& RedHat

Red Hat build of Keycloak 22.0

Server Guide

Last Updated: 2024-06-03

Red Hat build of Keycloak 22.0 Server Guide

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for administrators to configure Red Hat build of Keycloak 22.0.

Table of Contents

MAKING OPEN SOURCE MOREINCLUSIVE i

CHAPTER 1. CONFIGURING RED HAT BUILD OF KEYCLOAK ...,

1.1. CONFIGURING SOURCES FOR RED HAT BUILD OF KEYCLOAK
1.1.1. Example: Configuring the db-url-host parameter
1.2. FORMATS FOR CONFIGURATION
1.2.1. Example - Alternative formats based on configuration source
1.2.2. Formats for command-line parameters
1.2.3. Formats for environment variables
1.2.4. Format to include a specific configuration file
1.2.5. Setting sensitive options using a Java KeyStore file
1.2.6. Format for raw Quarkus properties
1.3. STARTING RED HAT BUILD OF KEYCLOAK
1.3.1. Starting Red Hat build of Keycloak in development mode
1.3.2. Starting Red Hat build of Keycloak in production mode
1.4. CREATING THE INITIAL ADMIN USER
1.5. OPTIMIZE THE RED HAT BUILD OF KEYCLOAK STARTUP
1.5.1. Creating an optimized Red Hat build of Keycloak build
1.5.1.1. First step: Run a build explicitly
1.5.1.2. Second step: Start Red Hat build of Keycloak using --optimized
1.6. UNDERLYING CONCEPTS

CHAPTER 2. CONFIGURING RED HAT BUILD OF KEYCLOAK FOR PRODUCTION
2.1. TLS FOR SECURE COMMUNICATION
2.2. THE HOSTNAME FOR RED HAT BUILD OF KEYCLOAK
2.3. REVERSE PROXY IN A DISTRIBUTED ENVIRONMENT
2.4. PRODUCTION GRADE DATABASE
2.5.SUPPORT FOR RED HAT BUILD OF KEYCLOAKIN A CLUSTER
2.6. CONFIGURE RED HAT BUILD OF KEYCLOAK SERVER WITH IPV4 OR IPV6

CHAPTER 3. RUNNING RED HAT BUILD OF KEYCLOAK IN A CONTAINER

3.1. CREATING A CUSTOMIZED AND OPTIMIZED CONTAINER IMAGE

3.1.1. Writing your optimized Red Hat build of Keycloak Dockerfile

3.1.2. Installing additional RPM packages

3.1.3. Building the container image

3.1.4. Starting the optimized Red Hat build of Keycloak container image
3.2. EXPOSING THE CONTAINER TO A DIFFERENT PORT
3.3. TRYING RED HAT BUILD OF KEYCLOAK IN DEVELOPMENT MODE
3.4. RUNNING A STANDARD RED HAT BUILD OF KEYCLOAK CONTAINER
3.5. PROVIDE INITIAL ADMIN CREDENTIALS WHEN RUNNING IN A CONTAINER
3.6. IMPORTING A REALM ON STARTUP
3.7. RELEVANT OPTIONS

CHAPTER4.CONFIGURING TLS ... i

4.1. CONFIGURING TLS IN RED HAT BUILD OF KEYCLOAK
4.1.1. Providing certificates in PEM format
4.1.2. Providing a Java Keystore
4.1.2.1. Setting the Keystore password
4.2. CONFIGURING TLS PROTOCOLS
4.3. SWITCHING THE HTTPS PORT
4.4, USING A TRUSTSTORE
4.4.1. Setting the truststore password

Table of Contents

O O O 00 00 0

.................. 24

24
24
24
24
24
25
25
25

Red Hat build of Keycloak 22.0 Server Guide

4.5. SECURING CREDENTIALS
4.6. ENABLING MUTUAL TLS
4.7. RELEVANT OPTIONS

CHAPTER 5. CONFIGURING THEHOSTNAME i

5.1. SERVER ENDPOINTS
5.1.1. Frontend
5.1.2. Backend
5.1.3. Administration Console
5.2. EXAMPLE SCENARIOS
5.2.1. Exposing the server behind a TLS termination proxy
5.2.2. Exposing the server without a proxy
5.2.3. Forcing backend endpoints to use the same URL the server is exposed
5.2.4. Exposing the server using a port other than the default ports
5.2.5. Exposing Red Hat build of Keycloak behind a TLS reencrypt proxy using different ports
5.3. TROUBLESHOOTING
5.4. RELEVANT OPTIONS

CHAPTER 6. USING A REVERSE PROXY .. i et

6.1. PROXY MODES
6.2. CONFIGURE THE PROXY MODE IN RED HAT BUILD OF KEYCLOAK
6.3. CONFIGURE THE REVERSE PROXY
6.4. DIFFERENT CONTEXT-PATH ON REVERSE PROXY
6.5. TRUST THE PROXY TO SET HOSTNAME
6.6. ENABLE STICKY SESSIONS

6.6.1. Exposing the administration console

6.6.2. Exposed path recommendations

6.6.3. Enabling client certificate lookup

6.6.3.1. Configuring the NGINX provider

6.7. RELEVANT OPTIONS

CHAPTER 7. CONFIGURING THE DATABASE ... i i

7.1. SUPPORTED DATABASES
7.2. INSTALLING A DATABASE DRIVER
7.2.1. Installing the Oracle Database driver
7.2.2. Installing the Microsoft SQL Server driver
7.3. CONFIGURING A DATABASE
7.4. OVERRIDING DEFAULT CONNECTION SETTINGS
7.5. OVERRIDING THE DEFAULT JDBC DRIVER
7.6. CONFIGURING UNICODE SUPPORT FOR THE DATABASE
7.6.1. Configuring Unicode support for an Oracle database
7.6.2. Unicode support for a Microsoft SQL Server database
7.6.3. Configuring Unicode support for a MySQL database
7.6.4. Configuring Unicode support for a PostgreSQL database
7.7. CHANGING DATABASE LOCKING TIMEOUT IN A CLUSTER CONFIGURATION
7.8. USING DATABASE VENDORS WITHOUT XA TRANSACTION SUPPORT
7.9. SETTING JPA PROVIDER CONFIGURATION OPTION FOR MIGRATIONSTRATEGY
7.]0. RELEVANT OPTIONS

CHAPTER 8. CONFIGURING DISTRIBUTED CACHES i

8.1. ENABLE DISTRIBUTED CACHING
8.2. CONFIGURING CACHES

8.2.1. Cache types and defaults

8.2.2. Configuring caches for availability

25
25
26

29
29
29
30
30
31
31
31
31
31
31
32
32

35
35
35
35
36
36
36
37
37
38
39
40

41
41
41
41

42

43

43

43

44

44

45

45

45

45

46

46

46

50
50
50

51
53

Table of Contents

8.2.3. Specify your own cache configuration file 53

8.3. TRANSPORT STACKS 53
8.3.1. Available transport stacks 54
8.3.2. Additional transport stacks 54
8.3.3. Custom transport stacks 55

8.4. SECURING CACHE COMMUNICATION 55
8.5. EXPOSING METRICS FROM CACHES 55
8.6. RELEVANT OPTIONS 56
CHAPTER 9. CONFIGURING OUTGOING HTTP REQUESTS ...ttt ittt ienneeeeennnn, 57
9.1. CLIENT CONFIGURATION COMMAND 57
9.2. PROXY MAPPINGS FOR OUTGOING HTTP REQUESTS 58
9.3. PROXY MAPPINGS USING REGULAR EXPRESSIONS 58
9.4. CONFIGURING TRUSTED CERTIFICATES FOR TLS CONNECTIONS 59
CHAPTER 10. CONFIGURING TRUSTED CERTIFICATES FOROUTGOING REQUESTS 60
10.1. CONFIGURING THE RED HAT BUILD OF KEYCLOAK TRUSTSTORE 60
10.1.1. Example of a truststore configuration 60
CHAPTER 11. ENABLING AND DISABLING FEATURES ... ittt it ttiee e iinneeeeennnn, 62
11.1. ENABLING FEATURES 62
11.2. DISABLING FEATURES 62
11.3. SUPPORTED FEATURES 62
11.3.1. Disabled by default 63

