& RedHat

Red Hat build of Keycloak 22.0

Operator Guide

Last Updated: 2024-06-03

Red Hat build of Keycloak 22.0 Operator Guide

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for administrators to configure and use the Red Hat build of
Keycloak 22.0 Operator.

Table of Contents

MAKING OPEN SOURCEMOREINCLUSIVE

CHAPTER 1. RED HAT BUILD OF KEYCLOAK OPERATOR INSTALLATION

CHAPTER 2. BASIC RED HAT BUILD OF KEYCLOAK DEPLOYMENT

2.1. PERFORMING A BASIC RED HAT BUILD OF KEYCLOAK DEPLOYMENT
2.1.1. Preparing for deployment
2.1.1.1. Database
2.1.1.2. Hostname
2.11.3. TLS Certificate and key
2.1.2. Deploying Red Hat build of Keycloak
2.1.3. Accessing the Red Hat build of Keycloak deployment
2.1.4. Accessing the Admin Console

CHAPTER 3. RED HAT BUILD OF KEYCLOAK REALM IMPORTccovviuunt.

3.1.IMPORTING A RED HAT BUILD OF KEYCLOAK REALM
3.1.1. Creating a Realm Import Custom Resource
3.1.2. Applying the Realm Import CR

CHAPTER 4. ADVANCED CONFIGURATION i

4.1. ADVANCED CONFIGURATION
4.1.1. Server configuration details
4.1.1.1. Additional options
4.1.2. Secret References
4.1.3. Unsupported features
4.1.3.1. Pod Template
4..4. Disabling required options

CHAPTER 5. USING CUSTOM RED HAT BUILD OF KEYCLOAKIMAGES

5.1. RED HAT BUILD OF KEYCLOAK CUSTOM IMAGE WITH THE OPERATOR
5.1.1. Best practice
5.1.2. Providing a custom Red Hat build of Keycloak image

Table of Contents

(6]

o N OOy O U1 U1 Ul

Red Hat build of Keycloak 22.0 Operator Guide

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat build of Keycloak 22.0 Operator Guide

CHAPTER 1. RED HAT BUILD OF KEYCLOAK OPERATOR
INSTALLATION

Use this procedure to install the Red Hat build of Keycloak Operator in an OpenShift cluster.
1. Open the OpenShift Container Platform web console.
2. In the left column, click Home, Operators, OperatorHub.
3. Search for "Keycloak" on the search input box.
4. Select the Operator from the list of results.
5. Follow the instructions on the screen.
For general instructions on installing Operators by using either the CLI or web console, see Installing

Operators in your namespace. In the default Catalog, the Operator is named rhbk-operator. Make sure
to use the channel corresponding with your desired Red Hat build of Keycloak version.

https://docs.openshift.com/container-platform/latest/operators/user/olm-installing-operators-in-namespace.html

CHAPTER 2. BASIC RED HAT BUILD OF KEYCLOAK DEPLOYMENT

CHAPTER 2. BASIC RED HAT BUILD OF KEYCLOAK
DEPLOYMENT

2.1. PERFORMING A BASIC RED HAT BUILD OF KEYCLOAK
DEPLOYMENT

This chapter describes how to perform a basic Red Hat build of Keycloak Deployment on OpenShift
using the Operator.

2.1.1. Preparing for deployment

Once the Red Hat build of Keycloak Operator is installed and running in the cluster namespace, you can
set up the other deployment prerequisites.

® Database
® Hosthame

® TLS Certificate and associated keys

2.1.1.1. Database

A database should be available and accessible from the cluster namespace where Red Hat build of
Keycloak is installed. For a list of supported databases, see Configuring the database. The Red Hat build
of Keycloak Operator does not manage the database and you need to provision it yourself. Consider
verifying your cloud provider offering or using a database operator.

