
Red Hat build of Keycloak 22.0

Securing Applications and Services Guide

Last Updated: 2024-06-03

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for securing applications and services using Red Hat build of
Keycloak 22.0.

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. PLANNING FOR SECURING APPLICATIONS AND SERVICES
1.1. BASIC STEPS TO SECURE APPLICATIONS AND SERVICES
1.2. GETTING STARTED

1.2.1. OpenID Connect
1.2.1.1. JavaScript (client-side)
1.2.1.2. Node.js (server-side)

1.2.2. SAML
1.2.2.1. Java

1.3. TERMINOLOGY

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES
2.1. AVAILABLE ENDPOINTS

2.1.1. Endpoints
2.1.1.1. Authorization endpoint
2.1.1.2. Token endpoint
2.1.1.3. Userinfo endpoint
2.1.1.4. Logout endpoint
2.1.1.5. Certificate endpoint
2.1.1.6. Introspection endpoint
2.1.1.7. Dynamic Client Registration endpoint
2.1.1.8. Token Revocation endpoint
2.1.1.9. Device Authorization endpoint
2.1.1.10. Backchannel Authentication endpoint

2.2. SUPPORTED GRANT TYPES
2.2.1. Authorization code
2.2.2. Implicit
2.2.3. Resource Owner Password Credentials

2.2.3.1. Example using CURL
2.2.4. Client credentials
2.2.5. Device Authorization Grant
2.2.6. Client Initiated Backchannel Authentication Grant

2.3. RED HAT BUILD OF KEYCLOAK JAVA ADAPTERS
2.3.1. Red Hat JBoss Enterprise Application Platform

2.3.1.1. 8.0 Beta
2.3.1.2. 6.4 and 7.x

2.3.2. Spring Boot adapter
2.4. RED HAT BUILD OF KEYCLOAK JAVASCRIPT ADAPTER

2.4.1. Installation
2.4.2. Red Hat build of Keycloak server configuration
2.4.3. Using the adapter
2.4.4. Session Status iframe
2.4.5. Implicit and hybrid flow
2.4.6. Hybrid Apps with Cordova
2.4.7. Custom Adapters
2.4.8. Modern Browsers with Tracking Protection

2.4.8.1. Browsers with "SameSite=Lax by Default" Policy
2.4.8.2. Browsers with Blocked Third-Party Cookies

2.4.9. API Reference
2.4.9.1. Constructor

5

6
6
6
6
6
7
7
7
7

8
8
8
8
8
8
9
9
9
9
9

10
10
10
10
10
11
11
11

12
12
12
12
12
13
13
13
13
13
14
16
16
17
18
19
19
19
19
19

Table of Contents

1

. .

. .

. .

. .

2.4.9.2. Properties
2.4.9.3. Methods
2.4.9.4. Callback Events

2.5. RED HAT BUILD OF KEYCLOAK NODE.JS ADAPTER
2.5.1. Installation
2.5.2. Usage
2.5.3. Installing middleware
2.5.4. Configuration for proxies
2.5.5. Protecting resources
2.5.6. Additional URLs
2.5.7. Complete example

2.6. FINANCIAL-GRADE API (FAPI) SUPPORT
2.6.1. FAPI client profiles
2.6.2. Open Finance Brasil Financial-grade API Security Profile
2.6.3. TLS considerations

2.7. RECOMMENDATIONS
2.7.1. Validating access tokens
2.7.2. Redirect URIs

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES
3.1. RED HAT BUILD OF KEYCLOAK JAVA ADAPTERS

3.1.1. Red Hat JBoss Enterprise Application Platform
3.1.1.1. 8.0 Beta
3.1.1.2. 6.4 and 7.x

CHAPTER 4. CONFIGURING A DOCKER REGISTRY TO USE RED HAT BUILD OF KEYCLOAK
4.1. DOCKER REGISTRY CONFIGURATION FILE INSTALLATION
4.2. DOCKER REGISTRY ENVIRONMENT VARIABLE OVERRIDE INSTALLATION
4.3. DOCKER COMPOSE YAML FILE

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE
5.1. AUTHENTICATION

5.1.1. Bearer token
5.1.2. Initial Access Token
5.1.3. Registration Access Token

5.2. RED HAT BUILD OF KEYCLOAK REPRESENTATIONS
5.3. RED HAT BUILD OF KEYCLOAK ADAPTER CONFIGURATION
5.4. OPENID CONNECT DYNAMIC CLIENT REGISTRATION
5.5. SAML ENTITY DESCRIPTORS
5.6. EXAMPLE USING CURL
5.7. EXAMPLE USING JAVA CLIENT REGISTRATION API
5.8. CLIENT REGISTRATION POLICIES

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI
6.1. CONFIGURING A NEW REGULAR USER FOR USE WITH CLIENT REGISTRATION CLI
6.2. CONFIGURING A CLIENT FOR USE WITH THE CLIENT REGISTRATION CLI
6.3. INSTALLING THE CLIENT REGISTRATION CLI
6.4. USING THE CLIENT REGISTRATION CLI

6.4.1. Logging in
6.4.2. Working with alternative configurations
6.4.3. Initial Access and Registration Access Tokens
6.4.4. Creating a client configuration
6.4.5. Retrieving a client configuration
6.4.6. Modifying a client configuration

20
21

24
25
25
25
27
28
28
30
31
31
31
31
32
32
32
32

34
34
34
34
34

35
35
35
36

37
37
37
37
38
38
38
39
39
39
39
40

42
42
42
43
44
45
45
45
46
47
47

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

2

6.4.7. Deleting a client configuration
6.4.8. Refreshing invalid Registration Access Tokens

6.5. TROUBLESHOOTING

48
49
49

Table of Contents

3

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. PLANNING FOR SECURING APPLICATIONS AND
SERVICES

As an OAuth2, OpenID Connect, and SAML compliant server, Red Hat build of Keycloak can secure any
application and service as long as the technology stack they are using supports any of these protocols.
For more details about the security protocols supported by Red Hat build of Keycloak, consider looking
at Server Administration Guide.

Most of the support for some of these protocols is already available from the programming language,
framework, or reverse proxy they are using. Leveraging the support already available from the
application ecosystem is a key aspect to make your application fully compliant with security standards
and best practices, so that you avoid vendor lock-in.

For some programming languages, Red Hat build of Keycloak provides libraries that try to fill the gap for
the lack of support of a particular security protocol or to provide a more rich and tightly coupled
integration with the server. These libraries are known by Keycloak Client Adapters, and they should be
used as a last resort if you cannot rely on what is available from the application ecosystem.

1.1. BASIC STEPS TO SECURE APPLICATIONS AND SERVICES

These are the basic steps for securing an application or a service in Red Hat build of Keycloak.

1. Register a client to a realm using one of these options:

The Red Hat build of Keycloak Admin Console

The client registration service

The CLI

2. Enable OpenID Connect or SAML protocols in your application using one these options:

Leveraging existing OpenID Connect and SAML support from the application ecosystem

Using a Red Hat build of Keycloak Adapter

This guide provides the detailed instructions for these steps. You can find more details in the Server
Administration Guide about how to register a client to Red Hat build of Keycloak through the
administration console.

1.2. GETTING STARTED

The Red Hat build of Keycloak Quickstarts Repository provides examples about how to secure
applications and services using different programming languages and frameworks. By going through
their documentation and codebase, you will understand the bare minimum changes required in your
application and service in order to secure it with Red Hat build of Keycloak.

Also, see the following sections for recommendations for trusted and well-known client-side
implementations for both OpenID Connect and SAML protocols.

1.2.1. OpenID Connect

1.2.1.1. JavaScript (client-side)

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

6

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#sso-protocols
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/
https://github.com/redhat-developer/rhbk-quickstarts

JavaScript

1.2.1.2. Node.js (server-side)

Node.js

1.2.2. SAML

1.2.2.1. Java

JBoss EAP

1.3. TERMINOLOGY

These terms are used in this guide:

Clients are entities that interact with Red Hat build of Keycloak to authenticate users and
obtain tokens. Most often, clients are applications and services acting on behalf of users that
provide a single sign-on experience to their users and access other services using the tokens
issued by the server. Clients can also be entities only interested in obtaining tokens and acting
on their own behalf for accessing other services.

Applications include a wide range of applications that work for specific platforms for each
protocol

Client adapters are libraries that make it easy to secure applications and services with Red Hat
build of Keycloak. They provide a tight integration to the underlying platform and framework.

Creating a client and registering a client are the same action. Creating a Client is the term
used to create a client by using the Admin Console. Registering a client is the term used to
register a client by using the Red Hat build of Keycloak Client Registration Service.

A service account is a type of client that is able to obtain tokens on its own behalf.

CHAPTER 1. PLANNING FOR SECURING APPLICATIONS AND SERVICES

7

CHAPTER 2. USING OPENID CONNECT TO SECURE
APPLICATIONS AND SERVICES

This section describes how you can secure applications and services with OpenID Connect using Red Hat
build of Keycloak.

2.1. AVAILABLE ENDPOINTS

As a fully-compliant OpenID Connect Provider implementation, Red Hat build of Keycloak exposes a set
of endpoints that applications and services can use to authenticate and authorize their users.

This section describes some of the key endpoints that your application and service should be use when
interacting with Red Hat build of Keycloak.

2.1.1. Endpoints

The most important endpoint to understand is the well-known configuration endpoint. It lists endpoints
and other configuration options relevant to the OpenID Connect implementation in Red Hat build of
Keycloak. The endpoint is:

/realms/{realm-name}/.well-known/openid-configuration

To obtain the full URL, add the base URL for Red Hat build of Keycloak and replace {realm-name} with
the name of your realm. For example:

http://localhost:8080/realms/master/.well-known/openid-configuration

Some RP libraries retrieve all required endpoints from this endpoint, but for others you might need to
list the endpoints individually.

2.1.1.1. Authorization endpoint

/realms/{realm-name}/protocol/openid-connect/auth

The authorization endpoint performs authentication of the end-user. This authentication is done by
redirecting the user agent to this endpoint.

For more details see the Authorization Endpoint section in the OpenID Connect specification.

2.1.1.2. Token endpoint

/realms/{realm-name}/protocol/openid-connect/token

The token endpoint is used to obtain tokens. Tokens can either be obtained by exchanging an
authorization code or by supplying credentials directly depending on what flow is used. The token
endpoint is also used to obtain new access tokens when they expire.

For more details, see the Token Endpoint section in the OpenID Connect specification.

2.1.1.3. Userinfo endpoint

/realms/{realm-name}/protocol/openid-connect/userinfo

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

8

https://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
https://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint

The userinfo endpoint returns standard claims about the authenticated user; this endpoint is protected
by a bearer token.

For more details, see the Userinfo Endpoint section in the OpenID Connect specification.

2.1.1.4. Logout endpoint

/realms/{realm-name}/protocol/openid-connect/logout

The logout endpoint logs out the authenticated user.

The user agent can be redirected to the endpoint, which causes the active user session to be logged
out. The user agent is then redirected back to the application.

The endpoint can also be invoked directly by the application. To invoke this endpoint directly, the
refresh token needs to be included as well as the credentials required to authenticate the client.

2.1.1.5. Certificate endpoint

/realms/{realm-name}/protocol/openid-connect/certs

The certificate endpoint returns the public keys enabled by the realm, encoded as a JSON Web Key
(JWK). Depending on the realm settings, one or more keys can be enabled for verifying tokens. For
more information, see the Server Administration Guide and the JSON Web Key specification.

2.1.1.6. Introspection endpoint

/realms/{realm-name}/protocol/openid-connect/token/introspect

The introspection endpoint is used to retrieve the active state of a token. In other words, you can use it
to validate an access or refresh token. This endpoint can only be invoked by confidential clients.