1.4. PREVIEW FEATURES 63
1.5. DEPRECATED FEATURES 64
11.6. RELEVANT OPTIONS 64
CHAPTER 12. CONFIGURING PROVIDERS ... ittt ittt tie et etanenaeennnnaaeennnnns 66
12.1. CONFIGURATION OPTION FORMAT 66
12.2. SETTING A PROVIDER CONFIGURATION OPTION 66
12.3. CONFIGURING A DEFAULT PROVIDER 66
12.4. ENABLING AND DISABLING A PROVIDER 67
12.5. INSTALLING AND UNINSTALLING A PROVIDER 67
12.6. USING THIRD-PARTY DEPENDENCIES 67
12.7. REFERENCES 67
CHAPTER13. CONFIGURING LOGGING ... ititittttitttett it eeneeaneeeaneennneeaneeeaneennneenn 68
13.1. LOGGING CONFIGURATION 68
13.1.1. Log levels 68
13.1.2. Configuring the root log level 68
13.1.3. Configuring category-specific log levels 69
13.2. ENABLING LOG HANDLERS 69
13.3. CONSOLE LOG HANDLER 69
13.3.1. Configuring the console log format 69
13.3.2. Setting the logging format 71
13.3.3. Configuring JSON or plain console logging 71
13.3.4. Colors 72
13.4. FILE LOGGING 72
13.4.1. Enable file logging 72
13.4.2. Configuring the location and name of the log file 72
13.4.3. Configuring the file handler format 72
13.5. RELEVANT OPTIONS 73
CHAPTER 14. FIPS 140-2 SUP P O R T oottt ittt tttneeeeetenneaeeesnnnaeeeeennnneeeennnn 75

CHAPTER 15. ENABLING RED HAT BUILD OF KEYCLOAK HEALTH CHECKS

CHAPTER 16. ENABLING RED HAT BUILD OF KEYCLOAK METRICS

CHAPTER 17. IMPORTING AND EXPORTING REALMS

CHAPTER 18. USING A VAULT

CHAPTER 19. ALL CONFIGURATION

Red Hat build of Keycloak 22.0 Server Guide

14.1. BOUNCYCASTLE LIBRARY
14.1.1. BouncyCastle FIPS bits
14.2. GENERATING KEYSTORE
14.2.1. PKCSI12 keystore
14.2.2. BCFKS keystore
14.3. RUNNING THE SERVER.
14.4. STRICT MODE
14.4.1. Cryptography restrictions in strict mode
14.5. OTHER RESTRICTIONS
14.6. RUN THE CLI ON THE FIPS HOST
14.7. RED HAT BUILD OF KEYCLOAK SERVER IN FIPS MODE IN THE CONTAINER
14.8. MIGRATION FROM NON-FIPS ENVIRONMENT
14.9. RED HAT BUILD OF KEYCLOAK FIPS MODE ON THE NON-FIPS SYSTEM

15.1. RED HAT BUILD OF KEYCLOAK HEALTH CHECKS
15.2. ENABLING THE HEALTH CHECKS
15.3. USING THE HEALTH CHECKS
15.3.1. curl
15.3.2. Kubernetes
15.3.3. HEALTHCHECK
15.4. AVAILABLE CHECKS
15.5. RELEVANT OPTIONS

16.1. ENABLING METRICS

16.2. QUERYING METRICS
16.3. AVAILABLE METRICS
16.4. RELEVANT OPTIONS

17.1. PROVIDING OPTIONS FOR DATABASE CONNECTION PARAMETERS
17.2. EXPORTING A REALM TO A DIRECTORY
17.2.1. Configuring how users are exported
17.3. EXPORTING A REALM TO A FILE
17.4. EXPORTING A SPECIFIC REALM
17.5. IMPORTING A REALM FROM A DIRECTORY
17.6. IMPORTING A REALM FROM A FILE
17.7. IMPORTING A REALM DURING STARTUP
17.7.1. Using Environment Variables within the Realm Configuration Files

18.1. AVAILABLE INTEGRATIONS
18.2. ENABLING A VAULT
18.3. CONFIGURING THE FILE-BASED VAULT
18.3.1. Setting the base directory to lookup secrets
18.3.2. Realm-specific secret files
18.3.3. Using underscores in the Name
18.4. CONFIGURING THE JAVA KEYSTORE-BASED VAULT
18.5. EXAMPLE: USE AN LDAP BIND CREDENTIAL SECRET IN THE ADMIN CONSOLE
18.6. RELEVANT OPTIONS

19.1. CACHE

75
75
75
75
76
76
77
77
78
79
79
80
80

82
82
82
82
82
83
83
83
83

84
84
84
85
85

86
86
86
86
87
87
87
87
88
88

89
89
89
89
89
89
89
90
90

91

92
92

Table of Contents

19.2. DATABASE 92
19.3. TRANSACTION 95
19.4. FEATURE 95
19.5. HOSTNAME 96
19.6. HTTP/TLS 98
19.7. HEALTH 100
19.8. CONFIG 101
19.9. METRICS 101
19.10. PROXY 102
1901 VAULT 102
19.12. LOGGING 103
19.13. SECURITY 104
19.14. EXPORT 104
19.15. IMPORT 105
CHAPTER 20. ALL PROVIDER CONFIGURATION ... i ittt ittt tiaiee e nneaeeannns 106
20.1. AUTHENTICATION-SESSIONS 106
20.1.1. infinispan 106
20.1.2. map 106
20.2. CIBA-AUTH-CHANNEL 106
20.2.1. ciba-http-auth-channel 106
20.3. CONNECTIONS-HTTP-CLIENT 107
20.3.1. default 107
20.4. CONNECTIONS-JPA 109
20.4.1. legacy 109
20.5. DBLOCK 110
20.5.1. jpa 10
20.6. EVENTS-LISTENER 10
20.6.1. email 110
20.6.2. jposs-logging 16
20.7. EXPORT 16
20.7.1.dir 116
20.7.2. single-file n7
20.8. GLOBAL-LOCK n7
20.8.1. map nz
20.9. IMPORT n8
20.9.1. dir 18
20.9.2. single-file 18
20.10. MAP-STORAGE 19
20.10.1. hotrod 19
20.10.2. jpa 19
20.11. RESOURCE-ENCODING 19
20.11.1. gzip 119
20.12. STICKY-SESSION-ENCODER 120
20.12.1. infinispan 120
20.13. TRUSTSTORE 120
20.13.1. file 120
20.14. USER-PROFILE 121
20.14.1. declarative-user-profile 121
20.15. WELL-KNOWN 122
20.15.1. openid-configuration 122

Red Hat build of Keycloak 22.0 Server Guide

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 1. CONFIGURING RED HAT BUILD OF KEYCLOAK

This chapter explains the configuration methods for Red Hat build of Keycloak and how to start and
apply the preferred configuration. It includes configuration guidelines for optimizing Red Hat build of
Keycloak for faster startup and low memory footprint.

1.1. CONFIGURING SOURCES FOR RED HAT BUILD OF KEYCLOAK

Red Hat build of Keycloak loads the configuration from five sources, which are listed here in order of
application.

1. Command-line parameters
2. Environment variables
3. Options defined in a user-created configuration file.
4. Options defined in the conf/keycloak.conf file.
5. Sensitive options defined in a user-created Java KeyStore file.
When an option is set in more than one source, the one that comes first in the list determines the value

for that option. For example, the value for an option set by a command-line parameter has a higher
priority than an environment variable for the same option.

1.1.1. Example: Configuring the db-url-host parameter

The following example shows how the db-url value is set in four configuration sources:

Source Format

Command line parameters --db-url=cliValue
Environment variable KC_DB_URL=envVarValue
Configuration file db-url=confFileValue

Java KeyStore file kc.db-url=keystoreValue

Based on the priority of application, the value that is used at startup is cliValue, because the command
line is the highest priority.

