
Red Hat build of Cryostat 3

Getting started with Cryostat

Last Updated: 2024-07-02

Red Hat build of Cryostat 3 Getting started with Cryostat

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat build of Cryostat is a Red Hat offering on OpenShift Container Platform. The Getting
started with Cryostat guide provides an overview of this product and explains how to install the
software and start using it.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. OVERVIEW OF CRYOSTAT

CHAPTER 2. INSTALLING CRYOSTAT ON RED HAT OPENSHIFT BY USING A RED HAT BUILD OF CRYOSTAT
OPERATOR

CHAPTER 3. CONFIGURING JAVA APPLICATIONS
Cryostat agent
Remote Java Management Extensions (JMX) connections
Cryostat agent and JMX hybrid
3.1. LAUNCHING THE CRYOSTAT AGENT AS A STANDALONE PROCESS FOR DYNAMIC ATTACHMENT TO
THE JVM

Agent launch behavior based on the PID value
Late-binding configuration options

3.2. CONFIGURING APPLICATIONS BY USING THE CRYOSTAT AGENT
3.2.1. Configuring the Cryostat agent to trust the Cryostat server

3.3. CONFIGURING APPLICATIONS BY USING JMX CONNECTIONS
3.4. CONFIGURING APPLICATIONS BY USING THE CRYOSTAT AGENT AND JMX CONNECTIONS

CHAPTER 4. CREATING A JFR RECORDING WITH CRYOSTAT
4.1. CREATING A JFR RECORDING IN THE CRYOSTAT WEB CONSOLE
4.2. CREATING SNAPSHOTS FROM AN ACTIVE RECORDING
4.3. LABELS FOR JFR RECORDINGS

4.3.1. Adding labels to JFR recordings
4.3.2. Editing a label for your JFR recording

3

4

5

6

12
12
14
14

15
15
16
16

20
22
25

29
29
33
35
35
37

Table of Contents

1

Red Hat build of Cryostat 3 Getting started with Cryostat

2

PREFACE
The Red Hat build of Cryostat is a container-native implementation of JDK Flight Recorder (JFR) that
you can use to securely monitor the Java Virtual Machine (JVM) performance in workloads that run on
an OpenShift Container Platform cluster. You can use Cryostat 3.0 to start, stop, retrieve, archive,
import, and export JFR data for JVMs inside your containerized applications by using a web console or
an HTTP API.

Depending on your use case, you can store and analyze your recordings directly on your Red Hat
OpenShift cluster by using the built-in tools that Cryostat provides or you can export recordings to an
external monitoring application to perform a more in-depth analysis of your recorded data.

IMPORTANT

Red Hat build of Cryostat is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

PREFACE

3

https://access.redhat.com/support/offerings/techpreview/

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat build of Cryostat 3 Getting started with Cryostat

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. OVERVIEW OF CRYOSTAT
Cryostat is a container-native Java application based on JDK Flight Recorder (JFR) that you can use to
monitor Java Virtual Machine (JVM) performance for containerized workloads that run on a Red Hat
OpenShift cluster.

You can deploy Cryostat in a container in a Red Hat OpenShift project that hosts your containerized
Java applications. You can create JVM targets that correspond to the JVM instances that you use to
run your containerized workload. You can connect Cryostat to the JVM targets to record and analyze
data about heap and non-heap memory usage, thread count, garbage collection, and other performance
metrics for each JVM target.

You can use the tools that are included with Cryostat to monitor the performance of your JVMs in real
time, capture JDK Flight Recorder (JFR) recordings and snapshots, generate Automated Analysis
reports, and visualize your recorded performance data by using a Grafana dashboard.

The Cryostat web console and HTTP API provides a way to analyze your JVM performance data inside
the container without having to rely on an external monitoring application. However, you can also export
your recordings from Cryostat into an external instance of JDK Mission Control (JMC) when you need to
perform a deeper analysis of your data outside of a cluster environment.

Cryostat supports role-based access control (RBAC) as a standard feature of OpenShift Container
Platform.

You can install Cryostat inside a Red Hat OpenShift project by using Operator Lifecycle Manager
(OLM).

You can also download the latest Cryostat component images from the Red Hat Ecosystem Catalog.
The following container images exist for Cryostat 3.0 on the Red Hat Ecosystem Catalog:

Cryostat

Red Hat build of Cryostat Operator

Red Hat build of Cryostat Operator bundle

Cryostat reports

Cryostat Grafana dashboard

Cryostat DB

Cryostat storage

JFR data source

Additional resources

Operator Lifecycle Manager (OLM) (OpenShift Container Platform)

Container images (Red Hat Ecosystem Catalog)

CHAPTER 1. OVERVIEW OF CRYOSTAT

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/operators/understanding-operators/#operator-lifecycle-manager-olm
https://catalog.redhat.com/software/containers/explore

CHAPTER 2. INSTALLING CRYOSTAT ON RED HAT
OPENSHIFT BY USING A RED HAT BUILD OF CRYOSTAT

OPERATOR
You can use the Operator Lifecycle Manager (OLM) to install the Red Hat build of Cryostat Operator in
a project on your Red Hat OpenShift cluster. You can use the Red Hat build of Cryostat Operator to
create single namespace or multi-namespace Cryostat instances. You can control these instances by
using a GUI that is accessible from the Red Hat OpenShift web console.

IMPORTANT

If you need to upgrade your Red Hat build of Cryostat Operator subscription from
Cryostat 2.0 to Cryostat 3.0, you must change the update channel from stable-2.0 to
stable.

Prerequisites

Created an OpenShift Container Platform 4.12 or later cluster.

Created a Red Hat OpenShift user account with permissions to install Red Hat build of Cryostat
Operator in a project.

Installed Operator Lifecycle Manager (OLM) on your cluster.

Installed cert-manager with the cert-manager Operator for Red Hat OpenShift.

If you are using OpenShift Container Platform 4.12 or later, you can install the cert-manager
Operator for Red Hat OpenShift. For more information, see cert-manager Operator for
Red Hat OpenShift (OpenShift Container Platform).

Logged in to Red Hat OpenShift by using the Red Hat OpenShift web console.

Procedure

1. In your browser, navigate to Home > Projects by using the web console.

2. Select the name of the project in which you want to install the Red Hat build of Cryostat
Operator.

3. Install the Red Hat build of Cryostat Operator:

a. In the navigation menu of your web console, navigate to Operators > OperatorHub.

b. Select the Red Hat build of Cryostat Operator from the list. You can use the search box in
the upper part of the screen to find the Red Hat build of Cryostat Operator.

c. To install the Red Hat build of Cryostat Operator in your project, click Install.
The Red Hat OpenShift web console prompts you to create a Cryostat custom resource
(CR).

NOTE

Red Hat build of Cryostat 3 Getting started with Cryostat

6

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/security_and_compliance/index#cert-manager-operator-for-red-hat-openshift

NOTE

From Cryostat 3.0 onward, in the Installation mode area, the All
namespaces on the cluster (default) radio button is the only available
option.

You can create the CR either manually or automatically. If you want to create the CR
manually, see step 4. If you want to create the CR automatically, see step 5.

