
Red Hat build of Apache Camel 4.4

Getting Started with Red Hat build of Apache
Camel for Quarkus

Getting Started with Red Hat build of Apache Camel for Quarkus

Last Updated: 2024-07-04

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of
Apache Camel for Quarkus

Getting Started with Red Hat build of Apache Camel for Quarkus

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Red Hat build of Apache Camel for Quarkus and explains the various ways to
create and deploy an application using Red Hat build of Apache Camel for Quarkus.

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS
1.1. RED HAT BUILD OF APACHE CAMEL FOR QUARKUS OVERVIEW
1.2. TOOLING

1.2.1. IDE plugins
1.2.2. Camel content assist

1.3. BUILDING YOUR FIRST PROJECT WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS
1.3.1. Overview
1.3.2. Generating the skeleton application with code.quarkus.redhat.com
1.3.3. Explore the application code
1.3.4. Adding a simple Camel route
1.3.5. Development mode
1.3.6. Testing

1.3.6.1. JVM mode
1.3.6.2. Native mode

1.3.7. Packaging and running the application
1.3.7.1. JVM mode
1.3.7.2. Native mode

1.4. TESTING CAMEL QUARKUS EXTENSIONS
1.4.1. Running in JVM mode
1.4.2. Running in native mode
1.4.3. Differences between @QuarkusTest and @QuarkusIntegrationTest

1.4.3.1. @QuarkusTest in JVM mode
1.4.3.2. @QuarkusIntegrationTest in native mode

1.4.4. Testing with external services
1.4.4.1. Testcontainers

1.4.4.1.1. Passing configuration data with QuarkusTestResourceLifecycleManager
1.4.4.2. WireMock

1.4.4.2.1. Setting up WireMock
1.4.5. Using CamelQuarkusTestSupport

1.4.5.1. Testing with CamelQuarkusTestSupport in JVM mode
1.4.5.2. Limitations when using CamelQuarkusTestSupport

1.4.5.2.1. Methods
1.4.5.2.2. Annotations
1.4.5.2.3. Starting and stopping
1.4.5.2.4. Restarting the application
1.4.5.2.5. Beans production
1.4.5.2.6. JUnit Jupiter callbacks may not work
1.4.5.2.7. Using adviceWith
1.4.5.2.8. Using @Produces
1.4.5.2.9. Configuring routes

CHAPTER 2. DEPLOYING QUARKUS APPLICATIONS

CHAPTER 3. SETTING UP MAVEN LOCALLY
3.1. PREPARING TO SET UP MAVEN
3.2. ADDING RED HAT REPOSITORIES TO MAVEN
3.3. USING LOCAL MAVEN REPOSITORIES
3.4. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES OR SYSTEM PROPERTIES

3.4.1. About Maven mirror

4
4

5
5
5
5
5
6
6
6
7
7
9
9
9

10
11
11
11

12
12
13
13
14
14
14
14
14
16
16
17
18
18
18
18
18
19
19
19
19
19

20

21

22
22
22
24
24
24

Table of Contents

1

. .

3.4.2. Adding Maven mirror to settings.xml
3.4.3. Setting Maven mirror using environmental variable or system property
3.4.4. Using Maven options to specify Maven mirror url

3.5. ABOUT MAVEN ARTIFACTS AND COORDINATES

CHAPTER 4. EXAMPLES
4.1. GETTING STARTED WITH THE FILE CONSUMER QUICKSTART EXAMPLE

25
25
25
25

27
27

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

2

Table of Contents

3

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF
APACHE CAMEL FOR QUARKUS

This guide introduces Red Hat build of Apache Camel for Quarkus, the various ways to create a project
and how to get started building an application using Red Hat build of Apache Camel for Quarkus:

1.1. RED HAT BUILD OF APACHE CAMEL FOR QUARKUS OVERVIEW

Red Hat build of Apache Camel for Quarkus brings the integration capabilities of Apache Camel and its
vast component library to the Quarkus runtime.

The benefits of using Red Hat build of Apache Camel for Quarkus include the following:

Enables users to take advantage of the performance benefits, developer joy and the container
first ethos which Quarkus provides.

Provides Quarkus extensions for many of the Apache Camel components.

Takes advantage of the many performance improvements made in Camel, which results in a
lower memory footprint, less reliance on reflection and faster startup times.

You can define Camel routes using the Java DSL.

1.2. TOOLING

1.2.1. IDE plugins

Quarkus has plugins for most of the popular development IDEs which provide Quarkus language
support, code/configuration completion, project creation wizards and much more. The plugins are
available at each respective IDE marketplace.

VS Code extension

Eclipse plugin (currently not supported)

IntelliJ plugin (currently not supported)

Check the plugin documentation to discover how to create projects for your preferred IDE.

1.2.2. Camel content assist

The following plugins provide support for content assist when editing Camel routes and
application.properties:

VS Code Language support for Camel - a part of the Camel extension pack

Debug Adapter for Apache Camel to debug Camel integrations written in Java, YAML or XML
locally.

