
Red Hat build of Apache Camel K 1.10.5

Developing and Managing Integrations Using
Camel K

A developer's guide to Camel K

Last Updated: 2024-02-06

Red Hat build of Apache Camel K 1.10.5 Developing and Managing
Integrations Using Camel K

A developer's guide to Camel K

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The essentials of developing, configuring, and managing Red Hat build of Apache Camel K
applications.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. MANAGING CAMEL K INTEGRATIONS
1.1. MANAGING CAMEL K INTEGRATIONS
1.2. MANAGING CAMEL K INTEGRATION LOGGING LEVELS
1.3. SCALING CAMEL K INTEGRATIONS

CHAPTER 2. MONITORING CAMEL K INTEGRATIONS
2.1. ENABLING USER WORKLOAD MONITORING IN OPENSHIFT
2.2. CONFIGURING CAMEL K INTEGRATION METRICS
2.3. ADDING CUSTOM CAMEL K INTEGRATION METRICS

CHAPTER 3. MONITORING CAMEL K OPERATOR
3.1. CAMEL K OPERATOR METRICS
3.2. ENABLING CAMEL K OPERATOR MONITORING
3.3. CAMEL K OPERATOR ALERTS

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS
4.1. SPECIFYING BUILD-TIME CONFIGURATION PROPERTIES
4.2. SPECIFYING RUNTIME CONFIGURATION OPTIONS

4.2.1. Providing runtime properties
4.2.1.1. Providing runtime properties at the command line
4.2.1.2. Providing runtime properties in a property file

4.2.2. Providing configuration values
4.2.2.1. Specifying a text file
4.2.2.2. Specifying a ConfigMap
4.2.2.3. Specifying a Secret
4.2.2.4. Referencing properties that are contained in ConfigMaps or Secrets
4.2.2.5. Filtering configuration values obtained from a ConfigMap or Secret

4.2.3. Providing resources to a running integration
4.2.3.1. Specifying a text or binary file as a resource
4.2.3.2. Specifying a ConfigMap as a resource
4.2.3.3. Specifying a Secret as a resource
4.2.3.4. Specifying a destination path for a resource
4.2.3.5. Filtering ConfigMap or Secret data

4.3. CONFIGURING CAMEL INTEGRATION COMPONENTS
4.4. CONFIGURING CAMEL K INTEGRATION DEPENDENCIES

CHAPTER 5. AUTHENTICATING CAMEL K AGAINST KAFKA
5.1. SETTING UP KAFKA

5.1.1. Setting up Kafka by using AMQ streams
5.1.1.1. Preparing your OpenShift cluster for AMQ Streams
5.1.1.2. Setting up a Kafka topic with AMQ Streams

5.1.2. Setting up Kafka by using OpenShift streams
5.1.2.1. Preparing your OpenShift cluster for OpenShift Streams
5.1.2.2. Setting up a Kafka topic with RHOAS
5.1.2.3. Obtaining Kafka credentials
5.1.2.4. Creating a secret by using the SASL/Plain authentication method
5.1.2.5. Creating a secret by using the SASL/OAUTHBearer authentication method

5.2. RUNNING A KAFKA INTEGRATION

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

5
5

6
6
8

10

11
11

12
13

17
17
17
18

23
23
24
25
25
26
27
28
28
29
30
31
32
32
33
34
35
35
37
37

40
40
40
40
41

42
42
43
44
45
46
46

49

Table of Contents

1

Camel K feature traits
Camel K core platform traits
6.1. CAMEL K TRAIT AND PROFILE CONFIGURATION
6.2. CAMEL K FEATURE TRAITS

6.2.1. Knative Trait
6.2.1.1. Configuration

6.2.2. Knative Service Trait
6.2.2.1. Configuration

6.2.3. Prometheus Trait
6.2.3.1. Configuration

6.2.4. Pdb Trait
6.2.4.1. Configuration

6.2.5. Pull Secret Trait
6.2.5.1. Configuration

6.2.6. Route Trait
6.2.6.1. Configuration
6.2.6.2. Examples

6.2.6.2.1. Generate a self-signed certificate and create a secret
6.2.6.2.2. Making an HTTP request to the route

6.2.7. Service Trait
6.2.7.1. Configuration

6.3. CAMEL K PLATFORM TRAITS
6.3.1. Builder Trait

6.3.1.1. Configuration
6.3.2. Container Trait

6.3.2.1. Configuration
6.3.3. Camel Trait

6.3.3.1. Configuration
6.3.4. Dependencies Trait

6.3.4.1. Configuration
6.3.5. Deployer Trait

6.3.5.1. Configuration
6.3.6. Deployment Trait

6.3.6.1. Configuration
6.3.7. Environment Trait

6.3.7.1. Configuration
6.3.8. Error Handler Trait

6.3.8.1. Configuration
6.3.9. Jvm Trait

6.3.9.1. Configuration
6.3.9.2. Examples

6.3.10. Kamelets Trait
6.3.10.1. Configuration

6.3.11. NodeAffinity Trait
6.3.11.1. Configuration
6.3.11.2. Examples

6.3.12. Openapi Trait
6.3.12.1. Configuration

6.3.13. Owner Trait
6.3.13.1. Configuration

6.3.14. Platform Trait
6.3.14.1. Configuration

6.3.15. Quarkus Trait

49
49
50
51
51
51
52
52
53
54
54
54
55
55
56
56
58
58
58
60
60
60
60
60
61
61

63
63
63
64
64
64
65
65
65
66
66
66
66
67
67
67
68
68
68
69
70
70
70
70
71
71
72

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

2

. .

6.3.15.1. Configuration
6.3.15.2. Supported Camel Components
6.3.15.3. Examples

6.3.15.3.1. Automatic Rollout Deployment to Native Integration

CHAPTER 7. CAMEL K COMMAND REFERENCE
7.1. CAMEL K COMMAND LINE

7.1.1. Supported commands
7.2. CAMEL K MODELINE OPTIONS

72
73
73
73

74
74
74
76

Table of Contents

3

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

4

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

PREFACE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. MANAGING CAMEL K INTEGRATIONS
You can manage Red Hat Integration - Camel K integrations using the Camel K command line or using
development tools. This chapter explains how to manage Camel K integrations on the command line and
provides links to additional resources that explain how to use the VS Code development tools.

Section 1.1, “Managing Camel K integrations”

Section 1.2, “Managing Camel K integration logging levels”

Section 1.3, “Scaling Camel K integrations”

1.1. MANAGING CAMEL K INTEGRATIONS

Camel K provides different options for managing Camel K integrations on your OpenShift cluster on the
command line. This section shows simple examples of using the following commands:

kamel get

kamel describe

kamel log

kamel delete

Prerequisites

Setting up your Camel K development environment

You must already have a Camel integration written in Java or YAML DSL

Procedure

1. Ensure that the Camel K Operator is running on your OpenShift cluster, for example:

oc get pod

NAME READY STATUS RESTARTS AGE
camel-k-operator-86b8d94b4-pk7d6 1/1 Running 0 6m28s

2. Enter the kamel run command to run your integration in the cloud on OpenShift. For example:

kamel run hello.camelk.yaml

integration "hello" created

3. Enter the kamel get command to check the status of the integration:

kamel get

NAME PHASE KIT
hello Building Kit kit-bqatqib5t4kse5vukt40

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

6

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

4. Enter the kamel describe command to print detailed information about the integration:

kamel describe integration hello

Name: hello
Namespace: myproject
Creation Timestamp: Fri, 13 Aug 2021 16:23:21 +0200
Phase: Building Kit
Runtime Version: 1.7.1.fuse-800025-redhat-00001
Kit: myproject/kit-c4ci6mbe9hl5ph5c9sjg
Image:
Version: 1.6.6
Dependencies:
 camel:core
 camel:log
 camel:timer
 mvn:org.apache.camel.k:camel-k-runtime
 mvn:org.apache.camel.quarkus:camel-quarkus-yaml-dsl
Sources:
 Name Language Compression Ref Ref Key
 camel-k-embedded-flow.yaml yaml false
Conditions:
 Type Status Reason Message
 IntegrationPlatformAvailable True IntegrationPlatformAvailable myproject/camel-k
 IntegrationKitAvailable True IntegrationKitAvailable kit-c4ci6mbe9hl5ph5c9sjg
 CronJobAvailable False CronJobNotAvailableReason different controller
strategy used (deployment)
 DeploymentAvailable True DeploymentAvailable deployment name is hello
 KnativeServiceAvailable False KnativeServiceNotAvailable different controller
strategy used (deployment)
 Ready True ReplicaSetReady

5. Enter the kamel log command to print the log to stdout:

kamel log hello

...
[1] 2021-08-13 14:37:15,860 INFO [info] (Camel (camel-1) thread #0 - timer://yaml)
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from yaml]
...

6. Press Ctrl-C to terminate logging in the terminal.

7. Enter the kamel delete to delete the integration deployed on OpenShift:

kamel delete hello

Integration hello deleted

Additional resources

For more details on logging, see Managing Camel K integration logging levels

For faster deployment turnaround times, see Running Camel K integrations in development

CHAPTER 1. MANAGING CAMEL K INTEGRATIONS

7

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#configuring-camel-k-properties-logging

For faster deployment turnaround times, see Running Camel K integrations in development
mode

For details of development tools to manage integrations, see VS Code Tooling for Apache
Camel K by Red Hat

1.2. MANAGING CAMEL K INTEGRATION LOGGING LEVELS

Camel K uses Quarkus Logging mechanism as the logging framework for integrations. You can
configure the logging levels of various loggers on the command line at runtime by specifying the
quarkus.log.category prefix as an integration property. For example:

Example

--property 'quarkus.log.category."org".level'=DEBUG

NOTE

It is important to escape the property with single quotes.

Prerequisites

Setting up your Camel K development environment

Procedure

1. Enter the kamel run command and specify the logging level using the --property option. For
example:

kamel run --dev --property 'quarkus.log.category."org.apache.camel.support".level'=DEBUG
Basic.java

...
integration "basic" created
 Progress: integration "basic" in phase Initialization
 Progress: integration "basic" in phase Building Kit
 Progress: integration "basic" in phase Deploying
 Condition "IntegrationPlatformAvailable" is "True" for Integration basic: myproject/camel-k
 Integration basic in phase "Initialization"
 Integration basic in phase "Building Kit"
 Integration basic in phase "Deploying"
 Condition "IntegrationKitAvailable" is "True" for Integration basic: kit-
c4dn5l62v9g3aopkocag
 Condition "DeploymentAvailable" is "True" for Integration basic: deployment name is basic
 Condition "CronJobAvailable" is "False" for Integration basic: different controller strategy
used (deployment)
 Progress: integration "basic" in phase Running
 Condition "KnativeServiceAvailable" is "False" for Integration basic: different controller
strategy used (deployment)
 Integration basic in phase "Running"
 Condition "Ready" is "False" for Integration basic
 Condition "Ready" is "True" for Integration basic
 [1] Monitoring pod basic-575b97f64b-7l5rl
 [1] 2021-08-17 08:35:22,906 DEBUG [org.apa.cam.sup.LRUCacheFactory] (main)

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

8

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#running-camel-k-integrations-dev-mode
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

Creating DefaultLRUCacheFactory
 [1] 2021-08-17 08:35:23,132 INFO [org.apa.cam.k.Runtime] (main) Apache Camel K
Runtime 1.7.1.fuse-800025-redhat-00001
 [1] 2021-08-17 08:35:23,134 INFO [org.apa.cam.qua.cor.CamelBootstrapRecorder] (main)
bootstrap runtime: org.apache.camel.quarkus.main.CamelMainRuntime
 [1] 2021-08-17 08:35:23,224 INFO [org.apa.cam.k.lis.SourcesConfigurer] (main) Loading
routes from: SourceDefinition{name='Basic', language='java',
location='file:/etc/camel/sources/Basic.java', }
 [1] 2021-08-17 08:35:23,232 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Found
RoutesBuilderLoader: org.apache.camel.dsl.java.joor.JavaRoutesBuilderLoader via: META-
INF/services/org/apache/camel/java
 [1] 2021-08-17 08:35:23,232 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Detected
and using RoutesBuilderLoader:
org.apache.camel.dsl.java.joor.JavaRoutesBuilderLoader@68dc098b
 [1] 2021-08-17 08:35:23,236 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Found
ResourceResolver: org.apache.camel.impl.engine.DefaultResourceResolvers$FileResolver
via: META-INF/services/org/apache/camel/file
 [1] 2021-08-17 08:35:23,237 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Detected
and using ResourceResolver:
org.apache.camel.impl.engine.DefaultResourceResolvers$FileResolver@5b67bb7e
 [1] 2021-08-17 08:35:24,320 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Lookup
Language with name simple in registry. Found:
org.apache.camel.language.simple.SimpleLanguage@74d7184a
 [1] 2021-08-17 08:35:24,328 DEBUG [org.apa.cam.sup.EventHelper] (main) Ignoring
notifying event Initializing CamelContext: camel-1. The EventNotifier has not been started
yet: org.apache.camel.quarkus.core.CamelManagementEventBridge@3301500b
 [1] 2021-08-17 08:35:24,336 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Lookup
Component with name timer in registry. Found:
org.apache.camel.component.timer.TimerComponent@3ef41c66
 [1] 2021-08-17 08:35:24,342 DEBUG [org.apa.cam.sup.DefaultComponent] (main)
Creating endpoint uri=[timer://java?period=1000], path=[java]
 [1] 2021-08-17 08:35:24,350 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Found
ProcessorFactory: org.apache.camel.processor.DefaultProcessorFactory via: META-
INF/services/org/apache/camel/processor-factory
 [1] 2021-08-17 08:35:24,351 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Detected
and using ProcessorFactory:
org.apache.camel.processor.DefaultProcessorFactory@704b2127
 [1] 2021-08-17 08:35:24,369 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Found
InternalProcessorFactory: org.apache.camel.processor.DefaultInternalProcessorFactory via:
META-INF/services/org/apache/camel/internal-processor-factory
 [1] 2021-08-17 08:35:24,369 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Detected
and using InternalProcessorFactory:
org.apache.camel.processor.DefaultInternalProcessorFactory@4f8caaf3
 [1] 2021-08-17 08:35:24,442 DEBUG [org.apa.cam.sup.ResolverHelper] (main) Lookup
Component with name log in registry. Found:
org.apache.camel.component.log.LogComponent@46b695ec
 [1] 2021-08-17 08:35:24,444 DEBUG [org.apa.cam.sup.DefaultComponent] (main)
Creating endpoint uri=[log://info], path=[info]
 [1] 2021-08-17 08:35:24,461 DEBUG [org.apa.cam.sup.EventHelper] (main) Ignoring
notifying event Initialized CamelContext: camel-1. The EventNotifier has not been started yet:
org.apache.camel.quarkus.core.CamelManagementEventBridge@3301500b
 [1] 2021-08-17 08:35:24,467 DEBUG [org.apa.cam.sup.DefaultProducer] (main) Starting
producer: Producer[log://info]
 [1] 2021-08-17 08:35:24,469 DEBUG [org.apa.cam.sup.DefaultConsumer] (main) Build
consumer: Consumer[timer://java?period=1000]
 [1] 2021-08-17 08:35:24,475 DEBUG [org.apa.cam.sup.DefaultConsumer] (main) Starting

CHAPTER 1. MANAGING CAMEL K INTEGRATIONS

9

consumer: Consumer[timer://java?period=1000]
 [1] 2021-08-17 08:35:24,481 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Routes startup summary (total:1 started:1)
 [1] 2021-08-17 08:35:24,481 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Started java (timer://java)
 [1] 2021-08-17 08:35:24,482 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Apache Camel 3.10.0.fuse-800010-redhat-00001 (camel-1) started in 170ms (build:0ms
init:150ms start:20ms)
 [1] 2021-08-17 08:35:24,487 INFO [io.quarkus] (main) camel-k-integration 1.6.6 on JVM
(powered by Quarkus 1.11.7.Final-redhat-00009) started in 2.192s.
 [1] 2021-08-17 08:35:24,488 INFO [io.quarkus] (main) Profile prod activated.
 [1] 2021-08-17 08:35:24,488 INFO [io.quarkus] (main) Installed features: [camel-bean,
camel-core, camel-java-joor-dsl, camel-k-core, camel-k-runtime, camel-log, camel-support-
common, camel-timer, cdi]
 [1] 2021-08-17 08:35:25,493 INFO [info] (Camel (camel-1) thread #0 - timer://java)
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from java]
 [1] 2021-08-17 08:35:26,479 INFO [info] (Camel (camel-1) thread #0 - timer://java)
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from java]
...