If --db-url=cliValue had not been used, the applied value would be KC_DB_URL=envVarValue. If the
value were not applied by either the command line or an environment variable, db-url=confFileValue
would be used. However, if this value had been set in a user defined configuration file, that value would
take precedence over the conf/keycloak.conf file. If none of the previous values were applied, the value
ke.db-url=confFileValue would be used due to the lowest priority among the available configuration
sources.

1.2. FORMATS FOR CONFIGURATION

CHAPTER 1. CONFIGURING RED HAT BUILD OF KEYCLOAK

The configuration uses a unified-per-source format, which simplifies translation of a key/value pair from
one configuration source to another.

Command-line parameter format

Values for the command-line use the --<key-with-dashes>=<value> format. For some values, an
-<abbreviation>=<value> shorthand also exists.

Environment variable format

Values for environment variables use the uppercased KC_<key_with_underscores>=<value>
format.

Configuration file format
Values that go into the configuration file use the <key-with-dashes>=<value> format.
KeyStore configuration file format

Values that go into the KeyStore configuration file use the kc.<key-with-dashes> format. <value>
is then a password stored in the KeyStore.

At the end of each configuration chapter, look for the Relevant options heading, which defines the
applicable configuration formats. For all configuration options, see All configuration. Choose the
configuration source and format that applies to your use case.

1.2.1. Example - Alternative formats based on configuration source

The following example shows the configuration format for db-url-host for three configuration sources:

command-line parameter

I bin/kc.[sh|bat] start --db-url-host=mykeycloakdb
environment variable

I export KC_DB_URL_HOST=mykeycloakdb
conf/keycloak.conf

I db-url-host=mykeycloakdb

1.2.2. Formats for command-line parameters

Red Hat build of Keycloak is packed with many command line parameters for configuration. To see the
available configuration formats, enter the following command:

I bin/kc.[sh|bat] start --help

Alternatively, see All configuration for all server options.

1.2.3. Formats for environment variables

You can use placeholders to resolve an environment specific value from environment variables inside
the keycloak.conf file by using the ${ENV_VAR} syntax:

I db-url-host=${MY_DB_HOST}

Red Hat build of Keycloak 22.0 Server Guide

In case the environment variable cannot be resolved, you can specify a fallback value. Use a : (colon) as
shown here before mydb:

I db-url-host=${MY_DB_HOST:mydb}

1.2.4. Format to include a specific configuration file

By default, the server always fetches configuration options from the conf/keycloak.conf file. For a new
installation, this file holds only commented settings as an idea of what you want to set when running in
production.

You can also specify an explicit configuration file location using the [-cf|--config-file] option by entering
the following command:

I bin/kc.[sh|bat] --config-file=/path/to/myconfig.conf start

1.2.5. Setting sensitive options using a Java KeyStore file

Thanks to Keystore Configuration Source you can directly load properties from a Java KeyStore using
the [--config-keystore] and [--config-keystore-password] options. Optionally, you can specify the
KeyStore type using the [--config-keystore-type] option. By default, the KeyStore type is PKCS12.
The secrets in a KeyStore need to be stored using the PBE (password-based encryption) key algorithm,

where a key is derived from a KeyStore password. You can generate such a KeyStore using the following
keytool command:

keytool -importpass -alias kc.db-password -keystore keystore.p12 -storepass keystorepass -
storetype PKCS12 -v

After executing the command, you will be prompted to Enter the password to be stored which
represents a value of the ke.db-password property above.

When the KeyStore is created, you can start the server using the following parameters:

bin/kc.[sh|bat] start --config-keystore=/path/to/keystore.p12 --config-keystore-password=storepass --
config-keystore-type=PKCS12

1.2.6. Format for raw Quarkus properties

In most cases, the available configuration options should suffice to configure the server. However, for a
specific behavior or capability that is missing in the Red Hat build of Keycloak configuration, you can use
properties from the underlying Quarkus framework.

If possible, avoid using properties directly from Quarkus, because they are unsupported by Red Hat build
of Keycloak. If your need is essential, consider opening an enhancement request first. This approach
helps us improve the configuration of Red Hat build of Keycloak to fit your needs.

If an enhancement request is not possible, you can configure the server using raw Quarkus properties:

1. Create a quarkus.properties file in the conf directory.

2. Define the required properties in that file.

10

https://github.com/keycloak/keycloak/issues/new?assignees=&labels=kind%2Fenhancement%2Cstatus%2Ftriage&template=enhancement.yml

CHAPTER 1. CONFIGURING RED HAT BUILD OF KEYCLOAK

You can use only a subset of the Quarkus extensions that are defined in the Quarkus
documentation. Also, note these differences for Quarkus properties:

® Alockicon for a Quarkus property in the Quarkus documentation indicates a build time
property. You run the build command to apply this property. For details about the build

command, see the subsequent sections on optimizing Red Hat build of Keycloak.

® No lockicon for a property in the Quarkus guide indicates a runtime property for Quarkus
and Red Hat build of Keycloak.

3. Use the [-cf|--config-file] command line parameter to include that file.
Similarly, you can also store Quarkus properies in a Java KeyStore.
Note that some Quarkus properties are already mapped in the Red Hat build of Keycloak configuration,
such as quarkus.http.port and similar essential properties. If the property is used by Keycloak, defining

that property key in quarkus.properties has no effect. The Keycloak configuration value takes
precedence over the Quarkus property value.

1.3. STARTING RED HAT BUILD OF KEYCLOAK

You can start Red Hat build of Keycloak in development mode or production mode. Each mode offers
different defaults for the intended environment.

1.3.1. Starting Red Hat build of Keycloak in development mode

Use development mode to try out Red Hat build of Keycloak for the first time to get it up and running
quickly. This mode offers convenient defaults for developers, such as for developing a new Red Hat build
of Keycloak theme.

To start in development mode, enter the following command:
I bin/kc.[sh|bat] start-dev
Defaults
Development mode sets the following default configuration:
® HTTPis enabled
® Strict hostname resolution is disabled
® Cacheis set to local (No distributed cache mechanism used for high availability)

® Theme-caching and template-caching is disabled

1.3.2. Starting Red Hat build of Keycloak in production mode

Use production mode for deployments of Red Hat build of Keycloak in production environments. This
mode follows a secure by default principle.

To start in production mode, enter the following command:

I bin/kc.[sh|bat] start

1

https://github.com/keycloak/keycloak/blob/main/quarkus/runtime/pom.xml#L17
https://quarkus.io/guides/all-config
https://quarkus.io/guides/all-config

Red Hat build of Keycloak 22.0 Server Guide

Without further configuration, this command will not start Red Hat build of Keycloak and show you an
error instead. This response is done on purpose, because Red Hat build of Keycloak follows a secure by
default principle. Production mode expects a hostname to be set up and an HTTPS/TLS setup to be
available when started.

Defaults

Production mode sets the following defaults:
® HTTP is disabled as transport layer security (HTTPS) is essential
® Hostname configuration is expected
e HTTPS/TLS configuration is expected

Before deploying Red Hat build of Keycloak in a production environment, make sure to follow the steps
outlined in Configuring Red Hat build of Keycloak for production .

By default, example configuration options for the production mode are commented out in the default
conf/keycloak.conf file. These options give you an idea about the main configuration to consider when
running Red Hat build of Keycloak in production.

1.4. CREATING THE INITIAL ADMIN USER

You can create the initial admin user by using the web frontend, which you access using a local
connection (localhost). You can instead create this user by using environment variables. Set
KEYCLOAK_ADMIN=<usernames for the initial admin username and
KEYCLOAK_ADMIN_PASSWORD=<password> for the initial admin password.

Red Hat build of Keycloak parses these values at first startup to create an initial user with administrative
rights. Once the first user with administrative rights exists, you can use the Admin Console or the
command line tool kcadm.[sh|bat] to create additional users.

If the initial administrator already exists and the environment variables are still present at startup, an
error message stating the failed creation of the initial administrator is shown in the logs. Red Hat build of
Keycloak ignores the values and starts up correctly.