For more details on how to invoke on this endpoint, see OAuth 2.0 Token Introspection specification.

2.1.1.7. Dynamic Client Registration endpoint

/realms/{realm-name}/clients-registrations/openid-connect

The dynamic client registration endpoint is used to dynamically register clients.

For more details, see the Client Registration chapter and the OpenID Connect Dynamic Client
Registration specification.

2.1.1.8. Token Revocation endpoint

/realms/{realm-name}/protocol/openid-connect/revoke

The token revocation endpoint is used to revoke tokens. Both refresh tokens and access tokens are
supported by this endpoint. When revoking a refresh token, the user consent for the corresponding
client is also revoked.

For more details on how to invoke on this endpoint, see OAuth 2.0 Token Revocation specification .

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

9

https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7662
https://openid.net/specs/openid-connect-registration-1_0.html
https://datatracker.ietf.org/doc/html/rfc7009

2.1.1.9. Device Authorization endpoint

/realms/{realm-name}/protocol/openid-connect/auth/device

The device authorization endpoint is used to obtain a device code and a user code. It can be invoked by
confidential or public clients.

For more details on how to invoke on this endpoint, see OAuth 2.0 Device Authorization Grant
specification.

2.1.1.10. Backchannel Authentication endpoint

/realms/{realm-name}/protocol/openid-connect/ext/ciba/auth

The backchannel authentication endpoint is used to obtain an auth_req_id that identifies the
authentication request made by the client. It can only be invoked by confidential clients.

For more details on how to invoke on this endpoint, see OpenID Connect Client Initiated Backchannel
Authentication Flow specification.

Also refer to other places of Red Hat build of Keycloak documentation like Client Initiated Backchannel
Authentication Grant section of this guide and Client Initiated Backchannel Authentication Grant
section of Server Administration Guide.

2.2. SUPPORTED GRANT TYPES

This section describes the different grant types available to relaying parties.

2.2.1. Authorization code

The Authorization Code flow redirects the user agent to Red Hat build of Keycloak. Once the user has
successfully authenticated with Red Hat build of Keycloak, an Authorization Code is created and the
user agent is redirected back to the application. The application then uses the authorization code along
with its credentials to obtain an Access Token, Refresh Token and ID Token from Red Hat build of
Keycloak.

The flow is targeted towards web applications, but is also recommended for native applications,
including mobile applications, where it is possible to embed a user agent.

For more details refer to the Authorization Code Flow in the OpenID Connect specification.

2.2.2. Implicit

The Implicit flow works similarly to the Authorization Code flow, but instead of returning an
Authorization Code, the Access Token and ID Token is returned. This approach reduces the need for the
extra invocation to exchange the Authorization Code for an Access Token. However, it does not include
a Refresh Token. This results in the need to permit Access Tokens with a long expiration; however, that
approach is not practical because it is very hard to invalidate these tokens. Alternatively, you can require
a new redirect to obtain a new Access Token once the initial Access Token has expired. The Implicit flow
is useful if the application only wants to authenticate the user and deals with logout itself.

You can instead use a Hybrid flow where both the Access Token and an Authorization Code are
returned.

One thing to note is that both the Implicit flow and Hybrid flow have potential security risks as the

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

10

https://datatracker.ietf.org/doc/html/rfc8628
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_client_initiated_backchannel_authentication_grant
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

One thing to note is that both the Implicit flow and Hybrid flow have potential security risks as the
Access Token may be leaked through web server logs and browser history. You can somewhat mitigate
this problem by using short expiration for Access Tokens.

For more details, see the Implicit Flow in the OpenID Connect specification.

2.2.3. Resource Owner Password Credentials

Resource Owner Password Credentials, referred to as Direct Grant in Red Hat build of Keycloak, allows
exchanging user credentials for tokens. Using this flow is not recommended unlesss it is essential.
Examples where this flow could be useful are legacy applications and command-line interfaces.

The limitations of using this flow include:

User credentials are exposed to the application

Applications need login pages

Application needs to be aware of the authentication scheme

Changes to authentication flow requires changes to application

No support for identity brokering or social login

Flows are not supported (user self-registration, required actions, and so on.)

For a client to be permitted to use the Resource Owner Password Credentials grant, the client has to
have the Direct Access Grants Enabled option enabled.

This flow is not included in OpenID Connect, but is a part of the OAuth 2.0 specification.

For more details, see the Resource Owner Password Credentials Grant chapter in the OAuth 2.0
specification.

2.2.3.1. Example using CURL

The following example shows how to obtain an access token for a user in the realm master with
username user and password password. The example is using the confidential client myclient:

2.2.4. Client credentials

Client Credentials are used when clients (applications and services) want to obtain access on behalf of
themselves rather than on behalf of a user. For example, these credentials can be useful for background
services that apply changes to the system in general rather than for a specific user.

Red Hat build of Keycloak provides support for clients to authenticate either with a secret or with
public/private keys.

curl \
 -d "client_id=myclient" \
 -d "client_secret=40cc097b-2a57-4c17-b36a-8fdf3fc2d578" \
 -d "username=user" \
 -d "password=password" \
 -d "grant_type=password" \
 "http://localhost:8080/realms/master/protocol/openid-connect/token"

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

11

https://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3

This flow is not included in OpenID Connect, but is a part of the OAuth 2.0 specification.

For more details, see the Client Credentials Grant chapter in the OAuth 2.0 specification.

2.2.5. Device Authorization Grant

Device Authorization Grant is used by clients running on internet-connected devices that have limited
input capabilities or lack a suitable browser. . The application requests Red Hat build of Keycloak a
device code and a user code. . Red Hat build of Keycloak creates a device code and a user code. . Red
Hat build of Keycloak returns a response including the device code and the user code to the application.
. The application provides the user with the user code and the verification URI. The user accesses a
verification URI to be authenticated by using another browser. . The application repeatedly polls Red Hat
build of Keycloak until Red Hat build of Keycloak completes the user authorization. . If user
authentication is complete, the application obtains the device code. . The application uses the device
code along with its credentials to obtain an Access Token, Refresh Token and ID Token from Red Hat
build of Keycloak.

For more details, see the OAuth 2.0 Device Authorization Grant specification .

2.2.6. Client Initiated Backchannel Authentication Grant

Client Initiated Backchannel Authentication Grant is used by clients who want to initiate the
authentication flow by communicating with the OpenID Provider directly without redirect through the
user’s browser like OAuth 2.0’s authorization code grant.

The client requests from Red Hat build of Keycloak an auth_req_id that identifies the authentication
request made by the client. Red Hat build of Keycloak creates the auth_req_id.

After receiving this auth_req_id, this client repeatedly needs to poll Red Hat build of Keycloak to obtain
an Access Token, Refresh Token, and ID Token from Red Hat build of Keycloak in return for the
auth_req_id until the user is authenticated.

In case that client uses ping mode, it does not need to repeatedly poll the token endpoint, but it can wait
for the notification sent by Red Hat build of Keycloak to the specified Client Notification Endpoint. The
Client Notification Endpoint can be configured in the Red Hat build of Keycloak Admin Console. The
details of the contract for Client Notification Endpoint are described in the CIBA specification.

For more details, see OpenID Connect Client Initiated Backchannel Authentication Flow specification .

Also refer to other places of Red Hat build of Keycloak documentation such as Backchannel
Authentication Endpoint of this guide and Client Initiated Backchannel Authentication Grant section of
Server Administration Guide. For the details about FAPI CIBA compliance, see the FAPI section of this
guide.

2.3. RED HAT BUILD OF KEYCLOAK JAVA ADAPTERS

2.3.1. Red Hat JBoss Enterprise Application Platform

Red Hat build of Keycloak does not include any adapters for Red Hat JBoss Enterprise Application
Platform. However, there are alternatives for existing applications deployed to Red Hat JBoss
Enterprise Application Platform.

2.3.1.1. 8.0 Beta

Red Hat Enterprise Application Platform 8.0 Beta provides a native OpenID Connect client through the

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

12

https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
https://datatracker.ietf.org/doc/html/rfc8628
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_client_initiated_backchannel_authentication_grant

Red Hat Enterprise Application Platform 8.0 Beta provides a native OpenID Connect client through the
Elytron OIDC client subsystem.

For more information, see the Red Hat JBoss Enterprise Application Platform documentation .

2.3.1.2. 6.4 and 7.x

Existing applications deployed to Red Hat JBoss Enterprise Application Platform 6.4 and 7.x can
leverage adapters from Red Hat Single Sign-On 7.6 in combination with the Red Hat build of Keycloak
server.

For more information, see the Red Hat Single Sign-On documentation .

2.3.2. Spring Boot adapter

Red Hat build of Keycloak does not include any adapters for Spring Boot. However, there are
alternatives for existing applications built with Spring Boot.

Spring Security provides comprehensive support for OAuth 2 and OpenID Connect. For more
information, see the Spring Security documentation .

Alternatively, for Spring Boot 2.x the Spring Boot adapter from Red Hat Single Sign-On 7.6 can be used
in combination with the Red Hat build of Keycloak server. For more information, see the Red Hat Single
Sign-On documentation.

2.4. RED HAT BUILD OF KEYCLOAK JAVASCRIPT ADAPTER

Red Hat build of Keycloak comes with a client-side JavaScript library called keycloak-js that can be
used to secure web applications. The adapter also comes with built-in support for Cordova applications.

2.4.1. Installation

The adapter is distributed in several ways, but we recommend that you install the keycloak-js package
from NPM:

Alternatively, the library can be retrieved directly from the Red Hat build of Keycloak server at
/js/keycloak.js and is also distributed as a ZIP archive. We are however considering the inclusion of the
adapter directly from the Keycloak server as deprecated, and this functionality might be removed in the
future.

2.4.2. Red Hat build of Keycloak server configuration

One important thing to consider about using client-side applications is that the client has to be a public
client as there is no secure way to store client credentials in a client-side application. This consideration
makes it very important to make sure the redirect URIs you have configured for the client are correct
and as specific as possible.

To use the adapter, create a client for your application in the Red Hat build of Keycloak Admin Console.
Make the client public by toggling Client authentication to Off on the Capability config page.

You also need to configure Valid Redirect URIs and Web Origins. Be as specific as possible as failing
to do so may result in a security vulnerability.

npm install keycloak-js

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

13

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8-beta/html/using_single_sign-on_with_jboss_eap/index
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html/securing_applications_and_services_guide/oidc#jboss_adapter
https://spring.io/projects/spring-security
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html/securing_applications_and_services_guide/oidc#jboss_adapter
https://www.npmjs.com/package/keycloak-js

2.4.3. Using the adapter

The following example shows how to initialize the adapter. Make sure that you replace the options
passed to the Keycloak constructor with those of the client you have configured.

To authenticate, you call the login function. Two options exist to make the adapter automatically
authenticate. You can pass login-required or check-sso to the init() function.

login-required authenticates the client if the user is logged in to Red Hat build of Keycloak or
displays the login page if the user is not logged in.

check-sso only authenticates the client if the user is already logged in. If the user is not logged
in, the browser is redirected back to the application and remains unauthenticated.

You can configure a silent check-sso option. With this feature enabled, your browser will not perform a
full redirect to the Red Hat build of Keycloak server and back to your application, but this action will be
performed in a hidden iframe. Therefore, your application resources are only loaded and parsed once by
the browser, namely when the application is initialized and not again after the redirect back from Red
Hat build of Keycloak to your application. This approach is particularly useful in case of SPAs (Single
Page Applications).