For development purposes, you can use an ephemeral PostgreSQL pod installation. To provision it,
follow the approach below:

Create YAML file example-postgres.yami:

apiVersion: apps/v1
kind: StatefulSet
metadata:
name: postgresql-db
spec:
serviceName: postgresql-db-service
selector:
matchLabels:
app: postgresql-db
replicas: 1
template:
metadata:
labels:
app: postgresql-db
spec:
containers:

- name: postgresql-db
image: postgres:latest
volumeMounts:

- mountPath: /data
name: cache-volume

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#db-

Red Hat build of Keycloak 22.0 Operator Guide

env:
- name: POSTGRES_PASSWORD
value: testpassword
- name: PGDATA
value: /data/pgdata
- name: POSTGRES_DB
value: keycloak
volumes:
- name: cache-volume
emptyDir: {}
apiVersion: vi
kind: Service
metadata:
name: postgres-db
spec:
selector:
app: postgresql-db
type: LoadBalancer
ports:
- port: 5432
targetPort: 5432

Apply the changes:

I oc apply -f example-postgres.yaml

2.1.1.2. Hosthame

For a production ready installation, you need a hostname that can be used to contact Red Hat build of
Keycloak. See Configuring the hostname for the available configurations.

For development purposes, this chapter will use test.keycloak.org.

2.1.1.3. TLS Certificate and key

See your Certification Authority to obtain the certificate and the key.

For development purposes, you can enter this command to obtain a self-signed certificate:

openssl req -subj /CN=test.keycloak.org/O=Test Keycloak./C=US' -newkey rsa:2048 -nodes -keyout
key.pem -x509 -days 365 -out certificate.pem

You should install it in the cluster namespace as a Secret by entering this command:

I oc create secret tls example-tls-secret --cert certificate.pem --key key.pem

2.1.2. Deploying Red Hat build of Keycloak

To deploy Red Hat build of Keycloak, you create a Custom Resource (CR) based on the Keycloak
Custom Resource Definition (CRD).

Consider storing the Database credentials in a separate Secret. Enter the following commands:

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#hostname-

CHAPTER 2. BASIC RED HAT BUILD OF KEYCLOAK DEPLOYMENT

oc create secret generic keycloak-db-secret \
--from-literal=username=[your_database_username]\
--from-literal=password=[your_database_password]

You can customize several fields using the Keycloak CRD. For a basic deployment, you can stick to the
following approach:

Create YAML file example-kc.yaml:

apiVersion: k8s.keycloak.org/v2alphat
kind: Keycloak
metadata:
name: example-kc
spec:
instances: 1
db:
vendor: postgres
host: postgres-db
usernameSecret:
name: keycloak-db-secret
key: username
passwordSecret:
name: keycloak-db-secret
key: password
http:
tisSecret: example-tls-secret
hostname:
hostname: test.keycloak.org

Apply the changes:
I oc apply -f example-kc.yaml

To check that the Red Hat build of Keycloak instance has been provisioned in the cluster, check the
status of the created CR by entering the following command:

oc get keycloaks/example-kc -0 go-template="{{range .status.conditions}}CONDITION: {{.type}}{{"\n"}}
STATUS: {{.status}}{{"\n"}} MESSAGE: {{.message}}{{"\n"}}{{end}}'

When the deployment is ready, look for output similar to the following:

CONDITION: Ready
STATUS: true
MESSAGE:

CONDITION: HasErrors
STATUS: false
MESSAGE:

CONDITION: RollingUpdate
STATUS: false
MESSAGE:

2.1.3. Accessing the Red Hat build of Keycloak deployment

The Red Hat build of Keycloak deployment is exposed through a basic Ingress and is accessible through

Red Hat build of Keycloak 22.0 Operator Guide

the provided hostname. On installations with multiple default IngressClass instances or when running on
OpenShift 4.12+ you should provide an ingressClassName by setting ingress spec with className
property to the desired class name:

Edit YAML file example-kc.yaml:

apiVersion: k8s.keycloak.org/v2alphat
kind: Keycloak
metadata:
name: example-kc
spec:

ingress:
className: openshift-default

If the default ingress does not fit your use case, disable it by setting ingress spec with enabled property
to false value:

Edit YAML file example-kc.yaml:

apiVersion: k8s.keycloak.org/v2alphat
kind: Keycloak
metadata:
name: example-kc
spec:

ingress:
enabled: false

Apply the changes:
I oc apply -f example-kc.yaml

You can provide an alternative ingress resource pointing to the service <keycloak-cr-name>-service.

