
Red Hat build of Apache Camel 4.4

Getting Started with Red Hat build of Apache
Camel for Spring Boot

Last Updated: 2024-07-02

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of
Apache Camel for Spring Boot

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Red Hat build of Apache Camel and explains the various ways to create and
deploy an application using Red Hat build of Apache Camel.

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT
1.1. RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT STARTERS

1.1.1. Spring Boot configuration support
1.1.2. Adding Camel routes
1.1.3. Using Domain Specific Languages

1.1.3.1. Advantages of DSLs
1.1.3.2. Comparing different DSLs

1.2. SPRING BOOT
1.2.1. Camel Spring Boot Starter
1.2.2. Spring Boot Auto-configuration
1.2.3. Auto-configured Camel context
1.2.4. Auto-detecting Camel routes
1.2.5. Camel properties
1.2.6. Custom Camel context configuration
1.2.7. Auto-configured consumer and producer templates
1.2.8. Auto-configured TypeConverter

1.2.8.1. Spring type conversion API bridge
1.2.9. Keeping the application alive
1.2.10. Adding XML routes
1.2.11. Testing the JUnit 5 way

1.3. COMPONENT STARTERS
1.4. STARTER CONFIGURATION

1.4.1. Using External Configuration
1.4.2. Using Beans

1.5. GENERATING A CAMEL FOR SPRING BOOT APPLICATION USING MAVEN
1.6. DEPLOYING A CAMEL SPRING BOOT APPLICATION TO OPENSHIFT
1.7. APPLYING PATCH TO RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT
1.8. CAMEL REST DSL OPENAPI MAVEN PLUGIN

1.8.1. Adding plugin to Maven pom.xml
1.8.2. camel-restdsl-openapi:generate
1.8.3. Options
1.8.4. Spring Boot Project with Servlet component
1.8.5. camel-restdsl-openapi:generate-with-dto
1.8.6. Options
1.8.7. camel-restdsl-openapi:generate-xml
1.8.8. Options
1.8.9. camel-restdsl-openapi:generate-xml-with-dto
1.8.10. Options
1.8.11. camel-restdsl-openapi:generate-yaml
1.8.12. Options
1.8.13. camel-restdsl-openapi:generate-yaml-with-dto
1.8.14. Options

1.9. SUPPORT FOR FIPS COMPLIANCE
1.9.1. FIPS validation in OpenShift Container Platform

CHAPTER 2. SETTING UP MAVEN LOCALLY
2.1. PREPARING TO SET UP MAVEN
2.2. ADDING RED HAT REPOSITORIES TO MAVEN

4
4

5
5
6
6
6
6
7
11
11

12
12
12
13
14
14
15
15
15
16
16
17
31
31
32
32
33
34
38
38
39
39
40
41
41

42
42
44
44
45
45
46
47
48
48

49
49
49

Table of Contents

1

. .

. .

. .

2.3. BUILDING AN OFFLINE MAVEN REPOSITORY
2.4. USING LOCAL MAVEN REPOSITORIES
2.5. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES OR SYSTEM PROPERTIES

2.5.1. About Maven mirror
2.5.2. Adding Maven mirror to settings.xml
2.5.3. Setting Maven mirror using environmental variable or system property
2.5.4. Using Maven options to specify Maven mirror url

2.6. ABOUT MAVEN ARTIFACTS AND COORDINATES

CHAPTER 3. MONITORING CAMEL SPRING BOOT INTEGRATIONS
3.1. ENABLING USER WORKLOAD MONITORING IN OPENSHIFT
3.2. DEPLOYING A CAMEL SPRING BOOT APPLICATION

CHAPTER 4. USING CAMEL WITH SPRING XML
4.1. USING JAVA DSL WITH SPRING XML FILES

4.1.1. Configure Spring Boot Application
4.2. SPECIFYING CAMEL ROUTES USING SPRING XML
4.3. CONFIGURING COMPONENTS AND ENDPOINTS
4.4. USING PACKAGE SCANNING
4.5. USING CONTEXT SCANNING

CHAPTER 5. XML IO DSL
5.1. EXAMPLE
5.2. USING BEANS WITH CONSTRUCTORS
5.3. CREATING BEANS FROM FACTORY METHOD
5.4. CREATING BEANS FROM BUILDER CLASSES
5.5. CREATING BEANS FROM FACTORY BEAN
5.6. CREATING BEANS USING SCRIPT LANGUAGE
5.7. USING INIT AND DESTROY METHODS ON BEANS
5.8. REST AND ROUTES IN THE SAME XML IO DSL FILE

51
52
53
53
53
53
53
54

56
56
57

62
62
62
63
63
64
64

66
66
68
68
69
69
70
71
71

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

2

Table of Contents

3

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF
APACHE CAMEL FOR SPRING BOOT

This guide introduces Red Hat build of Apache Camel for Spring Boot and demonstrates how to get
started building an application using Red Hat build of Apache Camel for Spring Boot.

1.1. RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT
STARTERS

Camel support for Spring Boot provides auto-configuration of the Camel and starters for many Camel
components. The opinionated auto-configuration of the Camel context auto-detects Camel routes
available in the Spring context and registers the key Camel utilities (such as producer template,
consumer template and the type converter) as beans.

NOTE

For information about using a Maven archtype to generate a Camel for Spring Boot
application see Generating a Camel for Spring Boot application using Maven .

To get started, you must add the Camel Spring Boot BOM to your Maven pom.xml file.

The camel-spring-boot-bom is a basic BOM that contains the list of Camel Spring Boot starter JARs.

Next, add the Camel Spring Boot starter to startup the Camel Context.

You must also add the component starters that your Spring Boot application requires. The following
example shows how to add the auto-configuration starter to the MQTT5 component.

<dependencyManagement>

 <dependencies>
 <!-- Camel BOM -->
 <dependency>
 <groupId>com.redhat.camel.springboot.platform</groupId>
 <artifactId>camel-spring-boot-bom</artifactId>
 <version>4.4.0.redhat-00014</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <!-- ... other BOMs or dependencies ... -->
 </dependencies>

</dependencyManagement>

 <dependencies>
 <!-- Camel Starter -->
 <dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-spring-boot-starter</artifactId>
 </dependency>
 <!-- ... other dependencies ... -->
 </dependencies>

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

5

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.0/html-single/getting_started_with_red_hat_build_of_apache_camel_for_spring_boot/index#camel-spring-boot-list
https://camel.apache.org/manual/camelcontext.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.0/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#spring_boot_auto_configuration_69
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.0/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-paho-mqtt5-component-starter

1.1.1. Spring Boot configuration support

Each starter lists configuration parameters you can configure in the standard application.properties or
application.yml files. These parameters have the form of camel.component.[component-name].
[parameter]. For example to configure the URL of the MQTT5 broker you can set:

camel.component.paho-mqtt5.broker-url=tcp://localhost:61616

1.1.2. Adding Camel routes

Camel routes are detected in the Spring application context, for example a route annotated with
org.springframework.stereotype.Component will be loaded, added to the Camel context and run.

1.1.3. Using Domain Specific Languages

Apache Camel uses a Java Domain Specific Language or DSL for creating Enterprise Integration
Patterns or Routes in a variety of domain-specific languages (DSL) as listed below:

Java DSL: Java based DSL using the fluent builder style.

XML DSL: XML based DSL in Camel XML files only.

Yaml DSL for creating routes using YAML format.

1.1.3.1. Advantages of DSLs

The advantages of using a DSL over general-purpose languages are the following:

Easier to learn and easier to work with. You can see where the main logic begins and ends.

Safer code. DSL in Apache Camel has the solid building blocks which binds all the steps

 <dependencies>
 <!-- ... other dependencies ... -->
 <dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-paho-mqtt5</artifactId>
 </dependency>
 </dependencies>

import org.apache.camel.builder.RouteBuilder;
import org.springframework.stereotype.Component;

@Component
public class MyRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("...")
 .to("...");
 }

}

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

6

https://access.redhat.com/webassets/avalon/d/red_hat_integration/2022.q2/apache-camel-3.14-doc/manual/3.14.x/routes.html

Safer code. DSL in Apache Camel has the solid building blocks which binds all the steps
together.

Errors are domain-specific. In case of failures, error descriptions are more explicit and
explanatory. Simpler code also means less error-prone code.

DSLs are designed to be platform-independent. In case of code changes, its impact is delegated
to lower layers.

1.1.3.2. Comparing different DSLs

Following section describes the differences between the DSLs and different scenarios where you may
use these DSLs.

 Java DSL XML DSL YAML DSL

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

7

Developer tools
You can use
every IDE with
Java support.

Red Hat
provides the
Extension Pack
for Apache
Camel in VS
Code. This
pack contains
all the
necessary
extensions to
work with Red
Hat build of
Apache Camel
in VS Code.
This includes
language
support for
Camel K Java
standalone,
support for
Camel URI
completion and
diagnostics,
and running
and debugging
Camel routes
from the source
editor.

Language
support and
basic Camel
textual route
debugging.

It provides
code
assistance and
offers a route
debugger.

You can use
every IDE with
XML support.

Red Hat
provides the
Extension Pack
for Apache
Camel in VS
Code. This
pack contains
all the
necessary
extensions to
work with Red
Hat build of
Apache Camel
in VS Code.
This includes
language
support for
Camel K Java
standalone,
support for
Camel URI
completion and
diagnostics,
and running
and debugging
Camel routes
from the source
editor.

Language
support and
basic Camel
textual route
debugging

It provides
code
assistance and
offers a route
debugger.

You can use
every IDE with
YAML support.

Red Hat
provides the
Extension Pack
for Apache
Camel in VS
Code. This
pack contains
all the
necessary
extensions to
work with Red
Hat build of
Apache Camel
in VS Code.
This includes
language
support for
Camel K Java
standalone,
support for
Camel URI
completion and
diagnostics,
and running
and debugging
Camel routes
from the source
editor.

Language
support and
basic Camel
textual route
debugging.

It provides
code
assistance and
offers a route
debugger.

It also includes
the Kaoto VS
Code
extension,
which offers a
visual
integration
designer.

 Java DSL XML DSL YAML DSL

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

8

Hawtio / Fuse Console Hawtio retrieves the
routes from the runtime
as XML and display the
routes regardless of
which DSL was used to
create the routes.

Hawtio retrieves the
routes from the runtime
as XML and display the
routes regardless of
which DSL was used to
create the routes.

Hawtio retrieves the
routes from the runtime
as XML and display the
routes regardless of
which DSL was used to
create the routes.

Software development
model

The DSL adopts a fluent
builder API. Modeling

development
approach with
graphical editor
is possible
(Eclipse
Desktop).

Allows drag-
and-drop
based
development.

Textual-based
development is
also possible
with very
mature IDE
support.

Harder to write from
scratch. A modelling
development approach
with a graphical editor is
possible.

Debugging code
There are IDE
plug-ins that
provide step by
step DSL
debugging over
the EIPs. You
can step into
the
RouteBuilder,
but it is called
only at startup
and not during
processing.

Breakpoints
can be put in
Java code of
the core Camel
classes.

It is possible to
add temporary
Processors and
use the Java
debugger.

There are IDE
plug-ins that
provide step by
step DSL
debugging over
the EIPs.

Breakpoints
can be put in
Java code of
the core Camel
classes.

There are IDE
plug-ins that
provide step by
step DSL
debugging over
the EIPs.

Breakpoints
can be put in
Java code of
the core Camel
classes.

 Java DSL XML DSL YAML DSL

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

9

Integration with
dependency injection
(DI) frameworks

Easier to integrate with
any DI framework.

While it is possible to
refer to existing beans
from DI frameworks in
XML DSL, declaring new
beans in XML makes
these beans exclusive to
Camel itself, and not
part of the DI framework
(for example, Quarkus
or Spring Boot).

While it is possible to
refer to existing beans
from DI frameworks in
YAML DSL, declaring
new beans in YAML
makes these beans
exclusive to Camel itself,
and not part of the DI
framework (for example,
Quarkus or Spring
Boot).

Team size More flexible, but harder
to read code. Good for
small co-located teams
that work and support
code for a long period.

Beneficial for
large and
disparate
teams.

Less flexible,
making it
challenging to
create
complicated
routes.

Beneficial for
large and
disparate
teams.

Less flexible,
making it
challenging to
create
complicated
routes.

Team structure Requires the team to
have Java developers
for developing Camel
integrations. Other team
members also required
to understand Java in
order to read the
integration flow.

XML is a
widespread
language, and
all developers
can reuse
existing skills
when
developing with
Camel.

It offers a
higher level of
abstraction and
makes it easy
to
communicate
with business
developers and
support teams.

YAML is a
widespread
language, and
all developers
can reuse
existing skills
when
developing with
Camel.

It offers a
higher level of
abstraction and
makes it easy
to
communicate
with business
developers and
support teams.

 Java DSL XML DSL YAML DSL

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

10

Developer experience
and preference More suited to

experienced
developers as
Java is more
concise than
XML, with inner
classes and
functional
aspects.

Java
developers
tend to prefer
pure Java and
annotations
rather than
XML.

Ideal for new users, as it
offers a graphical
approach for designing
routes.

Ideal for new users, as it
offers a graphical
approach for designing
routes.

