& RedHat

Red Hat build of Cryostat 2

Enabling dynamic JFR recordings based on
MBean custom triggers

Last Updated: 2023-12-08

Red Hat build of Cryostat 2 Enabling dynamic JFR recordings based on
MBean custom triggers

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure the Cryostat agent to start JFR recordings dynamically based on MBean custom
triggers.

Table of Contents

Table of Contents
PREFACE . vttt e e e e e e e e e e e, 3
MAKING OPEN SOURCE MORE INCLUSIVE ...ttt e et e e e e e e e 4
CHAPTER 1. CUSTOM TRIGGERS ... evvtt et e e e e et e e e e 5
CHAPTER 2. CONFIGURATION OF A CUSTOM TRIGGER FOR A DYNAMIC RECORDING vvvvvvvnn. .. 6
2.1. OPTIONS FOR DEFINING A CUSTOM TRIGGER 6
2.2. COMMON EXPRESSION LANGUAGE 6
2.3. GENERAL SYNTAX RULES FOR CUSTOM TRIGGERS 7
CHAPTER 3. AUTOMATIC STARTING OF A DYNAMIC JFRRECORDING 'nneeee e, 8
CHAPTER 4. MANUAL STOPPING OF ADYNAMIC JFRRECORDING .. .\vvveeeeee e e 9
CHAPTER 5. MULTIPLE JFR RECORDINGS BASED ON THE SAME CUSTOM TRIGGER DEFINITION 10

CHAPTER 6. INTEGRATION OF DYNAMIC JFR RECORDINGS WITH THE AGENT HARVESTER FOR

ARCHIVING o i i e e e e e i e n
CHAPTER 7. CONFIGURATION OF AN EVALUATION PERIOD FOR CUSTOM MBEAN TRIGGERS 13
CHAPTER 8. MBEAN COUNTER TYPES ... i i i e i i i i 14

Red Hat build of Cryostat 2 Enabling dynamic JFR recordings based on MBean custom triggers

PREFACE

PREFACE

The Red Hat build of Cryostat is a container-native implementation of JDK Flight Recorder (JFR) that
you can use to securely monitor the Java Virtual Machine (JVM) performance in workloads that run on
an OpenShift Container Platform cluster. You can use Cryostat 2.4 to start, stop, retrieve, archive,
import, and export JFR data for JVMs inside your containerized applications by using a web console or
an HTTP APL.

Depending on your use case, you can store and analyze your recordings directly on your Red Hat
OpenShift cluster by using the built-in tools that Cryostat provides or you can export recordings to an
external monitoring application to perform a more in-depth analysis of your recorded data.

IMPORTANT

Red Hat build of Cryostat is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

https://access.redhat.com/support/offerings/techpreview/

Red Hat build of Cryostat 2 Enabling dynamic JFR recordings based on MBean custom triggers

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. CUSTOM TRIGGERS

CHAPTER 1. CUSTOM TRIGGERS

The Cryostat 2.4 agent supports custom triggers that are based on MBean metric values. You can
configure the Cryostat agent to start JFR recordings dynamically when these custom trigger conditions
are met.

You can define a custom trigger condition that dynamically starts a JFR recording when this condition is
met. A custom trigger condition is based on MBean counters that can cover a range of runtime, memory,
thread, and operating system metrics. You can include one or more MBean counter types as part of the
custom trigger condition for a JFR recording. You can also specify a duration or time period as part of
the trigger condition, which means the conditional values must persist for the specified duration before
the condition is met.

The Cryostat agent supports smart triggers that continually listen to the value of the specified MBean
counters. Triggering occurs if the current values of the specified counters match the configured values
in the custom trigger for the specified duration. If triggering occurs, the Cryostat agent dynamically
starts the JFR recording at that point.

NOTE

A JFR recording will not start dynamically if the custom trigger condition associated with
this recording is not met.

Red Hat build of Cryostat 2 Enabling dynamic JFR recordings based on MBean custom triggers

CHAPTER 2. CONFIGURATION OF A CUSTOM TRIGGER FOR A
DYNAMIC RECORDING

When you configure your target application to load the Cryostat agent, you can define one or more
custom triggers that are then passed as arguments to the agent.

For more information about configuring a target application to load the Cryostat agent, see Configuring
Java applications.

2.1. OPTIONS FOR DEFINING A CUSTOM TRIGGER

You can define a custom trigger in any of the following ways:

Appending a custom trigger to the Cryostat agent’s JAR file path

The following example shows how to append a simple custom trigger to the Cryostat agent’s JAR file
path:

JAVA_OPTS="-javaagent:/deployments/app/cryostat-agent-shaded.jar=\"[ProcessCpulLoad > 0.2 ;
TargetDuration > duration('30s')]~profile\""

The preceding example trigger instructs the agent to start a JFR recording if the ProcessCpuLoad
metric has a value greater than 0.2 for a duration of more than 30 seconds: This example also
instructs the agent to use the profile event template for the JFR recording.

