
Red Hat build of Apache Camel for
Spring Boot 3.20

Camel Spring Boot User Guide

Camel Spring Boot User Guide

Last Updated: 2024-06-13

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot
User Guide

Camel Spring Boot User Guide

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Red Hat build of Apache Camel for Spring Boot and explains the various ways
to create and deploy an application using Red Hat build of Apache Camel for Spring Boot.

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. USING LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION
1.1. ABOUT LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION
1.2. FEATURES OF LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION
1.3. REQUIREMENTS
1.4. INSTALLING LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION

CHAPTER 2. USING VS CODE DEBUG ADAPTER FOR APACHE CAMEL EXTENSION
2.1. FEATURES OF DEBUG ADAPTER
2.2. REQUIREMENTS
2.3. INSTALLING VS CODE DEBUG ADAPTER FOR APACHE CAMEL
2.4. USING DEBUG ADAPTER

CHAPTER 3. USING CAMEL JBANG
3.1. INSTALLING CAMEL JBANG
3.2. USING CAMEL JBANG

3.2.1. Enable shell completion
3.3. CREATING AND RUNNING CAMEL ROUTES

3.3.1. Running routes from multiple files
3.3.2. Running routes from input parameter
3.3.3. Dev mode with live reload
3.3.4. Developer Console
3.3.5. Using profiles
3.3.6. Downloading JARs over the internet
3.3.7. Adding custom JARs
3.3.8. Using 3rd-party Maven repositories
3.3.9. Configuration of Maven usage
3.3.10. Running routes hosted on GitHub

3.3.10.1. Running routes from the GitHub gists
3.3.11. Downloading routes hosted on the GitHub

3.3.11.1. Downloading routes form GitHub gists
3.3.12. Using a specific Camel version
3.3.13. Running the Camel K integrations or bindings
3.3.14. Run from the clipboard
3.3.15. Controlling the local Camel integrations
3.3.16. Controlling the Spring Boot and Quarkus integrations
3.3.17. Getting the status of Camel integrations

3.3.17.1. Top status of the Camel integrations
3.3.17.2. Starting and Stopping the routes
3.3.17.3. Configuring the logging levels
3.3.17.4. Listing services
3.3.17.5. Listing state of Circuit Breakers

3.3.18. Using Jolokia and Hawtio
3.3.19. Scripting from the terminal using pipes

3.3.19.1. Using stream:in with line vs raw mode
3.3.20. Running local Kamelets
3.3.21. Using the platform-http component
3.3.22. Using Java beans and processors
3.3.23. Dependency Injection in Java classes

3.3.23.1. Using Spring Boot dependency injection

4
4

5
5
5
5
6

7
7
8
8
8

10
10
10
10
11
11

12
12
13
13
14
14
14
15
16
16
16
17
17
18
18
19
19

20
21
21
22
22
23
23
24
25
25
26
26
26
26

Table of Contents

1

. .

3.3.24. Debugging
3.3.24.1. Java debugging
3.3.24.2. Camel route debugging

3.3.25. Health Checks
3.4. LISTING WHAT CAMEL COMPONENTS IS AVAILABLE

3.4.1. Displaying component documentation
3.4.1.1. Browsing online documentation from the Camel website
3.4.1.2. Filtering options listed in the tables

3.5. OPEN API
3.6. GATHERING LIST OF DEPENDENCIES
3.7. CREATING PROJECTS

3.7.1. Exporting to Camel Spring Boot
3.7.2. Exporting with Camel CLI included
3.7.3. Configuring exporting

3.8. TROUBLESHOOTING

CHAPTER 4. USING CAMEL WITH SPRING XML
4.1. SPECIFYING CAMEL ROUTES USING SPRING XML
4.2. CONFIGURING COMPONENTS AND ENDPOINTS
4.3. USING JAVA DSL WITH SPRING XML FILES
4.4. USING PACKAGE SCANNING
4.5. USING CONTEXT SCANNING

27
27
27
27
29
30
30
30
31
31

33
33
33
34
35

36
36
36
37
37
38

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

2

Table of Contents

3

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. USING LANGUAGE SUPPORT FOR APACHE
CAMEL EXTENSION

IMPORTANT

The VS Code extensions for Apache Camel are listed as development support. For more
information about scope of development support, see Development Support Scope of
Coverage

The Visual Studio Code language support extension adds the language support for Apache Camel for
XML DSL and Java DSL code.

1.1. ABOUT LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION

This extension provides completion, validation and documentation features for Apache Camel URI
elements directly in your Visual Studio Code editor. It works as a client using the Microsoft Language
Server Protocol which communicates with Camel Language Server to provide all functionalities.

1.2. FEATURES OF LANGUAGE SUPPORT FOR APACHE CAMEL
EXTENSION

The important features of the language support extension are listed below:

Language service support for Apache Camel URIs.

Quick reference documentation when you hover the cursor over a Camel component.

Diagnostics for Camel URIs.

Navigation for Java and XML langauges.

Creating a Camel Route specified with Yaml DSL using Camel JBang.

1.3. REQUIREMENTS

Following points must be considered when using the Apache Camel Language Server:

Java 11 is currently required to launch the Apache Camel Language Server. The java.home VS
Code option is used to use a different version of JDK than the default one installed on the
machine.

For some features, JBang must be available on a system command line.

For an XML DSL files:

Use an .xml file extension.

Specify the Camel namespace, for reference, see
http://camel.apache.org/schema/blueprint or http://camel.apache.org/schema/spring.

For a Java DSL files:

Use a .java file extension.

Specify the Camel package(usually from an imported package), for example, import

CHAPTER 1. USING LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION

5

https://access.redhat.com/support/offerings/developer/soc
http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/spring

Specify the Camel package(usually from an imported package), for example, import
org.apache.camel.builder.RouteBuilder.

To reference the Camel component, use from or to and a string without a space. The string
cannot be a variable. For example, from("timer:timerName") works, but from(
"timer:timerName") and from(aVariable) do not work.

1.4. INSTALLING LANGUAGE SUPPORT FOR APACHE CAMEL
EXTENSION

You can download the Language support for Apache Camel extension from the VS Code Extension
Marketplace and the Open VSX Registry. You can also install the Language Support for Apache Camel
extension directly in the Microsoft VS Code.

Procedure

1. Open the VS Code editor.

2. In the VS Code editor, select View > Extensions.

3. In the search bar, type Camel. Select the Language Support for Apache Camel option from
the search results and then click Install.

This installs the language support extension in your editor.

Additional resources

Language Support for Apache Camel by Red Hat

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

6

https://camel-tooling.github.io/camel-lsp-client-vscode/

CHAPTER 2. USING VS CODE DEBUG ADAPTER FOR APACHE
CAMEL EXTENSION

IMPORTANT

The VS Code extensions for Apache Camel are listed as development support. For more
information about scope of development support, see Development Support Scope of
Coverage

This is the Visual Studio Code extension that adds Camel Debugger power by attaching to a running
Camel route written in Java, Yaml or XML DSL.

2.1. FEATURES OF DEBUG ADAPTER

The VS Code Debug Adapter for Apache Camel extension supports the following features:

Camel Main mode for XML only.

The use of Camel debugger by attaching it to a running Camel route written in Java, Yaml or
XML using the JMX url.

The local use of Camel debugger by attaching it to a running Camel route written in Java, Yaml
or XML using the PID.

You can use it for a single Camel context.

Add or remove the breakpoints.

The conditional breakpoints with simple language.

Inspecting the variable values on suspended breakpoints.

Resume a single route instance and resume all route instances.

Stepping when the route definition is in the same file.