4. If you want to create the CR manually, complete the following steps:

a. Navigate to Operators > Installed Operators by using the web console and select Red Hat
build of Cryostat Operator from the list of installed operators:

Figure 2.1. Viewing the Red Hat build of Cryostat operator in the list of installed
operators

b. Click the Details tab.

c. To create a Cryostat instance, go to the Provided APIs section. Then, under Cryostat, click
Create instance.

NOTE

From Cryostat 3.0 onward, the Cryostat API enables you to create both
single-namespace and multi-namespace Cryostat instances.

Figure 2.2. Selecting the Cryostat API that is provided by the Red Hat build of Cryostat
Operator

d. Click either the Form view radio button or the YAML view radio button. If you want to enter
your information in the YAML configuration file, click YAML view .

e. Specify a unique name for the instance of Cryostat that you want to create.

f. Optional: In the Labels field, specify a label or annotation for the Operand workload you
want to deploy.

CHAPTER 2. INSTALLING CRYOSTAT ON RED HAT OPENSHIFT BY USING A RED HAT BUILD OF CRYOSTAT OPERATOR

7

g. In the Target Namespaces field, select namespaces whose workloads you want to permit
this instance of Cryostat to access and work with. Optionally, you can select the same
namespace where you installed Cryostat or you can choose a different namespace. To add
additional namespaces, click +Add Target Namespace.

IMPORTANT

Users who can access the Cryostat instance have access to all target
applications in any namespace that is visible to that Cryostat instance.
Therefore, when you deploy a multi-namespace Cryostat instance, you must
consider which namespaces to select for monitoring, which namespace to
install Cryostat into, and which users you want to grant access to.

You can also specify additional configuration options for your deployment:

Figure 2.3. Creating an instance of Cryostat by using a form in the web console

Alternatively, you can use a YAML template to create your instance and specify additional
configuration options instead of using the form:

Figure 2.4. Creating an instance of Cryostat by using a YAML template in the web
console

Red Hat build of Cryostat 3 Getting started with Cryostat

8

5. If you want to create the CR by using the automatic prompt option, follow the prompt’s
instructions and then complete the following steps:

a. Click either the Form view radio button or the YAML view radio button. If you want to enter
your information in the YAML configuration file, click YAML view.

b. Specify a unique name for the instance of Cryostat that you want to create.

c. Optional: In the Labels field, specify a label or annotation for the Operand workload you
want to deploy.

d. In the Target Namespaces field, select namespaces whose workloads you want to permit
this instance of Cryostat to access and work with. Optionally, you can select the same
namespace where you installed Cryostat or you can choose a different namespace. To add
additional namespaces, click +Add Target Namespace.

IMPORTANT

Users who can access the Cryostat instance have access to all target
applications in any namespace that is visible to that Cryostat instance.
Therefore, when you deploy a multi-namespace Cryostat instance, you must
consider which namespaces to select for monitoring, which namespace to
install Cryostat into, and which users you want to grant access to.

You can also specify additional configuration options for your deployment:

Figure 2.5. Creating an instance of Cryostat by using a form in the web console

Alternatively, you can use a YAML template to create your instance and specify additional
configuration options instead of using the form:

Figure 2.6. Creating an instance of Cryostat by using a YAML template in the web

CHAPTER 2. INSTALLING CRYOSTAT ON RED HAT OPENSHIFT BY USING A RED HAT BUILD OF CRYOSTAT OPERATOR

9

Figure 2.6. Creating an instance of Cryostat by using a YAML template in the web
console

6. To start the creation process for your Cryostat instance, click Create.
You must wait for all resources of your Cryostat instance to be ready before you can access it.

Verification

1. In the navigation menu of the web console, click Operators, then click Installed Operators.

2. From the table of installed operators, select Red Hat build of Cryostat Operator.

3. Select the Cryostat tab.
Your Cryostat instance opens in the table of instances and lists the following conditions:

TLSSetupComplete is set to true.

MainDeploymentAvailable is set to true.

Optional: If you enabled the reports generator service then ReportsDeploymentAvailable
is shown and set to true.

Figure 2.7. Example of conditions set to True under the Status column for a Cryostat
instance on OpenShift

4. Optional: Select your Cryostat instance from the Cryostat table. Go to the Cryostat
Conditions table, where you can see more information for each condition.

Figure 2.8. Example of a Cryostat Conditions table that lists each condition and its criteria

Red Hat build of Cryostat 3 Getting started with Cryostat

10

Figure 2.8. Example of a Cryostat Conditions table that lists each condition and its criteria

Additional resources

Best practices for setting up Cryostat in different cluster configurations (Red Hat
Knowledgebase)

Accessing Cryostat by using the web console

CHAPTER 2. INSTALLING CRYOSTAT ON RED HAT OPENSHIFT BY USING A RED HAT BUILD OF CRYOSTAT OPERATOR

11

https://access.redhat.com/articles/7011252
https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html/installing_cryostat/#accessing-cryostat-from-the-web-console_assembly_installing-cryostat

CHAPTER 3. CONFIGURING JAVA APPLICATIONS
To enable Cryostat to gather, store, and analyze Java Flight Recorder (JFR) data about target
applications that run on Java Virtual Machines (JVMs), you must configure the applications so that
Cryostat can detect and connect to them.

You can configure the applications in any of the following ways:

By using the Cryostat agent component for detection and connectivity, which is implemented as
a Java Instrumentation Agent and acts as a plug-in for applications that run on the JVM

By configuring the applications to allow Java Management Extensions (JMX) connections and
using an OpenShift Service for detection and JMX for connectivity

By using the Cryostat agent for detection and JMX for connectivity

Cryostat agent
The Cryostat agent provides an HTTP API that the Cryostat server can use as an alternative to an
application’s JMX port. By attaching a properly configured Cryostat agent to the workload applications
that you deploy, you can use the full Cryostat feature set without any need for the target applications to
expose a JMX port.

NOTE

Before Red Hat build of Cryostat 2.4, the Cryostat agent provided a read-only HTTP API
that supported a limited set of JFR operations only.

The Cryostat agent’s HTTP API can offer the following benefits compared to a JMX port:

Greater security due to the reduced API surface area

Deployment flexibility due to the Cryostat agent’s dual role as a Cryostat discovery plug-in

If the Cryostat agent detects that JMX is also configured on your application, the agent publishes itself
to the Cryostat server with both agent HTTP API definitions and JMX URL definitions. In this situation,
you can use whichever configuration option you prefer.

Dynamic attachment to the JVM

From Cryostat 3.0 onward, the Cryostat agent can attach dynamically to an application JVM that is
already running without requiring an application restart. This dynamic attachment feature has the
following requirements:

You must ensure that the agent’s JAR file is copied to the JVM’s file system (for example, by
using the oc cp command).

You must be able to run the agent as a separate process on the same host or within the same
application (for example, by using the oc exec command).

The dynamic attachment feature supports ad hoc one-time profiling or troubleshooting workflows
where you might not need the agent to be attached every time the JVM starts. Dynamic attachment
also suits situations where you cannot or do not want to reconfigure your application for the sole
purpose of attaching the agent. Because the agent can attach to a running JVM without requiring an
application restart, this also means there is no application downtime.