Using a JVM system property flag

The following example shows how to specify a simple custom trigger by using a JVM system property
flag:

-Dcryostat.agent.smart-trigger.definitions="[ProcessCpulLoad > 0.2 ; TargetDuration >
duration(\"30s\")]~profile"

This example uses the same custom trigger criteria as the preceding example.

Using an environment variable

The following example shows how to specify a simple custom trigger by using an environment
variable:

- name: CRYOSTAT_AGENT_SMART_TRIGGER_DEFINITIONS
value: "[ProcessCpulLoad > 0.2 ; TargetDuration > duration(\"30s\")]~profile"

This example uses the same custom trigger criteria as the preceding examples.

2.2. COMMON EXPRESSION LANGUAGE

You can use Common Expression Language (CEL) to define a custom trigger condition. CEL is a free-
form expression syntax that provides great flexibility in defining rules and constraints for evaluating
data. For example, you can use CEL to create relational statements for evaluating if any combination of
MBean counter types have current values greater than, equal to, or less than specified configurable
values. You can also include any combination of AND (&&) or OR (||) logic statements between different
MBean counter types that are part of the same trigger condition.

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/2/html-single/getting_started_with_cryostat/index#assembly_configuing-java-applications_cryostat

CHAPTER 2. CONFIGURATION OF A CUSTOM TRIGGER FOR A DYNAMIC RECORDINC

For more information about CEL, see the CEL language specification.

2.3. GENERAL SYNTAX RULES FOR CUSTOM TRIGGERS

Consider the following syntax guidelines for defining custom triggers:

A custom trigger definition must consist of both an expression that defines the overall trigger
condition and the name of an event template that is used for the JFR recording.

The entire trigger expression must be enclosed in square brackets (for example,
[ProcessCpuload > 0.2 ; TargetDuration < duration("30s")]).

For readability, you may use white space in a trigger expression as shown in the preceding
example, but this is not a requirement.

The name of the event template must be defined after the trigger expression and preceded by
a tilde (~) character (for example, ~profile).

A trigger expression can consist of one or more constraints and a target duration. The set of
constraints and target duration must be separated by a semicolon (;) character.

Each constraint must include: the name of an MBean counter; a relational operator such as >
(greater than), = (equal to), < (less than), and so on; and a specified value. The type of relational
operator and value that you can specify depends on the associated MBean counter type (for
example, ProcessCpulLoad > 0.2).

Constraints can be grouped together by using logical operators such as && (AND), || (OR), or !
(NOT) logic. For readability and clarity around the order of operations and operator
precedence, grouped constraints may be enclosed in round brackets, but this is not a
requirement. For example:

[(MetricA > value1 && MetricB < value2) || MetricC == 'stringvalue' ; TargetDuration >
duration("30s")]

The name of each MBean counter that is specified as part of a custom trigger must follow
precise syntax rules in terms of spelling and capitalization. For a full list of the MBean metrics
that you can specify, see MBean counter types.

Only one target duration can be defined for a custom trigger. The target duration is applied to
the entire trigger expression that is enclosed within the square brackets.

A target duration can be expressed in terms of seconds, minutes, or hours. For example, 30s
means 30 seconds, 5m means five minutes, 2h means two hours, and so on.

A target duration is optional. If a target duration is not specified, triggering will occur
immediately once the trigger conditions are met.

Multiple custom trigger definitions can be specified together, each of which relates to a

separate JFR recording. Different custom trigger definitions must be separated by a comma (,)
character. For example:

I [ProcessCpulLoad>0.2]~profile,[ThreadCount>30]~Continuous

https://github.com/google/cel-spec/blob/master/doc/langdef.md

Red Hat build of Cryostat 2 Enabling dynamic JFR recordings based on MBean custom triggers

CHAPTER 3. AUTOMATIC STARTING OF ADYNAMIC JFR
RECORDING

When the Cryostat agent is enabled to start JFR recordings and the custom trigger condition for a
dynamic recording is met, the Cryostat agent automatically starts the recording from within the target
application.

The Cryostat agent automatically assigns a name to the JFR recording, which is always in a cryostat-
smart-trigger-X format, where Xrepresents the recording ID. The JVM automatically generates the
recording ID, which is an incremental numeric value that is unique for each JFR recording that is started
within the JVM.