2. Press Ctrl-C to terminate logging in the terminal.

Additional resources

For more details on the logging framework, see the Configuring logging format

For details of development tools to view logging, see VS Code Tooling for Apache Camel K by
Red Hat

1.3. SCALING CAMEL K INTEGRATIONS

You can scale your integrations using the oc scale command.

Procedure

To scale the Camel K integrations, run the following command.

oc scale it <integration_name> --replicas <number_of_replicas>

You can also edit the Integration resource directly to scale the integration.

oc patch it <integration_name> --type merge -p '{"spec":{"replicas":<number_of_replicas>}}'

To view the number of replicas for the integration use following command.

oc get it <integration_name> -o jsonpath='{.status.replicas}'

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

10

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/configuring_logging_with_quarkus/index#proc-setting-runtime-configuration_quarkus-configuring-logging
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk

CHAPTER 2. MONITORING CAMEL K INTEGRATIONS
Red Hat Integration - Camel K monitoring is based on the OpenShift monitoring system. This chapter
explains how to use the available options for monitoring Red Hat Integration - Camel K integrations at
runtime. You can use the Prometheus Operator that is already deployed as part of OpenShift
Monitoring to monitor your own applications.

Section 2.1, “Enabling user workload monitoring in OpenShift”

Section 2.2, “Configuring Camel K integration metrics”

Section 2.3, “Adding custom Camel K integration metrics”

2.1. ENABLING USER WORKLOAD MONITORING IN OPENSHIFT

OpenShift 4.3 or higher includes an embedded Prometheus Operator already deployed as part of
OpenShift Monitoring. This section explains how to enable monitoring of your own application services
in OpenShift Monitoring. This option avoids the additional overhead of installing and managing a
separate Prometheus instance.

Prerequisites

You must have cluster administrator access to an OpenShift cluster on which the Camel K
Operator is installed. See Installing Camel K .

Procedure

1. Enter the following command to check if the cluster-monitoring-config ConfigMap object
exists in the openshift-monitoring project:

2. Create the cluster-monitoring-config ConfigMap if this does not already exist:

3. Edit the cluster-monitoring-config ConfigMap:

4. Under data:config.yaml:, set enableUserWorkload to true:

Additional resources

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

$ oc -n openshift-monitoring create configmap cluster-monitoring-config

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true

CHAPTER 2. MONITORING CAMEL K INTEGRATIONS

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/monitoring/index#understanding-the-monitoring-stack
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#installing-camel-k

Enabling monitoring for user-defined projects

2.2. CONFIGURING CAMEL K INTEGRATION METRICS

You can configure monitoring of Camel K integrations automatically using the Camel K Prometheus trait
at runtime. This automates the configuration of dependencies and integration Pods to expose a metrics
endpoint, which is then discovered and displayed by Prometheus. The Camel Quarkus MicroProfile
Metrics extension automatically collects and exposes the default Camel K metrics in the OpenMetrics
format.

Prerequisites

You must have already enabled monitoring of your own services in OpenShift. See Enabling user
workload monitoring in OpenShift.

Procedure

1. Enter the following command to run your Camel K integration with the Prometheus trait
enabled:

Alternatively, you can enable the Prometheus trait globally once, by updating the integration
platform as follows:

2. View monitoring of Camel K integration metrics in Prometheus. For example, for embedded
Prometheus, select Monitoring > Metrics in the OpenShift administrator or developer web
console.

3. Enter the Camel K metric that you want to view. For example, in the Administrator console,
under Insert Metric at Cursor, enter application_camel_context_uptime_seconds, and click
Run Queries.

4. Click Add Query to view additional metrics.

Default Camel Metrics provided by PROMETHEUS TRAIT

Some Camel specific metrics are available out of the box.

Name Type Description

application_camel_message_histo
ry_processing

timer Sample of performance of each
node in the route when message
history is enabled

application_camel_route_count gauge Number of routes added

application_camel_route_running_
count

gauge Number of routes runnning

kamel run myIntegration.java -t prometheus.enabled=true

$ oc patch ip camel-k --type=merge -p '{"spec":{"traits":{"prometheus":{"configuration":
{"enabled":true}}}}}'

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/index#enabling-monitoring-for-user-defined-projects
https://camel.apache.org/camel-quarkus/latest/reference/extensions/microprofile-metrics.html
https://github.com/OpenObservability/OpenMetrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#enabling-ocp-prometheus-operator

application_camel_[route or
context]_exchanges_inflight_coun
t

gauge Route inflight messages for a
CamelContext or a route

application_camel_[route or
context]_exchanges_total

counter Total number of processed
exchanges for a CamelContext or
a route

application_camel_[route or
context]_exchanges_completed_t
otal

counter Number of successfully
completed exchange for a
CamelContext or a route

application_camel_[route or
context]_exchanges_failed_total

counter Number of failed exchanges for a
CamelContext or a route

application_camel_[route or
context]_failuresHandled_total

counter Number of failures handled for a
CamelContext or a route

application_camel_[route or
context]_externalRedeliveries_tot
al

counter Number of external initiated
redeliveries (such as from JMS
broker) for a CamelContext or a
route

application_camel_context_status gauge The status of the Camel Context

application_camel_context_uptim
e_seconds

gauge The amount of time since the
Camel Context was started

application_camel_[route or
exchange]processing[rate_per_se
cond or one_min_rate_per_second
or five_min_rate_per_second or
fifteen_min_rate_per_second or
min_seconds or max_seconds or
mean_second or stddev_seconds]

gauge Exchange message or route
processing with multiple options

application_camel_[route or
exchange]_processing_seconds

summary Exchange message or route
processing metric

Name Type Description

Additional resources

Prometheus Trait

Camel Quarkus MicroProfile Metrics

2.3. ADDING CUSTOM CAMEL K INTEGRATION METRICS

You can add custom metrics to your Camel K integrations by using Camel MicroProfile Metrics

CHAPTER 2. MONITORING CAMEL K INTEGRATIONS

13

https://camel.apache.org/camel-quarkus/latest/reference/extensions/microprofile-metrics.html#_usage

You can add custom metrics to your Camel K integrations by using Camel MicroProfile Metrics
component and annotations in your Java code. These custom metrics will then be automatically
discovered and displayed by Prometheus.

This section shows examples of adding Camel MicroProfile Metrics annotations to Camel K integration
and service implementation code.

Prerequisites

You must have already enabled monitoring of your own services in OpenShift. See Enabling user
workload monitoring in OpenShift.

Procedure

1. Register the custom metrics in your Camel integration code using Camel MicroProfile Metrics
component annotations. The following example shows a Metrics.java integration:

// camel-k: language=java trait=prometheus.enabled=true dependency=mvn:org.my/app:1.0
1

import org.apache.camel.Exchange;
import org.apache.camel.LoggingLevel;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.microprofile.metrics.MicroProfileMetricsConstants;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class Metrics extends RouteBuilder {

 @Override
 public void configure() {
 onException()
 .handled(true)
 .maximumRedeliveries(2)
 .logStackTrace(false)
 .logExhausted(false)
 .log(LoggingLevel.ERROR, "Failed processing ${body}")
 // Register the 'redelivery' meter
 .to("microprofile-metrics:meter:redelivery?mark=2")
 // Register the 'error' meter
 .to("microprofile-metrics:meter:error"); 2

 from("timer:stream?period=1000")
 .routeId("unreliable-service")
 .setBody(header(Exchange.TIMER_COUNTER).prepend("event #"))
 .log("Processing ${body}...")
 // Register the 'generated' meter
 .to("microprofile-metrics:meter:generated") 3
 // Register the 'attempt' meter via @Metered in Service.java
 .bean("service") 4
 .filter(header(Exchange.REDELIVERED))
 .log(LoggingLevel.WARN, "Processed ${body} after
${header.CamelRedeliveryCounter} retries")
 .setHeader(MicroProfileMetricsConstants.HEADER_METER_MARK,

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

14

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#enabling-ocp-prometheus-operator

1

2

3

4

5

6

Uses the Camel K modeline to automatically configure the Prometheus trait and Maven
dependencies

error: Metric for the number of errors corresponding to the number of events that have
not been processed

generated: Metric for the number of events to be processed

attempt: Metric for the number of calls made to the service bean to process incoming
events

redelivery: Metric for the number of retries made to process the event

success: Metric for the number of events successfully processed

2. Add Camel MicroProfile Metrics annotations to any implementation files as needed. The
following example shows the service bean called by the Camel K integration, which generates
random failures:

header(Exchange.REDELIVERY_COUNTER))
 // Register the 'redelivery' meter
 .to("microprofile-metrics:meter:redelivery") 5
 .end()
 .log("Successfully processed ${body}")
 // Register the 'success' meter
 .to("microprofile-metrics:meter:success"); 6
 }
}

package com.redhat.integration;

import java.util.Random;

import org.apache.camel.Exchange;
import org.apache.camel.RuntimeExchangeException;

import org.eclipse.microprofile.metrics.Meter;
import org.eclipse.microprofile.metrics.annotation.Metered;
import org.eclipse.microprofile.metrics.annotation.Metric;

import javax.inject.Named;
import javax.enterprise.context.ApplicationScoped;

@Named("service")
@ApplicationScoped
@io.quarkus.arc.Unremovable

public class Service {

 //Register the attempt meter
 @Metered(absolute = true)
 public void attempt(Exchange exchange) { 1
 Random rand = new Random();
 if (rand.nextDouble() < 0.5) {
 throw new RuntimeExchangeException("Random failure", exchange); 2

CHAPTER 2. MONITORING CAMEL K INTEGRATIONS

15

1

2

The @Metered MicroProfile Metrics annotation declares the meter and the name is
automatically generated based on the metrics method name, in this case, attempt.

This example fails randomly to help generate errors for metrics.

3. Follow the steps in Configuring Camel K integration metrics to run the integration and view the
custom Camel K metrics in Prometheus.
In this case, the example already uses the Camel K modeline in Metrics.java to automatically
configure Prometheus and the required Maven dependencies for Service.java.

Additional resources

Camel MicroProfile Metrics component

Camel Quarkus MicroProfile Metrics Extension

 }
 }
 }

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

16

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#configuring-camel-k-metrics
https://camel.apache.org/components/latest/microprofile-metrics-component.html
https://camel.apache.org/camel-quarkus/latest/reference/extensions/microprofile-metrics.html

CHAPTER 3. MONITORING CAMEL K OPERATOR
Red Hat Integration - Camel K monitoring is based on the OpenShift monitoring system. This chapter
explains how to use the available options for monitoring Red Hat Integration - Camel K operator at
runtime. You can use the Prometheus Operator that is already deployed as part of OpenShift
Monitoring to monitor your own applications.

Section 3.1, “Camel K Operator metrics”

Section 3.2, “Enabling Camel K Operator monitoring”

Section 3.3, “Camel K operator alerts”

3.1. CAMEL K OPERATOR METRICS

The Camel K operator monitoring endpoint exposes the following metrics:

Table 3.1. Camel K operator metrics

Name Type Description Buckets Labels

camel_k_reconc
iliation_duration
_seconds

HistogramVec Reconciliation
request duration

0.25s, 0.5s, 1s, 5s namespace,
group, version,
kind, result:
Reconciled|Erro
red|Requeued,
tag:
""|PlatformError
|UserError

camel_k_build_
duration_secon
ds

HistogramVec Build duration 30s, 1m, 1.5m, 2m,
5m, 10m

result:
Succeeded|Erro
r

camel_k_build_
recovery_attem
pts

Histogram Build recovery
attempts

0, 1, 2, 3, 4, 5 result:
Succeeded|Erro
r

camel_k_build_
queue_duration
_seconds

Histogram Build queue
duration

5s, 15s, 30s, 1m,
5m,

N/A

camel_k_integr
ation_first_readi
ness_seconds

Histogram Time to first
integration
readiness

5s, 10s, 30s, 1m, 2m N/A

3.2. ENABLING CAMEL K OPERATOR MONITORING

OpenShift 4.3 or higher includes an embedded Prometheus Operator already deployed as part of
OpenShift Monitoring. This section explains how to enable monitoring of your own application services
in OpenShift Monitoring.

CHAPTER 3. MONITORING CAMEL K OPERATOR

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/monitoring/index#understanding-the-monitoring-stack

Prerequisites

You must have cluster administrator access to an OpenShift cluster on which the Camel K
Operator is installed. See Installing Camel K .

You must have already enabled monitoring of your own services in OpenShift. See Enabling user
workload monitoring in OpenShift.

Procedure

1. Create a PodMonitor resource targeting the operator metrics endpoint, so that the
Prometheus server can scrape the metrics exposed by the operator.

operator-pod-monitor.yaml

2. Create PodMonitor resource.

oc apply -f operator-pod-monitor.yaml

Additional Resources

For more information about the discovery mechanism and the relationship between the
operator resources see Prometheus Operator getting started guide.

In case your operator metrics are not discovered, you can find more information in
Troubleshooting ServiceMonitor changes, which also applies to PodMonitor resources
troubleshooting.

3.3. CAMEL K OPERATOR ALERTS

You can create a PrometheusRule resource so that the AlertManager instance from the OpenShift
monitoring stack can trigger alerts, based on the metrics exposed by the Camel K operator.

Example

You can create a PrometheusRule resource with alerting rules based on the exposed metrics as shown
below.