For more information about scope of development support, see Development Support
Scope of Coverage

Eclipse Desktop Language Support for Camel - a part of Jboss Tools

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS

5

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-quarkus
https://marketplace.eclipse.org/content/quarkus-tools
https://plugins.jetbrains.com/plugin/13234-quarkus-tools
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-apache-camel
https://marketplace.visualstudio.com/items?itemName=redhat.apache-camel-extension-pack
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-debug-adapter-apache-camel
https://access.redhat.com/support/offerings/developer/soc
https://marketplace.eclipse.org/content/language-support-apache-camel
https://tools.jboss.org/

Apache Camel IDEA plugin (not always up to date)

Users of other IDEs supporting Language Server Protocol may choose to install and configure
Camel Language Server manually

1.3. BUILDING YOUR FIRST PROJECT WITH RED HAT BUILD OF
APACHE CAMEL FOR QUARKUS

1.3.1. Overview

You can use code.quarkus.redhat.com to generate a Quarkus Maven project which automatically adds
and configures the extensions that you want to use in your application.

This section walks you through the process of creating a Quarkus Maven project with Red Hat build of
Apache Camel for Quarkus including:

Creating the skeleton application using code.quarkus.redhat.com

Adding a simple Camel route

Exploring the application code

Compiling the application in development mode

Testing the application

1.3.2. Generating the skeleton application with code.quarkus.redhat.com

You can bootstrap and generate projects on code.quarkus.redhat.com.

The Red Hat build of Apache Camel for Quarkus extensions are located under the 'Integration' heading.

If you need additional extensions, use the 'search' field to find them.

Select the component extensions that you want to work with and click 'Generate your application' to
download a basic skeleton project.

You can also push the project directly to GitHub.

For more information about using code.quarkus.redhat.com to generate Quarkus Maven projects, see
Creating a Quarkus Maven project using code.quarkus.redhat.com in the Getting started with Red Hat
build of Quarkus guide.

Procedure

1. In the code.quarkus.redhat.com website, select the following extensions:

camel-quarkus-rest

camel-quarkus-jackson

camel-quarkus-direct

NOTE

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

6

https://plugins.jetbrains.com/plugin/9371-apache-camel-idea-plugin
https://microsoft.github.io/language-server-protocol/implementors/tools/
https://github.com/camel-tooling/camel-language-server
https://code.quarkus.redhat.com
https://code.quarkus.redhat.com
https://code.quarkus.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.8/html-single/getting_started_with_red_hat_build_of_quarkus/index#proc-creating-quarkus-project-using-code-quarkus-redhat-com_quarkus-getting-started
https://code.quarkus.redhat.com/

NOTE

Do not compile the application on code.quarkus.redhat.com (in the final step
of the procedure). Instead, use the compile command described in the
Section 1.3.5, “Development mode” section below.

2. Navigate to the directory where you extracted the generated project files from the previous
step:

1.3.3. Explore the application code

The application has two compile dependencies which are managed within the
com.redhat.quarkus.platform:quarkus-camel-bom that is imported in <dependencyManagement>.:

pom.xml

NOTE

For more information about BOM dependency management, see Developing
Applications with Red Hat build of Apache Camel for Quarkus

The application is configured by properties defined within src/main/resources/application.properties,
for example, the camel.context.name can be set there.

1.3.4. Adding a simple Camel route

Procedure

$ cd <directory_name>

<quarkus.platform.artifact-id>quarkus-bom</quarkus.platform.artifact-id>
<quarkus.platform.group-id>com.redhat.quarkus.platform</quarkus.platform.group-id>
<quarkus.platform.version>
 <!-- The latest 3.8.x version from
https://maven.repository.redhat.com/ga/com/redhat/quarkus/platform/quarkus-bom -->
</quarkus.platform.version>

...

<dependency>
 <groupId>${quarkus.platform.group-id}</groupId>
 <artifactId>${quarkus.platform.artifact-id}</artifactId>
 <version>${quarkus.platform.version}</version>
 <type>pom</type>
 <scope>import</scope>
</dependency>
<dependency>
 <groupId>${quarkus.platform.group-id}</groupId>
 <artifactId>quarkus-camel-bom</artifactId>
 <version>${quarkus.platform.version}</version>
 <type>pom</type>
 <scope>import</scope>
</dependency>

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS

7

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/developing_applications_with_red_hat_build_of_apache_camel_for_quarkus/index

1. Create a file named Routes.java in the src/main/java/org/acme/ subfolder.

2. Add a Camel Rest route as shown in the following code snippet:

Routes.java

package org.acme;

import java.util.Arrays;
import java.util.List;
import java.util.Objects;
import java.util.concurrent.CopyOnWriteArrayList;

import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.model.rest.RestBindingMode;

import io.quarkus.runtime.annotations.RegisterForReflection;

public class Routes extends RouteBuilder {
 private final List<Fruit> fruits = new CopyOnWriteArrayList<>(Arrays.asList(new
Fruit("Apple")));

 @Override
 public void configure() throws Exception {
 restConfiguration().bindingMode(RestBindingMode.json);

 rest("/customers/")
 .get("/{id}").to("direct:customerDetail")
 .get("/{id}/orders").to("direct:customerOrders")
 .post("/neworder").to("direct:customerNewOrder");

 }

 @RegisterForReflection // Let Quarkus register this class for reflection during the native
build
 public static class Fruit {
 private String name;

 public Fruit() {
 }

 public Fruit(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public int hashCode() {
 return Objects.hash(name);

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

8

1.3.5. Development mode

This command compiles the project, starts your application, and lets the Quarkus tooling watch for
changes in your workspace. Any modifications you make to your project will automatically take effect in
the running application.