 Java DSL XML DSL YAML DSL

1.2. SPRING BOOT

Spring Boot automatically configures Camel for you. The opinionated auto-configuration of the Camel
context auto-detects Camel routes available in the Spring context and registers the key Camel utilities
(like producer template, consumer template and the type converter) as beans.

Maven users will need to add the following dependency to their pom.xml in order to use this
component:

camel-spring-boot jar comes with the spring.factories file, so as soon as you add that dependency into
your classpath, Spring Boot will automatically auto-configure Camel for you.

1.2.1. Camel Spring Boot Starter

Apache Camel ships a Spring Boot Starter module that allows you to develop Spring Boot applications
using starters. There is a sample application in the source code also.

To use the starter, add the following to your spring boot pom.xml file:

Then you can just add classes with your Camel routes such as:

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-spring-boot</artifactId>
 <version>4.4.0.redhat-00014</version> <!-- use the same version as your Camel core version -->
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-spring-boot-bom</artifactId>
 <version>4.4.0.redhat-00014</version> <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

11

https://github.com/spring-projects/spring-boot/tree/main/spring-boot-project/spring-boot-starters
https://github.com/jboss-fuse/camel-spring-boot-examples/tree/main/spring-boot

Then these routes will be started automatically.

You can customize the Camel application in the application.properties or application.yml file.

1.2.2. Spring Boot Auto-configuration

When using spring-boot with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

1.2.3. Auto-configured Camel context

The most important piece of functionality provided by the Camel auto-configuration is the
CamelContext instance. Camel auto-configuration creates a SpringCamelContext for you and takes
care of the proper initialization and shutdown of that context. The created Camel context is also
registered in the Spring application context (under the camelContext bean name), so you can access it
like any other Spring bean.

1.2.4. Auto-detecting Camel routes

Camel auto-configuration collects all the RouteBuilder instances from the Spring context and

package com.example;

import org.apache.camel.builder.RouteBuilder;
import org.springframework.stereotype.Component;

@Component
public class MyRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("timer:foo").to("log:bar");
 }
}

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-spring-boot-starter</artifactId>
 <version>4.4.0.redhat-00014</version> <!-- use the same version as your Camel core version -->
</dependency>

@Configuration
public class MyAppConfig {

 @Autowired
 CamelContext camelContext;

 @Bean
 MyService myService() {
 return new DefaultMyService(camelContext);
 }

}

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

12

Camel auto-configuration collects all the RouteBuilder instances from the Spring context and
automatically injects them into the provided CamelContext. This means that creating new Camel routes
with the Spring Boot starter is as simple as adding the @Component annotated class to your classpath:

Or creating a new route RouteBuilder bean in your @Configuration class:

1.2.5. Camel properties

Spring Boot auto-configuration automatically connects to Spring Boot external configuration (which
may contain properties placeholders, OS environment variables or system properties) with the Camel
properties support. It basically means that any property defined in application.properties file:

Or set via system property:

can be used as placeholders in Camel route:

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

}

@Configuration
public class MyRouterConfiguration {

 @Bean
 RoutesBuilder myRouter() {
 return new RouteBuilder() {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

 };
 }

}

route.from = jms:invoices

java -Droute.to=jms:processed.invoices -jar mySpringApp.jar

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("{{route.from}}").to("{{route.to}}");

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

13

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config

1.2.6. Custom Camel context configuration

If you want to perform some operations on CamelContext bean created by Camel auto-configuration,
register CamelContextConfiguration instance in your Spring context:

The method beforeApplicationStart will be called just before the Spring context is started, so the
CamelContext instance passed to this callback is fully auto-configured. If you add multiple instances of
CamelContextConfiguration into your Spring context, each instance is executed.

1.2.7. Auto-configured consumer and producer templates

Camel auto-configuration provides pre-configured ConsumerTemplate and ProducerTemplate
instances. You can simply inject them into your Spring-managed beans:

By default, consumer templates and producer templates come with the endpoint cache sizes set to
1000. You can change these values by modifying the following Spring properties:

 }

}

@Configuration
public class MyAppConfig {

 @Bean
 CamelContextConfiguration contextConfiguration() {
 return new CamelContextConfiguration() {
 @Override
 void beforeApplicationStart(CamelContext context) {
 // your custom configuration goes here
 }
 };
 }

}

@Component
public class InvoiceProcessor {

 @Autowired
 private ProducerTemplate producerTemplate;

 @Autowired
 private ConsumerTemplate consumerTemplate;

 public void processNextInvoice() {
 Invoice invoice = consumerTemplate.receiveBody("jms:invoices", Invoice.class);
 ...
 producerTemplate.sendBody("netty-http:http://invoicing.com/received/" + invoice.id());
 }

}

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

14

1.2.8. Auto-configured TypeConverter

Camel auto-configuration registers a TypeConverter instance named typeConverter in the Spring
context.

1.2.8.1. Spring type conversion API bridge

Spring comes with the powerful type conversion API. The Spring API is similar to the Camel type
converter API. As both APIs are so similar, Camel Spring Boot automatically registers a bridge converter
(SpringTypeConverter) that delegates to the Spring conversion API. This means that out-of-the-box
Camel will treat Spring Converters like Camel ones. With this approach you can use both Camel and
Spring converters accessed via Camel TypeConverter API:

Under the hood Camel Spring Boot delegates conversion to the Spring’s ConversionService instances
available in the application context. If no ConversionService instance is available, Camel Spring Boot
auto-configuration will create one for you.

1.2.9. Keeping the application alive

Camel applications which have this feature enabled launch a new thread on startup for the sole purpose
of keeping the application alive by preventing JVM termination. This means that after you start a Camel
application with Spring Boot, your application waits for a Ctrl+C signal and does not exit immediately.

The controller thread can be activated using the camel.springboot.main-run-controller to true.

camel.springboot.consumer-template-cache-size = 100
camel.springboot.producer-template-cache-size = 200

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public long parseInvoiceValue(Invoice invoice) {
 String invoiceValue = invoice.grossValue();
 return typeConverter.convertTo(Long.class, invoiceValue);
 }

}

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public UUID parseInvoiceId(Invoice invoice) {
 // Using Spring's StringToUUIDConverter
 UUID id = invoice.typeConverter.convertTo(UUID.class, invoice.getId());
 }

}

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

15

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert

Applications using web modules (for example, applications that import the
org.springframework.boot:spring-boot-web-starter module), usually don’t need to use this feature
because the application is kept alive by the presence of other non-daemon threads.

1.2.10. Adding XML routes

By default, you can put Camel XML routes in the classpath under the directory camel, which camel-
spring-boot will auto-detect and include. You can configure the directory name or turn this off using the
configuration option:

The XML files should be Camel XML routes (not <CamelContext>) such as:

1.2.11. Testing the JUnit 5 way

For testing, Maven users will need to add the following dependencies to their pom.xml:

To test a Camel Spring Boot application, annotate your test class(es) with @CamelSpringBootTest.
This brings Camel’s Spring Test support to your application, so that you can write tests using Spring
Boot test conventions.

To get the CamelContext or ProducerTemplate, you can inject them into the class in the normal Spring
manner, using @Autowired.

camel.springboot.main-run-controller = true

turn off
camel.springboot.routes-include-pattern = false

scan only in the com/foo/routes classpath
camel.springboot.routes-include-pattern = classpath:com/foo/routes/*.xml

<routes xmlns="http://camel.apache.org/schema/spring">
 <route id="test">
 <from uri="timer://trigger"/>
 <transform>
 <simple>ref:myBean</simple>
 </transform>
 <to uri="log:out"/>
 </route>
</routes>

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <version>3.2.5</version> <!-- Use the same version as your Spring Boot version -->
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-test-spring-junit5</artifactId>
 <version>4.4.0.redhat-00019</version> <!-- use the same version as your Camel core version -->
 <scope>test</scope>
</dependency>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

16

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html

You can also use camel-test-spring-junit5 to configure tests declaratively. This example uses the
@MockEndpoints annotation to auto-mock an endpoint:

1.3. COMPONENT STARTERS

Camel Spring Boot supports the following Camel artifacts as Spring Boot Starters:

Table 1.1, “Camel Components”

Table 1.2, “Camel Data Formats”

Table 1.3, “Camel Languages”

Table 1.4, “Miscellaneous Extensions”

Table 1.1. Camel Components

Component Artifact Description Support on IBM Power
and IBM Z

AMQP camel-amqp-starter Messaging with AMQP
protocol using Apache
QPid Client.

Yes

AWS Cloudwatch camel-aws2-cw-starter Sending metrics to AWS
CloudWatch using AWS
SDK version 2.x.

Yes

AWS DynamoDB camel-aws2-ddb-starter Store and retrieve data
from AWS DynamoDB
service using AWS SDK
version 2.x.

Yes

@CamelSpringBootTest
@SpringBootApplication
@MockEndpoints("direct:end")
public class MyApplicationTest {

 @Autowired
 private ProducerTemplate template;

 @EndpointInject("mock:direct:end")
 private MockEndpoint mock;

 @Test
 public void testReceive() throws Exception {
 mock.expectedBodiesReceived("Hello");
 template.sendBody("direct:start", "Hello");
 mock.assertIsSatisfied();
 }

}

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

17

https://camel.apache.org/components/4.0.x/others/test-spring-junit5.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-amqp-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-aws2-cw-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-aws2-ddb-component-starter

AWS Kinesis camel-aws2-kinesis-
starter

Consume and produce
records from and to
AWS Kinesis Streams
using AWS SDK version
2.x.

Yes

AWS Lambda camel-aws2-lambda-
starter

Manage and invoke AWS
Lambda functions using
AWS SDK version 2.x.

Yes

AWS S3 Storage Service camel-aws2-s3-starter Store and retrieve
objects from AWS S3
Storage Service using
AWS SDK version 2.x.

Yes

AWS Simple Notification
System (SNS)

camel-aws2-sns-starter Send messages to an
AWS Simple Notification
Topic using AWS SDK
version 2.x.

Yes

AWS Simple Queue
Service (SQS)

camel-aws2-sqs-starter Send and receive
messages to/from AWS
SQS service using AWS
SDK version 2.x.

Yes

Azure ServiceBus camel-azure-
servicebus-starter

Send and receive
messages to/from Azure
Event Bus.

Yes

Azure Storage Blob
Service

camel-azure-storage-
blob-starter

Store and retrieve blobs
from Azure Storage Blob
Service using SDK v12.

Yes

Azure Storage Queue
Service

camel-azure-storage-
queue-starter

The azure-storage-
queue component is
used for storing and
retrieving the messages
to/from Azure Storage
Queue using Azure SDK
v12.

Yes

Bean camel-bean-starter Invoke methods of Java
beans stored in Camel
registry.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

18

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-aws2-kinesis-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-aws2-lambda-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-aws2-s3-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-aws2-sns-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-aws2-sqs-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-azure-servicebus-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-azure-storage-blob-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-azure-storage-queue-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-bean-component-starter

Bean Validator camel-bean-validator-
starter

Validate the message
body using the Java
Bean Validation API.

Yes

Browse camel-browse-starter Inspect the messages
received on endpoints
supporting
BrowsableEndpoint.

Yes

Cassandra CQL camel-cassandraql-
starter

Integrate with
Cassandra 2.0 using the
CQL3 API (not the Thrift
API). Based on
Cassandra Java Driver
provided by DataStax.

Yes

CICS camel-cics-starter Interact with CICS®
general-purpose
transaction processing
subsystem.

No

Control Bus camel-controlbus-
starter

Manage and monitor
Camel routes.

Yes

Cron camel-cron-starter A generic interface for
triggering events at
times specified through
the Unix cron syntax.

Yes

Crypto (JCE) camel-crypto-starter Sign and verify
exchanges using the
Signature Service of the
Java Cryptographic
Extension (JCE).

Yes

CXF camel-cxf-soap-starter Expose SOAP
WebServices using
Apache CXF or connect
to external WebServices
using CXF WS client.

Yes

CXF-RS camel-cxf-rest-starter Expose JAX-RS REST
services using Apache
CXF or connect to
external REST services
using CXF REST client.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

19

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-bean-validator-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-browse-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-cassandra-cql-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-cics-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-control-bus-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-cron-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-crypto-jce-component
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-cxf-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-cxf-rs-component-starter

Data Format camel-dataformat-
starter

Use a Camel Data
Format as a regular
Camel Component.

Yes

Dataset camel-dataset-starter Provide data for load
and soak testing of your
Camel application.

Yes

Direct camel-direct-starter Call another endpoint
from the same Camel
Context synchronously.

Yes

Elastic Search camel-elasticsearch-
starter

Send requests to
ElasticSearch via Java
Client API.

No

FHIR camel-fhir-starter Exchange information in
the healthcare domain
using the FHIR (Fast
Healthcare
Interoperability
Resources) standard.

No

File camel-file-starter Read and write files. Yes

Flink camel-flink-starter Send DataSet jobs to an
Apache Flink cluster.

Yes

FTP camel-ftp-starter Upload and download
files to/from FTP
servers.

Yes

Google BigQuery camel-google-
bigquery-starter

Google BigQuery data
warehouse for analytics.

Yes

Google Pubsub camel-google-pubsub-
starter

Send and receive
messages to/from
Google Cloud Platform
PubSub Service.

Yes

gRPC camel-grpc-starter Expose gRPC endpoints
and access external
gRPC endpoints.