For debugging and development purposes, consider directly connecting to the Red Hat build of
Keycloak service using a port forward. For example, enter this command:

I oc port-forward service/example-kc-service 8443:8443

2.1.4. Accessing the Admin Console

When deploying Red Hat build of Keycloak, the operator generates an arbitrary initial admin username
and password and stores those credentials as a basic-auth Secret object in the same namespace as the
CR.

CHAPTER 2. BASIC RED HAT BUILD OF KEYCLOAK DEPLOYMENT

' WARNING
A Change the default admin credentials and enable MFA in Red Hat build of Keycloak

before going to production.

To fetch the initial admin credentials, you have to read and decode the Secret. The Secret name is
derived from the Keycloak CR name plus the fixed suffix -initial-admin. To get the username and
password for the example-kc CR, enter the following commands:

oc get secret example-kc-initial-admin -0 jsonpath="{.data.username}' | base64 --decode
oc get secret example-kc-initial-admin -o jsonpath="{.data.password}' | base64 --decode

You can use those credentials to access the Admin Console or the Admin REST API.

Red Hat build of Keycloak 22.0 Operator Guide

CHAPTER 3. RED HAT BUILD OF KEYCLOAK REALM IMPORT

3.1. IMPORTING A RED HAT BUILD OF KEYCLOAK REALM

Using the Red Hat build of Keycloak Operator, you can perform a realm import for the Keycloak
Deployment.

NOTE

e |f a Realm with the same name already exists in Red Hat build of Keycloak, it will
not be overwritten.

® The Realm Import CR only supports creation of new realms and does not update
or delete those. Changes to the realm performed directly on Red Hat build of
Keycloak are not synced back in the CR.

3.1.1. Creating a Realm Import Custom Resource

The following is an example of a Realm Import Custom Resource (CR):

apiVersion: k8s.keycloak.org/v2alphat

kind: KeycloakRealmImport

metadata:
name: my-realm-kc

spec:
keycloakCRName: <name of the keycloak CR>
realm:

This CR should be created in the same namespace as the Keycloak Deployment CR, defined in the field
keycloakCRName. The realm field accepts a full RealmRepresentation.

The recommended way to obtain a RealmRepresentation is by leveraging the export functionality
Importing and Exporting Realms.

1. Export the Realm to a single file.
2. Convert the JSON file to YAML.

3. Copy and paste the obtained YAML file as body for the realm key, making sure the indentation
is correct.

3.1.2. Applying the Realm Import CR

Use oc to create the CRin the correct cluster namespace:

Create YAML file example-realm-import.yaml:

apiVersion: k8s.keycloak.org/v2alphat
kind: KeycloakRealmImport
metadata:
name: my-realm-kc
spec:
keycloakCRName: <name of the keycloak CR>

10

https://www.keycloak.org/docs-api/{majorMinorVersion}/rest-api/index.html#_realmrepresentation
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#importExport-

CHAPTER 3. RED HAT BUILD OF KEYCLOAK REALM IMPORT

realm:
id: example-realm
realm: example-realm
displayName: ExampleRealm
enabled: true

Apply the changes:
I oc apply -f example-realm-import.yaml

To check the status of the running import, enter the following command:

oc get keycloakrealmimports/my-realm-kc -o go-template='{{range .status.conditions}}CONDITION:
{.type}{{"\n"}} STATUS: {{.status}}{{"\n"}} MESSAGE: {{.message}}{{"\n"}}{{end}}'

When the import has successfully completed, the output will look like the following example:

CONDITION: Done
STATUS: true
MESSAGE:

CONDITION: Started
STATUS: false
MESSAGE:

CONDITION: HasErrors
STATUS: false
MESSAGE:

1

Red Hat build of Keycloak 22.0 Operator Guide

CHAPTER 4. ADVANCED CONFIGURATION

4.1. ADVANCED CONFIGURATION

This chapter describes how to use Custom Resources (CRs) for advanced configuration of your Red Hat
build of Keycloak deployment.

