolute path, for example, /home/user/.ansible.cfg, or a path that is
relative to the file. Relative paths can be a glob expression matching one or more files,
for example, files/*.cfg. Note that an absolute path must not include a regular
expression. If src is a directory, the entire contents of that directory are copied to
dest.

dest Specifies a subdirectory path underneath the _build subdirectory of the build context
directory that contains the source files, for example, files/configs.

This cannot be an absolute path or contain .. within the path. This directory is created
for you if it does not exist.

NOTE

When using an ansible.cfg file to pass a token and other settings for a
private account to an automation hub server, listing the configuration
file path here as a string enables it to be included as a build argument
in the initial phase of the build.

21.2.2. additional_build_steps

The build steps specify custom build commands for any build phase. These commands are inserted
directly into the build instruction file for the container runtime, for example, Containerfile or Dockerfile.
The commands must conform to any rules required by the containerization tool.

You can add build steps before or after any stage of the image creation process. For example, if you

Red Hat Ansible Automation Platform 2.5 Using automation execution

178

You can add build steps before or after any stage of the image creation process. For example, if you
need git to be installed before you install your dependencies, you can add a build step at the end of the
base build stage.

The following are the valid keys. Each supports either a multi-line string, or a list of strings.

append_base Commands to insert after building of the base image.

append_builder Commands to insert after building of the builder image.

append_final Commands to insert after building of the final image.

append_galaxy Commands to insert after building of the galaxy image.

prepend_base Commands to insert before building of the base image.

prepend_builder Commands to insert before building of the builder image.

prepend_final Commands to insert before building of the final image.

prepend_galaxy Commands to insert before building of the galaxy image.

21.2.3. build_arg_defaults

This specifies the default values for build arguments as a dictionary.

This is an alternative to using the --build-arg CLI flag.

Ansible Builder uses the following build arguments:

ANSIBLE_GALAXY_CLI_COLLECTIO
N_OPTS

Enables the user to pass the -pre flag and other flags to enable the
installation of pre-release collections.

ANSIBLE_GALAXY_CLI_ROLE_OPTS This enables the user to pass any flags, such as --no-deps, to the
role installation.

PKGMGR_PRESERVE_CACHE This controls how often the package manager cache is cleared
during the image build process.

If this value is not set, which is the default, the cache is cleared
frequently. If the value is always, the cache is never cleared. Any
other value forces the cache to be cleared only after the system
dependencies are installed in the final build stage.

Ansible Builder hard-codes values given inside of build_arg_defaults into the build instruction file, so
they persist if you run your container build manually.

If you specify the same variable in the definition and at the command line with the CLI build-arg flag,
the CLI value overrides the value in the definition.

CHAPTER 21. EXECUTION ENVIRONMENT SETUP REFERENCE

179

21.2.4. Dependencies

Specifies dependencies to install into the final image, including ansible-core, ansible-runner, Python
packages, system packages, and collections. Ansible Builder automatically installs dependencies for any
Ansible collections you install.

In general, you can use standard syntax to constrain package versions. Use the same syntax you would
pass to dnf, pip, ansible-galaxy, or any other package management utility. You can also define your
packages or collections in separate files and reference those files in the dependencies section of your
definition file.

The following keys are valid:

ansible_core The version of the ansible-core Python package to be installed.

This value is a dictionary with a single key, package_pip. The
package_pip value is passed directly to pip for installation and can be
in any format that pip supports. The following are some example values:

ansible_core:
 package_pip: ansible-core
ansible_core:
 package_pip: ansible-core==2.14.3
ansible_core:
 package_pip:
https://github.com/example_user/ansible/archive/refs/heads/ansi
ble.tar.gz

ansible_runner The version of the Ansible Runner Python package to be installed.

This value is a dictionary with a single key, package_pip. The
package_pip value is passed directly to pip for installation and can be
in any format that pip supports. The following are some example values:

ansible_runner:
 package_pip: ansible-runner
ansible_runner:
 package_pip: ansible-runner==2.3.2
ansible_runner:
 package_pip: https://github.com/example_user/ansible-
runner/archive/refs/heads/ansible-runner.tar.gz

galaxy Collections to be installed from Ansible Galaxy.

This can be a filename, a dictionary, or a multi-line string representation
of an Ansible Galaxy requirements.yml file. For more information
about the requirements file format, see the Galaxy User Guide.

Red Hat Ansible Automation Platform 2.5 Using automation execution

180

https://docs.ansible.com/ansible/latest/galaxy/user_guide.html#install-multiple-collections-with-a-requirements-file

python The Python installation requirements.

This can be a filename, or a list of requirements. Ansible Builder
combines all the Python requirements files from all collections into a
single file using the requirements-parser library.

This library supports complex syntax, including references to other files.
If many collections require the same package name, Ansible Builder
combines them into a single entry and combines the constraints.

Ansible Builder excludes some packages in the combined file of Python
dependencies even if a collection lists them as dependencies. These
include test packages and packages that provide Ansible itself. The full
list can is available under EXCLUDE_REQUIREMENTS in
src/ansible_builder/_target_scripts/introspect.py.

If you need to include one of these excluded package names, use the --
user-pip option of the introspect command to list it in the user
requirements file.

Packages supplied this way are not processed against the list of
excluded Python packages.

python_interpreter A dictionary that defines the Python system package name to be
installed by dnf (package_system) or a path to the Python interpreter
to be used (python_path).

system The system packages to be installed, in bindep format. This can be a
filename or a list of requirements.

For more information about bindep, see the OpenDev documentation.

For system packages, use the bindep format to specify cross-platform
requirements, so they can be installed by whichever package
management system the execution environment uses. Collections must
specify necessary requirements for [platform:rpm]. Ansible Builder
combines system package entries from multiple collections into a single
file. Only requirements with no profiles (runtime requirements) are
installed to the image. Entries from many collections which are
duplicates of each other can be consolidated in the combined file.

The following example uses filenames that contain the various dependencies:

dependencies:
 python: requirements.txt
 system: bindep.txt
 galaxy: requirements.yml
 ansible_core:
 package_pip: ansible-core==2.14.2
 ansible_runner:
 package_pip: ansible-runner==2.3.1

CHAPTER 21. EXECUTION ENVIRONMENT SETUP REFERENCE

181

https://docs.opendev.org/opendev/bindep/latest/readme.html

 python_interpreter:
 package_system: "python310"
 python_path: "/usr/bin/python3.10"

This example uses inline values:

dependencies:
 python:
 - pywinrm
 system:
 - iputils [platform:rpm]
 galaxy:
 collections:
 - name: community.windows
 - name: ansible.utils
 version: 2.10.1
 ansible_core:
 package_pip: ansible-core==2.14.2
 ansible_runner:
 package_pip: ansible-runner==2.3.1
 python_interpreter:
 package_system: "python310"
 python_path: "/usr/bin/python3.10"

NOTE

If any of these dependency files (requirements.txt, bindep.txt, and requirements.yml)
are in the build_ignore of the collection, the build fails.

Collection maintainers can verify that ansible-builder recognizes the requirements they
expect by using the introspect command:

ansible-builder introspect --sanitize ~/.ansible/collections/

The --sanitize option reviews all of the collection requirements and removes duplicates. It also removes
any Python requirements that are normally excluded (see python dependencies).

Use the -v3 option to introspect to see logging messages about requirements that are being excluded.

21.2.5. images

Specifies the base image to be used. At a minimum you must specify a source, image, and tag for the
base image. The base image provides the operating system and can also provide some packages. Use
the standard host/namespace/container:tag syntax to specify images. You can use Podman or Docker
shortcut syntax instead, but the full definition is more reliable and portable.

Valid keys for this section are:

base_image A dictionary defining the parent image for the execution environment.

A name key must be supplied with the container image to use. Use the
signature_original_name key if the image is mirrored within your
repository, but signed with the original image’s signature key.

Red Hat Ansible Automation Platform 2.5 Using automation execution

182

21.2.6. Image verification

You can verify signed container images if you are using the podman container runtime.

Set the container-policy CLI option to control how this data is used in relation to a Podman policy.json
file for container image signature validation.

ignore_all policy: Generate a policy.json file in the build context directory <context> where
no signature validation is performed.

system policy: Signature validation is performed using pre-existing policy.json files in standard
system locations. ansible-builder assumes no responsibility for the content within these files,
and the user has complete control over the content.

signature_required policy: ansible-builder uses the container image definitions to generate a
policy.json file in the build context directory <context> that is used during the build to
validate the images.

21.2.7. options

A dictionary of keywords or options that can affect the runtime functionality Ansible Builder.

Valid keys for this section are:

container_init: A dictionary with keys that allow for customization of the container
ENTRYPOINT and CMD directives (and related behaviors). Customizing these behaviors is an
advanced task, and can result failures that are difficult to debug. Because the provided defaults
control several intertwined behaviors, overriding any value skips all remaining defaults in this
dictionary.
Valid keys are:

cmd: Literal value for the CMD Containerfile directive. The default value is ["bash"].

entrypoint: Literal value for the ENTRYPOINT Containerfile directive. The default
entrypoint behavior handles signal propagation to subprocesses, as well as attempting to
ensure at runtime that the container user has a proper environment with a valid writeable
home directory, represented in /etc/passwd, with the HOME environment variable set to
match. The default entrypoint script can emit warnings to stderr in cases where it is unable
to suitably adjust the user runtime environment. This behavior can be ignored or elevated to
a fatal error; consult the source for the entrypoint target script for more details.
The default value is ["/opt/builder/bin/entrypoint", "dumb-init"].

package_pip: Package to install with pip for entrypoint support. This package is installed in
the final build image.
The default value is dumb-init==1.2.5.

package_manager_path: string with the path to the package manager (dnf or microdnf) to use.
The default is /usr/bin/dnf. This value is used to install a Python interpreter, if specified in
dependencies, and during the build phase by the assemble script.

skip_ansible_check: This boolean value controls whether or not the check for an installation of
Ansible and Ansible Runner is performed on the final image.
Set this value to True to not perform this check.

The default is False.

relax_passwd_permissions: This boolean value controls whether the root group (GID 0) is

CHAPTER 21. EXECUTION ENVIRONMENT SETUP REFERENCE

183

relax_passwd_permissions: This boolean value controls whether the root group (GID 0) is
explicitly granted write permission to /etc/passwd in the final container image. The default
entrypoint script can attempt to update /etc/passwd under some container runtimes with
dynamically created users to ensure a fully-functional POSIX user environment and home
directory. Disabling this capability can cause failures of software features that require users to
be listed in /etc/passwd with a valid and writeable home directory, for example, async in
ansible-core, and the ~username shell expansion.
The default is True.

workdir: Default current working directory for new processes started under the final container
image. Some container runtimes also use this value as HOME for dynamically-created users in
the root (GID 0) group. When this value is specified, if the directory does not already exist, it is
created, set to root group ownership, and rwx group permissions are recursively applied to it.
The default value is /runner.

user: This sets the username or UID to use as the default user for the final container image.
The default value is 1000.

Example options:

options:
 container_init:
 package_pip: dumb-init>=1.2.5
 entrypoint: '["dumb-init"]'
 cmd: '["csh"]'
 package_manager_path: /usr/bin/microdnf
 relax_password_permissions: false
 skip_ansible_check: true
 workdir: /myworkdir
 user: bob

21.2.8. version

An integer value that sets the schema version of the execution environment definition file.

Defaults to 1.

The value must be 3 if you are using Ansible Builder 3.x.

21.3. DEFAULT EXECUTION ENVIRONMENT FOR AWX

The example in test/data/pytz requires the awx.awx collection in the definition. The lookup plugin
awx.awx.tower_schedule_rrule requires the PyPI pytz and another library to work. If the
test/data/pytz/execution-environment.yml file is provided to the ansible-builder build command, it
installs the collection inside the image, reads the requirements.txt file inside of the collection, and then
installs pytz into the image.

The image produced can be used inside of an ansible-runner project by placing these variables inside
the env/settings file, inside the private data directory.

container_image: image-name
process_isolation_executable: podman # or docker
process_isolation: true

Red Hat Ansible Automation Platform 2.5 Using automation execution

184

The awx.awx collection is a subset of content included in the default AWX .

For further information, see the awx-ee repository.

CHAPTER 21. EXECUTION ENVIRONMENT SETUP REFERENCE

185

https://github.com/ansible/awx-ee

CHAPTER 22. MANAGING USER CREDENTIALS
Credentials authenticate the automation controller user when launching jobs against machines,
synchronizing with inventory sources, and importing project content from a version control system.

You can grant users and teams the ability to use these credentials, without exposing the credential to
the user. If a user moves to a different team or leaves the organization, you do not have to re-key all of
your systems just because that credential was available in automation controller.

NOTE

Automation controller encrypts passwords and key information in the database and never
makes secret information visible through the API. For further information, see the
Configuring automation execution.

22.1. HOW CREDENTIALS WORK

Automation controller uses SSH to connect to remote hosts. To pass the key from automation
controller to SSH, the key must be decrypted before it can be written to a named pipe. Automation
controller uses that pipe to send the key to SSH, so that the key is never written to disk. If passwords are
used, automation controller handles them by responding directly to the password prompt and
decrypting the password before writing it to the prompt.

22.2. CREATING NEW CREDENTIALS

Credentials added to a team are made available to all members of the team. You can also add
credentials to individual users.

As part of the initial setup, two credentials are available for your use: Demo Credential and Ansible
Galaxy. Use the Ansible Galaxy credential as a template. You can copy this credential, but not edit it. Add
more credentials as needed.

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Credentials.

2. On the Credentials page, click Create credential.

3. Enter the following information:

Name: the name for your new credential.

(Optional) Description: a description for the new credential.

Optional Organization: The name of the organization with which the credential is
associated. The default is Default.

Credential type: enter or select the credential type you want to create.

4. Enter the appropriate details depending on the type of credential selected, as described in
Credential types.

Red Hat Ansible Automation Platform 2.5 Using automation execution

186

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution

5. Click Create credential.

22.3. ADDING NEW USERS AND JOB TEMPLATES TO EXISTING
CREDENTIALS

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Credentials.

2. Select the credential that you want to assign to additional users.

3. Click the User Access tab. You can see users and teams associated with this credential and
their roles. If no users exist, add them from the Users menu. For more information, see Users.

4. Click Add roles.

5. Select the user(s) that you want to give access to the credential and click Next.

6. From the Select roles to apply page, select the roles you want to add to the User.

7. Click Next.

8. Review your selections and click Finish to add the roles or click Back to make changes.
The Add roles window displays stating whether the action was successful.

If the action is not successful, a warning displays.

CHAPTER 22. MANAGING USER CREDENTIALS

187

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/access_management_and_authentication/gw-managing-access#assembly-controller-users_gw-manage-rbac

9. Click Close.

10. The User Access page displays the summary information.

11. Select the Job templates tab to select a job template to which you want to assign this
credential.

12. Chose a job template or select Create job template from the Create template list to assign
the credential to additional job templates.
For more information about creating new job templates, see the Job templates section.

