& RedHat

Red Hat build of Debezium 2.5.4

Getting Started with Debezium

For use with Red Hat build of Debezium 2.5.4

Last Updated: 2024-04-08

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

For use with Red Hat build of Debezium 2.5.4

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to get started using Red Hat build of Debezium.

Table of Contents

Table of Contents
PREFACE . vttt e e e e e e e e e e e, 3
MAKING OPEN SOURCE MORE INCLUSIVE 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 3
CHAPTER 1. ABOUT THIS TUTORIAL .« .\t vttt e e e e e e et e e e e e e e, 4
CHAPTER 2. INTRODUCTION TO DEBEZIUM .+« v\ v v et e e e e e e e e e e e e 5
CHAPTER 3. STARTING THE SERVICES .+ neet et e e e e e e e e e e e e e e 6
3.1. DEPLOYING A MYSQL DATABASE 6
3.2. DEPLOYING KAFKA CONNECT 7
3.3. EXAMPLE: A SIMPLE OPENSHIFT IMAGESTREAM OBJECT DEFINITION n
3.4. VERIFYING THE CONNECTOR DEPLOYMENT 2
CHAPTER 4. VIEWING CHANGE EVENTS . uueet ettt e e e e e e e e e 16
4. VIEWING A CREATE EVENT 16
4.2. UPDATING THE DATABASE AND VIEWING THE UPDATE EVENT 22
4.3. DELETING A RECORD IN THE DATABASE AND VIEWING THE DELETE EVENT 24
4.4. RESTARTING THE KAFKA CONNECT SERVICE 27
CHAPTER 5. NEXT STEPS . nuett ettt e e et e e e e e e e 30

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

PREFACE

PREFACE

This tutorial demonstrates how to use Debezium to capture updates in a MySQL database. As the data
in the database changes, you can see the resulting event streams.

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

® You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance.
If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following link: Create issue.
2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

® The URL of the page where you found the issue.

® A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12317320&issuetype=1&components=12333058&priority=3&description=URL where issue was found%3A%C2%A0%0A%0ADescription of issue%3A%C2%A0&12368953

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

CHAPTER 1. ABOUT THIS TUTORIAL

The tutorial includes the following steps:

Deploy a MySQL database server with a simple example database to OpenShift.

Apply a custom resource in AMQ Streams to automatically build a Kafka Connect container
image that includes the Debezium MySQL connector plug-in.

Create the Debezium MySQL connector resource to capture changes in the database.
Verify the connector deployment.

View the change events that the connector emits to a Kafka topic from the database.

Prerequisites

You are familiar with OpenShift and AMQ Streams.
You have access to an OpenShift cluster on which the cluster Operator is installed.
The AMQ Streams Operator is running.

An Apache Kafka cluster is deployed as documented in Deploying and Managing AMQ Streams
on OpenShift.

You have a Red Hat build of Debezium license.

You know how to use OpenShift administration tools. The OpenShift oc CLI client is installed or
you have access to the OpenShift Container Platform web console.

Depending on how you intend to store the Kafka Connect build image, you must either have
permission to access a container registry, or you must create an ImageStream resource on
OpenShift:

To store the build image in an image registry, such as Red Hat Quay.io or Docker Hub

o Anaccount and permissions to create and manage images in the registry.

To store the build image as a native OpenShift ImageStream

o AnlImageStream resource is deployed to the cluster for storing new container images.
You must explicitly create an ImageStream for the cluster. ImageStreams are not
available by default.

Additional resources:

Managing image streams on OpenShift Container Platform.

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/cli_tools/index#installing-openshift-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/images/index#managing-image-streams

CHAPTER 2. INTRODUCTION TO DEBEZIUM

CHAPTER 2. INTRODUCTION TO DEBEZIUM

Debezium is a distributed platform that converts information from your existing databases into event
streams, enabling applications to detect, and immediately respond to row-level changes in the
databases.

Debezium is built on top of Apache Kafka and provides a set of Kafka Connect compatible connectors.
Each of the connectors works with a specific database management system (DBMS). Connectors
record the history of data changes in the DBMS by detecting changes as they occur, and streaming a
record of each change event to a Kafka topic. Consuming applications can then read the resulting event
records from the Kafka topic.

By taking advantage of Kafka's reliable streaming platform, Debezium makes it possible for applications
to consume changes that occur in a database correctly and completely. Even if your application stops
unexpectedly, or loses its connection, it does not miss events that occur during the outage. After the
application restarts, it resumes reading from the topic from the point where it left off.

The tutorial that follows shows you how to deploy and use the Debezium MySQL connector with a

simple configuration. For more information about deploying and using Debezium connectors, see the
connector documentation.