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: camel-k-operator
 labels:
 app: "camel-k"
 camel.apache.org/component: operator
spec:
 selector:
 matchLabels:
 app: "camel-k"
 camel.apache.org/component: operator
 podMetricsEndpoints:
 - port: metrics

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

18

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#enabling-ocp-prometheus-operator
https://github.com/prometheus-operator/prometheus-operator/blob/master/Documentation/user-guides/getting-started.md#related-resources
https://github.com/prometheus-operator/prometheus-operator/blob/master/Documentation/troubleshooting.md#troubleshooting-servicemonitor-changes

metadata:
 name: camel-k-operator
spec:
 groups:
 - name: camel-k-operator
 rules:
 - alert: CamelKReconciliationDuration
 expr: |
 (
 1 - sum(rate(camel_k_reconciliation_duration_seconds_bucket{le="0.5"}[5m])) by (job)
 /
 sum(rate(camel_k_reconciliation_duration_seconds_count[5m])) by (job)
)
 * 100
 > 10
 for: 1m
 labels:
 severity: warning
 annotations:
 message: |
 {{ printf "%0.0f" $value }}% of the reconciliation requests
 for {{ $labels.job }} have their duration above 0.5s.
 - alert: CamelKReconciliationFailure
 expr: |
 sum(rate(camel_k_reconciliation_duration_seconds_count{result="Errored"}[5m])) by (job)
 /
 sum(rate(camel_k_reconciliation_duration_seconds_count[5m])) by (job)
 * 100
 > 1
 for: 10m
 labels:
 severity: warning
 annotations:
 message: |
 {{ printf "%0.0f" $value }}% of the reconciliation requests
 for {{ $labels.job }} have failed.
 - alert: CamelKSuccessBuildDuration2m
 expr: |
 (
 1 - sum(rate(camel_k_build_duration_seconds_bucket{le="120",result="Succeeded"}[5m])) by
(job)
 /
 sum(rate(camel_k_build_duration_seconds_count{result="Succeeded"}[5m])) by (job)
)
 * 100
 > 10
 for: 1m
 labels:
 severity: warning
 annotations:
 message: |
 {{ printf "%0.0f" $value }}% of the successful builds
 for {{ $labels.job }} have their duration above 2m.
 - alert: CamelKSuccessBuildDuration5m
 expr: |
 (

CHAPTER 3. MONITORING CAMEL K OPERATOR

19

 1 - sum(rate(camel_k_build_duration_seconds_bucket{le="300",result="Succeeded"}[5m])) by
(job)
 /
 sum(rate(camel_k_build_duration_seconds_count{result="Succeeded"}[5m])) by (job)
)
 * 100
 > 1
 for: 1m
 labels:
 severity: critical
 annotations:
 message: |
 {{ printf "%0.0f" $value }}% of the successful builds
 for {{ $labels.job }} have their duration above 5m.
 - alert: CamelKBuildFailure
 expr: |
 sum(rate(camel_k_build_duration_seconds_count{result="Failed"}[5m])) by (job)
 /
 sum(rate(camel_k_build_duration_seconds_count[5m])) by (job)
 * 100
 > 1
 for: 10m
 labels:
 severity: warning
 annotations:
 message: |
 {{ printf "%0.0f" $value }}% of the builds for {{ $labels.job }} have failed.
 - alert: CamelKBuildError
 expr: |
 sum(rate(camel_k_build_duration_seconds_count{result="Error"}[5m])) by (job)
 /
 sum(rate(camel_k_build_duration_seconds_count[5m])) by (job)
 * 100
 > 1
 for: 10m
 labels:
 severity: critical
 annotations:
 message: |
 {{ printf "%0.0f" $value }}% of the builds for {{ $labels.job }} have errored.
 - alert: CamelKBuildQueueDuration1m
 expr: |
 (
 1 - sum(rate(camel_k_build_queue_duration_seconds_bucket{le="60"}[5m])) by (job)
 /
 sum(rate(camel_k_build_queue_duration_seconds_count[5m])) by (job)
)
 * 100
 > 1
 for: 1m
 labels:
 severity: warning
 annotations:
 message: |
 {{ printf "%0.0f" $value }}% of the builds for {{ $labels.job }}
 have been queued for more than 1m.

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

20

Camel K operator alerts

Following table shows the alerting rules that are defined in the PrometheusRule resource.

Name Severity Description

CamelKReconciliationDurati
on

warning More than 10% of the
reconciliation requests have their
duration above 0.5s over at least 1
min.

CamelKReconciliationFailure warning More than 1% of the reconciliation
requests have failed over at least
10 min.

CamelKSuccessBuildDuratio
n2m

warning More than 10% of the successful
builds have their duration above 2
min over at least 1 min.

CamelKSuccessBuildDuratio
n5m

critical More than 1% of the successful
builds have their duration above 5
min over at least 1 min.

CamelKBuildError critical More than 1% of the builds have
errored over at least 10 min.

CamelKBuildQueueDuration
1m

warning More than 1% of the builds have
been queued for more than 1 min
over at least 1 min.

CamelKBuildQueueDuration
5m

critical More than 1% of the builds have
been queued for more than 5 min
over at least 1 min.

You can find more information about alerts in Creating alerting rules from the OpenShift

 - alert: CamelKBuildQueueDuration5m
 expr: |
 (
 1 - sum(rate(camel_k_build_queue_duration_seconds_bucket{le="300"}[5m])) by (job)
 /
 sum(rate(camel_k_build_queue_duration_seconds_count[5m])) by (job)
)
 * 100
 > 1
 for: 1m
 labels:
 severity: critical
 annotations:
 message: |
 {{ printf "%0.0f" $value }}% of the builds for {{ $labels.job }}
 have been queued for more than 5m.

CHAPTER 3. MONITORING CAMEL K OPERATOR

21

You can find more information about alerts in Creating alerting rules from the OpenShift
documentation.

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/index#creating-alerting-rules-for-user-defined-projects_managing-alerts

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS
There are two configuration phases in a Camel K integration life cycle:

Build time - When Camel Quarkus builds a Camel K integration, it consumes build-time
properties.

Runtime - When a Camel K integration is running, the integration uses runtime properties or
configuration information from local files, OpenShift ConfigMaps, or Secrets.

You provide configure information by using the following options with the kamel run command:

For build-time configuration, use the --build-property option as described in Specifying build-
time configuration properties

For runtime configuration, use the --property , --config, or --resource options as described in
Specifying runtime configuration options

For example, you can use build-time and runtime options to quickly configure a datasource in Camel K as
shown in the link: Connect Camel K with databases sample configuration.

Section 4.1, “Specifying build-time configuration properties”

Section 4.2, “Specifying runtime configuration options”

Section 4.3, “Configuring Camel integration components”

Section 4.4, “Configuring Camel K integration dependencies”

4.1. SPECIFYING BUILD-TIME CONFIGURATION PROPERTIES

You might need to provide property values to the Camel Quarkus runtime so that it can build a Camel K
integration. For more information about Quarkus configurations that take effect during build time, see
the Quarkus Build Time configuration documentation . You can specify build-time properties directly at
the command line or by referencing a property file. If a property is defined in both places, the value
specified directly at the command line takes precedence over the value in the property file.

Prerequisites

You must have access to an OpenShift cluster on which the Camel K Operator and OpenShift
Serverless Operator are installed:

Installing Camel K

Installing OpenShift Serverless from the OperatorHub

You know the Camel Quarkus configuration options that you want to apply to your Camel K
integration.

Procedure

Specify the --build-property option with the Camel K kamel run command:

kamel run --build-property <quarkus-property>=<property-value> <camel-k-integration>

For example, the following Camel K integration (named my-simple-timer.yaml) uses the

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS

23

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#specifying-build-time-configuration-properties
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#specifying-runtime-configuration-options
https://github.com/apache/camel-k/tree/main/examples/databases
https://quarkus.io/guides/config#build-time-configuration
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#installing-serverless

For example, the following Camel K integration (named my-simple-timer.yaml) uses the
quarkus.application.name configuration option:

- from:
 uri: "timer:tick"
 steps:
 - set-body:
 constant: "{{quarkus.application.name}}"
 - to: "log:info"

To override the default application name, specify a value for the quarkus.application.name
property when you run the integration.

For example, to change the name from my-simple-timer to my-favorite-app:

kamel run --build-property quarkus.application.name=my-favorite-app my-simple-timer.yaml

To provide more than one build-time property, add additional --build-property options to the
kamel run command:

kamel run --build-property <quarkus-property1>=<property-value1> -build-property=
<quarkus-property2>=<property-value12> <camel-k-integration>

Alternately, if you need to specify multiple properties, you can create a property file and specify
the property file with the --build-property file option:

kamel run --build-property file:<property-filename> <camel-k-integration>

For example, the following property file (named quarkus.properties) defines two Quarkus
properties:

quarkus.application.name = my-favorite-app
quarkus.banner.enabled = true

The quarkus.banner.enabled property specifies to display the Quarkus banner when the
integration starts up.

To specify the quarkus.properties file with the Camel K kamel run command:

kamel run --build-property file:quarkus.properties my-simple-timer.yaml

Quarkus parses the property file and uses the property values to configure the Camel K
integration.

Additional resources

For information about Camel Quarkus as the runtime for Camel K integrations, see Quarkus Trait.

4.2. SPECIFYING RUNTIME CONFIGURATION OPTIONS

You can specify the following runtime configuration information for a Camel K integration to use when it
is running:

Runtime properties that you provide at the command line or in a .properties file.

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

24

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#quarkus_trait

Configuration values that you want the Camel K operator to process and parse as runtime
properties when the integration starts. You can provide the configuration values in a local text
file, an OpenShift ConfigMap, or an OpenShift secret.

Resource information that is not parsed as a property file when the integration starts. You can
provide resource information in a local text file, a binary file, an OpenShift ConfigMap, or an
OpenShift secret.

Use the following kamel run options:

--property
Use the --property option to specify runtime properties directly at the command line or by
referencing a Java *.properties file. The Camel K operator appends the contents of the
properties file to the running integration’s user.properties file.

--config
Use the --config option to provide configuration values that you want the Camel K operator to
process and parse as runtime properties when the integration starts.

You can provide a local text file (1 MiB maximum file size), a ConfigMap (3MB) or a Secret
(3MB). The file must be a UTF-8 resource. The materialized file (that is generated at
integration startup from the file that you provide) is made available at the classpath level so
that you can reference it in your integration code without having to provide an exact location.

Note: If you need to provide a non-UTF-8 resource (for example, a binary file), use the --
resource option.

--resource
Use the --resource option to provide a resource for the integration to access when it is running.
You can provide a local text or a binary file (1 MiB maximum file size), a ConfigMap (3MB
maximum), or a Secret (3MB maximum). Optionally, you can specify the destination of the file
that is materialized for the resource. For example, if you want to set an HTTPS connection, use
the --resource option to provide an SSL certificate (a binary file) that is expected in a specified
location.

The Camel K operator does not parse the resource for properties and does not add the
resource to the classpath. (If you want to add the resource to the classpath, you can use the
JVM trait in your integration).

4.2.1. Providing runtime properties

You can specify runtime properties directly at the command line or by referencing a Java *.properties
file by using the kamel run command’s --property option.

When you run an integration with the --property option, the Camel K operator appends the properties
to the running integration’s user.properties file.

4.2.1.1. Providing runtime properties at the command line

You can configure properties for Camel K integrations on the command line at runtime. When you
define a property in an integration by using a property placeholder, for example, {{my.message}}, you
can specify the property value on the command line, for example --property my.message=Hello. You
can specify multiple properties in a single command.

Prerequisites

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS

25

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#jvm_trait

Setting up your Camel K development environment

Procedure

1. Develop a Camel integration that uses a property. The following simple example includes a
{{my.message}} property placeholder:

...
- from:
 uri: "timer:tick"
 steps:
 - set-body:
 constant: "{{my.message}}"
 - to: "log:info"
...

2. Run the integration by using the following syntax to set the property value at runtime.

kamel run --property <property>=<value> <integration>

Alternately, you can use the --p shorthand notation (in place of --property):

kamel run --property <property>=<value> <integration>

For example:

kamel run --property my.message="Hola Mundo" HelloCamelK.java --dev

or

kamel run --p my.message="Hola Mundo" HelloCamelK.java --dev

Here is the example result:

...
[1] 2020-04-13 15:39:59.213 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.RoutesDumper@6e0dec4a executed in phase Started
[1] 2020-04-13 15:40:00.237 INFO [Camel (camel-k) thread #1 - timer://java] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hola Mundo from java]
...

See also

Providing runtime properties in a property file

4.2.1.2. Providing runtime properties in a property file

You can configure multiple properties for Camel K integrations by specifying a property file
(*.properties) on the command line at runtime. When you define properties in an integration using
property placeholders, for example, {{my.items}}, you can specify the property values on the command
line by using a properties file, for example --p file my-integration.properties.

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

26

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#providing-runtime-properties-property-file

Prerequisite

Setting up your Camel K development environment

Procedure

1. Create an integration properties file. The following example is from a file named my.properties:

2. Develop a Camel integration that uses properties that are defined in the properties file. The
following example Routing.java integration uses the {{my.key.1}} and {{my.key.2=world}}
property placeholders:

3. Run the integration by using the following syntax to reference the property file:

kamel run --property file:<my-file.properties> <integration>

Alternately, you can use the --p shorthand notation (in place of --property):

kamel run --p file:<my-file.properties> <integration>

For example:

kamel run Routing.java --property:file=my.properties --dev

Additional resources

Deploying a basic Camel K Java integration

Providing runtime properties at the command line

4.2.2. Providing configuration values

You can provide configuration values that you want the Camel K operator to process and parse as
runtime properties by using the kamel run command’s --config option. You can provide the
configuration values in a local text (UTF-8) file, an OpenShift ConfigMap, or an OpenShift secret.

When you run the integration, the Camel K operator materializes the provided file and adds it to the

my.key.1=hello
my.key.2=world

import org.apache.camel.builder.RouteBuilder;

public class Routing extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("timer:property-file")
 .routeId("property-file")
 .log("property file content is: {{my.key.1}} {{my.key.2}}");

 }
}

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS

27

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#deploying-basic-integration
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#providing-runtime-properties-command-line

When you run the integration, the Camel K operator materializes the provided file and adds it to the
classpath so that you can reference the configuration values in your integration code without having to
provide an exact location.

4.2.2.1. Specifying a text file

If you have a UTF-8 text file that contains configuration values, you can use the --config
file:/path/to/file option to make the file available (with the same file name) on the running integration’s
classpath.

Prerequisites

Setting up your Camel K development environment

You have one or more (non-binary) text files that contain configuration values.
For example, create a file named resources-data.txt that contains the following line of text:

the file body

Procedure

1. Create a Camel K integration that references the text file that contains configuration values.
For example, the following integration (ConfigFileRoute.java) expects the resources-data.txt
file to be available on the classpath at runtime:

2. Run the integration and use the --config option to specify the text file so that it is available to
the running integration. For example:

kamel run --config file:resources-data.txt ConfigFileRoute.java --dev

Optionally, you can provide more than one file by adding the --config option repeatedly, for
example:

kamel run --config file:resources-data1.txt --config file:resources-data2.txt
ConfigFileRoute.java --dev

4.2.2.2. Specifying a ConfigMap

If you have an OpenShift ConfigMap that contains configuration values, and you need to materialize a

import org.apache.camel.builder.RouteBuilder;

public class ConfigFileRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("timer:config-file")
 .setBody()
 .simple("resource:classpath:resources-data.txt")
 .log("resource file content is: ${body}");

 }
}

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

28

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

If you have an OpenShift ConfigMap that contains configuration values, and you need to materialize a
ConfigMap so that it is available to your Camel K integration, use the --config configmap:<configmap-
name> syntax.