4.1.1. Server configuration details

Many server options are exposed as first-class citizen fields in the Keycloak CR. The structure of the CR
is based on the configuration structure of Red Hat build of Keycloak. For example, to configure the
https-port of the server, follow a similar pattern in the CR and use the httpsPort field. The following
example is a complex server configuration; however, it illustrates the relationship between server
options and the Keycloak CR:

apiVersion: k8s.keycloak.org/v2alphat
kind: Keycloak
metadata:
name: example-kc
spec:
db:
vendor: postgres
usernameSecret:
name: usernameSecret
key: usernameSecretKey
passwordSecret:
name: passwordSecret
key: passwordSecretKey
host: host
database: database
port: 123
schema: schema
poollnitialSize: 1
poolMinSize: 2
poolMaxSize: 3
http:
httpEnabled: true
httpPort: 8180
httpsPort: 8543
tisSecret: my-tls-secret
hostname:
hostname: my-hostname
admin: my-admin-hostname
strict: false
strictBackchannel: false
features:
enabled:
- docker
- authorization
disabled:
- admin
- step-up-authentication
transaction:
xaEnabled: false

12

CHAPTER 4. ADVANCED CONFIGURATION

For a list of options, see the Keycloak CRD. For details on configuring options, see All configuration.

4.1.1.1. Additional options

Some expert server options are unavailable as dedicated fields in the Keycloak CR. The following are
examples of omitted fields:

® Fields that require deep understanding of the underlying Red Hat build of Keycloak
implementation

® Fields that are not relevant to an OpenShift environment

® Fields for provider configuration because they are dynamic based on the used provider
implementation

The additionalOptions field of the Keycloak CR enables Red Hat build of Keycloak to accept any
available configuration in the form of key-value pairs. You can use this field to include any option that is
omitted in the Keycloak CR. For details on configuring options, see All configuration.

The values can be expressed as plain text strings or Secret object references as shown in this example:

apiVersion: k8s.keycloak.org/v2alphat
kind: Keycloak
metadata:
name: example-kc
spec:

additionalOptions:
- name: spi-connections-http-client-default-connection-pool-size
secret: # Secret reference
name: http-client-secret # name of the Secret
key: poolSize # name of the Key in the Secret
- name: spi-email-template-mycustomprovider-enabled
value: true # plain text value

NOTE

The name format of options defined in this way is identical to the key format of options
specified in the configuration file. For details on various configuration formats, see
Configuring Red Hat build of Keycloak .

4.1.2. Secret References

Secret References are used by some dedicated options in the Keycloak CR, such as tlsSecret, or as a
value in additionalOptions.

When specifying a Secret Reference, make sure that a Secret containing the referenced keys is present
in the same namespace as the CR referencing it. Along with the Red Hat build of Keycloak Server

Deployment, the Operator adds special labels to the referenced Secrets to watch for changes.

When a referenced Secret is modified, the Operator performs a rolling restart of the Red Hat build of
Keycloak Deployment to pick up the changes.

4.1.3. Unsupported features

13

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#all-config-
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#all-config-
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#configuration-

Red Hat build of Keycloak 22.0 Operator Guide

The unsupported field of the CR contains highly experimental configuration options that are not
completely tested and are Tech Preview.

4.1.3.1. Pod Template

The Pod Template is a raw APl representation that is used for the Deployment Template. This field is a
temporary workaround in case no supported field exists at the top level of the CR for your use case.

The Operator merges the fields of the provided template with the values generated by the Operator for
the specific Deployment. With this feature, you have access to a high level of customizations. However,
no guarantee exists that the Deployment will work as expected.