Yes

HTTP camel-http-starter Send requests to
external HTTP servers
using Apache HTTP
Client 4.x.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

20

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-dataformat-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-dataset-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-direct-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-elasticsearch-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-fhir-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-file-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-flink-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-ftp-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-google-bigquery-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-google-pubsub-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-grpc-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-http-component-starter

Infinispan camel-infinispan-starter Read and write from/to
Infinispan distributed
key/value store and data
grid.

No

Infinispan Embedded camel-infinispan-
embedded-starter

Read and write from/to
Infinispan distributed
key/value store and data
grid.

Yes

JDBC camel-jdbc-starter Access databases
through SQL and JDBC.

Yes

Jira camel-jira-starter Interact with JIRA issue
tracker.

Yes

JMS camel-jms-starter Sent and receive
messages to/from a
JMS Queue or Topic.

Yes

JPA camel-jpa-starter Store and retrieve Java
objects from databases
using Java Persistence
API (JPA).

Yes

JSLT camel-jslt-starter Query or transform
JSON payloads using an
JSLT.

Yes

Kafka camel-kafka-starter Sent and receive
messages to/from an
Apache Kafka broker.

Yes

Kamelet camel-kamelet-starter To call Kamelets Yes

Kubernetes ConfigMap camel-kubernetes-
starter

Perform operations on
Kubernetes ConfigMaps
and get notified on
ConfigMaps changes.

Yes

Kubernetes Custom
Resources

camel-kubernetes-
starter

Perform operations on
Kubernetes Custom
Resources and get
notified on Deployment
changes.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

21

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-infinispan-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-infinispan-embedded-component
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jdbc-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jira-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jms-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jpa-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jslt-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kafka-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kamelet-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-configmap-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-custom-resources-component-starter

Kubernetes
Deployments

camel-kubernetes-
starter

Perform operations on
Kubernetes
Deployments and get
notified on Deployment
changes.

Yes

Kubernetes Event camel-kubernetes-
starter

Perform operations on
Kubernetes Events and
get notified on Events
changes.

Yes

Kubernetes HPA camel-kubernetes-
starter

Perform operations on
Kubernetes Horizontal
Pod Autoscalers (HPA)
and get notified on HPA
changes.

Yes

Kubernetes Job camel-kubernetes-
starter

Perform operations on
Kubernetes Jobs.

Yes

Kubernetes
Namespaces

camel-kubernetes-
starter

Perform operations on
Kubernetes
Namespaces and get
notified on Namespace
changes.

Yes

Kubernetes Nodes camel-kubernetes-
starter

Perform operations on
Kubernetes Nodes and
get notified on Node
changes.

Yes

Kubernetes Persistent
Volume

camel-kubernetes-
starter

Perform operations on
Kubernetes Persistent
Volumes and get
notified on Persistent
Volume changes.

Yes

Kubernetes Persistent
Volume Claim

camel-kubernetes-
starter

Perform operations on
Kubernetes Persistent
Volumes Claims and get
notified on Persistent
Volumes Claim changes.

Yes

Kubernetes Pods camel-kubernetes-
starter

Perform operations on
Kubernetes Pods and
get notified on Pod
changes.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

22

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-deployments-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-event-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-hpa-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-job-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-namespaces-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-nodes-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-persistent-volume-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-persistent-volume-claim-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-pods-component-starter

Kubernetes Replication
Controller

camel-kubernetes-
starter

Yes Perform operations
on Kubernetes
Replication Controllers
and get notified on
Replication Controllers
changes.

Yes

Kubernetes Resources
Quota

camel-kubernetes-
starter

Perform operations on
Kubernetes Resources
Quotas.

Yes

Kubernetes Secrets camel-kubernetes-
starter

Perform operations on
Kubernetes Secrets.

Yes

Kubernetes Service
Account

camel-kubernetes-
starter

Perform operations on
Kubernetes Service
Accounts.

Yes

Kubernetes Services camel-kubernetes-
starter

Perform operations on
Kubernetes Services and
get notified on Service
changes.

Yes

Kudu camel-kudu-starter Interact with Apache
Kudu, a free and open
source column-oriented
data store of the Apache
Hadoop ecosystem.

No

Language camel-language-starter Execute scripts in any of
the languages
supported by Camel.

Yes

LDAP camel-ldap-starter Perform searches on
LDAP servers.

Yes

Log camel-log-starter Log messages to the
underlying logging
mechanism.

Yes

LRA camel-lra-starter Camel saga binding for
Long-Running-Action
framework.

Yes

Mail camel-mail-starter Send and receive emails
using imap, pop3 and
smtp protocols.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

23

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-replication-controller-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-resources-quota-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-secrets-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-service-account-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-services-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kudu-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-language-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-ldap-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-log-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-lra-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-mail-component-starter

Mail Microsoft OAuth camel-mail-microsoft-
oauth-starter

Camel Mail OAuth2
Authenticator for
Microsoft Exchange
Online.

Yes

MapStruct camel-mapstruct-
starter

Type Conversion using
Mapstruct.

Yes

Master camel-master-starter Have only a single
consumer in a cluster
consuming from a given
endpoint; with automatic
failover if the JVM dies.

Yes

Micrometer camel-micrometer-
starter

Collect various metrics
directly from Camel
routes using the
Micrometer library.

Yes

Minio camel-minio-starter Store and retrieve
objects from Minio
Storage Service using
Minio SDK.

Yes

MLLP camel-mllp-starter Communicate with
external systems using
the MLLP protocol.

Yes

Mock camel-mock-starter Test routes and
mediation rules using
mocks.

Yes

MongoDB camel-mongodb-starter Perform operations on
MongoDB documents
and collections.

Yes

MyBatis camel-mybatis-starter Performs a query, poll,
insert, update or delete
in a relational database
using MyBatis.

Yes

Netty camel-netty-starter Socket level networking
using TCP or UDP with
Netty 4.x.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

24

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-mail-microsoft-oauth-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-mapstruct-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-master-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-micrometer-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-minio-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-mllp-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-mock-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-mongodb-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-mybatis-component
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-netty-component-starter

Olingo4 camel-olingo4-starter Communicate with
OData 4.0 services
using Apache Olingo
OData API.

Yes

Openshift Build Config camel-kubernetes-
starter

Perform operations on
OpenShift Build Configs.

Yes

Openshift Builds camel-kubernetes-
starter

Perform operations on
OpenShift Builds.

Yes

Openshift Deployment
Configs

camel-kubernetes-
starter

Perform operations on
Openshift Deployment
Configs and get notified
on Deployment Config
changes.

Yes

Netty HTTP camel-netty-http-
starter

Netty HTTP server and
client using the Netty
4.x.

Yes

Paho camel-paho-starter Communicate with
MQTT message brokers
using Eclipse Paho
MQTT Client.

Yes

Paho MQTT 5 camel-paho-mqtt5-
starter

Communicate with
MQTT message brokers
using Eclipse Paho
MQTT v5 Client.

Yes

Platform HTTP camel-platform-http-
starter

Expose HTTP endpoints
using the HTTP server
available in the current
platform.

Yes

Quartz camel-quartz-starter Schedule sending of
messages using the
Quartz 2.x scheduler.

Yes

Ref camel-ref-starter Route messages to an
endpoint looked up
dynamically by name in
the Camel Registry.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

25

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-olingo4-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-openshift-build-config-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-openshift-builds-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kubernetes-openshift-deploymentconfigs-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-netty-http-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-paho-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-paho-mqtt5-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-platform-http-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-quartz-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-ref-component-starter

REST camel-rest-starter Expose REST services or
call external REST
services.

Yes

Saga camel-saga-starter Execute custom actions
within a route using the
Saga EIP.

Yes

Salesforce camel-salesforce-
starter

Communicate with
Salesforce using Java
DTOs.

Yes

SAP camel-sap-starter Uses the SAP Java
Connector (SAP JCo)
library to facilitate
bidirectional
communication with
SAP and the SAP IDoc
library to facilitate the
transmission of
documents in the
Intermediate Document
(IDoc) format.

Yes

Scheduler camel-scheduler-starter Generate messages in
specified intervals using
java.util.concurrent.Sche
duledExecutorService.

Yes

SEDA camel-seda-starter Asynchronously call
another endpoint from
any Camel Context in
the same JVM.

Yes

Servlet camel-servlet-starter Serve HTTP requests by
a Servlet.

Yes

Slack camel-slack-starter Send and receive
messages to/from Slack.

Yes

SMB camel-smb-starter Receive files from SMB
(Server Message Block)
shares.

Yes

SNMP camel-snmp-starter Receive traps and poll
SNMP (Simple Network
Management Protocol)
capable devices.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

26

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-rest-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-saga-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-salesforce-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-sap-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-scheduler-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-seda-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-servlet-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-slack-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-smb-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-snmp-component-starter

Splunk camel-splunk-starter Publish or search for
events in Splunk.

No

Spring Batch camel-spring-batch-
starter

Send messages to
Spring Batch for further
processing.

Yes

Spring JDBC camel-spring-jdbc-
starter

Access databases
through SQL and JDBC
with Spring Transaction
support.

Yes

Spring LDAP camel-spring-ldap-
starter

Perform searches in
LDAP servers using
filters as the message
payload.

Yes

Spring RabbitMQ camel-spring-rabbitmq-
starter

Send and receive
messages from
RabbitMQ using Spring
RabbitMQ client.

Yes

Spring Redis camel-spring-redis-
starter

Send and receive
messages from Redis.

Yes

Spring Webservice camel-spring-ws-starter You can use this
component to integrate
with Spring Web
Services. It offers client-
side support for
accessing web services
and server-side support
for creating your
contract-first web
services.

Yes

SQL camel-sql-starter Perform SQL queries
using Spring JDBC.

Yes

SQL Stored Procedure camel-sql-starter Perform SQL queries as
a JDBC Stored
Procedures using Spring
JDBC.

Yes

SSH camel-ssh-starter Execute commands on
remote hosts using SSH.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

27

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-splunk-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-spring-batch-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-spring-JDBC-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-spring-ldap-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-spring-rabbitMQ-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-spring-redis-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-spring-webservice-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-sql-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-sql-stored-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-ssh-component-starter

Stub camel-stub-starter Stub out any physical
endpoints while in
development or testing.

Yes

Telegram camel-telegram-starter Send and receive
messages acting as a
Telegram Bot Telegram
Bot API.

Yes

Timer camel-timer-starter Generate messages in
specified intervals using
java.util.Timer.

Yes

Validator camel-validator-starter Validate the payload
using XML Schema and
JAXP Validation.

Yes

Velocity camel-velocity-starter Transform messages
using a Velocity
template.

Yes

Vert.x HTTP Client camel-vertx-http-
starter

Send requests to
external HTTP servers
using Vert.x.

Yes

Vert.x WebSocket camel-vertx-
websocket-starter

Expose WebSocket
endpoints and connect
to remote WebSocket
servers using Vert.x.

Yes

Webhook camel-webhook-starter Expose webhook
endpoints to receive
push notifications for
other Camel
components.

Yes

XJ camel-xj-starter Transform JSON and
XML message using a
XSLT.

Yes

XSLT camel-xslt-starter Transforms XML
payload using an XSLT
template.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

28

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-stub-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-telegram-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-timer-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-validator-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-velocity-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-vertx-http-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-vertx-websocket-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-webhook-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-xj-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-xslt-component-starter

XSLT Saxon camel-xslt-saxon-
starter

Transform XML
payloads using an XSLT
template using Saxon.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

Table 1.2. Camel Data Formats

Component Artifact Description Support on IBM Power
and IBM Z

Avro camel-avro-starter Serialize and deserialize
messages using Apache
Avro binary data format.

Yes

Avro Jackson camel-jackson-avro-
starter

Marshal POJOs to Avro
and back using Jackson.

Yes

Bindy camel-bindy-starter Marshal and unmarshal
between POJOs and
key-value pair (KVP)
format using Camel
Bindy.

Yes

HL7 camel-hl7-starter Marshal and unmarshal
HL7 (Health Care)
model objects using the
HL7 MLLP codec.

Yes

JacksonXML camel-jacksonxml-
starter

Unmarshal a XML
payloads to POJOs and
back using XMLMapper
extension of Jackson.

Yes

JAXB camel-jaxb-starter Unmarshal XML
payloads to POJOs and
back using JAXB2 XML
marshalling standard.

Yes

JSON Gson camel-gson-starter Marshal POJOs to
JSON and back using
Gson

Yes

JSON Jackson camel-jackson-starter Marshal POJOs to
JSON and back using
Jackson

Yes

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

29

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-xslt-saxon-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-avro-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-avro-jackson-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-bindy-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-hl7-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jacksonxml-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jaxb-dataformat-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-json-gson-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-json-jackson-dataformat-starter

Protobuf Jackson camel-jackson-
protobuf-starter

Marshal POJOs to
Protobuf and back using
Jackson.

Yes

SOAP camel-soap-starter Marshal Java objects to
SOAP messages and
back.

Yes

Zip File camel-zipfile-starter Compression and
decompress streams
using
java.util.zip.ZipStream.

Yes

Component Artifact Description Support on IBM Power
and IBM Z

Table 1.3. Camel Languages

Language Artifact Description Support on IBM Power
and IBM Z

Constant camel-core-starter A fixed value set only
once during the route
startup.

Yes

CSimple camel-core-starter Evaluate a compiled
simple expression.

Yes

ExchangeProperty camel-core-starter Gets a property from
the Exchange.