Prerequisites

Setting up your Camel K development environment

You have one or more ConfigMap files stored on your OpenShift cluster.
For example, you can create a ConfigMap by using the following command:

oc create configmap my-cm --from-literal=my-configmap-key="configmap content"

Procedure

1. Create a Camel K integration that references the ConfigMap.
For example, the following integration (named ConfigConfigmapRoute.java) references a
configuration value named my-configmap-key in a ConfigMap named my-cm.

2. Run the integration and use the --config option to materialize the ConfigMap file so that it is
available to the running integration. For example:

kamel run --config configmap:my-cm ConfigConfigmapRoute.java --dev

When the integration starts, the Camel K operator mounts an OpenShift volume with the
ConfigMap’s content.

Note: If you specify a ConfigMap that is not yet available on the cluster, the Integration waits and starts
only after the ConfigMap becomes available.

4.2.2.3. Specifying a Secret

You can use an OpenShift Secret to securely contain configuration information. To materialize a secret
so that it is available to your Camel K integration, you can use the --config secret syntax.

Prerequisites

Setting up your Camel K development environment

You have one or more Secrets stored on your OpenShift cluster.

import org.apache.camel.builder.RouteBuilder;

public class ConfigConfigmapRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("timer:configmap")
 .setBody()
 .simple("resource:classpath:my-configmap-key")
 .log("configmap content is: ${body}");

 }
}

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS

29

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

For example, you can create a Secret by using the following command:

oc create secret generic my-sec --from-literal=my-secret-key="very top secret"

Procedure

1. Create a Camel K integration that references the ConfigMap.
For example, the following integration (named ConfigSecretRoute.java) references the my-
secret property that is in a Secret named my-sec:

2. Run the integration and use the --config option to materialize the Secret so that it is available to
the running integration. For example:

kamel run --config secret:my-sec ConfigSecretRoute.java --dev

When the integration starts, the Camel K operator mounts an OpenShift volume with the
Secret’s content.

4.2.2.4. Referencing properties that are contained in ConfigMaps or Secrets

When you run an integration and you specify a ConfigMap or Secret with the --config option, the Camel
K operator parses the ConfigMap or Secret as a runtime property file. Within your integration, you can
reference the properties as you would reference any other runtime property.

Prerequisite

Setting up your Camel K development environment

Procedure

1. Create a text file that contains properties.
For example, create a file named my.properties that contains the following properties:

my.key.1=hello
my.key.2=world

2. Create a ConfigMap or a Secret based on the properties file.
For example, use the following command to create a secret from the my.properties file:

import org.apache.camel.builder.RouteBuilder;

public class ConfigSecretRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("timer:secret")
 .setBody()
 .simple("resource:classpath:my-secret")
 .log("secret content is: ${body}");

 }
}

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

30

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

oc create secret generic my-sec --from-file my.properties

3. In the integration, refer to the properties defined in the Secret.
For example, the following integration (named ConfigSecretPropertyRoute.java) references
the my.key.1 and my.key.2 properties:

4. Run the integration and use the --config option to specify the Secret that contains the
my.key.1 and my.key.2 properties.
For example:

kamel run --config secret:my-sec ConfigSecretPropertyRoute.java --dev

4.2.2.5. Filtering configuration values obtained from a ConfigMap or Secret

ConfigMaps and Secrets can hold more than one source. For example, the following command creates a
secret (my-sec-multi) from two sources:

oc create secret generic my-sec-multi --from-literal=my-secret-key="very top secret" --from-
literal=my-secret-key-2="even more secret"

You can limit the quantity of information that your integration retrieves to just one source by using the
/key notation after with the --config configmap or --config secret options.

Prerequisites

Setting up your Camel K development environment

You have a ConfigMap or a Secret that holds more than one source.

Procedure

1. Create an integration that uses configuration values from only one of the sources in the
ConfigMap or Secret.
For example, the following integration (ConfigSecretKeyRoute.java) uses the property from
only one of the sources in the my-sec-multi secret.

import org.apache.camel.builder.RouteBuilder;

public class ConfigSecretPropertyRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("timer:secret")
 .routeId("secret")
 .log("{{my.key.1}} {{my.key.2}}");

 }
}

import org.apache.camel.builder.RouteBuilder;

public class ConfigSecretKeyRoute extends RouteBuilder {
 @Override

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS

31

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

2. Run the integration by using the --config secret option and the /key notation.
For example:

kamel run --config secret:my-sec-multi/my-secret-key-2 ConfigSecretKeyRoute.java --dev

3. Check the integration pod to verify that only the specified source (for example, my-secret-key-
2) is mounted.
For example, run the following command to list all volumes for a pod:

oc set volume pod/<pod-name> --all

4.2.3. Providing resources to a running integration

You can provide a resource for the integration to use when it is running by specifying the kamel run
command’s --resource option. You can specify a local text file (1 MiB maximum file size), a ConfigMap
(3MB) or a Secret (3MB). You can optionally specify the destination of the file that is materialized for
the resource. For example, if you want to set an HTTPS connection, you use the --resource option
because you must provide an SSL certificate which is a binary file that is expected in a known location.

When you use the --resource option, the Camel K operator does not parse the resource looking for
runtime properties and it does not add the resource to the classpath. (If you want to add the resource to
the classpath, you can use the JVM trait.

4.2.3.1. Specifying a text or binary file as a resource

If you have a text or binary file that contains configuration values, you can use the --resource
file:/path/to/file option to materialize the file. By default, the Camel K operator copies the materialized
file to the /etc/camel/resources/ directory. Optionally, you can specify a different destination directory
as described in Specifying a destination path for a resource .

Prerequisites

Setting up your Camel K development environment

You have one or more text or binary files that contain configuration properties.

Procedure

1. Create a Camel K integration that reads the contents of a file that you provide.
For example, the following integration (ResourceFileBinaryRoute.java) unzips and reads the
resources-data.zip file:

 public void configure() throws Exception {

 from("timer:secret")
 .setBody()
 .simple("resource:classpath:my-secret-key-2")
 .log("secret content is: ${body}");
 }
}

import org.apache.camel.builder.RouteBuilder;

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

32

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#jvm_trait
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#specifying-destination-resource
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

2. Run the integration and use the --resource option to copy the file to the default destination
directory (/etc/camel/resources/). For example:

kamel run --resource file:resources-data.zip ResourceFileBinaryRoute.java -d camel-zipfile --
dev

Note: If you specify a binary file, a binary representation of the contents of the file is created
and decoded transparently in the integration.

Optionally, you can provide more than one resource by adding the --resource option
repeatedly, for example:

kamel run --resource file:resources-data1.txt --resource file:resources-data2.txt
ResourceFileBinaryRoute.java -d camel-zipfile --dev

4.2.3.2. Specifying a ConfigMap as a resource

If you have an OpenShift ConfigMap that contains configuration values, and you need to materialize the
ConfigMap as a resource for an integration, use the --resource <configmap-file> option.

Prerequisites

Setting up your Camel K development environment

You have one or more ConfigMap files stored on your OpenShift cluster. For example, you can
create a ConfigMap by using the following command:

oc create configmap my-cm --from-literal=my-configmap-key="configmap content"

Procedure

1. Create a Camel K integration that references a ConfigMap stored on your OpenShift cluster.
For example, the following integration (named ResourceConfigmapRoute.java) references a
ConfigMap named my-cm that contains my-configmap-key.

public class ResourceFileBinaryRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("file:/etc/camel/resources/?fileName=resources-
data.zip&noop=true&idempotent=false")
 .unmarshal().zipFile()
 .log("resource file unzipped content is: ${body}");

 }
}

import org.apache.camel.builder.RouteBuilder;

public class ResourceConfigmapRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("file:/etc/camel/resources/my-cm/?fileName=my-configmap-

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS

33

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

2. Run the integration and use the --resource option to materialize the ConfigMap file in the
default /etc/camel/resources/ directory so that it is available to the running integration.
For example:

kamel run --resource configmap:my-cm ResourceConfigmapRoute.java --dev

When the integration starts, the Camel K operator mounts a volume with the ConfigMap’s
content (for example, my-configmap-key).

Note: If you specify a ConfigMap that is not yet available on the cluster, the Integration waits and starts
only after the ConfigMap becomes available.

4.2.3.3. Specifying a Secret as a resource

If you have an OpenShift Secret that contains configuration information, and you need to materialize it
as a resource that is available to one or more integrations, use the --resource <secret> syntax.

Prerequisites

Setting up your Camel K development environment

You have one or more Secrets files stored on your OpenShift cluster. For example, you can
create a Secret by using the following command:

oc create secret generic my-sec --from-literal=my-secret-key="very top secret"

Procedure

1. Create a Camel K integration that references a Secret stored on your OpenShift cluster.
For example, the following integration (named ResourceSecretRoute.java) references the my-
sec Secret:

2. Run the integration and use the --resource option to materialize the Secret in the default
/etc/camel/resources/ directory so that it is available to the running integration.
For example:

key&noop=true&idempotent=false")
 .log("resource file content is: ${body}");

 }
}

import org.apache.camel.builder.RouteBuilder;

public class ResourceSecretRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("file:/etc/camel/resources/my-sec/?fileName=my-secret-
key&noop=true&idempotent=false")
 .log("resource file content is: ${body}");

 }
}

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

34

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

kamel run --resource secret:my-sec ResourceSecretRoute.java --dev

When the integration starts, the Camel K operator mounts a volume with the Secret’s content
(for example, my-sec).

Note: If you specify a Secret that is not yet available on the cluster, the Integration waits and starts only
after the Secret becomes available.

4.2.3.4. Specifying a destination path for a resource

The /etc/camel/resources/ directory is the default location for mounting a resource that you specify
with the --resource option. If you need to specify a different directory on which to mount a resource,
use the --resource @path syntax.

Prerequisites

Setting up your Camel K development environment

You have a file, ConfigMap, or Secret that contains one or more configuration properties.

Procedure

1. Create a Camel K integration that references the file, ConfigMap or Secret that contains
configuration properties. For example, the following integration (named
ResourceFileLocationRoute.java) references the myprops file:

2. Run the integration and use the --resource option with the @path syntax and specify where to
mount the resource content (either a file, ConfigMap or Secret):
For example, the following command specifies to use the /tmp directory to mount the input.txt
file:

kamel run --resource file:resources-data.txt@/tmp/input.txt ResourceFileLocationRoute.java -
-dev

3. Check the integration’s pod to verify that the file (for example, input.txt) was mounted in the
correct location (for example, in the tmp directory). For example, run the following command:

oc exec <pod-name> -- cat /tmp/input.txt

4.2.3.5. Filtering ConfigMap or Secret data

When you create a ConfigMap or a Secret, you can specify more than one source of information. For

import org.apache.camel.builder.RouteBuilder;

public class ResourceFileLocationRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("file:/tmp/?fileName=input.txt&noop=true&idempotent=false")
 .log("resource file content is: ${body}");

 }
}

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS

35

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

When you create a ConfigMap or a Secret, you can specify more than one source of information. For
example, the following command creates a ConfigMap (named my-cm-multi) from two sources:

oc create configmap my-cm-multi --from-literal=my-configmap-key="configmap content" --from-
literal=my-configmap-key-2="another content"

When you run an integration with the --resource option, a ConfigMap or Secret that was created with
more than one source, by default, both sources are materialized.

If you want to limit the quantity of information to recover from a ConfigMap or Secret, you can specify
the --resource option’s /key notation after the ConfigMap or Secret name. For example, --resource
configmap:my-cm/my-key or --resource secret:my-secret/my-key.

You can limit the quantity of information that your integration retrieves to just one resource by using the
/key notation after with the --resource configmap or --resource secret options.

Prerequisites

Setting up your Camel K development environment

You have a ConfigMap or a Secret that holds values from more than one source.

Procedure

1. Create an integration that uses configuration values from only one of the resources in the
ConfigMap or Secret. For example, the following integration (named
ResourceConfigmapKeyLocationRoute.java) references the my-cm-multi ConfigMap:

2. Run the integration and use the --resource option with the @path syntax and specify where to
mount the source content (either a file, ConfigMap or Secret):
For example, the following command specifies to use only one of the sources (my-configmap-
key-2@) contained within the ConfigMap and to use the /tmp/app/data directory to mount it:

kamel run --resource configmap:my-cm-multi/my-configmap-key-2@/tmp/app/data
ResourceConfigmapKeyLocationRoute.java --dev

3. Check the integration’s pod to verify that only one file (for example, my-configmap-key-2) was
mounted in the correct location (for example, in the /tmp/app/data directory). For example, run
the following command:

oc exec <pod-name> -- cat /tmp/app/data/my-configmap-key-2

import org.apache.camel.builder.RouteBuilder;

public class ResourceConfigmapKeyLocationRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("file:/tmp/app/data/?fileName=my-configmap-key-2&noop=true&idempotent=false")
 .log("resource file content is: ${body} consumed from
 ${header.CamelFileName}");

 }
}

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

36

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment

4.3. CONFIGURING CAMEL INTEGRATION COMPONENTS

You can configure Camel components programmatically in your integration code or by using
configuration properties on the command line at runtime. You can configure Camel components using
the following syntax:

For example, to change the queue size of the Camel seda component for staged event-driven
architecture, you can configure the following property on the command line:

Prerequisites

Setting up your Camel K development environment

Procedure

Enter the kamel run command and specify the Camel component configuration using the --
property option. For example:

Additional resources

Providing runtime properties at the command line

Apache Camel SEDA component

4.4. CONFIGURING CAMEL K INTEGRATION DEPENDENCIES

Camel K automatically resolves a wide range of dependencies that are required to run your integration
code. However, you can explicitly add dependencies on the command line at runtime using the kamel
run --dependency option.

The following example integration uses Camel K automatic dependency resolution:

Because this integration has an endpoint starting with the imap: prefix, Camel K can automatically add
the camel-mail component to the list of required dependencies. The seda: endpoint belongs to camel-
core, which is automatically added to all integrations, so Camel K does not add additional dependencies
for this component.

Camel K automatic dependency resolution is transparent to the user at runtime. This is very useful in
development mode because you can quickly add all the components that you need without exiting the
development loop.

You can explicitly add a dependency using the kamel run --dependency or -d option. You might need

camel.component.${scheme}.${property}=${value}

camel.component.seda.queueSize=10

kamel run --property camel.component.seda.queueSize=10 examples/Integration.java

...
 from("imap://admin@myserver.com")
 .to("seda:output")
...

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS

37

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#providing-runtime-properties-command-line
https://camel.apache.org/components/latest/seda-component.html

You can explicitly add a dependency using the kamel run --dependency or -d option. You might need
to use this to specify dependencies that are not included in the Camel catalog. You can specify multiple
dependencies on the command line.

Prerequisites

Setting up your Camel K development environment

Procedure

Enter the kamel run command and specify dependencies using the -d option. For example:

NOTE

You can disable automatic dependency resolution by disabling the dependencies trait: -
trait dependencies.enabled=false. However, this is not recommended in most cases.

Types of Dependencies

The -d flag of the kamel run command is flexible and support multiple kind of dependencies.