22.4. CREDENTIAL TYPES

Automation controller supports the following credential types:

Amazon Web Services

Ansible Galaxy/Automation Hub API Token

AWS Secrets Manager Lookup

Bitbucket Data Center HTTP Access Token

Centrify Vault Credential Provider Lookup

Container Registry

CyberArk Central Credential Provider Lookup

CyberArk Conjur Secrets Manager Lookup

GitHub Personal Access Token

GitLab Personal Access Token

Google Compute Engine

GPG Public Key

HashiCorp Vault Secret Lookup

HashiCorp Vault Signed SSH

Insights

Machine

Microsoft Azure Key Vault

Microsoft Azure Resource Manager

Network

OpenShift or Kubernetes API Bearer Token

OpenStack

Red Hat Ansible Automation Platform 2.5 Using automation execution

188

Red Hat Ansible Automation Platform

Red Hat Satellite 6

Red Hat Virtualization

Source Control

Terraform Backend Configuration

Thycotic DevOps Secrets Vault

Thycotic Secret Server

Vault

VMware vCenter

The credential types associated with AWS Secrets Manager, Centrify, CyberArk, HashiCorp Vault,
Microsoft Azure Key Vault, and Thycotic are part of the credential plugins capability that enables an
external system to lookup your secrets information.

For more information, see Secrets Management System.

22.4.1. Amazon Web Services credential type

Select this credential to enable synchronization of cloud inventory with Amazon Web Services.

Automation controller uses the following environment variables for AWS credentials:

AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
AWS_SECURITY_TOKEN

These are fields prompted in the user interface.

Amazon Web Services credentials consist of the AWS Access Key and Secret Key.

Automation controller provides support for EC2 STS tokens, also known as Identity and Access
Management (IAM) STS credentials. Security Token Service (STS) is a web service that enables you to
request temporary, limited-privilege credentials for AWS IAM users.

NOTE

If the value of your tags in EC2 contain Booleans (yes/no/true/false), you must quote
them.

CHAPTER 22. MANAGING USER CREDENTIALS

189

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management

WARNING

To use implicit IAM role credentials, do not attach AWS cloud credentials in
automation controller when relying on IAM roles to access the AWS API.

Attaching your AWS cloud credential to your job template forces the use of your
AWS credentials, not your IAM role credentials.

Additional resources

For more information about the IAM/EC2 STS Token, see Temporary security credentials in IAM .

22.4.1.1. Access Amazon EC2 credentials in an Ansible Playbook

You can get AWS credential parameters from a job runtime environment:

vars:
 aws:
 access_key: '{{ lookup("env", "AWS_ACCESS_KEY_ID") }}'
 secret_key: '{{ lookup("env", "AWS_SECRET_ACCESS_KEY") }}'
 security_token: '{{ lookup("env", "AWS_SECURITY_TOKEN") }}'

22.4.2. Ansible Galaxy/Automation Hub API token credential type

Select this credential to access Ansible Galaxy or use a collection published on an instance of private
automation hub.

Entering the Galaxy server URL on this screen.

Populate the Galaxy Server URL field with the contents of the Server URL field at Red Hat Hybrid
Cloud Console. Populate the Auth Server URL field with the contents of the SSO URL field at Red Hat
Hybrid Cloud Console.

Additional resources

For more information, see Using Collections with automation hub .

22.4.3. AWS secrets manager lookup

This is considered part of the secret management capability. For more information, see AWS Secrets
Manager Lookup

22.4.4. BitBucket data center HTTP access token

Bitbucket Data Center is a self-hosted Git repository for collaboration and management. Select this
credential type to enable you to use HTTP access tokens in place of passwords for Git over HTTPS.

For further information, see HTTP access tokens in the Bitbucket Data Center documentation..

Red Hat Ansible Automation Platform 2.5 Using automation execution

190

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://console.redhat.com/ansible/automation-hub/token
https://console.redhat.com/ansible/automation-hub/token
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management#ref-aws-secrets-manager-lookup
https://confluence.atlassian.com/bitbucketserver/http-access-tokens-939515499.html

22.4.5. Centrify Vault Credential Provider Lookup credential type

This is considered part of the secret management capability. For more information, see Centrify Vault
Credential Provider Lookup.

22.4.6. Container Registry credential type

Select this credential to enable automation controller to access a collection of container images. For
more information, see What is a container registry? .

You must specify a name. The Authentication URL field is pre-populated with a default value. You can
change the value by specifying the authentication endpoint for a different container registry.

22.4.7. CyberArk Central Credential Provider Lookup credential type

This is considered part of the secret management capability.

For more information, see CyberArk Central Credential Provider (CCP) Lookup.

22.4.8. CyberArk Conjur Secrets Manager Lookup credential type

This is considered part of the secret management capability.

For more information, see CyberArk Conjur Secrets Manager Lookup.

22.4.9. GitHub Personal Access Token credential type

Select this credential to enable you to access GitHub by using a Personal Access Token (PAT), which you
can get through GitHub.

For more information, see Working with Webhooks.

GitHub PAT credentials require a value in the Token field, which is provided in your GitHub profile
settings.

Use this credential to establish an API connection to GitHub for use in webhook listener jobs, to post
status updates.

22.4.10. GitLab Personal Access Token credential type

Select this credential to enable you to access GitLab by using a Personal Access Token (PAT), which you
can get through GitLab.

For more information, see Working with Webhooks.

GitLab PAT credentials require a value in the Token field, which is provided in your GitLab profile
settings.

Use this credential to establish an API connection to GitLab for use in webhook listener jobs, to post
status updates.

22.4.11. Google Compute Engine credential type

Select this credential to enable synchronization of a cloud inventory with Google Compute Engine
(GCE).

CHAPTER 22. MANAGING USER CREDENTIALS

191

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management#ref-centrify-vault-lookup
https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management#ref-cyberark-ccp-lookup
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management#ref-cyberark-conjur-lookup

Automation controller uses the following environment variables for GCE credentials:

GCE_EMAIL
GCE_PROJECT
GCE_CREDENTIALS_FILE_PATH

These are fields prompted in the user interface:

GCE credentials require the following information:

Service Account Email Address: The email address assigned to the Google Compute Engine
service account.

Optional: Project: Provide the GCE assigned identification or the unique project ID that you
provided at project creation time.

Optional: Service Account JSON File: Upload a GCE service account file. Click Browse to
browse for the file that has the special account information that can be used by services and
applications running on your GCE instance to interact with other Google Cloud Platform APIs.
This grants permissions to the service account and virtual machine instances.

RSA Private Key: The PEM file associated with the service account email.

22.4.11.1. Access Google Compute Engine credentials in an Ansible Playbook

You can get GCE credential parameters from a job runtime environment:

vars:
 gce:
 email: '{{ lookup("env", "GCE_EMAIL") }}'
 project: '{{ lookup("env", "GCE_PROJECT") }}'
 pem_file_path: '{{ lookup("env", "GCE_PEM_FILE_PATH") }}'

22.4.12. GPG Public Key credential type

Select this credential type to enable automation controller to verify the integrity of the project when
synchronizing from source control.

For more information about how to generate a valid keypair, use the CLI tool to sign content, and how to
add the public key to the controller, see Project Signing and Verification .

22.4.13. HashiCorp Vault Secret Lookup credential type

This is considered part of the secret management capability.

For more information, see HashiCorp Vault Secret Lookup .

22.4.14. HashiCorp Vault Signed SSH credential type

This is considered part of the secret management capability.

For more information, see HashiCorp Vault Signed SSH .

22.4.15. Insights credential type

Red Hat Ansible Automation Platform 2.5 Using automation execution

192

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management#ref-hashicorp-vault-lookup
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/ref-hashicorp-signed-ssh

Select this credential type to enable synchronization of cloud inventory with Red Hat Insights.

Insights credentials are the Insights Username and Password, which are the user’s Red Hat Customer
Portal Account username and password.

The extra_vars and env injectors for Insights are as follows:

ManagedCredentialType(
 namespace='insights',
....
....
....

injectors={
 'extra_vars': {
 "scm_username": "{{username}}",
 "scm_password": "{{password}}",
 },
 'env': {
 'INSIGHTS_USER': '{{username}}',
 'INSIGHTS_PASSWORD': '{{password}}',
 },

22.4.16. Machine credential type

Machine credentials enable automation controller to call Ansible on hosts under your management. You
can specify the SSH username, optionally give a password, an SSH key, a key password, or have
automation controller prompt the user for their password at deployment time. They define SSH and
user-level privilege escalation access for playbooks, and are used when submitting jobs to run playbooks
on a remote host.

The following network connections use Machine as the credential type: httpapi, netconf, and
network_cli

Machine and SSH credentials do not use environment variables. They pass the username through the
ansible -u flag, and interactively write the SSH password when the underlying SSH client prompts for it.

Machine credentials require the following inputs:

Username: The username to use for SSH authentication.

Password: The password to use for SSH authentication. This password is stored encrypted in
the database, if entered. Alternatively, you can configure automation controller to ask the user
for the password at launch time by selecting Prompt on launch. In these cases, a dialog opens
when the job is launched, promoting the user to enter the password and password confirmation.

SSH Private Key: Copy or drag-and-drop the SSH private key for the machine credential.

Private Key Passphrase: If the SSH Private Key used is protected by a password, you can
configure a Key Passphrase for the private key. This password is stored encrypted in the
database, if entered. You can also configure automation controller to ask the user for the key
passphrase at launch time by selecting Prompt on launch. In these cases, a dialog opens when
the job is launched, prompting the user to enter the key passphrase and key passphrase
confirmation.

Privilege Escalation Method: Specifies the type of escalation privilege to assign to specific

CHAPTER 22. MANAGING USER CREDENTIALS

193

users. This is the same as specifying the --become-method=BECOME_METHOD parameter,
where BECOME_METHOD is any of the existing methods, or a custom method you have
written. Begin entering the name of the method, and the appropriate name auto-populates.

empty selection: If a task or play has become set to yes and is used with an empty
selection, then it will default to sudo.

sudo: Performs single commands with superuser (root user) privileges.

su: Switches to the superuser (root user) account (or to other user accounts).

pbrun: Requests that an application or command be run in a controlled account and
provides for advanced root privilege delegation and keylogging.

pfexec: Executes commands with predefined process attributes, such as specific user or
group IDs.

dzdo: An enhanced version of sudo that uses RBAC information in Centrify’s Active
Directory service. For more information, see Centrify’s site on DZDO.

pmrun: Requests that an application is run in a controlled account. See Privilege Manager
for Unix 6.0.

runas: Enables you to run as the current user.

enable: Switches to elevated permissions on a network device.

doas: Enables your remote/login user to run commands as another user through the doas
("Do as user") utility.

ksu: Enables your remote/login user to run commands as another user through Kerberos
access.

machinectl: Enables you to manage containers through the systemd machine manager.

sesu: Enables your remote/login user to run commands as another user through the CA
Privileged Access Manager.

NOTE

Custom become plugins are available from Ansible 2.8+. For more information, see
Understanding Privilege Escalation and the list of Become plugins

Privilege Escalation Username: You see this field only if you selected an option for privilege
escalation. Enter the username to use with escalation privileges on the remote system.

Privilege Escalation Password: You see this field only if you selected an option for privilege
escalation. Enter the password to use to authenticate the user through the selected privilege
escalation type on the remote system. This password is stored encrypted in the database. You
can also configure automation controller to ask the user for the password at launch time by
selecting Prompt on launch. In these cases, a dialog opens when the job is launched, promoting
the user to enter the password and password confirmation.

NOTE

Red Hat Ansible Automation Platform 2.5 Using automation execution

194

https://docs.delinea.com/online-help/server-suite/reports-events/events/server-suite/dzdo.htm
https://support.oneidentity.com/privilege-manager-for-unix/7.2.3/technical-documents
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_privilege_escalation.html
https://docs.ansible.com/ansible/latest/plugins/become.html#plugin-list

NOTE

You must use sudo password must in combination with SSH passwords or SSH Private
Keys, because automation controller must first establish an authenticated SSH
connection with the host before invoking sudo to change to the sudo user.

WARNING

Credentials that are used in scheduled jobs must not be configured as Prompt on
launch.

22.4.16.1. Access machine credentials in an ansible playbook

You can get username and password from Ansible facts:

vars:
 machine:
 username: '{{ ansible_user }}'
 password: '{{ ansible_password }}'

22.4.17. Microsoft Azure Key Vault credential type

This is considered part of the secret management capability.

For more information, see Microsoft Azure Key Vault.

22.4.18. Microsoft Azure Resource Manager credential type

Select this credential type to enable synchronization of cloud inventory with Microsoft Azure Resource
Manager.

Microsoft Azure Resource Manager credentials require the following inputs:

Subscription ID: The Subscription UUID for the Microsoft Azure account.

Username: The username to use to connect to the Microsoft Azure account.

Password: The password to use to connect to the Microsoft Azure account.

Client ID: The Client ID for the Microsoft Azure account.

Client Secret: The Client Secret for the Microsoft Azure account.

Tenant ID: The Tenant ID for the Microsoft Azure account.

Azure Cloud Environment: The variable associated with Azure cloud or Azure stack
environments.

These fields are equal to the variables in the API.

To pass service principal credentials, define the following variables:

CHAPTER 22. MANAGING USER CREDENTIALS

195

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management#ref-azure-key-vault-lookup

AZURE_CLIENT_ID
AZURE_SECRET
AZURE_SUBSCRIPTION_ID
AZURE_TENANT
AZURE_CLOUD_ENVIRONMENT

To pass an Active Directory username and password pair, define the following variables:

AZURE_AD_USER
AZURE_PASSWORD
AZURE_SUBSCRIPTION_ID

You can also pass credentials as parameters to a task within a playbook. The order of precedence is
parameters, then environment variables, and finally a file found in your home directory.

To pass credentials as parameters to a task, use the following parameters for service principal
credentials:

client_id
secret
subscription_id
tenant
azure_cloud_environment

Alternatively, pass the following parameters for Active Directory username/password:

ad_user
password
subscription_id

22.4.18.1. Access Microsoft Azure resource manager credentials in an ansible playbook

You can get Microsoft Azure credential parameters from a job runtime environment:

vars:
 azure:
 client_id: '{{ lookup("env", "AZURE_CLIENT_ID") }}'
 secret: '{{ lookup("env", "AZURE_SECRET") }}'
 tenant: '{{ lookup("env", "AZURE_TENANT") }}'
 subscription_id: '{{ lookup("env", "AZURE_SUBSCRIPTION_ID") }}'

22.4.19. Network credential type

NOTE

Select the Network credential type if you are using a local connection with provider to use
Ansible networking modules to connect to and manage networking devices.

When connecting to network devices, the credential type must match the connection
type:

For local connections using provider, credential type should be Network.

Red Hat Ansible Automation Platform 2.5 Using automation execution

196

For all other network connections (httpapi, netconf, and network_cli), the credential type
should be Machine.

For more information about connection types available for network devices, see Multiple
Communication Protocols.

Automation controller uses the following environment variables for Network credentials:

ANSIBLE_NET_USERNAME
ANSIBLE_NET_PASSWORD

Provide the following information for network credentials:

Username: The username to use in conjunction with the network device.

Password: The password to use in conjunction with the network device.

SSH Private Key: Copy or drag-and-drop the actual SSH Private Key to be used to
authenticate the user to the network through SSH.

Private Key Passphrase: The passphrase for the private key to authenticate the user to the
network through SSH.

Authorize: Select this to control whether or not to enter privileged mode.

If Authorize is checked, enter a password in the Authorize Password field to access
privileged mode.

For more information, see Porting Ansible Network Playbooks with New Connection Plugins .