Yes

File camel-core-starter File related capabilities
for the Simple language.

Yes

Header camel-core-starter Gets a header from the
Exchange.

Yes

JQ camel-jq-starter Evaluates a JQ
expression against a
JSON message body.

Yes

JSONPath camel-jsonpath-starter Evaluates a JSONPath
expression against a
JSON message body.

Yes

Ref camel-core-starter Uses an existing
expression from the
registry.

Yes

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

30

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-protobuf-jackson-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-soap-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-zipfile-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-constant-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-csimple-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-exchangeproperty-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-file-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-header-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jq-language-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jsonpath-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-ref-language-starter

Simple camel-core-starter Evaluates a Camel
simple expression.

Yes

Tokenize camel-core-starter Tokenize text payloads
using delimiter patterns.

Yes

XML Tokenize camel-xml-jaxp-starter Tokenize XML payloads. Yes

XPath camel-xpath-starter Evaluates an XPath
expression against an
XML payload.

Yes

XQuery camel-saxon-starter Query and/or transform
XML payloads using
XQuery and Saxon.

Yes

Language Artifact Description Support on IBM Power
and IBM Z

Table 1.4. Miscellaneous Extensions

Extensions Artifact Description Support on IBM Power
and IBM Z

Jasypt camel-jasypt-starter Security using Jasypt Yes

Kamelet Main camel-kamelet-main-
starter

Main to run Kamelet
standalone

Yes

Openapi Java camel-openapi-java-
starter

Rest-dsl support for
using openapi doc

Yes

OpenTelemetry camel-opentelemetry-
starter

Distributed tracing using
OpenTelemetry

Yes

Spring Security camel-spring-security-
starter

Security using Spring
Security

Yes

YAML DSL camel-yaml-dsl-starter Camel DSL with YAML Yes

1.4. STARTER CONFIGURATION

Clear and accessible configuration is a crucial part of any application. Camel starters fully support Spring
Boot’s external configuration mechanism. You can also configure them through Spring Beans for more
complex use cases.

1.4.1. Using External Configuration

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

31

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-simple-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-tokenize-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-xml-tokenize-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-xpath-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-saxon-language-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-jasypt-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-kamelet-main-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-openapi-java-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-opentelemetry-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-spring-security-component-starter
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/red_hat_build_of_apache_camel_for_spring_boot_reference/index#csb-camel-yaml-dsl-component-starter
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#beans-definition

Internally, every starter is configured through Spring Boot’s ConfigurationProperties. Each
configuration parameter can be set in various ways (application.[properties|json|yaml] files, command
line arguments, environments variables etc.). Parameters have the form of camel.
[component|language|dataformat].[name].[parameter]

For example to configure the URL of the MQTT5 broker you can set:

camel.component.paho-mqtt5.broker-url=tcp://localhost:61616

Or to configure the delimeter of the CSV dataformat to be a semicolon(;) you can set:

camel.dataformat.csv.delimiter=;

Camel will use the Type Converter mechanism when setting properties to the desired type.

You can refer to beans in the Registry using the #bean:name:

camel.component.jms.transactionManager=#bean:myjtaTransactionManager

The Bean would be typically created in Java:

Beans can also be created in configuration files but this is not recommended for complex use cases.

1.4.2. Using Beans

Starters can also be created and configured via Spring Beans. Before creating a starter , Camel will first
lookup it up in the Registry by it’s name if it already exists. For example to configure a Kafka component:

The Bean name has to be equal to that of the Component, Dataformat or Language that you are
configuring. If the Bean name isn’t specified in the annotation it will be set to the method name.

Typical Camel Spring Boot projects will use a combination of external configuration and Beans to
configure an application. For more examples on how to configure your Camel Spring Boot project,
please see the example repository.

1.5. GENERATING A CAMEL FOR SPRING BOOT APPLICATION USING
MAVEN

You can generate a Red Hat build of Apache Camel for Spring Boot application using the Maven

@Bean("myjtaTransactionManager")
public JmsTransactionManager myjtaTransactionManager(PooledConnectionFactory pool) {
 JmsTransactionManager manager = new JmsTransactionManager(pool);
 manager.setDefaultTimeout(45);
 return manager;
}

@Bean("kafka")
public KafkaComponent kafka(KafkaConfiguration kafkaconfiguration){
 return ComponentsBuilderFactory.kafka()
 .brokers("{{kafka.host}}:{{kafka.port}}")
 .build();
}

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

32

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.typesafe-configuration-properties.java-bean-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config
https://camel.apache.org/components/4.4.x/others/main.html#_specifying_custom_beans
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#beans-definition
https://github.com/jboss-fuse/camel-spring-boot-examples

You can generate a Red Hat build of Apache Camel for Spring Boot application using the Maven
archetype org.apache.camel.archetypes:camel-archetype-spring-boot:4.4.0.redhat-00014.

Procedure

1. Run the following command:

2. Build the application:

mvn package -f csb-app/pom.xml

3. Run the application:

java -jar csb-app/target/csb-app-1.0-SNAPSHOT.jar

4. Verify that the application is running by examining the console log for the Hello World output
which is generated by the application.

com.redhat.MySpringBootApplication : Started MySpringBootApplication in 3.514
seconds (JVM running for 4.006)
Hello World
Hello World

1.6. DEPLOYING A CAMEL SPRING BOOT APPLICATION TO
OPENSHIFT

This guide demonstrates how to deploy a Camel Spring Boot application to OpenShift.

Prerequisites

You have access to the OpenShift cluster.

The OpenShift oc CLI client is installed or you have access to the OpenShift Container Platform
web console.

NOTE

The certified OpenShift Container platforms are listed in the Camel for Spring Boot
Supported Configurations. The Red Hat OpenJDK 11 (ubi8/openjdk-11) container image is
used in the following example.

Procedure

1. Generate a Camel for Spring Boot application using Maven by following the instructions in

mvn archetype:generate \
 -DarchetypeGroupId=org.apache.camel.archetypes \
 -DarchetypeArtifactId=camel-archetype-spring-boot \
 -DarchetypeVersion=4.4.0.redhat-00014 \
 -DgroupId=com.redhat \
 -DartifactId=csb-app \
 -Dversion=1.0-SNAPSHOT \
 -DinteractiveMode=false

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

33

https://access.redhat.com/articles/6970899

1. Generate a Camel for Spring Boot application using Maven by following the instructions in
section 1.5 Generating a Camel for Spring Boot application using Maven of this guide.

2. Under the directory which the modified pom.xml exists, execute the following command.

mvn clean -DskipTests oc:deploy -Popenshift

3. Verify that the CSB application is running on the pod.

oc logs -f dc/csb-app

1.7. APPLYING PATCH TO RED HAT BUILD OF APACHE CAMEL FOR
SPRING BOOT

Using the new patch-maven-plugin mechanism, you can apply a patch to your Red Hat Red Hat build of
Apache Camel for Spring Boot application. This mechanism allows you to change the individual versions
provided by different Red Hat application BOMS, for example, camel-spring-boot-bom.

The purpose of the patch-maven-plugin is to update the versions of the dependencies listed in the
Camel on Spring Boot BOM to the versions specified in the patch metadata that you wish to apply to
your applications.

The patch-maven-plugin performs the following operations:

Retrieve the patch metadata related to current Red Hat application BOMs.

Apply the version changes to <dependencyManagement> imported from the BOMs.

After the patch-maven-plugin fetches the metadata, it iterates through all managed and direct
dependencies of the project where the plugin was declared and replaces the dependency versions (if
they match) using CVE/patch metadata. After the versions are replaced, the Maven build continues and
progresses through standard Maven project stages.

Procedure

The following procedure explains how to apply the patch to your application.

1. Add patch-maven-plugin to your project’s pom.xml file. The version of the patch-maven-
plugin must be the same as the version of the Camel on Spring Boot BOM.

2. When you run any of the mvn clean deploy, mvn validate, or mvn dependency:tree
commands, the plugin searches through the project modules to check if the modules use the
Red Hat Red Hat build of Apache Camel for Spring Boot BOM. Only the following is the
supported BOM:

<build>
 <plugins>
 <<plugin>
 <groupId>com.redhat.camel.springboot.platform</groupId>
 <artifactId>patch-maven-plugin</artifactId>
 <version>${camel-spring-boot-version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

34

https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel/4.4/html-single/getting_started_with_red_hat_build_of_apache_camel_for_spring_boot/index#generating-a-csb-application-using-maven

com.redhat.camel.springboot.platform:camel-spring-boot-bom: for Red Hat build of
Apache Camel for Spring Boot BOM

3. If the plugin does not find the above BOM, the plugin displays the following messages:

$ mvn clean install

[INFO] Scanning for projects...
[INFO]

========== Red Hat Maven patching ==========

[INFO] [PATCH] No project in the reactor uses Camel on Spring Boot product BOM. Skipping
patch processing.
[INFO] [PATCH] Done in 7ms

===

4. If the correct BOM is used, the patch metadata is found, but without any patches.

$ mvn clean install

[INFO] Scanning for projects...
[INFO]

========== Red Hat Maven patching ==========

[INFO] [PATCH] Reading patch metadata and artifacts from 2 project repositories
[INFO] [PATCH] - redhat-ga-repository: http://maven.repository.redhat.com/ga/
[INFO] [PATCH] - central: https://repo.maven.apache.org/maven2
Downloading from redhat-ga-repository:
http://maven.repository.redhat.com/ga/com/redhat/camel/springboot/platform/redhat-camel-
spring-boot-patch-metadata/maven-metadata.xml
Downloading from central:
https://repo.maven.apache.org/maven2/com/redhat/camel/springboot/platform/redhat-camel-
spring-boot-patch-metadata/maven-metadata.xml
[INFO] [PATCH] Resolved patch descriptor:
/path/to/.m2/repository/com/redhat/camel/springboot/platform/redhat-camel-spring-boot-
patch-metadata/3.20.1.redhat-00043/redhat-camel-spring-boot-patch-metadata-
3.20.1.redhat-00043.xml
[INFO] [PATCH] Patch metadata found for com.redhat.camel.springboot.platform/camel-
spring-boot-bom/[3.20,3.21)
[INFO] [PATCH] Done in 938ms

===

5. The patch-maven-plugin attempts to fetch this Maven metadata.

For the projects with Camel Spring Boot BOM, the
com.redhat.camel.springboot.platform:redhat-camel-spring-boot-patch-
metadata/maven-metadata.xml is resolved. This XML data is the metadata for the artifact
with the com.redhat.camel.springboot.platform:redhat-camel-spring-boot-patch-
metadata:RELEASE coordinates.

Example metadata generated by Maven

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

35

6. The patch-maven-plugin parses the metadata to select the version which applies to the current
project. This action is possible only for the Maven projects using Camel on Spring Boot BOM
with the specific version. Only the metadata that matches the version range or later is
applicable, and it fetches only the latest version of the metadata.

7. The patch-maven-plugin collects a list of remote Maven repositories for downloading the
patch metadata identified by groupId, artifactId, and version found in previous steps. These
Maven repositories are listed in the project’s <repositories> elements in the active profiles, and
also the repositories from the settings.xml file.

$ mvn clean install
[INFO] Scanning for projects...
[INFO]

========== Red Hat Maven patching ==========

[INFO] [PATCH] Reading patch metadata and artifacts from 2 project repositories
[INFO] [PATCH] - MRRC-GA: https://maven.repository.redhat.com/ga
[INFO] [PATCH] - central: https://repo.maven.apache.org/maven2

8. Whether the metadata comes from a remote repository, local repository, or ZIP file, it is
analyzed by the patch-maven-plugin. The fetched metadata contains a list of CVEs, and for
each CVE, we have a list of the affected Maven artifacts (specified by glob patterns and version
ranges) together with a version that contains a fix for a given CVE. For example,

9. Finally a list of fixes specified in patch metadata is consulted when iterating over all managed

<?xml version="1.0" encoding="UTF-8"?>
<metadata>
 <groupId>com.redhat.camel.springboot.platform</groupId>
 <artifactId>redhat-camel-spring-boot-patch-metadata</artifactId>
 <versioning>
 <release>3.20.1.redhat-00041</release>
 <versions>
 <version>3.20.1.redhat-00041</version>
 </versions>
 <lastUpdated>20230322103858</lastUpdated>
 </versioning>
</metadata>

<?xml version="1.0" encoding="UTF-8" ?>

<<metadata xmlns="urn:redhat:patch-metadata:1">
 <product-bom groupId="com.redhat.camel.springboot.platform" artifactId="camel-spring-
boot-bom" versions="[3.20,3.21)" />
 <cves>
 </cves>
 <fixes>
 <fix id="HF0-1" description="logback-classic (Example) - Version Bump">
 <affects groupId="ch.qos.logback" artifactId="logback-classic" versions="[1.0,1.3.0)"
fix="1.3.0" />
 </fix>
 </fixes>
</metadata>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

36

9. Finally a list of fixes specified in patch metadata is consulted when iterating over all managed
dependencies in the current project. These dependencies (and managed dependencies) that
match are changed to fixed versions. For example:

$ mvn dependency:tree

[INFO] Scanning for projects...
[INFO]

========== Red Hat Maven patching ==========

[INFO] [PATCH] Reading patch metadata and artifacts from 3 project repositories
[INFO] [PATCH] - redhat-ga-repository: http://maven.repository.redhat.com/ga/
[INFO] [PATCH] - local: file:///path/to/.m2/repository
[INFO] [PATCH] - central: https://repo.maven.apache.org/maven2
[INFO] [PATCH] Resolved patch
descriptor:/path/to/.m2/repository/com/redhat/camel/springboot/platform/redhat-camel-spring-
boot-patch-metadata/3.20.1.redhat-00043/redhat-camel-spring-boot-patch-metadata-
3.20.1.redhat-00043.xml
[INFO] [PATCH] Patch metadata found for com.redhat.camel.springboot.platform/camel-
spring-boot-bom/[3.20,3.21)
[INFO] [PATCH] - patch contains 1 patch fix
[INFO] [PATCH] Processing managed dependencies to apply patch fixes...
[INFO] [PATCH] - HF0-1: logback-classic (Example) - Version Bump
[INFO] [PATCH] Applying change ch.qos.logback/logback-classic/[1.0,1.3.0) -> 1.3.0
[INFO] [PATCH] Project com.test:yaml-routes
[INFO] [PATCH] - managed dependency: ch.qos.logback/logback-classic/1.2.11 -> 1.3.0
[INFO] [PATCH] Done in 39ms

===

Skipping the patch

If you do not wish to apply a specific patch to your project, the patch-maven-plugin provides a skip
option. Assuming that you have already added the patch-maven-plugin to the project’s pom.xml file,
and you do not wish to alter the versions, you can use one of the following method to skip the patch.