Camel dependencies can be added directly using the -d flag like this:

kamel run -d camel:http Integration.java

In this case, the dependency will be added with the correct version. Note that the standard notation for
specifying a Camel dependency is camel:xxx, while kamel also accepts camel-xxx for usability.

You can add External dependencies using the -d flag, the mvn prefix, and the maven coordinates:

kamel run -d mvn:com.google.guava:guava:26.0-jre Integration.java

Note that if your dependencies belong to a private repository, this repository must be defined. See
Configure maven.

You can add Local dependencies using the -d flag and the file:// prefix.

kamel run -d file://path/to/integration-dep.jar Integration.java

The content of integration-dep.jar will then be accessible in your integration for you to use.

You can also specify data files to be mounted in the running container:

kamel run -d file://path/to/data.csv:path/in/container/data.csv Integration.java

Specifying a directory will work recursively.

Note that this feature relies on the Image Registry being setup accurately.

Jitpack Dependencies

If your dependency is not published in a maven repository, you will find Jitpack as a way to provide any

kamel run -d mvn:com.google.guava:guava:26.0-jre -d camel-mina2 Integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

38

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#setting-up-environment
https://camel.apache.org/camel-k/1.10.x/configuration/maven.html
https://camel.apache.org/camel-k/1.10.x/cli/cli.html#image-registry

custom dependency to your runtime Integration environment. In certain occasion, you will find it useful
to include not only your route definition, but also some helper class or any other class which has to be
used while defining the Integration behavior. With Jitpack you will be able to compile on the fly a java
project hosted in a remote repository and use the produced package as a dependency of your
Integration.

The usage is the same as defined above for any maven dependency. It can be added using the -d flag,
but, this time, you need to define the prefix as expected for the project repository you are using (that is,
github). It has to be provided in the form repository-kind:user/repo/version. As an example, you can
provide the Apache Commons CSV dependency by executing:

kamel run -d github:apache/commons-csv/1.1 Integration.java

We support the most important public code repositories:

github:user/repo/version
gitlab:user/repo/version
bitbucket:user/repo/version
gitee:user/repo/version
azure:user/repo/version

The version can be omitted when you are willing to use the main branch. Else, it will represent the
branch or tag used in the project repo.

Dynamic URIs

Camel K does not always discover all of your dependencies. When you are creating an URI dynamically,
you must instruct Camel K which component to load (using the -d parameter). The following code
snippet illustrates this.

DynamicURI.java

String myTopic = "purchases"
from("kafka:" + myTopic + "? ... ")
 .to(...)
...

Here the from URI is dynamically created by some variables that are resolved at runtime. In cases like
this, you must specify the component and the related dependency to load into the Integration.

Additional resources

Running Camel K integrations in development mode

Camel K trait and profile configuration

Apache Camel Mail component

Apache Camel SEDA component

CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS

39

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#running-camel-k-integrations-dev-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/developing_and_managing_integrations_using_camel_k#camel-k-traits
https://camel.apache.org/components/latest/mail-component.html
https://camel.apache.org/components/latest/seda-component.html

CHAPTER 5. AUTHENTICATING CAMEL K AGAINST KAFKA
You can authenticate Camel K against Apache Kafka.

The following example demonstrates how to set up a Kafka Topic and use it in a simple
Producer/Consumer pattern Integration.

5.1. SETTING UP KAFKA

To set up Kafka, you must:

1. Install the required OpenShift operators

2. Create a Kafka instance

3. Create a Kafka topic

Use the Red Hat product mentioned below to set up Kafka:

Red Hat Advanced Message Queuing (AMQ) streams - A self-managed Apache Kafka
offering. AMQ Streams is based on open source Strimzi and is included as part of Red Hat
Integration. AMQ Streams is a distributed and scalable streaming platform based on Apache
Kafka that includes a publish/subscribe messaging broker. Kafka Connect provides a framework
to integrate Kafka-based systems with external systems. Using Kafka Connect, you can
configure source and sink connectors to stream data from external systems into and out of a
Kafka broker.

5.1.1. Setting up Kafka by using AMQ streams

AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

5.1.1.1. Preparing your OpenShift cluster for AMQ Streams

To use Camel K or Kamelets and Red Hat AMQ Streams, you must install the following operators and
tools:

Red Hat Integration - AMQ Streams operator - Manages the communication between your
Openshift Cluster and AMQ Streams for Apache Kafka instances.

Red Hat Integration - Camel K operator - Installs and manages Camel K - a lightweight
integration framework that runs natively in the cloud on OpenShift.

Camel K CLI tool - Allows you to access all Camel K features.

Prerequisites

You are familiar with Apache Kafka concepts.

You can access an OpenShift 4.6 (or later) cluster with the correct access level, the ability to
create projects and install operators, and the ability to install the OpenShift and the Camel K
CLI on your local system.

You installed the OpenShift CLI tool (oc) so that you can interact with the OpenShift cluster at
the command line.

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

40

https://strimzi.io
https://www.redhat.com/en/products/integration

Procedure

To set up Kafka by using AMQ Streams:

1. Log in to your OpenShift cluster’s web console.

2. Create or open a project in which you plan to create your integration, for example my-camel-k-
kafka.

3. Install the Camel K operator and Camel K CLI as described in Installing Camel K .

4. Install the AMQ streams operator:

a. From any project, select Operators > OperatorHub.

b. In the Filter by Keyword field, type AMQ Streams.

c. Click the Red Hat Integration - AMQ Streams card and then click Install.
The Install Operator page opens.

d. Accept the defaults and then click Install.

5. Select Operators > Installed Operators to verify that the Camel K and AMQ Streams operators
are installed.

Next steps

Setting up a Kafka topic with AMQ Streams

5.1.1.2. Setting up a Kafka topic with AMQ Streams

A Kafka topic provides a destination for the storage of data in a Kafka instance. You must set up a Kafka
topic before you can send data to it.

Prerequisites

You can access an OpenShift cluster.

You installed the Red Hat Integration - Camel K and Red Hat Integration - AMQ Streams
operators as described in Preparing your OpenShift cluster .

You installed the OpenShift CLI (oc) and the Camel K CLI (kamel).

Procedure

To set up a Kafka topic by using AMQ Streams:

1. Log in to your OpenShift cluster’s web console.

2. Select Projects and then click the project in which you installed the Red Hat Integration - AMQ
Streams operator. For example, click the my-camel-k-kafka project.

3. Select Operators > Installed Operators and then click Red Hat Integration - AMQ Streams.

4. Create a Kafka cluster:

a. Under Kafka, click Create instance.

CHAPTER 5. AUTHENTICATING CAMEL K AGAINST KAFKA

41

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q3/html-single/integrating_applications_with_kamelets#setting-up-kafka-topic-with-amq-streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q3/html-single/integrating_applications_with_kamelets#preparing-cluster-kafka-openshift-streams

b. Type a name for the cluster, for example kafka-test .

c. Accept the other defaults and then click Create.
The process to create the Kafka instance might take a few minutes to complete.

When the status is ready, continue to the next step.

5. Create a Kafka topic:

a. Select Operators > Installed Operators and then click Red Hat Integration - AMQ
Streams.

b. Under Kafka Topic, click Create Kafka Topic.

c. Type a name for the topic, for example test-topic.

d. Accept the other defaults and then click Create.

5.1.2. Setting up Kafka by using OpenShift streams

To use OpenShift Streams for Apache Kafka, you must be logged into your Red Hat account.

5.1.2.1. Preparing your OpenShift cluster for OpenShift Streams

To use managed cloud service, you must install the following operators and tools:

OpenShift Application Services (RHOAS) CLI - Allows you to manage your application
services from a terminal.

Red Hat Integration - Camel K operator Installs and manages Camel K - a lightweight
integration framework that runs natively in the cloud on OpenShift.

Camel K CLI tool - Allows you to access all Camel K features.

Prerequisites

You are familiar with Apache Kafka concepts.

You can access an OpenShift 4.6 (or later) cluster with the correct access level, the ability to
create projects and install operators, and the ability to install the OpenShift and Apache Camel
K CLI on your local system.

You installed the OpenShift CLI tool (oc) so that you can interact with the OpenShift cluster at
the command line.

Procedure

1. Log in to your OpenShift web console with a cluster admin account.

2. Create the OpenShift project for your Camel K or Kamelets application.

a. Select Home > Projects.

b. Click Create Project.

c. Type the name of the project, for example my-camel-k-kafka, then click Create.

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

42

3. Download and install the RHOAS CLI as described in Getting started with the rhoas CLI.

4. Install the Camel K operator and Camel K CLI as described in Installing Camel K .

5. To verify that the Red Hat Integration - Camel K operator is installed, click Operators >
Installed Operators.

Next step

Setting up a Kafka topic with RHOAS

5.1.2.2. Setting up a Kafka topic with RHOAS

Kafka organizes messages around topics. Each topic has a name. Applications send messages to topics
and retrieve messages from topics. A Kafka topic provides a destination for the storage of data in a
Kafka instance. You must set up a Kafka topic before you can send data to it.

Prerequisites

You can access an OpenShift cluster with the correct access level, the ability to create projects
and install operators, and the ability to install the OpenShift and the Camel K CLI on your local
system.

You installed the OpenShift CLI (oc) , the Camel K CLI (kamel) , and RHOAS CLI (rhoas) tools
as described in Preparing your OpenShift cluster .

You installed the Red Hat Integration - Camel K operator as described in Preparing your
OpenShift cluster.

You are logged in to the Red Hat Cloud site .

Procedure

To set up a Kafka topic:

1. From the command line, log in to your OpenShift cluster.

2. Open your project, for example:
oc project my-camel-k-kafka

3. Verify that the Camel K operator is installed in your project:
oc get csv

The result lists the Red Hat Camel K operator and indicates that it is in the Succeeded phase.

4. Prepare and connect a Kafka instance to RHOAS:

a. Login to the RHOAS CLI by using this command:
rhoas login

b. Create a kafka instance, for example kafka-test :
rhoas kafka create kafka-test

The process to create the Kafka instance might take a few minutes to complete.

5. To check the status of your Kafka instance:
rhoas status

CHAPTER 5. AUTHENTICATING CAMEL K AGAINST KAFKA

43

https://access.redhat.com/documentation/en-us/red_hat_openshift_streams_for_apache_kafka/1/guide/88e1487a-2a14-4b35-85b9-a7a2d67a37f3
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q3/html-single/integrating_applications_with_kamelets#setting-up-kafka-topic-with-rhoas
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q3/html-single/integrating_applications_with_kamelets#preparing-cluster-kafka-openshift-streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q3/html-single/integrating_applications_with_kamelets#preparing-cluster-kafka-openshift-streams
https://cloud.redhat.com/application-services/streams/kafkas

You can also view the status in the web console:

https://cloud.redhat.com/application-services/streams/kafkas/

When the status is ready, continue to the next step.

6. Create a new Kafka topic:
rhoas kafka topic create --name test-topic

7. Connect your Kafka instance (cluster) with the Openshift Application Services instance:
rhoas cluster connect

8. Follow the script instructions for obtaining a credential token.
You should see output similar to the following:

Token Secret "rh-cloud-services-accesstoken-cli" created successfully
Service Account Secret "rh-cloud-services-service-account" created successfully
KafkaConnection resource "kafka-test" has been created
KafkaConnection successfully installed on your cluster.

Next step

Obtaining Kafka credentials

5.1.2.3. Obtaining Kafka credentials

To connect your applications or services to a Kafka instance, you must first obtain the following Kafka
credentials:

Obtain the bootstrap URL.

Create a service account with credentials (username and password).

For OpenShift Streams, the authentication protocol is SASL_SSL.

Prerequisite

You have created a Kafka instance, and it has a ready status.

You have created a Kafka topic.

Procedure

1. Obtain the Kafka Broker URL (Bootstrap URL):
rhoas status

This command returns output similar to the following:

 Kafka

 ID: 1ptdfZRHmLKwqW6A3YKM2MawgDh
 Name: my-kafka
 Status: ready
 Bootstrap URL: my-kafka--ptdfzrhmlkwqw-a-ykm-mawgdh.kafka.devshift.org:443

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

44

https://cloud.redhat.com/application-services/streams/kafkas/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q3/html-single/integrating_applications_with_kamelets#obtaining-kafka-credentials

2. To obtain a username and password, create a service account by using the following syntax:
rhoas service-account create --name "<account-name>" --file-format json

NOTE

When creating a service account, you can choose the file format and location to
save the credentials. For more information, type rhoas service-account create -
-help

For example:

rhoas service-account create --name "my-service-acct" --file-format json

The service account is created and saved to a JSON file.

3. To verify your service account credentials, view the credentials.json file:
cat credentials.json

This command returns output similar to the following:

{"clientID":"srvc-acct-eb575691-b94a-41f1-ab97-50ade0cd1094", "password":"facf3df1-3c8d-
4253-aa87-8c95ca5e1225"}

4. Grant permission for sending and receiving messages to or from the Kakfa topic. Use the
following command, where clientID is the value provided in the credentials.json file (from Step
3).

rhoas kafka acl grant-access --producer --consumer --service-account $CLIENT_ID --topic
test-topic --group all

For example:

rhoas kafka acl grant-access --producer --consumer --service-account srvc-acct-eb575691-
b94a-41f1-ab97-50ade0cd1094 --topic test-topic --group all

5.1.2.4. Creating a secret by using the SASL/Plain authentication method

You can create a secret with the credentials that you obtained (Kafka bootstrap URL, service account
ID, and service account secret).

Procedure

1. Edit the application.properties file and add the Kafka credentials.

application.properties file

camel.component.kafka.brokers = <YOUR-KAFKA-BOOTSTRAP-URL-HERE>
camel.component.kafka.security-protocol = SASL_SSL
camel.component.kafka.sasl-mechanism = PLAIN
camel.component.kafka.sasl-jaas-
config=org.apache.kafka.common.security.plain.PlainLoginModule required
username='<YOUR-SERVICE-ACCOUNT-ID-HERE>' password='<YOUR-SERVICE-

CHAPTER 5. AUTHENTICATING CAMEL K AGAINST KAFKA

45

ACCOUNT-SECRET-HERE>';
consumer.topic=<TOPIC-NAME>
producer.topic=<TOPIC-NAME>

2. Run the following command to create a secret that contains the sensitive properties in the
application.properties file:

oc create secret generic kafka-props --from-file application.properties

You use this secret when you run a Camel K integration.

See Also

The Camel K Kafka Basic Quickstart

5.1.2.5. Creating a secret by using the SASL/OAUTHBearer authentication method

You can create a secret with the credentials that you obtained (Kafka bootstrap URL, service account
ID, and service account secret).

Procedure

1. Edit the application-oauth.properties file and add the Kafka credentials.

application-oauth.properties file

camel.component.kafka.brokers = <YOUR-KAFKA-BOOTSTRAP-URL-HERE>
camel.component.kafka.security-protocol = SASL_SSL
camel.component.kafka.sasl-mechanism = OAUTHBEARER
camel.component.kafka.sasl-jaas-config =
org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \
oauth.client.id='<YOUR-SERVICE-ACCOUNT-ID-HERE>' \
oauth.client.secret='<YOUR-SERVICE-ACCOUNT-SECRET-HERE>' \
oauth.token.endpoint.uri="https://identity.api.openshift.com/auth/realms/rhoas/protocol/openid-
connect/token" ;
camel.component.kafka.additional-
properties[sasl.login.callback.handler.class]=io.strimzi.kafka.oauth.client.JaasClientOauthLoginC
allbackHandler

consumer.topic=<TOPIC-NAME>
producer.topic=<TOPIC-NAME>

2. Run the following command to create a secret that contains the sensitive properties in the
application.properties file:

oc create secret generic kafka-props --from-file application-oauth.properties

You use this secret when you run a Camel K integration.