Static attachment to the JVM

Red Hat build of Cryostat 3 Getting started with Cryostat

12

You can enable your workload application’s JVM to load and initialize the Cryostat agent at JVM
startup. This static attachment approach requires that you configure the application to pass the -
javaagent JVM flag with the path to the Cryostat agent‘s JAR file (for
example, ‑javaagent:/deployment/app/lib/cryostat-agent.jar). Once the Cryostat agent’s basic
initialization is complete, your workload application’s normal startup process begins as usual.

Depending on your workload application, the static attachment approach might require that you set one
or more environment variables or add an argument to the argLine parameter. However, in some cases,
you might need to reconfigure, rebuild, and redeploy your application. Static attachment also requires
that you restart the application JVM, which can cause application downtime.

NOTE

Before Cryostat 3.0, static attachment through the -javaagent JVM flag was the only
way to enable the Cryostat agent to attach and run on a target application.

Options for including the agent’s JAR file into your workload application

Depending on your requirements, you can include the Cryostat agent’s JAR file into the workload
application in different ways:

For dynamic one-time attachment to a running JVM, you can copy the agent’s JAR file to the
JVM’s file system by using the oc cp command.

For static attachment to a JVM at startup, you can use any of the following options:

The simplest option is to add the JAR file to your application’s dependencies in the
pom.xml or build.gradle file. Your build tool (Maven or Gradle) downloads the JAR file for
inclusion in your application build output.

You can use a Maven plug-in, such as the maven-dependency-plugin, to provide more
fine-grained control over the download and inclusion of the JAR file in the application build
output.

You can create a PersistentVolume storage volume that contains the JAR file. Then
reconfigure your application’s Deployment/DeploymentConfig to mount the
PersistentVolume and use -javaagent:/path/to/persistentvolume/cryostat-agent.jar. The
exact way to accomplish this task depends on the type of PersistentVolume provider you
enabled in your OpenShift cluster.

Once the Cryostat agent is successfully added to your application container and loaded, your
application’s stdout and console logs start displaying log messages from the Cryostat agent.

Agent configuration properties

You can specify configuration properties for the Cryostat agent in either of two ways:

Use JVM system property flags on the application (for example, -Dcryostat.agent.api.writes-
enabled=true).

Use environment variables by making all letters upper case and replacing any punctuation with
underscores (for example, CRYOSTAT_AGENT_API_WRITES_ENABLED=true).

You must configure the following properties to enable the Cryostat agent to operate successfully:

CHAPTER 3. CONFIGURING JAVA APPLICATIONS

13

cryostat.agent.baseuri This specifies the URL location of the Cryostat server back end that the
Cryostat agent advertises itself to (that is, the internal OpenShift
Service object) such as https://my-cryostat.my-
namespace.svc.cluster.local.

cryostat.agent.callback This specifies the URL location of the Cryostat agent instance or
application itself. Cryostat uses this URL to perform health checks and
request data from the agent. You can use the OpenShift/Kubernetes
Downward API to determine this dynamically. For more information, see
the Kubernetes Downward API documentation on status.podIP.

Depending on your setup requirements, you can also configure the following agent properties:

cryostat.agent.api.writes-
enabled

This indicates whether the Cryostat agent allows write operations. This is
set to false by default. If you want the Cryostat agent to accept
requests to start, stop, or delete JFR flight recordings, you must set this
property to true.

NOTE

Even if this property is set to false, the agent can still
fulfill requests to list flight recordings or download
individual recording files.

cryostat.agent.webserver.po
rt

This specifies the HTTP port number that the agent uses to bind its
HTTP API (by default, 9977). If this conflicts with an existing port that
your application or another tooling agent uses, you must specify a
different port number.

cryostat.agent.app.name This specifies a label for identifying which application this Cryostat agent
instance is attached to (by default, cryostat-agent). You could use the
Downward API metadata.name or metadata.labels[‘app’] fields for
this. For more information, see the Kubernetes Downward API
documentation Kubernetes Downward API documentation.

Remote Java Management Extensions (JMX) connections
JMX is a standard feature on a JVM with which you can monitor and manage target applications that run
on the JVM. For Cryostat to use JMX, you must enable and configure JMX when you start the JVM
because Cryostat requires the target applications to expose a JMX port.

Cryostat communicates with the target applications over this JMX port to start and stop JFR recordings
and to pull JFR data over the network, enabling Cryostat to store and analyze this JFR data. Remote
monitoring requires security to ensure that unauthorized persons cannot access application. Cryostat
prompts you to enter your credentials before Cryostat can access any of the application’s JFR
recordings.

Cryostat agent and JMX hybrid

You can configure your target applications to use a hybrid approach where you use both the Cryostat

Red Hat build of Cryostat 3 Getting started with Cryostat

14

https://kubernetes.io/docs/concepts/workloads/pods/downward-api/
https://kubernetes.io/docs/concepts/workloads/pods/downward-api/

You can configure your target applications to use a hybrid approach where you use both the Cryostat
agent and JMX. With this approach, you use the Cryostat agent to detect the target applications and
JMX to expose the JFR data to Cryostat, which allows for more flexibility.

For example, you can use the agent to detect the applications without needing to depend on specific
port numbers and also use the JMX connections to start and stop JFR flight recordings on demand.

3.1. LAUNCHING THE CRYOSTAT AGENT AS A STANDALONE
PROCESS FOR DYNAMIC ATTACHMENT TO THE JVM

If you want the Cryostat agent to attach dynamically to an application JVM that is already running, you
can launch the agent as a standalone Java process.

NOTE

This procedure is only relevant if you want to use the dynamic attachment feature, which
allows the Cryostat agent to attach to a running JVM on an ad hoc one-time basis. If you
want your workload application’s JVM to load and initialize the Cryostat agent at JVM
startup, see Configuring applications by using the Cryostat agent .

Prerequisites

Copied the agent’s JAR file to the JVM’s file system by using the oc cp command.

Procedure

Enter the following command:

In the preceding command, replace <agent_jar_file> with the agent’s JAR file name and replace
<pid> with the process ID (PID) of the JVM that you want the agent to attach to.

For example:

When you run the preceding command, the agent process uses its Attach providers to look up the
specified PID. If the specified PID is found, the agent process attaches to this PID and attempts to load
the agent’s JAR file into this JVM, which then bootstraps into the normal agent launch process.

Agent launch behavior based on the PID value
Consider the following guidelines for agent launch behavior depending on the PID value:

If you specify an invalid PID, the agent cannot launch successfully.

If you specify a wildcard asterisk (*) as the PID value, the agent’s JAR file attempts to bootstrap
into every JVM that it finds.

If you specify 0 as the PID value or if you do not specify any PID value, the agent checks if
exactly one candidate JVM is available. If only one JVM is available, the agent attempts to
bootstrap into this JVM. If multiple JVMs or no JVMs are available, the agent cannot launch
successfully.

$ java -jar target/<agent_jar_file> <pid>

$ java -jar target/cryostat-agent-0.4.0.jar 1234

CHAPTER 3. CONFIGURING JAVA APPLICATIONS

15

Late-binding configuration options
When launching the Cryostat agent as a standalone process, you can also specify additional late-binding
configuration options to the agent launcher by using command-line options.