1.5. OPTIMIZE THE RED HAT BUILD OF KEYCLOAK STARTUP

We recommend optimizing Red Hat build of Keycloak to provide faster startup and better memory
consumption before deploying Red Hat build of Keycloak in a production environment. This section
describes how to apply Red Hat build of Keycloak optimizations for the best performance and runtime
behavior.

1.5.1. Creating an optimized Red Hat build of Keycloak build

By default, when you use the start or start-dev command, Red Hat build of Keycloak runs a build
command under the covers for convenience reasons.

This build command performs a set of optimizations for the startup and runtime behavior. The build
process can take a few seconds. Especially when running Red Hat build of Keycloak in containerized

environments such as Kubernetes or OpenShift, startup time is important. To avoid losing that time, run
a build explicity before starting up, such as a separate step in a Cl/CD pipeline.

1.5.1.1. First step: Run a build explicitly

12

CHAPTER 1. CONFIGURING RED HAT BUILD OF KEYCLOAK

To run a build, enter the following command:

I bin/kc.[sh|bat] build <build-options>

This command shows build options that you enter. Red Hat build of Keycloak distinguishes between
build options, that are usable when running the build command, and configuration options, that are
usable when starting up the server.

For a non-optimized startup of Red Hat build of Keycloak, this distinction has no effect. However, if you
run a build before the startup, only a subset of options is available to the build command. The restriction
is due to the build options getting persisted into an optimized Red Hat build of Keycloak image. For
example, configuration for credentials such as db-password (which is a configuration option) must not
get persisted for security reasons.

' WARNING
A All build options are persisted in a plain text. Do not store any sensitive data as the

build options. This applies across all the available configuration sources, including
the KeyStore Config Source. Hence, we also do not recommend to store any build
options in a Java keystore. Also, when it comes to the configuration options, we
recommend to use the KeyStore Config Source primarily for storing sensitive data.
For non-sensitive data you can use the remaining configuration sources.

Build options are marked in All configuration with a tool icon. To find available build options, enter the
following command:

I bin/kc.[sh|bat] build --help
Example: Run a build to set the database to PostgreSQL before startup

I bin/kc.[sh|bat] build --db=postgres

1.5.1.2. Second step: Start Red Hat build of Keycloak using --optimized

After a successful build, you can start Red Hat build of Keycloak and turn off the default startup behavior
by entering the following command:

I bin/kc.[sh|bat] start --optimized <configuration-options>

The --optimized parameter tells Red Hat build of Keycloak to assume a pre-built, already optimized Red
Hat build of Keycloak image is used. As a result, Red Hat build of Keycloak avoids checking for and
running a build directly at startup, which saves time.

You can enter all configuration options at startup; these options are the ones in All configuration that are
not marked with a tool icon.

e |f a build option is found at startup with a value that is equal to the value used when entering the
build, that option gets silently ignored when you use the --optimized parameter.

13

Red Hat build of Keycloak 22.0 Server Guide

e |f that option has a different value than the value used when a build was entered, a warning
appears in the logs and the previously built value is used. For this value to take effect, run a new
build before starting.

Create an optimized build

The following example shows the creation of an optimized build followed by the use of the --optimized
parameter when starting Red Hat build of Keycloak.

1. Set the build option for the PostgreSQL database vendor using the build command

I bin/kc.[sh|bat] build --db=postgres

2. Set the runtime configuration options for postgres in the conf/keycloak.conf file.

db-url-host=keycloak-postgres
db-username=keycloak
db-password=change_me
hostname=mykeycloak.acme.com
https-certificate-file

3. Start the server with the optimized parameter

I bin/kc.[sh|bat] start --optimized

You can achieve most optimizations to startup and runtime behavior by using the build command. Also,
by using the keycloak.conf file as a configuration source, you avoid some steps at startup that would
otherwise require command line parameters, such as initializing the CLI itself. As a result, the server
starts up even faster.

1.6. UNDERLYING CONCEPTS

This section gives an overview of the underlying concepts Red Hat build of Keycloak uses, especially
when it comes to optimizing the startup.

Red Hat build of Keycloak uses the Quarkus framework and a re-augmentation/mutable-jar approach
under the covers. This process is started when a build command is run.

The following are some optimizations performed by the build command:
® A new closed-world assumption about installed providers is created, meaning that no need
exists to re-create the registry and initialize the factories at every Red Hat build of Keycloak
startup.

e Configuration files are pre-parsed to reduce I/O when starting the server.

® Database specific resources are configured and prepared to run against a certain database
vendor.

® By persisting build options into the server image, the server does not perform any additional
step to interpret configuration options and (re)configure itself.

You can read more at the specific Quarkus guide

14

https://quarkus.io/guides/reaugmentation

CHAPTER 2. CONFIGURING RED HAT BUILD OF KEYCLOAK FOR PRODUCTION

CHAPTER 2. CONFIGURING RED HAT BUILD OF KEYCLOAK
FOR PRODUCTION

A Red Hat build of Keycloak production environment provides secure authentication and authorization
for deployments that range from on-premise deployments that support a few thousand users to
deployments that serve millions of users.

This chapter describes the general areas of configuration required for a production ready Red Hat build
of Keycloak environment. This information focuses on the general concepts instead of the actual
implementation, which depends on your environment. The key aspects covered in this chapter apply to
all environments, whether it is containerized, on-premise, GitOps, or Ansible.

2.1. TLS FOR SECURE COMMUNICATION

Red Hat build of Keycloak continually exchanges sensitive data, which means that all communication to
and from Red Hat build of Keycloak requires a secure communication channel. To prevent several attack
vectors, you enable HTTP over TLS, or HTTPS, for that channel.

To configure secure communication channels for Red Hat build of Keycloak, see Configuring TLS and
Configuring outgoing HTTP requests.

2.2. THE HOSTNAME FOR RED HAT BUILD OF KEYCLOAK

In a production environment, Red Hat build of Keycloak instances usually run in a private network, but
Red Hat build of Keycloak needs to expose certain public facing endpoints to communicate with the
applications to be secured.

For details on the endpoint categories and instructions on how to configure the public hostname for
them, see Configuring the hostname.

2.3. REVERSE PROXY IN A DISTRIBUTED ENVIRONMENT

Apart from Configuring the hostname, production environments usually include a reverse proxy / load
balancer component. It separates and unifies access to the network used by your company or
organization. For a Red Hat build of Keycloak production environment, this component is recommended.

For details on configuring proxy communication modes in Red Hat build of Keycloak, see Using a reverse

proxy. That chapter also recommends which paths should be hidden from public access and which paths
should be exposed so that Red Hat build of Keycloak can secure your applications.

2.4. PRODUCTION GRADE DATABASE

The database used by Red Hat build of Keycloak is crucial for the overall performance, availability,
reliability and integrity of Red Hat build of Keycloak. For details on how to configure a supported
database, see Configuring the database.

2.5. SUPPORT FOR RED HAT BUILD OF KEYCLOAK IN A CLUSTER

To ensure that users can continue to log in when a Red Hat build of Keycloak instance goes down, a
typical production environment contains two or more Red Hat build of Keycloak instances.

Red Hat build of Keycloak runs on top of JGroups and Infinispan, which provide a reliable, high-
availability stack for a clustered scenario. When deployed to a cluster, the embedded Infinispan server

15

Red Hat build of Keycloak 22.0 Server Guide

communication should be secured. You secure this communication either by enabling authentication and
encryption or by isolating the network used for cluster communication.

To find out more about using multiple nodes, the different caches and an appropriate stack for your
environment, see Configuring distributed caches.

2.6. CONFIGURE RED HAT BUILD OF KEYCLOAK SERVER WITH IPV4
ORIPV6

The system properties java.net.preferlPv4Stack and java.net.preferlPv6Addresses are used to
configure the JVM for use with IPv4 or IPv6 addresses.

By default, Red Hat build of Keycloak is accessible via IPv4 and IPv6 addresses at the same time. In
order to run only with IPv4 addresses, you need to specify the property java.net.preferlPv4Stack=true.

The latter ensures that any hostname to IP address conversions always return IPv4 address variants.