See Also

The Camel K Kafka Basic Quickstart

5.2. RUNNING A KAFKA INTEGRATION

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

46

https://github.com/openshift-integration/camel-k-example-kafka/tree/1.10.5.redhat-00016.x/basic#3-running-a-kafka-producer-integration
https://github.com/openshift-integration/camel-k-example-kafka/tree/1.10.5.redhat-00016.x/basic#3-running-a-kafka-producer-integration

Running a producer integration

1. Create a sample producer integration. This fills the topic with a message, every 10 seconds.

Sample SaslSSLKafkaProducer.java

// kamel run --secret kafka-props SaslSSLKafkaProducer.java --dev
// camel-k: language=java dependency=mvn:org.apache.camel.quarkus:camel-quarkus-
kafka dependency=mvn:io.strimzi:kafka-oauth-client:0.7.1.redhat-00003

import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.kafka.KafkaConstants;

public class SaslSSLKafkaProducer extends RouteBuilder {
 @Override
 public void configure() throws Exception {
 log.info("About to start route: Timer -> Kafka ");
 from("timer:foo")
 .routeId("FromTimer2Kafka")
 .setBody()
 .simple("Message #${exchangeProperty.CamelTimerCounter}")
 .to("kafka:{{producer.topic}}")
 .log("Message correctly sent to the topic!");
 }
}

2. Then run the procedure integration.

kamel run --secret kafka-props SaslSSLKafkaProducer.java --dev

The producer will create a new message and push into the topic and log some information.

[2] 2021-05-06 08:48:11,854 INFO [FromTimer2Kafka] (Camel (camel-1) thread #1 -
KafkaProducer[test]) Message correctly sent to the topic!
[2] 2021-05-06 08:48:11,854 INFO [FromTimer2Kafka] (Camel (camel-1) thread #3 -
KafkaProducer[test]) Message correctly sent to the topic!
[2] 2021-05-06 08:48:11,973 INFO [FromTimer2Kafka] (Camel (camel-1) thread #5 -
KafkaProducer[test]) Message correctly sent to the topic!
[2] 2021-05-06 08:48:12,970 INFO [FromTimer2Kafka] (Camel (camel-1) thread #7 -
KafkaProducer[test]) Message correctly sent to the topic!
[2] 2021-05-06 08:48:13,970 INFO [FromTimer2Kafka] (Camel (camel-1) thread #9 -
KafkaProducer[test]) Message correctly sent to the topic!

Running a consumer integration

1. Create a consumer integration.

Sample SaslSSLKafkaProducer.java

// kamel run --secret kafka-props SaslSSLKafkaConsumer.java --dev
// camel-k: language=java dependency=mvn:org.apache.camel.quarkus:camel-quarkus-
kafka dependency=mvn:io.strimzi:kafka-oauth-client:0.7.1.redhat-00003

import org.apache.camel.builder.RouteBuilder;

CHAPTER 5. AUTHENTICATING CAMEL K AGAINST KAFKA

47

public class SaslSSLKafkaConsumer extends RouteBuilder {
 @Override
 public void configure() throws Exception {
 log.info("About to start route: Kafka -> Log ");
 from("kafka:{{consumer.topic}}")
 .routeId("FromKafka2Log")
 .log("${body}");
 }
}

2. Open another shell and run the consumer integration using the command:

kamel run --secret kafka-props SaslSSLKafkaConsumer.java --dev

A consumer will start logging the events found in the Topic:

[1] 2021-05-06 08:51:08,991 INFO [FromKafka2Log] (Camel (camel-1) thread #0 -
KafkaConsumer[test]) Message #8
[1] 2021-05-06 08:51:10,065 INFO [FromKafka2Log] (Camel (camel-1) thread #0 -
KafkaConsumer[test]) Message #9
[1] 2021-05-06 08:51:10,991 INFO [FromKafka2Log] (Camel (camel-1) thread #0 -
KafkaConsumer[test]) Message #10
[1] 2021-05-06 08:51:11,991 INFO [FromKafka2Log] (Camel (camel-1) thread #0 -
KafkaConsumer[test]) Message #11

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

48

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE
This chapter provides reference information about advanced features and core capabilities that you can
configure on the command line at runtime using traits. Camel K provides feature traits to configure
specific features and technologies. Camel K provides platform traits to configure internal Camel K core
capabilities.

IMPORTANT

The Red Hat Integration - Camel K 1.6 includes the OpenShift and Knative profiles. The
Kubernetes profile has community-only support. It also includes Java, and YAML DSL
support for integrations. Other languages such as XML, Groovy, JavaScript, and Kotlin
have community-only support.

This chapter includes the following sections:

Camel K feature traits

Section 6.2.1, “Knative Trait” - Technology Preview

Section 6.2.2, “Knative Service Trait”- Technology Preview

Section 6.2.3, “Prometheus Trait”

Section 6.2.4, “Pdb Trait”

Section 6.2.5, “Pull Secret Trait”

Section 6.2.6, “Route Trait”

Section 6.2.7, “Service Trait”

Camel K core platform traits

Section 6.3.1, “Builder Trait”

Section 6.3.3, “Camel Trait”

Section 6.3.2, “Container Trait”

Section 6.3.4, “Dependencies Trait”

Section 6.3.5, “Deployer Trait”

Section 6.3.6, “Deployment Trait”

Section 6.3.7, “Environment Trait”

Section 6.3.8, “Error Handler Trait”

Section 6.3.9, “Jvm Trait”

Section 6.3.10, “Kamelets Trait”

Section 6.3.11, “NodeAffinity Trait”

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

49

Section 6.3.12, “Openapi Trait”- Technology Preview

Section 6.3.13, “Owner Trait”

Section 6.3.14, “Platform Trait”

Section 6.3.15, “Quarkus Trait”

6.1. CAMEL K TRAIT AND PROFILE CONFIGURATION

This section explains the important Camel K concepts of traits and profiles, which are used to configure
advanced Camel K features at runtime.

Camel K traits

Camel K traits are advanced features and core capabilities that you can configure on the command line
to customize Camel K integrations. For example, this includes feature traits that configure interactions
with technologies such as 3scale API Management, Quarkus, Knative, and Prometheus. Camel K also
provides internal platform traits that configure important core platform capabilities such as Camel
support, containers, dependency resolution, and JVM support.

Camel K profiles

Camel K profiles define the target cloud platforms on which Camel K integrations run. Supported profiles
are OpenShift and Knative profiles.

NOTE

When you run an integration on OpenShift, Camel K uses the Knative profile when
OpenShift Serverless is installed on the cluster. Camel K uses the OpenShift profile when
OpenShift Serverless is not installed.

You can also specify the profile at runtime using the kamel run --profile option.

Camel K provides useful defaults for all traits, taking into account the target profile on which the
integration runs. However, advanced users can configure Camel K traits for custom behavior. Some
traits only apply to specific profiles such as OpenShift or Knative. For more details, see the available
profiles in each trait description.

Camel K trait configuration

Each Camel trait has a unique ID that you can use to configure the trait on the command line. For
example, the following command disables creating an OpenShift Service for an integration:

You can also use the -t option to specify traits.

Camel K trait properties

You can use the enabled property to enable or disable each trait. All traits have their own internal logic
to determine if they need to be enabled when the user does not activate them explicitly.

kamel run --trait service.enabled=false my-integration.yaml

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

50

WARNING

Disabling a platform trait may compromise the platform functionality.

Some traits have an auto property, which you can use to enable or disable automatic configuration of
the trait based on the environment. For example, this includes traits such as 3scale, Cron, and Knative.
This automatic configuration can enable or disable the trait when the enabled property is not explicitly
set, and can change the trait configuration.

Most traits have additional properties that you can configure on the command line. For more details, see
the descriptions for each trait in the sections that follow.

6.2. CAMEL K FEATURE TRAITS

6.2.1. Knative Trait

The Knative trait automatically discovers addresses of Knative resources and inject them into the
running integration.

The full Knative configuration is injected in the CAMEL_KNATIVE_CONFIGURATION in JSON format.
The Camel Knative component will then use the full configuration to configure the routes.

The trait is enabled by default when the Knative profile is active.

This trait is available in the following profiles: Knative.

6.2.1.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

knative.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

knative.configuration string Can be used to inject a Knative complete configuration in JSON
format.

knative.channel-
sources

[]string List of channels used as source of integration routes. Can contain
simple channel names or full Camel URIs.

knative.channel-
sinks

[]string List of channels used as destination of integration routes. Can
contain simple channel names or full Camel URIs.

$ kamel run --trait knative.[key]=[value] --trait knative.[key2]=[value2] integration.java

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

51

knative.endpoint-
sources

[]string List of channels used as source of integration routes.

knative.endpoint-
sinks

[]string List of endpoints used as destination of integration routes. Can
contain simple endpoint names or full Camel URIs.

knative.event-
sources

[]string List of event types that the integration will be subscribed to. Can
contain simple event types or full Camel URIs (to use a specific
broker different from "default").

knative.event-sinks []string List of event types that the integration will produce. Can contain
simple event types or full Camel URIs (to use a specific broker).

knative.filter-source-
channels

bool Enables filtering on events based on the header "ce-
knativehistory". Since this header has been removed in newer
versions of Knative, filtering is disabled by default.

knative.sink-binding bool Allows binding the integration to a sink via a Knative SinkBinding
resource. This can be used when the integration targets a single
sink. It’s enabled by default when the integration targets a single
sink (except when the integration is owned by a Knative source).

knative.auto bool Enable automatic discovery of all trait properties.

Property Type Description

6.2.2. Knative Service Trait

The Knative Service trait allows to configure options when running the integration as Knative service
instead of a standard Kubernetes Deployment.

Running integrations as Knative Services adds auto-scaling (and scaling-to-zero) features, but those
features are only meaningful when the routes use a HTTP endpoint consumer.

This trait is available in the following profiles: Knative.

6.2.2.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

knative-
service.enabled

bool Can be used to enable or disable a trait. All traits share this
common property.

$ kamel run --trait knative-service.[key]=[value] --trait knative-service.[key2]=[value2] Integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

52

knative-
service.annotations

map[stri
ng]string

The annotations are added to route. This can be used to set
knative service specific annotations. For more details see, Route
Specific Annotations.

CLI usage example: -t "knative-
service.annotations.'haproxy.router.openshift.io/balance'=roundro
bin"

knative-
service.autoscaling-
class

string Configures the Knative autoscaling class property (e.g. to set
hpa.autoscaling.knative.dev or
kpa.autoscaling.knative.dev autoscaling).

Refer to the Knative documentation for more information.

knative-
service.autoscaling-
metric

string Configures the Knative autoscaling metric property (e.g. to set
concurrency based or cpu based autoscaling).

Refer to the Knative documentation for more information.

knative-
service.autoscaling-
target

int Sets the allowed concurrency level or CPU percentage (depending
on the autoscaling metric) for each Pod.

Refer to the Knative documentation for more information.

knative-service.min-
scale

int The minimum number of Pods that should be running at any time
for the integration. It’s zero by default, meaning that the
integration is scaled down to zero when not used for a configured
amount of time.

Refer to the Knative documentation for more information.

knative-service.max-
scale

int An upper bound for the number of Pods that can be running in
parallel for the integration. Knative has its own cap value that
depends on the installation.

Refer to the Knative documentation for more information.

knative-service.auto bool Automatically deploy the integration as Knative service when all
conditions hold:

Integration is using the Knative profile

All routes are either starting from a HTTP based
consumer or a passive consumer (e.g. direct is a passive
consumer)

Property Type Description

6.2.3. Prometheus Trait

The Prometheus trait configures a Prometheus-compatible endpoint. It also creates a PodMonitor
resource, so that the endpoint can be scraped automatically, when using the Prometheus operator.

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

53

https://docs.openshift.com/container-platform/4.13/networking/routes/route-configuration.html#nw-route-specific-annotations_route-configuration

The metrics are exposed using MicroProfile Metrics.

WARNING

The creation of the PodMonitor resource requires the Prometheus Operator
custom resource definition to be installed. You can set pod-monitor to false for the
Prometheus trait to work without the Prometheus Operator.

The Prometheus trait is disabled by default.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

6.2.3.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

prometheus.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

prometheus.pod-
monitor

bool Whether a PodMonitor resource is created (default true).

prometheus.pod-
monitor-labels

[]string The PodMonitor resource labels, applicable when pod-monitor
is true.

6.2.4. Pdb Trait

The PDB trait allows to configure the PodDisruptionBudget resource for the Integration pods.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

6.2.4.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

$ kamel run --trait prometheus.[key]=[value] --trait prometheus.[key2]=[value2] Integration.java

$ kamel run --trait pdb.[key]=[value] --trait pdb.[key2]=[value2] Integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

54

https://github.com/coreos/prometheus-operator

Property Type Description

pdb.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

pdb.min-available string The number of pods for the Integration that must still be available
after an eviction. It can be either an absolute number or a
percentage. Only one of min-available and max-unavailable
can be specified.

pdb.max-unavailable string The number of pods for the Integration that can be unavailable
after an eviction. It can be either an absolute number or a
percentage (default 1 if min-available is also not set). Only one
of max-unavailable and min-available can be specified.

6.2.5. Pull Secret Trait

The Pull Secret trait sets a pull secret on the pod, to allow Kubernetes to retrieve the container image
from an external registry.

The pull secret can be specified manually or, in case you’ve configured authentication for an external
container registry on the IntegrationPlatform, the same secret is used to pull images.

It’s enabled by default whenever you configure authentication for an external container registry, so it
assumes that external registries are private.

If your registry does not need authentication for pulling images, you can disable this trait.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

6.2.5.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

pull-secret.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

pull-secret.secret-
name

string The pull secret name to set on the Pod. If left empty this is
automatically taken from the IntegrationPlatform registry
configuration.

pull-secret.image-
puller-delegation

bool When using a global operator with a shared platform, this enables
delegation of the system:image-puller cluster role on the
operator namespace to the integration service account.

$ kamel run --trait pull-secret.[key]=[value] --trait pull-secret.[key2]=[value2] Integration.java

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

55

pull-secret.auto bool Automatically configures the platform registry secret on the pod if
it is of type kubernetes.io/dockerconfigjson.

Property Type Description

6.2.6. Route Trait

The Route trait can be used to configure the creation of OpenShift routes for the integration.

The certificate and key contents may be sourced either from the local filesystem or in a Openshift
secret object. The user may use the parameters ending in -secret (example: tls-certificate-secret) to
reference a certificate stored in a secret. Parameters ending in -secret have higher priorities and in case
the same route parameter is set, for example: tls-key-secret and tls-key, then tls-key-secret is used.
The recommended approach to set the key and certificates is to use secrets to store their contents and
use the following parameters to reference them: tls-certificate-secret, tls-key-secret, tls-ca-
certificate-secret, tls-destination-ca-certificate-secret See the examples section at the end of this
page to see the setup options.