For example:

$ java -jar target/cryostat-agent-0.4.0.jar \
-Dcryostat.agent.baseuri=http://cryostat.local \
--smartTrigger=[ProcessCpuLoad>0.2]~profile \
@/deployment/app/moreAgentArgs \
1234

For more information about the available options and their behavior, run the java -jar target/cryostat-
agent-0.4.0.jar -h help command. System properties that you specify with -D are set onto the host JVM
before the injected agent attempts to read the configuration values. This has the same effect as setting
these system properties or equivalent environment variables on the host JVM process itself.

3.2. CONFIGURING APPLICATIONS BY USING THE CRYOSTAT AGENT

You can use the Cryostat agent, implemented as a Java Instrumentation Agent, to configure target
applications, so that Cryostat can detect the applications, collect data, and send the data to Cryostat for
analysis. You can also optionally enable the Cryostat agent to accept requests from the Cryostat server
to start, stop, and delete JFR recordings.

Red Hat build of Cryostat 3.0 distributes two different variations of the Cryostat agent’s JAR file.
Depending on your setup requirements, you can use either of the following types of agent JAR file:

An all-in-one "shaded" JAR file that is self-contained and includes the agent code and all of its
dependencies
This "shaded" JAR file provides the most convenient form of Cryostat agent to include in your
existing applications, because you need to include only one additional agent JAR file. This is a
common distribution pattern for similar agents and tools.

A standard JAR file that contains the agent code without any dependencies
This type of JAR file is useful if you know that dependency conflicts exist between the agent
and your workload applications. If you intend to apply your own strategies to provide the correct
versions of each dependency to satisfy both the agent and your applications’ requirements, you
can use the standalone JAR file.

NOTE

Previous releases provided one distribution of the Cryostat agent, which was an all-in-one
"shaded" `JAR file. The following procedure describes how to install the "shaded" JAR
file distribution of the Cryostat 3.0 agent.

As described in Configuring Java applications: Cryostat agent , the Cryostat 3.0 agent
supports different options for including the agent’s JAR file into your workload
applications. The following procedure describes how to add the "shaded" JAR file to your
application’s dependencies in the pom.xml or build.gradle file.

Prerequisites

Logged in to your Cryostat web console.

Installed JDK version 11 or later.

Red Hat build of Cryostat 3 Getting started with Cryostat

16

Procedure

1. Install the Cryostat agent. Choose one of the following options, depending on your application
build:

Using Maven:
Update the application pom.xml file with the Cryostat agent JAR file information.

Example pom.xml

NOTE

<project>
 ...
 <repositories>
 <repository>
 <id>redhat-maven-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all/</url>
 </repository>
 </repositories>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>3.3.0</version>
 <executions>
 <execution>
 <phase>prepare-package</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>io.cryostat</groupId>
 <artifactId>cryostat-agent</artifactId>
 <version>0.4.0.redhat-xxxxx</version>
 <classifier>shaded</classifier>
 </artifactItem>
 </artifactItems>
 <stripVersion>true</stripVersion>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 ...
 </build>
 ...
</project>

CHAPTER 3. CONFIGURING JAVA APPLICATIONS

17

https://maven.repository.redhat.com/earlyaccess/all/</url>

NOTE

In the preceding example, replace 0.4.0.redhat-xxxxx with the latest build
version of the Cryostat agent (for example, 0.4.0.redhat-00001). For
information about the latest build version of the Cryostat agent, refer to the
Red Hat Maven repository.

The next time you build your application, the Cryostat agent JAR file is available at
target/dependency/cryostat-agent-shaded.jar.

Using Gradle:
Update the build.gradle file.

Example build.gradle file

How you package the agent JAR file into the application depends on the Gradle plug-ins
that you use for the build. For example, if you are using the Jib plug-in, update the
build.gradle file as follows:

Example build.gradle file

NOTE

In the preceding example, replace 0.4.0.redhat-xxxxx with the latest build
version of the Cryostat agent (for example, 0.4.0.redhat-00001). For
information about the latest build version of the Cryostat agent, refer to the
Red Hat Maven repository.

2. Update the Docker file. The following example uses the JAVA_OPTS environment variable to
pass the relevant JVM information.

Example

repositories {
 …
maven {
 url "https://maven.repository.redhat.com/earlyaccess/all/"
 credentials {
 username "myusername"
 password "mytoken"
 }
 }
}

plugins {
 id 'java'
 id 'application'
 id 'com.google.cloud.tools.jib' version '3.3.1'
 id 'com.ryandens.javaagent-jib' version '0.5.0'
}
…
dependencies {
 …
 javaagent 'io.cryostat:cryostat-agent:0.4.0.redhat-xxxxx:shaded'

Red Hat build of Cryostat 3 Getting started with Cryostat

18

https://maven.repository.redhat.com/ga/io/cryostat/cryostat-agent/
https://maven.repository.redhat.com/ga/io/cryostat/cryostat-agent/

3. Rebuild the container image that is specific to your application.

docker build -t docker.io/myorg/myapp:latest -f src/main/docker/Dockerfile

4. To supply the JVM system properties or environment variables that you need to configure the
Cryostat agent, push the updated image and then modify your application deployment.

Example

<1>: Port number 9977 is the default HTTP port that the agent exposes for the internal web
server that services Cryostat requests. You can change this port number if it conflicts with
your target application into which the agent is installed.

...
COPY target/dependency/cryostat-agent.jar /deployments/app/
...
ENV JAVA_OPTS="-javaagent:/deployments/app/cryostat-agent-shaded.jar"

apiVersion: apps/v1
kind: Deployment
...
spec:
 ...
 template:
 ...
 spec:
 containers:
 - name: sample-app
 image: docker.io/myorg/myapp:latest
 env:
 - name: CRYOSTAT_AGENT_APP_NAME
 value: "myapp"
 # Replace this with the Kubernetes DNS record
 # for the Cryostat Service
 - name: CRYOSTAT_AGENT_BASEURI
 value: "http://cryostat.mynamespace.mycluster.svc:4180"
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: CRYOSTAT_AGENT_CALLBACK
 value: "http://$(POD_IP):9977" 1
 # Replace "abcd1234" with a plain-text authentication token
 - name: CRYOSTAT_AGENT_AUTHORIZATION 2
 value: "Bearer abcd1234"
 - name: CRYOSTAT_AGENT_API_WRITES_ENABLED 3
 value: true
 ports:
 - containerPort: 9977
 protocol: TCP
 resources: {}
 restartPolicy: Always
status: {}

CHAPTER 3. CONFIGURING JAVA APPLICATIONS

19

<2>: The CRYOSTAT_AGENT_AUTHORIZATION value shows the credentials that the
agent includes in the API requests to Cryostat to advertise its own presence or to push JFR
data. You can also create a Kubernetes Service Account for this purpose and replace
abcd1234 with the plain-text authentication token associated with the service account.

<3>: The CRYOSTAT_AGENT_API_WRITES_ENABLED variable is set to false by default.
If you want the Cryostat agent to accept requests from the Cryostat server to start, stop, or
delete JFR flight recordings, you must set this variable to true.

3.2.1. Configuring the Cryostat agent to trust the Cryostat server

When you use the Cryostat agent with a Cryostat instance that has cert-manager integration enabled,
the Cryostat agent communicates with Cryostat over a secure HTTPS connection. In this situation, the
Cryostat Operator uses cert-manager to generate a self-signed certificate authority (CA) certificate,
which is stored within a secret. You must configure the Cryostat agent to trust this CA certificate.