You can check the application in your browser. (For example, for the rest-json sample application,
access http://localhost:8080/fruits)

If you change the application code, for example, change 'Apple' to 'Orange', your application
automatically updates. To see the changes applied, refresh your browser.

Refer to Quarkus documentation Development mode section for more details about the development
mode.

1.3.6. Testing

1.3.6.1. JVM mode

To test the Camel Rest route that we have created in JVM mode, add a test class as follows:

Procedure

1. Create a file named RoutesTest.java in the src/test/java/org/acme/ subfolder.

2. Add the RoutesTest class as shown in the following code snippet:

RoutesTest.java

 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 Fruit other = (Fruit) obj;
 return Objects.equals(name, other.name);
 }

 }

}

$ mvn clean compile quarkus:dev

package org.acme;

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS

9

http://localhost:8080/fruits
https://quarkus.io/guides/maven-tooling#dev-mode

The JVM mode tests are run by maven-surefire-plugin in the test Maven phase:

1.3.6.2. Native mode

To test the Camel Rest route that we have created in Native mode, add a test class as follows:

Procedure

1. Create a file named NativeRoutesIT.java in the src/test/java/org/acme/ subfolder.

2. Add the NativeRoutesIT class as shown in the following code snippet:

NativeRoutesIT.java

import static io.restassured.RestAssured.given;
import org.hamcrest.Matchers;

@QuarkusTest
public class RoutesTest {

 @Test
 public void testFruitsEndpoint() {

 /* Assert the initial fruit is there */
 given()
 .when().get("/fruits")
 .then()
 .statusCode(200)
 .body(
 "$.size()", Matchers.is(1),
 "name", Matchers.contains("Orange"));

 /* Add a new fruit */
 given()
 .body("{\"name\": \"Pear\"}")
 .header("Content-Type", "application/json")
 .when()
 .post("/fruits")
 .then()
 .statusCode(200);

 /* Assert that pear was added */
 given()
 .when().get("/fruits")
 .then()
 .statusCode(200)
 .body(
 "$.size()", Matchers.is(2),
 "name", Matchers.contains("Orange", "Pear"));
 }

}

$ mvn clean test

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

10

The native mode tests are verified by maven-failsafe-plugin in the verify phase.

3. Pass the native property to activate the profile that runs them:

TIP

For more details, and how to use the CamelTestSupport style of testing, see Testing Camel Quarkus
Extensions.

1.3.7. Packaging and running the application

1.3.7.1. JVM mode

Procedure

1. Run mvn package to prepare a thin jar for running on a stock JVM:

NOTE

The thin jar contains just the application code. You also need the dependencies in
target/quarkus-app/lib to run it.

2. Run the jar as follows:

NOTE

The boot time should be around a second.

1.3.7.2. Native mode

package org.acme;

import io.quarkus.test.junit.NativeImageTest;

@NativeImageTest
public class NativeRoutesIT extends RoutesTest {

 // Execute the same tests but in native mode.
}

$ mvn clean verify -Pnative

$ mvn clean package
$ ls -lh target/quarkus-app
...
-rw-r--r--. 1 user user 238K Oct 11 18:55 quarkus-run.jar
...

$ java -jar target/quarkus-app/quarkus-run.jar
...
[io.quarkus] (main) Quarkus started in 1.163s. Listening on: http://[::]:8080

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS

11

Procedure

To prepare a native executable, do as follows:

1. Run the command mvn clean package -Pnative:

NOTE

The runner has no .jar extension and has the x (executable) permission set. You
can run it directly:

The application started in 13 milliseconds.

2. View the memory usage with the ps -o rss,command -p $(pgrep code-with) command :

The application uses 65 MB of memory.

TIP

See Producing a native executable in the Compiling your Quarkus applications to native executables
guide for additional information about preparing a native executable.

TIP

Quarkus Native executable guide contains more details, including steps for creating a container image .

1.4. TESTING CAMEL QUARKUS EXTENSIONS

Testing offers a good way to ensure Camel routes behave as expected over time. If you haven’t already,
read the Camel Quarkus user guide First Steps and the Quarkus documentation Testing your
application section.

The easiest way of testing a route in Quarkus is to write local integration tests. This has the advantage of
covering both JVM and native mode.

In JVM mode, you can use the CamelTestSupport style of testing.

1.4.1. Running in JVM mode

$ mvn clean package -Pnative
$ ls -lh target
...
-rwxr-xr-x. 1 user user 46M Oct 11 18:57 code-with-quarkus-1.0.0-SNAPSHOT-runner
...

$./target/*-runner
...
[io.quarkus] (main) Quarkus started in 0.013s. Listening on: http://[::]:8080
...

$ ps -o rss,command -p $(pgrep code-with)
 RSS COMMAND
65852 ./target/code-with-quarkus-1.0.0-SNAPSHOT-runner

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

12

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/quarkus-2-13/guide/c9fdb950-554d-427d-aa49-cc3da15ae860#_a6ed2e58-5517-45ee-825c-ce3e7c40763c
https://quarkus.io/guides/building-native-image-guide.html
https://quarkus.io/guides/building-native-image#creating-a-container
https://camel.apache.org/camel-quarkus/3.8.x/user-guide/first-steps.html
https://quarkus.io/guides/getting-started-testing

In JVM mode, use the @QuarkusTest annotation to bootstrap Quarkus and start Camel routes before
the @Test logic executes.