The following example illustrates injecting labels, annotations, volumes, and volume mounts:

apiVersion: k8s.keycloak.org/v2alphat
kind: Keycloak
metadata:
name: example-kc
spec:

unsupported:
podTemplate:
metadata:
labels:
my-label: "keycloak"
spec:
containers:
- volumeMounts:
- name: test-volume
mountPath: /mnt/test
volumes:
- name: test-volume
secret:
secretName: keycloak-additional-secret

4.1.4. Disabling required options

Red Hat build of Keycloak and the Red Hat build of Keycloak Operator provide the best production-
ready experience with security in mind. However, during the development phase, you can disable key
security features.

Specifically, you can disable the hostname and TLS as shown in the following example:

apiVersion: k8s.keycloak.org/v2alphat
kind: Keycloak
metadata:

name: example-kc
spec:

http:

httpEnabled: true
hostname:

strict: false
strictBackchannel: false

14

CHAPTER 5. USING CUSTOM RED HAT BUILD OF KEYCLOAK IMAGES

CHAPTER 5. USING CUSTOM RED HAT BUILD OF KEYCLOAK
IMAGES

5.1. RED HAT BUILD OF KEYCLOAK CUSTOM IMAGE WITH THE
OPERATOR

With the Keycloak Custom Resource (CR), you can specify a custom container image for the Red Hat
build of Keycloak server.

NOTE

To ensure full compatibility of Operator and Operand, make sure that the version of Red
Hat build of Keycloak release used in the custom image is aligned with the version of the
operator.

-

5.1.1. Best practice

When using the default Red Hat build of Keycloak image, the server will perform a costly re-
augmentation every time a Pod starts. To avoid this delay, you can provide a custom image with the
augmentation built-in from the build time of the image.

With a custom image, you can also specify the Keycloak build-time configurations and extensions during
the build of the container.

For instructions on how to build such an image, see Running Red Hat build of Keycloak in a container .

5.1.2. Providing a custom Red Hat build of Keycloak image

To provide a custom image, you define the image field in the Keycloak CR as shown in this example:

apiVersion: k8s.keycloak.org/v2alphat
kind: Keycloak
metadata:
name: example-kc
spec:
instances: 1
image: quay.io/my-company/my-keycloak:latest
http:
tisSecret: example-tls-secret
hostname:
hostname: test.keycloak.org

NOTE

With custom images, every build time option is passed either through a dedicated field or
the additionalOptions is ignored.

15

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#containers-

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RED HAT BUILD OF KEYCLOAK OPERATOR INSTALLATION
	CHAPTER 2. BASIC RED HAT BUILD OF KEYCLOAK DEPLOYMENT
	2.1. PERFORMING A BASIC RED HAT BUILD OF KEYCLOAK DEPLOYMENT
	2.1.1. Preparing for deployment
	2.1.1.1. Database
	2.1.1.2. Hostname
	2.1.1.3. TLS Certificate and key

	2.1.2. Deploying Red Hat build of Keycloak
	2.1.3. Accessing the Red Hat build of Keycloak deployment
	2.1.4. Accessing the Admin Console

	CHAPTER 3. RED HAT BUILD OF KEYCLOAK REALM IMPORT
	3.1. IMPORTING A RED HAT BUILD OF KEYCLOAK REALM
	3.1.1. Creating a Realm Import Custom Resource
	3.1.2. Applying the Realm Import CR

	CHAPTER 4. ADVANCED CONFIGURATION
	4.1. ADVANCED CONFIGURATION
	4.1.1. Server configuration details
	4.1.1.1. Additional options

	4.1.2. Secret References
	4.1.3. Unsupported features
	4.1.3.1. Pod Template

	4.1.4. Disabling required options

	CHAPTER 5. USING CUSTOM RED HAT BUILD OF KEYCLOAK IMAGES
	5.1. RED HAT BUILD OF KEYCLOAK CUSTOM IMAGE WITH THE OPERATOR
	5.1.1. Best practice
	5.1.2. Providing a custom Red Hat build of Keycloak image