Procedure

1. Create a Cryostat CR that defines the namespaces for your Cryostat instance and your target
applications.
For example, if you want to create a Cryostat CR in the cryostat namespace that is configured
to connect to target applications in the apps namespace, enter the following details:

apiVersion: operator.cryostat.io/v1beta2
kind: Cryostat
metadata:
 name: cryostat-sample
 namespace: cryostat
spec:
 enableCertManager: true
 targetNamespaces:
 - apps

2. After Cryostat becomes available, to obtain the CA certificate secret in your target application’s
namespace, enter the following commands:

$ oc project apps
$ oc get secret "cryostat-ca-$(echo -n 'cryostat/cryostat-sample' | sha256sum | cut -d ' ' -f 1)"

In the preceding example, replace apps with the namespace of your target application, and
replace cryostat/cryostat-sample with the namespace and name of your Cryostat instance.
Also, ensure that the namespace and name of your Cryostat instance are separated by a
forward slash (/).

The preceding command produces output similar to the following:

As shown in the preceding example, the secret name contains a hash suffix to prevent conflicts
with other Cryostat instances on your cluster.

3. Configure the Cryostat agent to trust Cryostat’s CA certificate by creating an init container to
import the certificate into a truststore.

NOTE

Red Hat build of Cryostat 3 Getting started with Cryostat

20

NOTE

This step assumes that you have a target application named my-app in the apps
namespace that has the Cryostat agent installed and is otherwise properly
configured.

In the following examples, replace any occurrences of my-app and apps with the
name and namespace of your target application, as appropriate.

a. Create a volume for the Cryostat CA secret in your deployment by using the secret name
that you obtained in Step 2.
For example:

$ oc set volumes deploy/my-app --add --name=cryostat-ca --secret-name=cryostat-ca-
30268177e44252b3f9b7d9bf3a6db48f3a1cd3656700a6830952afc4456c0048

The preceding command produces output similar to the following:

deployment.apps/my-app volume updated

b. Create an emptyDir volume to share the truststore between the init container and your
application container:
For example:

$ oc set volumes deploy/my-app --add --name=truststore -m
/var/run/secrets/io.cryostat/truststore

The preceding command produces output similar to the following:

deployment.apps/my-app volume updated

c. Add an init container to the deployment YAML file for your target application.
For example:

initContainers:
 - name: pem-to-truststore
 image: registry.access.redhat.com/ubi8/openjdk-11-runtime:latest
 command:
 - /bin/bash
 args:
 - -c
 - >-
 keytool -import -file
 /var/run/secrets/io.cryostat/cryostat-ca/tls.crt
 -keystore
 /var/run/secrets/io.cryostat/truststore/truststore.jks
 -trustcacerts -noprompt
 -storepass <my password>
 volumeMounts:
 - mountPath: /var/run/secrets/io.cryostat/cryostat-ca
 name: cryostat-ca
 - mountPath: /var/run/secrets/io.cryostat/truststore
 name: truststore

CHAPTER 3. CONFIGURING JAVA APPLICATIONS

21

In the preceding example, replace <my password> with the password that you want to use.

d. Define the javax.ssl.trustStore Java system property in your application.
For example:

env:
 - name: JAVA_OPTS_APPEND
 value: |-
 # …
 -Djavax.net.ssl.trustStore=/var/run/secrets/io.cryostat/truststore/truststore.jks
 -Djavax.net.ssl.trustStorePassword=<my password>

In the preceding example, replace <my password> with the password that you specified in
the previous step.

NOTE

How you set Java system properties depends on how your application is built
and which base image you used. The preceding example assumes that you
are using an application that was built with the OpenJDK UBI images.

3.3. CONFIGURING APPLICATIONS BY USING JMX CONNECTIONS

For Cryostat to detect and communicate with your target Java applications, you can configure the
applications to allow remote Java Management Extensions (JMX) connections.

Prerequisites

Logged in to your Cryostat web console.

Created a Cryostat instance in your project.

Procedure

1. To enable remote JMX connections, complete the following steps:

a. On your application, define the following Java system property:

-Dcom.sun.management.jmxremote.port=<port_num>

NOTE

Red Hat build of Cryostat 3 Getting started with Cryostat

22

NOTE

To add the -Dcom.sun.management.jmxremote.port=<port_num>
property without having to rebuild the target application, you can set the
JAVA_OPTS_APPEND environment variable on the application.
JAVA_OPTS_APPEND is an environment variable that is used by Red Hat
Universal Base Images (UBI) only.

If you use Red Hat UBI to build application images, set the
JAVA_OPTS_APPEND variable at build time in the application Docker file,
or at runtime by running the following command:

oc set env deployment <name> JAVA_OPTS_APPEND="..."

If you do not use Red Hat UBI to build application images, refer to the
documentation for your base image for information about how to add the
Java system properties at build time or runtime.

b. Specify that the application listens for remote JMX connections by allowing traffic to the
application. Use an Red Hat OpenShift Service and specify the following values for its
remote JMX port:

Example service.yaml

2. Secure the remote JMX connections:

a. Enable and configure authentication and SSL/TLS for the remote JMX connections in your
application:

-Dcom.sun.management.jmxremote.port=<port_num>

 # enable JMX authentication
-Dcom.sun.management.jmxremote.authenticate=true

define users for JMX auth
-Dcom.sun.management.jmxremote.password.file=</path/to/jmxremote.password>

set permissions for JMX users
-Dcom.sun.management.jmxremote.access.file=</path/to/jmxremote.access>

 # enable JMX SSL
 -Dcom.sun.management.jmxremote.ssl=true

enable JMX registry SSL
-Dcom.sun.management.jmxremote.registry.ssl=true

apiVersion: v1
kind: Service
...
spec:
 ports:
 - name: "jfr-jmx"
 port: 9091
 targetPort: 9091
...

CHAPTER 3. CONFIGURING JAVA APPLICATIONS

23

set your SSL keystore
-Djavax.net.ssl.keyStore=</path/to/keystore>

set your SSL keystore password
-Djavax.net.ssl.keyStorePassword=<password>

b. Configure Cryostat to trust the application TLS certificate. Create a secret for the
application in the same namespace as your Cryostat application and configure Cryostat to
refer to the secret. To create a secret for the certificate, run the following command:

oc create secret generic myapp-cert --from-file=tls.crt=/path/to/cert.pem

NOTE

The certificate must be in a .pem file format.

c. When you create your Cryostat instance, add the secret to the list of trusted TLS
certificates. For more information, see Configuring TLS certificates.

d. To allow your applications to verify that Cryostat is connecting to them by a means other
than password authentication, enable TLS client authentication:

-Dcom.sun.management.jmxremote.ssl.need.client.auth=true
-Djavax.net.ssl.trustStore=</path/to/truststore>
-Djavax.net.ssl.trustStorePassword=<password>

NOTE

TLS client authentication requires the cert-manager operator for Red Hat
OpenShift.

e. If you use TLS client authentication for remote JMX connections, the application truststore
must contain a Cryostat certificate. The Cryostat operator cert-manager integration creates
a self-signed certificate for the Cryostat deployment. This certificate is located in the
<cryostat>-tls secret, where <cryostat> is the name of the Cryostat instance you created.