Additional resources

® Debezium connector for Db2

® Debezium connector for MongoDB

® Debezium connector for MySQL

® Debezium connector for Oracle Database
® Debezium connector for PostgreSQL

® Debezium connector for SQL Server

http://kafka.apache.org
https://kafka.apache.org/documentation.html#connect
https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium/2.5.4/html-single/debezium_user_guide/index#debezium-connector-for-mysql
https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium/2.5.4/html-single/debezium_user_guide/index#debezium-connector-for-db2
https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium/2.5.4/html-single/debezium_user_guide/index#debezium-connector-for-mongodb
https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium/2.5.4/html-single/debezium_user_guide/index#debezium-connector-for-mysql
https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium/2.5.4/html-single/debezium_user_guide/index#debezium-connector-for-oracle
https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium/2.5.4/html-single/debezium_user_guide/index#debezium-connector-for-postgresql
https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium/2.5.4/html-single/debezium_user_guide/index#debezium-connector-for-sql-server

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

CHAPTER 3. STARTING THE SERVICES

Using Debezium requires AMQ Streams with Kafka and Kafka Connect, a database, and the Debezium
connector service. To run the services for this tutorial, you must:

1. Deploy a MySQL database
2. Deploy Kafka Connect with the Debezium MySQL Connector plug-in
3. ImageStream example

4. Verify the connector deployment

3.1. DEPLOYING A MYSQL DATABASE

Deploy a MySQL database server that includes an example inventory database that includes several
tables that are pre-populated with data. The Debezium MySQL connector will capture changes that
occur in the sample tables and transmit the change event records to an Apache Kafka topic.

Procedure

1. Start a MySQL database by running the following command, which starts a MySQL database
server configured with an example inventory database:

I $ oc new-app -I app=mysql --name=mysql quay.io/debezium/example-mysql:latest

2. Configure credentials for the MySQL database by running the following command, which
updates the deployment configuration for the MySQL database to add the user name and
password:

$ oc set env deployment/mysgl MYSQL_ROOT_PASSWORD=debezium
MYSQL_USER=mysqluser MYSQL_PASSWORD=mysqglpw

3. Verify that the MySQL database is running by invoking the following command, which is
followed by the output that shows that the MySQL database is running, and that the pod is
ready:

$ oc get pods -l app=mysq|
NAME READY STATUS RESTARTS AGE
mysql-1-2gzx5 1/1 Running 1 23s

4. Open a new terminal and log into the sample inventory database.
This command opens a MySQL command line client in the pod that is running the MySQL
database. The client uses the user name and password that you previously configured:

$ oc exec mysql-1-2gzx5 -it -- mysql -u mysgluser -pmysglpw inventory

mysql: [Warning] Using a password on the command line interface can be insecure.
Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7
Server version: 5.7.29-log MySQL Community Server (GPL)

CHAPTER 3. STARTING THE SERVICES

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or "\h' for help. Type "\c' to clear the current input statement.
mysql>

5. List the tables in the inventory database:

mysql> show tables;

oo +

| Tables_in_inventory |
oo +

| addresses |

| customers |

| geom |

| orders |

| products |

| products_on_hand |
Fommmm e +

6 rows in set (0.00 sec)

6. Explore the database and view the data that it contains, for example, view the customers table:

mysql> select * from customers;

. Fommmmmmmme- fmmmmmmmnee Frommmmmmmm e +
| id | first_name | last_name | email |
. Fommmmmmmme- fmmmmmmmne Frommmmmmm e +

| 1001 | Sally | Thomas | sally.thomas@acme.com |
| 1002 | George | Bailey | gbailey@foobar.com |

| 1003 | Edward | Walker | ed@walker.com |

| 1004 | Anne | Kretchmar | annek@noanswer.org |
. Fommmmmmmme- fmmmmmmmnee Frommmmmm e +

4 rows in set (0.00 sec)

3.2. DEPLOYING KAFKA CONNECT

After you deploy the MySQL database, use AMQ Streams to build a Kafka Connect container image that
includes the Debezium MySQL connector plug-in. During the deployment process, you create and use
the following custom resources (CRs):

e A KafkaConnect CR that defines your Kafka Connect instance and includes information about
the MySQL connector artifacts to include in the image.

e A KafkaConnector CR that provides details that include information that the MySQL
connector uses to access the source database. After AMQ Streams starts the Kafka Connect
pod, you start the connector by applying the KafkaConnector CR.

During the build process, the AMQ Streams Operator transforms input parameters in the
KafkaConnect custom resource, including Debezium connector definitions, into a Kafka Connect
container image. The build downloads the necessary artifacts from the Red Hat Maven repository, and

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

incorporates them into the image. The newly created container is pushed to the container registry that
is specified in .spec.build.output, and is used to deploy a Kafka Connect pod.

Container images can be stored in an external container registry, such as quay.io, or in an OpenShift
ImageStream. Because ImageStreams are not created automatically, to store container images in an
ImageStream, you must create the ImageStream before you deploy Kafka Connect.

After AMQ Streams builds and stores the Kafka Connect image, use the KafkaConnector custom
resource to start the connector.

Prerequisites

® AMQ Streams is running on an OpenShift cluster.
® The AMQ Streams Cluster Operator is installed to the OpenShift cluster.

e |f you prefer to store the KafkaConnect container image in an OpenShift ImageStream, an
ImageStream is available.

® Apache Kafka and Kafka Connect are running on AMQ Streams.

Procedure

1. Login to the OpenShift cluster and create or open a project, for example debezium.

2. Create a Debezium KafkaConnect custom resource (CR) for the connector, or modify an
existing one.
The following example shows an excerpt from a dbz-connect.yaml file that describes a
KafkaConnect custom resource.
The metadata.annotations and spec.build properties are required.