For example:

TIP

You can find a sample implementation in the Camel Quarkus source:

MessageTest.java

1.4.2. Running in native mode

NOTE

Always test that your application works in native mode for all supported extensions.

You can reuse the test logic defined for JVM mode by inheriting the logic from the respective JVM
mode class.

Add the @QuarkusIntegrationTest annotation to tell the Quarkus JUnit extension to compile the
application under test to native image and start it before running the tests.

TIP

You can find a sample implementation in the Camel Quarkus source:

MessageRecordIT.java

1.4.3. Differences between @QuarkusTest and @QuarkusIntegrationTest

A native executable does not need a JVM to run, and cannot run in a JVM, because it is native code, not
bytecode.

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

@QuarkusTest
class MyTest {
 @Test
 public void test() {
 // Use any suitable code that sends test data to the route and then assert outcomes
 ...
 }
}

import io.quarkus.test.junit.QuarkusIntegrationTest;

@QuarkusIntegrationTest
class MyIT extends MyTest {
 ...
}

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS

13

https://github.com/apache/camel-quarkus/blob/main/integration-tests/bindy/src/test/java/org/apache/camel/quarkus/component/bindy/it/MessageTest.java
https://github.com/apache/camel-quarkus/blob/main/integration-tests/bindy/src/test/java/org/apache/camel/quarkus/component/bindy/it/MessageRecordIT.java

There is no point in compiling tests to native code so they run using a traditional JVM.

This means that communication between tests and the application must go over the network
(HTTP/REST, or any other protocol your application speaks), through watching filesystems (log files for
example), or any other interprocess communication.

1.4.3.1. @QuarkusTest in JVM mode

In JVM mode, tests annotated with @QuarkusTest execute in the same JVM as the application under
test.

This means you can use @Inject to add beans from the application into the test code.

You can also define new beans or even override the beans from the application using
@javax.enterprise.inject.Alternative and @javax.annotation.Priority.

1.4.3.2. @QuarkusIntegrationTest in native mode

In native mode, tests annotated with @QuarkusIntegrationTest execute in a JVM hosted in a process
separate from the running native application.

QuarkusIntegrationTest provides additional features that are not available through @QuarkusTest:

In JVM mode, you can launch and test the runnable application JAR produced by the Quarkus
build.

In native mode, you can launch and test the native application produced by the Quarkus build.

If you add a container image to the build, a container starts, and tests execute against it.

For more information about QuarkusIntegrationTest, see the Quarkus testing guide.

1.4.4. Testing with external services

1.4.4.1. Testcontainers

Sometimes your application needs to access some external resource, such as a messaging broker, a
database, or other service.

If a container image is available for the service of interest, you can use Testcontainers to start and
configure the services during testing.

1.4.4.1.1. Passing configuration data with QuarkusTestResourceLifecycleManager

For the application to work properly, it is often essential to pass the connection configuration data (host,
port, user, password of the remote service) to the application before it starts.

In the Quarkus ecosystem, QuarkusTestResourceLifecycleManager serves this purpose.

You can start one or more Testcontainers in the start() method and return the connection configuration
from the method in the form of a Map.

The entries of this map are then passed to the application in different ways depending on the mode:

Native mode: a command line (-Dkey=value)

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

14

https://quarkus.io/guides/getting-started-testing#quarkus-integration-test
https://www.testcontainers.org/

JVM Mode: a special MicroProfile configuration provider

NOTE

These settings have a higher precedence than the settings in the application.properties
file.

Reference the defined test resource from the test classes with @QuarkusTestResource:

TIP

import java.util.Map;
import java.util.HashMap;

import io.quarkus.test.common.QuarkusTestResourceLifecycleManager;
import org.testcontainers.containers.GenericContainer;
import org.testcontainers.containers.wait.strategy.Wait;

public class MyTestResource implements QuarkusTestResourceLifecycleManager {

 private GenericContainer myContainer;

 @Override
 public Map<String, String> start() {
 // Start the needed container(s)
 myContainer = new GenericContainer(...)
 .withExposedPorts(1234)
 .waitingFor(Wait.forListeningPort());

 myContainer.start();

 // Pass the configuration to the application under test
 return new HashMap<>() {{
 put("my-container.host", container.getContainerIpAddress());
 put("my-container.port", "" + container.getMappedPort(1234));
 }};
 }

 @Override
 public void stop() {
 // Stop the needed container(s)
 myContainer.stop();
 ...
 }

import io.quarkus.test.common.QuarkusTestResource;
import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest
@QuarkusTestResource(MyTestResource.class)
class MyTest {
 ...
}

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS

15

TIP

You can find a sample implementation in the Camel Quarkus source:

NatsTestResource.java

1.4.4.2. WireMock

Instead of having the tests connect to live endpoints, for example, if they are unavailable, unreliable, or
expensive, you can stub HTTP interactions with third-party services & APIs.

You can use WireMock for mocking & recording HTTP interactions. It is used extensively throughout the
Camel Quarkus test suite for various component extensions.