These system properties are conveniently set by the JAVA_OPTS_APPEND environment variable. For
example, to change the IP stack preference to IPv4, set an environment variable as follows:

I export JAVA_OPTS_APPEND="-Djava.net.preferlPv4Stack=true"

16

CHAPTER 3. RUNNING RED HAT BUILD OF KEYCLOAK IN A CONTAINER

CHAPTER 3. RUNNING RED HAT BUILD OF KEYCLOAKIN A
CONTAINER

This chapter describes how to optimize and run the Red Hat build of Keycloak container image to
provide the best experience running a Red Hat build of Keycloak container.

' WARNING
A This chapter applies only for building an image that you run in a OpenShift

environment. Only an OpenShift environment is supported for this image. It is not
supported if you run it in other Kubernetes distributions.

3.1. CREATING A CUSTOMIZED AND OPTIMIZED CONTAINER IMAGE

The default Red Hat build of Keycloak container image ships ready to be configured and optimized.

For the best start up of your Red Hat build of Keycloak container, build an image by running the build
step during the container build. This step will save time in every subsequent start phase of the container
image.

3.1.1. Writing your optimized Red Hat build of Keycloak Dockerfile

The following Dockerfile creates a pre-configured Red Hat build of Keycloak image that enables the
health and metrics endpoints, enables the token exchange feature, and uses a PostgreSQL database.

Dockerfile:

FROM registry.redhat.io/rhbk/keycloak-rhel9:22 as builder

Enable health and metrics support
ENV KC_HEALTH_ENABLED=true
ENV KC_METRICS_ENABLED=true

Configure a database vendor
ENV KC_DB=postgres

WORKDIR /opt/keycloak

for demonstration purposes only, please make sure to use proper certificates in production instead
RUN keytool -genkeypair -storepass password -storetype PKCS12 -keyalg RSA -keysize 2048 -
dname "CN=server" -alias server -ext "SAN:c=DNS:localhost,IP:127.0.0.1" -keystore
conf/server.keystore

RUN /opt/keycloak/bin/kc.sh build

FROM registry.redhat.io/rhbk/keycloak-rhel9:22
COPY --from=builder /opt/keycloak/ /opt/keycloak/

change these values to point to a running postgres instance

ENV KC_DB=postgres
ENV KC_DB_URL=<DBURL>

17

Red Hat build of Keycloak 22.0 Server Guide

ENV KC_DB_USERNAME=<DBUSERNAME>
ENV KC_DB_PASSWORD=<DBPASSWORD>
ENV KC_HOSTNAME=localhost
ENTRYPOINT ["/opt/keycloak/bin/kc.sh"]

The build process includes multiple stages:
® Run the build command to set server build options to create an optimized image.
e The files generated by the build stage are copied into a new image.

e |n the final image, additional configuration options for the hostname and database are set so
that you don't need to set them again when running the container.

® |n the entrypoint, the kec.sh enables access to all the distribution sub-commands.

To install custom providers, you just need to define a step to include the JAR file(s) into the
/opt/keycloak/providers directory:

A example build step that downloads a JAR file from a URL and adds it to the providers directory
ADD --chown=keycloak:keycloak <MY_PROVIDER_JAR_URL>
/opt/keycloak/providers/myprovider.jar

3.1.2. Installing additional RPM packages

If you try to install new software in a stage FROM registry.redhat.io/rhbk/keycloak-rhel9, you will
notice that microdnf, dnf, and even rpm are not installed. Also, very few packages are available, only
enough for a bash shell, and to run Keycloak itself. This is due to security hardening measures, which
reduce the attack surface of the Keycloak container.

First, consider if your use case can be implemented in a different way, and so avoid installing new RPMs
into the final container:

® A RUN curl instruction in your Dockerfile can be replaced with ADD, since that instruction
natively supports remote URLs.

® Some common CLI tools can be replaced by creative use of the Linux filesystem. For example,
ip addr show tap0 becomes cat /sys/class/net/tap0/address

® Tasks that need RPMs can be moved to a former stage of an image build, and the results copied
across instead.

Here is an example. Running update-ca-trust in a former build stage, then copying the result forward:

FROM registry.access.redhat.com/ubi9 AS ubi-micro-build
COPY mycertificate.crt /etc/pki/ca-trust/source/anchors/mycertificate.crt
RUN update-ca-trust

FROM registry.redhat.io/rhbk/keycloak-rhel9
COPY --from=ubi-micro-build /etc/pki /etc/pki

It is possible to install new RPMs if absolutely required, following this two-stage pattern established by
ubi-micro:

I FROM registry.access.redhat.com/ubi9 AS ubi-micro-build

18

CHAPTER 3. RUNNING RED HAT BUILD OF KEYCLOAK IN A CONTAINER

RUN mkdir -p /mnt/rootfs
RUN dnf install --installroot /mnt/rootfs <package names go here> --releasever 9 --setopt
install_weak_deps=false --nodocs -y && \

dnf --installroot /mnt/rootfs clean all &&\

rpm --root /mnt/rootfs -e --nodeps setup

FROM registry.redhat.io/rhbk/keycloak-rhel9
COPY --from=ubi-micro-build /mnt/rootfs /

This approach uses a chroot, /mnt/rootfs, so that only the packages you specify and their dependencies
are installed, and so can be easily copied into the second stage without guesswork.

' WARNING
A Some packages have a large tree of dependencies. By installing new RPMs you may

unintentionally increase the container’s attack surface. Check the list of installed
packages carefully.

3.1.3. Building the container image

To build the actual container image, run the following command from the directory containing your
Dockerfile:

I podman build . -t mykeycloak

3.1.4. Starting the optimized Red Hat build of Keycloak container image

To start the image, run:

podman run --name mykeycloak -p 8443:8443 \
-e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me\
mykeycloak \
start --optimized

Red Hat build of Keycloak starts in production mode, using only secured HTTPS communication, and is
available on https://localhost:8443.

Health check endpoints are available at https://localhost:8443/health,
https://localhost:8443/health/ready and https://localhost:8443/health/live.

Opening up https://localhost:8443/metrics leads to a page containing operational metrics that could be
used by your monitoring solution.

3.2. EXPOSING THE CONTAINER TO ADIFFERENT PORT

By default, the server is listening for http and https requests using the ports 8080 and 8443,
respectively.

19

https://localhost:8443
https://localhost:8443/health
https://localhost:8443/health/ready
https://localhost:8443/health/live
https://localhost:8443/metrics

Red Hat build of Keycloak 22.0 Server Guide

If you want to expose the container using a different port, you need to set the hostname-port
accordingly:

1. Exposing the container using a port other than the default ports

podman run --name mykeycloak -p 3000:8443 \
-e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me\
mykeycloak \
start --optimized --hostname-port=3000

By setting the hostname-port option you can now access the server at https://localhost:3000.

3.3. TRYING RED HAT BUILD OF KEYCLOAK IN DEVELOPMENT MODE

The easiest way to try Red Hat build of Keycloak from a container for development or testing purposes
is to use the Development mode. You use the start-dev command:

podman run --name mykeycloak -p 8080:8080 \
-e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me\
registry.redhat.io/rhbk/keycloak-rhel9:22 \
start-dev

Invoking this command starts the Red Hat build of Keycloak server in development mode.

This mode should be strictly avoided in production environments because it has insecure defaults. For
more information about running Red Hat build of Keycloak in production, see Configuring Red Hat build
of Keycloak for production.

3.4. RUNNING A STANDARD RED HAT BUILD OF KEYCLOAK
CONTAINER

In keeping with concepts such as immutable infrastructure, containers need to be re-provisioned
routinely. In these environments, you need containers that start fast, therefore you need to create an
optimized image as described in the preceding section. However, if your environment has different
requirements, you can run a standard Red Hat build of Keycloak image by just running the start
command. For example:

podman run --name mykeycloak -p 8080:8080 \
-e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me\
registry.redhat.io/rhbk/keycloak-rhel9:22 \
start\
--db=postgres --features=token-exchange \
--db-url=<JDBC-URL> --db-username=<DB-USER> --db-password=<DB-PASSWORD> \
--https-key-store-file=<file> --https-key-store-password=<password>

Running this command starts a Red Hat build of Keycloak server that detects and applies the build
options first. In the example, the line --db=postgres --features=token-exchange sets the database
vendor to PostgreSQL and enables the token exchange feature.