Add the skip option to your project’s pom.xml file as follows.

<build>
 <plugins>
 <plugin>
 <groupId>com.redhat.camel.springboot.platform</groupId>
 <artifactId>patch-maven-plugin</artifactId>
 <version>${camel-spring-boot-version}</version>
 <extensions>true</extensions>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>
 </plugins>
</build>

Or use the -DskipPatch option when running the mvn command as follows.

$ mvn clean install -DskipPatch

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

37

[INFO] Scanning for projects...
[INFO]
[INFO] -------------------------< com.example:test-csb >-------------------------
[INFO] Building A Camel Spring Boot Route 1.0-SNAPSHOT
...

As shown in the above output, the patch-maven-plugin was not invoked, which resulted in the patch not
being applied to the application.

1.8. CAMEL REST DSL OPENAPI MAVEN PLUGIN

The Camel REST DSL OpenApi Maven Plugin supports the following goals.

camel-restdsl-openapi:generate - To generate consumer REST DSL RouteBuilder source code
from OpenApi specification

camel-restdsl-openapi:generate-with-dto - To generate consumer REST DSL RouteBuilder
source code from OpenApi specification and with DTO model classes generated via the
swagger-codegen-maven-plugin.

camel-restdsl-openapi:generate-xml - To generate consumer REST DSL XML source code
from OpenApi specification

camel-restdsl-openapi:generate-xml-with-dto - To generate consumer REST DSL XML source
code from OpenApi specification and with DTO model classes generated via the swagger-
codegen-maven-plugin.

camel-restdsl-openapi:generate-yaml - To generate consumer REST DSL YAML source code
from OpenApi specification

camel-restdsl-openapi:generate-yaml-with-dto - To generate consumer REST DSL YAML
source code from OpenApi specification and with DTO model classes generated via the
swagger-codegen-maven-plugin.

1.8.1. Adding plugin to Maven pom.xml

This plugin can be added to your Maven pom.xml file by adding it to the plugins section, for example in
a Spring Boot application:

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>

 <plugin>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-restdsl-openapi-plugin</artifactId>
 <version>{CamelCommunityVersion}</version>
 </plugin>

 </plugins>
</build>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

38

The plugin can then be executed using its prefix camel-restdsl-openapi as shown below.

$mvn camel-restdsl-openapi:generate

1.8.2. camel-restdsl-openapi:generate

The goal of the Camel REST DSL OpenApi Maven Plugin is used to generate REST DSL RouteBuilder
implementation source code from Maven.

1.8.3. Options

The plugin supports the following options which can be configured from the command line (use -D
syntax), or defined in the pom.xml file in the configuration tag.

Parameter Default Value Description

skip false Set to true to skip code
generation

filterOperation Used for including only the
operation ids specified. Multiple
ids can be separated by comma.
Wildcards can be used, eg find*
to include all operations starting
with find.

specificationUri src/spec/openapi.json URI of the OpenApi specification,
supports filesystem paths, HTTP
and classpath resources, by
default src/spec/openapi.json
within the project directory.
Supports JSON and YAML.

auth Adds authorization headers when
fetching the OpenApi
specification definitions remotely.
Pass in a URL-encoded string of
name:header with a comma
separating multiple values.

className from title or RestDslRoute Name of the generated class,
taken from the OpenApi
specification title or set to
RestDslRoute by default

packageName from host or
rest.dsl.generated

Name of the package for the
generated class, taken from the
OpenApi specification host value
or rest.dsl.generated by
default

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

39

indent " " Which indenting character(s) to
use, by default four spaces, you
can use \t to signify tab character

outputDirectory generated-sources/restdsl-
openapi

Where to place the generated
source file, by default
generated-sources/restdsl-
openapi within the project
directory

destinationGenerator Fully qualified class name of the
class that implements
org.apache.camel.generator.
openapi.DestinationGenerat
or interface for customizing
destination endpoint

destinationToSyntax direct:${operationId} The default to syntax for the to
uri, which is to use the direct
component.

restConfiguration true Whether to include generation of
the rest configuration with
detected rest component to be
used.

apiContextPath Define openapi endpoint path if
restConfiguration is set to true.

clientRequestValidation false Whether to enable request
validation.

basePath Overrides the api base path as
defined in the OpenAPI
specification.

requestMappingValues /** Allows generation of custom
RequestMapping mapping
values. Multiple mapping values
can be passed as:

<requestMappingValues>
<param>/my-api-
path/</param> <param>/my-
other-path/</param>
</requestMappingValues>

Parameter Default Value Description

1.8.4. Spring Boot Project with Servlet component

If the Maven project is a Spring Boot project and restConfiguration is enabled and the servlet

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

40

If the Maven project is a Spring Boot project and restConfiguration is enabled and the servlet
component is being used as REST component, then this plugin will autodetect the package name (if
packageName has not been explicitly configured) where the @SpringBootApplication main class is
located, and use the same package name for generating Rest DSL source code and a needed
CamelRestController support class.

1.8.5. camel-restdsl-openapi:generate-with-dto

Works as generate goal but also generates DTO model classes by automatic executing the swagger-
codegen-maven-plugin to generate java source code of the DTO model classes from the OpenApi
specification.

This plugin has been scoped and limited to only support a good effort set of defaults for using the
swagger-codegen-maven-plugin to generate the model DTOs. If you need more power and flexibility
then use the Swagger Codegen Maven Plugin directly to generate the DTO and not this plugin.

The DTO classes may require additional dependencies such as:

 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.10.1</version>
 </dependency>
 <dependency>
 <groupId>io.swagger.core.v3</groupId>
 <artifactId>swagger-core</artifactId>
 <version>2.2.8</version>
 </dependency>
 <dependency>
 <groupId>org.threeten</groupId>
 <artifactId>threetenbp</artifactId>
 <version>1.6.8</version>
 </dependency>

1.8.6. Options

The plugin supports the following additional options

Parameter Default Value Description

swaggerCodegenMavenPlugi
nVersion

3.0.36 The version of the
io.swagger.codegen.v3:swag
ger-codegen-maven-plugin
maven plugin to be used.

modelOutput Target output path (default is
${project.build.directory}/generat
ed-sources/openapi)

modelPackage io.swagger.client.model The package to use for generated
model objects/classes

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

41

https://github.com/swagger-api/swagger-codegen/tree/3.0.0/modules/swagger-codegen-maven-plugin

modelNamePrefix Sets the pre- or suffix for model
classes and enums

modelNameSuffix Sets the pre- or suffix for model
classes and enums

modelWithXml false Enable XML annotations inside
the generated models (only works
with libraries that provide support
for JSON and XML)

configOptions Pass a map of language-specific
parameters to swagger-
codegen-maven-plugin

Parameter Default Value Description

1.8.7. camel-restdsl-openapi:generate-xml

The camel-restdsl-openapi:generate-xml goal of the Camel REST DSL OpenApi Maven Plugin is used
to generate REST DSL XML implementation source code from Maven.

1.8.8. Options

The plugin supports the following options which can be configured from the command line (use -D
syntax), or defined in the pom.xml file in the <configuration> tag.

Parameter Default Value Description

skip false Set to true to skip code
generation.

filterOperation Used for including only the
operation ids specified. Multiple
ids can be separated by comma.
Wildcards can be used, eg find*
to include all operations starting
with find.

specificationUri src/spec/openapi.json URI of the OpenApi specification,
supports filesystem paths, HTTP
and classpath resources, by
default src/spec/openapi.json
within the project directory.
Supports JSON and YAML.

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

42

auth Adds authorization headers when
fetching the OpenApi
specification definitions remotely.
Pass in a URL-encoded string of
name:header with a comma
separating multiple values.

outputDirectory generated-sources/restdsl-
openapi

Where to place the generated
source file, by default
generated-sources/restdsl-
openapi within the project
directory

fileName camel-rest.xml The name of the XML file as
output.

blueprint false If enabled generates OSGi
Blueprint XML instead of Spring
XML.

destinationGenerator Fully qualified class name of the
class that implements
org.apache.camel.generator.
openapi.DestinationGenerat
or interface for customizing
destination endpoint

destinationToSyntax direct:${operationId} The default to syntax for the to
uri, which is to use the direct
component.

 restConfiguration true

Whether to include generation of
the rest configuration with
detected rest component to be
used.

apiContextPath

Define openapi endpoint path if
restConfiguration is set to
true.

clientRequestValidation false

Whether to enable request
validation.

basePath

Parameter Default Value Description

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

43

Overrides the api base path as
defined in the OpenAPI
specification.

requestMappingValues /**

Parameter Default Value Description

1.8.9. camel-restdsl-openapi:generate-xml-with-dto

Works as generate-xml goal but also generates DTO model classes by automatic executing the
swagger-codegen-maven-plugin to generate java source code of the DTO model classes from the
OpenApi specification.

This plugin has been scoped and limited to only support a good effort set of defaults for using the
swagger-codegen-maven-plugin to generate the model DTOs. If you need more power and flexibility
then use the Swagger Codegen Maven Plugin directly to generate the DTO and not this plugin.

The DTO classes may require additional dependencies such as:

 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.10.1</version>
 </dependency>
 <dependency>
 <groupId>io.swagger.core.v3</groupId>
 <artifactId>swagger-core</artifactId>
 <version>2.2.8</version>
 </dependency>
 <dependency>
 <groupId>org.threeten</groupId>
 <artifactId>threetenbp</artifactId>
 <version>1.6.8</version>
 </dependency>

1.8.10. Options

The plugin supports the following additional options

Parameter Default Value Description

swaggerCodegenMavenPlugi
nVersion

3.0.36 The version of the
io.swagger.codegen.v3:swag
ger-codegen-maven-plugin
maven plugin to be used.

modelOutput Target output path (default is
${project.build.directory}/generat
ed-sources/openapi)

modelPackage io.swagger.client.model The package to use for generated
model objects/classes

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

44

https://github.com/swagger-api/swagger-codegen/tree/master/modules/swagger-codegen-maven-plugin

modelNamePrefix Sets the pre- or suffix for model
classes and enums

modelNameSuffix Sets the pre- or suffix for model
classes and enums

modelWithXml false Enable XML annotations inside
the generated models (only works
with libraries that provide support
for JSON and XML)

configOptions Pass a map of language-specific
parameters to swagger-
codegen-maven-plugin

Parameter Default Value Description

1.8.11. camel-restdsl-openapi:generate-yaml

The camel-restdsl-openapi:generate-yaml goal of the Camel REST DSL OpenApi Maven Plugin is
used to generate REST DSL YAML implementation source code from Maven.

1.8.12. Options

The plugin supports the following options which can be configured from the command line (use -D
syntax), or defined in the pom.xml file in the <configuration> tag.

Parameter Default Value Description

skip false Set to true to skip code
generation.

filterOperation Used for including only the
operation ids specified. Multiple
ids can be separated by comma.
Wildcards can be used, eg find*
to include all operations starting
with find.

specificationUri src/spec/openapi.json URI of the OpenApi specification,
supports filesystem paths, HTTP
and classpath resources, by
default src/spec/openapi.json
within the project directory.
Supports JSON and YAML.

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

45

auth Adds authorization headers when
fetching the OpenApi
specification definitions remotely.
Pass in a URL-encoded string of
name:header with a comma
separating multiple values.

outputDirectory generated-sources/restdsl-
openapi

Where to place the generated
source file, by default
generated-sources/restdsl-
openapi within the project
directory

fileName camel-rest.xml The name of the XML file as
output.

destinationGenerator Fully qualified class name of the
class that implements
org.apache.camel.generator.
openapi.DestinationGenerat
or interface for customizing
destination endpoint

destinationToSyntax direct:${operationId} The default to syntax for the to
uri, which is to use the direct
component.

 restConfiguration true

Whether to include generation of
the rest configuration with
detected rest component to be
used.

apiContextPath

Define openapi endpoint path if
restConfiguration is set to
true.

clientRequestValidation false

Whether to enable request
validation.

basePath

Overrides the api base path as
defined in the OpenAPI
specification.

requestMappingValues /**

Parameter Default Value Description

1.8.13. camel-restdsl-openapi:generate-yaml-with-dto

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

46

Works as generate-yaml goal but also generates DTO model classes by automatic executing the
swagger-codegen-maven-plugin to generate java source code of the DTO model classes from the
OpenApi specification.