Example 3.1. A dbz-connect.yaml file that defines aKafkaConnect custom resource that
includes a Debezium connector

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:

name: my-connect-cluster
annotations:
strimzi.io/use-connector-resources: "true"
spec:
replicas: 1
version: 3.6.0
build: €

output: €

type: imagestream ﬂ
image: debezium-streams-connect:latest
plugins: 6
- name: debezium-connector-mysq|
artifacts:
- type: zip G
url: https://maven.repository.redhat.com/ga/io/debezium/debezium-connector-
mysql/2.5.4.Final-redhat-00001/debezium-connector-mysql-2.5.4.Final-redhat-00001-

plugin.zip

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/images/index#managing-image-streams
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/getting_started_with_amq_streams_on_openshift/index#proc-deploying-cluster-operator-hub-str
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/images/index#managing-image-streams
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploying-kafka-connect-str

CHAPTER 3. STARTING THE SERVICES

bootstrapServers: my-cluster-kafka-bootstrap:9093

Table 3.1. Descriptions of Kafka Connect configuration settings

Item Description

1

Sets the strimzi.io/use-connector-resources annotation to "true" to enable
the Cluster Operator to use KafkaConnector resources to configure connectors in
this Kafka Connect cluster.

The spec.build configuration specifies where to store the build image and lists the
plug-ins to include in the image, along with the location of the plug-in artifacts.

The build.output specifies the registry in which the newly built image is stored.

Specifies the name and image name for the image output. Valid values for
output.type aredocker to push into a container registry like Docker Hub or Quay,
or imagestream to push the image to an internal OpenShift ImageStream. To use
an ImageStream, an ImageStream resource must be deployed to the cluster. For
more information about specifying the build.output in the KafkaConnect
configuration, see the AMQ Streams Build schema reference documentation

The plugins configuration lists all of the connectors that you want to include in the
Kafka Connectimage. For each entry in the list, specify a plug-in name, and
information for about the artifacts that are required to build the connector.
Optionally, for each connector plug-in, you can include other components that you
want to be available for use with the connector. For example, you can add Service
Registry artifacts, or the Debezium scripting component.

The value of artifacts.type specifies the file type of the artifact specified in the
artifacts.url. Valid types arezip, tgz, orjar. Debezium connector archives are
provided in .zip file format. JDBC driver files are in.jar format. The type value must
match the type of the file that is referenced in the url field.

The value of artifacts.url specifies the address of an HTTP server, such as a Maven
repository, that stores the file for the connector artifact. The OpenShift cluster must
have access to the specified server.

3. Apply the KafkaConnect build specification to the OpenShift cluster by entering the following

command:

I oc create -f dbz-connect.yaml

Based on the configuration specified in the custom resource, the AMQ Streams Operator
prepares a Kafka Connect image to deploy.

After the build completes, the Operator pushes the image to the specified registry or
ImageStream, and starts the Kafka Connect cluster. The connector artifacts that you listed in
the configuration are available in the cluster.

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index#type-Build-reference

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

10

4. Create a KafkaConnector resource to define an instance of the MySQL connector.
For example, create the following KafkaConnector CR, and save it as debezium-inventory-
connector.yaml

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnector
metadata:

strimzi.io/cluster: my-connect-cluster
name: inventory-connector ﬂ

class: io.debezium.connector.mysql.MySqglConnector 9
tasksMax: 1 6
config: ﬂ
database.hostname: mysq| 6
database.port: 3306 G
database.user: debezium ﬂ
database.password: dbz 6
database.server.id: 184054
topic.prefix: dbserveri Q
table.include.list: inventory.* @
schema.history.internal.kafka.bootstrap.servers: 'my-cluster-kafka-bootstrap:9092' m

Example 3.2. Amysgql-inventory-connector.yaml file that defines theKafkaConnector
custom resource for a Debezium connector
‘ schema.history.internal.kafka.topic: schema-changes.inventory

Table 3.2. Descriptions of connector configuration settings

Item Description

1

The name of the connector to register with the Kafka Connect cluster.

The name of the connector class.

Only one task should operate at any one time. Use a single connector task to ensure
proper order and event handling as the MySQL connector reads the MySQL server's
binlog. The Kafka Connect service uses connectors to start one or more tasks to
complete the work. It automatically distributes the running tasks across the cluster of
Kafka Connect services. If services stop or crash, tasks are redistributed to running
services.

The connector’s configuration.

The hostname or address of the MySQL database instance.

The port number of the database instance.

The name of the user account through which Debezium connects to the database.

CHAPTER 3. STARTING THE SERVICES

Item Description

8 The password that Debezium uses to connect to the database user account.

9 Topic prefix for the MySQL server or cluster. This string prefixes the names of every
Kafka topic that the connector sends event records to.

10 The list of tables from which the connector captures change events. The connector
detects changes only if they occur in the inventory table.

n List of Kafka brokers that the connector uses to write and recover DDL statements to
the database schema history topic. This is the same broker that the connector sends
change event records to. After a restart, the connector recovers the database schemas
that existed at the point in the binlog when the connector resumes reading.

12 Name of the database schema history topic. This topic is for internal use only and
should not be used by consumers.

5. Create the connector resource by running the following command:
I oc create -n <namespace> -f <katkaConnector>.yaml

For example,

I oc create -n debezium -f mysql-inventory-connector.yaml

The connector is registered to the Kafka Connect cluster and starts to run against the database
that is specified by spec.config.database.dbname in the KafkaConnector CR. After the
connector pod is ready, Debezium is running.

You are now ready to verify that the connector was created and has started to capture changes in the
inventory database.