To enable the silent check-sso, you provide a silentCheckSsoRedirectUri attribute in the init method.
Make sure this URI is a valid endpoint in the application; it must be configured as a valid redirect for the
client in the Red Hat build of Keycloak Admin Console:

The page at the silent check-sso redirect uri is loaded in the iframe after successfully checking your
authentication state and retrieving the tokens from the Red Hat build of Keycloak server. It has no other
task than sending the received tokens to the main application and should only look like this:

import Keycloak from 'keycloak-js';

const keycloak = new Keycloak({
 url: 'http://keycloak-server${kc_base_path}',
 realm: 'myrealm',
 clientId: 'myapp'
});

try {
 const authenticated = await keycloak.init();
 console.log(`User is ${authenticated ? 'authenticated' : 'not authenticated'}`);
} catch (error) {
 console.error('Failed to initialize adapter:', error);
}

keycloak.init({
 onLoad: 'check-sso',
 silentCheckSsoRedirectUri: `${location.origin}/silent-check-sso.html`
});

<!doctype html>
<html>
<body>
 <script>
 parent.postMessage(location.href, location.origin);

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

14

Remember that this page must be served by your application at the specified location in
silentCheckSsoRedirectUri and is not part of the adapter.

WARNING

Silent check-sso functionality is limited in some modern browsers. Please see the
Modern Browsers with Tracking Protection Section.

To enable login-required set onLoad to login-required and pass to the init method:

After the user is authenticated the application can make requests to RESTful services secured by Red
Hat build of Keycloak by including the bearer token in the Authorization header. For example:

One thing to keep in mind is that the access token by default has a short life expiration so you may need
to refresh the access token prior to sending the request. You refresh this token by calling the
updateToken() method. This method returns a Promise, which makes it easy to invoke the service only if
the token was successfully refreshed and displays an error to the user if it was not refreshed. For
example:

NOTE

 </script>
</body>
</html>



keycloak.init({
 onLoad: 'login-required'
});

async function fetchUsers() {
 const response = await fetch('/api/users', {
 headers: {
 accept: 'application/json',
 authorization: `Bearer ${keycloak.token}`
 }
 });

 return response.json();
}

try {
 await keycloak.updateToken(30);
} catch (error) {
 console.error('Failed to refresh token:', error);
}

const users = await fetchUsers();

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

15

NOTE

Both access and refresh token are stored in memory and are not persisted in any kind of
storage. Therefore, these tokens should never be persisted to prevent hijacking attacks.

2.4.4. Session Status iframe

By default, the adapter creates a hidden iframe that is used to detect if a Single-Sign Out has occurred.
This iframe does not require any network traffic. Instead the status is retrieved by looking at a special
status cookie. This feature can be disabled by setting checkLoginIframe: false in the options passed to
the init() method.

You should not rely on looking at this cookie directly. Its format can change and it’s also associated with
the URL of the Red Hat build of Keycloak server, not your application.

WARNING

Session Status iframe functionality is limited in some modern browsers. Please see
Modern Browsers with Tracking Protection Section.

2.4.5. Implicit and hybrid flow

By default, the adapter uses the Authorization Code flow.

With this flow, the Red Hat build of Keycloak server returns an authorization code, not an authentication
token, to the application. The JavaScript adapter exchanges the code for an access token and a refresh
token after the browser is redirected back to the application.

Red Hat build of Keycloak also supports the Implicit flow where an access token is sent immediately
after successful authentication with Red Hat build of Keycloak. This flow may have better performance
than the standard flow because no additional request exists to exchange the code for tokens, but it has
implications when the access token expires.

However, sending the access token in the URL fragment can be a security vulnerability. For example the
token could be leaked through web server logs and or browser history.

To enable implicit flow, you enable the Implicit Flow Enabled flag for the client in the Red Hat build of
Keycloak Admin Console. You also pass the parameter flow with the value implicit to init method:

Note that only an access token is provided and no refresh token exists. This situation means that once
the access token has expired, the application has to redirect to Red Hat build of Keycloak again to obtain
a new access token.

Red Hat build of Keycloak also supports the Hybrid flow.

This flow requires the client to have both the Standard Flow and Implicit Flow enabled in the Admin
Console. The Red Hat build of Keycloak server then sends both the code and tokens to your application.



keycloak.init({
 flow: 'implicit'
})

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

16

https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth

The access token can be used immediately while the code can be exchanged for access and refresh
tokens. Similar to the implicit flow, the hybrid flow is good for performance because the access token is
available immediately. But, the token is still sent in the URL, and the security vulnerability mentioned
earlier may still apply.

One advantage in the Hybrid flow is that the refresh token is made available to the application.

For the Hybrid flow, you need to pass the parameter flow with value hybrid to the init method:

2.4.6. Hybrid Apps with Cordova

Red Hat build of Keycloak supports hybrid mobile apps developed with Apache Cordova. The adapter
has two modes for this: cordova and cordova-native:

The default is cordova, which the adapter automatically selects if no adapter type has been explicitly
configured and window.cordova is present. When logging in, it opens an InApp Browser that lets the
user interact with Red Hat build of Keycloak and afterwards returns to the app by redirecting to
http://localhost. Because of this behavior, you whitelist this URL as a valid redirect-uri in the client
configuration section of the Admin Console.

While this mode is easy to set up, it also has some disadvantages:

The InApp-Browser is a browser embedded in the app and is not the phone’s default browser.
Therefore it will have different settings and stored credentials will not be available.

The InApp-Browser might also be slower, especially when rendering more complex themes.

There are security concerns to consider, before using this mode, such as that it is possible for
the app to gain access to the credentials of the user, as it has full control of the browser
rendering the login page, so do not allow its use in apps you do not trust.

Use this example app to help you get started:
https://github.com/keycloak/keycloak/tree/master/examples/cordova

The alternative mode is`cordova-native`, which takes a different approach. It opens the login page
using the system’s browser. After the user has authenticated, the browser redirects back into the
application using a special URL. From there, the Red Hat build of Keycloak adapter can finish the login by
reading the code or token from the URL.

You can activate the native mode by passing the adapter type cordova-native to the init() method:

This adapter requires two additional plugins:

cordova-plugin-browsertab: allows the app to open webpages in the system’s browser

cordova-plugin-deeplinks: allow the browser to redirect back to your app by special URLs

The technical details for linking to an app differ on each platform and special setup is needed. Please

keycloak.init({
 flow: 'hybrid'
});

keycloak.init({
 adapter: 'cordova-native'
});

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

17

https://cordova.apache.org/
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-inappbrowser/
http://localhost
https://github.com/keycloak/keycloak/tree/master/examples/cordova
https://github.com/google/cordova-plugin-browsertab
https://github.com/e-imaxina/cordova-plugin-deeplinks

The technical details for linking to an app differ on each platform and special setup is needed. Please
refer to the Android and iOS sections of the deeplinks plugin documentation for further instructions.

Different kinds of links exist for opening apps: * custom schemes, such as myapp://login or android-
app://com.example.myapp/https/example.com/login * Universal Links (iOS)) / Deep Links (Android) .
While the former are easier to set up and tend to work more reliably, the latter offer extra security
because they are unique and only the owner of a domain can register them. Custom-URLs are
deprecated on iOS. For best reliability, we recommend that you use universal links combined with a
fallback site that uses a custom-url link.

Furthermore, we recommend the following steps to improve compatibility with the adapter:

Universal Links on iOS seem to work more reliably with response-mode set to query

To prevent Android from opening a new instance of your app on redirect add the following
snippet to config.xml:

There is an example app that shows how to use the native-mode:
https://github.com/keycloak/keycloak/tree/master/examples/cordova-native

2.4.7. Custom Adapters

In some situations, you may need to run the adapter in environments that are not supported by default,
such as Capacitor. To use the JavasScript client in these environments, you can pass a custom adapter.
For example, a third-party library could provide such an adapter to make it possible to reliably run the
adapter:

This specific package does not exist, but it gives a pretty good example of how such an adapter could be
passed into the client.

It’s also possible to make your own adapter, to do so you will have to implement the methods described
in the KeycloakAdapter interface. For example the following TypeScript code ensures that all the
methods are properly implemented:

<preference name="AndroidLaunchMode" value="singleTask" />

import Keycloak from 'keycloak-js';
import KeycloakCapacitorAdapter from 'keycloak-capacitor-adapter';

const keycloak = new Keycloak();

keycloak.init({
 adapter: KeycloakCapacitorAdapter,
});

import Keycloak, { KeycloakAdapter } from 'keycloak-js';

// Implement the 'KeycloakAdapter' interface so that all required methods are guaranteed to be
present.
const MyCustomAdapter: KeycloakAdapter = {
 login(options) {
 // Write your own implementation here.
 }

 // The other methods go here...

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

18

https://github.com/e-imaxina/cordova-plugin-deeplinks/blob/master/README.md
https://developer.apple.com/ios/universal-links/
https://developer.android.com/training/app-links/deep-linking
https://github.com/keycloak/keycloak/tree/master/examples/cordova-native

Naturally you can also do this without TypeScript by omitting the type information, but ensuring
implementing the interface properly will then be left entirely up to you.

2.4.8. Modern Browsers with Tracking Protection

In the latest versions of some browsers, various cookies policies are applied to prevent tracking of the
users by third parties, such as SameSite in Chrome or completely blocked third-party cookies. Those
policies are likely to become more restrictive and adopted by other browsers over time. Eventually
cookies in third-party contexts may become completely unsupported and blocked by the browsers. As a
result, the affected adapter features might ultimately be deprecated.

The adapter relies on third-party cookies for Session Status iframe, silent check-sso and partially also
for regular (non-silent) check-sso. Those features have limited functionality or are completely disabled
based on how restrictive the browser is regarding cookies. The adapter tries to detect this setting and
reacts accordingly.

2.4.8.1. Browsers with "SameSite=Lax by Default" Policy

All features are supported if SSL / TLS connection is configured on the Red Hat build of Keycloak side
as well as on the application side. For example, Chrome is affected starting with version 84.

2.4.8.2. Browsers with Blocked Third-Party Cookies

Session Status iframe is not supported and is automatically disabled if such browser behavior is
detected by the adapter. This means the adapter cannot use a session cookie for Single Sign-Out
detection and must rely purely on tokens. As a result, when a user logs out in another window, the
application using the adapter will not be logged out until the application tries to refresh the Access
Token. Therefore, consider setting the Access Token Lifespan to a relatively short time, so that the
logout is detected as soon as possible. For more details, see Session and Token Timeouts .

Silent check-sso is not supported and falls back to regular (non-silent) check-sso by default. This
behavior can be changed by setting silentCheckSsoFallback: false in the options passed to the init
method. In this case, check-sso will be completely disabled if restrictive browser behavior is detected.

Regular check-sso is affected as well. Since Session Status iframe is unsupported, an additional
redirect to Red Hat build of Keycloak has to be made when the adapter is initialized to check the user’s
login status. This check is different from the standard behavior when the iframe is used to tell whether
the user is logged in, and the redirect is performed only when the user is logged out.

An affected browser is for example Safari starting with version 13.1.