This plugin has been scoped and limited to only support a good effort set of defaults for using the
swagger-codegen-maven-plugin to generate the model DTOs. If you need more power and flexibility
then use the Swagger Codegen Maven Plugin directly to generate the DTO and not this plugin.

The DTO classes may require additional dependencies such as:

 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.10.1</version>
 </dependency>
 <dependency>
 <groupId>io.swagger.core.v3</groupId>
 <artifactId>swagger-core</artifactId>
 <version>2.2.8</version>
 </dependency>
 <dependency>
 <groupId>org.threeten</groupId>
 <artifactId>threetenbp</artifactId>
 <version>1.6.8</version>
 </dependency>

1.8.14. Options

The plugin supports the following additional options

Parameter Default Value Description

swaggerCodegenMavenPlugi
nVersion

3.0.36 The version of the
io.swagger.codegen.v3:swag
ger-codegen-maven-plugin
maven plugin to be used.

modelOutput Target output path (default is
${project.build.directory}/generat
ed-sources/openapi)

modelPackage io.swagger.client.model The package to use for generated
model objects/classes

modelNamePrefix Sets the pre- or suffix for model
classes and enums

modelNameSuffix Sets the pre- or suffix for model
classes and enums

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT

47

https://github.com/swagger-api/swagger-codegen/tree/master/modules/swagger-codegen-maven-plugin

modelWithXml false Enable XML annotations inside
the generated models (only works
with libraries that provide support
for JSON and XML)

configOptions Pass a map of language-specific
parameters to swagger-
codegen-maven-plugin

Parameter Default Value Description

1.9. SUPPORT FOR FIPS COMPLIANCE

You can install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process
cryptographic libraries on the x86_64 architecture.

For the Red Hat Enterprise Linux CoreOS (RHCOS) machines in your cluster, this change applies when
the machines deploy based on the status of an option in the install-config.yaml file, which governs the
cluster options that users can change during cluster deployment. With Red Hat Enterprise Linux (RHEL)
machines, you must enable FIPS mode when installing the operating system on the machines you plan to
use as worker machines. These configuration methods ensure that your cluster meets the requirements
of a FIPS compliance audit. Only FIPS Validated / Modules in Process cryptography packages are
enabled before the initial system boot.

Because you must enable FIPS before your cluster’s operating system boots for the first time, you
cannot enable FIPS after you deploy a cluster.

1.9.1. FIPS validation in OpenShift Container Platform

OpenShift Container Platform uses certain FIPS Validated / Modules in Process modules within RHEL
and RHCOS for its operating system components. For example, when users SSH into OpenShift
Container Platform clusters and containers, those connections are properly encrypted.

OpenShift Container Platform components are written in Go and built with Red Hat’s Golang compiler.
When you enable FIPS mode for your cluster, all OpenShift Container Platform components that require
cryptographic signing call RHEL and RHCOS cryptographic libraries.

For more details about FIPS, see FIPS mode attributes and limitations

For details on deploying Camel Spring Boot on OpenShift, see How to deploy a Camel Spring Boot
application to OpenShift?

Details about supported configurations can be found at, Camel for Spring Boot Supported
Configurations

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

48

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/installing/installing-fips#installation-about-fips-components_installing-fips
https://access.redhat.com/solutions/6978927
https://access.redhat.com/articles/6970899

CHAPTER 2. SETTING UP MAVEN LOCALLY
Maven is the typical choice for Red Hat build of Apache Camel application development and project
management.

2.1. PREPARING TO SET UP MAVEN

Maven is a free, open source, build tool from Apache.

Procedure

1. Download Maven 3.8.6 or later from the Maven download page .

TIP

To verify that you have the correct Maven and JDK version installed, open a command terminal
and enter the following command:

mvn --version

Check the output to verify that Maven is version 3.8.6 or newer, and is using OpenJDK 17.

2. Ensure that your system is connected to the Internet.
While building a project, the default behavior is that Maven searches external repositories and
downloads the required artifacts. Maven looks for repositories that are accessible over the
Internet.

You can change this behavior so that Maven searches only repositories that are on a local
network. That is, Maven can run in an offline mode. In offline mode, Maven looks for artifacts in
its local repository. See Section 2.4, “Using local Maven repositories” .

2.2. ADDING RED HAT REPOSITORIES TO MAVEN

To access artifacts that are in Red Hat Maven repositories, you need to add those repositories to
Maven’s settings.xml file.

Maven looks for the settings.xml file in the .m2 directory of the user’s home directory. If there is not a
user specified settings.xml file, Maven uses the system-level settings.xml file at
M2_HOME/conf/settings.xml.

Prerequisite

You know the location of the settings.xml file in which you want to add the Red Hat repositories.

Procedure

In the settings.xml file, add repository elements for the Red Hat repositories as shown in this example:

NOTE

If you are using the camel-jira component, also add the atlassian repository.

NOTE

CHAPTER 2. SETTING UP MAVEN LOCALLY

49

http://maven.apache.org/download.html

NOTE

If you want to use technology preview builds, also add the earlyaccess repository.

<?xml version="1.0"?>
<settings>

 <profiles>
 <profile>
 <id>extra-repos</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>atlassian</id>
 <url>https://packages.atlassian.com/maven-external/</url>
 <name>atlassian external repo</name>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

50

2.3. BUILDING AN OFFLINE MAVEN REPOSITORY

Red Hat build of Apache Camel for Spring Boot users can build their own offline Maven repository which
is used in a restricted environment. For each release of Red Hat build of Apache Camel for Spring Boot
users can download the zip file from the Red Hat Customer Portal.

Procedure

1. Download the offile Maven repository builder from the customer portal. For example, for Red
Hat build of Camel Spring Boot version 4.4, use the Offline Maven builder .

2. The downloaded file is a zip file that contains everything to build an offline Maven repository for
this specific release.

3. Unzip the downloaded zip file. The directory structure of the archive is as follows:

├── README
├── build-offline-repo.sh
├── errors.log
├── logback.xml
├── maven-repositories.txt
├── offliner-2.0-sources.jar
├── offliner-2.0-sources.jar.md5
├── offliner-2.0.jar
├── offliner-2.0.jar.md5
├── offliner.log
├── rhaf-camel-offliner-4.4.0.txt
└── rhaf-camel-spring-boot-offliner-4.4.0.txt

This zip contains the following files:

build-offline-repo.sh - A wrapper script around the Offliner tool.

 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>

 <activeProfiles>
 <activeProfile>extra-repos</activeProfile>
 </activeProfiles>

</settings>

CHAPTER 2. SETTING UP MAVEN LOCALLY

51

https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=106629

offliner-2.0.jar - Downloads the artifacts in the manifest.

redhat-camel-4.4.0-offline-manifest.txt

Lists the required artifacts that need to be downloaded.

redhat-camel-spring-boot-4.4.0-offline-manifest.txt

Lists the required artifacts that need to be downloaded.

README - Explains the steps and commands required for building the offline Maven
repository.

4. To build an offline repository, run the build-offline-repo.sh script as per instructions given in
the README file. Optionally you can specify a directory where the artifacts should be
downloaded to. If not specified, a directory called 'repository' is created in the current working
directory.

If needed, you can configure the tool to use additional Maven repositories, by adding them to file
maven-repositories.txt. This is generally not necessary as the tool is pre-configured with the right set of
Maven repositories.

In case of a HTTP proxy and any HTTP calls that need to go via this proxy, you may need to change the
script. Add the arguments --proxy <proxy-host> --proxy-user <proxy-user> --proxy-pass <proxy-
pass> in the line that invokes the JVM in the script.

You can use the option -v to print the version number of the script. This version is the version number of
the script and not related to the Red Hat build of Apache Camel product version.

Troubleshooting

You can configure the logging via the provided logback.xml file. When the shell script is executed, any
download activity will be written to the log file offliner.log and any download failures are listed in
errors.log. At the end of the execution the offliner tool displays a summary of the downloaded and
failed artifacts, but we also recommend to scan through errors.log for any download failures.

If any artifacts are failed to be downloaded, re-run the tool against the same target folder. The tool will
avoid to download artifacts that it already downloaded and only attempt those that it failed on
previously.

2.4. USING LOCAL MAVEN REPOSITORIES

If you are running a container without an Internet connection, and you need to deploy an application that
has dependencies that are not available offline, you can use the Maven dependency plug-in to download
the application’s dependencies into a Maven offline repository. You can then distribute this customized
Maven offline repository to machines that do not have an Internet connection.

Procedure

1. In the project directory that contains the pom.xml file, download a repository for a Maven
project by running a command such as the following:

mvn org.apache.maven.plugins:maven-dependency-plugin:3.1.0:go-offline -
Dmaven.repo.local=/tmp/my-project

In this example, Maven dependencies and plug-ins that are required to build the project are

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

52

In this example, Maven dependencies and plug-ins that are required to build the project are
downloaded to the /tmp/my-project directory.

2. Distribute this customized Maven offline repository internally to any machines that do not have
an Internet connection.

2.5. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES
OR SYSTEM PROPERTIES

When running the applications you need access to the artifacts that are in the Red Hat Maven
repositories. These repositories are added to Maven’s settings.xml file. Maven checks the following
locations for settings.xml file:

looks for the specified url

if not found looks for ${user.home}/.m2/settings.xml

if not found looks for ${maven.home}/conf/settings.xml

if not found looks for ${M2_HOME}/conf/settings.xml

if no location is found, empty org.apache.maven.settings.Settings instance is created.

2.5.1. About Maven mirror

Maven uses a set of remote repositories to access the artifacts, which are currently not available in local
repository. The list of repositories almost always contains Maven Central repository, but for Red Hat
Fuse, it also contains Maven Red Hat repositories. In some cases where it is not possible or allowed to
access different remote repositories, you can use a mechanism of Maven mirrors. A mirror replaces a
particular repository URL with a different one, so all HTTP traffic when remote artifacts are being
searched for can be directed to a single URL.

2.5.2. Adding Maven mirror to settings.xml

To set the Maven mirror, add the following section to Maven’s settings.xml:

<mirror>
 <id>all</id>
 <mirrorOf>*</mirrorOf>
 <url>http://host:port/path</url>
</mirror>

No mirror is used if the above section is not found in the settings.xml file. To specify a global mirror
without providing the XML configuration, you can use either system property or environmental variables.

2.5.3. Setting Maven mirror using environmental variable or system property

To set the Maven mirror using either environmental variable or system property, you can add:

Environmental variable called MAVEN_MIRROR_URL to bin/setenv file

System property called mavenMirrorUrl to etc/system.properties file

2.5.4. Using Maven options to specify Maven mirror url

CHAPTER 2. SETTING UP MAVEN LOCALLY

53

To use an alternate Maven mirror url, other than the one specified by environmental variables or system
property, use the following maven options when running the application:

-DmavenMirrorUrl=mirrorId::mirrorUrl
for example, -DmavenMirrorUrl=my-mirror::http://mirror.net/repository

-DmavenMirrorUrl=mirrorUrl
for example, -DmavenMirrorUrl=http://mirror.net/repository. In this example, the <id> of the
<mirror> is just a mirror.

2.6. ABOUT MAVEN ARTIFACTS AND COORDINATES

In the Maven build system, the basic building block is an artifact. After a build, the output of an artifact is
typically an archive, such as a JAR or WAR file.

A key aspect of Maven is the ability to locate artifacts and manage the dependencies between them. A
Maven coordinate is a set of values that identifies the location of a particular artifact. A basic coordinate
has three values in the following form:

groupId:artifactId:version

Sometimes Maven augments a basic coordinate with a packaging value or with both a packaging value
and a classifier value. A Maven coordinate can have any one of the following forms:

groupId:artifactId:version
groupId:artifactId:packaging:version
groupId:artifactId:packaging:classifier:version

Here are descriptions of the values:

groupdId

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID. For example, org.fusesource.example.

artifactId

Defines the artifact name relative to the group ID.

version

Specifies the artifact’s version. A version number can have up to four parts: n.n.n.n, where the last
part of the version number can contain non-numeric characters. For example, the last part of 1.0-
SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT.

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

Elements in an artifact’s POM file define the artifact’s group ID, artifact ID, packaging, and version, as
shown here:

<project ... >
 ...
 <groupId>org.fusesource.example</groupId>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

54

To define a dependency on the preceding artifact, you would add the following dependency element to
a POM file:

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven package
type. If you do need to specify the packaging type explicitly in a dependency, however,
you can use the type element.

 <artifactId>bundle-demo</artifactId>
 <packaging>bundle</packaging>
 <version>1.0-SNAPSHOT</version>
 ...
</project>

<project ... >
 ...
 <dependencies>
 <dependency>
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 ...
</project>

CHAPTER 2. SETTING UP MAVEN LOCALLY

55

CHAPTER 3. MONITORING CAMEL SPRING BOOT
INTEGRATIONS

This chapter explains how to monitor integrations on Red Hat build of Camel Spring Boot at runtime.
You can use the Prometheus Operator that is already deployed as part of OpenShift Monitoring to
monitor your own applications.