3.3. EXAMPLE: A SIMPLE OPENSHIFTIMAGESTREAM OBJECT
DEFINITION

The following example shows a simple ImageStream object definition

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
name: kafka-connect-dbz-mysq|
spec:
lookupPolicy:
local: true

Additional resources:

® Creating and managing images and imagestreams in OpenShift Container Platform .

1

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/images/index

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

3.4.VERIFYING THE CONNECTOR DEPLOYMENT

If the connector starts correctly without errors, it creates a topic for each table that the connector is
configured to capture. Downstream applications can subscribe to these topics to retrieve information
events that occur in the source database.

To verify that the connector is running, you perform the following operations from the OpenShift
Container Platform web console, or through the OpenShift CLI tool (oc):

e \erify the connector status.
e Verify that the connector generates topics.

nonon

e Verify that topics are populated with events for read operations ("op":"r") that the connector
generates during the initial snapshot of each table.

Prerequisites

® A Debezium connector is deployed to AMQ Streams on OpenShift.
® The OpenShift oc CLI client is installed.

® You have access to the OpenShift Container Platform web console.

Procedure
1. Check the status of the KafkaConnector resource by using one of the following methods:
® From the OpenShift Container Platform web console:

a. Navigate to Home = Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaConnector.

c. From the KafkaConnectors list, click the name of the connector that you want to
check, for example inventory-connector.

d. Inthe Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

® From a terminal window:

a. Enter the following command:
I oc describe KafkaConnector <connector-name> -n <project>
For example,
I oc describe KafkaConnector inventory-connector -n debezium
The command returns status information that is similar to the following output:
Example 3.3. KafkaConnector resource status

I Name: inventory-connector

12

Status: True
Type: Ready
Tasks:

Id: 0

Connector Status:
State: RUNNING

CHAPTER 3. STARTING THE SERVICES
Connector:

State: RUNNING

worker_id: 10.131.1.124:8083
Type: source

Namespace: debezium
Labels: strimzi.io/cluster=my-connect-cluster
Annotations: <none>
APl Version: kafka.strimzi.io/vibeta2
Kind: KafkaConnector
Status:
Conditions:
worker_id: 10.131.1.124:8083
Observed Generation: 1

Last Transition Time: 2021-12-08T17:41:34.8971537
Name: inventory-connector
Tasks Max: 1

Topics:

dbserveri
dbserveri.inventory.addresses
dbserveri.inventory.customers
dbserveri.inventory.geom
dbserveri.inventory.orders
dbserveri.inventory.products
dbserveri.inventory.products_on_hand

Events: <none>

2. Verify that the connector created Kafka topics:
® From the OpenShift Container Platform web console.

a. Navigate to Home = Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaTopic.

c. From the KafkaTopics list, click the name of the topic that you want to check, for
example, dbserverl.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078alece439081d.

d. Inthe Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

® From a terminal window:

a. Enter the following command:

13

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

14

I oc get kafkatopics

The command returns status information that is similar to the following output:

Example 3.4. KafkaTopic resource status

NAME CLUSTER PARTITIONS REPLICATION FACTOR READY
connect-cluster-configs my-cluster 1 1 True
connect-cluster-offsets my-cluster 25 1 True
connect-cluster-status my-cluster 5 1 True

consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a my-cluster
50 1 True

dbserver1---a96f69b23d6118ff415f772679da623fbbb99421 my-cluster 1 1 True
dbserveri.inventory.addresses---
1b6beaf7b2eb57d177d92be90ca2b210c9a56480 my-cluster 1 1 True
dbserveri.inventory.customers---9931e04ec92ecc0924f4406af3fdace7545c483b
my-cluster 1 1 True
dbserveri.inventory.geom---9f7e136091f071bf49ca59bf99e86¢713ee58dd5 my-
cluster 11 True
dbserveri.inventory.orders---ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d
my-cluster 1 1 True
dbserveri.inventory.products---df0746db116844cee2297fab611c21b56f82dcef
my-cluster 1 1 True

dbserveri.inventory.products-on-hand---
8649e0f17ffcc9212e266e31a7aeead585e5c6b5 my-cluster 1 1 True
schema-changes.inventory my-cluster 1 1 True
strimzi-store-topic---effb8e3e057afce1ecf67¢c3f5d8e4e3ff177fc55 my-
cluster 1 1 True

strimzi-topic-operator-kstreams-topic-store-changelog---
b75e702040b99be8a9263134de3507fc0cc4017b my-cluster 1 1 True

3. Check topic content.

® From a terminal window, enter the following command:

0C exec -n <project> -it <kafka-cluster> -- /opt/kafka/bin/katka-console-consumer.sh \

\%

vV V. V

For example,

--bootstrap-server localhost:9092 \
--from-beginning \

--property print.key=true \
--topic=<topic-name>

oc exec -n debezium -it my-cluster-kafka-0 -- /opt/katka/bin/kafka-console-consumer.sh \

>

vV V. V

--bootstrap-server localhost:9092 \
--from-beginning \

--property print.key=true \
--topic=dbserver1.inventory.products_on_hand

The format for specifying the topic name is the same as the oc describe command returns in
Step 1, for example, dbserveri.inventory.addresses.