2.4.9. API Reference

2.4.9.1. Constructor

};

const keycloak = new Keycloak();

keycloak.init({
 adapter: MyCustomAdapter,
});

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

19

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_timeouts

2.4.9.2. Properties

authenticated

Is true if the user is authenticated, false otherwise.

token

The base64 encoded token that can be sent in the Authorization header in requests to services.

tokenParsed

The parsed token as a JavaScript object.

subject

The user id.

idToken

The base64 encoded ID token.

idTokenParsed

The parsed id token as a JavaScript object.

realmAccess

The realm roles associated with the token.

resourceAccess

The resource roles associated with the token.

refreshToken

The base64 encoded refresh token that can be used to retrieve a new token.

refreshTokenParsed

The parsed refresh token as a JavaScript object.

timeSkew

The estimated time difference between the browser time and the Red Hat build of Keycloak server in
seconds. This value is just an estimation, but is accurate enough when determining if a token is
expired or not.

responseMode

Response mode passed in init (default value is fragment).

flow

Flow passed in init.

adapter

Allows you to override the way that redirects and other browser-related functions will be handled by
the library. Available options:

"default" - the library uses the browser api for redirects (this is the default)

"cordova" - the library will try to use the InAppBrowser cordova plugin to load keycloak
login/registration pages (this is used automatically when the library is working in a cordova
ecosystem)

"cordova-native" - the library tries to open the login and registration page using the phone’s

new Keycloak();
new Keycloak('http://localhost/keycloak.json');
new Keycloak({ url: 'http://localhost', realm: 'myrealm', clientId: 'myApp' });

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

20

"cordova-native" - the library tries to open the login and registration page using the phone’s
system browser using the BrowserTabs cordova plugin. This requires extra setup for
redirecting back to the app (see Section 2.4.6, “Hybrid Apps with Cordova”).

"custom" - allows you to implement a custom adapter (only for advanced use cases)

responseType

Response type sent to Red Hat build of Keycloak with login requests. This is determined based on
the flow value used during initialization, but can be overridden by setting this value.

2.4.9.3. Methods

init(options)

Called to initialize the adapter.

Options is an Object, where:

useNonce - Adds a cryptographic nonce to verify that the authentication response matches the
request (default is true).

onLoad - Specifies an action to do on load. Supported values are login-required or check-sso.

silentCheckSsoRedirectUri - Set the redirect uri for silent authentication check if onLoad is set
to 'check-sso'.

silentCheckSsoFallback - Enables fall back to regular check-sso when silent check-sso is not
supported by the browser (default is true).

token - Set an initial value for the token.

refreshToken - Set an initial value for the refresh token.

idToken - Set an initial value for the id token (only together with token or refreshToken).

scope - Set the default scope parameter to the Red Hat build of Keycloak login endpoint. Use a
space-delimited list of scopes. Those typically reference Client scopes defined on a particular
client. Note that the scope openid will always be added to the list of scopes by the adapter. For
example, if you enter the scope options address phone, then the request to Red Hat build of
Keycloak will contain the scope parameter scope=openid address phone. Note that the
default scope specified here is overwritten if the login() options specify scope explicitly.

timeSkew - Set an initial value for skew between local time and Red Hat build of Keycloak server
in seconds (only together with token or refreshToken).

checkLoginIframe - Set to enable/disable monitoring login state (default is true).

checkLoginIframeInterval - Set the interval to check login state (default is 5 seconds).

responseMode - Set the OpenID Connect response mode send to Red Hat build of Keycloak
server at login request. Valid values are query or fragment. Default value is fragment, which
means that after successful authentication will Red Hat build of Keycloak redirect to JavaScript
application with OpenID Connect parameters added in URL fragment. This is generally safer
and recommended over query.

flow - Set the OpenID Connect flow. Valid values are standard, implicit or hybrid.

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

21

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_client_scopes

enableLogging - Enables logging messages from Keycloak to the console (default is false).

pkceMethod - The method for Proof Key Code Exchange (PKCE) to use. Configuring this value
enables the PKCE mechanism. Available options:

"S256" - The SHA256 based PKCE method

scope - Used to forward the scope parameter to the Red Hat build of Keycloak login endpoint.
Use a space-delimited list of scopes. Those typically reference Client scopes defined on a
particular client. Note that the scope openid is always added to the list of scopes by the
adapter. For example, if you enter the scope options address phone, then the request to Red
Hat build of Keycloak will contain the scope parameter scope=openid address phone.

messageReceiveTimeout - Set a timeout in milliseconds for waiting for message responses
from the Keycloak server. This is used, for example, when waiting for a message during 3rd party
cookies check. The default value is 10000.

locale - When onLoad is 'login-required', sets the 'ui_locales' query param in compliance with
section 3.1.2.1 of the OIDC 1.0 specification .

Returns a promise that resolves when initialization completes.

login(options)

Redirects to login form.

Options is an optional Object, where:

redirectUri - Specifies the uri to redirect to after login.

prompt - This parameter allows to slightly customize the login flow on the Red Hat build of
Keycloak server side. For example enforce displaying the login screen in case of value login. See
Parameters Forwarding Section for the details and all the possible values of the prompt
parameter.

maxAge - Used just if user is already authenticated. Specifies maximum time since the
authentication of user happened. If user is already authenticated for longer time than maxAge,
the SSO is ignored and he will need to re-authenticate again.

loginHint - Used to pre-fill the username/email field on the login form.

scope - Override the scope configured in init with a different value for this specific login.

idpHint - Used to tell Red Hat build of Keycloak to skip showing the login page and
automatically redirect to the specified identity provider instead. More info in the Identity
Provider documentation.

acr - Contains the information about acr claim, which will be sent inside claims parameter to the
Red Hat build of Keycloak server. Typical usage is for step-up authentication. Example of use {
values: ["silver", "gold"], essential: true }. See OpenID Connect specification and Step-up
authentication documentation for more details.

action - If the value is register, the user is redirected to the registration page. See Registration
requested by client section for more details. If the value is UPDATE_PASSWORD or another
supported required action, the user will be redirected to the reset password page or the other

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

22

https://datatracker.ietf.org/doc/html/rfc7636
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_client_scopes
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/securing_applications_and_services_guide/#_params_forwarding
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_client_suggested_idp
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_step-up-flow
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_registration-rc-client-flows

required action page. However, if the user is not authenticated, the user will be sent to the login
page and redirected after authentication. See Application Initiated Action section for more
details.

locale - Sets the 'ui_locales' query param in compliance with section 3.1.2.1 of the OIDC 1.0
specification.

cordovaOptions - Specifies the arguments that are passed to the Cordova in-app-browser (if
applicable). Options hidden and location are not affected by these arguments. All available
options are defined at https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-
inappbrowser/. Example of use: { zoom: "no", hardwareback: "yes" };

createLoginUrl(options)

Returns the URL to login form.

Options is an optional Object, which supports same options as the function login .

logout(options)

Redirects to logout.

Options is an Object, where:

redirectUri - Specifies the uri to redirect to after logout.

createLogoutUrl(options)

Returns the URL to log out the user.

Options is an Object, where:

redirectUri - Specifies the uri to redirect to after logout.

register(options)

Redirects to registration form. Shortcut for login with option action = 'register'

Options are same as for the login method but 'action' is set to 'register'

createRegisterUrl(options)

Returns the url to registration page. Shortcut for createLoginUrl with option action = 'register'

Options are same as for the createLoginUrl method but 'action' is set to 'register'

accountManagement()

Redirects to the Account Management Console.

createAccountUrl(options)

Returns the URL to the Account Management Console.

Options is an Object, where:

redirectUri - Specifies the uri to redirect to when redirecting back to the application.

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

23

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#con-aia_server_administration_guide
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-inappbrowser/

hasRealmRole(role)

Returns true if the token has the given realm role.

hasResourceRole(role, resource)

Returns true if the token has the given role for the resource (resource is optional, if not specified clientId
is used).

loadUserProfile()

Loads the users profile.

Returns a promise that resolves with the profile.

For example:

isTokenExpired(minValidity)

Returns true if the token has less than minValidity seconds left before it expires (minValidity is optional,
if not specified 0 is used).

updateToken(minValidity)

If the token expires within minValidity seconds (minValidity is optional, if not specified 5 is used) the
token is refreshed. If -1 is passed as the minValidity, the token will be forcibly refreshed. If the session
status iframe is enabled, the session status is also checked.

Returns a promise that resolves with a boolean indicating whether or not the token has been refreshed.

For example:

clearToken()

Clear authentication state, including tokens. This can be useful if application has detected the session
was expired, for example if updating token fails.

Invoking this results in onAuthLogout callback listener being invoked.

2.4.9.4. Callback Events

The adapter supports setting callback listeners for certain events. Keep in mind that these have to be

try {
 const profile = await keycloak.loadUserProfile();
 console.log('Retrieved user profile:', profile);
} catch (error) {
 console.error('Failed to load user profile:', error);
}

try {
 const refreshed = await keycloak.updateToken(5);
 console.log(refreshed ? 'Token was refreshed' : 'Token is still valid');
} catch (error) {
 console.error('Failed to refresh the token:', error);
}

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

24

The adapter supports setting callback listeners for certain events. Keep in mind that these have to be
set before the call to the init() method.

For example:

The available events are:

onReady(authenticated) - Called when the adapter is initialized.

onAuthSuccess - Called when a user is successfully authenticated.

onAuthError - Called if there was an error during authentication.

onAuthRefreshSuccess - Called when the token is refreshed.

onAuthRefreshError - Called if there was an error while trying to refresh the token.

onAuthLogout - Called if the user is logged out (will only be called if the session status iframe
is enabled, or in Cordova mode).

onTokenExpired - Called when the access token is expired. If a refresh token is available the
token can be refreshed with updateToken, or in cases where it is not (that is, with implicit flow)
you can redirect to the login screen to obtain a new access token.

2.5. RED HAT BUILD OF KEYCLOAK NODE.JS ADAPTER

Red Hat build of Keycloak provides a Node.js adapter built on top of Connect to protect server-side
JavaScript apps - the goal was to be flexible enough to integrate with frameworks like Express.js.

To use the Node.js adapter, first you must create a client for your application in the Red Hat build of
Keycloak Admin Console. The adapter supports public, confidential, and bearer-only access type. Which
one to choose depends on the use-case scenario.

Once the client is created click the Installation tab, select Red Hat build of Keycloak OIDC JSON for
Format Option, and then click Download. The downloaded keycloak.json file should be at the root
folder of your project.

2.5.1. Installation

Assuming you’ve already installed Node.js, create a folder for your application:

mkdir myapp && cd myapp

Use npm init command to create a package.json for your application. Now add the Red Hat build of
Keycloak connect adapter in the dependencies list:

2.5.2. Usage

keycloak.onAuthSuccess = () => console.log('Authenticated!');

 "dependencies": {
 "keycloak-connect": "file:keycloak-connect-22.0.11+redhat-00001.tgz"
 }

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

25

https://github.com/senchalabs/connect
https://expressjs.com/
https://nodejs.org

Instantiate a Keycloak class

The Keycloak class provides a central point for configuration and integration with your application.
The simplest creation involves no arguments.

In the root directory of your project create a file called server.js and add the following code:

Install the express-session dependency:

 npm install express-session

To start the server.js script, add the following command in the 'scripts' section of the package.json:

 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start": "node server.js"
 },

Now we have the ability to run our server with following command:

 npm run start

By default, this will locate a file named keycloak.json alongside the main executable of your application,
in our case on the root folder, to initialize Red Hat build of Keycloak specific settings such as public key,
realm name, various URLs.

In that case a Red Hat build of Keycloak deployment is necessary to access Red Hat build of Keycloak
admin console.

Please visit links on how to deploy a Red Hat build of Keycloak admin console with Podman or Docker

Now we are ready to obtain the keycloak.json file by visiting the Red Hat build of Keycloak Admin
Console → clients (left sidebar) → choose your client → Installation → Format Option → Keycloak OIDC
JSON → Download

Paste the downloaded file on the root folder of our project.