3.1. ENABLING USER WORKLOAD MONITORING IN OPENSHIFT

You can enable the monitoring for user-defined projects by setting the enableUserWorkload: true
field in the cluster monitoring ConfigMap object.

IMPORTANT

In OpenShift Container Platform 4.13 you must remove any custom Prometheus
instances before enabling monitoring for user-defined projects.

Prerequisites

You must have access to the cluster as a user with the cluster-admin cluster role access to enable
monitoring for user-defined projects in OpenShift Container Platform. Cluster administrators can then
optionally grant users permission to configure the components that are responsible for monitoring
user-defined projects.

You have cluster admin access to the OpenShift cluster.

You have installed the OpenShift CLI (oc).

You have created the cluster-monitoring-config ConfigMap object.

Optional: You have created and configured the user-workload-monitoring-config ConfigMap
object in the openshift-user-workload-monitoring project. You can add configuration options
to this ConfigMap object for the components that monitor user-defined projects.

NOTE

Every time you save configuration changes to the user-workload-monitoring-config
ConfigMap object, the pods in the openshift-user-workload-monitoring project are
redeployed. It can sometimes take a while for these components to redeploy. You can
create and configure the ConfigMap object before you first enable monitoring for user-
defined projects, to prevent having to redeploy the pods often.

Procedure

1. Login to OpenShift with administrator permissions.

oc login --user system:admin --token=my-token --server=https://my-
cluster.example.com:6443

2. Edit the cluster-monitoring-config ConfigMap object.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

56

3. Add enableUserWorkload: true in the data/config.yaml section.

 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml: |
 enableUserWorkload: true

When it is set to true, the enableUserWorkload parameter enables monitoring for user-defined
projects in a cluster.

4. Save the file to apply the changes. The monitoring for the user-defined projects is then enabled
automatically.

NOTE

When the changes are saved to the cluster-monitoring-config ConfigMap
object, the pods and other resources in the openshift-monitoring project might
be redeployed. The running monitoring processes in that project might also be
restarted.

5. Verify that the prometheus-operator, prometheus-user-workload and thanos-ruler-user-
workload pods are running in the openshift-user-workload-monitoring project.

$ oc -n openshift-user-workload-monitoring get pod

 Example output

 NAME READY STATUS RESTARTS AGE
 prometheus-operator-6f7b748d5b-t7nbg 2/2 Running 0 3h
 prometheus-user-workload-0 4/4 Running 1 3h
 prometheus-user-workload-1 4/4 Running 1 3h
 thanos-ruler-user-workload-0 3/3 Running 0 3h
 thanos-ruler-user-workload-1 3/3 Running 0 3h

3.2. DEPLOYING A CAMEL SPRING BOOT APPLICATION

After you enable the monitoring for your project, you can deploy and monitor the Camel Spring Boot
application. This section uses the monitoring-micrometrics-grafana-prometheus example listed in the
Camel Spring Boot Examples .

Procedure

1. Add the openshift-maven-plugin to the pom.xml file of the monitoring-micrometrics-
grafana-prometheus example. In the pom.xml, add an openshift profile to allow deployment to
openshift through the openshift-maven-plugin.

 <profiles>
 <profile>
 <id>openshift</id>
 <build>

CHAPTER 3. MONITORING CAMEL SPRING BOOT INTEGRATIONS

57

https://github.com/jboss-fuse/camel-spring-boot-examples/tree/camel-spring-boot-examples-4.0.0.redhat-00001/monitoring-micrometrics-grafana-prometheus

2. Add the Prometheus support. In order to add the Prometheus support to your Camel Spring
Boot application, expose the Prometheus statistics on an actuator endpoint.

a. Edit your src/main/resources/application.properties file. If you have a
management.endpoints.web.exposure.include entry, add prometheus, metrics, and
health. If you do not have a management.endpoints.web.exposure.include entry, please
add one.

expose actuator endpoint via HTTP
management.endpoints.web.exposure.include=mappings,metrics,health,shutdown,jolokia,pr
ometheus

3. Add the following to the <dependencies/> section of your pom.xml to add some starter support
to your application.

<dependency>
 <groupId>io.micrometer</groupId>
 <artifactId>micrometer-registry-prometheus</artifactId>
</dependency>

<dependency>
 <groupId>org.jolokia</groupId>
 <artifactId>jolokia-core</artifactId>
 <version>${jolokia-version}</version>
</dependency>

<dependency>
 <groupId>io.prometheus.jmx</groupId>
 <artifactId>collector</artifactId>
 <version>${prometheus-version}</version>
</dependency>

4. Add the following to the Application.java of your Camel Spring Boot application.

 <plugins>
 <plugin>
 <groupId>org.eclipse.jkube</groupId>
 <artifactId>openshift-maven-plugin</artifactId>
 <version>1.13.1</version>
 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>

import org.springframework.context.annonation.Bean;
import org.apache.camel.component.micrometer.MicrometerConstants;

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

58

5. The updated Application.java is shown below.

import
org.apache.camel.component.micrometer.eventnotifier.MicrometerExchangeEventNotifier;
import org.apache.camel.component.micrometer.eventnotifier.MicrometerRouteEventNotifier;
import
org.apache.camel.component.micrometer.messagehistory.MicrometerMessageHistoryFactory;

import org.apache.camel.component.micrometer.routepolicy.MicrometerRoutePolicyFactory;

@SpringBootApplication
public class SampleCamelApplication {

@Bean(name = {MicrometerConstants.METRICS_REGISTRY_NAME,
"prometheusMeterRegistry"})
public PrometheusMeterRegistry prometheusMeterRegistry(
 PrometheusConfig prometheusConfig, CollectorRegistry collectorRegistry, Clock clock)
throws MalformedObjectNameException, IOException {

 InputStream resource = new
ClassPathResource("config/prometheus_exporter_config.yml").getInputStream();

 new JmxCollector(resource).register(collectorRegistry);
 new BuildInfoCollector().register(collectorRegistry);
 return new PrometheusMeterRegistry(prometheusConfig, collectorRegistry, clock);
}

@Bean
public CamelContextConfiguration camelContextConfiguration(@Autowired
PrometheusMeterRegistry registry) {

 return new CamelContextConfiguration() {
 @Override
 public void beforeApplicationStart(CamelContext camelContext) {
 MicrometerRoutePolicyFactory micrometerRoutePolicyFactory = new
MicrometerRoutePolicyFactory();
 micrometerRoutePolicyFactory.setMeterRegistry(registry);
 camelContext.addRoutePolicyFactory(micrometerRoutePolicyFactory);

 MicrometerMessageHistoryFactory micrometerMessageHistoryFactory = new
MicrometerMessageHistoryFactory();
 micrometerMessageHistoryFactory.setMeterRegistry(registry);
 camelContext.setMessageHistoryFactory(micrometerMessageHistoryFactory);

 MicrometerExchangeEventNotifier micrometerExchangeEventNotifier = new
MicrometerExchangeEventNotifier();
 micrometerExchangeEventNotifier.setMeterRegistry(registry);

camelContext.getManagementStrategy().addEventNotifier(micrometerExchangeEventNotifier);

 MicrometerRouteEventNotifier micrometerRouteEventNotifier = new
MicrometerRouteEventNotifier();
 micrometerRouteEventNotifier.setMeterRegistry(registry);

camelContext.getManagementStrategy().addEventNotifier(micrometerRouteEventNotifier);

CHAPTER 3. MONITORING CAMEL SPRING BOOT INTEGRATIONS

59

6. Deploy the application to OpenShift.

mvn -Popenshift oc:deploy

7. Verify if your application is deployed.

oc get pods -n myapp

NAME READY STATUS RESTARTS AGE
camel-example-spring-boot-xml-2-deploy 0/1 Completed 0 13m
camel-example-spring-boot-xml-2-x78rk 1/1 Running 0 13m
camel-example-spring-boot-xml-s2i-2-build 0/1 Completed 0 14m

8. Add the Service Monitor for this application so that Openshift’s prometheus instance can start
scraping from the / actuator/prometheus endpoint.

a. Create the following YAML manifest for a Service monitor. In this example, the file is named
as servicemonitor.yaml.

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 k8s-app: csb-demo-monitor
 name: csb-demo-monitor
spec:
 endpoints:
 - interval: 30s
 port: http
 scheme: http
 path: /actuator/prometheus
 selector:
 matchLabels:
 app: camel-example-spring-boot-xml

b. Add a Service Monitor for this application.

oc apply -f servicemonitor.yml
servicemonitor.monitoring.coreos.com/csb-demo-monitor "myapp" created

9. Verify that the service monitor was successfully deployed.

oc get servicemonitor

NAME AGE

 }

 @Override
 public void afterApplicationStart(CamelContext camelContext) {
 }
 };
}

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

60

csb-demo-monitor 9m17s

10. Verify that you can see the service monitor in the list of scrape targets. In the Administrator
view, navigate to Observe → Targets. You can find csb-demo-monitor within the list of scrape
targets.

11. Wait about ten minutes after deploying the servicemonitor. Then navigate to the Observe →
Metrics in the Developer view. Select Custom query in the drop-down menu and type camel to
view the Camel metrics that are exposed through the /actuator/prometheus endpoint.

NOTE

Red Hat does not offer support for installing and configuring Prometheus and Grafana
on non-OCP environments.

CHAPTER 3. MONITORING CAMEL SPRING BOOT INTEGRATIONS

61

CHAPTER 4. USING CAMEL WITH SPRING XML
Using Camel with Spring XML files is a way of using XML DSL with Camel. Camel has historically been
using Spring XML for a long time. The Spring framework started with XML files as a popular and
common configuration for building Spring applications.

Example of Spring application

4.1. USING JAVA DSL WITH SPRING XML FILES

You can use Java Code to define your RouteBuilder implementations. These are defined as beans in
spring and then referenced in your camel context, as shown:

4.1.1. Configure Spring Boot Application

To use Spring Boot Autoconfigure XML routes for beans, you musy import the XML resource. To do this,
you can use a Configuration class.

For example, given that the Spring XML file is located to src/main/resources/camel-context.xml you

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd
 ">

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:a"/>
 <choice>
 <when>
 <xpath>$foo = 'bar'</xpath>
 <to uri="direct:b"/>
 </when>
 <when>
 <xpath>$foo = 'cheese'</xpath>
 <to uri="direct:c"/>
 </when>
 <otherwise>
 <to uri="direct:d"/>
 </otherwise>
 </choice>
 </route>
 </camelContext>

</beans>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="myBuilder"/>
</camelContext>

<bean id="myBuilder" class="org.apache.camel.spring.example.test1.MyRouteBuilder"/>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

62

For example, given that the Spring XML file is located to src/main/resources/camel-context.xml you
can use the following configuration class to load the camel-context:

Example: using a Configuration class

4.2. SPECIFYING CAMEL ROUTES USING SPRING XML

You can use Spring XML files to specify Camel routes using XML DSL as shown:

4.3. CONFIGURING COMPONENTS AND ENDPOINTS

You can configure your Component or Endpoint instances in your Spring XML as follows in this example.

This allows you to configure a component using any name, but its common to use the same name, for
example, jms. Then you can refer to the component using jms:destinationName.

This works by the Camel fetching components from the Spring context for the scheme name you use for
Endpoint URIs.

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.ImportResource;

/**
 * A Configuration class that import the Spring XML resource
 */
@Configuration
// load the spring xml file from classpath
@ImportResource("classpath:camel-context.xml")
public class CamelSpringXMLConfiguration {
}

<camelContext id="camel-A" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:start"/>
 <to uri="mock:result"/>
 </route>
</camelContext>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
</camelContext>

<bean id="jmsConnectionFactory"
class="org.apache.activemq.artemis.jms.client.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp:someserver:61616"/>
</bean>
<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.artemis.jms.client.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp:someserver:61616"/>
 </bean>
 </property>
</bean>

CHAPTER 4. USING CAMEL WITH SPRING XML

63

4.4. USING PACKAGE SCANNING

Camel also provides a powerful feature that allows for the automatic discovery and initialization of
routes in given packages. This is configured by adding tags to the camel context in your spring context
definition, specifying the packages to be recursively searched for RouteBuilder implementations. To
use this feature add a <package></package> tag specifying a comma separated list of packages that
should be searched. For example,

This scans for RouteBuilder classes in the com.foo and the sub-packages.

You can also filter the classes with includes or excludes such as:

This skips the classes that has Special in the name. Exclude patterns are applied before the include
patterns. If no include or exclude patterns are defined then all the Route classes discovered in the
packages are returned.

? matches one character, * matches zero or more characters, ** matches zero or more segments of a
fully qualified name.

4.5. USING CONTEXT SCANNING

You can allow Camel to scan the container context, for example, the Spring ApplicationContext for
route builder instances. This allows you to use the Spring <component-scan> feature and have Camel
pickup any RouteBuilder instances which was created by Spring in its scan process.

This allows you to just annotate your routes using the Spring @Component and have those routes
included by Camel:

<camelContext>
 <packageScan>
 <package>com.foo</package>
 <excludes>**.*Excluded*</excludes>
 <includes>**.*</includes>
 </packageScan>
</camelContext>

<camelContext>
 <packageScan>
 <package>com.foo</package>
 <excludes>**.*Special*</excludes>
 </packageScan>
</camelContext>

<!-- enable Spring @Component scan -->
<context:component-scan base-package="org.apache.camel.spring.issues.contextscan"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <!-- and then let Camel use those @Component scanned route builders -->
 <contextScan/>
</camelContext>

@Component
public class MyRoute extends RouteBuilder {

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

64

You can also use the ANT style for inclusion and exclusion, as mentioned above in the package scan
section.