22.4.20. Access network credentials in an ansible playbook

You can get the username and password parameters from a job runtime environment:

vars:
 network:
 username: '{{ lookup("env", "ANSIBLE_NET_USERNAME") }}'
 password: '{{ lookup("env", "ANSIBLE_NET_PASSWORD") }}'

22.4.21. OpenShift or Kubernetes API Bearer Token credential type

Select this credential type to create instance groups that point to a Kubernetes or OpenShift container.

For more information, see Instance and container groups.

Provide the following information for container credentials:

OpenShift or Kubernetes API Endpoint (required): The endpoint used to connect to an
OpenShift or Kubernetes container.

API authentication bearer token (required): The token used to authenticate the connection.

Optional: Verify SSL: You can check this option to verify the server’s SSL/TLS certificate is valid
and trusted. Environments that use internal or private Certificate Authority (CA) must leave this
option unchecked to disable verification.

CHAPTER 22. MANAGING USER CREDENTIALS

197

https://docs.ansible.com/ansible/devel/network/getting_started/network_differences.html#multiple-communication-protocols
https://www.ansible.com/blog/porting-ansible-network-playbooks-with-new-connection-plugins

Certificate Authority data: Include the BEGIN CERTIFICATE and END CERTIFICATE lines
when pasting the certificate, if provided.

A container group is a type of instance group that has an associated credential that enables connection
to an OpenShift cluster. To set up a container group, you must have the following items:

A namespace you can start into. Although every cluster has a default namespace, you can use a
specific namespace.

A service account that has the roles that enable it to start and manage pods in this namespace.

If you use execution environments in a private registry, and have a container registry credential
associated with them in automation controller, the service account also requires the roles to get,
create, and delete secrets in the namespace.
If you do not want to give these roles to the service account, you can pre-create the
ImagePullSecrets and specify them on the pod spec for the container group. In this case, the
execution environment must not have a Container Registry credential associated, or automation
controller attempts to create the secret for you in the namespace.

A token associated with that service account (OpenShift or Kubernetes Bearer Token)

A CA certificate associated with the cluster

22.4.21.1. Creating a service account in an Openshift cluster

Creating a service account in an Openshift or Kubernetes cluster to be used to run jobs in a container
group through automation controller. After you create the service account, its credentials are provided
to automation controller in the form of an Openshift or Kubernetes API bearer token credential.

After you create a service account, use the information in the new service account to configure
automation controller.

Procedure

1. To create a service account, download and use the sample service account and change it as
required to obtain the previous credentials.

2. Apply the configuration from the sample service account :

oc apply -f containergroup-sa.yml

3. Get the secret name associated with the service account:

export SA_SECRET=$(oc get sa containergroup-service-account -o json | jq
'.secrets[0].name' | tr -d '"')

4. Get the token from the secret:

oc get secret $(echo ${SA_SECRET}) -o json | jq '.data.token' | xargs | base64 --decode >
containergroup-sa.token

5. Get the CA cert:

oc get secret $SA_SECRET -o json | jq '.data["ca.crt"]' | xargs | base64 --decode >
containergroup-ca.crt

Red Hat Ansible Automation Platform 2.5 Using automation execution

198

https://docs.ansible.com/automation-controller/latest/html/userguide/_downloads/7a0708e6c2113e9601bf252270fa6c50/containergroup-sa.yml
https://docs.ansible.com/automation-controller/latest/html/userguide/_downloads/7a0708e6c2113e9601bf252270fa6c50/containergroup-sa.yml

6. Use the contents of containergroup-sa.token and containergroup-ca.crt to provide the
information for the OpenShift or Kubernetes API Bearer Token required for the container
group.

22.4.22. OpenStack credential type

Select this credential type to enable synchronization of cloud inventory with OpenStack.

Enter the following information for OpenStack credentials:

Username: The username to use to connect to OpenStack.

Password (API Key): The password or API key to use to connect to OpenStack.

Host (Authentication URL): The host to be used for authentication.

Project (Tenant Name): The Tenant name or Tenant ID used for OpenStack. This value is
usually the same as the username.

Optional: Project (Domain Name): Give the project name associated with your domain.

Optional: Domain Name: Give the FQDN to be used to connect to OpenStack.

Optional: Region Name: Give the region name. For some cloud providers, like OVH, the region
must be specified.

If you are interested in using OpenStack Cloud Credentials, see Use Cloud Credentials with a cloud
inventory, which includes a sample playbook.

22.4.23. Red Hat Ansible Automation Platform credential type

Select this credential to access another automation controller instance.

Ansible Automation Platform credentials require the following inputs:

Red Hat Ansible Automation Platform: The base URL or IP address of the other instance to
connect to.

Username: The username to use to connect to it.

Password: The password to use to connect to it.

Oauth Token: If username and password are not used, provide an OAuth token to use to
authenticate.

The env injectors for Ansible Automation Platform are as follows:

ManagedCredentialType(
 namespace='controller',

....

....

....

injectors={

CHAPTER 22. MANAGING USER CREDENTIALS

199

 'env': {
 'TOWER_HOST': '{{host}}',
 'TOWER_USERNAME': '{{username}}',
 'TOWER_PASSWORD': '{{password}}',
 'TOWER_VERIFY_SSL': '{{verify_ssl}}',
 'TOWER_OAUTH_TOKEN': '{{oauth_token}}',
 'CONTROLLER_HOST': '{{host}}',
 'CONTROLLER_USERNAME': '{{username}}',
 'CONTROLLER_PASSWORD': '{{password}}',
 'CONTROLLER_VERIFY_SSL': '{{verify_ssl}}',
 'CONTROLLER_OAUTH_TOKEN': '{{oauth_token}}',
 }

22.4.23.1. Access automation controller credentials in an Ansible Playbook

You can get the host, username, and password parameters from a job runtime environment:

vars:
 controller:
 host: '{{ lookup("env", "CONTROLLER_HOST") }}'
 username: '{{ lookup("env", "CONTROLLER_USERNAME") }}'
 password: '{{ lookup("env", "CONTROLLER_PASSWORD") }}'

22.4.24. Red Hat Satellite 6 credential type

Select this credential type to enable synchronization of cloud inventory with Red Hat Satellite 6.

Automation controller writes a Satellite configuration file based on fields prompted in the user interface.
The absolute path to the file is set in the following environment variable:

FOREMAN_INI_PATH

Satellite credentials have the following required inputs:

Satellite 6 URL: The Satellite 6 URL or IP address to connect to.

Username: The username to use to connect to Satellite 6.

Password: The password to use to connect to Satellite 6.

22.4.25. Red Hat Virtualization credential type

Select this credential to enable automation controller to access Ansible’s oVirt4.py dynamic inventory
plugin, which is managed by Red Hat Virtualization .

Automation controller uses the following environment variables for Red Hat Virtualization credentials.
These are fields in the user interface:

OVIRT_URL
OVIRT_USERNAME
OVIRT_PASSWORD

Provide the following information for Red Hat Virtualization credentials:

Red Hat Ansible Automation Platform 2.5 Using automation execution

200

Host (Authentication URL): The host URL or IP address to connect to. To sync with the
inventory, the credential URL needs to include the ovirt-engine/api path.

Username: The username to use to connect to oVirt4. This must include the domain profile to
succeed, for example username@ovirt.host.com.

Password: The password to use to connect to it.

Optional: CA File: Provide an absolute path to the oVirt certificate file (it might end in .pem,
.cer and .crt extensions, but preferably .pem for consistency)

22.4.25.1. Access virtualization credentials in an Ansible Playbook

You can get the Red Hat Virtualization credential parameter from a job runtime environment:

vars:
 ovirt:
 ovirt_url: '{{ lookup("env", "OVIRT_URL") }}'
 ovirt_username: '{{ lookup("env", "OVIRT_USERNAME") }}'
 ovirt_password: '{{ lookup("env", "OVIRT_PASSWORD") }}'

The file and env injectors for Red Hat Virtualization are as follows:

ManagedCredentialType(
 namespace='rhv',

....

....

....

injectors={
 # The duplication here is intentional; the ovirt4 inventory plugin
 # writes a .ini file for authentication, while the ansible modules for
 # ovirt4 use a separate authentication process that support
 # environment variables; by injecting both, we support both
 'file': {
 'template': '\n'.join(
 [
 '[ovirt]',
 'ovirt_url={{host}}',
 'ovirt_username={{username}}',
 'ovirt_password={{password}}',
 '{% if ca_file %}ovirt_ca_file={{ca_file}}{% endif %}',
]
)
 },
 'env': {'OVIRT_INI_PATH': '{{tower.filename}}', 'OVIRT_URL': '{{host}}', 'OVIRT_USERNAME':
'{{username}}', 'OVIRT_PASSWORD': '{{password}}'},
 },
)

22.4.26. Source Control credential type

Source Control credentials are used with projects to clone and update local source code repositories
from a remote revision control system such as Git or Subversion.

CHAPTER 22. MANAGING USER CREDENTIALS

201

Source Control credentials require the following inputs:

Username: The username to use in conjunction with the source control system.

Password: The password to use in conjunction with the source control system.

SCM Private Key: Copy or drag-and-drop the actual SSH Private Key to be used to
authenticate the user to the source control system through SSH.

Private Key Passphrase: If the SSH Private Key used is protected by a passphrase, you can
configure a Key Passphrase for the private key.

NOTE

You cannot configure Source Control credentials as Prompt on launch.

If you are using a GitHub account for a Source Control credential and you have Two
Factor Authentication (2FA) enabled on your account, you must use your Personal Access
Token in the password field rather than your account password.

22.4.27. Terraform backend configuration

Terraform is a HashiCorp tool used to automate various infrastructure tasks. Select this credential type
to enable synchronization with the Terraform inventory source.

The Terraform credential requires the Backend configuration attribute which must contain the data

from a Terraform backend block. You can paste, drag a file, browse to upload a file, or click the icon
to populate the field from an external Secret Management System.

Terraform backend configuration requires the following inputs:

Name

Credential type: Select Terraform backend configuration.

Optional: Organization

Optional: Description

Backend configuration: Drag a file here or browse to upload.
Example configuration for an S3 backend:

bucket = "my-terraform-state-bucket"
key = "path/to/terraform-state-file"
region = "us-east-1"
access_key = "my-aws-access-key"
secret_key = "my-aws-secret-access-key"

Optional: Google Cloud Platform account credentials

22.4.28. Thycotic DevOps Secrets Vault credential type

This is considered part of the secret management capability.

For more information, see Thycotic DevOps Secrets Vault .

Red Hat Ansible Automation Platform 2.5 Using automation execution

202

https://developer.hashicorp.com/terraform/language/backend
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management#ref-thycotic-devops-vault

22.4.29. Thycotic secret server credential type

This is considered part of the secret management capability.

For more information, see Thycotic Secret Server.

22.4.30. Ansible Vault credential type

Select this credential type to enable synchronization of inventory with Ansible Vault.

Vault credentials require the Vault Password and an optional Vault Identifier if applying multi-Vault
credentialing.

You can configure automation controller to ask the user for the password at launch time by selecting
Prompt on launch.

When you select Prompt on launch, a dialog opens when the job is launched, prompting the user to
enter the password.

WARNING

Credentials that are used in scheduled jobs must not be configured as Prompt on
launch.

For more information about Ansible Vault, see Protecting sensitive data with Ansible vault .

22.4.31. VMware vCenter credential type

Select this credential type to enable synchronization of inventory with VMware vCenter.

Automation controller uses the following environment variables for VMware vCenter credentials:

VMWARE_HOST
VMWARE_USER
VMWARE_PASSWORD
VMWARE_VALIDATE_CERTS

These are fields prompted in the user interface.

VMware credentials require the following inputs:

vCenter Host: The vCenter hostname or IP address to connect to.

Username: The username to use to connect to vCenter.

Password: The password to use to connect to vCenter.

NOTE

CHAPTER 22. MANAGING USER CREDENTIALS

203

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html-single/configuring_automation_execution/assembly-controller-secret-management#ref-thycotic-secret-server
http://docs.ansible.com/ansible/playbooks_vault.html

NOTE

If the VMware guest tools are not running on the instance, VMware inventory
synchronization does not return an IP address for that instance.

22.4.31.1. Access VMware vCenter credentials in an ansible playbook

You can get VMware vCenter credential parameters from a job runtime environment:

vars:
 vmware:
 host: '{{ lookup("env", "VMWARE_HOST") }}'
 username: '{{ lookup("env", "VMWARE_USER") }}'
 password: '{{ lookup("env", "VMWARE_PASSWORD") }}'

22.5. USE AUTOMATION CONTROLLER CREDENTIALS IN A
PLAYBOOK

The following playbook is an example of how to use automation controller credentials in your playbook.

- hosts: all

 vars:
 machine:
 username: '{{ ansible_user }}'
 password: '{{ ansible_password }}'
 controller:
 host: '{{ lookup("env", "CONTROLLER_HOST") }}'
 username: '{{ lookup("env", "CONTROLLER_USERNAME") }}'
 password: '{{ lookup("env", "CONTROLLER_PASSWORD") }}'
 network:
 username: '{{ lookup("env", "ANSIBLE_NET_USERNAME") }}'
 password: '{{ lookup("env", "ANSIBLE_NET_PASSWORD") }}'
 aws:
 access_key: '{{ lookup("env", "AWS_ACCESS_KEY_ID") }}'
 secret_key: '{{ lookup("env", "AWS_SECRET_ACCESS_KEY") }}'
 security_token: '{{ lookup("env", "AWS_SECURITY_TOKEN") }}'
 vmware:
 host: '{{ lookup("env", "VMWARE_HOST") }}'
 username: '{{ lookup("env", "VMWARE_USER") }}'
 password: '{{ lookup("env", "VMWARE_PASSWORD") }}'
 gce:
 email: '{{ lookup("env", "GCE_EMAIL") }}'
 project: '{{ lookup("env", "GCE_PROJECT") }}'
 azure:
 client_id: '{{ lookup("env", "AZURE_CLIENT_ID") }}'
 secret: '{{ lookup("env", "AZURE_SECRET") }}'
 tenant: '{{ lookup("env", "AZURE_TENANT") }}'
 subscription_id: '{{ lookup("env", "AZURE_SUBSCRIPTION_ID") }}'

 tasks:
 - debug:
 var: machine

Red Hat Ansible Automation Platform 2.5 Using automation execution

204

 - debug:
 var: controller

 - debug:
 var: network

 - debug:
 var: aws

 - debug:
 var: vmware

 - debug:
 var: gce

 - shell: 'cat {{ gce.pem_file_path }}'
 delegate_to: localhost

 - debug:
 var: azure

Use 'delegate_to' and any lookup variable

- command: somecommand
 environment:
 USERNAME: '{{ lookup("env", "USERNAME") }}'
 PASSWORD: '{{ lookup("env", "PASSWORD") }}'
 delegate_to: somehost

CHAPTER 22. MANAGING USER CREDENTIALS

205

CHAPTER 23. CUSTOM CREDENTIAL TYPES
As a system administrator, you can define a custom credential type in a standard format by using a
YAML or JSON-like definition. You can define a custom credential type that works in ways similar to
existing credential types. For example, a custom credential type can inject an API token for a third-party
web service into an environment variable, for your playbook or custom inventory script to consume.

Custom credentials support the following ways of injecting their authentication information:

Environment variables

Ansible extra variables

File-based templating, which means generating .ini or .conf files that contain credential values

You can attach one SSH and multiple cloud credentials to a job template. Each cloud credential must be
of a different type. Only one of each type of credential is permitted. Vault credentials and machine
credentials are separate entities.