Allow to update variables in scope Debugger, in the message body, in a message header of type
String, and an exchange property of type String

Supports the command Run Camel Application with JBang and Debug.

This command allows a one-click start and Camel debug in simple cases. This command is
available through:

Command Palette. It requires a valid Camel file opened in the current editor.

Contextual menu in File explorer. It is visible to all *.xml, *.java, *.yaml and *.yml.

Codelens at the top of a Camel file (the heuristic for the codelens is checking that there
is a from and a to or a log on java, xml, and yaml files).

Supports the command Run Camel application with JBang.

It requires a valid Camel file defined in Yaml DSL (.yaml|.yml) opened in editor.

CHAPTER 2. USING VS CODE DEBUG ADAPTER FOR APACHE CAMEL EXTENSION

7

https://access.redhat.com/support/offerings/developer/soc

Configuration snippets for Camel debugger launch configuration

Configuration snippets to launch a Camel application ready to accept a Camel debugger
connection using JBang, or a Maven with Camel maven plugin

2.2. REQUIREMENTS

Following points must be considered when using the VS Code Debug Adapter for Apache Camel
extension:

Java Runtime Environment 11 or later with com.sun.tools.attach.VirtualMachine (available in
most JVMs such as Hotspot and OpenJDK) must be installed.

The Camel instance to debug must follow these requirements:

Camel 3.16 or later

Have camel-debug on the classpath.

Have JMX enabled.

NOTE

For some features, The JBang must be available on a system commandline.

2.3. INSTALLING VS CODE DEBUG ADAPTER FOR APACHE CAMEL

You can download the VS Code Debug Adapter for Apache Camel extension from the VS Code
Extension Marketplace and the Open VSX Registry. You can also install the Debug Adapter for Apache
Camel extension directly in the Microsoft VS Code.

Procedure

1. Open the VS Code editor.

2. In the VS Code editor, select View > Extensions.

3. In the search bar, type Camel Debug. Select the Debug Adapter for Apache Camel option
from the search results and then click Install.

This installs the Debug Adapter for Apache Camel in the VS Code editor.

2.4. USING DEBUG ADAPTER

Following procedure explains how to debug a camel application using the debug adapter.

Procedure

1. Ensure that the jbang binary is available on the system commandline.

2. Open a Camel route which can be started with Camel JBang.

3. Call the command Palette using the keys Ctrl + Alt + P, and select the Run Camel Application
with JBang and Debug command or click on the codelens Camel Debug with JBang that
appears on top of the file.

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

8

4. Wait until the route is started and debugger is connected.

5. Put a breakpoint on the Camel route.

6. Debug.

Additional resources

Debug Adapter for Apache Camel by Red Hat

CHAPTER 2. USING VS CODE DEBUG ADAPTER FOR APACHE CAMEL EXTENSION

9

https://camel-tooling.github.io/camel-dap-client-vscode/

CHAPTER 3. USING CAMEL JBANG
Camel Jbang is a JBang-based Camel application for running Camel routes.

3.1. INSTALLING CAMEL JBANG

Prerequisites

1. JBang must be installed on your machine. See instructions on how to download and install the
JBang.

After the JBang is installed, you can verify JBang is working by executing the following command from a
command shell:

This outputs the version of installed JBang.

Procedure

1. Run the following command to install the Camel JBang application:

This installs the Apache Camel as the camel command within JBang. This means that you can run Camel
from the command line by just executing camel command.

3.2. USING CAMEL JBANG

The Camel JBang supports multiple commands. The camel help command can display all the available
commands.

NOTE

The first time you run this command, it may cause dependencies to be cached, therefore
taking a few extra seconds to run. If you are already using JBang and you get errors such
as Exception in thread "main" java.lang.NoClassDefFoundError:
"org/apache/camel/dsl/jbang/core/commands/CamelJBangMain", try clearing the
JBang cache and re-install again.

All the commands support the --help and will display the appropriate help if that flag is provided.

3.2.1. Enable shell completion

Camel JBang provides shell completion for bash and zsh out of the box. To enable shell completion for
Camel JBang, run:

jbang version

jbang app install camel@apache/camel

camel --help

source <(camel completion)

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

10

https://www.jbang.dev/download/

To make it permanent, run:

3.3. CREATING AND RUNNING CAMEL ROUTES

You can create a new basic routes with the init command. For example to create an XML route, run the
following command:

This creates the file cheese.xml (in the current directory) with a sample route.

To run the file, run:

NOTE

You can create and run any of the supported DSLs in Camel such as YAML, XML, Java,
Groovy.

To create a new .java route, run:

When you use the init command, Camel by default creates the file in the current directory. However, you
can use the --directory option to create the file in the specified directory. For example to create in a
folder named foobar, run:

NOTE

When you use the --directory option, Camel automatically cleans this directory if already
exists.

3.3.1. Running routes from multiple files

You can run routes from more than one file, for example to run two YAML files:

You can run routes from two different files such as yaml and Java:

You can use wildcards (i.e. *) to match multiple files, such as running all the yaml files:

echo 'source <(camel completion)' >> ~/.bashrc

camel init cheese.xml

camel run cheese.xml

camel init foo.java

camel init foo.java --directory=foobar

camel run one.yaml two.yaml

camel run one.yaml hello.java

camel run *.yaml

CHAPTER 3. USING CAMEL JBANG

11

https://camel.apache.org/manual/dsl.html

You can run all files starting with foo*:

To run all the files in the directory, use:

NOTE

The run goal can also detect files that are properties, such as application.properties.

3.3.2. Running routes from input parameter

For very small Java routes, it is possible to provide the route as CLI argument, as shown below:

This is very limited as the CLI argument is a bit cumbersome to use than files. When you run the routes
from input parameter, remember that:

Only Java DSL code is supported.

Code is wrapped in single quote, so you can use double quote in Java DSL.

Code is limited to what literal values possible to provide from the terminal and JBang.

All route(s) must be defined in a single --code parameter.

NOTE

Using --code is only usable for very quick and small prototypes.

3.3.3. Dev mode with live reload

You can enable the dev mode that comes with live reload of the route(s) when the source file is
updated (saved), using the --dev options as shown:

Then while the Camel integration is running, you can update the YAML route and update when saving.
This option works for all DLS including java, for example:

NOTE

The live reload option is meant for development purposes only, and if you encounter
problems with reloading such as JVM class loading issues, then you may need to restart
the integration.

camel run foo*

camel run *

camel run --code='from("kamelet:beer-source").to("log:beer")'

camel run foo.yaml --dev

camel run hello.java --dev

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

12

3.3.4. Developer Console

You can enable the developer console, which presents a variety of information to the developer. To
enable the developer console, run:

The console is then accessible from a web browser at http://localhost:8080/q/dev (by default). The
link is also displayed in the log when the Camel is starting up.

The console can give you insights into your running Camel integration, such as reporting the top routes
that takes the longest time to process messages. You can then identify the slowest individual EIPs in
these routes.

The developer console can also output the data in JSON format, that can be used by 3rd-party tooling
to capture the information. For example, to output the top routes via curl, run:

If you have jq installed, that can format and output the JSON data in colour, run:

3.3.5. Using profiles

A profile in Camel JBang is a name (id) that refers to the configuration that is loaded automatically with
Camel JBang. The default profile is named as the application which is a (smart default) to let Camel
JBang automatic load application.properties (if present). This means that you can create profiles that
match to a specific properties file with the same name.

For example, running with a profile named local means that Camel JBang will load local.properties
instead of application.properties. To use a profile, specify the command line option --profile as shown:

You can only specify one profile name at a time, for example, --profile=local,two is not valid.