NOTE

The cert-manager Operator also places a Java keystore truststore in the
secret.

To mount this truststore in your application deployment, run the following
command, replacing "<myapp>" with the name of your application
deployment and "<cryostat>" with the name of your Cryostat instance:

oc set volumes deploy <myapp> --add --name=truststore \
 --secret-name=<cryostat>-tls --sub-path=truststore.p12 \
 --mount-path=/var/run/secrets/<myapp>/truststore.p12

f. The Cryostat operator generates the truststore password, which you can find in the

Red Hat build of Cryostat 3 Getting started with Cryostat

24

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/using_the_cryostat_operator_to_configure_cryostat/#configuring_tls_certificates_assembly_cryostat-operator

f. The Cryostat operator generates the truststore password, which you can find in the
<cryostat>-keystore secret. To mount this as an environment variable in your application
deployment, run the following command:

oc set env deploy <myapp> --from='secret/<cryostat>-keystore'

g. Configure the Java arguments for the container. Run the following commands:

-Dcom.sun.management.jmxremote.ssl.need.client.auth=true
-Djavax.net.ssl.trustStore=/var/run/secrets/<myapp>/truststore.p12
-Djavax.net.ssl.trustStorePassword="$(KEYSTORE_PASS)"

WARNING

If you deployed Cryostat and your applications in a testing environment,
you might want to configure the target applications without any JMX or
TLS authentication. You can do so by using the following set of Java
system properties, however, this configuration is not secure and not
recommended.

-Dcom.sun.management.jmxremote.port=<port_num>
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false

Additional resources

Configuring TLS certificates

Storing and managing JMX credentials

3.4. CONFIGURING APPLICATIONS BY USING THE CRYOSTAT AGENT
AND JMX CONNECTIONS

You can configure target applications that run on Java Virtual Machines (JVM) to use a combination of
the Cryostat agent and Java Management Extensions (JMX) connections to detect and communicate
with the target applications.

You use the Cryostat agent to detect and communicate with the target application and use JMX to
expose the Java Flight Recorder (JFR) data.

You must configure the Cryostat agent to communicate with Cryostat about itself and that the agent is
reachable through JMX rather than through HTTP.

Prerequisites

Logged in to your Cryostat web console.

Created a Cryostat instance in your project.

CHAPTER 3. CONFIGURING JAVA APPLICATIONS

25

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/using_the_cryostat_operator_to_configure_cryostat/#configuring_tls_certificates_assembly_cryostat-operator
https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/using_cryostat_to_manage_a_jfr_recording/#proc_storing-managing-jmx-credentials_assembly_security-options

Procedure

1. Install the Cryostat agent. For application builds that use Maven, update the application
pom.xml file with the Cryostat agent JAR file information.

Example pom.xml file

NOTE

In the preceding example, replace 0.4.0.redhat-xxxxx with the latest build
version of the Cryostat agent (for example, 0.4.0.redhat-00001). For information
about the latest build version of the Cryostat agent, refer to the Red Hat Maven
repository.

2. Modify your application deployment:

<project>
 ...
 <repositories>
 <repository>
 <id>redhat-maven-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all/</url>
 </repository>
 </repositories>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>3.3.0</version>
 <executions>
 <execution>
 <phase>prepare-package</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>io.cryostat</groupId>
 <artifactId>cryostat-agent</artifactId>
 <version>0.4.0.redhat-xxxxx</version>
 <classifier>shaded</classifier>
 </artifactItem>
 </artifactItems>
 <stripVersion>true</stripVersion>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 ...
 </build>
 ...
</project>

Red Hat build of Cryostat 3 Getting started with Cryostat

26

https://maven.repository.redhat.com/earlyaccess/all/</url>
https://maven.repository.redhat.com/ga/io/cryostat/cryostat-agent/

Example

<1>: To configure authentication and SSL/TLS for the JMX connections and view further
configuration options, see Configuring applications by using JMX connections .

3. To enable Cryostat to detect the target application and connect to the Cryostat agent,

apiVersion: apps/v1
kind: Deployment
...
spec:
 ...
 template:
 ...
 spec:
 containers:
 - name: sample-app
 image: docker.io/myorg/myapp:latest
 env:
 - name: CRYOSTAT_AGENT_APP_NAME
 value: "myapp"
 # Replace this with the Kubernetes DNS record
 # for the Cryostat Service
 - name: CRYOSTAT_AGENT_BASEURI
 value: "http://cryostat.mynamespace.mycluster.svc:4180"
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: CRYOSTAT_AGENT_CALLBACK
 value: "http://$(POD_IP):9977"
 - name: CRYOSTAT_AGENT_AUTHORIZATION
 # Replace "abcd1234" with a plain-text authentication token
 value: "Bearer abcd1234"
 # This environment variable is key to the Cryostat agent
 # and JMX "hybrid" setup.
 # Set the Cryostat agent to register itself with Cryostat
 # as reachable through JMX, rather than reachable through HTTP.
 - name: CRYOSTAT_AGENT_REGISTRATION_PREFER_JMX
 value: "true"
 # Configure the application to load the agent JAR file and
 # to enable JMX, so that the Cryostat agent can register
 # itself as reachable through JMX.
 # To configure authentication and SSL/TLS for the JMX
 # connections, see <1>.
 - name: JAVA_OPTS
 value: >-
 -javaagent:/deployments/app/cryostat-agent-shaded.jar
 -Dcom.sun.management.jmxremote.port=9091 1
 ports:
 - containerPort: 9977
 protocol: TCP
 resources: {}
 restartPolicy: Always
status: {}

CHAPTER 3. CONFIGURING JAVA APPLICATIONS

27

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html/getting_started_with_cryostat/#configuring_applications-with-JMX

3. To enable Cryostat to detect the target application and connect to the Cryostat agent,
configure an application Service:

Example

Additional resources

Configuring applications by using the Cryostat agent

Configuring applications by using JMX connections

apiVersion: v1
kind: Service
...
spec:
 ports:
 - name: "jfr-jmx"
 port: 9091
 targetPort: 9091
 - name: "cryostat-agent"
 port: 9977
 targetPort: 9977
...

Red Hat build of Cryostat 3 Getting started with Cryostat

28

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html/getting_started_with_cryostat/#configuring_applications-with-agent
https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html/getting_started_with_cryostat/#configuring_applications-with-JMX

CHAPTER 4. CREATING A JFR RECORDING WITH CRYOSTAT
With Cryostat, you can create a JDK Flight Recorder (JFR) recording that monitors the performance of
your JVM in your containerized application. Additionally, you can take a snapshot of an active JFR
recording to capture any collected data, up to a specific point in time, for your target JVM application.

4.1. CREATING A JFR RECORDING IN THE CRYOSTAT WEB CONSOLE

You can create a JFR recording that monitors the performance of your JVM located in your
containerized application. After you create a JFR recording, you can start the JFR to capture real-time
data for your JVM, such as heap and non-heap memory usage.

Prerequisites

Installed Cryostat 3.0 on Red Hat OpenShift by using the OperatorHub option.