When the Cryostat agent starts a dynamic JFR recording, you can subsequently view this recording in
the Active Recordings tab in the Cryostat web console. For more information about using the Active
Recordings tab, see Creating a JFR recording with Cryostat.

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/2/html-single/creating_a_jfr_recording_with_cryostat/index

CHAPTER 4. MANUAL STOPPING OF A DYNAMIC JFR RECORDINC

CHAPTER 4. MANUAL STOPPING OF ADYNAMIC JFR
RECORDING

The Cryostat agent does not currently support the automatic stopping of dynamic JFR recordings. In
this release, a dynamic JFR recording does not stop even if the conditions that triggered the recording
are no longer being met. In this situation, if you want a dynamic JFR recording to stop, you must stop the
recording manually from the Active Recordings tab in the Cryostat web console.

For more information about using the Cryostat web console to stop JFR recordings, see Creating a JFR
recording with Cryostat.

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/2/html-single/creating_a_jfr_recording_with_cryostat/index

Red Hat build of Cryostat 2 Enabling dynamic JFR recordings based on MBean custom triggers

10

CHAPTER 5. MULTIPLE JFR RECORDINGS BASED ON THE
SAME CUSTOM TRIGGER DEFINITION

The Cryostat 2.4 agent can dynamically start a JFR recording for each custom trigger definition only
once. In this release, the Cryostat agent cannot start multiple JFR recordings for the same custom
trigger condition on a recurring basis. Once the Cryostat agent starts a JFR recording for a specific
custom trigger definition, the agent then ignores this trigger definition for the rest of the agent session.

In this situation, if you want to enable the Cryostat agent to start new JFR recordings based on custom
trigger conditions that previously triggered a recording, you must restart the Cryostat agent.

CHAPTER 6. INTEGRATION OF DYNAMIC JFR RECORDINGS WITH THE AGENT HARVESTER FOR ARCHIVIN(

CHAPTER 6. INTEGRATION OF DYNAMIC JFR RECORDINGS
WITH THE AGENT HARVESTER FOR ARCHIVING

When you enable the Cryostat agent to start dynamic JFR recordings based on MBean custom triggers,
you can also integrate these JFR recordings with the agent harvester system. This integration means
that any JFR recording data resulting from MBean custom triggers is periodically captured in JFR
snapshots and pushed to the Cryostat server for archiving, based on the harvester’s configured
schedule.

MBean custom triggers with agent harvester periods

The agent harvester is another configurable feature, which enables the Cryostat agent to start JFR
recordings automatically at agent startup based on a given event template. The agent harvester
includes a configurable property that you can use to define a schedule for capturing and uploading
recording snapshots to the Cryostat server.

By defining MBean custom triggers and an agent harvester period without a harvester template, you can
achieve a setup where the agent does both of the following:

® Agent dynamically starts JFR recordings based on MBean custom triggers.

® Aent uses configured harvester periods to periodically capture snapshots of the recording data
and upload this data to the Cryostat server.

In this situation, the agent continues to capture recording data until you manually stop the dynamic JFR
recording or the host JVM shuts down.

Configuration of an agent harvester period

When you configure your target application to load the Cryostat agent, you can also configure an agent
harvester period to enable regular uploads of JFR recording data. You can specify the value of the
harvester period in milliseconds. By default, the Cryostat agent is not enabled to perform any scheduled
harvest uploading of JFR recording data.

You can configure an agent harvester period in either of the following ways:

Using a JVM system property flag

The following example shows how to configure a harvester period by using a JVM system property
flag:

I -Dcryostat.agent.harvester.period-ms=1000

Using an environment variable

The following example shows how to configure a harvester period by using an environment variable:

-name: CRYOSTAT_AGENT_HARVESTER_PERIOD_MS
value: 1000

The preceding examples show a harvester period value of 1000. Based on this example, the agent
uploads JFR recording data for archiving every 1000 milliseconds (that is, at regular 1-second intervals).

1

Red Hat build of Cryostat 2 Enabling dynamic JFR recordings based on MBean custom triggers

NOTE
Cryostat supports each of the following different ways to start JFR recordings:
® You can start recordings manually from the Cryostat web console.

® The Cryostat agent can start recordings dynamically based on MBean custom
triggers.

® The Cryostat agent can start recordings automatically at agent startup based on
a given harvester template.

® The Cryostat server can send on-demand requests over JMX or an agent HTTP
connection to start recordings based on automated rules.

In this situation, agent harvester settings control the capture and upload of all JFR
recording data regardless of which way JFR recordings are started in the system.