In the properties files you can configure all the configurations from Camel Main. To turn off and enable
log masking run the following command:

You can also configure Camel components such as camel-kafka to declare the URL to the brokers:

NOTE

Keys starting with camel.jbang are reserved keys that are used by Camel JBang
internally, and allow for pre-configuring arguments for Camel JBang commands.

camel run hello.java --console

curl -s -H "Accept: application/json" http://0.0.0.0:8080/q/dev/top/

curl -s -H "Accept: application/json" http://0.0.0.0:8080/q/dev/top/ | jq

camel run hello.java --profile=local

camel.main.streamCaching=false
camel.main.logMask=true

camel.component.kafka.brokers=broker1:9092,broker2:9092,broker3:9092

CHAPTER 3. USING CAMEL JBANG

13

http://localhost:8080/q/dev
https://camel.apache.org/components/3.22.x/others/main.html

3.3.6. Downloading JARs over the internet

By default, Camel JBang automatically resolves the dependencies needed to run Camel, this is done by
JBang and Camel respectively. Camel itself detects at runtime if a component has a need for the JARs
that are not currently available on the classpath, and can then automatically download the JARs.

Camel downloads these JARs in the following order:

1. from the local disk in ~/.m2/repository

2. from the internet in Maven Central

3. from internet in the custom 3rd-party Maven repositories

4. from all the repositories found in active profiles of ~/.m2/settings.xml or a settings file
specified using --maven-settings option.

If you do not want the Camel JBang to download over the internet, you can turn this off with the --
download option, as shown:

3.3.7. Adding custom JARs

Camel JBang automatically detects the dependencies for the Camel components, languages, and data
formats from its own release. This means that it is not necessary to specify which JARs to use. However,
if you need to add 3rd-party custom JARs then you can specify these with the --deps as CLI argument
in Maven GAV syntax (groupId:artifactId:version), such as:

To add a Camel dependency explicitly you can use a shorthand syntax (starting with `camel:` or
`camel-`):

You can specify multiple dependencies separated by comma:

3.3.8. Using 3rd-party Maven repositories

Camel JBang downloads from the local repository first, and then from the online Maven Central
repository. To download from the 3rd-party Maven repositories, you must specify this as CLI argument,
or in the application.properties file.

NOTE

You can specify multiple repositories separated by comma.

camel run foo.java --download=false

camel run foo.java --deps=com.foo:acme:1.0

camel run foo.java --deps=camel-saxon

camel run foo.java --deps=camel-saxon,com.foo:acme:1.0

camel run foo.java --repos=https://packages.atlassian.com/maven-external

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

14

The configuration for the 3rd-party Maven repositories is configured in the application.properties file
with the key camel.jbang.repos as shown:

When you run Camel route, the application.properties is automatically loaded:

You can also explicitly specify the properties file to use:

Or you can specify this as a profile:

Where the profile id is the name of the properties file.

3.3.9. Configuration of Maven usage

By default, the existing ~/.m2/settings.xml file is loaded, so it is possible to alter the behavior of the
Maven resolution process. Maven settings file provides the information about the Maven mirrors,
credential configuration (potentially encrypted) or active profiles and additional repositories.

Maven repositories can use authentication and the Maven-way to configure credentials is through
<server> elements:

While the password may be specified using plain text, it si recommended to configure the maven master
password first and then use it to configure repository password:

The above password must be added to ~/.m2/settings-security.xml file as shown:

Then you can configure a normal password:

camel.jbang.repos=https://packages.atlassian.com/maven-external

camel run foo.java

camel run foo.java application.properties

camel run foo.java --profile=application

<server>
 <id>external-repository</id>
 <username>camel</username>
 <password>{SSVqy/PexxQHvubrWhdguYuG7HnTvHlaNr6g3dJn7nk=}</password>
</server>

$ mvn -emp
Master password: camel
{hqXUuec2RowH8dA8vdqkF6jn4NU9ybOsDjuTmWvYj4U=}

<settingsSecurity>
 <master>{hqXUuec2RowH8dA8vdqkF6jn4NU9ybOsDjuTmWvYj4U=}</master>
</settingsSecurity>

$ mvn -ep
Password: camel
{SSVqy/PexxQHvubrWhdguYuG7HnTvHlaNr6g3dJn7nk=}

CHAPTER 3. USING CAMEL JBANG

15

Then you can use this password in the <server>/<password> configuration.

By default, Maven reads the master password from ~/.m2/settings-security.xml file, but you can
override it. Location of the settings.xml file itself can be specified as shown:

If you want to run Camel application without assuming any location (even ~/.m2/settings.xml), use this
option:

3.3.10. Running routes hosted on GitHub

You can run a route that is hosted on the GitHub using the Camels resource loader. For example, to run
one of the Camel K examples, use:

You can also use the https URL for the GitHub. For example, you can browse the examples from a web-
browser and then copy the URL from the browser window and run the example with Camel JBang:

You can also use wildcards (i.e. *) to match multiple files, such as running all the groovy files:

Or you can run all files starting with rou*:

3.3.10.1. Running routes from the GitHub gists

Using the gists from the GitHub is a quick way to share the small Camel routes that you can easily run.
For example to run a gist, use:

A gist can contain one or more files, and Camel JBang will gather all relevant files, so a gist can contain
multiple routes, properties files, and Java beans.

3.3.11. Downloading routes hosted on the GitHub

You can use Camel JBang to download the existing examples from GitHub to local disk, which allows to
modify the example and to run locally. For example, you can download the dependency injection
example by running the following command:

Then the files (not sub folders) are downloaded to the current directory. You can then run the example

camel run foo.java --maven-settings=/path/to/settings.xml --maven-settings-
security=/path/to/settings-security.xml

camel run foo.java --maven-settings=false

camel run github:apache:camel-kamelets-examples:jbang/hello-java/Hey.java

camel run https://github.com/apache/camel-kamelets-examples/tree/main/jbang/hello-java

camel run https://github.com/apache/camel-kamelets-examples/tree/main/jbang/languages/*.groovy

camel run https://github.com/apache/camel-kamelets-examples/tree/main/jbang/languages/rou*

camel run https://gist.github.com/davsclaus/477ddff5cdeb1ae03619aa544ce47e92

camel init https://github.com/apache/camel-kamelets-examples/tree/main/jbang/dependency-injection

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

16

Then the files (not sub folders) are downloaded to the current directory. You can then run the example
locally with:

You can also download to the files to a new folder using the --directory option, for example to download
the files to a folder named myproject, run:

NOTE

When using --directory option, Camel will automatically clean this directory if already
exists.

You can run the example in dev mode, to hot-deploy on the source code changes.

You can download a single file, for example, to download one of the Camel K examples, run:

This is a groovy route, which you can run with (or use *):

3.3.11.1. Downloading routes form GitHub gists

You can download the files from the gists as shown:

This downloads the files to local disk, which you can run afterwards:

You can download to a new folder using the --directory option, for example, to download to a folder
named foobar, run:

NOTE

When using --directory option, Camel automatically cleans this directory if already exists.

3.3.12. Using a specific Camel version

camel run *

camel init https://github.com/apache/camel-kamelets-examples/tree/main/jbang/dependency-injection
--directory=myproject

camel run * --dev

camel init https://github.com/apache/camel-k-examples/blob/main/generic-
examples/languages/simple.groovy

camel run simple.groovy

camel init https://gist.github.com/davsclaus/477ddff5cdeb1ae03619aa544ce47e92

camel run *

camel init https://gist.github.com/davsclaus/477ddff5cdeb1ae03619aa544ce47e92 --directory=foobar

CHAPTER 3. USING CAMEL JBANG

17

You can specify which Camel version to run as shown:

NOTE

Older versions of Camel may not work as well with Camel JBang as the newest versions. It
is recommended to use the versions starting from Camel 3.18 onwards.