NOTE

When creating a new credential type, you must avoid collisions in the extra_vars,
env, and file namespaces.

Environment variable or extra variable names must not start with ANSIBLE_
because they are reserved.

You must have System administrator (superuser) permissions to be able to
create and edit a credential type (CredentialType) and to be able to view the
CredentialType.injection field.

23.1. CONTENT SOURCING FROM COLLECTIONS

A "managed" credential type of kind=galaxy represents a content source for fetching collections
defined in requirements.yml when project updates are run. Examples of content sources are
galaxy.ansible.com, console.redhat.com, or on-premise automation hub. This new credential type
represents a URL and (optional) authentication details necessary to construct the environment
variables when a project update runs ansible-galaxy collection install as described in the Ansible
documentation, Configuring the ansible-galaxy client. It has fields that map directly to the configuration
options exposed to the Ansible Galaxy CLI, for example, per-server.

An endpoint in the API reflects an ordered list of these credentials at the Organization level:

/api/v2/organizations/N/galaxy_credentials/

When installations of automation controller migrate existing Galaxy-oriented setting values, post-
upgrade proper credentials are created and attached to every Organization. After upgrading to the
latest version, every organization that existed before upgrade now has a list of one or more "Galaxy"
credentials associated with it.

Additionally, post-upgrade, these settings are not visible (or editable) from the /api/v2/settings/jobs/
endpoint.

Automation controller continues to fetch roles directly from public Galaxy even if galaxy.ansible.com is

Red Hat Ansible Automation Platform 2.5 Using automation execution

206

https://docs.ansible.com/ansible/latest/collections_guide/collections_installing.html#configuring-the-ansible-galaxy-client

Automation controller continues to fetch roles directly from public Galaxy even if galaxy.ansible.com is
not the first credential in the list for the organization. The global Galaxy settings are no longer
configured at the jobs level, but at the organization level in the user interface.

The organization’s Create organization and Edit organization windows have an optional Galaxy
credentials lookup field for credentials of kind=galaxy.

It is important to specify the order of these credentials as order sets precedence for the sync and
lookup of the content. For more information, see Creating an organization .

For more information about how to set up a project by using collections, see Using Collections with
automation hub.

23.2. BACKWARDS-COMPATIBLE API CONSIDERATIONS

Support for version 2 of the API (api/v2/) means a one-to-many relationship for job templates to
credentials (including multicloud support).

You can filter credentials the v2 API:

curl "https://controller.example.org/api/v2/credentials/?credential_type__namespace=aws"

In the V2 Credential Type model, the relationships are defined as follows:

Machine SSH

Vault Vault

Network Sets environment variables, for example ANSIBLE_NET_AUTHORIZE

SCM Source Control

Cloud EC2, AWS

Cloud Lots of others

Insights Insights

Galaxy galaxy.ansible.com, console.redhat.com

CHAPTER 23. CUSTOM CREDENTIAL TYPES

207

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/access_management_and_authentication/index#proc-controller-create-organization

Galaxy on-premise automation hub

Machine SSH

23.3. CONTENT VERIFICATION

Automation controller uses GNU Privacy Guard (GPG) to verify content.

For more information, see The GNU Privacy Handbook .

23.4. GETTING STARTED WITH CREDENTIAL TYPES

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Credentials. If no
custom credential types have been created, the Credential Types page prompts you to add
one.
If credential types have been created, this page displays a list of existing and available
Credential Types.

2. Select the name of a credential or the Edit icon to view more information about a credential
type, .

3. On the Details tab, each credential type displays its own unique configurations in the Input
Configuration field and the Injector Configuration field, if applicable. Both YAML and JSON
formats are supported in the configuration fields.

23.5. CREATING A NEW CREDENTIAL TYPE

To create a new credential type:

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Credentials.

2. In the Credential Types view, click Create credential type.

3. Enter the appropriate details in the Name and Description field.

NOTE

When creating a new credential type, do not use reserved variable names that
start with ANSIBLE_ for the INPUT and INJECTOR names and IDs, as they are
invalid for custom credential types.

4. In the Input configuration field, specify an input schema that defines a set of ordered fields for
that type. The format can be in YAML or JSON:
YAML

fields:

Red Hat Ansible Automation Platform 2.5 Using automation execution

208

https://www.gnupg.org/gph/en/manual/c14.html#:~:text=GnuPG uses public%2Dkey cryptography,the user wants to communicate

 - type: string
 id: username
 label: Username
 - type: string
 id: password
 label: Password
 secret: true
required:
 - username
 - password

View more YAML examples at the YAML page.

JSON

{
"fields": [
 {
 "type": "string",
 "id": "username",
 "label": "Username"
 },
 {
 "secret": true,
 "type": "string",
 "id": "password",
 "label": "Password"
 }
],
 "required": ["username", "password"]
}

View more JSON examples at The JSON website.

The following configuration in JSON format shows each field and how they are used:

{
 "fields": [{
 "id": "api_token", # required - a unique name used to reference the field value

 "label": "API Token", # required - a unique label for the field

 "help_text": "User-facing short text describing the field.",

 "type": ("string" | "boolean") # defaults to 'string'

 "choices": ["A", "B", "C"] # (only applicable to `type=string`)

 "format": "ssh_private_key" # optional, can be used to enforce data format validity
 for SSH private key data (only applicable to `type=string`)

 "secret": true, # if true, the field value will be encrypted

 "multiline": false # if true, the field should be rendered as multi-line for input entry
 # (only applicable to `type=string`)

CHAPTER 23. CUSTOM CREDENTIAL TYPES

209

https://yaml.org/spec/1.2.2/
https://www.json.org/json-en.html

},{
 # field 2...
},{
 # field 3...
}],

"required": ["api_token"] # optional; one or more fields can be marked as required
},

When type=string, fields can optionally specify multiple choice options:

{
 "fields": [{
 "id": "api_token", # required - a unique name used to reference the field value
 "label": "API Token", # required - a unique label for the field
 "type": "string",
 "choices": ["A", "B", "C"]
 }]
},

5. In the Injector configuration field, enter environment variables or extra variables that specify
the values a credential type can inject. The format can be in YAML or JSON (see examples in
the previous step).
The following configuration in JSON format shows each field and how they are used:

{
 "file": {
 "template": "[mycloud]\ntoken={{ api_token }}"
 },
 "env": {
 "THIRD_PARTY_CLOUD_API_TOKEN": "{{ api_token }}"
 },
 "extra_vars": {
 "some_extra_var": "{{ username }}:{{ password }}"
 }
}

Credential Types can also generate temporary files to support .ini files or certificate or key
data:

{
 "file": {
 "template": "[mycloud]\ntoken={{ api_token }}"
 },
 "env": {
 "MY_CLOUD_INI_FILE": "{{ tower.filename }}"
 }
}

In this example, automation controller writes a temporary file that has:

[mycloud]\ntoken=SOME_TOKEN_VALUE

The absolute file path to the generated file is stored in an environment variable named

Red Hat Ansible Automation Platform 2.5 Using automation execution

210

The absolute file path to the generated file is stored in an environment variable named
MY_CLOUD_INI_FILE.

The following is an example of referencing many files in a custom credential template:

Inputs

{
 "fields": [{
 "id": "cert",
 "label": "Certificate",
 "type": "string"
 },{
 "id": "key",
 "label": "Key",
 "type": "string"
 }]
}

Injectors

{
 "file": {
 "template.cert_file": "[mycert]\n{{ cert }}",
 "template.key_file": "[mykey]\n{{ key }}"
},
"env": {
 "MY_CERT_INI_FILE": "{{ tower.filename.cert_file }}",
 "MY_KEY_INI_FILE": "{{ tower.filename.key_file }}"
}
}

6. Click Create credential type.
Your newly created credential type is displayed on the list of credential types:

7. Click the Edit icon to modify the credential type options.

NOTE

CHAPTER 23. CUSTOM CREDENTIAL TYPES

211

NOTE

In the Edit screen, you can modify the details or delete the credential. If the
Delete option is disabled, this means that the credential type is being used by a
credential, and you must delete the credential type from all the credentials that
use it before you can delete it.

Verification

Verify that the newly created credential type can be selected from the Credential Type
selection window when creating a new credential:

Additional resources

For information about how to create a new credential, see Creating a credential .

Red Hat Ansible Automation Platform 2.5 Using automation execution

212

CHAPTER 24. ACTIVITY STREAM
From the navigation panel, select Automation Execution → Administration → Activity Stream.

An Activity Stream shows all changes for a particular object. For each change, the Activity Stream
shows the time of the event, the user that initiated the event, and the action. The information displayed
varies depending on the type of event.

Click the icon to display the event log for the change.

You can filter the Activity Stream by the initiating user, by system (if it was system initiated), or by any
related object, such as a credential, job template, or schedule. The Activity Stream shows the Activity
Stream for the entire instance. Most pages permit viewing an activity stream filtered for that specific
object.

You can view the activity stream on any page by clicking the Activity Stream icon.

CHAPTER 24. ACTIVITY STREAM

213

CHAPTER 25. NOTIFIERS
A Notification type such as Email, Slack or a Webhook, is an instance of a Notification Template, and has
a name, description and configuration defined in the Notification template.

The following include examples of details needed to add a notification template:

A username, password, server, and recipients are needed for an Email notification template

The token and a list of channels are needed for a Slack notification template

The URL and Headers are needed for a Webhook notification template

When a job fails, a notification is sent using the configuration that you define in the notification
template.

The following shows the typical flow for the notification system:

You create a notification template to the REST API at the /api/v2/notification_templates
endpoint, either through the API or through the UI.

You assign the notification template to any of the various objects that support it (all variants of
job templates as well as organizations and projects) and at the appropriate trigger level for
which you want the notification (started, success, or error). For example, you might want to
assign a particular notification template to trigger when Job Template 1 fails. In this case, you
associate the notification template with the job template at
/api/v2/job_templates/n/notification_templates_error API endpoint.

You can set notifications on job start and job end. Users and teams are also able to define their
own notifications that can be attached to arbitrary jobs.

25.1. NOTIFICATION HIERARCHY

Notification templates inherit templates defined on parent objects, such as the following:

Job templates use notification templates defined for them. Additionally, they can inherit
notification templates from the project used by the job template, and from the organization that
it is listed under.

Project updates use notification templates defined on the project and inherit notification
templates from the organization associated with it.

Inventory updates use notification templates defined on the organization that it is listed under.

Ad hoc commands use notification templates defined on the organization that the inventory is
associated with.

25.2. NOTIFICATION WORKFLOW

When a job succeeds or fails, the error or success handler pulls a list of relevant notification templates
using the procedure defined in the Notifiers section.

It then creates a notification object for each one, containing relevant details about the job and sends it
to the destination. These include email addresses, slack channels, and SMS numbers.

These notification objects are available as related resources on job types (jobs, inventory updates,

Red Hat Ansible Automation Platform 2.5 Using automation execution

214

These notification objects are available as related resources on job types (jobs, inventory updates,
project updates), and also at /api/v2/notifications. You can also see what notifications have been sent
from a notification template by examining its related resources.

If a notification fails, it does not impact the job associated with it or cause it to fail. The status of the
notification can be viewed at its detail endpoint /api/v2/notifications/<n>.

25.3. CREATING A NOTIFICATION TEMPLATE

Use the following procedure to create a notification template.

Procedure

1. From the navigation panel, select Automation Execution → Administration → Notifiers.

2. Click Add notifier.

3. Complete the following fields:

Name: Enter the name of the notification.

Description: Enter a description for the notification. This field is optional.

Organization: Specify the organization that the notification belongs to.

Type: Choose a type of notification from the drop-down menu. For more information, see
the Notification types section.

4. Click Save notifier.

25.4. NOTIFICATION TYPES

The following notification types are supported with automation controller:

Email

Grafana

IRC

Mattermost

PagerDuty

Rocket.Chat

Slack

Twilio

Webhook

Webhook payloads

Each notification type has its own configuration and behavioral semantics. You might need to test them
in different ways. Additionally, you can customize each type of notification down to a specific detail or a
set of criteria to trigger a notification.

CHAPTER 25. NOTIFIERS

215

Additional resources

For more information on configuring custom notifications, see Create custom notifications. The
following sections give further details on each type of notification.

25.4.1. Email

The email notification type supports a wide variety of SMTP servers and has support for SSL/TLS
connections.

Provide the following details to set up an email notification:

Host

Recipient list

Sender e-mail

Port

Timeout (in seconds): You can set this up to 120 seconds. This is the length of time that
automation controller tries to connect to the email server before failure.

25.4.2. Grafana

To integrate Grafana, you must first create an API key in the Grafana system. This is the token that is
given to automation controller.

Provide the following details to set up a Grafana notification:

Grafana URL: The URL of the Grafana API service, such as: http://yourcompany.grafana.com.

Grafana API key: You must first create an API key in the Grafana system.

Optional: ID of the dashboard: When you create an API key for the Grafana account, you can

Red Hat Ansible Automation Platform 2.5 Using automation execution

216

http://docs.grafana.org/tutorials/api_org_token_howto/

Optional: ID of the dashboard: When you create an API key for the Grafana account, you can
set up a dashboard with a unique ID.

Optional: ID of the panel: If you added panels and graphs to your Grafana interface, you can
give its ID here.

Optional: Tags for the annotation: Enter keywords to identify the types of events of the
notification that you are configuring.

Disable SSL verification: SSL verification is on by default, but you can turn off verification of
the authenticity of the target’s certificate. Select this option to disable verification for
environments that use internal or private CA’s.

25.4.3. IRC

The IRC notification takes the form of an IRC bot that connects, delivers its messages to channels or
individual users, and then disconnects. The notification bot also supports SSL authentication. The bot
does not currently support Nickserv identification. If a channel or user does not exist or is not online
then the notification fails. The failure scenario is reserved specifically for connectivity.

Provide the following details to set up an IRC notification:

Optional: IRC server password: IRC servers can require a password to connect. If the server
does not require one, leave it blank. IRC Server Port: The IRC server port. IRC Server Address:
The host name or address of the IRC server. IRC Nick: The bot’s nickname once it connects to
the server. Destination Channels or Users: A list of users or channels to which the notification
is sent.

Optional: Disable SSL verification: Check if you want the bot to use SSL when connecting.

CHAPTER 25. NOTIFIERS

217

25.4.4. Mattermost

The Mattermost notification type provides a simple interface to Mattermost’s messaging and
collaboration workspace.

Provide the following details to set up a Mattermost notification:

Target URL: The full URL that is posted to.

Optional: Username: Enter a username for the notification.

Optional: Channel: Enter a channel for the notification.

Icon URL: Specifies the icon to display for this notification.

Disable SSL verification: Turns off verification of the authenticity of the target’s certificate.
Select this option to disable verification for environments that use internal or private CA’s.

25.4.5. Pagerduty

To integrate Pagerduty, you must first create an API key in the PagerDuty system. This is the token that

Red Hat Ansible Automation Platform 2.5 Using automation execution

218

To integrate Pagerduty, you must first create an API key in the PagerDuty system. This is the token that
is given to automation controller. Then create a Service which provides an Integration Key that is also
given to automation controller.

Provide the following details to set up a Pagerduty notification:

API Token: You must first create an API key in the Pagerduty system. This is the token that is
given to automation controller.