Red Hat build of Keycloak then starts up and applies the configuration for the specific environment. This

approach significantly increases startup time and creates an image that is mutable, which is not the best
practice.

20

https://localhost:3000

CHAPTER 3. RUNNING RED HAT BUILD OF KEYCLOAK IN A CONTAINER

3.5. PROVIDE INITIAL ADMIN CREDENTIALS WHEN RUNNING IN A
CONTAINER

Red Hat build of Keycloak only allows to create the initial admin user from a local network connection.
This is not the case when running in a container, so you have to provide the following environment
variables when you run the image:

setting the admin username
-e KEYCLOAK_ADMIN=<admin-user-name>

setting the initial password
-e KEYCLOAK_ADMIN_PASSWORD=change_me

3.6. IMPORTING A REALM ON STARTUP

The Red Hat build of Keycloak containers have a directory /opt/keycloak/data/import. If you put one or
more import files in that directory via a volume mount or other means and add the startup argument --
import-realm, the Keycloak container will import that data on startup! This may only make sense to do in
Dev mode.

podman run --name keycloak_unoptimized -p 8080:8080 \
-e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me\
-v /path/to/realm/data:/opt/keycloak/data/import \
registry.redhat.io/rhbk/keycloak-rhel9:22 \
start-dev --import-realm

Feel free to join the open GitHub Discussion around enhancements of the admin bootstrapping process.

3.7. RELEVANT OPTIONS

Value

dbl dev-file (default), dev-
mem, mariadb,

The database vendor. mssq|, mysq|, oracle,
postgres

CLI:--db

Env: KC_DB

db-password
The password of the database user.

CLI: --db-password
Env:KC_DB_PASSWORD

21

https://github.com/keycloak/keycloak/discussions/8549

Red Hat build of Keycloak 22.0 Server Guide

Value

db-url
The full database JDBC URL.

If not provided, a default URL is set based on the selected database vendor. For
instance, if using postgres, the default JDBC URL would be
jdbc:postgresql://localhost/keycloak.

CLI: --db-url
Env: KC_DB_URL

db-username

The username of the database user.

CLI: --db-username
Env: KC_DB_USERNAME

features| account-api,
account2, account3,

Enables a set of one or more features. admin-api, admin-
fine-grained-authz,

CLI: --features

admin2,
Env: KC_FEATURES

authorization, ciba,
client-policies, client-
secret-rotation,
declarative-user-
profile, docker,
dynamic-scopes,
fips, impersonation,
js-adapter, kerberos,
linkedin-oauth, map-
storage, multi-site,
par, preview,
recovery-codes,
scripts, step-up-
authentication,
token-exchange,
update-email, web-
authn

health-enabled I true, false (default)
If the server should expose health check endpoints.

If enabled, health checks are available at the/health, /health/ready and
/health/live endpoints.

CLI: --health-enabled
Env: KC_HEALTH_ENABLED

22

CHAPTER 3. RUNNING RED HAT BUILD OF KEYCLOAK IN A CONTAINER

Value

hosthame
Hostname for the Keycloak server.

CLI: --hostname
Env: KC_HOSTNAME

https-key-store-file

The key store which holds the certificate information instead of specifying
separate files.

CLI: --https-key-store-file
Env:KC_HTTPS_KEY_STORE_FILE

https-key-store-password password (default)
The password of the key store file.

CLI: --https-key-store-password
Env:KC_HTTPS_KEY_STORE_PASSWORD

metrics-enabled I true, false (default)
If the server should expose metrics.
If enabled, metrics are available at the/metrics endpoint.

CLI: --metrics-enabled
Env: KC_METRICS_ENABLED

23

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 4. CONFIGURING TLS

Transport Layer Security (short: TLS) is crucial to exchange data over a secured channel. For production
environments, you should never expose Red Hat build of Keycloak endpoints through HTTP, as sensitive
datais at the core of what Red Hat build of Keycloak exchanges with other applications. In this chapter,
you will learn how to configure Red Hat build of Keycloak to use HTTPS/TLS.

4.1. CONFIGURING TLS IN RED HAT BUILD OF KEYCLOAK

Red Hat build of Keycloak can be configured to load the required certificate infrastructure using files in
PEM format or from a Java Keystore. When both alternatives are configured, the PEM files takes
precedence over the Java Keystores.

4.1.1. Providing certificates in PEM format

When you use a pair of matching certificate and private key files in PEM format, you configure Red Hat
build of Keycloak to use them by running the following command:

bin/kc.[sh|bat] start --https-certificate-file=/path/to/certfile.pem --https-certificate-key-
file=/path/to/keyfile.pem

Red Hat build of Keycloak creates a keystore out of these files in memory and uses this keystore
afterwards.

4.1.2. Providing a Java Keystore

When no keystore file is explicitly configured, but http-enabled is set to false, Red Hat build of Keycloak
looks for a conf/server.keystore file.

As an alternative, you can use an existing keystore by running the following command:

I bin/kc.[sh|bat] start --https-key-store-file=/path/to/existing-keystore-file

4.1.2.1. Setting the Keystore password

You can set a secure password for your keystore using the https-key-store-password option:

I bin/kc.[sh|bat] start --https-key-store-password=<value>

If no password is set, the default password password is used.

4.2. CONFIGURING TLS PROTOCOLS

By default, Red Hat build of Keycloak does not enable deprecated TLS protocols. If your client supports
only deprecated protocols, consider upgrading the client. However, as a temporary work-around, you
can enable deprecated protocols by running the following command:

I bin/kc.[sh|bat] start --https-protocols=<protocol>[,<protocol>]

To also allow TLSV1.2, use a command such as the following: kc.sh start --https-
protocols=TLSv1.3,TLSv1.2.

24

CHAPTER 4. CONFIGURING TLS

4.3. SWITCHING THE HTTPS PORT

Red Hat build of Keycloak listens for HTTPS traffic on port 8443. To change this port, use the following
command:

I bin/kc.[sh|bat] start --https-port=<port>

4.4. USING A TRUSTSTORE

In order to properly validate client certificates and enable certain authentication methods like two-way
TLS or mTLS, you can set a trust store with all the certificates (and certificate chain) the server should
be trusting. There are number of capabilities that rely on this trust store to properly authenticate clients
using certificates such as:

® Mutual-TLS Client Authentication
® End-User X.509 Browser Authentication

You can configure the location of this truststore by running the following command:

I bin/kc.[sh|bat] start --https-trust-store-file=/path/to/file

NOTE

This trust store is targeted for authenticating clients where Red Hat build of Keycloak is
acting as a server. For configuring a trust store where Red Hat build of Keycloak is acting
as a client to external services through TLS, see Configuring trusted certificates for
outgoing requests.

4.4.1. Setting the truststore password

You can set a secure password for your truststore using the https-trust-store-password option:

I bin/kc.[sh|bat] start --https-trust-store-password=<value>

If no password is set, the default password password is used.

4.5. SECURING CREDENTIALS

Avoid setting a password in plaintext by using the CLI or adding it to conf/keycloak.conf file. Instead
use good practices such as using a vault / mounted secret. For more detail, see Using a vault and
Configuring Red Hat build of Keycloak for production .

4.6. ENABLING MUTUAL TLS

Authentication using mTLS is disabled by default. To enable mTLS certificate handling when Red Hat
build of Keycloak is the server and needs to validate certificates from requests made to Red Hat build of
Keycloak endpoints, put the appropriate certificates in Red Hat build of Keycloak truststore and use the
following command to enable mTLS:

I bin/kc.[sh|bat] start --https-client-auth=<none|request|required>

25

Red Hat build of Keycloak 22.0 Server Guide

Using the value required sets up Red Hat build of Keycloak to always ask for certificates and fail if no
certificate is provided in a request. By setting the value to request, Red Hat build of Keycloak will also
accept requests without a certificate and only validate the correctness of a certificate if it exists.