12

CHAPTER 7. CONFIGURATION OF AN EVALUATION PERIOD FOR CUSTOM MBEAN TRIGGERS

CHAPTER 7. CONFIGURATION OF AN EVALUATION PERIOD
FOR CUSTOM MBEAN TRIGGERS

The Cryostat agent supports smart triggers that continually listen to the current values of the specified
MBean counters that you can define in custom trigger definitions. The trigger conditions are evaluated
on a polling basis at regular configurable intervals. By default, trigger conditions are evaluated at regular
1-second intervals.

An evaluation period (polling frequency) of once per second means that there is a potential time delay
of up to one second between a condition being met and the agent’s ability to evaluate that this condition
was met.

When you configure your target application to load the Cryostat agent, you can choose to configure a
different evaluation period for MBean custom triggers. You can specify the value of the evaluation
period in milliseconds.

You can configure an evaluation period in either of the following ways:

Using a JVM system property flag

The following example shows how to configure an evaluation period by using a JVM system property
flag:

I -Dcryostat.agent.smart-trigger.evaluation.period-ms=500

Using an environment variable

The following example shows how to configure a harvester period by using an environment variable:

I -name: CRYOSTAT _AGENT_SMART-TRIGGER_EVALUATION_PERIOD_MS
value: 500

The preceding examples show an evaluation period value of 500. Based on this example, the trigger
conditions are evaluated every 500 milliseconds (that is, at regular half-second intervals).

13

Red Hat build of Cryostat 2 Enabling dynamic JFR recordings based on MBean custom triggers

CHAPTER 8. MBEAN COUNTER TYPES

The MBean counter types that you can specify as part of a custom trigger definition are standard
MBean metrics that are generally available in the JDK by default. These MBean counters cover a range
of runtime, memory, thread, and operating system metrics.

The following is a full list of the MBean counter types that you can specify in a custom trigger definition:

NOTE
The name of each MBean counter that you specify as part of a custom trigger definition

must exactly match the spelling and capitalization of the MBean counter names in the
following list.

Operating system metrics

® Arch

® AvailableProcessors

® Name

® SystemlLoadAverage

® \Version

® CommittedVirtualMemorySize
® FreePhysicalMemorySize
® FreeSwapSpaceSize

® ProcessCpuload

® ProcessCpuTime

® SystemCpuload

® TotalPhysicalMemorySize

® TotalSwapSpaceSize

Thread metrics

® AllThreadlds

® CurrentThreadCpuTime
® CurrentThreadUserTime
® DaemonThreadCount

® PeakThreadCount

® ThreadCount

14

TotalStartedThreadCount

CurrentThreadCpuTimeSupported
ObjectMonitorUsageSupported
SynchronizerUsageSupported
ThreadContentionMonitoringEnabled

ThreadContentionMonitoringSupported

ThreadCpuTimeEnabled

ThreadCpuTimeSupported

Runtime metrics

BootClassPathSupported
BootClassPath

ClassPath
InputArguments
LibraryPath
ManagementSpecVersion
Name

SpecName

SpecVersion
SystemProperties
StartTime

Uptime

VmName

VmVendor

VmVersion

Memory metrics

® ObjectPendingFinalizationCount

HeapMemoryUsage

NonHeapMemoryUsage

FreeHeapMemory

CHAPTER 8. MBEAN COUNTER TYPES

15

Red Hat build of Cryostat 2 Enabling dynamic JFR recordings based on MBean custom triggers

® FreeNonHeapMemory
® HeapMemoryUsagePercent

® \erbose

Revised on 2023-12-08 09:01:56 UTC

16

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. CUSTOM TRIGGERS
	CHAPTER 2. CONFIGURATION OF A CUSTOM TRIGGER FOR A DYNAMIC RECORDING
	2.1. OPTIONS FOR DEFINING A CUSTOM TRIGGER
	2.2. COMMON EXPRESSION LANGUAGE
	2.3. GENERAL SYNTAX RULES FOR CUSTOM TRIGGERS

	CHAPTER 3. AUTOMATIC STARTING OF A DYNAMIC JFR RECORDING
	CHAPTER 4. MANUAL STOPPING OF A DYNAMIC JFR RECORDING
	CHAPTER 5. MULTIPLE JFR RECORDINGS BASED ON THE SAME CUSTOM TRIGGER DEFINITION
	CHAPTER 6. INTEGRATION OF DYNAMIC JFR RECORDINGS WITH THE AGENT HARVESTER FOR ARCHIVING
	CHAPTER 7. CONFIGURATION OF AN EVALUATION PERIOD FOR CUSTOM MBEAN TRIGGERS
	CHAPTER 8. MBEAN COUNTER TYPES