This trait is available in the following profiles: OpenShift.

6.2.6.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

route.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

route.annotations map[stri
ng]string

The annotations are added to route. This can be used to set route
specific annotations. For annotations options see Route Specific
Annotations. CLI usage example: -t
"route.annotations.'haproxy.router.openshift.io/balance'=roundrob
in

route.host string To configure the host exposed by the route.

route.tls-termination string The TLS termination type, like edge, passthrough or
reencrypt.

Refer to the OpenShift route documentation for additional
information.

$ kamel run --trait route.[key]=[value] --trait route.[key2]=[value2] integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

56

https://docs.openshift.com/container-platform/4.13/networking/routes/route-configuration.html#nw-route-specific-annotations_route-configuration

route.tls-certificate string The TLS certificate contents.

Refer to the OpenShift route documentation for additional
information.

route.tls-certificate-
secret

string The secret name and key reference to the TLS certificate. The
format is "secret-name[/key-name]", the value represents the
secret name, if there is only one key in the secret it will be read,
otherwise you can set a key name separated with a "/".

Refer to the OpenShift route documentation for additional
information.

route.tls-key string The TLS certificate key contents.

Refer to the OpenShift route documentation for additional
information.

route.tls-key-secret string The secret name and key reference to the TLS certificate key. The
format is "secret-name[/key-name]", the value represents the
secret name, if there is only one key in the secret it will be read,
otherwise you can set a key name separated with a "/".

Refer to the OpenShift route documentation for additional
information.

route.tls-ca-
certificate

string The TLS CA certificate contents.

Refer to the OpenShift route documentation for additional
information.

route.tls-ca-
certificate-secret

string The secret name and key reference to the TLS CA certificate. The
format is "secret-name[/key-name]", the value represents the
secret name, if there is only one key in the secret it will be read,
otherwise you can set a key name separated with a "/".

Refer to the OpenShift route documentation for additional
information.

route.tls-destination-
ca-certificate

string The destination CA certificate provides the contents of the ca
certificate of the final destination. When using reencrypt
termination this file should be provided in order to have routers
use it for health checks on the secure connection. If this field is not
specified, the router may provide its own destination CA and
perform hostname validation using the short service name
(service.namespace.svc), which allows infrastructure generated
certificates to automatically verify.

Refer to the OpenShift route documentation for additional
information.

Property Type Description

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

57

route.tls-destination-
ca-certificate-secret

string The secret name and key reference to the destination CA
certificate. The format is "secret-name[/key-name]", the value
represents the secret name, if there is only one key in the secret it
will be read, otherwise you can set a key name separated with a "/".

Refer to the OpenShift route documentation for additional
information.

route.tls-insecure-
edge-termination-
policy

string To configure how to deal with insecure traffic, e.g. Allow, Disable
or Redirect traffic.

Refer to the OpenShift route documentation for additional
information.

Property Type Description

6.2.6.2. Examples

These examples uses secrets to store the certificates and keys to be referenced in the integrations.
Read Openshift route documentation for detailed information about routes. The
PlatformHttpServer.java is the integration example.

As a requirement to run these examples, you should have a secret with a key and certificate.

6.2.6.2.1. Generate a self-signed certificate and create a secret

6.2.6.2.2. Making an HTTP request to the route

For all examples, you can use the following curl command to make an HTTP request. It makes use of
inline scripts to retrieve the openshift namespace and cluster base domain, if you are using a shell which
doesn’t support these inline scripts, you should replace the inline scripts with the values of your actual
namespace and base domain.

To add an edge route using secrets, use the parameters ending in -secret to set the secret
name which contains the certificate. This route example trait references a secret named my-
combined-certs which contains two keys named tls.key and tls.crt.

To add a passthrough route using secrets, the TLS is setup in the integration pod, the keys and
certificates should be visible in the running integration pod, to achieve this we are using the --
resource kamel parameter to mount the secret in the integration pod, then we use some camel

openssl genrsa -out tls.key
openssl req -new -key tls.key -out csr.csr -subj "/CN=my-server.com"
openssl x509 -req -in csr.csr -signkey tls.key -out tls.crt
oc create secret tls my-combined-certs --key=tls.key --cert=tls.crt

curl -k https://platform-http-server-`oc config view --minify -o 'jsonpath={..namespace}'`.`oc get
dnses/cluster -ojsonpath='{.spec.baseDomain}'`/hello?name=Camel-K

kamel run --dev PlatformHttpServer.java -t route.tls-termination=edge -t route.tls-certificate-
secret=my-combined-certs/tls.crt -t route.tls-key-secret=my-combined-certs/tls.key

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

58

https://github.com/apache/camel-k/blob/main/examples/http/PlatformHttpServer.java

quarkus parameters to reference these certificate files in the running pod, they start with -p
quarkus.http.ssl.certificate. This route example trait references a secret named my-
combined-certs which contains two keys named tls.key and tls.crt.

To add a reencrypt route using secrets, the TLS is setup in the integration pod, the keys and
certificates should be visible in the running integration pod, to achieve this we are using the --
resource kamel parameter to mount the secret in the integration pod, then we use some camel
quarkus parameters to reference these certificate files in the running pod, they start with -p
quarkus.http.ssl.certificate. This route example trait references a secret named my-
combined-certs which contains two keys named tls.key and tls.crt.

To add a reencrypt route using a specific certificate from a secret for the route and Openshift
service serving certificates for the integration endpoint. This way the Openshift service serving
certificates is set up only in the integration pod. The keys and certificates should be visible in
the running integration pod, to achieve this we are using the --resource kamel parameter to
mount the secret in the integration pod, then we use some camel quarkus parameters to
reference these certificate files in the running pod, they start with -p
quarkus.http.ssl.certificate. This route example trait references a secret named my-
combined-certs which contains two keys named tls.key and tls.crt.

Then you should annotate the integration service to inject the Openshift service serving
certificates

To add an edge route using a certificate and a private key provided from your local filesystem.
This example uses inline scripts to read the certificate and private key file contents, then
remove all new line characters, (this is required to set the certificate as parameter’s values), so
the values are in a single line.

kamel run --dev PlatformHttpServer.java --resource secret:my-combined-certs@/etc/ssl/my-
combined-certs -p quarkus.http.ssl.certificate.file=/etc/ssl/my-combined-certs/tls.crt -p
quarkus.http.ssl.certificate.key-file=/etc/ssl/my-combined-certs/tls.key -t route.tls-
termination=passthrough -t container.port=8443

kamel run --dev PlatformHttpServer.java --resource secret:my-combined-certs@/etc/ssl/my-
combined-certs -p quarkus.http.ssl.certificate.file=/etc/ssl/my-combined-certs/tls.crt -p
quarkus.http.ssl.certificate.key-file=/etc/ssl/my-combined-certs/tls.key -t route.tls-
termination=reencrypt -t route.tls-destination-ca-certificate-secret=my-combined-certs/tls.crt -
t route.tls-certificate-secret=my-combined-certs/tls.crt -t route.tls-key-secret=my-combined-
certs/tls.key -t container.port=8443

kamel run --dev PlatformHttpServer.java --resource secret:cert-from-openshift@/etc/ssl/cert-
from-openshift -p quarkus.http.ssl.certificate.file=/etc/ssl/cert-from-openshift/tls.crt -p
quarkus.http.ssl.certificate.key-file=/etc/ssl/cert-from-openshift/tls.key -t route.tls-
termination=reencrypt -t route.tls-certificate-secret=my-combined-certs/tls.crt -t route.tls-key-
secret=my-combined-certs/tls.key -t container.port=8443

oc annotate service platform-http-server service.beta.openshift.io/serving-cert-secret-
name=cert-from-openshift

kamel run PlatformHttpServer.java --dev -t route.tls-termination=edge -t route.tls-
certificate="$(cat tls.crt|awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}')" -t route.tls-key="$(cat
tls.key|awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}')"

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

59

https://docs.openshift.com/container-platform/4.8/security/certificates/service-serving-certificate.html#add-service-certificate_service-serving-certificate

6.2.7. Service Trait

The Service trait exposes the integration with a Service resource so that it can be accessed by other
applications (or integrations) in the same namespace.

It’s enabled by default if the integration depends on a Camel component that can expose a HTTP
endpoint.

This trait is available in the following profiles: Kubernetes, OpenShift.

6.2.7.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

service.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

service.auto bool To automatically detect from the code if a Service needs to be
created.

service.node-port bool Enable Service to be exposed as NodePort (default false).

6.3. CAMEL K PLATFORM TRAITS

6.3.1. Builder Trait

The builder trait is internally used to determine the best strategy to build and configure IntegrationKits.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The builder trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.1.1. Configuration

Trait properties can be specified when running any integration with the CLI:

$ kamel run --trait service.[key]=[value] --trait service.[key2]=[value2] Integration.java

$ kamel run --trait builder.[key]=[value] --trait builder.[key2]=[value2] Integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

60

The following configuration options are available:

Property Type Description

builder.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

builder.verbose bool Enable verbose logging on build components that support it (e.g.,
OpenShift build pod). Kaniko and Buildah are not supported.

builder.properties []string A list of properties to be provided to the build task

6.3.2. Container Trait

The Container trait can be used to configure properties of the container where the integration will run.

It also provides configuration for Services associated to the container.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The container trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.2.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

container.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

container.auto bool

container.request-
cpu

string The minimum amount of CPU required.

container.request-
memory

string The minimum amount of memory required.

$ kamel run --trait container.[key]=[value] --trait container.[key2]=[value2] Integration.java

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

61

container.limit-cpu string The maximum amount of CPU required.

container.limit-
memory

string The maximum amount of memory required.

container.expose bool Can be used to enable/disable exposure via kubernetes Service.

container.port int To configure a different port exposed by the container (default
8080).

container.port-name string To configure a different port name for the port exposed by the
container (default http).

container.service-
port

int To configure under which service port the container port is to be
exposed (default 80).

container.service-
port-name

string To configure under which service port name the container port is
to be exposed (default http).

container.name string The main container name. It’s named integration by default.

container.image string The main container image

container.probes-
enabled

bool ProbesEnabled enable/disable probes on the container (default
false)

container.liveness-
initial-delay

int32 Number of seconds after the container has started before liveness
probes are initiated.

container.liveness-
timeout

int32 Number of seconds after which the probe times out. Applies to the
liveness probe.

container.liveness-
period

int32 How often to perform the probe. Applies to the liveness probe.

container.liveness-
success-threshold

int32 Minimum consecutive successes for the probe to be considered
successful after having failed. Applies to the liveness probe.

container.liveness-
failure-threshold

int32 Minimum consecutive failures for the probe to be considered
failed after having succeeded. Applies to the liveness probe.

container.readiness-
initial-delay

int32 Number of seconds after the container has started before
readiness probes are initiated.

container.readiness-
timeout

int32 Number of seconds after which the probe times out. Applies to the
readiness probe.

Property Type Description

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

62

container.readiness-
period

int32 How often to perform the probe. Applies to the readiness probe.

container.readiness-
success-threshold

int32 Minimum consecutive successes for the probe to be considered
successful after having failed. Applies to the readiness probe.

container.readiness-
failure-threshold

int32 Minimum consecutive failures for the probe to be considered
failed after having succeeded. Applies to the readiness probe.

Property Type Description

6.3.3. Camel Trait

The Camel trait can be used to configure versions of Apache Camel K runtime and related libraries, it
cannot be disabled.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The camel trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.3.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

camel.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

6.3.4. Dependencies Trait

The Dependencies trait is internally used to automatically add runtime dependencies based on the
integration that the user wants to run.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

$ kamel run --trait camel.[key]=[value] --trait camel.[key2]=[value2] Integration.java

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

63

WARNING

The dependencies trait is a platform trait: disabling it may compromise the
platform functionality.

6.3.4.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

dependencies.enable
d

bool Can be used to enable or disable a trait. All traits share this
common property.

6.3.5. Deployer Trait

The deployer trait can be used to explicitly select the kind of high level resource that will deploy the
integration.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The deployer trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.5.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

deployer.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

$ kamel run --trait dependencies.[key]=[value] Integration.java

$ kamel run --trait deployer.[key]=[value] --trait deployer.[key2]=[value2] Integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

64

deployer.kind string Allows to explicitly select the desired deployment kind between
deployment, cron-job or knative-service when creating the
resources for running the integration.

Property Type Description

6.3.6. Deployment Trait

The Deployment trait is responsible for generating the Kubernetes deployment that will make sure the
integration will run in the cluster.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The deployment trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.6.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

deployment.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

6.3.7. Environment Trait

The environment trait is used internally to inject standard environment variables in the integration
container, such as NAMESPACE, POD_NAME and others.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The environment trait is a platform trait: disabling it may compromise the platform
functionality.

$ kamel run --trait deployment.[key]=[value] Integration.java

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

65

6.3.7.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

environment.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

environment.contain
er-meta

bool Enables injection of NAMESPACE and POD_NAME
environment variables (default true)

6.3.8. Error Handler Trait

The error-handler is a platform trait used to inject Error Handler source into the integration runtime.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The error-handler trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.8.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

error-
handler.enabled

bool Can be used to enable or disable a trait. All traits share this
common property.

error-handler.ref string The error handler ref name provided or found in application
properties

6.3.9. Jvm Trait

$ kamel run --trait environment.[key]=[value] --trait environment.[key2]=[value2] Integration.java

$ kamel run --trait error-handler.[key]=[value] --trait error-handler.[key2]=[value2] Integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

66

The JVM trait is used to configure the JVM that runs the integration.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The jvm trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.9.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

jvm.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

jvm.debug bool Activates remote debugging, so that a debugger can be attached
to the JVM, e.g., using port-forwarding

jvm.debug-suspend bool Suspends the target JVM immediately before the main class is
loaded

jvm.print-command bool Prints the command used the start the JVM in the container logs
(default true)

jvm.debug-address string Transport address at which to listen for the newly launched JVM
(default *:5005)

jvm.options []string A list of JVM options

jvm.classpath string Additional JVM classpath (use Linux classpath separator)

6.3.9.2. Examples

Include an additional classpath to the Integration:

6.3.10. Kamelets Trait

$ kamel run --trait jvm.[key]=[value] --trait jvm.[key2]=[value2] Integration.java

$ kamel run -t jvm.classpath=/path/to/my-dependency.jar:/path/to/another-dependency.jar ...

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

67

The kamelets trait is a platform trait used to inject Kamelets into the integration runtime.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The kamelets trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.10.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

kamelets.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

kamelets.auto bool Automatically inject all referenced Kamelets and their default
configuration (enabled by default)

kamelets.list string Comma separated list of Kamelet names to load into the current
integration

6.3.11. NodeAffinity Trait

The NodeAffinity trait enables you to constrain the nodes that the integration pods are eligible to
schedule on, through the following paths:

Based on labels on the node or with inter-pod affinity and anti-affinity.

Based on labels on pods that are already running on the nodes.