1.4.4.2.1. Setting up WireMock

Procedure

1. Set up the WireMock server.

NOTE

It is important to configure the Camel component under test to pass any HTTP
interactions through the WireMock proxy. You can achieve this by configuring a
component property that determines the API endpoint URL.

import static com.github.tomakehurst.wiremock.client.WireMock.aResponse;
import static com.github.tomakehurst.wiremock.client.WireMock.get;
import static com.github.tomakehurst.wiremock.client.WireMock.urlEqualTo;
import static
com.github.tomakehurst.wiremock.core.WireMockConfiguration.wireMockConfig;

import java.util.HashMap;
import java.util.Map;

import com.github.tomakehurst.wiremock.WireMockServer;

import io.quarkus.test.common.QuarkusTestResourceLifecycleManager;

public class WireMockTestResource implements QuarkusTestResourceLifecycleManager {

 private WireMockServer server;

 @Override
 public Map<String, String> start() {
 // Setup & start the server
 server = new WireMockServer(
 wireMockConfig().dynamicPort()
);
 server.start();

 // Stub a HTTP endpoint. Note that WireMock also supports a record and playback mode
 // http://wiremock.org/docs/record-playback/
 server.stubFor(

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

16

https://github.com/apache/camel-quarkus/blob/main/integration-tests/nats/src/test/java/org/apache/camel/quarkus/component/nats/it/NatsTestResource.java
https://wiremock.org/

NOTE

Sometimes things are less straightforward, and some extra work is required to
configure the API client library. For example, for Twilio.

2. Ensure your test class has the @QuarkusTestResource annotation with the appropriate test
resource class specified as the value.

The WireMock server starts before all tests execute and shuts down when all tests finish.

TIP

You can find a sample implementation in the Camel Quarkus integration test source tree:

Geocoder.

1.4.5. Using CamelQuarkusTestSupport

Since Camel Quarkus 2.13.0, you can use CamelQuarkusTestSupport for testing. It is a replacement for
CamelTestSupport.

NOTE

This will only work in JVM mode.

 get(urlEqualTo("/api/greeting"))
 .willReturn(aResponse()
 .withHeader("Content-Type", "application/json")
 .withBody("{\"message\": \"Hello World\"}")));

 // Ensure the camel component API client passes requests through the WireMock proxy
 Map<String, String> conf = new HashMap<>();
 conf.put("camel.component.foo.server-url", server.baseUrl());
 return conf;
 }

 @Override
 public void stop() {
 if (server != null) {
 server.stop();
 }
 }
}

import io.quarkus.test.common.QuarkusTestResource;
import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest
@QuarkusTestResource(WireMockTestResource.class)
class MyTest {
 ...
}

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS

17

https://github.com/apache/camel-quarkus/blob/main/integration-tests/twilio/src/main/java/org/apache/camel/quarkus/component/twilio/it/TwilioResource.java#L83
https://github.com/apache/camel-quarkus/tree/main/integration-tests/geocoder

1.4.5.1. Testing with CamelQuarkusTestSupport in JVM mode

Add the following dependency into your module (preferably in the test scope):

You can use CamelQuarkusTestSupport in your test like this:

1.4.5.2. Limitations when using CamelQuarkusTestSupport

When using `CamelQuarkusTestSupport, there are several limitations:

1.4.5.2.1. Methods

Some methods do not execute. Use the new methods starting with do instead:

Not executed Use instead

afterAll doAfterAll

afterEach doAfterEach

afterTestExecution doAfterTestExecution

beforeAll doBeforeAll

beforeEach doBeforeEach

NOTE

If you use @TestInstance(TestInstance.Lifecycle.PER_METHOD), doAfterConstruct
means a callback before each test. This is different from beforeAll.

1.4.5.2.2. Annotations

You must annotate the test class with @io.quarkus.test.junit.QuarkusTest and extend
org.apache.camel.quarkus.test.CamelQuarkusTestSupport.

1.4.5.2.3. Starting and stopping

You cannot stop and restart the same CamelContext instance within the life cycle of a single

<dependency>
 <groupId>org.apache.camel.quarkus</groupId>
 <artifactId>camel-quarkus-junit5</artifactId>
 <scope>test</scope>
</dependency>

@QuarkusTest
@TestProfile(SimpleTest.class) //necessary only if "newly created" context is required for the test
(worse performance)
public class SimpleTest extends CamelQuarkusTestSupport {
 ...
}

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

18

You cannot stop and restart the same CamelContext instance within the life cycle of a single
application. You can call CamelContext.stop(), but CamelContext.start() won’t work.

CamelContext is generally bound to starting and stopping the application, also when testing.

The application under test starts once for all test classes of the given Maven/Gradle module.
Quarkus JUnit Extension controls the start and stop of the application. You must explicitly tell
the application to stop.

1.4.5.2.4. Restarting the application

To force Quarkus JUnit Extension to restart the application and CamelContext for a given test class,
you need to assign a unique @io.quarkus.test.junit.TestProfile to that class.

For instructions, see testing different profiles in the Quarkus documentation.

For a similar effect, you can also use @io.quarkus.test.common.QuarkusTestResource.

1.4.5.2.5. Beans production

Camel Quarkus executes the production of beans during the build phase. Because the tests are built
together, exclusion behavior is implemented into CamelQuarkusTestSupport. If a producer of the
specific type and name is used in one test, the instance will be the same for the rest of the tests.