Be aware that this is the basic certificate configuration for mTLS use cases where Red Hat build of
Keycloak acts as server. When Red Hat build of Keycloak acts as client instead, e.g. when Red Hat build
of Keycloak tries to get a token from a token endpoint of a brokered identity provider that is secured by
mTLS, you need to set up the HttpClient to provide the right certificates in the keystore for the
outgoing request. To configure mTLS in these scenarios, see Configuring outgoing HTTP requests.

4.7. RELEVANT OPTIONS
http-enabled true, false (default)

Enables the HTTP listener.

CLI: --http-enabled
Env:KC_HTTP_ENABLED

https-certificate-file
The file path to a server certificate or certificate chain in PEM format.

CLI: --https-certificate-file
Env: KC_HTTPS_CERTIFICATE_FILE

https-certificate-key-file
The file path to a private key in PEM format.

CLI: --https-certificate-key-file
Env: KC_HTTPS_CERTIFICATE_KEY_FILE

https-cipher-suites
The cipher suites to use.
If none is given, a reasonable default is selected.

CLI: --https-cipher-suites
Env: KC_HTTPS_CIPHER_SUITES

https-client-auth none (default),
request, required
Configures the server to require/request client authentication.

CLI: --https-client-auth
Env:KC_HTTPS_CLIENT_AUTH

26

CHAPTER 4. CONFIGURING TLS

Value

https-key-store-file

The key store which holds the certificate information instead of specifying
separate files.

CLI: --https-key-store-file
Env:KC_HTTPS_KEY_STORE_FILE

https-key-store-password password (default)
The password of the key store file.

CLI: --https-key-store-password
Env:KC_HTTPS_KEY_STORE_PASSWORD

https-key-store-type
The type of the key store file.

If not given, the type is automatically detected based on the file name. Ifips-
mode is set to strict and no value is set, it defaults toBCFKS.

CLI: --https-key-store-type
Env:KC_HTTPS_KEY_STORE_TYPE

https-port 8443 (default)
The used HTTPS port.

CLI: --https-port
Env:KC_HTTPS_PORT

https-protocols TLSv1.3,TLSv1.2
(default)
The list of protocols to explicitly enable.

CLI: --https-protocols
Env:KC_HTTPS_PROTOCOLS

https-trust-store-file
The trust store which holds the certificate information of the certificates to trust.

CLI: --https-trust-store-file
Env:KC_HTTPS_TRUST_STORE_FILE

https-trust-store-password
The password of the trust store file.

CLI: --https-trust-store-password
Env:KC_HTTPS_TRUST_STORE_PASSWORD

27

Red Hat build of Keycloak 22.0 Server Guide

Value

https-trust-store-type
The type of the trust store file.

If not given, the type is automatically detected based on the file name. Ifips-
mode is set to strict and no value is set, it defaults toBCFKS.

CLI: --https-trust-store-type
Env:KC_HTTPS_TRUST_STORE_TYPE

28

CHAPTER 5. CONFIGURING THE HOSTNAME

CHAPTER 5. CONFIGURING THE HOSTNAME

5.1. SERVER ENDPOINTS

Red Hat build of Keycloak exposes different endpoints to talk with applications as well as to allow
accessing the administration console. These endpoints can be categorized into three main groups:

® Frontend
® Backend
® Administration Console

The base URL for each group has an important impact on how tokens are issued and validated, on how
links are created for actions that require the user to be redirected to Red Hat build of Keycloak (for
example, when resetting password through email links), and, most importantly, how applications will
discover these endpoints when fetching the OpenlD Connect Discovery Document from realms/{realm-
name}/.well-known/openid-configuration.

5.1.1. Frontend

The frontend endpoints are those accessible through a public domain and usually related to
authentication/authorization flows that happen through the front-channel. For instance, when an SPA
wants to authenticate their users it redirects them to the authorization_endpoint so that users can
authenticate using their browsers through the front-channel.

By default, when the hostname settings are not set, the base URL for these endpoints is based on the
incoming request so that the HTTP scheme, host, port, and path, are the same from the request. The
default behavior also has a direct impact on how the server is going to issue tokens given that the issuer
is also based on the URL set to the frontend endpoints. If the hostname settings are not set, the token
issuer will also be based on the incoming request and also lack consistency if the client is requesting
tokens using different URLSs.

When deploying to production you usually want a consistent URL for the frontend endpoints and the
token issuer regardless of how the request is constructed. In order to achieve this consistency, you can

set either the hostname or the hosthame-url options.

Most of the time, it should be enough to set the hostname option in order to change only the host of
the frontend URLs:

I bin/kc.[sh|bat] start --hosthame=<host>

When using the hostname option the server is going to resolve the HTTP scheme, port, and path,
automatically so that:

® https scheme is used unless you set hostname-strict-https=false

e if the proxy option is set, the proxy will use the default ports (i.e.: 80 and 443). If the proxy uses
a different port, it needs to be specified via the hostname-port configuration option

However, if you want to set not only the host but also a scheme, port, and path, you can set the
hostname-url option:

I bin/kc.[sh|bat] start --hostname-url=<scheme>://<host>:<port>/<path>

29

Red Hat build of Keycloak 22.0 Server Guide

This option gives you more flexibility as you can set the different parts of the URL from a single option.
Note that the hostname and hostname-url are mutually exclusive.

NOTE

By hostname and proxy configuration options you affect only the static resources URLs,
redirect URIs, OIDC well-known endpoints, etc. In order to change, where/on which port
the server actually listens on, you need to use the http/tls configuration options (e.g. http-
host, https-port, etc.). For more details, see Configuring TLS and All configuration.

5.1.2. Backend

The backend endpoints are those accessible through a public domain or through a private network. They
are used for a direct communication between the server and clients without any intermediary but plain
HTTP requests. For instance, after the user is authenticated an SPA wants to exchange the code sent
by the server with a set of tokens by sending a token request to token_endpoint.

By default, the URLs for backend endpoints are also based on the incoming request. To override this
behavior, set the hosthame-strict-backchannel configuration option by entering this command:

I bin/kc.[sh|bat] start --hosthame=<value> --hostname-strict-backchannel=true

By setting the hostname-strict-backchannel option, the URLs for the backend endpoints are going to
be exactly the same as the frontend endpoints.

When all applications connected to Red Hat build of Keycloak communicate through the public URL, set
hostname-strict-backchannel to true. Otherwise, leave this parameter as false to allow client-server
communication through a private network.

5.1.3. Administration Console

The server exposes the administration console and static resources using a specific URL.

By default, the URLs for the administration console are also based on the incoming request. However,
you can set a specific host or base URL if you want to restrict access to the administration console using
a specific URL. Similarly to how you set the frontend URLs, you can use the hostname-admin and
hostname-admin-url options to achieve that. Note that if HTTPS is enabled (http-enabled
configuration option is set to false, which is the default setting for the production mode), the Red Hat
build of Keycloak server automatically assumes you want to use HTTPS URLs. The admin console then
tries to contact Red Hat build of Keycloak over HTTPS and HTTPS URLs are also used for its configured
redirect/web origin URLs. It is not recommended for production, but you can use HTTP URL as
hostname-admin-url to override this behaviour.

Most of the time, it should be enough to set the hostname-admin option in order to change only the
host of the administration console URLSs:

I bin/kc.[sh|bat] start --hosthame-admin=<host>

However, if you want to set not only the host but also a scheme, port, and path, you can set the
hostname-admin-url option:

I bin/kc.[sh|bat] start --hostname-admin-url=<scheme>://<host>:<port>/<path>

Note that the hostname-admin and hosthame-admin-url are mutually exclusive.

30

CHAPTER 5. CONFIGURING THE HOSTNAME

To reduce attack surface, the administration endpoints for Red Hat build of Keycloak and the Admin
Console should not be publicly accessible. Therefore, you can secure them by using a reverse proxy. For
more information about which paths to expose using a reverse proxy, see Using a reverse proxy .