 @Override
 public void configure() throws Exception {
 from("direct:start")
 .to("mock:result");
 }
}

CHAPTER 4. USING CAMEL WITH SPRING XML

65

CHAPTER 5. XML IO DSL
The xml-io-dsl is the Camel optimized XML DSL with a very fast and low overhead XML parser. It is a
source code generated parser that is Camel specific and can only parse Camel .xml route files (not
classic Spring <beans> XML files).

We recommend that you use xml-io-dsl instead of xml-jaxb-dsl for Camel XML DSL. It works with all
Camel runtimes.

NOTE

When you are using XML IO DSL, the camel-spring-boot application will by default look
for xml files in src/main/resources/camel/*.xml.

You can configure this behavior by providing a different path in the
camel.springboot.routes-include-pattern property:

camel.springboot.routes-include-pattern=/path/to/*.xml

5.1. EXAMPLE

The following my-route.xml source file can be loaded and run with Camel CLI or Camel K:

my-route.xml

TIP

You can omit the xmlns namespace.

If there is only a single route, you can use <route> as the root XML tag instead of <routes>.

Running with Camel K

Running with Camel CLI

You can use xml-io-dsl to declare some beans to be bound to the Camel Registry.

You can declare and Beans define their properties (including nested properties) in XML. For example:

<routes xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="timer:tick"/>
 <setBody>
 <constant>Hello Camel K!</constant>
 </setBody>
 <to uri="log:info"/>
 </route>
</routes>

kamel run my-route.xml

camel run my-route.xml

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

66

Bean declaration and definition

While keeping all the benefits of fast XML parser used by xml-io-dsl, Camel can also process XML
elements declared in other XML namespaces and process them separately. With this mechanism it is
possible to include XML elements using Spring’s http://www.springframework.org/schema/beans
namespace.

This brings the flexibility of Spring Beans into Camel main without actually running any Spring
Application Context (or Spring Boot).

When elements from Spring namespace are found, they are used to populate and configure an instance
of org.springframework.beans.factory.support.DefaultListableBeanFactory and leverage Spring
dependency injection to wire the beans together.

These beans are then exposed through normal Camel Registry and may be used by Camel routes.

Here’s an example camel.xml file, which defines both the routes and beans used (referred to) by the
route definition:

camel.xml

<camel>

 <bean name="beanFromProps" type="com.acme.MyBean">
 <properties>
 <property key="field1" value="f1_p" />
 <property key="field2" value="f2_p" />
 <property key="nested.field1" value="nf1_p" />
 <property key="nested.field2" value="nf2_p" />
 </properties>
 </bean>

</camel>

<camel>

 <beans xmlns="http://www.springframework.org/schema/beans">
 <bean id="messageString" class="java.lang.String">
 <constructor-arg index="0" value="Hello"/>
 </bean>

 <bean id="greeter" class="org.apache.camel.main.app.Greeter">
 <description>Spring Bean</description>
 <property name="message">
 <bean class="org.apache.camel.main.app.GreeterMessage">
 <property name="msg" ref="messageString"/>
 </bean>
 </property>
 </bean>
 </beans>

 <route id="my-route">
 <from uri="direct:start"/>
 <bean ref="greeter"/>
 <to uri="mock:finish"/>

CHAPTER 5. XML IO DSL

67

http://www.springframework.org/schema/beans

A my-route route is referring to greeter bean which is defined using Spring <bean> element.

More examples can be found on the Apache Camel JBang page.

5.2. USING BEANS WITH CONSTRUCTORS

When you want to create beans with constructor arguments, from Camel 4.1 onwards you can add them
as XML tags. For example:

Camel 4.1+: Beans with constructor tags

If you use Camel 4.0, you must put then constructor arguments in the type attribute:

Camel 4.0: Beans with constructor arguments in the type attribute

5.3. CREATING BEANS FROM FACTORY METHOD

A bean can also be created from a public static factory method:

Factory method XML

 </route>

</camel>

<camel>

 <bean name="beanFromProps" type="com.acme.MyBean">
 <constructors>
 <constructor index="0" value="true"/>
 <constructor index="1" value="Hello World"/>
 </constructors>
 <!-- and you can still have properties -->
 <properties>
 <property key="field1" value="f1_p" />
 <property key="field2" value="f2_p" />
 <property key="nested.field1" value="nf1_p" />
 <property key="nested.field2" value="nf2_p" />
 </properties>
 </bean>

</camel>

<bean name="beanFromProps" type="com.acme.MyBean(true, 'Hello World')">
 <properties>
 <property key="field1" value="f1_p" />
 <property key="field2" value="f2_p" />
 <property key="nested.field1" value="nf1_p" />
 <property key="nested.field2" value="nf2_p" />
 </properties>
</bean>

 <bean name="myBean" type="com.acme.MyBean" factoryMethod="createMyBean">

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

68

https://camel.apache.org/manual/camel-jbang.html

When you use a factoryMethod, you must provide constructor tags for the arguments.

For example, this means that the class com.acme.MyBean should be as follows:

Factory method

NOTE

You must make the factory method public static in the created class.

5.4. CREATING BEANS FROM BUILDER CLASSES

You can create a bean created from another builder class as shown below:

Builder XML

NOTE

You must make the builder class public with a no-arg default constructor.

You can then use the builder class to create the actual bean by using fluent builder style configuration.

Set the properties on the builder class, and create the bean by invoking the builderMethod at the end.

You invocate this method via Java reflection.

5.5. CREATING BEANS FROM FACTORY BEAN

You can create a bean from a factory bean as shown below:

 <constructors>
 <constructor index="0" value="true"/>
 <constructor index="1" value="Hello World"/>
 </constructors>
 </bean>

public class MyBean {

 public static MyBean createMyBean(boolean important, String message) {
 MyBean answer = ...
 // create and configure the bean
 return answer;
 }
}

 <bean name="myBean" type="com.acme.MyBean"
 builderClass="com.acme.MyBeanBuilder" builderMethod="createMyBean">
 <properties>
 <property key="id" value="123"/>
 <property key="name" value="Acme"/>
 </constructors>
 </bean>

CHAPTER 5. XML IO DSL

69

Factory XML

TIP

You can also use factoryBean to refer to an existing bean by bean id instead of the FQN classname.

When you use a factoryBean the, you must provide arguments as constructor tags.

For example, the class com.acme.MyHelper should be as follows:

Factory bean

NOTE

You must make the factory method public static.

5.6. CREATING BEANS USING SCRIPT LANGUAGE

If you have advanced use-cases, you can inline a script language, such as groovy, java, javascript, and so
on, to create the bean.

With scripting, you can be more flexible and use a bit of programming to create and configure the bean:

Scripting

NOTE

 <bean name="myBean" type="com.acme.MyBean"
 factoryBean="com.acme.MyHelper" factoryMethod="createMyBean">
 <constructors>
 <constructor index="0" value="true"/>
 <constructor index="1" value="Hello World"/>
 </constructors>
 </bean>

public class MyHelper {

 public static MyBean createMyBean(boolean important, String message) {
 MyBean answer = ...
 // create and configure the bean
 return answer;
 }
}

 <bean name="myBean" type="com.acme.MyBean" scriptLanguage="groovy">
 <script>
 // some groovy script here to create the bean
 bean = ...
 ...
 return bean
 </script>
 </bean>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

70

NOTE

When you use script, the constructors, factory bean, and factory method are not used.

5.7. USING INIT AND DESTROY METHODS ON BEANS

If you need to do initialization and cleanup work before you use a bean, you can use the initMethod and
destroyMethod which are triggered as appropriate by Camel.

Those methods must be public void and have no arguments, as shown below:

Initialization and cleanup methods

You also have to declare those methods in the XML DSL as follows:

Initialization and cleanup XML

Both initMethod and destroyMethod are optional, so a bean does not have to have both.

5.8. REST AND ROUTES IN THE SAME XML IO DSL FILE

You can have both REST and routes in the same DSL file:

REST and routes in the same XML IO DSL file

public class MyBean {

 public void initMe() {
 // do init work here
 }

 public void destroyMe() {
 // do cleanup work here
 }

}

 <bean name="myBean" type="com.acme.MyBean"
 initMethod="initMe" destroyMethod="destroyMe">
 <constructors>
 <constructor index="0" value="true"/>
 <constructor index="1" value="Hello World"/>
 </constructors>
 </bean>

<camel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="
 http://camel.apache.org/schema/spring
 https://camel.apache.org/schema/spring/camel-spring.xsd">
 <rest id="rest">
 <post id="post" path="start">
 <to uri="direct:start"/>
 </post>

CHAPTER 5. XML IO DSL

71

 </rest>

 <route>
 <from uri="direct:start"/>
 <to uri="amqp:queue:Test.Broker.StreamMessage?
jmsMessageType=Stream&disableReplyTo=true"/>
 </route>
</camel>

Red Hat build of Apache Camel 4.4 Getting Started with Red Hat build of Apache Camel for Spring Boot

72

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT
	1.1. RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT STARTERS
	1.1.1. Spring Boot configuration support
	1.1.2. Adding Camel routes
	1.1.3. Using Domain Specific Languages
	1.1.3.1. Advantages of DSLs
	1.1.3.2. Comparing different DSLs

	1.2. SPRING BOOT
	1.2.1. Camel Spring Boot Starter
	1.2.2. Spring Boot Auto-configuration
	1.2.3. Auto-configured Camel context
	1.2.4. Auto-detecting Camel routes
	1.2.5. Camel properties
	1.2.6. Custom Camel context configuration
	1.2.7. Auto-configured consumer and producer templates
	1.2.8. Auto-configured TypeConverter
	1.2.8.1. Spring type conversion API bridge

	1.2.9. Keeping the application alive
	1.2.10. Adding XML routes
	1.2.11. Testing the JUnit 5 way

	1.3. COMPONENT STARTERS
	1.4. STARTER CONFIGURATION
	1.4.1. Using External Configuration
	1.4.2. Using Beans

	1.5. GENERATING A CAMEL FOR SPRING BOOT APPLICATION USING MAVEN
	1.6. DEPLOYING A CAMEL SPRING BOOT APPLICATION TO OPENSHIFT
	1.7. APPLYING PATCH TO RED HAT BUILD OF APACHE CAMEL FOR SPRING BOOT
	1.8. CAMEL REST DSL OPENAPI MAVEN PLUGIN
	1.8.1. Adding plugin to Maven pom.xml
	1.8.2. camel-restdsl-openapi:generate
	1.8.3. Options
	1.8.4. Spring Boot Project with Servlet component
	1.8.5. camel-restdsl-openapi:generate-with-dto
	1.8.6. Options
	1.8.7. camel-restdsl-openapi:generate-xml
	1.8.8. Options
	1.8.9. camel-restdsl-openapi:generate-xml-with-dto
	1.8.10. Options
	1.8.11. camel-restdsl-openapi:generate-yaml
	1.8.12. Options
	1.8.13. camel-restdsl-openapi:generate-yaml-with-dto
	1.8.14. Options

	1.9. SUPPORT FOR FIPS COMPLIANCE
	1.9.1. FIPS validation in OpenShift Container Platform

	CHAPTER 2. SETTING UP MAVEN LOCALLY
	2.1. PREPARING TO SET UP MAVEN
	2.2. ADDING RED HAT REPOSITORIES TO MAVEN
	2.3. BUILDING AN OFFLINE MAVEN REPOSITORY
	2.4. USING LOCAL MAVEN REPOSITORIES
	2.5. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES OR SYSTEM PROPERTIES
	2.5.1. About Maven mirror
	2.5.2. Adding Maven mirror to settings.xml
	2.5.3. Setting Maven mirror using environmental variable or system property
	2.5.4. Using Maven options to specify Maven mirror url

	2.6. ABOUT MAVEN ARTIFACTS AND COORDINATES

	CHAPTER 3. MONITORING CAMEL SPRING BOOT INTEGRATIONS
	3.1. ENABLING USER WORKLOAD MONITORING IN OPENSHIFT
	3.2. DEPLOYING A CAMEL SPRING BOOT APPLICATION

	CHAPTER 4. USING CAMEL WITH SPRING XML
	4.1. USING JAVA DSL WITH SPRING XML FILES
	4.1.1. Configure Spring Boot Application

	4.2. SPECIFYING CAMEL ROUTES USING SPRING XML
	4.3. CONFIGURING COMPONENTS AND ENDPOINTS
	4.4. USING PACKAGE SCANNING
	4.5. USING CONTEXT SCANNING

	CHAPTER 5. XML IO DSL
	5.1. EXAMPLE
	5.2. USING BEANS WITH CONSTRUCTORS
	5.3. CREATING BEANS FROM FACTORY METHOD
	5.4. CREATING BEANS FROM BUILDER CLASSES
	5.5. CREATING BEANS FROM FACTORY BEAN
	5.6. CREATING BEANS USING SCRIPT LANGUAGE
	5.7. USING INIT AND DESTROY METHODS ON BEANS
	5.8. REST AND ROUTES IN THE SAME XML IO DSL FILE