1.4.5.2.6. JUnit Jupiter callbacks may not work

These JUnit Jupiter callbacks and annotations may not work:

Callbacks Annotations

BeforeEachCallback @BeforeEach

AfterEachCallback @AfterEach

AfterAllCallback @AfterAll

BeforeAllCallback @BeforeAll

BeforeTestExecutionCallback

AfterTestExecutionCallback

For more information, see the Enrichment via QuarkusTest*Callback documentation .

1.4.5.2.7. Using adviceWith

When adviceWith is set to true, all unadvised routes do not start. You must execute the method
CamelQuarkusTestSupport.startRouteDefinitions() for those routes to start them.

1.4.5.2.8. Using @Produces

Use @Produces with the overridden method createRouteBuilder(). The combination of @Produces

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS

19

https://quarkus.io/guides/getting-started-testing#testing_different_profiles
https://quarkus.io/guides/getting-started-testing#quarkus-test-resource
https://quarkus.io/guides/getting-started-testing#enrichment-via-quarkustestcallback
https://camel.apache.org/manual/advice-with.html

Use @Produces with the overridden method createRouteBuilder(). The combination of @Produces
and RouteBuilder() may not work correctly.

1.4.5.2.9. Configuring routes

To configure which routes from the application (src/main/java) to include or exclude, you can use the
following:

quarkus.camel.routes-discovery.exclude-patterns

quarkus.camel.routes-discovery.include-patterns

For more details, see the Core documentation.

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

20

https://camel.apache.org/camel-quarkus/3.8.x/reference/extensions/core.html

CHAPTER 2. DEPLOYING QUARKUS APPLICATIONS
You can deploy your Quarkus application on OpenShift by using any of the following build strategies:

Docker build

S2I Binary

Source S2I

For more details about each of these build strategies, see Chapter 1. OpenShift build strategies and
Quarkus of the Deploying your Quarkus applications to OpenShift Container Platform guide.

NOTE

The OpenShift Docker build strategy is the preferred build strategy that supports
Quarkus applications targeted for JVM as well as Quarkus applications compiled to native
executables. You can configure the deployment strategy using the
quarkus.openshift.build-strategy property.

CHAPTER 2. DEPLOYING QUARKUS APPLICATIONS

21

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.8/html/deploying_your_red_hat_build_of_quarkus_applications_to_openshift_container_platform/assembly_quarkus-openshift_quarkus-openshift#ref-openshift-build-strategies-and-quarkus_quarkus-openshift

CHAPTER 3. SETTING UP MAVEN LOCALLY
Typical Red Hat build of Apache Camel application development uses Maven to build and manage
projects.

The following topics describe how to set up Maven locally:

Section 3.1, “Preparing to set up Maven”

Section 3.2, “Adding Red Hat repositories to Maven”

Section 3.3, “Using local Maven repositories”

Section 3.4, “Setting Maven mirror using environmental variables or system properties”

Section 3.5, “About Maven artifacts and coordinates”

3.1. PREPARING TO SET UP MAVEN

Maven is a free, open source, build tool from Apache. Typically, you use Maven to build Fuse
applications.

Procedure

1. Download Maven 3.8.6 or later from the Maven download page .

TIP

To verify that you have the correct Maven and JDK version installed, open a command terminal
and enter the following command:

mvn --version

Check the output to verify that Maven is version 3.8.6 or newer, and is using OpenJDK 17.

2. Ensure that your system is connected to the Internet.
While building a project, the default behavior is that Maven searches external repositories and
downloads the required artifacts. Maven looks for repositories that are accessible over the
Internet.

You can change this behavior so that Maven searches only repositories that are on a local
network. That is, Maven can run in an offline mode. In offline mode, Maven looks for artifacts in
its local repository. See Section 3.3, “Using local Maven repositories” .

3.2. ADDING RED HAT REPOSITORIES TO MAVEN

To access artifacts that are in Red Hat Maven repositories, you need to add those repositories to
Maven’s settings.xml file.

Maven looks for the settings.xml file in the .m2 directory of the user’s home directory. If there is not a
user specified settings.xml file, Maven uses the system-level settings.xml file at
M2_HOME/conf/settings.xml.

Prerequisite

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

22

http://maven.apache.org/download.html

You know the location of the settings.xml file in which you want to add the Red Hat repositories.

Procedure

In the settings.xml file, add repository elements for the Red Hat repositories as shown in this example:

NOTE

If you are using the camel-jira component, also add the atlassian repository.

<?xml version="1.0"?>
<settings>

 <profiles>
 <profile>
 <id>extra-repos</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>atlassian</id>
 <url>https://packages.atlassian.com/maven-external/</url>
 <name>atlassian external repo</name>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>

CHAPTER 3. SETTING UP MAVEN LOCALLY

23

3.3. USING LOCAL MAVEN REPOSITORIES

If you are running a container without an Internet connection, and you need to deploy an application that
has dependencies that are not available offline, you can use the Maven dependency plug-in to download
the application’s dependencies into a Maven offline repository. You can then distribute this customized
Maven offline repository to machines that do not have an Internet connection.

Procedure

1. In the project directory that contains the pom.xml file, download a repository for a Maven
project by running a command such as the following:

mvn org.apache.maven.plugins:maven-dependency-plugin:3.1.0:go-offline -
Dmaven.repo.local=/tmp/my-project

In this example, Maven dependencies and plug-ins that are required to build the project are
downloaded to the /tmp/my-project directory.