You can also try bleeding edge development by using SNAPSHOT such as:

3.3.13. Running the Camel K integrations or bindings

Camel supports running the Camel K integrations and binding files, that are in the CRD format
(Kubernetes Custom Resource Definitions).For example, to run a kamelet binding file named joke.yaml:

3.3.14. Run from the clipboard

You can run the Camel routes directly from the OS clipboard. This allows to copy some code, and then
quickly run the route.

Where <extension> is the type of the content of the clipboard is, such as java, xml, or yaml.

For example, you can copy this to your clipboard and then run the route:

jbang run -Dcamel.jbang.version=3.20.1 camel@apache/camel [command]

jbang run --fresh -Dcamel.jbang.version=3.20.1-SNAPSHOT camel@apache/camel [command]

#!/usr/bin/env jbang camel@apache/camel run
apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: joke
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1
 name: chuck-norris-source
 properties:
 period: 2000
 sink:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1
 name: log-sink
 properties:
 show-headers: false

camel run joke.yaml

camel run clipboard.<extension>

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

18

3.3.15. Controlling the local Camel integrations

To list the Camel integrations that are currently running, use the ps option:

This lists the PID, the name and age of the integration.

You can use the stop command to stop any of these running Camel integrations. For example to stop
the test1, run:

You can use the PID to stop the integration:

NOTE

You do not have to type the full name, as the stop command will match the integrations
that starts with the input, for example you can type camel stop t to stop all integrations
starting with t.

To stop all integrations, use the --all option as follows:

3.3.16. Controlling the Spring Boot and Quarkus integrations

The Camel JBang CLI by default only controls the Camel integrations that are running using the CLI, for
example, camel run foo.java.

For the CLI to be able to control and manage the Spring Boot or Quarkus applications, you need to add
a dependency to these projects to integrate with the Camel CLI.

Spring Boot

In the Spring Boot application, add the following dependency:

<route>
 <from uri="timer:foo"/>
 <log message="Hello World"/>
</route>

camel run clipboard.xml

camel ps
 PID NAME READY STATUS AGE
 61818 sample.camel.MyCamelApplica… 1/1 Running 26m38s
 62506 test1 1/1 Running 4m34s

camel stop test1
Stopping running Camel integration (pid: 62506)

camel stop 62506
Stopping running Camel integration (pid: 62506)

camel stop --all
Stopping running Camel integration (pid: 61818)
Stopping running Camel integration (pid: 62506)

CHAPTER 3. USING CAMEL JBANG

19

Quarkus

In the Quarkus application, add the following dependency:

3.3.17. Getting the status of Camel integrations

The get command in the Camel JBang is used for getting the Camel specific status for one or all of the
running Camel integrations. To display the status of the running Camel integrations, run:

The camel get command displays the default integrations, which is equivalent to typing the camel get
integrations or the camel get int commands.

This displays the overall information for the every Camel integration, where you can see the total number
of messages processed. The column Since Last shows how long time ago the last processed message
for three stages (started/completed/failed).

The value of 0s/0s/- means that the last started and completed message just happened (0 seconds
ago), and that there has not been any failed message yet. In this example, 9s/9s/1h3m means that last
started and completed message is 9 seconds ago, and last failed is 1 hour and 3 minutes ago.

You can also see the status of every routes, from all the local Camel integrations with camel get route:

NOTE

Use camel get --help to display all the available commands.

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-cli-connector-starter</artifactId>
</dependency>

<dependency>
 <groupId>org.apache.camel.quarkus</groupId>
 <artifactId>camel-quarkus-cli-connector</artifactId>
</dependency>

camel get
 PID NAME CAMEL PLATFORM READY STATUS AGE TOTAL FAILED
INFLIGHT SINCE-LAST
 61818 MyCamel 3.20.1-SNAPSHOT Spring Boot v2.7.3 1/1 Running 28m34s 854 0
0 0s/0s/-
 63051 test1 3.20.1-SNAPSHOT JBang 1/1 Running 18s 14 0 0 0s/0s/-
 63068 mygroovy 3.20.1-SNAPSHOT JBang 1/1 Running 5s 2 0 0
0s/0s/-

camel get route
 PID NAME ID FROM STATUS AGE TOTAL FAILED INFLIGHT MEAN
MIN MAX SINCE-LAST
 61818 MyCamel hello timer://hello?period=2000 Running 29m2s 870 0 0 0 0 14
0s/0s/-
 63051 test1 java timer://java?period=1000 Running 46s 46 0 0 0 0 9
0s/0s/-
 63068 mygroovy groovy timer://groovy?period=1000 Running 34s 34 0 0 0 0 5
0s/0s/-

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

20

3.3.17.1. Top status of the Camel integrations

The camel top command is used for getting top utilization statistics (highest to lowest heap used
memory) of the running Camel integrations.

The HEAP column shows the heap memory (used/committed/max) and the non-heap
(used/committed). The GC column shows the garbage collection information (time and total runs). The
CLASSES column shows the number of classes (loaded/total).

You can also see the top performing routes (highest to lowest mean processing time) of every routes,
from all the local Camel integrations with camel top route:

NOTE

Use camel top --help to display all the available commands.

3.3.17.2. Starting and Stopping the routes

The camel cmd is used for executing the miscellaneous commands in the running Camel integrations,
for example, the commands to start and stop the routes.

To stop all the routes in the chuck integration, run:

The status will be then changed to Stopped for the chuck integration:

camel top
 PID NAME JAVA CAMEL PLATFORM STATUS AGE HEAP NON-
HEAP GC THREADS CLASSES
 22104 chuck 11.0.13 3.20.1-SNAPSHOT JBang Running 2m10s 131/322/4294 MB
70/73 MB 17ms (6) 7/8 7456/7456
 14242 MyCamel 11.0.13 3.20.1-SNAPSHOT Spring Boot v2.7.3 Running 33m40s 115/332/4294
MB 62/66 MB 37ms (6) 16/16 8428/8428
 22116 bar 11.0.13 3.20.1-SNAPSHOT JBang Running 2m7s 33/268/4294 MB
54/58 MB 20ms (4) 7/8 6104/6104

camel top route
 PID NAME ID FROM STATUS AGE TOTAL FAILED
INFLIGHT MEAN MIN MAX SINCE-LAST
 22104 chuck chuck-norris-source-1 timer://chuck?period=10000 Started 10s 1 0
0 163 163 163 9s
 22116 bar route1 timer://yaml2?period=1000 Started 7s 7 0 0 1
0 11 0s
 22104 chuck chuck kamelet://chuck-norris-source Started 10s 1 0 0
0 0 0 9s
 22104 chuck log-sink-2 kamelet://source?routeId=log-sink-2 Started 10s 1 0
0 0 0 0 9s
 14242 MyCamel hello timer://hello?period=2000 Started 31m41s 948 0
0 0 0 4 0s

camel cmd stop-route chuck

camel get route
 PID NAME ID FROM STATUS AGE TOTAL FAILED
INFLIGHT MEAN MIN MAX SINCE-LAST

CHAPTER 3. USING CAMEL JBANG

21

To start the route, run:

To stop all the routes in every the Camel integration, use the --all flag as follows:

To start all the routes, use:

NOTE

You can stop one or more route by their ids by separating them using comma, for
example, camel cmd start-route --id=route1,hello. Use the camel cmd start-route --
help command for more details.