PagerDuty subdomain: When you sign up for the Pagerduty account, you receive a unique
subdomain to communicate with. For example, if you signed up as "testuser", the web dashboard
is at testuser.pagerduty.com and you give the API testuser as the subdomain, not the full
domain.

API service/Integration Key: Enter the API service/integration key created in Pagerduty.

Client Identifier: This is sent along with the alert content to the Pagerduty service to help
identify the service that is using the API key and service. This is helpful if multiple integrations
are using the same API key and service.

25.4.6. Rocket.Chat

The Rocket.Chat notification type provides an interface to Rocket.Chat’s collaboration and
communication platform.

Provide the following details to set up a Rocket.Chat notification:

Target URL: The full URL that is POSTed to.

Optional: Username: Enter a username.

Optional: Icon URL: Specifies the icon to display for this notification

Disable SSL Verification: Turns off verification of the authenticity of the target’s certificate.
Select this option to disable verification for environments that use internal or private CA’s.

CHAPTER 25. NOTIFIERS

219

http://docs.grafana.org/tutorials/api_org_token_howto/

25.4.7. Slack

Slack is a collaborative team communication and messaging tool.

Provide the following details to set up a Slack notification:

A Slack application. For more information, see the Quickstart page of the Slack documentation
on how to create one.

Token: A token. For more information, see Legacy bots and specific details on bot tokens on
the Current token types documentation page.

Destination Channel: One Slack channel per line. The pound symbol (#) is required for
channels. To respond to or start a thread to a specific message add the parent message Id to
the channel where the parent message Id is 16 digits. A dot (.) must be manually inserted after
the 10th digit. For example, :#destination-channel, 1231257890.006423.

Notification color: Specify a notification color. Acceptable colors are hex color code, for
example: #3af or #789abc. When you have a bot or app set up, you must complete the following
steps:

1. Navigate to Apps.

2. Click the newly-created app and then go to Add features and functionality, which enables
you to configure incoming webhooks, bots, and permissions, as well as Install your app to
your workspace.

Red Hat Ansible Automation Platform 2.5 Using automation execution

220

https://api.slack.com/authentication/basics
https://api.slack.com/legacy/enabling-bot-users
https://api.slack.com/authentication/token-types#bot

25.4.8. Twilio

Twilio is a voice and SMS automation service. When you are signed in, you must create a phone number
from which the messages are sent. You can then define a Messaging Service under Programmable
SMS and associate the number you previously created with it.

You might need to verify this number or some other information before you are permitted to use it to
send to any numbers. The Messaging Service does not require a status callback URL and it does not
need the ability to process inbound messages.

Under your individual (or sub) account settings, you have API credentials. Twilio uses two credentials to
determine which account an API request is coming from. The Account SID, which acts as a username,
and the Auth Token which acts as a password.

Provide the following details to set up a Twilio notification:

Account SID: Enter the account SID.

Account Token: Enter the account token.

Source Phone Number: Enter the number associated with the messaging service in the form of
"+15556667777".

Destination SMS Numbers: Enter the list of numbers you want to receive the SMS. It must be a
10 digit phone number.

CHAPTER 25. NOTIFIERS

221

25.4.9. Webhook

The webhook notification type provides a simple interface for sending POSTs to a predefined web
service. Automation controller POSTs to this address using application and JSON content type with the
data payload containing the relevant details in JSON format. Some web service APIs expect HTTP
requests to be in a certain format with certain fields.

Configure the webhook notification with the following:

Configure the HTTP method, using POST or PUT.

The body of the outgoing request.

Configure authentication, using basic auth.

Provide the following details to set up a webhook notification:

Optional: Username: Enter a username.

Optional: Basic auth password:

Target URL: Enter the full URL to which the webhook notification is PUT or POSTed.

HTTP Headers: Enter Headers in JSON format where the keys and values are strings. For
example:

 {"Authentication": "988881adc9fc3655077dc2d4d757d480b5ea0e11", "MessageType": "Test"}`.

Disable SSL Verification: SSL verification is on by default, but you can choose to turn off
verification of the authenticity of the target’s certificate. Select this option to disable
verification for environments that use internal or private CA’s.

HTTP Method: Select the method for your webhook:

POST: Creates a new resource. It also acts as a catch-all for operations that do not fit into the
other categories. It is likely that you need to POST unless you know your webhook service
expects a PUT.

PUT: Updates a specific resource (by an identifier) or a collection of resources. You can also use

Red Hat Ansible Automation Platform 2.5 Using automation execution

222

PUT: Updates a specific resource (by an identifier) or a collection of resources. You can also use
PUT to create a specific resource if the resource identifier is known beforehand.

25.4.9.1. Webhook payloads

The following data is sent by automation controller at the webhook endpoint:

job id
name
url
created_by
started
finished
status
traceback
inventory
project
playbook
credential
limit
extra_vars
hosts
http method

The following is an example of a started notification through a webhook message as returned by
automation controller:

{"id": 38, "name": "Demo Job Template", "url": "https://host/#/jobs/playbook/38", "created_by":
"bianca", "started":
"2020-07-28T19:57:07.888193+00:00", "finished": null, "status": "running", "traceback": "", "inventory":
"Demo Inventory",

CHAPTER 25. NOTIFIERS

223

"project": "Demo Project", "playbook": "hello_world.yml", "credential": "Demo Credential", "limit": "",
"extra_vars": "{}",
"hosts": {}}POST / HTTP/1.1

The following data is returned by automation controller at the webhook endpoint for a success/fail
status:

job id
name
url
created_by
started
finished
status
traceback
inventory
project
playbook
credential
limit
extra_vars
hosts

The following is an example of a success/fail notification as returned by automation controller through
a webhook message:

{"id": 46, "name": "AWX-Collection-tests-awx_job_wait-long_running-XVFBGRSAvUUIrYKn", "url":
"https://host/#/jobs/playbook/46",
"created_by": "bianca", "started": "2020-07-28T20:43:36.966686+00:00", "finished": "2020-07-
28T20:43:44.936072+00:00", "status": "failed",
"traceback": "", "inventory": "Demo Inventory", "project": "AWX-Collection-tests-awx_job_wait-
long_running-JJSlglnwtsRJyQmw", "playbook":
"fail.yml", "credential": null, "limit": "", "extra_vars": "{\"sleep_interval\": 300}", "hosts": {"localhost":
{"failed": true, "changed": 0,
"dark": 0, "failures": 1, "ok": 1, "processed": 1, "skipped": 0, "rescued": 0, "ignored": 0}}}

25.5. CREATING CUSTOM NOTIFICATIONS

You can customize the text content of each Notification type on the notification form.

Procedure

1. From the navigation panel, select Automation Execution → Administration → Notifiers.

2. Click Create notifier.

3. Choose a notification type from the Type list.

4. Enable Customize messages by using the toggle.

Red Hat Ansible Automation Platform 2.5 Using automation execution

224

CHAPTER 25. NOTIFIERS

225

5. You can provide a custom message for various job events, such as the following:

Start message body

success message body

Error message body

Workflow approved body

Workflow denied message body

Workflow pending message body

Workflow timed out message body

The message forms vary depending on the type of notification that you are configuring. For example,
messages for Email and PagerDuty notifications appear to be a typical email, with a body and a subject,
in which case, automation controller displays the fields as Message and Message Body. Other
notification types only expect a Message for each type of event.

The Message fields are pre-populated with a template containing a top-level variable, job coupled with
an attribute, such as id or name. Templates are enclosed in curly brackets and can draw from a fixed set
of fields provided by automation controller, shown in the pre-populated message fields:

This pre-populated field suggests commonly displayed messages to a recipient who is notified of an
event. You can customize these messages with different criteria by adding your own attributes for the
job as needed. Custom notification messages are rendered using Jinja; the same templating engine used
by Ansible playbooks.

Messages and message bodies have different types of content, as the following points outline:

Messages are always just strings, one-liners only. New lines are not supported.

Message bodies are either a dictionary or a block of text:

The message body for Webhooks and PagerDuty uses dictionary definitions. The default
message body for these is {{ job_metadata }}, you can either leave that as it is or provide
your own dictionary.

The message body for email uses a block of text or a multi-line string. The default message
body is:

{{ job_friendly_name }} #{{ job.id }} had status {{ job.status }}, view details at {{ url }} {{
job_metadata }}

You can edit this text leaving {{ job_metadata }} in, or drop {{ job_metadata }}. Since the
body is a block of text, it can be any string you want. {{ job_metadata }} is rendered as a
dictionary containing fields that describe the job being executed. In all cases, {{
job_metadata }} includes the following fields:

id

Red Hat Ansible Automation Platform 2.5 Using automation execution

226

name

url

created_by

started

finished

status

traceback

NOTE

You cannot query individual fields within {{ job_metadata }}. When you
use {{ job_metadata }} in a notification template, all data is returned.

The resulting dictionary looks like the following:

{"id": 18,
 "name": "Project - Space Procedures",
 "url": "https://host/#/jobs/project/18",
 "created_by": "admin",
 "started": "2019-10-26T00:20:45.139356+00:00",
 "finished": "2019-10-26T00:20:55.769713+00:00",
 "status": "successful",
 "traceback": ""
}

If {{ job_metadata }} is rendered in a job, it includes the following additional fields:

inventory

project

playbook

credential

limit

extra_vars

hosts
The resulting dictionary is similar to the following:

{"id": 12,
 "name": "JobTemplate - Launch Rockets",
 "url": "https://host/#/jobs/playbook/12",
 "created_by": "admin",
 "started": "2019-10-26T00:02:07.943774+00:00",
 "finished": null,
 "status": "running",

CHAPTER 25. NOTIFIERS

227

 "traceback": "",
 "inventory": "Inventory - Fleet",
 "project": "Project - Space Procedures",
 "playbook": "launch.yml",
 "credential": "Credential - Mission Control",
 "limit": "",
 "extra_vars": "{}",
 "hosts": {}
}

If {{ job_metadata }} is rendered in a workflow job, it includes the following additional
field:

body (This enumerates the nodes in the workflow job and includes a description of the
job associated with each node)
The resulting dictionary is similar to the following:

{"id": 14,
 "name": "Workflow Job Template - Launch Mars Mission",
 "url": "https://host/#/workflows/14",
 "created_by": "admin",
 "started": "2019-10-26T00:11:04.554468+00:00",
 "finished": "2019-10-26T00:11:24.249899+00:00",
 "status": "successful",
 "traceback": "",
 "body": "Workflow job summary:

 node #1 spawns job #15, \"Assemble Fleet JT\", which finished with status
successful.
 node #2 spawns job #16, \"Mission Start approval node\", which finished with
status successful.\n
 node #3 spawns job #17, \"Deploy Fleet\", which finished with status
successful."
}

If you create a notification template that uses invalid syntax or references unusable fields, an error
message displays indicating the nature of the error. If you delete a notification’s custom message, the
default message is shown in its place.

IMPORTANT

If you save the notifications template without editing the custom message (or edit and
revert back to the default values), the Details screen assumes the defaults and does not
display the custom message tables. If you edit and save any of the values, the entire table
displays in the Details screen.

Additional resources

For more information, see Using variables with Jinja2 in the Ansible documentation.

Automation controller requires valid syntax to retrieve the correct data to display the messages.

For a list of supported attributes and the proper syntax construction, see the Supported Attributes for
Custom Notifications section.

Red Hat Ansible Automation Platform 2.5 Using automation execution

228

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#using-variables-with-jinja2

25.6. ENABLE AND DISABLE NOTIFICATIONS

You can set up notifications to notify you when a specific job starts, as well as on the success or failure at
the end of the job run. Note the following behaviors:

If a workflow job template has notification on start enabled, and a job template within that
workflow also has notification on start enabled, you receive notifications for both.

You can enable notifications to run on many job templates within a workflow job template.

You can enable notifications to run on a sliced job template start and each slice generates a
notification.

When you enable a notification to run on job start, and that notification gets deleted, the job
template continues to run, but results in an error message.

You can enable notifications on job start, job success, and job failure, or a combination of these, from
the Notifications tab of the Details page for the following resources:

Job Templates

Workflow Templates

Projects

For workflow templates that have approval nodes, in addition to Start, Success, and Failure, you can
enable or disable certain approval-related events:

Additional resources

For more information on working with these types of nodes, see Approval nodes.

25.7. CONFIGURE THE HOST HOSTNAME FOR NOTIFICATIONS

In System settings, you can replace the default value in the Base URL of the service field with your
preferred hostname to change the notification hostname.

Refreshing your license also changes the notification hostname. New installations of automation
controller do not have to set the hostname for notifications.

25.7.1. Resetting TOWER_URL_BASE

Automation controller determines how the base URL (TOWER_URL_BASE) is defined by looking at an
incoming request and setting the server address based on that incoming request.

Automation controller takes settings values from the database first. If no settings values are found, it
uses the values from the settings files. If you post a license by navigating to the automation controller
host’s IP address, the posted license is written to the settings entry in the database.

Use the following procedure to reset TOWER_URL_BASE if the wrong address has been picked up:

Procedure

1. From the navigation panel, select Settings → System.

2. Click Edit.

CHAPTER 25. NOTIFIERS

229

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/configuring_automation_execution/controller-config#controller-configure-system

3. Enter the address in the Base URL of the service field for the DNS entry you want to appear in
notifications.

25.8. NOTIFICATIONS API

Use the started, success, or error endpoints:

/api/v2/organizations/N/notification_templates_started/
/api/v2/organizations/N/notification_templates_success/
/api/v2/organizations/N/notification_templates_error/

Additionally, the ../../../N/notification_templates_started endpoints have GET and POST actions for:

Organizations

Projects

Inventory Sources

Job Templates

System Job Templates

Workflow Job Templates

Red Hat Ansible Automation Platform 2.5 Using automation execution

230

CHAPTER 26. SUPPORTED ATTRIBUTES FOR CUSTOM
NOTIFICATIONS

Learn about the list of supported job attributes and the proper syntax for constructing the message text
for notifications.

The following are the supported job attributes:

allow_simultaneous - (boolean) Indicates if multiple jobs can run simultaneously from the job
template associated with this job.

controller_node - (string) The instance that manages the isolated execution environment.

created - (datetime) The timestamp when this job was created.

custom_virtualenv - (string) The custom virtual environment used to execute the job.

description - (string) An optional description of the job.

diff_mode - (boolean) If enabled, textual changes made to any templated files on the host are
shown in the standard output.

elapsed - (decimal) The elapsed time in seconds that the job has run.

execution_node - (string) The node that the job executes on.

failed - (boolean) True if the job failed.

finished - (datetime) The date and time the job finished execution.

force_handlers - (boolean) When handlers are forced, they run when notified even if a task fails
on that host. Note that some conditions, such as unreachable hosts can still prevent handlers
from running.

forks - (int) The number of forks requested for this job.

id - (int) The database ID for this job.

job_explanation - (string) The status field to indicate the state of the job if it was not able to
run and capture stdout.

job_slice_count - (integer) If run as part of a sliced job, this is the total number of slices (if 1, job
is not part of a sliced job).

job_slice_number - (integer) If run as part of a sliced job, this is the ID of the inventory slice
operated on (if not part of a sliced job, attribute is not used).

job_tags - (string) Only tasks with specified tags execute.

job_type - (choice) This can be run, check, or scan.

launch_type - (choice) This can be manual, relaunch, callback, scheduled, dependency,
workflow, sync, or scm.

limit - (string) The playbook execution limited to this set of hosts, if specified.

modified - (datetime) The timestamp when this job was last modified.