Instantiation with this method results in all the reasonable defaults being used. As alternative, it’s also
possible to provide a configuration object, rather than the keycloak.json file:

 const session = require('express-session');
 const Keycloak = require('keycloak-connect');

 const memoryStore = new session.MemoryStore();
 const keycloak = new Keycloak({ store: memoryStore });

 const kcConfig = {
 clientId: 'myclient',
 bearerOnly: true,
 serverUrl: 'http://localhost:8080',
 realm: 'myrealm',
 realmPublicKey: 'MIIBIjANB...'
 };

 const keycloak = new Keycloak({ store: memoryStore }, kcConfig);

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

26

https://www.keycloak.org/getting-started/getting-started-podman
https://www.keycloak.org/getting-started/getting-started-docker

Applications can also redirect users to their preferred identity provider by using:

Configuring a web session store

If you want to use web sessions to manage server-side state for authentication, you need to initialize
the Keycloak(… ​) with at least a store parameter, passing in the actual session store that express-
session is using.

Passing a custom scope value

By default, the scope value openid is passed as a query parameter to Red Hat build of Keycloak’s
login URL, but you can add an additional custom value:

2.5.3. Installing middleware

Once instantiated, install the middleware into your connect-capable app:

In order to do so, first we have to install Express:

 npm install express

then require Express in our project as outlined below:

and configure Keycloak middleware in Express, by adding at the code below:

Last but not least, let’s set up our server to listen for HTTP requests on port 3000 by adding the
following code to main.js:

 const keycloak = new Keycloak({ store: memoryStore, idpHint: myIdP }, kcConfig);

 const session = require('express-session');
 const memoryStore = new session.MemoryStore();

 // Configure session
 app.use(
 session({
 secret: 'mySecret',
 resave: false,
 saveUninitialized: true,
 store: memoryStore,
 })
);

 const keycloak = new Keycloak({ store: memoryStore });

 const keycloak = new Keycloak({ scope: 'offline_access' });

 const express = require('express');
 const app = express();

 app.use(keycloak.middleware());

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

27

2.5.4. Configuration for proxies

If the application is running behind a proxy that terminates an SSL connection Express must be
configured per the express behind proxies guide. Using an incorrect proxy configuration can result in
invalid redirect URIs being generated.

Example configuration:

2.5.5. Protecting resources

Simple authentication

To enforce that a user must be authenticated before accessing a resource, simply use a no-
argument version of keycloak.protect():

Role-based authorization

To secure a resource with an application role for the current app:

To secure a resource with an application role for a different app:

To secure a resource with a realm role:

Resource-Based Authorization

Resource-Based Authorization allows you to protect resources, and their specific methods/actions,**
based on a set of policies defined in Keycloak, thus externalizing authorization from your application.
This is achieved by exposing a keycloak.enforcer method which you can use to protect resources.*

The keycloak-enforcer method operates in two modes, depending on the value of the response_mode
configuration option.

 app.listen(3000, function () {
 console.log('App listening on port 3000');
 });

 const app = express();

 app.set('trust proxy', true);

 app.use(keycloak.middleware());

 app.get('/complain', keycloak.protect(), complaintHandler);

 app.get('/special', keycloak.protect('special'), specialHandler);

 app.get('/extra-special', keycloak.protect('other-app:special'), extraSpecialHandler);

 app.get('/admin', keycloak.protect('realm:admin'), adminHandler);

 app.get('/apis/me', keycloak.enforcer('user:profile'), userProfileHandler);

 app.get('/apis/me', keycloak.enforcer('user:profile', {response_mode: 'token'}), userProfileHandler);

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

28

https://expressjs.com/en/guide/behind-proxies.html

If response_mode is set to token, permissions are obtained from the server on behalf of the subject
represented by the bearer token that was sent to your application. In this case, a new access token is
issued by Keycloak with the permissions granted by the server. If the server did not respond with a token
with the expected permissions, the request is denied. When using this mode, you should be able to
obtain the token from the request as follows:

Prefer this mode when your application is using sessions and you want to cache previous decisions from
the server, as well automatically handle refresh tokens. This mode is especially useful for applications
acting as a client and resource server.

If response_mode is set to permissions (default mode), the server only returns the list of granted
permissions, without issuing a new access token. In addition to not issuing a new token, this method
exposes the permissions granted by the server through the request as follows:

Regardless of the response_mode in use, the keycloak.enforcer method will first try to check the
permissions within the bearer token that was sent to your application. If the bearer token already carries
the expected permissions, there is no need to interact with the server to obtain a decision. This is
specially useful when your clients are capable of obtaining access tokens from the server with the
expected permissions before accessing a protected resource, so they can use some capabilities
provided by Keycloak Authorization Services such as incremental authorization and avoid additional
requests to the server when keycloak.enforcer is enforcing access to the resource.

By default, the policy enforcer will use the client_id defined to the application (for instance, via
keycloak.json) to reference a client in Keycloak that supports Keycloak Authorization Services. In this
case, the client can not be public given that it is actually a resource server.

If your application is acting as both a public client(frontend) and resource server(backend), you can use
the following configuration to reference a different client in Keycloak with the policies that you want to
enforce:

It is recommended to use distinct clients in Keycloak to represent your frontend and backend.

If the application you are protecting is enabled with Keycloak authorization services and you have
defined client credentials in keycloak.json, you can push additional claims to the server and make them
available to your policies in order to make decisions. For that, you can define a claims configuration
option which expects a function that returns a JSON with the claims you want to push:

 app.get('/apis/me', keycloak.enforcer('user:profile', {response_mode: 'token'}), function (req, res) {
 const token = req.kauth.grant.access_token.content;
 const permissions = token.authorization ? token.authorization.permissions : undefined;

 // show user profile
 });

 app.get('/apis/me', keycloak.enforcer('user:profile', {response_mode: 'permissions'}), function (req,
res) {
 const permissions = req.permissions;

 // show user profile
 });

 keycloak.enforcer('user:profile', {resource_server_id: 'my-apiserver'})

 app.get('/protected/resource', keycloak.enforcer(['resource:view', 'resource:write'], {
 claims: function(request) {

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

29

For more details about how to configure Keycloak to protected your application resources, please take a
look at the Authorization Services Guide.

Advanced authorization

To secure resources based on parts of the URL itself, assuming a role exists for each section:

Advanced Login Configuration:

By default, all unauthorized requests will be redirected to the Red Hat build of Keycloak login page
unless your client is bearer-only. However, a confidential or public client may host both browsable and
API endpoints. To prevent redirects on unauthenticated API requests and instead return an HTTP 401,
you can override the redirectToLogin function.

For example, this override checks if the URL contains /api/ and disables login redirects:

2.5.6. Additional URLs

Explicit user-triggered logout

By default, the middleware catches calls to /logout to send the user through a Red Hat build of
Keycloak-centric logout workflow. This can be changed by specifying a logout configuration
parameter to the middleware() call:

When the user-triggered logout is invoked a query parameter redirect_url can be passed:

https://example.com/logoff?
redirect_url=https%3A%2F%2Fexample.com%3A3000%2Flogged%2Fout

This parameter is then used as the redirect url of the OIDC logout endpoint and the user will be
redirected to https://example.com/logged/out.

Red Hat build of Keycloak Admin Callbacks

Also, the middleware supports callbacks from the Red Hat build of Keycloak console to log out a

 return {
 "http.uri": ["/protected/resource"],
 "user.agent": // get user agent from request
 }
 }
 }), function (req, res) {
 // access granted

 function protectBySection(token, request) {
 return token.hasRole(request.params.section);
 }

 app.get('/:section/:page', keycloak.protect(protectBySection), sectionHandler);

 Keycloak.prototype.redirectToLogin = function(req) {
 const apiReqMatcher = /\/api\//i;
 return !apiReqMatcher.test(req.originalUrl || req.url);
 };

 app.use(keycloak.middleware({ logout: '/logoff' }));

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

30

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/authorization_services_guide/

Also, the middleware supports callbacks from the Red Hat build of Keycloak console to log out a
single session or all sessions. By default, these type of admin callbacks occur relative to the root URL
of / but can be changed by providing an admin parameter to the middleware() call:

2.5.7. Complete example

A complete example using the Node.js adapter usage can be found in Keycloak quickstarts for Node.js

2.6. FINANCIAL-GRADE API (FAPI) SUPPORT

Red Hat build of Keycloak makes it easier for administrators to make sure that their clients are compliant
with these specifications:

Financial-grade API Security Profile 1.0 - Part 1: Baseline

Financial-grade API Security Profile 1.0 - Part 2: Advanced

Financial-grade API: Client Initiated Backchannel Authentication Profile (FAPI CIBA)

This compliance means that the Red Hat build of Keycloak server will verify the requirements for the
authorization server, which are mentioned in the specifications. Red Hat build of Keycloak adapters do
not have any specific support for the FAPI, hence the required validations on the client (application)
side may need to be still done manually or through some other third-party solutions.

2.6.1. FAPI client profiles

To make sure that your clients are FAPI compliant, you can configure Client Policies in your realm as
described in the Server Administration Guide and link them to the global client profiles for FAPI support,
which are automatically available in each realm. You can use either fapi-1-baseline or fapi-1-advanced
profile based on which FAPI profile you need your clients to conform with.

In case you want to use Pushed Authorization Request (PAR), it is recommended that your client use
both the fapi-1-baseline profile and fapi-1-advanced for PAR requests. Specifically, the fapi-1-
baseline profile contains pkce-enforcer executor, which makes sure that client use PKCE with secured
S256 algorithm. This is not required for FAPI Advanced clients unless they use PAR requests.

In case you want to use CIBA in a FAPI compliant way, make sure that your clients use both fapi-1-
advanced and fapi-ciba client profiles. There is a need to use the fapi-1-advanced profile, or other
client profile containing the requested executors, as the fapi-ciba profile contains just CIBA-specific
executors. When enforcing the requirements of the FAPI CIBA specification, there is a need for more
requirements, such as enforcement of confidential clients or certificate-bound access tokens.

2.6.2. Open Finance Brasil Financial-grade API Security Profile

Red Hat build of Keycloak is compliant with the Open Finance Brasil Financial-grade API Security Profile
1.0 Implementers Draft 3. This one is stricter in some requirements than the FAPI 1 Advanced
specification and hence it may be needed to configure Client Policies in the more strict way to enforce
some of the requirements. Especially:

If your client does not use PAR, make sure that it uses encrypted OIDC request objects. This can
be achieved by using a client profile with the secure-request-object executor configured with
Encryption Required enabled.

Make sure that for JWS, the client uses the PS256 algorithm. For JWE, the client should use the

 app.use(keycloak.middleware({ admin: '/callbacks' });

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

31

https://github.com/redhat-developer/rhbk-quickstarts/tree/22.x/nodejs/resource-server
https://openid.net/specs/openid-financial-api-part-1-1_0.html
https://openid.net/specs/openid-financial-api-part-2-1_0.html
https://openid.net/specs/openid-financial-api-ciba-ID1.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_client_policies
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_oidc_clients
https://openfinancebrasil.atlassian.net/wiki/spaces/OF/pages/82083996/EN+Open+Finance+Brasil+Financial-grade+API+Security+Profile+1.0+Implementers+Draft+3
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_client_policies

Make sure that for JWS, the client uses the PS256 algorithm. For JWE, the client should use the
RSA-OAEP with A256GCM. This may need to be set in all the Client Settings where these
algorithms are applicable.

2.6.3. TLS considerations

As confidential information is being exchanged, all interactions shall be encrypted with TLS (HTTPS).
Moreover, there are some requirements in the FAPI specification for the cipher suites and TLS protocol
versions used. To match these requirements, you can consider configure allowed ciphers. This
configuration can be done by setting the https-protocols and https-cipher-suites options. Red Hat
build of Keycloak uses TLSv1.3 by default and hence it is possibly not needed to change the default
settings. However it may be needed to adjust ciphers if you need to fall back to lower TLS version for
some reason. For more details, see Configuring TLS chapter.

2.7. RECOMMENDATIONS

This section describes some recommendations when securing your applications with Red Hat build of
Keycloak.