Created a Cryostat instance in your Red Hat OpenShift project.

Logged in to your Cryostat web console.

You can retrieve your Cryostat application’s URL by using the Red Hat OpenShift web
console.

Procedure

1. On the Dashboard panel for your Cryostat web console, select a target JVM from the Target
list.

NOTE

Depending on how you configured your target applications, your target JVMs
might be using a JMX connection or an agent HTTP connection. For more
information about configuring your target applications, see Configuring Java
applications.

IMPORTANT

If your target JVM is using an agent HTTP connection, ensure that you set the
cryostat.agent.api.writes-enabled property to true when you configured your
target application to load the Cryostat agent. Otherwise, the Cryostat agent
cannot accept requests to start and stop JFR recordings.

Figure 4.1. Example of selecting a Target JVM for your Cryostat instance

CHAPTER 4. CREATING A JFR RECORDING WITH CRYOSTAT

29

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/getting_started_with_cryostat/index#assembly_configuing-java-applications_cryostat

Figure 4.1. Example of selecting a Target JVM for your Cryostat instance

2. Optional: On the Dashboard panel, you can create a target JVM. From the Target list, click
Create Target. The Create Custom Target window opens.

a. In the Connection URL field, enter the URL for your JVM’s Java Management Extension
(JMX) endpoint.

b. Optional: To test if the Connection URL that you specified is valid, click the Click to test
sample node image. If there is an issue with the Connection URL, an error message is
displayed that provides a description of the issue and guidance to troubleshoot.

c. Optional: In the Alias field, enter an alias for your JMX Service URL.

d. Click Create.

Figure 4.2. Create Custom Target window

3. From the navigation menu on the Cryostat web console, click Recordings.

4. Optional: Depending on how you configured your target JVM, an Authentication Required
dialog might open on your web console. In the Authentication Required dialog box, enter your
Username and Password. To provide your credentials to the target JVM, click Save.

Figure 4.3. Example of a Cryostat Authentication Required window

Red Hat build of Cryostat 3 Getting started with Cryostat

30

Figure 4.3. Example of a Cryostat Authentication Required window

NOTE

If the selected target JMX has Secure Socket Layer (SSL) certification enabled
for JMX connections, you must add its certificate when prompted.

Cryostat encrypts and stores credentials for a target JVM application in a
database that is stored on a persistent volume claim (PVC) on Red Hat
OpenShift. See Storing and managing credentials (Using Cryostat to manage a
JFR recording).

5. On the Active Recordings tab, click Create.

Figure 4.4. Example of creating an active recording

6. On the Custom Flight Recording tab:

a. In the Name field, enter the name of the recording you want to create. If you enter a name
in an invalid format, the web console displays an error message.

b. If you want Cryostat to automatically restart an existing recording, select the Restart if
recording already exists check box.

NOTE

If you enter a name that already exists but you do not select Restart if
recording already exists, Cryostat refuses to create a custom recording
when you click the Create button.

c. In the Duration field, select whether you want this recording to stop after a specified

CHAPTER 4. CREATING A JFR RECORDING WITH CRYOSTAT

31

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/using_cryostat_to_manage_a_jfr_recording/#proc_storing-managing-jmx-credentials_assembly_security-options

c. In the Duration field, select whether you want this recording to stop after a specified
duration or to run continuously without stopping. If you want Cryostat to automatically
archive your new JFR recording after the recording stops, click Archive on Stop.

d. In the Template field, select the template that you want to use for the recording.

The following example shows continuous JVM monitoring, which you can enable by selecting
Continuous from above the Duration field. This setting means that the recording will continue
until you manually stop the recording. The example also shows selection of the Profiling
template from the Template field. This provides additional JVM information to a JFR recording
for troubleshooting purposes.

Figure 4.5. Example of creating a custom flight recording

7. To access more options, click the following expandable hyperlinks:

Show advanced options, where you can select additional options for customizing your JFR
recording.

Show metadata options, where you can add custom labels and metadata to your JFR
recording.

8. To create your JFR recording, click Create. The Active Recordings tab opens and lists your
JFR recording.
Your active JFR recording starts collecting data on the target JVM location inside your
containerized application. If you specified a fixed duration for your JFR recordings, the target
JVM stops the recording when it reaches the fixed duration setting. Otherwise, you must
manually stop the recording.

9. Optional: On the Active Recording tab, you can also stop the recording.

a. Select the checkbox next to the JFR recording’s name. On the toolbar in the Active
Recordings tab, the Cryostat web console activates the Stop button.

b. Click Stop. The JFR adopts the STOPPED status, so it stops monitoring the target JVM.
The JFR still shows under the Active Recording tab.

Figure 4.6. Example of stopping an active recording

Red Hat build of Cryostat 3 Getting started with Cryostat

32

Figure 4.6. Example of stopping an active recording

IMPORTANT

JFR recording data might be lost in the following situations:

Target JVM fails

Target JVM restarts

Target JVM Red Hat OpenShift Deployment is scaled down

Archive your JFR recordings to ensure you do not lose your JFR recording’s
data.

Additional resources

See Uploading an SSL certificate (Using Cryostat to manage a JFR recording).

See Archiving JDK Flight Recorder (JFR) recordings (Using Cryostat to manage a JFR
recording).

4.2. CREATING SNAPSHOTS FROM AN ACTIVE RECORDING

You can take a snapshot of an active JFR recording to capture any collected data, up to a specific point
in time, for your target JVM application. A snapshot is like a checkpoint marker that has a start point and
an end point for a given time segment in a running JFR recording.

A snapshot gets stored in the memory of a target JVM application. This differs from an archive in that
Cryostat stores an archive on a cloud storage disk, which is a more permanent solution for storing a JFR
recording’s data.

You can take snapshots of recordings if you want to experiment with different configuration changes
among active JFR recordings.

When you create a snapshot for your JFR recording, Cryostat creates a new target JVM named
snapshot -<snapshot_number>, where <snapshot_number> is the number that Cryostat
automatically assigns to your snapshot.

A target JVM recognizes a snapshot as an active recording. Cryostat sets any JFR snapshots in the
STOPPED state, which means that the JFR snapshot does not record new data to the target JVM.
Depending on the JFR configuration, active JFR recordings can continue to monitor the target JVM
regardless of the number of snapshots taken.

NOTE

CHAPTER 4. CREATING A JFR RECORDING WITH CRYOSTAT

33

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/using_cryostat_to_manage_a_jfr_recording/#proc-uploading-ssl-certificate_assembly_security-options
https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/using_cryostat_to_manage_a_jfr_recording/#proc-archiving-recordings_assembly_archive-jfr-recordings

NOTE

For a JFR recording that you set for continuous monitoring of a target JVM application,
ensure that you create archived recordings to avoid losing JFR recording data.

If you choose to take regular snapshots to store your JFR recording data, the target JVM
application might free some of its data storage space by replacing older recording data
with newer recording data.

Prerequisites

Entered your authentication details for your Cryostat instance.

Created a target JVM recording and entered your authenticated details to access the
Recordings menu. See Creating a JDK Flight Recorder (JFR) recording (Creating a JFR
recording with Cryostat).