CHAPTER 3. STARTING THE SERVICES

For each event in the topic, the command returns information that is similar to the following
output:

Example 3.5. Content of a Debezium change event
{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"dbserveri.invent
ory.products_on_hand.Key"},"payload":{"product_id":101}} {"schema":

{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"dbserver1.inventory.
products_on_hand.Value","field":"before"},{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"dbserver1.inventory.
products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},
{"type":"string","optional":false,"field":"name"},

{"type":"int64","optional™:false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":
{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},

{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connecto
r.mysqgl.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional™:true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional™:false,"field":"total_order"},
{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transacti
on"}],"optional":false,"name":"dbserveri.inventory.products_on_hand.Envelope"},"payload
"{"before":null,"after":{"product_id":101,"quantity":3},"source":{"version":"2.5.4.Final-

redhat-
00001","connector":"mysql","name":"dbserver1","ts_ms":1638985247805,"snapshot":"true",
"db":"inventory","sequence":null,"table":"products_on_hand","server_id":0,"gtid":null,"file":"m
ysql-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1638985247805,"t
ransaction":null}}

In the preceding example, the payload value shows that the connector snapshot generated a
read ("op" ="r") event from the table dbserveri.products_on_hand. The "before" state of
the product_id record is null, indicating that no previous value exists for the record. The "after"
state shows a quantity of 3 for the item with product_id 101.

You are now ready to view change events that the Debezium connector captures from the inventory
database.

15

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

CHAPTER 4. VIEWING CHANGE EVENTS

After deploying the Debezium MySQL connector, it starts capturing changes to the inventory database.

When the connector starts, it writes events to a set of Apache Kafka topics, each of which represents
one of the tables in the MySQL database. The name of each topic begins with the name of the database
server, dbserveri.

The connector writes to the following Kafka topics:

dbserver1

The schema change topic to which DDL statements that apply to the tables for which changes are
being captured are written.

dbserveri.inventory.products

Receives change event records for the products table in the inventory database.
dbserveri.inventory.products_on_hand

Receives change event records for the products_on_hand table in the inventory database.
dbserveri.inventory.customers

Receives change event records for the customers table in the inventory database.
dbserveri.inventory.orders

Receives change event records for the orders table in the inventory database.
The remainder of this tutorial examines the dbserveri.inventory.customers Kafka topic. As you look
more closely at the topic, you'll see how it represents different types of change events, and find
information about the connector captured each event.
The tutorial contains the following sections:
® \iewing a create event
® Updating the database and viewing the update event

® Deleting arecord in the database and viewing the delete event

® Restarting Kafka Connect and changing the database

4.1. VIEWING ACREATE EVENT

By viewing the dbserver1.inventory.customers topic, you can see how the MySQL connector
captured create events in the inventory database. In this case, the create events capture new
customers being added to the database.

Procedure

1. Open a new terminal and use kafka-console-consumer to consume the
dbserver1i.inventory.customers topic from the beginning of the topic.
This command runs a simple consumer (kafka-console-consumer.sh) in the Pod that is
running Kafka (my-cluster-kafka-0):

$ oc exec -it my-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9092 \
--from-beginning \

16

CHAPTER 4. VIEWING CHANGE EVENTS

--property print.key=true \
--topic dbserver1.inventory.customers

The consumer returns four messages (in JSON format), one for each row in the customers
table. Each message contains the event records for the corresponding table row.

There are two JSON documents for each event: a key and a value. The key corresponds to the
row’s primary key, and the value shows the details of the row (the fields that the row contains,
the value of each field, and the type of operation that was performed on the row).

. For the last event, review the details of the key.
Here are the details of the key of the last event (formatted for readability):

{

"schema":{
"type":"struct”,
"fields™[
{
"type":"int32",
"optional":false,
"field":"id"
}
§

"optional:false,
"name":"dbserveri.inventory.customers.Key"
b
"payload":{
"id":1004
}
}

The event has two parts: a schema and a payload. The schema contains a Kafka Connect
schema describing what is in the payload. In this case, the payload is a struct named
dbserveri.inventory.customers.Key that is not optional and has one required field (id of type
int32).

The payload has a single id field, with a value of 1004.

By reviewing the key of the event, you can see that this event applies to the row in the
inventory.customers table whose id primary key column had a value of 1004.

. Review the details of the same event's value.

The event's value shows that the row was created, and describes what it contains (in this case,
the id, first_name, last_name, and email of the inserted row).

Here are the details of the value of the last event (formatted for readability):

{

"schema": {
"type": "struct”,
"fields": [
{
"type": "struct”,
"fields": [
{
"type": "int32",

17

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

"optional": false,
"field": "id"
2
{
"type": "string",
"optional": false,
"field": "first_name"
2
{
"type": "string",
"optional": false,
"field": "last_name"
2
{
"type": "string",
"optional": false,
"field": "email”
}
1,
"optional™: true,
"name": "dbserveri.inventory.customers.Value",
"field": "before"

b
{
"type": "struct”,
"fields": [
{
"type": "int32",
"optional": false,
"field": "id"
2
{
"type": "string",
"optional": false,
"field": "first_ name"
2
{
"type": "string",
"optional": false,
"field": "last_name"
2
{
"type": "string",
"optional": false,
"field": "email”
}
1,
"optional™: true,
"name": "dbserveri.inventory.customers.Value",
"field": "after"
b
{

"type": "struct”,
"fields": [
{
"type": "string",

18

"optional™: true,
"field": "version"
2
{
"type": "string",
"optional": false,
"field": "name"
2
{
"type": "int64",
"optional": false,

"field": "server_id"

|3

{
"type": "int64",
"optional": false,
"field": "ts_sec"