3.3.17.3. Configuring the logging levels

You can see the current logging levels of the running Camel integrations by:

The logging level can be changed at a runtime. For example, to change the level for the foo to DEBUG,
run:

NOTE

You can use --all to change logging levels for all running integrations.

3.3.17.4. Listing services

Some Camel integrations may host a service which clients can call, such as REST, or SOAP-WS, or
socket-level services using TCP protocols. You can list the available services as shown in the example
below:

 81663 chuck chuck kamelet://chuck-norris-source Stopped 600 0 0
0 0 1 4s
 81663 chuck chuck-norris-source-1 timer://chuck?period=10000 Stopped 600 0
0 65 52 290 4s
 81663 chuck log-sink-2 kamelet://source?routeId=log-sink-2 Stopped 600 0
0 0 0 1 4s
 83415 bar route1 timer://yaml2?period=1000 Started 5m30s 329 0 0
0 0 10 0s
 83695 MyCamel hello timer://hello?period=2000 Started 3m52s 116 0 0
0 0 9 1s

camel cmd start-route chuck

camel cmd stop-route --all

camel cmd start-route --all

camel cmd logger
 PID NAME AGE LOGGER LEVEL
 90857 bar 2m48s root INFO
 91103 foo 20s root INFO

camel cmd logger --level=DEBUG foo

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

22

Here, you can see the two Camel integrations. The netty integration hosts a TCP service that is available
on port 4444. The other Camel integration hosts a REST service that can be called via GET only. The
third integration comes with embedded web console (started with the --console option).

NOTE

For a service to be listed the Camel components must be able to advertise the services
using Camel Console.

3.3.17.5. Listing state of Circuit Breakers

If your Camel integration uses the
link:https://camel.apache.org/components/3.22.x/eips/circuitBreaker-eip.html [Circuit Breaker], then
you can output the status of the breakers with Camel JBang as follows:

Here we can see the circuit breaker is in half open state, that is a state where the breaker is attempting
to transition back to closed, if the failures start to drop.

NOTE

You can run the command with watch option to show the latest state, for example, watch
camel get circuit-breaker.

3.3.18. Using Jolokia and Hawtio

The web console allows inspecting running the Camel integrations, such as all the JMX management
information, and not but least to visualize the Camel routes with live performance metrics.

To allow Hawtio to inspect the Camel integrations, the Jolokia JVM Agent must be installed in the
running integration. This is done explicitly as follows:

With the PID, you can then attach Jolokia:

camel get service
 PID NAME COMPONENT PROTOCOL SERVICE
 1912 netty netty tcp tcp:localhost:4444
 2023 greetings platform-http rest http://0.0.0.0:7777/camel/greetings/{name} (GET)
 2023 greetings platform-http http http://0.0.0.0:7777/q/dev

camel get circuit-breaker
 PID NAME COMPONENT ROUTE ID STATE PENDING SUCCESS FAIL
REJECT
 56033 mycb resilience4j route1 circuitBreaker1 HALF_OPEN 5 2 3 0

camel ps
 PID NAME READY STATUS AGE
 61818 sample.camel.MyCamelApplica… 1/1 Running 26m38s
 62506 test1.java 1/1 Running 4m34s

camel jolokia 62506
Started Jolokia for PID 62506
http://127.0.0.1:8778/jolokia/

CHAPTER 3. USING CAMEL JBANG

23

https://camel.apache.org/manual/camel-console.html

Instead of using the PID you can also attach by the name pattern. In this example, the two Camel
integrations have unique names (foo and test1), you can attach Jolokia without the PID as follows:

Then you can launch the Hawtio using Camel JBang:

This will automatically download and start the Hawtio, and then open in the web browser.

NOTE

See camel hawtio --help for more options.

When the Hawtio launches in the web browser, click the Discover tab which lists the all local available
Jolokia Agents. You can use camel jolokia PID to connect to multiple different Camel integrations and
from this list select which to load.

Click the green lightning icon to connect to the specific running Camel integration.

You can uninstall the Jolokia JVM Agent in a running Camel integration when no longer needed:

It is also possible to achieve this with only one command, as follows:

Where test1 is the name of the running Camel integration. When you stop Hawtio (using ctrl + c), then
Camel will attempt to uninstall the Jolokia JVM Agent, however this is not successful sometimes,
because the JVM is being terminated which can prevent camel-jbang from doing JVM process
communication to the running Camel integration.

3.3.19. Scripting from the terminal using pipes

You can execute a Camel JBang file as a script that is used for terminal scripting with pipes and filters.

NOTE

Every time the script is executed a JVM is started with Camel. This is not very fast or low
on memory usage, so use the Camel JBang terminal scripting, for example, to use the
many Camel components or Kamelets to more easily send or receive data from disparate
IT systems.

This requires to add the following line in top of the file, for example, as in the upper.yaml file below:

camel jolokia te
Started Jolokia for PID 62506
http://127.0.0.1:8778/jolokia/

camel hawtio

camel jolokia 62506 --stop
Stopped Jolokia for PID 62506

camel hawtio test1

///usr/bin/env jbang --quiet camel@apache/camel pipe "$0" "$@" ; exit $?

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

24

To execute this as a script, you need to set the execute file permission:

Then you can then execute this as a script:

This outputs:

You can turn on the logging using --logging=true which then logs to .camel-jbang/camel-pipe.log file.
The name of the logging file cannot be configured.

3.3.19.1. Using stream:in with line vs raw mode

When using stream:in to read data from System in then the Stream Component works in two modes:

line mode (default) - reads input as single lines (separated by line breaks). Message body is a
String.

raw mode - reads the entire stream until end of stream. Message body is a byte[].

NOTE

The default mode is due to historically how the stream component was created.
Therefore, you may want to set stream:in?readLine=false to use raw mode.

3.3.20. Running local Kamelets

You can use Camel JBang to try local Kamelets, without the need to publish them on GitHub or package
them in a jar.

NOTE

When the kamelets are from local file system, then they can be live reloaded, if they are
updated, when you run Camel JBang in --dev mode.

Will upper-case the input
- from:
 uri: "stream:in"
 steps:
 - setBody:
 simple: "${body.toUpperCase()}"
 - to: "stream:out"

chmod +x upper.yaml

echo "Hello\nWorld" | ./upper.yaml

HELLO
WORLD

echo "Hello\nWorld" | ./upper.yaml --logging=true

camel run --local-kamelet-dir=/path/to/local/kamelets earthquake.yaml

CHAPTER 3. USING CAMEL JBANG

25

https://camel.apache.org/components/3.22.x/stream-component.html

You can also point to a folder in a GitHub repository. For example:

NOTE

If a kamelet is loaded from GitHub, then they cannot be live reloaded.

3.3.21. Using the platform-http component

When a route is started from platform-http then the Camel JBang automatically includes a VertX HTTP
server running on port 8080. following example shows the route in a file named server.yaml:

You can run this example with:

And then call the HTTP service with:

3.3.22. Using Java beans and processors

There is basic support for including regular Java source files together with Camel routes, and let the
Camel JBang runtime compile the Java source. This means you can include smaller utility classes,
POJOs, Camel Processors that the application needs.

NOTE

The Java source files cannot use package names.

3.3.23. Dependency Injection in Java classes

When running the Camel integrations with camel-jbang, the runtime is camel-main based. This means
there is no Spring Boot, or Quarkus available. However, there is a support for using annotation based
dependency injection in Java classes.