2.7.1. Validating access tokens

If you need to manually validate access tokens issued by Red Hat build of Keycloak, you can invoke the
Introspection Endpoint. The downside to this approach is that you have to make a network invocation to
the Red Hat build of Keycloak server. This can be slow and possibly overload the server if you have too
many validation requests going on at the same time. Red Hat build of Keycloak issued access tokens are
JSON Web Tokens (JWT) digitally signed and encoded using JSON Web Signature (JWS). Because
they are encoded in this way, you can locally validate access tokens using the public key of the issuing
realm. You can either hard code the realm’s public key in your validation code, or lookup and cache the
public key using the certificate endpoint with the Key ID (KID) embedded within the JWS. Depending on
what language you code in, many third party libraries exist and they can help you with JWS validation.

2.7.2. Redirect URIs

When using the redirect based flows, be sure to use valid redirect uris for your clients. The redirect uris
should be as specific as possible. This especially applies to client-side (public clients) applications. Failing
to do so could result in:

Open redirects - this can allow attackers to create spoof links that looks like they are coming
from your domain

Unauthorized entry - when users are already authenticated with Red Hat build of Keycloak, an
attacker can use a public client where redirect uris have not be configured correctly to gain
access by redirecting the user without the users knowledge

In production for web applications always use https for all redirect URIs. Do not allow redirects to http.

A few special redirect URIs also exist:

http://127.0.0.1

This redirect URI is useful for native applications and allows the native application to create a web
server on a random port that can be used to obtain the authorization code. This redirect uri allows any
port. Note that per OAuth 2.0 for Native Apps , the use of localhost is not recommended and the IP
literal 127.0.0.1 should be used instead.

urn:ietf:wg:oauth:2.0:oob

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

32

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_oidc_clients
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#enabletls-
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc8252#section-8.3

If you cannot start a web server in the client (or a browser is not available), you can use the special
urn:ietf:wg:oauth:2.0:oob redirect uri. When this redirect uri is used, Red Hat build of Keycloak
displays a page with the code in the title and in a box on the page. The application can either detect
that the browser title has changed, or the user can copy and paste the code manually to the
application. With this redirect uri, a user can use a different device to obtain a code to paste back to
the application.

CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES

33

CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND
SERVICES

This section describes how you can secure applications and services with SAML using either Red Hat
build of Keycloak client adapters or generic SAML provider libraries.

3.1. RED HAT BUILD OF KEYCLOAK JAVA ADAPTERS

Red Hat build of Keycloak comes with a range of different adapters for Java application. Selecting the
correct adapter depends on the target platform.

3.1.1. Red Hat JBoss Enterprise Application Platform

3.1.1.1. 8.0 Beta

Red Hat build of Keycloak provides a SAML adapter for Red Hat Enterprise Application Platform 8.0
Beta. However, the documentation is not currently available, and will be added in the near future.

3.1.1.2. 6.4 and 7.x

Existing applications deployed to Red Hat JBoss Enterprise Application Platform 6.4 and 7.x can
leverage adapters from Red Hat Single Sign-On 7.6 in combination with the Red Hat build of Keycloak
server.

For more information, see the Red Hat Single Sign-On documentation .

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

34

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html/securing_applications_and_services_guide/using_saml_to_secure_applications_and_services#saml_jboss_adapter

CHAPTER 4. CONFIGURING A DOCKER REGISTRY TO USE
RED HAT BUILD OF KEYCLOAK

NOTE

Docker authentication is disabled by default. To enable see the Enabling and disabling
features chapter.

This section describes how you can configure a Docker registry to use Red Hat build of Keycloak as its
authentication server.

For more information on how to set up and configure a Docker registry, see the Docker Registry
Configuration Guide.

4.1. DOCKER REGISTRY CONFIGURATION FILE INSTALLATION

For users with more advanced Docker registry configurations, it is generally recommended to provide
your own registry configuration file. The Red Hat build of Keycloak Docker provider supports this
mechanism via the Registry Config File Format Option. Choosing this option will generate output similar
to the following:

auth:
 token:
 realm: http://localhost:8080/realms/master/protocol/docker-v2/auth
 service: docker-test
 issuer: http://localhost:8080/realms/master

This output can then be copied into any existing registry config file. See the registry config file
specification for more information on how the file should be set up, or start with a basic example .

WARNING

Don’t forget to configure the rootcertbundle field with the location of the Red Hat
build of Keycloak realm’s public key. The auth configuration will not work without
this argument.

4.2. DOCKER REGISTRY ENVIRONMENT VARIABLE OVERRIDE
INSTALLATION

Often times it is appropriate to use a simple environment variable override for develop or POC Docker
registries. While this approach is usually not recommended for production use, it can be helpful when one
requires quick-and-dirty way to stand up a registry. Simply use the Variable Override Format Option
from the client details, and an output should appear like the one below:

REGISTRY_AUTH_TOKEN_REALM: http://localhost:8080/realms/master/protocol/docker-v2/auth
REGISTRY_AUTH_TOKEN_SERVICE: docker-test
REGISTRY_AUTH_TOKEN_ISSUER: http://localhost:8080/realms/master



CHAPTER 4. CONFIGURING A DOCKER REGISTRY TO USE RED HAT BUILD OF KEYCLOAK

35

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#features-
https://distribution.github.io/distribution/about/configuration/
https://distribution.github.io/distribution/about/configuration/
https://github.com/distribution/distribution/blob/main/cmd/registry/config-example.yml

WARNING

Don’t forget to configure the REGISTRY_AUTH_TOKEN_ROOTCERTBUNDLE
override with the location of the Red Hat build of Keycloak realm’s public key. The
auth configuration will not work without this argument.

4.3. DOCKER COMPOSE YAML FILE

WARNING

This installation method is meant to be an easy way to get a docker registry
authenticating against a Red Hat build of Keycloak server. It is intended for
development purposes only and should never be used in a production or
production-like environment.

The zip file installation mechanism provides a quickstart for developers who want to understand how the
Red Hat build of Keycloak server can interact with the Docker registry. In order to configure:

Procedure

1. From the desired realm, create a client configuration. At this point you will not have a Docker
registry - the quickstart will take care of that part.

2. Choose the "Docker Compose YAML" option from the from Action menu and select the
Download adapter config option to download the ZIP file.

3. Unzip the archive to the desired location, and open the directory.

4. Start the Docker registry with docker-compose up

NOTE

it is recommended that you configure the Docker registry client in a realm other than
'master', since the HTTP Basic auth flow will not present forms.

Once the above configuration has taken place, and the keycloak server and Docker registry are running,
docker authentication should be successful:

[user ~]# docker login localhost:5000 -u $username
Password: *******
Login Succeeded





Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

36

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE
In order for an application or service to utilize Red Hat build of Keycloak it has to register a client in Red
Hat build of Keycloak. An admin can do this through the admin console (or admin REST endpoints), but
clients can also register themselves through the Red Hat build of Keycloak client registration service.

The Client Registration Service provides built-in support for Red Hat build of Keycloak Client
Representations, OpenID Connect Client Meta Data and SAML Entity Descriptors. The Client
Registration Service endpoint is /realms/<realm>/clients-registrations/<provider>.

The built-in supported providers are:

default - Red Hat build of Keycloak Client Representation (JSON)

install - Red Hat build of Keycloak Adapter Configuration (JSON)

openid-connect - OpenID Connect Client Metadata Description (JSON)

saml2-entity-descriptor - SAML Entity Descriptor (XML)

The following sections will describe how to use the different providers.

5.1. AUTHENTICATION

To invoke the Client Registration Services you usually need a token. The token can be a bearer token, an
initial access token or a registration access token. There is an alternative to register new client without
any token as well, but then you need to configure Client Registration Policies (see below).

5.1.1. Bearer token

The bearer token can be issued on behalf of a user or a Service Account. The following permissions are
required to invoke the endpoints (see Server Administration Guide for more details):

create-client or manage-client - To create clients

view-client or manage-client - To view clients

manage-client - To update or delete client

If you are using a bearer token to create clients it’s recommend to use a token from a Service Account
with only the create-client role (see Server Administration Guide for more details).

5.1.2. Initial Access Token

The recommended approach to registering new clients is by using initial access tokens. An initial access
token can only be used to create clients and has a configurable expiration as well as a configurable limit
on how many clients can be created.

An initial access token can be created through the admin console. To create a new initial access token
first select the realm in the admin console, then click on Client in the menu on the left, followed by
Initial access token in the tabs displayed in the page.

You will now be able to see any existing initial access tokens. If you have access you can delete tokens
that are no longer required. You can only retrieve the value of the token when you are creating it. To
create a new token click on Create. You can now optionally add how long the token should be valid, also

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE

37

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/

how many clients can be created using the token. After you click on Save the token value is displayed.

It is important that you copy/paste this token now as you won’t be able to retrieve it later. If you forget
to copy/paste it, then delete the token and create another one.

The token value is used as a standard bearer token when invoking the Client Registration Services, by
adding it to the Authorization header in the request. For example:

Authorization: bearer eyJhbGciOiJSUz...

5.1.3. Registration Access Token

When you create a client through the Client Registration Service the response will include a registration
access token. The registration access token provides access to retrieve the client configuration later,
but also to update or delete the client. The registration access token is included with the request in the
same way as a bearer token or initial access token.

By default, registration access token rotation is enabled. This means a registration access token is only
valid once. When the token is used, the response will include a new token. Note that registration access
token rotation can be disabled by using Client Policies.

If a client was created outside of the Client Registration Service it won’t have a registration access token
associated with it. You can create one through the admin console. This can also be useful if you lose the
token for a particular client. To create a new token find the client in the admin console and click on
Credentials. Then click on Generate registration access token.

5.2. RED HAT BUILD OF KEYCLOAK REPRESENTATIONS

The default client registration provider can be used to create, retrieve, update and delete a client. It
uses Red Hat build of Keycloak Client Representation format which provides support for configuring
clients exactly as they can be configured through the admin console, including for example configuring
protocol mappers.

To create a client create a Client Representation (JSON) then perform an HTTP POST request to
/realms/<realm>/clients-registrations/default.

It will return a Client Representation that also includes the registration access token. You should save
the registration access token somewhere if you want to retrieve the config, update or delete the client
later.

To retrieve the Client Representation perform an HTTP GET request to /realms/<realm>/clients-
registrations/default/<client id>.

It will also return a new registration access token.

To update the Client Representation perform an HTTP PUT request with the updated Client
Representation to: /realms/<realm>/clients-registrations/default/<client id>.

It will also return a new registration access token.

To delete the Client Representation perform an HTTP DELETE request to: /realms/<realm>/clients-
registrations/default/<client id>

5.3. RED HAT BUILD OF KEYCLOAK ADAPTER CONFIGURATION

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

38

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_client_policies

The installation client registration provider can be used to retrieve the adapter configuration for a
client. In addition to token authentication you can also authenticate with client credentials using HTTP
basic authentication. To do this include the following header in the request:

Authorization: basic BASE64(client-id + ':' + client-secret)

To retrieve the Adapter Configuration then perform an HTTP GET request to /realms/<realm>/clients-
registrations/install/<client id>.

No authentication is required for public clients. This means that for the JavaScript adapter you can load
the client configuration directly from Red Hat build of Keycloak using the above URL.

5.4. OPENID CONNECT DYNAMIC CLIENT REGISTRATION

Red Hat build of Keycloak implements OpenID Connect Dynamic Client Registration , which extends
OAuth 2.0 Dynamic Client Registration Protocol and OAuth 2.0 Dynamic Client Registration
Management Protocol.

The endpoint to use these specifications to register clients in Red Hat build of Keycloak is
/realms/<realm>/clients-registrations/openid-connect[/<client id>].