2

{
"type": "string",
"optional™: true,
"field": "gtid"

2

{
"type": "string",
"optional": false,
"field": "file"

2

{
"type": "int64",
"optional": false,
"field": "pos"

2

{
"type": "int32",
"optional": false,
"field": "row"

},
{

"type": "boolean",

"optional™: true,

"field": "snapshot"

2

{
"type": "int64",
"optional™: true,
"field": "thread"

2

{
"type": "string",
"optional™: true,
"field": "db"

2

{
"type": "string",
"optional™: true,

CHAPTER 4. VIEWING CHANGE EVENTS

19

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

"field": "table"

}
1,

"optional": false,
"name": "io.debezium.connector.mysql.Source",
"field": "source"

b

{
"type": "string",
"optional": false,
"field": "op"

b

{
"type": "int64",
"optional™: true,
"field": "ts_ms"

}

1,

"optional": false,
"name": "dbserveri.inventory.customers.Envelope",
"version": 1
b
"payload": {
"before": null,
"after": {
"id": 1004,
"first_name": "Anne",
"last_name": "Kretchmar",
"email": "annek@noanswer.org"
b
"source": {
"version": "2.5.4.Final",
"name": "dbserver1”,
"server_id": 0,
"ts_sec": 0,
"gtid": null,
"file": "mysql-bin.000003",
"pos": 154,
"row": 0,
"snapshot”: true,
"thread": null,
"db": "inventory",
"table": "customers"

2
" pll: "rll’

"ts_ms": 1486500577691
}

}

This portion of the event is much longer, but like the event's key, it also has a schema and a
payload. The schema contains a Kafka Connect schema named
dbserver1i.inventory.customers.Envelope (version 1) that can contain five fields:

op

20

CHAPTER 4. VIEWING CHANGE EVENTS

A required field that contains a string value describing the type of operation. Values for the
MySQL connector are ¢ for create (orinsert), u for update, d for delete, and r for read (in
the case of a snapshot).

before

An optional field that, if present, contains the state of the row before the event occurred.
The structure will be described by the dbserveri.inventory.customers.Value Kafka
Connect schema, which the dbserver1 connector uses for all rows in the
inventory.customers table.

after

An optional field that, if present, contains the state of the row after the event occurred. The
structure is described by the same dbserveri.inventory.customers.Value Kafka Connect
schema used in before.

source

A required field that contains a structure describing the source metadata for the event,
which in the case of MySQL, contains several fields: the connector name, the name of the
binlog file where the event was recorded, the position in that binlog file where the event
appeared, the row within the event (if there is more than one), the names of the affected
database and table, the MySQL thread ID that made the change, whether this event was
part of a snapshot, and, if available, the MySQL server ID, and the timestamp in seconds.

ts_ms

An optional field that, if present, contains the time (using the system clock in the JVM
running the Kafka Connect task) at which the connector processed the event.

NOTE

The JSON representations of the events are much longer than the rows they
describe. This is because, with every event key and value, Kafka Connect ships
the schema that describes the payload. Over time, this structure may change.
However, having the schemas for the key and the value in the event itself makes
it much easier for consuming applications to understand the messages, especially
as they evolve over time.

The Debezium MySQL connector constructs these schemas based upon the
structure of the database tables. If you use DDL statements to alter the table
definitions in the MySQL databases, the connector reads these DDL statements
and updates its Kafka Connect schemas. This is the only way that each event is
structured exactly like the table from where it originated at the time the event
occurred. However, the Kafka topic containing all of the events for a single table
might have events that correspond to each state of the table definition.

The JSON converter includes the key and value schemas in every message, so it
does produce very verbose events.

. Compare the event's key and value schemas to the state of the inventory database. In the
terminal that is running the MySQL command line client, run the following statement:

mysql> SELECT * FROM customers;

. Fommmmmmmme- fmmmmmmmnee Frommmmmmmm e +
| id | first_name | last_name | email |
. Fommmmmmmme- fmmmmmmmnee Frommmmmmmm e +

1001	Sally	Thomas	sally.thomas@acme.com
1002	George	Bailey	gbailey@foobar.com
1003	Edward	Walker	ed@walker.com

21

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

| 1004 | Anne | Kretchmar | annek@noanswer.org |
. Fommmmmmmme- fmmmmmmmnee Frommmmmmmm e +
4 rows in set (0.00 sec)

This shows that the event records you reviewed match the records in the database.

4.2. UPDATING THE DATABASE AND VIEWING THEUPDATE EVENT

Now that you have seen how the Debezium MySQL connector captured the create events in the
inventory database, you will now change one of the records and see how the connector captures it.

By completing this procedure, you will learn how to find details about what changed in a database

commit, and how you can compare change events to determine when the change occurred in relation to
other changes.

Procedure
1. In the terminal that is running the MySQL command line client, run the following statement:
mysql> UPDATE customers SET first_name='Anne Marie' WHERE id=1004;

Query OK, 1 row affected (0.05 sec)
Rows matched: 1 Changed: 1 Warnings: 0

2. View the updated customers table:

mysql> SELECT * FROM customers;

. Fommmmmmmme- fmmmmmmmnee Frommmmmmmm e +
| id | first_name | last_name | email |
. Fommmmmmmme- fmmmmmmmnee Frommmmmmmm e +

| 1001 | Sally | Thomas | sally.thomas@acme.com |

| 1002 | George | Bailey | gbailey@foobar.com |

| 1003 | Edward | Walker | ed@walker.com |

| 1004 | Anne Marie | Kretchmar | annek@noanswer.org |
. Fommmmmmmme- fmmmmmmmnee Frommmmmmmm e +

4 rows in set (0.00 sec)

3. Switch to the terminal running kafka-console-consumer to see a new fifth event.
By changing a record in the customers table, the Debezium MySQL connector generated a

new event. You should see two new JSON documents: one for the event's key, and one for the
new event's value.