3.3.23.1. Using Spring Boot dependency injection

You can use the following Spring Boot annotations:

@org.springframework.stereotype.Component or
@org.springframework.stereotype.Service on class level to create an instance of the class
and register in the Registry.

camel run --local-kamelet-dir=https://github.com/apache/camel-kamelets-examples/tree/main/custom-
kamelets user.java

- from:
 uri: "platform-http:/hello"
 steps:
 - set-body:
 constant: "Hello World"

camel run server.yaml

$ curl http://localhost:8080/hello
Hello World%

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

26

https://camel.apache.org/manual/registry.html

@org.springframework.beans.factory.annotation.Autowired to dependency inject a bean on
a class field. @org.springframework.beans.factory.annotation.Qualifier can be used to
specify the bean id.

@org.springframework.beans.factory.annotation.Value to inject a property placeholder .
Such as a property defined in application.properties.

@org.springframework.context.annotation.Bean on a method to create a bean by invoking
the method.

3.3.24. Debugging

There are two kinds of debugging available:

Java debugging - Java code debugging (Standard Java)

Camel route debugging - Debugging Camel routes (requires Camel tooling plugins)

3.3.24.1. Java debugging

You can debug your integration scripts by using the --debug flag provided by JBang. However, to
enable the Java debugging when starting the JVM, use the jbang command, instead of camel as shown:

As you can see the default listening port is 4004 but can be configured as described in JBang
debugging.

This is a standard Java debug socket. You can then use the IDE of your choice. You can add a
Processor to put breakpoints hit during route execution (as opposed to route definition creation).

3.3.24.2. Camel route debugging

The Camel route debugger is available by default (the camel-debug component is automatically added
to the classpath). By default, it can be reached through JMX at the URL
service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/camel. You can then use the Integrated
Development Environment (IDE) of your choice.

3.3.25. Health Checks

The status of health checks is accessed using the Camel JBang from the CLI as follows:

Here you can see the Camel is UP. The application has been running for 8 seconds, and there are two
health checks invoked.

The output shows the default level of checks as:

CamelContext health check

Component specific health checks (such as from camel-kafka or camel-aws)

jbang --debug camel@apache/camel run hello.yaml
Listening for transport dt_socket at address: 4004

camel get health
 PID NAME AGE ID RL STATE RATE SINCE MESSAGE
 61005 mybind 8s camel/context R UP 2/2/- 1s/3s/-

CHAPTER 3. USING CAMEL JBANG

27

https://camel.apache.org/manual/using-propertyplaceholder.html
https://www.jbang.dev/documentation/guide/latest/debugging.html

Custom health checks

Any check which are not UP

The RATE column shows three numbers separated by /. So 2/2/- means 2 checks in total, 2 successful
and no failures. The two last columns will reset when a health check changes state as this number is the
number of consecutive checks that was successful or failure. So if the health check starts to fail then the
numbers could be:

Here you can see the numbers is changed to 77/-/3. This means the total number of checks is 77. There is
no success, but the check has been failing 3 times in a row. The SINCE column corresponds to the
RATE. So in this case you can see the last check was 1 second ago, and that the check has been failing
for 17 second in a row.

You can use --level=full to output every health checks that will include consumer and route level checks
as well.

A health check may often be failed due to an exception was thrown which can be shown using --trace
flag:

camel get health
 PID NAME AGE ID RL STATE RATE SINCE MESSAGE
 61005 mybind 3m2s camel/context R UP 77/-/3 1s/-/17s some kind of error

camel get health --trace
 PID NAME AGE ID RL STATE RATE SINCE MESSAGE
 61038 mykafka 6m19s camel/context R UP 187/187/- 1s/6m16s/-
 61038 mykafka 6m19s camel/kafka-consumer-kafka-not-secure… R DOWN 187/-/187 1s/-
/6m16s KafkaConsumer is not ready - Error: Invalid url in bootstrap.servers: value

--
 STACK-TRACE
--
 PID: 61038
 NAME: mykafka
 AGE: 6m19s
 CHECK-ID: camel/kafka-consumer-kafka-not-secured-source-1
 STATE: DOWN
 RATE: 187
 SINCE: 6m16s
 METADATA:
 bootstrap.servers = value
 group.id = 7d8117be-41b4-4c81-b4df-cf26b928d38a
 route.id = kafka-not-secured-source-1
 topic = value
 MESSAGE: KafkaConsumer is not ready - Error: Invalid url in bootstrap.servers: value
 org.apache.kafka.common.KafkaException: Failed to construct kafka consumer
 at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:823)
 at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:664)
 at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:645)
 at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:625)
 at
org.apache.camel.component.kafka.DefaultKafkaClientFactory.getConsumer(DefaultKafkaClientFactory
.java:34)
 at

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

28

Here you can see that the health check fails because of the
org.apache.kafka.common.config.ConfigException which is due to invalid configuration: Invalid url
in bootstrap.servers: value.

NOTE

Use camel get health --help to see all the various options.

3.4. LISTING WHAT CAMEL COMPONENTS IS AVAILABLE

Camel comes with a lot of artifacts out of the box which are:

components

data formats

expression languages

miscellaneous components

kamelets

You can use the Camel CLI to list what Camel provides using the camel catalog command. For
example, to list all the components:

To see which Kamelets are available:

NOTE

org.apache.camel.component.kafka.KafkaFetchRecords.createConsumer(KafkaFetchRecords.java:241
)
 at
org.apache.camel.component.kafka.KafkaFetchRecords.createConsumerTask(KafkaFetchRecords.java
:201)
 at org.apache.camel.support.task.ForegroundTask.run(ForegroundTask.java:123)
 at org.apache.camel.component.kafka.KafkaFetchRecords.run(KafkaFetchRecords.java:125)
 at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:515)
 at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
 at
java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
 at
java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
 at java.base/java.lang.Thread.run(Thread.java:829)
 Caused by: org.apache.kafka.common.config.ConfigException: Invalid url in bootstrap.servers:
value
 at org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:59)
 at org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:48)
 at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:730)
 ... 13 more

camel catalog components

camel catalog kamelets

CHAPTER 3. USING CAMEL JBANG

29

NOTE

Use camel catalog --help to see all possible commands.

3.4.1. Displaying component documentation

The doc goal can show quick documentation for every component, dataformat, and kamelets. For
example, to see the kafka component run:

NOTE

The documentation is not the full documentation as shown on the website, as the Camel
CLI does not have direct access to this information and can only show a basic description
of the component, but include tables for every configuration option.

To see the documentation for jackson dataformat:

In some rare cases then there may be a component and dataformat with the same name, and the doc
goal prioritizes components. In such a situation you can prefix the name with dataformat, for example:

You can also see the kamelet documentation such as shown:

3.4.1.1. Browsing online documentation from the Camel website

You can use the doc command to quickly open the url in the web browser for the online documentation.
For example to browse the kafka component, you use --open-url:

This also works for data formats, languages, kamelets.

NOTE

To just get the link to the online documentation, then use camel doc kafka --url.

3.4.1.2. Filtering options listed in the tables

Some components may have many options, and in such cases you can use the --filter option to only list
the options that match the filter either in the name, description, or the group (producer, security,
advanced).

camel doc kafka

camel doc jackson

camel doc dataformat:thrift

camel doc aws-kinesis-sink

camel doc kafka --open-url

camel doc aws-kinesis-sink --open-url

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

30

For example, to list only security related options:

To list only something about timeout:

3.5. OPEN API

Camel JBang allows to quickly expose an Open API service using contract first approach, where you
have an existing OpenAPI specification file. Camel JBang bridges each API endpoints from the OpenAPI
specification to a Camel route with the naming convention direct:<operationId>. This make it quicker to
implement a Camel route for a given operation.

See the OpenAPI example for more details.

3.6. GATHERING LIST OF DEPENDENCIES

The dependencies are automatically resolved when you work with Camel JBang. This means that you do
not have to use a build system like Maven or Gradle to add every Camel components as a dependency.