Procedure

1. On the Active Recordings tab, click the Create button. A new window opens on the web
console.

Figure 4.7. Example of creating an active recording

2. Click the Snapshot Recording tab.

Figure 4.8. Example of creating a snapshot recording

3. Click Create. The Active Recordings table opens and it lists your JFR snapshot recording. The
following example shows a JFR snapshot recording named snapshot-3.

Figure 4.9. Example of a completed snapshot recording

Red Hat build of Cryostat 3 Getting started with Cryostat

34

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/creating_a_jfr_recording_with_cryostat/#proc_creating-jdk-recording_assembly_creating-recordings

Figure 4.9. Example of a completed snapshot recording

NOTE

You can identify snapshots by the snapshot prefix from the list of active
recordings.

Next steps

To archive your JFR snapshot recording, see Archiving JDK Flight Recorder (JFR) recordings .

4.3. LABELS FOR JFR RECORDINGS

When you create a JDK Flight Recorder (JFR) recording on Cryostat 3.0, you can add metadata to the
recording by specifying a series of key-value label pairs.

Additionally, you can attach custom labels to JFR recordings that are inside a target JVM, so that you
can easily identify and better manage your JFR recordings.

The following list details some common recording label use cases:

Attach metadata to your JFR recording.

Perform batch operations on recordings that contain identical labels.

Use labels when running queries on recordings.

You can use Cryostat to create a JFR recording that monitors the performance of your JVM in your
containerized application. Additionally, you can take a snapshot of an active JFR recording to capture
any collected data, up to a specific point in time, for your target JVM application.

4.3.1. Adding labels to JFR recordings

When you create a JFR recording on Cryostat 3.0, you can use labels to add metadata that contain key-
value label pairs to the recording.

Cryostat applies default recording labels to a created JFR recording. These default labels capture
information about the event template that Cryostat used to create the JFR recording.

You can add custom labels to your JFR recording so that you can run specific queries that meet your
needs, such as identifying specific JFR recordings or performing batch operations on recordings with
the same applied labels.

CHAPTER 4. CREATING A JFR RECORDING WITH CRYOSTAT

35

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/using_cryostat_to_manage_a_jfr_recording/#proc-archiving-recordings_assembly_archive-jfr-recordings

Prerequisites

Logged in to your Cryostat web console.

Created or selected a target JVM for your Cryostat instance.

Procedure

1. From your Cryostat web console, click Recordings.

2. Under the Active Recordings tab, click Create.

3. On the Custom Flight Recording tab, expand Show metadata options.

NOTE

On the Custom Flight Recording tab, you must complete any mandatory field
that is marked with an asterisk.

4. Click Add label.

Figure 4.10. The Add Label button that is displayed under the Custom Flight Recording tab

5. Enter values in the provided Key and Value fields. For example, if you want to file an issue with
the recordings, you could enter the reason in the Key field and then enter the issue type in the
Value field.

6. Click Create to create your JFR recording. Your recording is then shown under the Active
Recordings tab along with any specified recording labels and custom labels.

TIP

You can access archived JFR recordings from the Archives menu. See Uploading a JFR
recording to Cryostat archives location (Using Cryostat to manage a JFR recording).

Example

The following example shows two default recording labels, template.name: Profiling and
template.type: TARGET, and one custom label, reason:service-outage.

Figure 4.11. Example of an active recording with defined recording labels and a custom label

Red Hat build of Cryostat 3 Getting started with Cryostat

36

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/using_cryostat_to_manage_a_jfr_recording/#proc-uploading-recording-archive

Figure 4.11. Example of an active recording with defined recording labels and a custom label

4.3.2. Editing a label for your JFR recording

On the Cryostat web console, you can navigate to the Recordings menu and then edit a label and its
metadata for your JFR recording. You can also edit the label and metadata for a JFR recording that you
uploaded to archives.

Prerequisites

Logged in to your Cryostat web console.

Created a JFR recording and attach labels to this recording.

Procedure

1. On your Cryostat web console, click the Recording menu.

2. From the Active Recordings tab, locate your JFR recording, and then select the checkbox next
to it.

3. Click Edit Labels. An Edit Recording Label pane opens in your Cryostat web console, which you
can use to add, edit, or delete labels for your JFR recording.

TIP

You can select multiple JFR recordings by selecting the checkbox that is next to each recording.
Click the Edit Labels button if you want to bulk edit recordings that contain the same labels or
add new identical labels to multiple recordings.

4. Optional: You can perform any of the following actions from the Edit Recording Labels pane:

a. Click Add to create a label.

b. Delete a label by clicking the X next to the label.

c. Edit a label by modifying any content in a field. After you edit content, a green tick is shown
in the field to indicate an edit.

5. Click Save.

6. Optional: You can archive your JFR recordings along with their labels by completing the
following steps:

a. Select the checkbox next to the recording’s name.

b. Click the Archive button. You can locate your recording under the Archived Recordings

CHAPTER 4. CREATING A JFR RECORDING WITH CRYOSTAT

37

b. Click the Archive button. You can locate your recording under the Archived Recordings
tab.
By archiving your recording with its labels, you can enhance your search capabilities when
you want to locate the recording at a later stage. You can also add additional labels to any
recording that you uploaded to the Cryostat archives.

NOTE

Cryostat preserves any labels with the recording for the lifetime of the
archived recording.

Verification

From the Active Recordings tab, check that your changes display under the Labels section for
your recording.

Additional resources

Archiving JDK Flight Recorder (JFR) recordings (Using Cryostat to manage a JFR recording)

Revised on 2024-07-02 13:35:17 UTC

Red Hat build of Cryostat 3 Getting started with Cryostat

38

https://access.redhat.com/documentation/en-us/red_hat_build_of_cryostat/3/html-single/using_cryostat_to_manage_a_jfr_recording/index#proc-archiving-recordings_assembly_archive-jfr-recordings

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. OVERVIEW OF CRYOSTAT
	CHAPTER 2. INSTALLING CRYOSTAT ON RED HAT OPENSHIFT BY USING A RED HAT BUILD OF CRYOSTAT OPERATOR
	CHAPTER 3. CONFIGURING JAVA APPLICATIONS
	Cryostat agent
	Remote Java Management Extensions (JMX) connections
	Cryostat agent and JMX hybrid
	3.1. LAUNCHING THE CRYOSTAT AGENT AS A STANDALONE PROCESS FOR DYNAMIC ATTACHMENT TO THE JVM
	Agent launch behavior based on the PID value
	Late-binding configuration options

	3.2. CONFIGURING APPLICATIONS BY USING THE CRYOSTAT AGENT
	3.2.1. Configuring the Cryostat agent to trust the Cryostat server

	3.3. CONFIGURING APPLICATIONS BY USING JMX CONNECTIONS
	3.4. CONFIGURING APPLICATIONS BY USING THE CRYOSTAT AGENT AND JMX CONNECTIONS

	CHAPTER 4. CREATING A JFR RECORDING WITH CRYOSTAT
	4.1. CREATING A JFR RECORDING IN THE CRYOSTAT WEB CONSOLE
	4.2. CREATING SNAPSHOTS FROM AN ACTIVE RECORDING
	4.3. LABELS FOR JFR RECORDINGS
	4.3.1. Adding labels to JFR recordings
	4.3.2. Editing a label for your JFR recording