Here are the details of the key for the update event (formatted for readability):

{

"schema": {
"type": "struct”,
"name": "dbserveri.inventory.customers.Key"
"optional": false,

"fields" [
{
"field": "id",
"type": "int32",

"optional": false

}

22

CHAPTER 4. VIEWING CHANGE EVENTS

]
}

ayload": {
"id": 1004
}
}

This key is the same as the key for the previous events.

Here is that new event's value. There are no changes in the schema section, so only the
payload section is shown (formatted for readability):

{
"schema™: {...},
"payload": {
"before": {
"id": 1004,
"first_name": "Anne",
"last_name": "Kretchmar",
"email": "annek@noanswer.org"
2
"after": { e
"id": 1004,
"first_name": "Anne Marie",
"last_name": "Kretchmar",
"email": "annek@noanswer.org"
}

"source": { 6
"name": "2.5.4.Final",
"name": "dbserver1”,
"server_id": 223344,
"ts sec": 1486501486,
"gtid": null,
"file": "mysql-bin.000003",
"pos": 364,
"row": 0,
"snapshot": null,
"thread": 3,
"db": "inventory",
"table": "customers"
2
"op": "u", ﬂ
"ts_ms": 1486501486308 6
}
}

Table 4.1. Descriptions of fields in the payload of arupdate event value

Item Description

1 The before field shows the values present in the row before the database commit. The
original first_name value is Anne.

23

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

Item Description

2 The after field shows the state of the row after the change event. Thefirst_name
value is now Anne Marie.

3 The source field structure has many of the same values as before, except that the
ts_sec and pos fields have changed (thefile might have changed in other
circumstances).

4 The op field value is now U, signifying that this row changed because of an update.
5 The ts_ms field shows a timestamp that indicates when Debezium processed this
event.

By viewing the payload section, you can learn several important things about the update event:

® By comparing the before and after structures, you can determine what actually changed in
the affected row because of the commit.

® By reviewing the source structure, you can find information about MySQL's record of the
change (providing traceability).

® By comparing the payload section of an event to other events in the same topic (or a
different topic), you can determine whether the event occurred before, after, or as part of
the same MySQL commit as another event.

4.3. DELETING A RECORD IN THE DATABASE AND VIEWING THE
DELETE EVENT

Now that you have seen how the Debezium MySQL connector captured the create and update events in
the inventory database, you will now delete one of the records and see how the connector captures it.

By completing this procedure, you will learn how to find details about delete events, and how Kafka uses

log compaction to reduce the number of delete events while still enabling consumers to get all of the
events.

Procedure
1. In the terminal that is running the MySQL command line client, run the following statement:

mysql> DELETE FROM customers WHERE id=1004;
Query OK, 1 row affected (0.00 sec)

NOTE

If the above command fails with a foreign key constraint violation, then you must
remove the reference of the customer address from the addresses table using
the following statement:

I mysql> DELETE FROM addresses WHERE customer_id=1004;

24

CHAPTER 4. VIEWING CHANGE EVENTS

2. Switch to the terminal running kafka-console-consumer to see two new events.

By deleting a row in the customers table, the Debezium MySQL connector generated two new
events.

3. Review the key and value for the first new event.
Here are the details of the key for the first new event (formatted for readability):

{

"schema": {
"type": "struct”,
"name": "dbserveri.inventory.customers.Key"
"optional": false,
"fields": [
{
"field": "id",
"type": "int32",
"optional": false
}
]

b
"payload": {
"id": 1004

}
}

This key is the same as the key in the previous two events you looked at.

Here is the value of the first new event (formatted for readability):

{

"schema™: {...},
"payload": {
"before": {
"id": 1004,
"first_name": "Anne Marie",
"last_name": "Kretchmar",
"email": "annek@noanswer.org"
b
"after": null, 9
"source": { 6
"name": "2.5.4.Final",
"name": "dbserver1”,
"server_id": 223344,
"ts_sec": 1486501558,
"gtid": null,
"file": "mysql-bin.000003",
"pos": 725,
"row": 0,
"snapshot": null,
"thread": 3,
"db": "inventory",
"table": "customers”

b
‘op ', @

25

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

26

"ts_ms": 1486501558315 @)

}
}

mThe before field now has the state of the row that was deleted with the database
commit.

MThe after field is null because the row no longer exists.

iThe source field structure has many of the same values as before, except the
ts_sec and pos fields have changed (the file might have changed in other
circumstances).

@I he op field value is now d, signifying that this row was deleted.
wThe ts_ms field shows the time stamp for when Debezium processes this event.
Thus, this event provides a consumer with the information that it needs to process the removal

of the row. The old values are also provided, because some consumers might require them to
properly handle the removal.

. Review the key and value for the second new event.