This endpoint can also be found in the OpenID Connect Discovery endpoint for the realm,
/realms/<realm>/.well-known/openid-configuration.

5.5. SAML ENTITY DESCRIPTORS

The SAML Entity Descriptor endpoint only supports using SAML v2 Entity Descriptors to create clients.
It doesn’t support retrieving, updating or deleting clients. For those operations the Red Hat build of
Keycloak representation endpoints should be used. When creating a client a Red Hat build of Keycloak
Client Representation is returned with details about the created client, including a registration access
token.

To create a client perform an HTTP POST request with the SAML Entity Descriptor to
/realms/<realm>/clients-registrations/saml2-entity-descriptor.

5.6. EXAMPLE USING CURL

The following example creates a client with the clientId myclient using CURL. You need to replace
eyJhbGciOiJSUz… ​ with a proper initial access token or bearer token.

5.7. EXAMPLE USING JAVA CLIENT REGISTRATION API

The Client Registration Java API makes it easy to use the Client Registration Service using Java. To use
include the dependency org.keycloak:keycloak-client-registration-api:>VERSION< from Maven.

For full instructions on using the Client Registration refer to the JavaDocs. Below is an example of

curl -X POST \
 -d '{ "clientId": "myclient" }' \
 -H "Content-Type:application/json" \
 -H "Authorization: bearer eyJhbGciOiJSUz..." \
 http://localhost:8080/realms/master/clients-registrations/default

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE

39

https://openid.net/specs/openid-connect-registration-1_0.html
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7592

For full instructions on using the Client Registration refer to the JavaDocs. Below is an example of
creating a client. You need to replace eyJhbGciOiJSUz… ​ with a proper initial access token or bearer
token.

5.8. CLIENT REGISTRATION POLICIES

NOTE

The current plans are for the Client Registration Policies to be removed in favor of the
Client Policies described in the Server Administration Guide. Client Policies are more
flexible and support more use cases.

Red Hat build of Keycloak currently supports two ways how new clients can be registered through Client
Registration Service.

Authenticated requests - Request to register new client must contain either Initial Access
Token or Bearer Token as mentioned above.

Anonymous requests - Request to register new client doesn’t need to contain any token at all

Anonymous client registration requests are very interesting and powerful feature, however you usually
don’t want that anyone is able to register new client without any limitations. Hence we have Client
Registration Policy SPI, which provide a way to limit who can register new clients and under which
conditions.

In Red Hat build of Keycloak admin console, you can click to Client Registration tab and then Client
Registration Policies sub-tab. Here you will see what policies are configured by default for anonymous
requests and what policies are configured for authenticated requests.

NOTE

String token = "eyJhbGciOiJSUz...";

ClientRepresentation client = new ClientRepresentation();
client.setClientId(CLIENT_ID);

ClientRegistration reg = ClientRegistration.create()
 .url("http://localhost:8080", "myrealm")
 .build();

reg.auth(Auth.token(token));

client = reg.create(client);

String registrationAccessToken = client.getRegistrationAccessToken();

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

40

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#_client_policies

NOTE

The anonymous requests (requests without any token) are allowed just for creating
(registration) of new clients. So when you register new client through anonymous request,
the response will contain Registration Access Token, which must be used for Read,
Update or Delete request of particular client. However using this Registration Access
Token from anonymous registration will be then subject to Anonymous Policy too! This
means that for example request for update client also needs to come from Trusted Host
if you have Trusted Hosts policy. Also for example it won’t be allowed to disable
Consent Required when updating client and when Consent Required policy is present
etc.

Currently we have these policy implementations:

Trusted Hosts Policy - You can configure list of trusted hosts and trusted domains. Request to
Client Registration Service can be sent just from those hosts or domains. Request sent from
some untrusted IP will be rejected. URLs of newly registered client must also use just those
trusted hosts or domains. For example it won’t be allowed to set Redirect URI of client pointing
to some untrusted host. By default, there is not any whitelisted host, so anonymous client
registration is de-facto disabled.

Consent Required Policy - Newly registered clients will have Consent Allowed switch enabled.
So after successful authentication, user will always see consent screen when he needs to
approve permissions (client scopes). It means that client won’t have access to any personal info
or permission of user unless user approves it.

Protocol Mappers Policy - Allows to configure list of whitelisted protocol mapper
implementations. New client can’t be registered or updated if it contains some non-whitelisted
protocol mapper. Note that this policy is used for authenticated requests as well, so even for
authenticated request there are some limitations which protocol mappers can be used.

Client Scope Policy - Allow to whitelist Client Scopes, which can be used with newly registered
or updated clients. There are no whitelisted scopes by default; only the client scopes, which are
defined as Realm Default Client Scopes are whitelisted by default.

Full Scope Policy - Newly registered clients will have Full Scope Allowed switch disabled. This
means they won’t have any scoped realm roles or client roles of other clients.

Max Clients Policy - Rejects registration if current number of clients in the realm is same or
bigger than specified limit. It’s 200 by default for anonymous registrations.

Client Disabled Policy - Newly registered client will be disabled. This means that admin needs to
manually approve and enable all newly registered clients. This policy is not used by default even
for anonymous registration.

CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE

41

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE
CLI

The Client Registration CLI is a command-line interface (CLI) tool for application developers to
configure new clients in a self-service manner when integrating with Red Hat build of Keycloak. It is
specifically designed to interact with Red Hat build of Keycloak Client Registration REST endpoints.

It is necessary to create or obtain a client configuration for any application to be able to use Red Hat
build of Keycloak. You usually configure a new client for each new application hosted on a unique host
name. When an application interacts with Red Hat build of Keycloak, the application identifies itself with
a client ID so Red Hat build of Keycloak can provide a login page, single sign-on (SSO) session
management, and other services.

You can configure application clients from a command line with the Client Registration CLI, and you can
use it in shell scripts.

To allow a particular user to use Client Registration CLI the Red Hat build of Keycloak administrator
typically uses the Admin Console to configure a new user with proper roles or to configure a new client
and client secret to grant access to the Client Registration REST API.

6.1. CONFIGURING A NEW REGULAR USER FOR USE WITH CLIENT
REGISTRATION CLI

Procedure

1. Log in to the Admin Console (for example, http://localhost:8080/admin) as admin.

2. Select a realm to administer.

3. If you want to use an existing user, select that user to edit; otherwise, create a new user.

4. Select Role Mappings > Client Roles > realm-management. If you are in the master realm,
select NAME-realm, where NAME is the name of the target realm. You can grant access to any
other realm to users in the master realm.

5. Select Available Roles > manage-client to grant a full set of client management permissions.
Another option is to choose view-clients for read-only or create-client to create new clients.

NOTE

These permissions grant the user the capability to perform operations without
the use of Initial Access Token or Registration Access Token .

It is possible to not assign any realm-management roles to a user. In that case, a user can still log in with
the Client Registration CLI but cannot use it without an Initial Access Token. Trying to perform any
operations without a token results in a 403 Forbidden error.

The Administrator can issue Initial Access Tokens from the Admin Console through the Realm Settings
> Client Registration > Initial Access Token menu.

6.2. CONFIGURING A CLIENT FOR USE WITH THE CLIENT
REGISTRATION CLI

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

42

http://localhost:8080/admin

By default, the server recognizes the Client Registration CLI as the admin-cli client, which is configured
automatically for every new realm. No additional client configuration is necessary when logging in with a
user name.

Procedure

1. Create a client (for example, reg-cli) if you want to use a separate client configuration for the
Client Registration CLI.

2. Toggle the Standard Flow Enabled setting it to Off.

3. Strengthen the security by configuring the client Access Type as Confidential and selecting
Credentials > ClientId and Secret.

NOTE

You can configure either Client Id and Secret or Signed JWT under the
Credentials tab .

4. Enable service accounts if you want to use a service account associated with the client by
selecting a client to edit in the Clients section of the Admin Console.

a. Under Settings, change the Access Type to Confidential, toggle the Service Accounts
Enabled setting to On, and click Save.

b. Click Service Account Roles and select desired roles to configure the access for the
service account. For the details on what roles to select, see Section 6.1, “Configuring a new
regular user for use with Client Registration CLI”.

5. Toggle the Direct Access Grants Enabled setting it to On if you want to use a regular user
account instead of a service account.

6. If the client is configured as Confidential, provide the configured secret when running kcreg
config credentials by using the --secret option.

7. Specify which clientId to use (for example, --client reg-cli) when running kcreg config
credentials.

8. With the service account enabled, you can omit specifying the user when running kcreg config
credentials and only provide the client secret or keystore information.

6.3. INSTALLING THE CLIENT REGISTRATION CLI

The Client Registration CLI is packaged inside the Red Hat build of Keycloak Server distribution. You can
find execution scripts inside the bin directory. The Linux script is called kcreg.sh, and the Windows
script is called kcreg.bat.

Add the Red Hat build of Keycloak server directory to your PATH when setting up the client for use from
any location on the file system.

For example, on:

Linux:

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI

43

$ export PATH=$PATH:$KEYCLOAK_HOME/bin
$ kcreg.sh

Windows:

c:\> set PATH=%PATH%;%KEYCLOAK_HOME%\bin
c:\> kcreg

KEYCLOAK_HOME refers to a directory where the Red Hat build of Keycloak Server distribution was
unpacked.

6.4. USING THE CLIENT REGISTRATION CLI

Procedure

1. Start an authenticated session by logging in with your credentials.

2. Run commands on the Client Registration REST endpoint.
For example, on:

Linux:

$ kcreg.sh config credentials --server http://localhost:8080 --realm demo --user user --
client reg-cli
$ kcreg.sh create -s clientId=my_client -s 'redirectUris=["http://localhost:8980/myapp/*"]'
$ kcreg.sh get my_client

Windows:

c:\> kcreg config credentials --server http://localhost:8080 --realm demo --user user --
client reg-cli
c:\> kcreg create -s clientId=my_client -s "redirectUris=[\"http://localhost:8980/myapp/*\"]"
c:\> kcreg get my_client

NOTE

In a production environment, Red Hat build of Keycloak has to be accessed
with https: to avoid exposing tokens to network sniffers.

3. If a server’s certificate is not issued by one of the trusted certificate authorities (CAs) that are
included in Java’s default certificate truststore, prepare a truststore.jks file and instruct the
Client Registration CLI to use it.
For example, on:

Linux:

$ kcreg.sh config truststore --trustpass $PASSWORD ~/.keycloak/truststore.jks

Windows:

c:\> kcreg config truststore --trustpass %PASSWORD%
%HOMEPATH%\.keycloak\truststore.jks

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

44

6.4.1. Logging in

Procedure

1. Specify a server endpoint URL and a realm when you log in with the Client Registration CLI.

2. Specify a user name or a client id, which results in a special service account being used. When
using a user name, you must use a password for the specified user. When using a client ID, you
use a client secret or a Signed JWT instead of a password.

Regardless of the login method, the account that logs in needs proper permissions to be able to perform
client registration operations. Keep in mind that any account in a non-master realm can only have
permissions to manage clients within the same realm. If you need to manage different realms, you can
either configure multiple users in different realms, or you can create a single user in the master realm
and add roles for managing clients in different realms.

You cannot configure users with the Client Registration CLI. Use the Admin Console web interface or
the Admin Client CLI to configure users. See Server Administration Guide for more details.

When kcreg successfully logs in, it receives authorization tokens and saves them in a private
configuration file so the tokens can be used for subsequent invocations. See Section 6.4.2, “Working
with alternative configurations” for more information on configuration files.

See the built-in help for more information on using the Client Registration CLI.

For example, on:

Linux:

$ kcreg.sh help

Windows:

c:\> kcreg help

See kcreg config credentials --help for more information about starting an authenticated session.