2. Distribute this customized Maven offline repository internally to any machines that do not have
an Internet connection.

3.4. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES
OR SYSTEM PROPERTIES

When running the applications you need access to the artifacts that are in the Red Hat Maven
repositories. These repositories are added to Maven’s settings.xml file. Maven checks the following
locations for settings.xml file:

looks for the specified url

if not found looks for ${user.home}/.m2/settings.xml

if not found looks for ${maven.home}/conf/settings.xml

if not found looks for ${M2_HOME}/conf/settings.xml

if no location is found, empty org.apache.maven.settings.Settings instance is created.

3.4.1. About Maven mirror

Maven uses a set of remote repositories to access the artifacts, which are currently not available in local
repository. The list of repositories almost always contains Maven Central repository, but for Red Hat
Fuse, it also contains Maven Red Hat repositories. In some cases where it is not possible or allowed to
access different remote repositories, you can use a mechanism of Maven mirrors. A mirror replaces a
particular repository URL with a different one, so all HTTP traffic when remote artifacts are being
searched for can be directed to a single URL.

 </profiles>

 <activeProfiles>
 <activeProfile>extra-repos</activeProfile>
 </activeProfiles>

</settings>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

24

3.4.2. Adding Maven mirror to settings.xml

To set the Maven mirror, add the following section to Maven’s settings.xml:

<mirror>
 <id>all</id>
 <mirrorOf>*</mirrorOf>
 <url>http://host:port/path</url>
</mirror>

No mirror is used if the above section is not found in the settings.xml file. To specify a global mirror
without providing the XML configuration, you can use either system property or environmental variables.

3.4.3. Setting Maven mirror using environmental variable or system property

To set the Maven mirror using either environmental variable or system property, you can add:

Environmental variable called MAVEN_MIRROR_URL to bin/setenv file

System property called mavenMirrorUrl to etc/system.properties file

3.4.4. Using Maven options to specify Maven mirror url

To use an alternate Maven mirror url, other than the one specified by environmental variables or system
property, use the following maven options when running the application:

-DmavenMirrorUrl=mirrorId::mirrorUrl
for example, -DmavenMirrorUrl=my-mirror::http://mirror.net/repository

-DmavenMirrorUrl=mirrorUrl
for example, -DmavenMirrorUrl=http://mirror.net/repository. In this example, the <id> of the
<mirror> is just a mirror.

3.5. ABOUT MAVEN ARTIFACTS AND COORDINATES

In the Maven build system, the basic building block is an artifact. After a build, the output of an artifact is
typically an archive, such as a JAR or WAR file.

A key aspect of Maven is the ability to locate artifacts and manage the dependencies between them. A
Maven coordinate is a set of values that identifies the location of a particular artifact. A basic coordinate
has three values in the following form:

groupId:artifactId:version

Sometimes Maven augments a basic coordinate with a packaging value or with both a packaging value
and a classifier value. A Maven coordinate can have any one of the following forms:

groupId:artifactId:version
groupId:artifactId:packaging:version
groupId:artifactId:packaging:classifier:version

Here are descriptions of the values:

groupdId

Defines a scope for the name of the artifact. You would typically use all or part of a package name as

CHAPTER 3. SETTING UP MAVEN LOCALLY

25

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID. For example, org.fusesource.example.

artifactId

Defines the artifact name relative to the group ID.

version

Specifies the artifact’s version. A version number can have up to four parts: n.n.n.n, where the last
part of the version number can contain non-numeric characters. For example, the last part of 1.0-
SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT.

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

Elements in an artifact’s POM file define the artifact’s group ID, artifact ID, packaging, and version, as
shown here:

To define a dependency on the preceding artifact, you would add the following dependency element to
a POM file:

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven package
type. If you do need to specify the packaging type explicitly in a dependency, however,
you can use the type element.

<project ... >
 ...
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <packaging>bundle</packaging>
 <version>1.0-SNAPSHOT</version>
 ...
</project>

<project ... >
 ...
 <dependencies>
 <dependency>
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 ...
</project>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

26

CHAPTER 4. EXAMPLES
The quickstart examples listed in the following table can be cloned or downloaded from the Camel
Quarkus Examples Git repository.

Number of Examples: 1

Example Description

File consumer with Bindy and
FTP

Shows how to consume CSV files, marshal & unmarshal the data and send it
onwards via FTP

4.1. GETTING STARTED WITH THE FILE CONSUMER QUICKSTART
EXAMPLE

You can download or clone the quickstarts from the Camel Quarkus Examples Git repository. The
example is in the file-bindy-ftp directory.

Extract the contents of the zip file or clone the repository to a local folder, for example a new folder
named quickstarts.

You can run this example in development mode on your local machine from the command line. Using
development mode, you can iterate quickly on integrations in development and get fast feedback on
your code. Refer to the Development mode section of the Camel Quarkus User guide for more details.

NOTE

If you need to configure container resource limits or enable the Quarkus Kubernetes
client to trust self signed certificates, you can find these configuration options in the
src/main/resources/application.properties file.

Prerequisites

You have cluster admin access to the OpenShift cluster.

You have access to an SFTP server and you have set the server properties (which are prefixed
by ftp) in the application properties configuration file:
src/main/resources/application.properties.