Here is the key for the second new event (formatted for readability):

{

"schema": {
"type": "struct”,
"name": "dbserveri.inventory.customers.Key"
"optional": false,
"fields": [
{
"field": "id",
"type": "int32",
"optional": false
}
]

b
"payload": {
"id": 1004

}
}

Once again, this key is exactly the same key as in the previous three events you looked at.

Here is the value of that same event (formatted for readability):

{

"schema": null,
"payload": null

}

If Kafka is set up to be log compacted, it will remove older messages from the topic if there is at
least one message later in the topic with same key. This last event is called a tombstone event,
because it has a key and an empty value. This means that Kafka will remove all prior messages

CHAPTER 4. VIEWING CHANGE EVENTS

with the same key. Even though the prior messages will be removed, the tombstone event
means that consumers can still read the topic from the beginning and not miss any events.

4.4. RESTARTING THE KAFKA CONNECT SERVICE

Now that you have seen how the Debezium MySQL connector captures create, update, and delete
events, you will now see how it can capture change events even when it is not running.

The Kafka Connect service automatically manages tasks for its registered connectors. Therefore, if it
goes offline, when it restarts, it will start any non-running tasks. This means that even if Debezium is not

running, it can still report changes in a database.

In this procedure, you will stop Kafka Connect, change some data in the database, and then restart Kafka
Connect to see the change events.

Procedure
1. Stop the Kafka Connect service.

a. Open the configuration for the Kafka Connect deployment:
I $ oc edit deployment/my-connect-cluster-connect

The deployment configuration opens:

apiVersion: apps.openshift.io/v1
kind: Deployment
metadata:
spec:
replicas: 1
b. Change the spec.replicas value to 0.

c. Save the configuration.

d. Verify that the Kafka Connect service has stopped.
This command shows that the Kafka Connect service is completed, and that no pods are
running:

$ oc get pods -I strimzi.io/name=my-connect-cluster-connect
NAME READY STATUS RESTARTS AGE
my-connect-cluster-connect-1-dxcs9 0/1 Completed 0 7h

2. While the Kafka Connect service is down, switch to the terminal running the MySQL client, and
add a new record to the database.

I mysql> INSERT INTO customers VALUES (default, "Sarah", "Thompson", "kitt@acme.com");

3. Restart the Kafka Connect service.

a. Open the deployment configuration for the Kafka Connect service.

27

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

I $ oc edit deployment/my-connect-cluster-connect

The deployment configuration opens:

apiVersion: apps.openshift.io/v1
kind: Deployment
metadata:
spec:
replicas: 0
b. Change the spec.replicas value to 1.

c. Save the deployment configuration.

d. Verify that the Kafka Connect service has restarted.
This command shows that the Kafka Connect service is running, and that the pod is ready:

$ oc get pods -I strimzi.io/name=my-connect-cluster-connect
NAME READY STATUS RESTARTS AGE
my-connect-cluster-connect-2-q9kkI 11 Running 0 74s

4. Switch to the terminal that is running kafka-console-consumer.sh. New events pop up as they
arrive.

5. Examine the record that you created when Kafka Connect was offline (formatted for

readability):
{

"payload":{
"id":1005

}

}
{

"payload":{
"before":null,
"after":{

"id":1005,

"first_name":"Sarah",
"last_name":"Thompson",
"email":"kitt@acme.com"

2

"source":{
"version":"2.5.4.Final",
"connector":"mysql",
"name":"dbserver1",
"ts_ms":1582581502000,
"snapshot":"false",
"db":"inventory",
"table":"customers",
"server_id":223344,
"gtid":null,

28

CHAPTER 4. VIEWING CHANGE EVENTS

"file":"mysql-bin.000004",
"pos":364,
"row":0,
"thread":5,
"query":null

2

"op":"c",

"ts_ms":1582581502317

}
}

29

Red Hat build of Debezium 2.5.4 Getting Started with Debezium

CHAPTER 5. NEXT STEPS

After completing the tutorial, consider the following next steps:

® Explore the tutorial further.
Use the MySQL command line client to add, modify, and remove rows in the database tables,
and see the effect on the topics. Keep in mind that you cannot remove a row that is referenced
by a foreign key.

® Plan a Debezium deployment.
You can install Debezium in OpenShift or on Red Hat Enterprise Linux. For more information,
see the following:

o Installing Debezium on OpenShift
o Installing Debezium on RHEL

Revised on 2024-04-08 22:09:24 UTC

30

https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium/2.5.4/html-single/installing_debezium_on_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium/2.5.4/html-single/installing_debezium_on_rhel/index

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

	CHAPTER 1. ABOUT THIS TUTORIAL
	CHAPTER 2. INTRODUCTION TO DEBEZIUM
	CHAPTER 3. STARTING THE SERVICES
	3.1. DEPLOYING A MYSQL DATABASE
	3.2. DEPLOYING KAFKA CONNECT
	3.3. EXAMPLE: A SIMPLE OPENSHIFT IMAGESTREAM OBJECT DEFINITION
	3.4. VERIFYING THE CONNECTOR DEPLOYMENT

	CHAPTER 4. VIEWING CHANGE EVENTS
	4.1. VIEWING A CREATE EVENT
	4.2. UPDATING THE DATABASE AND VIEWING THE UPDATE EVENT
	4.3. DELETING A RECORD IN THE DATABASE AND VIEWING THE DELETE EVENT
	4.4. RESTARTING THE KAFKA CONNECT SERVICE

	CHAPTER 5. NEXT STEPS