CHAPTER 26. SUPPORTED ATTRIBUTES FOR CUSTOM NOTIFICATIONS

231

name - (string) The name of this job.

playbook - (string) The playbook executed.

scm_revision - (string) The scm revision from the project used for this job, if available.

skip_tags - (string) The playbook execution skips over this set of tags, if specified.

start_at_task - (string) The playbook execution begins at the task matching this name, if
specified.

started- (datetime) The date and time the job was queued for starting.

status - (choice) This can be new, pending, waiting, running, successful, failed, error, or
canceled.

timeout - (int) The amount of time, in seconds, to run before the task is canceled.

type - (choice) The data type for this job.

url - (string) The URL for this job.

use_fact_cache - (boolean) If enabled for the job, automation controller acts as an Ansible
Fact Cache Plugin at the end of a playbook run to the database and caches facts for use by
Ansible.

verbosity - (choice) 0 through 5 (corresponding to Normal through WinRM Debug).

host_status_counts (The count of hosts uniquely assigned to each status)

skipped (integer)

ok (integer)

changed (integer)

failures (integer)

dark (integer)

processed (integer)

rescued (integer)

ignored (integer)

failed (boolean)

summary_fields:

inventory

id - (integer) The database ID for the inventory.

name - (string) The name of the inventory.

description - (string) An optional description of the inventory.

has_active_failures- (boolean) (deprecated) flag indicating whether any hosts in

Red Hat Ansible Automation Platform 2.5 Using automation execution

232

has_active_failures- (boolean) (deprecated) flag indicating whether any hosts in
this inventory have failed.

total_hosts - (deprecated) (int) The total number of hosts in this inventory.

hosts_with_active_failures - (deprecated) (int) The number of hosts in this
inventory with active failures.

total_groups - (deprecated) (int) The total number of groups in this inventory.

groups_with_active_failures - (deprecated) (int) The number of hosts in this
inventory with active failures.

has_inventory_sources - (deprecated) (boolean) The flag indicating whether this
inventory has external inventory sources.

total_inventory_sources - (int) The total number of external inventory sources
configured within this inventory.

inventory_sources_with_failures - (int) The number of external inventory
sources in this inventory with failures.

organization_id - (id) The organization containing this inventory.

kind - (choice) (empty string) (indicating hosts have direct link with inventory) or
smart

project

id - (int) The database ID for the project.

name - (string) The name of the project.

description (string) An optional description of the project.

status - (choices) One of new, pending, waiting, running, successful, failed,
error, canceled, never updated, ok, or missing.

scm_type (choice) One of (empty string), git, hg, svn, insights.

job_template

id - (int) The database ID for the job template.

description - (string) The optional description of the project.

status - (choices) One of new, pending, waiting, running, successful, failed,
error, canceled, never updated, ok, or missing.

job_template

id- (int) The database ID for the job template.

name- (string) The name of the job template.

description- (string) An optional description for the job template.

unified_job_template

CHAPTER 26. SUPPORTED ATTRIBUTES FOR CUSTOM NOTIFICATIONS

233

id - (int) The database ID for the unified job template.

name - (string) The name of the unified job template.

description - (string) An optional description for the unified job template.

unified_job_type - (choice) The unified job type, such as job, workflow_job, or
project_update.

instance_group

id - (int) The database ID for the instance group.

name- (string) The name of the instance group.

created_by

id - (int) The database ID of the user that launched the operation.

username - (string) The username that launched the operation.

first_name - (string) The first name.

last_name - (string) The last name.

labels

count - (int) The number of labels.

results - The list of dictionaries representing labels. For example, {"id": 5, "name":
"database jobs"}.

You can reference information about a job in a custom notification message using grouped curly
brackets {{ }}. Specific job attributes are accessed using dotted notation, for example, {{
job.summary_fields.inventory.name }}. You can add any characters used in front or around the braces, or
plain text, for clarification, such as "#" for job ID and single-quotes to denote some descriptor. Custom
messages can include a number of variables throughout the message:

{{ job_friendly_name }} {{ job.id }} ran on {{ job.execution_node }} in {{ job.elapsed }} seconds.

The following are additional variables that can be added to the template:

approval_node_name - (string) The approval node name.

approval_status - (choice) One of approved, denied, and timed_out.

url - (string) The URL of the job for which the notification is emitted (this applies to start,
success, fail, and approval notifications).

workflow_url - (string) The URL to the relevant approval node. This allows the notification
recipient to go to the relevant workflow job page to examine the situation. For example, This
node can be viewed at: {{workflow_url }}. In cases of approval-related notifications, both url
and workflow_url are the same.

job_friendly_name - (string) The friendly name of the job.

job_metadata - (string) The job metadata as a JSON string, for example:

Red Hat Ansible Automation Platform 2.5 Using automation execution

234

{'url': 'https://automationcontroller.example.com/$/jobs/playbook/13',
 'traceback': '',
 'status': 'running',
 'started': '2019-08-07T21:46:38.362630+00:00',
 'project': 'Stub project',
 'playbook': 'ping.yml',
 'name': 'Stub Job Template',
 'limit': '',
 'inventory': 'Stub Inventory',
 'id': 42,
 'hosts': {},
 'friendly_name': 'Job',
 'finished': False,
 'credential': 'Stub credential',
 'created_by': 'admin'}

CHAPTER 26. SUPPORTED ATTRIBUTES FOR CUSTOM NOTIFICATIONS

235

CHAPTER 27. WORKING WITH WEBHOOKS
A Webhook enables you to execute specified commands between applications over the web. Automation
controller currently provides webhook integration with GitHub and GitLab.

Set up a webhook using the following services:

Setting up a GitHub webhook

Setting up a GitLab webhook

Viewing a payload output

The webhook post-status-back functionality for GitHub and GitLab is designed to work only under
certain CI events. Receiving another kind of event results in messages such as the following in the
service log:

awx.main.models.mixins Webhook event did not have a status API endpoint associated,
skipping.

27.1. SETTING UP A GITHUB WEBHOOK

Automation controller has the ability to run jobs based on a triggered webhook event coming in. Job
status information (pending, error, success) can be sent back only for pull request events. If you do not
need automation controller to post job statuses back to the webhook service, go directly to step 3.

Procedure

1. Generate a Personal Access Token (PAT) for use with automation controller:

a. In the profile settings of your GitHub account, select Settings.

b. From the navigation panel, select <> Developer Settings.

c. On the Developer Settings page, select Personal access tokens.

d. Select Tokens(classic)

e. From the Personal access tokens screen, click Generate a personal access token.

f. When prompted, enter your GitHub account password to continue.

g. In the Note field, enter a brief description about what this PAT is used for.

h. In the Select scopes fields, check the boxes next to repo:status, repo_deployment, and
public_repo. The automation webhook only needs repository scope access, with the
exception of invites. For more information, see Scopes for OAuth apps documentation .

i. Click Generate token.

IMPORTANT

When the token is generated, ensure that you copy the PAT, as you need it in
step 2. You cannot access this token again in GitHub.

Red Hat Ansible Automation Platform 2.5 Using automation execution

236

https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps

2. Use the PAT to optionally create a GitHub credential:

a. Go to your instance and create a new credential for the GitHub PAT, using the generated
token.

b. Make note of the name of this credential, as you use it in the job template that posts back to
GitHub.

c. Go to the job template with which you want to enable webhooks, and select the webhook
service and credential you created in the preceding step.

d. Click Save. Your job template is set up to post back to GitHub.

3. Go to a GitHub repository where you want to configure webhooks and select Settings.

4. From the navigation panel, select Webhooks → Add webhook.

5. To complete the Add webhook page, you must check the Enable Webhook option in a job
template or workflow job template. For more information, see step 3 in both Creating a job
template and Creating a workflow template .

6. Complete the following fields:

Payload URL: Copy the contents of the Webhook URL from the job template and paste it
here. The results are sent to this address from GitHub.

Content type: Set it to application/json.

Secret: Copy the contents of the Webhook Key from the job template and paste it here.

Which events would you like to trigger this webhook?: Select the types of events you

CHAPTER 27. WORKING WITH WEBHOOKS

237

want to trigger a webhook. Any such event will trigger the job or workflow. To have the job
status (pending, error, success) sent back to GitHub, you must select Pull requests in the
Let me select individual events section.

Active: Leave this checked.

7. Click Add webhook.

8. When your webhook is configured, it is displayed in the list of webhooks active for your
repository, along with the ability to edit or delete it. Click on a webhook, to go to the Manage
webhook screen.

9. Scroll to view the delivery attempts made to your webhook and whether they succeeded or
failed.

Additional resources

For more information, see the Webhooks documentation.

Red Hat Ansible Automation Platform 2.5 Using automation execution

238

https://docs.github.com/en/webhooks

27.2. SETTING UP A GITLAB WEBHOOK

Automation controller has the ability to run jobs based on a triggered webhook event coming in. Job
status information (pending, error, success) can be sent back only for pull request events. If automation
controller is not required to post job statuses back to the webhook service, go directly to step 3.

Procedure

1. Generate a Personal Access Token (PAT) for use with automation controller:

a. From the navigation panel in GitLab, select your avatar and Edit profile.

b. From the navigation panel, select Access tokens.

c. Complete the following fields:

Token name: Enter a brief description about what this PAT is used for.

Expiration date: Skip this field unless you want to set an expiration date for your
webhook.

Select scopes: Select those that are applicable to your integration. For automation
controller, api is the only selection necessary.

d. Click Create personal access token.

IMPORTANT

When the token is generated, ensure that you copy the PAT, as you need it in
step 2. You cannot access this token again in GitLab.

2. Use the PAT to optionally create a GitLab credential:

a. Go to your instance, and create a new credential for the GitLab PAT, using the generated
token.

b. Make note of the name of this credential, as you use it in the job template that posts back to
GitLab.

c. Go to the job template with which you want to enable webhooks, and select the webhook
service and credential you created in the preceding step.

CHAPTER 27. WORKING WITH WEBHOOKS

239

d. Click Save. Your job template is set up to post back to GitLab.

3. Go to a GitLab repository where you want to configure webhooks.

4. From the navigation panel, select Settings → Integrations.

5. To complete the Add webhook page, you must check the Enable Webhook option in a job
template or workflow job template. For more information, see step 3 in both Creating a job
template and Creating a workflow template .

6. Complete the following fields:

URL: Copy the contents of the Webhook URL from the job template and paste it here. The
results are sent to this address from GitLab.

Secret Token: Copy the contents of the Webhook Key from the job template and paste it
here.

Trigger: Select the types of events you want to trigger a webhook. Any such event will
trigger the job or workflow. To have job status (pending, error, success) sent back to
GitLab, you must select Merge request events in the Trigger section.

SSL verification: Leave Enable SSL verification selected.

7. Click Add webhook.

8. When your webhook is configured, it is displayed in the list Project Webhooks for your
repository, along with the ability to test events, edit or delete the webhook. Testing a webhook
event displays the results on each page whether it succeeded or failed.

Additional resources

For more information, see Webhooks.

27.3. VIEWING THE PAYLOAD OUTPUT

You can view the entire payload exposed as an extra variable.

Procedure

1. From the navigation panel, select Automation Execution → Jobs.

Red Hat Ansible Automation Platform 2.5 Using automation execution

240

https://docs.gitlab.com/ee/user/project/integrations/webhooks.html

2. Select the job template with the webhook enabled.

3. Select the Details tab.

4. In the Extra Variables field, view the payload output from the awx_webhook_payload variable,
as shown in the following example:

CHAPTER 27. WORKING WITH WEBHOOKS

241

CHAPTER 28. SETTING UP RED HAT INSIGHTS FOR RED HAT
ANSIBLE AUTOMATION PLATFORM REMEDIATIONS

Automation controller supports integration with Red Hat Insights.

When a host is registered with Red Hat Insights, it is scanned continually for vulnerabilities and known
configuration conflicts. Each problem identified can have an associated fix in the form of an Ansible
Playbook.

Red Hat Insights users create a maintenance plan to group the fixes and can create a playbook to
mitigate the problems. Automation controller tracks the maintenance plan playbooks through a Red Hat
Insights project.

Authentication to Red Hat Insights through Basic Authorization is backed by a special credential, which
must first be established in automation controller. To run a Red Hat Insights maintenance plan, you need
a Red Hat Insights project and inventory.

28.1. CREATING RED HAT INSIGHTS CREDENTIALS

Use the following procedure to create a new credential for use with Red Hat Insights:

Procedure

1. From the navigation panel, select Automation Execution → Infrastructure → Credentials.

2. Click Create credential.

3. Enter the appropriate details in the following fields:

Name: Enter the name of the credential.

Optional: Description: Enter a description for the credential.

Optional: Organization: Enter the name of the organization with which the credential is

associated, or click the search icon and select it from the Select organization window.

Credential type: Enter Insights or select it from the list.

Red Hat Ansible Automation Platform 2.5 Using automation execution

242

Username: Enter a valid Red Hat Insights credential.

Password: Enter a valid Red Hat Insights credential. The Red Hat Insights credentials are
the user’s Red Hat Customer Portal account username and password.

4. Click Create credential.

28.2. CREATING A RED HAT INSIGHTS PROJECT

Use the following steps to create a new project for use with Red Hat Insights:

Procedure

1. From the navigation panel, select Automation Execution → Projects.

2. Click Create project.

3. Enter the appropriate details in the following fields. Note that the following fields require
specific Red Hat Insights related entries:

Name: Enter the name for your Red Hat Insights project.

Optional: Description: Enter a description for the project.

Organization: Enter the name of the organization with which the credential is associated, or

click the search icon and select it from the Select organization window.

Optional: Execution environment: The execution environment that is used for jobs that

CHAPTER 28. SETTING UP RED HAT INSIGHTS FOR RED HAT ANSIBLE AUTOMATION PLATFORM REMEDIATIONS

243

https://access.redhat.com/

Optional: Execution environment: The execution environment that is used for jobs that
use this project.

Source control type: Select Red Hat Insights.

Optional: Content signature validation credential: Enable content signing to verify that
the content has remained secure when a project is synced.

Insights credential: This is pre-populated with the Red Hat Insights credential you created

before. If not, enter the credential, or click the search icon and select it from the Select
Insights Credential window.

4. Select the update options for this project from the Options field and provide any additional

values, if applicable. For more information about each option click the tooltip icon next to
each one.

5. Click Create project.

All SCM and project synchronizations occur automatically the first time you save a new project. If you
want them to be updated to what is current in Red Hat Insights, manually update the SCM-based

project by clicking the update icon under the project’s available actions.

This process syncs your Red Hat Insights project with your Red Hat Insights account solution. Note that
the status dot beside the name of the project updates once the sync has run.

28.3. CREATE AN INSIGHTS INVENTORY

The Insights playbook contains a hosts: line where the value is the host name supplied to red Hat
insights, which can be different from the host name supplied to automation controller

To create a new inventory to use with Red Hat Insights, see Creating Insights credentials .

28.4. REMEDIATING A RED HAT INSIGHTS INVENTORY

Remediation of a Red Hat Insights inventory enables automation controller to run Red Hat Insights
playbooks with a single click. You can do this by creating a job template to run the Red Hat Insights
remediation.

Procedure

Red Hat Ansible Automation Platform 2.5 Using automation execution

244

1. From the navigation menu, select Automation Execution → Templates.

2. On the Templates list view, click Create template and select from the list.

3. Enter the appropriate details in the following fields. Note that the following fields require
specific Red Hat Insights related entries:

Name: Enter the name of your Maintenance Plan.