Procedure

1. Use Maven to build the example application in development mode:

The application triggers the timer component every 10 seconds, generates some random
“books” data and creates a CSV file in a temporary directory with 100 entries. The following
message is displayed in the console:

$ cd quickstarts/file-bindy-ftp
$ mvn clean compile quarkus:dev

[route1] (Camel (camel-1) thread #3 - timer://generateBooks) Generating randomized books
CSV data

CHAPTER 4. EXAMPLES

27

https://github.com/jboss-fuse/camel-quarkus-examples/tree/camel-quarkus-examples-3.8.4-product/
https://github.com/jboss-fuse/camel-quarkus-examples/tree/camel-quarkus-examples-3.8.4-product
https://camel.apache.org/camel-quarkus/latest/user-guide/first-steps.html#_development_mode

Next, the CSV file is read by a file consumer and Bindy is used to marshal the individual data
rows into Book objects:

Next the collection of Book objects is split into individual items and is aggregated based on the
genre property:

Finally, the aggregated book collections are unmarshalled back to CSV format and uploaded to
the test FTP server.

2. To run the application in JVM mode, enter the following commands:

3. You can build and deploy the example application to OpenShift, by entering the following
command:

4. Check that the pods are running:

5. Optional: Enter the following command to monitor the application log:

Additional resources

Developing Applications with Red Hat build of Apache Camel for Quarkus

Camel Quarkus User guide

[route2] (Camel (camel-1) thread #1 - file:///tmp/books) Reading books CSV data from
89A0EE24CB03A69-0000000000000000

[route3] (Camel (camel-1) thread #0 - AggregateTimeoutChecker) Processed 34 books for
genre 'Action'
[route3] (Camel (camel-1) thread #0 - AggregateTimeoutChecker) Processed 31 books for
genre 'Crime'
[route3] (Camel (camel-1) thread #0 - AggregateTimeoutChecker) Processed 35 books for
genre 'Horror'

[route4] (Camel (camel-1) thread #2 - seda://processed) Uploaded books-Action-
89A0EE24CB03A69-0000000000000069.csv
[route4] (Camel (camel-1) thread #2 - seda://processed) Uploaded books-Crime-
89A0EE24CB03A69-0000000000000069.csv
[route4] (Camel (camel-1) thread #2 - seda://processed) Uploaded books-Horror-
89A0EE24CB03A69-0000000000000069.csv

$ mvn clean package -DskipTests
$ java -jar target/*-runner.jar

$ mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

$oc get pods

NAME READY STATUS RESTARTS AGE
camel-quarkus-examples-file-bindy-ftp-1-d72mb 1/1 Running 0 5m15s
ssh-server-deployment-5f6f685658-jtr9n 1/1 Running 0 5m28s

oc logs -f camel-quarkus-examples-file-bindy-ftp-5d48f4d85c-sjl8k

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Quarkus

28

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/developing_applications_with_red_hat_build_of_apache_camel_for_quarkus/index
https://camel.apache.org/camel-quarkus/latest/user-guide/first-steps.html#_development_mode/

CHAPTER 4. EXAMPLES

29

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS
	1.1. RED HAT BUILD OF APACHE CAMEL FOR QUARKUS OVERVIEW
	1.2. TOOLING
	1.2.1. IDE plugins
	1.2.2. Camel content assist

	1.3. BUILDING YOUR FIRST PROJECT WITH RED HAT BUILD OF APACHE CAMEL FOR QUARKUS
	1.3.1. Overview
	1.3.2. Generating the skeleton application with code.quarkus.redhat.com
	1.3.3. Explore the application code
	1.3.4. Adding a simple Camel route
	1.3.5. Development mode
	1.3.6. Testing
	1.3.6.1. JVM mode
	1.3.6.2. Native mode

	1.3.7. Packaging and running the application
	1.3.7.1. JVM mode
	1.3.7.2. Native mode

	1.4. TESTING CAMEL QUARKUS EXTENSIONS
	1.4.1. Running in JVM mode
	1.4.2. Running in native mode
	1.4.3. Differences between @QuarkusTest and @QuarkusIntegrationTest
	1.4.3.1. @QuarkusTest in JVM mode
	1.4.3.2. @QuarkusIntegrationTest in native mode

	1.4.4. Testing with external services
	1.4.4.1. Testcontainers
	1.4.4.2. WireMock

	1.4.5. Using CamelQuarkusTestSupport
	1.4.5.1. Testing with CamelQuarkusTestSupport in JVM mode
	1.4.5.2. Limitations when using CamelQuarkusTestSupport

	CHAPTER 2. DEPLOYING QUARKUS APPLICATIONS
	CHAPTER 3. SETTING UP MAVEN LOCALLY
	3.1. PREPARING TO SET UP MAVEN
	3.2. ADDING RED HAT REPOSITORIES TO MAVEN
	3.3. USING LOCAL MAVEN REPOSITORIES
	3.4. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES OR SYSTEM PROPERTIES
	3.4.1. About Maven mirror
	3.4.2. Adding Maven mirror to settings.xml
	3.4.3. Setting Maven mirror using environmental variable or system property
	3.4.4. Using Maven options to specify Maven mirror url

	3.5. ABOUT MAVEN ARTIFACTS AND COORDINATES

	CHAPTER 4. EXAMPLES
	4.1. GETTING STARTED WITH THE FILE CONSUMER QUICKSTART EXAMPLE