6.4.2. Working with alternative configurations

By default, the Client Registration CLI automatically maintains a configuration file at a default location,
./.keycloak/kcreg.config, under the user’s home directory. You can use the --config option to point to a
different file or location to maintain multiple authenticated sessions in parallel. It is the safest way to
perform operations tied to a single configuration file from a single thread.

IMPORTANT

Do not make the configuration file visible to other users on the system. The configuration
file contains access tokens and secrets that should be kept private.

You might want to avoid storing secrets inside a configuration file by using the --no-config option with
all of your commands, even though it is less convenient and requires more token requests to do so.
Specify all authentication information with each kcreg invocation.

6.4.3. Initial Access and Registration Access Tokens

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI

45

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/

Developers who do not have an account configured at the Red Hat build of Keycloak server they want to
use can use the Client Registration CLI. This is possible only when the realm administrator issues a
developer an Initial Access Token. It is up to the realm administrator to decide how and when to issue
and distribute these tokens. The realm administrator can limit the maximum age of the Initial Access
Token and the total number of clients that can be created with it.

Once a developer has an Initial Access Token, the developer can use it to create new clients without
authenticating with kcreg config credentials. The Initial Access Token can be stored in the
configuration file or specified as part of the kcreg create command.

For example, on:

Linux:

$ kcreg.sh config initial-token $TOKEN
$ kcreg.sh create -s clientId=myclient

or

$ kcreg.sh create -s clientId=myclient -t $TOKEN

Windows:

c:\> kcreg config initial-token %TOKEN%
c:\> kcreg create -s clientId=myclient

or

c:\> kcreg create -s clientId=myclient -t %TOKEN%

When using an Initial Access Token, the server response includes a newly issued Registration Access
Token. Any subsequent operation for that client needs to be performed by authenticating with that
token, which is only valid for that client.

The Client Registration CLI automatically uses its private configuration file to save and use this token
with its associated client. As long as the same configuration file is used for all client operations, the
developer does not need to authenticate to read, update, or delete a client that was created this way.

See Client Registration for more information about Initial Access and Registration Access Tokens.

Run the kcreg config initial-token --help and kcreg config registration-token --help commands for
more information on how to configure tokens with the Client Registration CLI.

6.4.4. Creating a client configuration

The first task after authenticating with credentials or configuring an Initial Access Token is usually to
create a new client. Often you might want to use a prepared JSON file as a template and set or override
some of the attributes.

The following example shows how to read a JSON file, override any client id it may contain, set any other
attributes, and print the configuration to a standard output after successful creation.

Linux:

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

46

$ kcreg.sh create -f client-template.json -s clientId=myclient -s baseUrl=/myclient -s 'redirectUris=
["/myclient/*"]' -o

Windows:

C:\> kcreg create -f client-template.json -s clientId=myclient -s baseUrl=/myclient -s "redirectUris=
[\"/myclient/*\"]" -o

Run the kcreg create --help for more information about the kcreg create command.

You can use kcreg attrs to list available attributes. Keep in mind that many configuration attributes are
not checked for validity or consistency. It is up to you to specify proper values. Remember that you
should not have any id fields in your template and should not specify them as arguments to the kcreg
create command.

6.4.5. Retrieving a client configuration

You can retrieve an existing client by using the kcreg get command.

For example, on:

Linux:

$ kcreg.sh get myclient

Windows:

C:\> kcreg get myclient

You can also retrieve the client configuration as an adapter configuration file, which you can package
with your web application.

For example, on:

Linux:

$ kcreg.sh get myclient -e install > keycloak.json

Windows:

C:\> kcreg get myclient -e install > keycloak.json

Run the kcreg get --help command for more information about the kcreg get command.

6.4.6. Modifying a client configuration

There are two methods for updating a client configuration.

One method is to submit a complete new state to the server after getting the current configuration,
saving it to a file, editing it, and posting it back to the server.

For example, on:

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI

47

Linux:

$ kcreg.sh get myclient > myclient.json
$ vi myclient.json
$ kcreg.sh update myclient -f myclient.json

Windows:

C:\> kcreg get myclient > myclient.json
C:\> notepad myclient.json
C:\> kcreg update myclient -f myclient.json

The second method fetches the current client, sets or deletes fields on it, and posts it back in one step.

For example, on:

Linux:

$ kcreg.sh update myclient -s enabled=false -d redirectUris

Windows:

C:\> kcreg update myclient -s enabled=false -d redirectUris

You can also use a file that contains only changes to be applied so you do not have to specify too many
values as arguments. In this case, specify --merge to tell the Client Registration CLI that rather than
treating the JSON file as a full, new configuration, it should treat it as a set of attributes to be applied
over the existing configuration.

For example, on:

Linux:

$ kcreg.sh update myclient --merge -d redirectUris -f mychanges.json

Windows:

C:\> kcreg update myclient --merge -d redirectUris -f mychanges.json

Run the kcreg update --help command for more information about the kcreg update command.

6.4.7. Deleting a client configuration

Use the following example to delete a client.

Linux:

$ kcreg.sh delete myclient

Windows:

C:\> kcreg delete myclient

Red Hat build of Keycloak 22.0 Securing Applications and Services Guide

48

Run the kcreg delete --help command for more information about the kcreg delete command.

6.4.8. Refreshing invalid Registration Access Tokens

When performing a create, read, update, and delete (CRUD) operation using the --no-config mode, the
Client Registration CLI cannot handle Registration Access Tokens for you. In that case, it is possible to
lose track of the most recently issued Registration Access Token for a client, which makes it impossible
to perform any further CRUD operations on that client without authenticating with an account that has
manage-clients permissions.

If you have permissions, you can issue a new Registration Access Token for the client and have it printed
to a standard output or saved to a configuration file of your choice. Otherwise, you have to ask the realm
administrator to issue a new Registration Access Token for your client and send it to you. You can then
pass it to any CRUD command via the --token option. You can also use the kcreg config registration-
token command to save the new token in a configuration file and have the Client Registration CLI
automatically handle it for you from that point on.

Run the kcreg update-token --help command for more information about the kcreg update-token
command.

6.5. TROUBLESHOOTING

Q: When logging in, I get an error: Parameter client_assertion_type is missing [invalid_client].
A: This error means your client is configured with Signed JWT token credentials, which means
you have to use the --keystore parameter when logging in.

CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI

49

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. PLANNING FOR SECURING APPLICATIONS AND SERVICES
	1.1. BASIC STEPS TO SECURE APPLICATIONS AND SERVICES
	1.2. GETTING STARTED
	1.2.1. OpenID Connect
	1.2.1.1. JavaScript (client-side)
	1.2.1.2. Node.js (server-side)

	1.2.2. SAML
	1.2.2.1. Java

	1.3. TERMINOLOGY

	CHAPTER 2. USING OPENID CONNECT TO SECURE APPLICATIONS AND SERVICES
	2.1. AVAILABLE ENDPOINTS
	2.1.1. Endpoints
	2.1.1.1. Authorization endpoint
	2.1.1.2. Token endpoint
	2.1.1.3. Userinfo endpoint
	2.1.1.4. Logout endpoint
	2.1.1.5. Certificate endpoint
	2.1.1.6. Introspection endpoint
	2.1.1.7. Dynamic Client Registration endpoint
	2.1.1.8. Token Revocation endpoint
	2.1.1.9. Device Authorization endpoint
	2.1.1.10. Backchannel Authentication endpoint

	2.2. SUPPORTED GRANT TYPES
	2.2.1. Authorization code
	2.2.2. Implicit
	2.2.3. Resource Owner Password Credentials
	2.2.3.1. Example using CURL

	2.2.4. Client credentials
	2.2.5. Device Authorization Grant
	2.2.6. Client Initiated Backchannel Authentication Grant

	2.3. RED HAT BUILD OF KEYCLOAK JAVA ADAPTERS
	2.3.1. Red Hat JBoss Enterprise Application Platform
	2.3.1.1. 8.0 Beta
	2.3.1.2. 6.4 and 7.x

	2.3.2. Spring Boot adapter

	2.4. RED HAT BUILD OF KEYCLOAK JAVASCRIPT ADAPTER
	2.4.1. Installation
	2.4.2. Red Hat build of Keycloak server configuration
	2.4.3. Using the adapter
	2.4.4. Session Status iframe
	2.4.5. Implicit and hybrid flow
	2.4.6. Hybrid Apps with Cordova
	2.4.7. Custom Adapters
	2.4.8. Modern Browsers with Tracking Protection
	2.4.8.1. Browsers with "SameSite=Lax by Default" Policy
	2.4.8.2. Browsers with Blocked Third-Party Cookies

	2.4.9. API Reference
	2.4.9.1. Constructor
	2.4.9.2. Properties
	2.4.9.3. Methods
	2.4.9.4. Callback Events

	2.5. RED HAT BUILD OF KEYCLOAK NODE.JS ADAPTER
	2.5.1. Installation
	2.5.2. Usage
	2.5.3. Installing middleware
	2.5.4. Configuration for proxies
	2.5.5. Protecting resources
	2.5.6. Additional URLs
	2.5.7. Complete example

	2.6. FINANCIAL-GRADE API (FAPI) SUPPORT
	2.6.1. FAPI client profiles
	2.6.2. Open Finance Brasil Financial-grade API Security Profile
	2.6.3. TLS considerations

	2.7. RECOMMENDATIONS
	2.7.1. Validating access tokens
	2.7.2. Redirect URIs

	CHAPTER 3. USING SAML TO SECURE APPLICATIONS AND SERVICES
	3.1. RED HAT BUILD OF KEYCLOAK JAVA ADAPTERS
	3.1.1. Red Hat JBoss Enterprise Application Platform
	3.1.1.1. 8.0 Beta
	3.1.1.2. 6.4 and 7.x

	CHAPTER 4. CONFIGURING A DOCKER REGISTRY TO USE RED HAT BUILD OF KEYCLOAK
	4.1. DOCKER REGISTRY CONFIGURATION FILE INSTALLATION
	4.2. DOCKER REGISTRY ENVIRONMENT VARIABLE OVERRIDE INSTALLATION
	4.3. DOCKER COMPOSE YAML FILE

	CHAPTER 5. USING THE CLIENT REGISTRATION SERVICE
	5.1. AUTHENTICATION
	5.1.1. Bearer token
	5.1.2. Initial Access Token
	5.1.3. Registration Access Token

	5.2. RED HAT BUILD OF KEYCLOAK REPRESENTATIONS
	5.3. RED HAT BUILD OF KEYCLOAK ADAPTER CONFIGURATION
	5.4. OPENID CONNECT DYNAMIC CLIENT REGISTRATION
	5.5. SAML ENTITY DESCRIPTORS
	5.6. EXAMPLE USING CURL
	5.7. EXAMPLE USING JAVA CLIENT REGISTRATION API
	5.8. CLIENT REGISTRATION POLICIES

	CHAPTER 6. AUTOMATING CLIENT REGISTRATION WITH THE CLI
	6.1. CONFIGURING A NEW REGULAR USER FOR USE WITH CLIENT REGISTRATION CLI
	6.2. CONFIGURING A CLIENT FOR USE WITH THE CLIENT REGISTRATION CLI
	6.3. INSTALLING THE CLIENT REGISTRATION CLI
	6.4. USING THE CLIENT REGISTRATION CLI
	6.4.1. Logging in
	6.4.2. Working with alternative configurations
	6.4.3. Initial Access and Registration Access Tokens
	6.4.4. Creating a client configuration
	6.4.5. Retrieving a client configuration
	6.4.6. Modifying a client configuration
	6.4.7. Deleting a client configuration
	6.4.8. Refreshing invalid Registration Access Tokens

	6.5. TROUBLESHOOTING