Optional: Description: Enter a description for the job template.

Job Type: If not already populated, select Run from the job type list.

Inventory: Select the Red Hat Insights inventory that you previously created.

Project: Select the Red Hat Insights project that you previously created.

Optional: Execution Environment: The container image to be used for execution.

Playbook: Select a playbook associated with the Maintenance Plan that you want to run
from the playbook list.

Optional: Credentials: Enter the credential to use for this project or click the search ()
icon and select it from the pop-up window. The credential does not have to be a Red Hat
Insights credential.

Verbosity: Keep the default setting, or select the desired verbosity from the list.

CHAPTER 28. SETTING UP RED HAT INSIGHTS FOR RED HAT ANSIBLE AUTOMATION PLATFORM REMEDIATIONS

245

4. Click Create job template.

5. Click the launch icon to launch the job template.

When complete, the job results in the Job Details page.

Red Hat Ansible Automation Platform 2.5 Using automation execution

246

CHAPTER 29. BEST PRACTICES FOR AUTOMATION
CONTROLLER

The following describes best practice for the use of automation controller:

29.1. USE SOURCE CONTROL

Automation controller supports playbooks stored directly on the server. Therefore, you must store your
playbooks, roles, and any associated details in source control. This way you have an audit trail describing
when and why you changed the rules that are automating your infrastructure. Additionally, it permits
sharing of playbooks with other parts of your infrastructure or team.

29.2. ANSIBLE FILE AND DIRECTORY STRUCTURE

If you are creating a common set of roles to use across projects, these should be accessed through
source control submodules, or a common location such as /opt. Projects should not expect to import
roles or content from other projects.

For more information, see the link General tips from the Ansible documentation.

NOTE

Avoid using the playbooks vars_prompt feature, as automation controller does
not interactively permit vars_prompt questions. If you cannot avoid using
vars_prompt, see the Surveys functionality.

Avoid using the playbooks pause feature without a timeout, as automation
controller does not permit canceling a pause interactively. If you cannot avoid
using pause, you must set a timeout.

Jobs use the playbook directory as the current working directory, although jobs must be coded to use
the playbook_dir variable rather than relying on this.

29.3. USE DYNAMIC INVENTORY SOURCES

If you have an external source of truth for your infrastructure, whether it is a cloud provider or a local
CMDB, it is best to define an inventory sync process and use the support for dynamic inventory
(including cloud inventory sources). This ensures your inventory is always up to date.

NOTE

Edits and additions to Inventory host variables persist beyond an inventory
synchronization as long as --overwrite_vars is not set.

29.4. VARIABLE MANAGEMENT FOR INVENTORY

Keep variable data with the hosts and groups definitions (see the inventory editor), rather than using
group_vars/ and host_vars/. If you use dynamic inventory sources, automation controller can
synchronize such variables with the database as long as the Overwrite Variables option is not set.

29.5. AUTOSCALING

CHAPTER 29. BEST PRACTICES FOR AUTOMATION CONTROLLER

247

https://docs.ansible.com/ansible/latest/tips_tricks/ansible_tips_tricks.html

Use the "callback" feature to permit newly booting instances to request configuration for auto-scaling
scenarios or provisioning integration.

29.6. LARGER HOST COUNTS

Set "forks" on a job template to larger values to increase parallelism of execution runs.

29.7. CONTINUOUS INTEGRATION / CONTINUOUS DEPLOYMENT

For a Continuous Integration system, such as Jenkins, to spawn a job, it must make a curl request to a
job template. The credentials to the job template must not require prompting for any particular
passwords. For configuration and use instructions, see Installation in the Ansible documentation.

Red Hat Ansible Automation Platform 2.5 Using automation execution

248

https://docs.ansible.com/automation-controller/latest/html/controllercli/usage.html

CHAPTER 30. GLOSSARY

Ad Hoc
Ad hoc refers to using Ansible to perform a quick command, using /usr/bin/ansible, rather than the
orchestration language, which is /usr/bin/ansible-playbook. An example of an ad hoc command might
be rebooting 50 machines in your infrastructure. Anything you can do ad hoc can be accomplished by
writing a Playbook. Playbooks can also glue lots of other operations together.

Callback Plugin
Refers to user-written code that can intercept results from Ansible and act on them. Some examples in
the GitHub project perform custom logging, send email, or play sound effects.

Control Groups
Also known as 'cgroups', a control group is a feature in the Linux kernel that enables resources to be
grouped and allocated to run processes. In addition to assigning resources to processes, cgroups can
also report use of resources by all processes running inside of the cgroup.

Check Mode
Refers to running Ansible with the --check option, which does not make any changes on the remote
systems, but only outputs the changes that might occur if the command ran without this flag. This is
analogous to so-called "dry run" modes in other systems. However, this does not take into account
unexpected command failures or cascade effects (which is true of similar modes in other systems). Use
Check mode to get an idea of what might happen, but it is not a substitute for a good staging
environment.

Container Groups
Container Groups are a type of Instance Group that specify a configuration for provisioning a pod in a
Kubernetes or OpenShift cluster where a job is run. These pods are provisioned on-demand and exist
only for the duration of the playbook run.

Credentials
Authentication details that can be used by automation controller to launch jobs against machines, to
synchronize with inventory sources, and to import project content from a version control system. For
more information, see [Credentials].

Credential Plugin
Python code that contains definitions for an external credential type, its metadata fields, and the code
needed for interacting with a secret management system.

Distributed Job
A job that consists of a job template, an inventory, and slice size. When executed, a distributed job slices
each inventory into a number of "slice size" chunks, which are then used to run smaller job slices.

External Credential Type
A managed credential type used for authenticating with a secret management system.

Facts
Facts are things that are discovered about remote nodes. While they can be used in playbooks and
templates just like variables, facts are things that are inferred, rather than set. Facts are automatically
discovered when running plays by executing the internal setup module on the remote nodes. You never
have to call the setup module explicitly: it just runs. It can be disabled to save time if it is not required.
For the convenience of users who are switching from other configuration management systems, the fact
module also pulls in facts from the ohai and facter tools if they are installed, which are fact libraries from
Chef and Puppet, respectively.

Forks

CHAPTER 30. GLOSSARY

249

Ansible and automation controller communicate with remote nodes in parallel. The level of parallelism
can be set in several ways during the creation or editing of a Job Template, by passing --forks, or by
editing the default in a configuration file. The default is a very conservative five forks, though if you have
a lot of RAM, you can set this to a higher value, such as 50, for increased parallelism.

Group
A set of hosts in Ansible that can be addressed as a set, of which many can exist within a single Inventory.

Group Vars
The group_vars/ files are files that are stored in a directory with an inventory file, with an optional
filename named after each group. This is a convenient place to put variables that are provided to a given
group, especially complex data structures, so that these variables do not have to be embedded in the
inventory file or playbook.

Handlers
Handlers are like regular tasks in an Ansible playbook (see Tasks), but are only run if the Task contains a
"notify" directive and also indicates that it changed something. For example, if a configuration file is
changed then the task referencing the configuration file templating operation might notify a service
restart handler. This means services can be bounced only if they need to be restarted. Handlers can be
used for things other than service restarts, but service restarts are the most common use.

Host
A system managed by automation controller, which may include a physical, virtual, or cloud-based server,
or other device (typically an operating system instance). Hosts are contained in an Inventory. Sometimes
referred to as a "node".

Host Specifier
Each Play in Ansible maps a series of tasks (which define the role, purpose, or orders of a system) to a
set of systems. This "hosts:" directive in each play is often called the hosts specifier. It can select one
system, many systems, one or more groups, or hosts that are in one group and explicitly not in another.

Instance Group
A group that contains instances for use in a clustered environment. An instance group provides the
ability to group instances based on policy.

Inventory
A collection of hosts against which Jobs can be launched.

Inventory Script
A program that looks up hosts, group membership for hosts, and variable information from an external
resource, whether that be a SQL database, a CMDB solution, or LDAP. This concept was adapted from
Puppet (where it is called an "External Nodes Classifier") and works in a similar way.

Inventory Source
Information about a cloud or other script to be merged into the current inventory group, resulting in the
automatic population of Groups, Hosts, and variables about those groups and hosts.

Job
One of many background tasks launched by automation controller, this is usually the instantiation of a
Job Template, such as the launch of an Ansible playbook. Other types of jobs include inventory imports,
project synchronizations from source control, or administrative cleanup actions.

Job Detail
The history of running a particular job, including its output and success/failure status.

Job Slice

Red Hat Ansible Automation Platform 2.5 Using automation execution

250

See Distributed Job.

Job Template
The combination of an Ansible playbook and the set of parameters required to launch it. For more
information, see Job templates.

JSON
JSON is a text-based format for representing structured data based on JavaScript object syntax.
Ansible and automation controller use JSON for return data from remote modules. This enables
modules to be written in any language, not just Python.

Mesh
Describes a network comprising of nodes. Communication between nodes is established at the transport
layer by protocols such as TCP, UDP or Unix sockets.

See also, Node.

Metadata
Information for locating a secret in the external system once authenticated. The user provides this
information when linking an external credential to a target credential field.

Node
A node corresponds to entries in the instance database model, or the /api/v2/instances/ endpoint, and
is a machine participating in the cluster or mesh. The unified jobs API reports controller_node and
execution_node fields. The execution node is where the job runs, and the controller node interfaces
between the job and server functions.

Node
Type

Description

Control Nodes that run persistent services, and delegate jobs to hybrid and execution nodes.

Hybrid Nodes that run persistent services and execute jobs.

Hop Used for relaying across the mesh only.

Execution Nodes that run jobs delivered from control nodes (jobs submitted from the user’s Ansible
automation)

Notification Template
An instance of a notification type (Email, Slack, Webhook, etc.) with a name, description, and a defined
configuration.

Notification
A Notification, such as Email, Slack or a Webhook, has a name, description and configuration defined in a
Notification template. For example, when a job fails, a notification is sent using the configuration defined
by the notification template.

Notify
The act of a task registering a change event and informing a handler task that another action needs to
be run at the end of the play. If a handler is notified by multiple tasks, it is still only run once. Handlers are
run in the order they are listed, not in the order that they are notified.

CHAPTER 30. GLOSSARY

251

Organization
A logical collection of Users, Teams, Projects, and Inventories. Organization is the highest level in the
object hierarchy.

Organization Administrator
An user with the rights to modify the Organization’s membership and settings, including making new
users and projects within that organization. An organization administrator can also grant permissions to
other users within the organization.

Permissions
The set of privileges assigned to Users and Teams that provide the ability to read, modify, and
administer Projects, Inventories, and other objects.

Plays
A play is minimally a mapping between a set of hosts selected by a host specifier (usually chosen by
groups, but sometimes by hostname globs) and the tasks which run on those hosts to define the role
that those systems perform. A playbook is a list of plays. There can be one or many plays in a playbook.

Playbook
An Ansible playbook. For more information, see Ansible playbooks.

Policy
Policies dictate how instance groups behave and how jobs are executed.

Project
A logical collection of Ansible playbooks, represented in automation controller.

Roles
Roles are units of organization in Ansible and automation controller. Assigning a role to a group of hosts
(or a set of groups, or host patterns, etc.) implies that they implement a specific behavior. A role can
include applying variable values, tasks, and handlers, or a combination of these things. Because of the
file structure associated with a role, roles become redistributable units that enable you to share behavior
among playbooks, or with other users.

Secret Management System
A server or service for securely storing and controlling access to tokens, passwords, certificates,
encryption keys, and other sensitive data.

Schedule
The calendar of dates and times for which a job should run automatically.

Sliced Job
See Distributed Job.

Source Credential
An external credential that is linked to the field of a target credential.

Sudo
Ansible does not require root logins and, since it is daemonless, does not require root level daemons
(which can be a security concern in sensitive environments). Ansible can log in and perform many
operations wrapped in a sudo command, and can work with both password-less and password-based
sudo. Some operations that do not normally work with sudo (such as scp file transfer) can be achieved
with Ansible’s copy, template, and fetch modules while running in sudo mode.

Superuser

An administrator of the server who has permission to edit any object in the system, whether or not it is

Red Hat Ansible Automation Platform 2.5 Using automation execution

252

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#

An administrator of the server who has permission to edit any object in the system, whether or not it is
associated with any organization. Superusers can create organizations and other superusers.

Survey
Questions asked by a job template at job launch time, configurable on the job template.

Target Credential
A non-external credential with an input field that is linked to an external credential.

Team
A sub-division of an Organization with associated Users, Projects, Credentials, and Permissions. Teams
provide a means to implement role-based access control schemes and delegate responsibilities across
Organizations.

User
An operator with associated permissions and credentials.

Webhook
Webhooks enable communication and information sharing between applications. They are used to
respond to commits pushed to SCMs and launch job templates or workflow templates.

Workflow Job Template
A set consisting of any combination of job templates, project syncs, and inventory syncs, linked together
in order to execute them as a single unit.

YAML
A human-readable language that is often used for writing configuration files. Ansible and automation
controller use YAML to define playbook configuration languages and also variable files. YAML has a
minimum of syntax, is very clean, and is easy for people to skim. It is a good data format for
configuration files and humans, but is also machine readable. YAML is popular in the dynamic language
community and the format has libraries available for serialization in many languages. Examples include
Python, Perl, or Ruby.