However, you may want to know what dependencies are required to run the Camel integration. You can
use the dependencies command to see the dependencies required. The command output does not
output a detailed tree, such as mvn dependencies:tree, as the output is intended to list which Camel
components, and other JARs needed (when using Kamelets).

The dependency output by default is vanilla Apache Camel with the camel-main as runtime, as shown:

The output is by default a line per maven dependency in GAV format (groupId:artifactId:version).

You can specify the Maven format for the the output as shown:

camel doc kafka --filter=security

camel doc kafka --filter=timeout

camel dependencies
org.apache.camel:camel-dsl-modeline:3.20.0
org.apache.camel:camel-health:3.20.0
org.apache.camel:camel-kamelet:3.20.0
org.apache.camel:camel-log:3.20.0
org.apache.camel:camel-rest:3.20.0
org.apache.camel:camel-stream:3.20.0
org.apache.camel:camel-timer:3.20.0
org.apache.camel:camel-yaml-dsl:3.20.0
org.apache.camel.kamelets:camel-kamelets-utils:0.9.3
org.apache.camel.kamelets:camel-kamelets:0.9.3

camel dependencies --output=maven
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-main</artifactId>
 <version>3.20.0</version>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>

CHAPTER 3. USING CAMEL JBANG

31

https://github.com/apache/camel-kamelets-examples/tree/main/jbang/open-api

You can also choose the target runtime as either`quarkus` or spring-boot as shown:

 <artifactId>camel-dsl-modeline</artifactId>
 <version>3.20.0</version>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-health</artifactId>
 <version>3.20.0</version>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-kamelet</artifactId>
 <version>3.20.0</version>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-log</artifactId>
 <version>3.20.0</version>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-rest</artifactId>
 <version>3.20.0</version>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-stream</artifactId>
 <version>3.20.0</version>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-timer</artifactId>
 <version>3.20.0</version>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-yaml-dsl</artifactId>
 <version>3.20.0</version>
</dependency>
<dependency>
 <groupId>org.apache.camel.kamelets</groupId>
 <artifactId>camel-kamelets-utils</artifactId>
 <version>0.9.3</version>
</dependency>
<dependency>
 <groupId>org.apache.camel.kamelets</groupId>
 <artifactId>camel-kamelets</artifactId>
 <version>0.9.3</version>
</dependency>

camel dependencies --runtime=spring-boot
org.springframework.boot:spring-boot-starter-actuator:2.7.5
org.springframework.boot:spring-boot-starter-web:2.7.5
org.apache.camel.springboot:camel-spring-boot-engine-starter:3.20.0
org.apache.camel.springboot:camel-dsl-modeline-starter:3.20.0

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

32

3.7. CREATING PROJECTS

You can export your Camel JBang integration to a traditional Java based project such as Spring Boot or
Quarkus. You may want to do this after you have built a prototype using Camel JBang, and are in the
need of a traditional Java based project with more need for Java coding, or to use the powerful
runtimes of Spring Boot, Quarkus or vanilla Camel Main.

3.7.1. Exporting to Camel Spring Boot

The command export --runtime=spring-boot exports your current Camel JBang file(s) to a Maven
based Spring Boot project with files organized in src/main/ folder structure.

For example, to export to the Spring Boot using the Maven groupId com.foo and the artifactId acme
and with version 1.0-SNAPSHOT, run:

NOTE

This will export to the current directory, this means that files are moved into the needed
folder structure.

To export to another directory, run:

When exporting to the Spring Boot, the Camel version defined in the pom.xml or build.gradle is the
same version as Camel JBang uses. However, you can specify the different Camel version as shown:

NOTE

See the possible options by running the camel export --help command for more details.

3.7.2. Exporting with Camel CLI included

When exporting to Spring Boot, Quarkus or Camel Main, the Camel JBang CLI is not included out of the
box. To continue to use the Camel CLI (that is camel), you need to add camel:cli-connector in the --
deps option, as shown:

org.apache.camel.springboot:camel-kamelet-starter:3.20.0
org.apache.camel.springboot:camel-log-starter:3.20.0
org.apache.camel.springboot:camel-rest-starter:3.20.0
org.apache.camel.springboot:camel-stream-starter:3.20.0
org.apache.camel.springboot:camel-timer-starter:3.20.0
org.apache.camel.springboot:camel-yaml-dsl-starter:3.20
org.apache.camel.kamelets:camel-kamelets-utils:0.9.3
org.apache.camel.kamelets:camel-kamelets:0.9.3

camel export --runtime=spring-boot --gav=com.foo:acme:1.0-SNAPSHOT

camel export --runtime=spring-boot --gav=com.foo:acme:1.0-SNAPSHOT --directory=../myproject

camel export --runtime=spring-boot --gav=com.foo:acme:1.0-SNAPSHOT --directory=../myproject --
camel-spring-boot-version=3.20.1.redhat-00104

CHAPTER 3. USING CAMEL JBANG

33

3.7.3. Configuring exporting

The export command by default loads the configuration from application.properties file which is used
for exporting specific parameters such as selecting the runtime and java version.

The following options related to exporting, can be configured in the application.properties file:

Option Description

camel.jbang.runtime Runtime (spring-boot, quarkus, or camel-main)

camel.jbang.gav The Maven group:artifact:version

camel.jbang.dependencies Additional dependencies (Use commas to separate
multiple dependencies). See more details at Adding
custom JARs.

camel.jbang.classpathFiles Additional files to add to classpath (Use commas to
separate multiple files). See more details at Adding
custom JARs.

camel.jbang.javaVersion Java version (11 or 17)

camel.jbang.kameletsVersion Apache Camel Kamelets version

camel.jbang.localKameletDir Local directory for loading Kamelets

camel.jbang.camelSpringBootVersion Camel version to use with Spring Boot

camel.jbang.springBootVersion Spring Boot version

camel.jbang.quarkusGroupId Quarkus Platform Maven groupId

camel.jbang.quarkusArtifactId Quarkus Platform Maven artifactId

camel.jbang.quarkusVersion Quarkus Platform version

camel.jbang.mavenWrapper Include Maven Wrapper files in exported project

camel.jbang.gradleWrapper Include Gradle Wrapper files in exported project

camel.jbang.buildTool Build tool to use (maven or gradle)

camel export --runtime=quarkus --gav=com.foo:acme:1.0-SNAPSHOT --deps=camel:cli-connector --
directory=../myproject

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

34

https://camel.apache.org/manual/camel-jbang.html#_adding_custom_jars
https://camel.apache.org/manual/camel-jbang.html#_adding_custom_jars

camel.jbang.repos Additional maven repositories for download on-
demand (Use commas to separate multiple
repositories)

camel.jbang.mavenSettings Optional location of maven setting.xml file to
configure servers, repositories, mirrors and proxies. If
set to false, not even the default ~/.m2/settings.xml
will be used.

camel.jbang.mavenSettingsSecurity Optional location of maven settings-security.xml file
to decrypt settings.xml

camel.jbang.exportDir Directory where the project will be exported.

camel.jbang.platform-http.port HTTP server port to use when running standalone
Camel, such as when --console is enabled (port
8080 by default).

camel.jbang.console Developer console at /q/dev on local HTTP server
(port 8080 by default) when running standalone
Camel.

camel.jbang.health Health check at /q/health on local HTTP server (port
8080 by default) when running standalone Camel.

Option Description

NOTE

These are the options from the export command. You can see more details and default
values using camel export --help.