This trait is disabled by default.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

6.3.11.1. Configuration

Trait properties can be specified when running any integration with the CLI:

$ kamel run --trait kamelets.[key]=[value] --trait kamelets.[key2]=[value2] Integration.java

$ kamel run --trait affinity.[key]=[value] --trait affinity.[key2]=[value2] Integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

68

The following configuration options are available:

Property Type Description

affinity.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

affinity.pod-affinity bool Always co-locates multiple replicas of the integration in the same
node (default false).

affinity.pod-anti-
affinity

bool Never co-locates multiple replicas of the integration in the same
node (default false).

affinity.node-affinity-
labels

[]string Defines a set of nodes the integration pod(s) are eligible to be
scheduled on, based on labels on the node.

affinity.pod-affinity-
labels

[]string Defines a set of pods (namely those matching the label selector,
relative to the given namespace) that the integration pod(s)
should be co-located with.

affinity.pod-anti-
affinity-labels

[]string Defines a set of pods (namely those matching the label selector,
relative to the given namespace) that the integration pod(s)
should not be co-located with.

6.3.11.2. Examples

To schedule the integration pod(s) on a specific node using the built-in node label
kubernetes.io/hostname:

To schedule a single integration pod per node (using the Exists operator):

To co-locate the integration pod(s) with other integration pod(s):

The *-labels options follow the requirements from Label selectors. They can be multi-valuated, then the
requirements list is ANDed, e.g., to schedule a single integration pod per node AND not co-located with
the Camel K operator pod(s):

More information can be found in the official Kubernetes documentation about Assigning Pods to
Nodes.

$ kamel run -t affinity.node-affinity-labels="kubernetes.io/hostname in(node-66-
50.hosted.k8s.tld)" ...

$ kamel run -t affinity.pod-anti-affinity-labels="camel.apache.org/integration" ...

$ kamel run -t affinity.pod-affinity-labels="camel.apache.org/integration in(it1, it2)" ...

$ kamel run -t affinity.pod-anti-affinity-labels="camel.apache.org/integration" -t affinity.pod-anti-
affinity-labels="camel.apache.org/component=operator" ...

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

69

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

6.3.12. Openapi Trait

The OpenAPI DSL trait is internally used to allow creating integrations from a OpenAPI specs.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The openapi trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.12.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

openapi.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

6.3.13. Owner Trait

The Owner trait ensures that all created resources belong to the integration being created and transfers
annotations and labels on the integration onto these owned resources.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The owner trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.13.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

$ kamel run --trait openapi.[key]=[value] Integration.java

$ kamel run --trait owner.[key]=[value] --trait owner.[key2]=[value2] Integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

70

Property Type Description

owner.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

owner.target-
annotations

[]string The set of annotations to be transferred

owner.target-labels []string The set of labels to be transferred

6.3.14. Platform Trait

The platform trait is a base trait that is used to assign an integration platform to an integration.

In case the platform is missing, the trait is allowed to create a default platform. This feature is especially
useful in contexts where there’s no need to provide a custom configuration for the platform (e.g. on
OpenShift the default settings work, since there’s an embedded container image registry).

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The platform trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.14.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

platform.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

platform.create-
default

bool To create a default (empty) platform when the platform is missing.

platform.global bool Indicates if the platform should be created globally in the case of
global operator (default true).

$ kamel run --trait platform.[key]=[value] --trait platform.[key2]=[value2] Integration.java

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

71

platform.auto bool To automatically detect from the environment if a default platform
can be created (it will be created on OpenShift only).

Property Type Description

6.3.15. Quarkus Trait

The Quarkus trait activates the Quarkus runtime.

It’s enabled by default.

NOTE

Compiling to a native executable, i.e. when using package-type=native, is only supported
for kamelets, as well as YAML integrations. It also requires at least 4GiB of memory, so
the Pod running the native build, that is either the operator Pod, or the build Pod
(depending on the build strategy configured for the platform), must have enough
memory available.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The quarkus trait is a platform trait: disabling it may compromise the platform
functionality.

6.3.15.1. Configuration

Trait properties can be specified when running any integration with the CLI:

The following configuration options are available:

Property Type Description

quarkus.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

$ kamel run --trait quarkus.[key]=[value] --trait quarkus.[key2]=[value2] integration.java

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

72

quarkus.package-
type

[]github.
com/apa
che/cam
el-
k/pkg/trai
t.quarkus
Package
Type

The Quarkus package types, either fast-jar or native (default
fast-jar). In case both fast-jar and native are specified, two
IntegrationKit resources are created, with the native kit having
precedence over the fast-jar one once ready. The order
influences the resolution of the current kit for the integration. The
kit corresponding to the first package type will be assigned to the
integration in case no existing kit that matches the integration
exists.

Property Type Description

6.3.15.2. Supported Camel Components

Camel K only supports the Camel components that are available as Camel Quarkus Extensions out-of-
the-box.

6.3.15.3. Examples

6.3.15.3.1. Automatic Rollout Deployment to Native Integration

While the compilation to native executables produces integrations that start faster and consume less
memory at runtime, the build process is resources intensive, and takes a longer time than the packaging
to traditional Java applications.

In order to combine the best of both worlds, it’s possible to configure the Quarkus trait to run both
traditional and native builds in parallel when running an integration, e.g.:

The integration pod will run as soon as the fast-jar build completes, and a rollout deployment to the
native image will be triggered, as soon as the native build completes, with no service interruption.

$ kamel run -t quarkus.package-type=fast-jar -t quarkus.package-type=native ...

CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE

73

CHAPTER 7. CAMEL K COMMAND REFERENCE
This chapter provides reference details on the Camel K command line interface (CLI), and provides
examples of using the kamel command. This chapter also provides reference details on Camel K
modeline options that you can specify in a Camel K integration source file, which are executed at
runtime.

This chapter includes the following sections:

Section 7.1, “Camel K command line”

Section 7.2, “Camel K modeline options”

7.1. CAMEL K COMMAND LINE

The Camel K CLI provides the kamel command as the main entry point for running Camel K integrations
on OpenShift.

7.1.1. Supported commands

Note the following key:

Symbol Description

✔ Supported

� Unsupported or not yet supported

Table 7.1. kamel commands

Name Supported Description Example

bind ✔ Bind Kubernetes
resources such as
Kamelets, in an
integration flow, to
Knative channels, Kafka
topics, or any other
endpoint.

kamel bind telegram-
source -p
"source.authorizatio
nToken=The Token"
channel:mychannel

completion � Generate completion
scripts.

kamel completion
bash

debug � Debug a remote
integration using a local
debugger.

kamel debug my-
integration

delete ✔ Delete an integration
deployed on OpenShift.

kamel delete my-
integration

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

74

describe ✔ Get detailed information
on a Camel K resource.
This includes an
integration, kit, or
platform.

kamel describe
integration my-
integration

get ✔ Get the status of
integrations deployed
on OpenShift.

kamel get

help ✔ Get the full list of
available commands.
You can enter --help as
a parameter to each
command for more
details.

kamel help

kamel run --
help

init ✔ Initialize an empty
Camel K file
implemented in Java or
YAML.

kamel init
MyIntegration.java

install � Install Camel K on an
OpenShift cluster.

Note: It is
recommended that you
use the OpenShift
Camel K Operator to
install and uninstall
Camel K.

kamel install

kit � Configure an Integration
Kit.

kamel kit create my-
integration --secret

local � Perform integration
actions locally given a
set of input integration
files.

kamel local run

log ✔ Print the logs of a
running integration.

kamel log my-
integration

promote ✔ You can move an
integration from one
namespace to another.

kamel promote

Name Supported Description Example

CHAPTER 7. CAMEL K COMMAND REFERENCE

75

rebuild ✔ Clear the state of one or
more integrations
causing a rebuild.

kamel rebuild my-
integration

reset ✔ Reset the current Camel
K installation.

kamel reset

run ✔ Run an integration on
OpenShift.

kamel run
MyIntegration.java

uninstall � Uninstall Camel K from
an OpenShift cluster.

Note: It is
recommended that you
use the OpenShift
Camel K Operator to
install and uninstall
Camel K.

kamel uninstall

version ✔ Display Camel-K client
version.

kamel version

Name Supported Description Example

Additional resources

See Installing Camel K

7.2. CAMEL K MODELINE OPTIONS

You can use the Camel K modeline to enter configuration options in a Camel K integration source file,
which are executed at runtime, for example, using kamel run MyIntegration.java. For more details, see
Running Camel K integrations using modeline .

All options that are available for the kamel run command, you can specify as modeline options.

The following table describes some of the most commonly-used modeline options.

Table 7.2. Camel K modeline options

Option Description

build-property Add a build-time property or build-time properties file.

Syntax: [my-key=my-value|file:/path/to/my-conf.properties]

Red Hat build of Apache Camel K 1.10.5 Developing and Managing Integrations Using Camel K

76

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/getting_started_with_camel_k#running-camel-k-integrations-modeline

config Add a runtime configuration from a Configmap, Secret, or file

Syntax: [configmap|secret|file]:name[/key]

- name represents the local file path or the ConfigMap/Secret name.

- key optionally represents the ConfigMap/Secret key to be filtered.

dependency Include an external library (for example, a Maven dependency)

Example: dependency=mvn:org.my:app:1.0

env Set an environment variable in the integration container. For example,
env=MY_ENV_VAR=my-value.

label Add a label for the integration. For example,
label=my.company=hello.

name Add an integration name. For example, name=my-integration.

open-api Add an OpenAPI v2 specification. For example, open-api=path/to/my-
hello-api.json.

profile Set the Camel K trait profile used for deployment. For example,
openshift.

property Add a runtime property or a runtime properties file.

Syntax: [my-key=my-value|file:/path/to/my-conf.properties])

resource Add a run-time resource from a ConfigMap, Secret or file

Syntax: [configmap|secret|file]:name[/key][@path]

- name represents the local file path or the ConfigMap/Secret name

- key (optional) represents the ConfigMap or Secret key to be filtered s
- path (optional) represents the destination path

trait Configure a Camel K feature or core capability in a trait. For example,
trait=service.enabled=false.

Option Description

CHAPTER 7. CAMEL K COMMAND REFERENCE

77

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. MANAGING CAMEL K INTEGRATIONS
	1.1. MANAGING CAMEL K INTEGRATIONS
	1.2. MANAGING CAMEL K INTEGRATION LOGGING LEVELS
	1.3. SCALING CAMEL K INTEGRATIONS

	CHAPTER 2. MONITORING CAMEL K INTEGRATIONS
	2.1. ENABLING USER WORKLOAD MONITORING IN OPENSHIFT
	2.2. CONFIGURING CAMEL K INTEGRATION METRICS
	2.3. ADDING CUSTOM CAMEL K INTEGRATION METRICS

	CHAPTER 3. MONITORING CAMEL K OPERATOR
	3.1. CAMEL K OPERATOR METRICS
	3.2. ENABLING CAMEL K OPERATOR MONITORING
	3.3. CAMEL K OPERATOR ALERTS

	CHAPTER 4. CONFIGURING CAMEL K INTEGRATIONS
	4.1. SPECIFYING BUILD-TIME CONFIGURATION PROPERTIES
	4.2. SPECIFYING RUNTIME CONFIGURATION OPTIONS
	4.2.1. Providing runtime properties
	4.2.1.1. Providing runtime properties at the command line
	4.2.1.2. Providing runtime properties in a property file

	4.2.2. Providing configuration values
	4.2.2.1. Specifying a text file
	4.2.2.2. Specifying a ConfigMap
	4.2.2.3. Specifying a Secret
	4.2.2.4. Referencing properties that are contained in ConfigMaps or Secrets
	4.2.2.5. Filtering configuration values obtained from a ConfigMap or Secret

	4.2.3. Providing resources to a running integration
	4.2.3.1. Specifying a text or binary file as a resource
	4.2.3.2. Specifying a ConfigMap as a resource
	4.2.3.3. Specifying a Secret as a resource
	4.2.3.4. Specifying a destination path for a resource
	4.2.3.5. Filtering ConfigMap or Secret data

	4.3. CONFIGURING CAMEL INTEGRATION COMPONENTS
	4.4. CONFIGURING CAMEL K INTEGRATION DEPENDENCIES

	CHAPTER 5. AUTHENTICATING CAMEL K AGAINST KAFKA
	5.1. SETTING UP KAFKA
	5.1.1. Setting up Kafka by using AMQ streams
	5.1.1.1. Preparing your OpenShift cluster for AMQ Streams
	5.1.1.2. Setting up a Kafka topic with AMQ Streams

	5.1.2. Setting up Kafka by using OpenShift streams
	5.1.2.1. Preparing your OpenShift cluster for OpenShift Streams
	5.1.2.2. Setting up a Kafka topic with RHOAS
	5.1.2.3. Obtaining Kafka credentials
	5.1.2.4. Creating a secret by using the SASL/Plain authentication method
	5.1.2.5. Creating a secret by using the SASL/OAUTHBearer authentication method

	5.2. RUNNING A KAFKA INTEGRATION

	CHAPTER 6. CAMEL K TRAIT CONFIGURATION REFERENCE
	Camel K feature traits
	Camel K core platform traits
	6.1. CAMEL K TRAIT AND PROFILE CONFIGURATION
	6.2. CAMEL K FEATURE TRAITS
	6.2.1. Knative Trait
	6.2.1.1. Configuration

	6.2.2. Knative Service Trait
	6.2.2.1. Configuration

	6.2.3. Prometheus Trait
	6.2.3.1. Configuration

	6.2.4. Pdb Trait
	6.2.4.1. Configuration

	6.2.5. Pull Secret Trait
	6.2.5.1. Configuration

	6.2.6. Route Trait
	6.2.6.1. Configuration
	6.2.6.2. Examples

	6.2.7. Service Trait
	6.2.7.1. Configuration

	6.3. CAMEL K PLATFORM TRAITS
	6.3.1. Builder Trait
	6.3.1.1. Configuration

	6.3.2. Container Trait
	6.3.2.1. Configuration

	6.3.3. Camel Trait
	6.3.3.1. Configuration

	6.3.4. Dependencies Trait
	6.3.4.1. Configuration

	6.3.5. Deployer Trait
	6.3.5.1. Configuration

	6.3.6. Deployment Trait
	6.3.6.1. Configuration

	6.3.7. Environment Trait
	6.3.7.1. Configuration

	6.3.8. Error Handler Trait
	6.3.8.1. Configuration

	6.3.9. Jvm Trait
	6.3.9.1. Configuration
	6.3.9.2. Examples

	6.3.10. Kamelets Trait
	6.3.10.1. Configuration

	6.3.11. NodeAffinity Trait
	6.3.11.1. Configuration
	6.3.11.2. Examples

	6.3.12. Openapi Trait
	6.3.12.1. Configuration

	6.3.13. Owner Trait
	6.3.13.1. Configuration

	6.3.14. Platform Trait
	6.3.14.1. Configuration

	6.3.15. Quarkus Trait
	6.3.15.1. Configuration
	6.3.15.2. Supported Camel Components
	6.3.15.3. Examples

	CHAPTER 7. CAMEL K COMMAND REFERENCE
	7.1. CAMEL K COMMAND LINE
	7.1.1. Supported commands

	7.2. CAMEL K MODELINE OPTIONS