CHAPTER 30. GLOSSARY

253

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. AUTOMATION CONTROLLER OVERVIEW
	1.1. REAL-TIME PLAYBOOK OUTPUT AND EXPLORATION
	1.2. "PUSH BUTTON" AUTOMATION
	1.3. SIMPLIFIED ROLE-BASED ACCESS CONTROL AND AUDITING
	1.4. CLOUD AND AUTOSCALING FLEXIBILITY
	1.5. THE IDEAL RESTFUL API
	1.6. BACKUP AND RESTORE
	1.7. ANSIBLE GALAXY INTEGRATION
	1.8. INVENTORY SUPPORT FOR OPENSTACK
	1.9. REMOTE COMMAND EXECUTION
	1.10. SYSTEM TRACKING
	1.11. INTEGRATED NOTIFICATIONS
	1.12. INTEGRATIONS
	1.13. CUSTOM VIRTUAL ENVIRONMENTS
	1.14. AUTHENTICATION ENHANCEMENTS
	1.15. CLUSTER MANAGEMENT
	1.16. WORKFLOW ENHANCEMENTS
	1.17. JOB DISTRIBUTION
	1.18. SUPPORT FOR DEPLOYMENT IN A FIPS-ENABLED ENVIRONMENT
	1.19. LIMIT THE NUMBER OF HOSTS PER ORGANIZATION
	1.20. INVENTORY PLUGINS
	1.21. SECRET MANAGEMENT SYSTEM

	CHAPTER 2. LOGGING INTO AUTOMATION CONTROLLER AFTER INSTALLATION
	CHAPTER 3. THE USER INTERFACE
	3.1. INFRASTRUCTURE MENU
	3.2. ADMINISTRATION
	3.3. THE SETTINGS MENU

	CHAPTER 4. SEARCH
	4.1. RULES FOR SEARCHING
	4.1.1. Values for search fields
	4.1.2. Searching using values from related fields
	4.1.3. Other search considerations

	4.2. SORT

	CHAPTER 5. JOBS IN AUTOMATION CONTROLLER
	5.1. INVENTORY SYNC JOBS
	5.1.1. Inventory sync details

	5.2. SCM INVENTORY JOBS
	5.2.1. SCM inventory details

	5.3. PLAYBOOK RUN JOBS
	5.3.1. Search
	5.3.2. Playbook run details
	5.3.3. Playbook Access and Information Sharing
	5.3.4. Isolation functionality and variables

	5.4. AUTOMATION CONTROLLER CAPACITY DETERMINATION AND JOB IMPACT
	5.4.1. Resource determination for capacity algorithm
	5.4.1.1. Memory relative capacity
	5.4.1.2. CPU relative capacity

	5.4.2. Capacity job impacts
	5.4.2.1. Impact of job types in automation controller
	5.4.2.2. Selecting the correct capacity

	5.5. JOB BRANCH OVERRIDING
	5.5.1. Source tree copy behavior
	5.5.2. Project revision behavior
	5.5.3. Git Refspec

	CHAPTER 6. JOB TEMPLATES
	6.1. CREATING A JOB TEMPLATE
	6.2. ADDING PERMISSIONS TO TEMPLATES
	6.3. DELETING A JOB TEMPLATE
	6.4. WORK WITH NOTIFICATIONS
	6.5. VIEW COMPLETED JOBS
	6.6. SCHEDULING JOB TEMPLATES
	6.7. SURVEYS IN JOB TEMPLATES
	6.7.1. Creating a survey
	6.7.2. Optional survey questions

	6.8. LAUNCHING A JOB TEMPLATE
	6.9. COPYING A JOB TEMPLATE
	6.10. SCAN JOB TEMPLATES
	6.10.1. Fact scan playbooks
	6.10.2. Supported OSes for scan_facts.yml
	6.10.3. Pre-scan setup
	6.10.4. Custom fact scans
	6.10.5. Fact caching
	6.10.6. Benefits of fact caching

	6.11. USE CLOUD CREDENTIALS WITH A CLOUD INVENTORY
	6.11.1. OpenStack
	6.11.2. Amazon Web Services
	6.11.3. Google
	6.11.4. Azure
	6.11.5. VMware

	6.12. PROVISIONING CALLBACKS
	6.12.1. Enabling Provisioning Callbacks
	6.12.2. Passing extra variables to Provisioning Callbacks

	6.13. EXTRA VARIABLES
	6.13.1. Relaunch a job template

	CHAPTER 7. JOB SLICING
	7.1. JOB SLICE CONSIDERATIONS
	7.2. JOB SLICE EXECUTION BEHAVIOR
	7.3. SEARCHING JOB SLICES

	CHAPTER 8. WORKFLOW JOB TEMPLATES
	8.1. CREATING A WORKFLOW JOB TEMPLATE
	8.2. WORK WITH PERMISSIONS
	8.3. WORK WITH NOTIFICATIONS
	8.4. VIEW COMPLETED WORKFLOW JOBS
	8.5. SCHEDULING A WORKFLOW JOB TEMPLATE
	8.6. SURVEYS IN WORKFLOW JOB TEMPLATES
	8.7. WORKFLOW VISUALIZER
	8.7.1. Building a workflow
	8.7.2. Approval nodes
	8.7.3. Building nodes scenarios
	8.7.4. Editing a node

	8.8. LAUNCHING A WORKFLOW JOB TEMPLATE
	8.9. COPYING A WORKFLOW JOB TEMPLATE
	8.10. WORKFLOW JOB TEMPLATE EXTRA VARIABLES

	CHAPTER 9. WORKFLOWS IN AUTOMATION CONTROLLER
	9.1. WORKFLOW SCENARIOS AND CONSIDERATIONS
	9.2. WORKFLOW EXTRA VARIABLES
	9.3. WORKFLOW STATES
	9.4. ROLE-BASED ACCESS CONTROLS

	CHAPTER 10. SCHEDULES
	10.1. ADDING A NEW SCHEDULE
	10.1.1. Defining rules for the schedule
	10.1.2. Setting exceptions to the schedule

	CHAPTER 11. PROJECTS
	11.1. ADDING A NEW PROJECT
	11.1.1. Managing playbooks manually
	11.1.2. Managing playbooks using source control
	11.1.2.1. SCM Types - Configuring playbooks to use Git and Subversion
	11.1.2.2. SCM Type - Configuring playbooks to use Red Hat Insights
	11.1.2.3. SCM Type - Configuring playbooks to use a remote archive

	11.2. UPDATING PROJECTS FROM SOURCE CONTROL
	11.3. WORK WITH PERMISSIONS
	11.3.1. Adding project permissions
	11.3.2. Removing permissions from a project

	11.4. ANSIBLE GALAXY SUPPORT
	11.5. COLLECTIONS SUPPORT
	11.5.1. Using collections with automation hub

	CHAPTER 12. PROJECT SIGNING AND VERIFICATION
	12.1. PREREQUISITES
	12.2. ADDING A GPG KEY TO AUTOMATION CONTROLLER
	12.3. INSTALLING THE ANSIBLE-SIGN CLI UTILITY
	12.4. SIGN A PROJECT
	12.5. VERIFY YOUR PROJECT
	12.6. AUTOMATE SIGNING

	CHAPTER 13. TOPOLOGY VIEW
	13.1. ACCESSING THE TOPOLOGY VIEWER

	CHAPTER 14. INVENTORIES
	14.1. SMART INVENTORIES
	14.1.1. Smart Host Filters

	14.2. CONSTRUCTED INVENTORIES
	14.2.1. Filtering on group name and variables
	14.2.2. Debugging tips
	14.2.3. Nested groups
	14.2.4. Ansible facts
	14.2.4.1. Filter on environment variables
	14.2.4.2. Filter hosts by processor type

	14.3. INVENTORY PLUGINS
	14.4. ADD A NEW INVENTORY
	14.4.1. Adding permissions to inventories
	14.4.2. Adding groups to inventories
	14.4.2.1. Adding groups within groups
	14.4.2.2. View or edit inventory groups

	14.4.3. Adding hosts to an inventory
	14.4.4. Adding a source
	14.4.5. Configuring notifications for the source
	14.4.5.1. Inventory sources
	14.4.5.2. Export old inventory scripts

	14.5. VIEW COMPLETED JOBS
	14.6. RUNNING AD HOC COMMANDS

	CHAPTER 15. SUPPORTED INVENTORY PLUGIN TEMPLATES
	15.1. AMAZON WEB SERVICES EC2
	15.2. GOOGLE COMPUTE ENGINE
	15.3. MICROSOFT AZURE RESOURCE MANAGER
	15.4. VMWARE VCENTER
	15.5. RED HAT SATELLITE 6
	15.6. OPENSTACK
	15.7. RED HAT VIRTUALIZATION
	15.8. RED HAT ANSIBLE AUTOMATION PLATFORM

	CHAPTER 16. HOSTS
	16.1. CREATING A HOST
	16.2. VIEWING THE HOST DETAILS

	CHAPTER 17. MANAGING INSTANCE GROUPS
	17.1. CREATING AN INSTANCE GROUP
	17.1.1. Associating instances to an instance group
	17.1.2. Viewing jobs associated with an instance group

	CHAPTER 18. INSTANCE AND CONTAINER GROUPS
	18.1. INSTANCE GROUPS
	18.1.1. Group policies for automationcontroller
	18.1.2. Configure instance groups from the API
	18.1.3. Instance group policies
	18.1.4. Notable policy considerations
	18.1.5. Pinning instances manually to specific groups
	18.1.6. Job runtime behavior
	18.1.7. Control where a job runs
	18.1.8. Instance group capacity limits
	18.1.9. Deprovisioning instance groups

	18.2. CONTAINER GROUPS
	18.2.1. Creating a container group
	18.2.2. Customizing the pod specification
	18.2.3. Verifying container group functions
	18.2.4. Viewing container group jobs
	18.2.5. Kubernetes API failure conditions
	18.2.6. Container capacity limits

	CHAPTER 19. MANAGING CAPACITY WITH INSTANCES
	19.1. PREREQUISITES
	19.2. PULLING THE SECRET
	19.3. SETTING UP VIRTUAL MACHINES FOR USE IN AN AUTOMATION MESH
	19.4. MANAGING INSTANCES
	19.5. REMOVING INSTANCES

	CHAPTER 20. EXECUTION ENVIRONMENTS
	20.1. BUILDING AN EXECUTION ENVIRONMENT
	20.1.1. Install ansible-builder
	20.1.2. Content needed for an execution environment
	20.1.3. Example YAML file to build an image
	20.1.4. Execution environment mount options
	20.1.4.1. Troubleshooting execution environment mount options
	20.1.4.2. Mounting the directory in the execution node to the execution environment container

	20.2. ADDING AN EXECUTION ENVIRONMENT TO A JOB TEMPLATE

	CHAPTER 21. EXECUTION ENVIRONMENT SETUP REFERENCE
	21.1. EXECUTION ENVIRONMENT DEFINITION EXAMPLE
	21.2. CONFIGURATION OPTIONS
	21.2.1. additional_build_files
	21.2.2. additional_build_steps
	21.2.3. build_arg_defaults
	21.2.4. Dependencies
	21.2.5. images
	21.2.6. Image verification
	21.2.7. options
	21.2.8. version

	21.3. DEFAULT EXECUTION ENVIRONMENT FOR AWX

	CHAPTER 22. MANAGING USER CREDENTIALS
	22.1. HOW CREDENTIALS WORK
	22.2. CREATING NEW CREDENTIALS
	22.3. ADDING NEW USERS AND JOB TEMPLATES TO EXISTING CREDENTIALS
	22.4. CREDENTIAL TYPES
	22.4.1. Amazon Web Services credential type
	22.4.1.1. Access Amazon EC2 credentials in an Ansible Playbook

	22.4.2. Ansible Galaxy/Automation Hub API token credential type
	22.4.3. AWS secrets manager lookup
	22.4.4. BitBucket data center HTTP access token
	22.4.5. Centrify Vault Credential Provider Lookup credential type
	22.4.6. Container Registry credential type
	22.4.7. CyberArk Central Credential Provider Lookup credential type
	22.4.8. CyberArk Conjur Secrets Manager Lookup credential type
	22.4.9. GitHub Personal Access Token credential type
	22.4.10. GitLab Personal Access Token credential type
	22.4.11. Google Compute Engine credential type
	22.4.11.1. Access Google Compute Engine credentials in an Ansible Playbook

	22.4.12. GPG Public Key credential type
	22.4.13. HashiCorp Vault Secret Lookup credential type
	22.4.14. HashiCorp Vault Signed SSH credential type
	22.4.15. Insights credential type
	22.4.16. Machine credential type
	22.4.16.1. Access machine credentials in an ansible playbook

	22.4.17. Microsoft Azure Key Vault credential type
	22.4.18. Microsoft Azure Resource Manager credential type
	22.4.18.1. Access Microsoft Azure resource manager credentials in an ansible playbook

	22.4.19. Network credential type
	22.4.20. Access network credentials in an ansible playbook
	22.4.21. OpenShift or Kubernetes API Bearer Token credential type
	22.4.21.1. Creating a service account in an Openshift cluster

	22.4.22. OpenStack credential type
	22.4.23. Red Hat Ansible Automation Platform credential type
	22.4.23.1. Access automation controller credentials in an Ansible Playbook

	22.4.24. Red Hat Satellite 6 credential type
	22.4.25. Red Hat Virtualization credential type
	22.4.25.1. Access virtualization credentials in an Ansible Playbook

	22.4.26. Source Control credential type
	22.4.27. Terraform backend configuration
	22.4.28. Thycotic DevOps Secrets Vault credential type
	22.4.29. Thycotic secret server credential type
	22.4.30. Ansible Vault credential type
	22.4.31. VMware vCenter credential type
	22.4.31.1. Access VMware vCenter credentials in an ansible playbook

	22.5. USE AUTOMATION CONTROLLER CREDENTIALS IN A PLAYBOOK
	Use 'delegate_to' and any lookup variable

	CHAPTER 23. CUSTOM CREDENTIAL TYPES
	23.1. CONTENT SOURCING FROM COLLECTIONS
	23.2. BACKWARDS-COMPATIBLE API CONSIDERATIONS
	23.3. CONTENT VERIFICATION
	23.4. GETTING STARTED WITH CREDENTIAL TYPES
	23.5. CREATING A NEW CREDENTIAL TYPE

	CHAPTER 24. ACTIVITY STREAM
	CHAPTER 25. NOTIFIERS
	25.1. NOTIFICATION HIERARCHY
	25.2. NOTIFICATION WORKFLOW
	25.3. CREATING A NOTIFICATION TEMPLATE
	25.4. NOTIFICATION TYPES
	25.4.1. Email
	25.4.2. Grafana
	25.4.3. IRC
	25.4.4. Mattermost
	25.4.5. Pagerduty
	25.4.6. Rocket.Chat
	25.4.7. Slack
	25.4.8. Twilio
	25.4.9. Webhook
	25.4.9.1. Webhook payloads

	25.5. CREATING CUSTOM NOTIFICATIONS
	25.6. ENABLE AND DISABLE NOTIFICATIONS
	25.7. CONFIGURE THE HOST HOSTNAME FOR NOTIFICATIONS
	25.7.1. Resetting TOWER_URL_BASE

	25.8. NOTIFICATIONS API

	CHAPTER 26. SUPPORTED ATTRIBUTES FOR CUSTOM NOTIFICATIONS
	CHAPTER 27. WORKING WITH WEBHOOKS
	27.1. SETTING UP A GITHUB WEBHOOK
	27.2. SETTING UP A GITLAB WEBHOOK
	27.3. VIEWING THE PAYLOAD OUTPUT

	CHAPTER 28. SETTING UP RED HAT INSIGHTS FOR RED HAT ANSIBLE AUTOMATION PLATFORM REMEDIATIONS
	28.1. CREATING RED HAT INSIGHTS CREDENTIALS
	28.2. CREATING A RED HAT INSIGHTS PROJECT
	28.3. CREATE AN INSIGHTS INVENTORY
	28.4. REMEDIATING A RED HAT INSIGHTS INVENTORY

	CHAPTER 29. BEST PRACTICES FOR AUTOMATION CONTROLLER
	29.1. USE SOURCE CONTROL
	29.2. ANSIBLE FILE AND DIRECTORY STRUCTURE
	29.3. USE DYNAMIC INVENTORY SOURCES
	29.4. VARIABLE MANAGEMENT FOR INVENTORY
	29.5. AUTOSCALING
	29.6. LARGER HOST COUNTS
	29.7. CONTINUOUS INTEGRATION / CONTINUOUS DEPLOYMENT

	CHAPTER 30. GLOSSARY
	Ad Hoc
	Callback Plugin
	Control Groups
	Check Mode
	Container Groups
	Credentials
	Credential Plugin
	Distributed Job
	External Credential Type
	Facts
	Forks
	Group
	Group Vars
	Handlers
	Host
	Host Specifier
	Instance Group
	Inventory
	Inventory Script
	Inventory Source
	Job
	Job Detail
	Job Slice
	Job Template
	JSON
	Mesh
	Metadata
	Node
	Notification Template
	Notification
	Notify
	Organization
	Organization Administrator
	Permissions
	Plays
	Playbook
	Policy
	Project
	Roles
	Secret Management System
	Schedule
	Sliced Job
	Source Credential
	Sudo
	Superuser
	Survey
	Target Credential
	Team
	User
	Webhook
	Workflow Job Template
	YAML