3.8. TROUBLESHOOTING

When you use JBang, it stores the state in ~/.jbang directory. This is also the location where JBang
stores downloaded JARs. Camel JBang also downloads the needed dependencies while running.
However, these dependencies are downloaded to your local Maven repository ~/.m2. So when you
troubleshoot the problems such as an outdated JAR while running the Camel JBang, try to delete these
directories, or parts of it.

CHAPTER 3. USING CAMEL JBANG

35

CHAPTER 4. USING CAMEL WITH SPRING XML
Using Camel with Spring XML files, is a way, of using XML DSL with Camel. Camel has historically been
using Spring XML for a long time. The Spring framework started with XML files as a popular and
common configuration for building Spring applications.

Example of Spring application

4.1. SPECIFYING CAMEL ROUTES USING SPRING XML

You can use Spring XML files to specify Camel routes using XML DSL as shown:

4.2. CONFIGURING COMPONENTS AND ENDPOINTS

You can configure your Component or Endpoint instances in your Spring XML as follows in this example.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd
 ">

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:a"/>
 <choice>
 <when>
 <xpath>$foo = 'bar'</xpath>
 <to uri="direct:b"/>
 </when>
 <when>
 <xpath>$foo = 'cheese'</xpath>
 <to uri="direct:c"/>
 </when>
 <otherwise>
 <to uri="direct:d"/>
 </otherwise>
 </choice>
 </route>
 </camelContext>

</beans>

<camelContext id="camel-A" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:start"/>
 <to uri="mock:result"/>
 </route>
</camelContext>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

36

This allows you to configure a component using any name, but its common to use the same name, for
example, jms. Then you can refer to the component using jms:destinationName.

This works by the Camel fetching components from the Spring context for the scheme name you use for
Endpoint URIs.

4.3. USING JAVA DSL WITH SPRING XML FILES

You can use Java Code to define your RouteBuilder implementations. These are defined as beans in
spring and then referenced in your camel context, as shown:

4.4. USING PACKAGE SCANNING

Camel also provides a powerful feature that allows for the automatic discovery and initialization of
routes in given packages. This is configured by adding tags to the camel context in your spring context
definition, specifying the packages to be recursively searched for RouteBuilder implementations. To
use this feature add a <package></package> tag specifying a comma separated list of packages that
should be searched. For example,

This scans for RouteBuilder classes in the com.foo and the sub-packages.

You can also filter the classes with includes or excludes such as:

</camelContext>

<bean id="jmsConnectionFactory"
class="org.apache.activemq.artemis.jms.client.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp:someserver:61616"/>
</bean>
<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.artemis.jms.client.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp:someserver:61616"/>
 </bean>
 </property>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="myBuilder"/>
</camelContext>

<bean id="myBuilder" class="org.apache.camel.spring.example.test1.MyRouteBuilder"/>

<camelContext>
 <packageScan>
 <package>com.foo</package>
 <excludes>**.*Excluded*</excludes>
 <includes>**.*</includes>
 </packageScan>
</camelContext>

<camelContext>
 <packageScan>
 <package>com.foo</package>

CHAPTER 4. USING CAMEL WITH SPRING XML

37

This skips the classes that has Special in the name. Exclude patterns are applied before the include
patterns. If no include or exclude patterns are defined then all the Route classes discovered in the
packages are returned.

? matches one character, * matches zero or more characters, ** matches zero or more segments of a
fully qualified name.

4.5. USING CONTEXT SCANNING

You can allow Camel to scan the container context, for example, the Spring ApplicationContext for
route builder instances. This allows you to use the Spring <component-scan> feature and have Camel
pickup any RouteBuilder instances which was created by Spring in its scan process.

This allows you to just annotate your routes using the Spring @Component and have those routes
included by Camel:

You can also use the ANT style for inclusion and exclusion, as mentioned above in the package scan
section.

 <excludes>**.*Special*</excludes>
 </packageScan>
</camelContext>

<!-- enable Spring @Component scan -->
<context:component-scan base-package="org.apache.camel.spring.issues.contextscan"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <!-- and then let Camel use those @Component scanned route builders -->
 <contextScan/>
</camelContext>

@Component
public class MyRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("direct:start")
 .to("mock:result");
 }
}

Red Hat build of Apache Camel for Spring Boot 3.20 Camel Spring Boot User Guide

38

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. USING LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION
	1.1. ABOUT LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION
	1.2. FEATURES OF LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION
	1.3. REQUIREMENTS
	1.4. INSTALLING LANGUAGE SUPPORT FOR APACHE CAMEL EXTENSION

	CHAPTER 2. USING VS CODE DEBUG ADAPTER FOR APACHE CAMEL EXTENSION
	2.1. FEATURES OF DEBUG ADAPTER
	2.2. REQUIREMENTS
	2.3. INSTALLING VS CODE DEBUG ADAPTER FOR APACHE CAMEL
	2.4. USING DEBUG ADAPTER

	CHAPTER 3. USING CAMEL JBANG
	3.1. INSTALLING CAMEL JBANG
	3.2. USING CAMEL JBANG
	3.2.1. Enable shell completion

	3.3. CREATING AND RUNNING CAMEL ROUTES
	3.3.1. Running routes from multiple files
	3.3.2. Running routes from input parameter
	3.3.3. Dev mode with live reload
	3.3.4. Developer Console
	3.3.5. Using profiles
	3.3.6. Downloading JARs over the internet
	3.3.7. Adding custom JARs
	3.3.8. Using 3rd-party Maven repositories
	3.3.9. Configuration of Maven usage
	3.3.10. Running routes hosted on GitHub
	3.3.10.1. Running routes from the GitHub gists

	3.3.11. Downloading routes hosted on the GitHub
	3.3.11.1. Downloading routes form GitHub gists

	3.3.12. Using a specific Camel version
	3.3.13. Running the Camel K integrations or bindings
	3.3.14. Run from the clipboard
	3.3.15. Controlling the local Camel integrations
	3.3.16. Controlling the Spring Boot and Quarkus integrations
	3.3.17. Getting the status of Camel integrations
	3.3.17.1. Top status of the Camel integrations
	3.3.17.2. Starting and Stopping the routes
	3.3.17.3. Configuring the logging levels
	3.3.17.4. Listing services
	3.3.17.5. Listing state of Circuit Breakers

	3.3.18. Using Jolokia and Hawtio
	3.3.19. Scripting from the terminal using pipes
	3.3.19.1. Using stream:in with line vs raw mode

	3.3.20. Running local Kamelets
	3.3.21. Using the platform-http component
	3.3.22. Using Java beans and processors
	3.3.23. Dependency Injection in Java classes
	3.3.23.1. Using Spring Boot dependency injection

	3.3.24. Debugging
	3.3.24.1. Java debugging
	3.3.24.2. Camel route debugging

	3.3.25. Health Checks

	3.4. LISTING WHAT CAMEL COMPONENTS IS AVAILABLE
	3.4.1. Displaying component documentation
	3.4.1.1. Browsing online documentation from the Camel website
	3.4.1.2. Filtering options listed in the tables

	3.5. OPEN API
	3.6. GATHERING LIST OF DEPENDENCIES
	3.7. CREATING PROJECTS
	3.7.1. Exporting to Camel Spring Boot
	3.7.2. Exporting with Camel CLI included
	3.7.3. Configuring exporting

	3.8. TROUBLESHOOTING

	CHAPTER 4. USING CAMEL WITH SPRING XML
	4.1. SPECIFYING CAMEL ROUTES USING SPRING XML
	4.2. CONFIGURING COMPONENTS AND ENDPOINTS
	4.3. USING JAVA DSL WITH SPRING XML FILES
	4.4. USING PACKAGE SCANNING
	4.5. USING CONTEXT SCANNING