5.2. EXAMPLE SCENARIOS
The following are more example scenarios and the corresponding commands for setting up a hostname.

Note that the start command requires setting up TLS. The corresponding options are not shown for
example purposes. For more details, see Configuring TLS.

5.2.1. Exposing the server behind a TLS termination proxy

In this example, the server is running behind a TLS termination proxy and publicly available from
https://mykeycloak.

Configuration:

I bin/kc.[sh|bat] start --hostname=mykeycloak --proxy=edge

5.2.2. Exposing the server without a proxy

In this example, the server is running without a proxy and exposed using a URL using HTTPS.

Red Hat build of Keycloak configuration:
I bin/kc.[sh|bat] start --hostname-url=https://mykeycloak

It is highly recommended using a TLS termination proxy in front of the server for security and availability
reasons. For more details, see Using a reverse proxy.

5.2.3. Forcing backend endpoints to use the same URL the server is exposed

In this example, backend endpoints are exposed using the same URL used by the server so that clients
always fetch the same URL regardless of the origin of the request.

Red Hat build of Keycloak configuration:
I bin/kc.[sh|bat] start --hosthame=mykeycloak --hostname-strict-backchannel=true

5.2.4. Exposing the server using a port other than the default ports

In this example, the server is accessible using a port other than the default ports.

Red Hat build of Keycloak configuration:

I bin/kc.[sh|bat] start --hostname-url=https://mykeycloak:8989

5.2.5. Exposing Red Hat build of Keycloak behind a TLS reencrypt proxy using
different ports

31

https://mykeycloak

Red Hat build of Keycloak 22.0 Server Guide

In this example, the server is running behind a proxy and both the server and the proxy are using their
own certificates, so the communication between Red Hat build of Keycloak and the proxy is encrypted.
Because we want the proxy to use its own certificate, the proxy mode reencrypt will be used. We need
to keep in mind that the proxy configuration options (as well as hostname configuration options) are not
changing the ports on which the server actually is listening on (it changes only the ports of static
resources like JavaScript and CSS links, OIDC well-known endpoints, redirect URIs, etc.). Therefore, we
need to use HTTP configuration options to change the Red Hat build of Keycloak server to internally
listen on a different port, e.g. 8543. The proxy will be listening on the port 8443 (the port visible while
accessing the console via a browser). The example hostname my-keycloak.org will be used for the
server and similarly the admin console will be accessible via the admin.my-keycloak.org subdomain.

Red Hat build of Keycloak configuration:

bin/kc.[sh|bat] start --proxy=reencrypt --https-port=8543 --hostname-url=https://my-keycloak.org:8443
--hostname-admin-url=https://admin.my-keycloak.org:8443

Note: there is currently no difference between the passthrough and reencrypt modes. For now, this is
meant for future-proof configuration compatibility. The only difference is that when the edge proxy
mode is used, HTTP is implicitly enabled (again as mentioned above, this does not affect the server
behaviour).

' WARNING
A Usage any of the proxy modes makes Red Hat build of Keycloak rely on Forwarded

and X-Forwarded-* headers. Misconfiguration may leave Red Hat build of Keycloak
exposed to security issues. For more details, see Using a reverse proxy .

5.3. TROUBLESHOOTING

To troubleshoot the hostname configuration, you can use a dedicated debug tool which can be enabled
as:

Red Hat build of Keycloak configuration:
I bin/kc.[sh|bat] start --hostname=mykeycloak --hostname-debug=true

Then after Red Hat build of Keycloak started properly, open your browser and go to:

http://mykeycloak:8080/realms/<your-realm>/hostname-debug

5.4. RELEVANT OPTIONS

Table 5.1. By default, this endpoint is disabled ¢-hostname-debug=false)

32

http://mykeycloak:8080/realms/<your-realm>/hostname-debug

CHAPTER 5. CONFIGURING THE HOSTNAME

Value

hosthame
Hostname for the Keycloak server.

CLI: --hostname
Env: KC_HOSTNAME

hosthame-admin
The hostname for accessing the administration console.

Use this option if you are exposing the administration console using a hostname
other than the value set to the hostname option.

CLI: --hostname-admin
Env: KC_HOSTNAME_ADMIN

hosthame-admin-url

Set the base URL for accessing the administration console, including scheme,
host, port and path

CLI: --hostname-admin-url
Env: KC_HOSTNAME_ADMIN_URL

hostname-debug true, false (default)

Toggle the hostname debug page that is accessible at
/realms/master/hostname-debug

CLI: --hostname-debug
Env: KC_HOSTNAME_DEBUG

hostname-path
This should be set if proxy uses a different context-path for Keycloak.

CLI: --hosthame-path
Env: KC_HOSTNAME_PATH

hostname-port -1 (default)
The port used by the proxy when exposing the hostname.

Set this option if the proxy uses a port other than the default HTTP and HTTPS
ports.

CLI: --hosthame-port
Env: KC_HOSTNAME_PORT

33

Red Hat build of Keycloak 22.0 Server Guide

Value

hostname-strict true (default), false
Disables dynamically resolving the hostname from request headers.
Should always be set to true in production, unless proxy verifies the Host header.

CLI: --hostname-strict
Env: KC_HOSTNAME_STRICT

hostname-strict-backchannel true, false (default)

By default backchannel URLs are dynamically resolved from request headers to
allow internal and external applications.

If all applications use the public URL this option should be enabled.

CLI: --hostname-strict-backchannel
Env: KC_HOSTNAME_STRICT_BACKCHANNEL

hostname-url
Set the base URL for frontend URLs, including scheme, host, port and path.

CLI: --hostname-url
Env: KC_HOSTNAME_URL

proxy none (default), edge,
reencrypt,

The proxy address forwarding mode if the server is behind a reverse proxy. passthrough

CLI: --proxy

Env: KC_PROXY

34

CHAPTER 6. USING A REVERSE PROXY

CHAPTER 6. USING A REVERSE PROXY

Distributed environments frequently require the use of a reverse proxy. For Red Hat build of Keycloak,
your choice of proxy modes depends on the TLS termination in your environment.

6.1. PROXY MODES
The following proxy modes are available:

edge

Enables communication through HTTP between the proxy and Red Hat build of Keycloak. This mode
is suitable for deployments with a highly secure internal network where the reverse proxy keeps a
secure connection (HTTP over TLS) with clients while communicating with Red Hat build of Keycloak
using HTTP.

reencrypt

Requires communication through HTTPS between the proxy and Red Hat build of Keycloak. This
mode is suitable for deployments where internal communication between the reverse proxy and Red
Hat build of Keycloak should also be protected. Different keys and certificates are used on the
reverse proxy as well as on Red Hat build of Keycloak.

passthrough

The proxy forwards the HTTPS connection to Red Hat build of Keycloak without terminating TLS.
The secure connections between the server and clients are based on the keys and certificates used
by the Red Hat build of Keycloak server.

6.2. CONFIGURE THE PROXY MODE IN RED HAT BUILD OF KEYCLOAK

To select the proxy mode, enter this command:

I bin/kc.[sh|bat] start --proxy <mode>

6.3. CONFIGURE THE REVERSE PROXY

Some Red Hat build of Keycloak features rely on the assumption that the remote address of the HTTP
request connecting to Red Hat build of Keycloak is the real IP address of the clients machine.

When in edge or reencrypt proxy mode, Red Hat build of Keycloak will parse the following headers and
expects the reverse proxy to set them:

® Forwarded as per RFC7239
® Non-standard X-Forwarded

® Non-standard X-Forwarded-*, such as X-Forwarded-For, X-Forwarded-Proto, X-Forwarded-
Host and X-Forwarded-Port

To set these headers, consult the documentation for your reverse proxy.

Take extra precautions to ensure that the client address is properly set by your reverse proxy via the
Forwarded or X-Forwarded-For headers. If this header is incorrectly configured, rogue clients can set
this header and trick Red Hat build of Keycloak into thinking the client is connected from a different IP
address than the actual address. This precaution can be more critical if you do any deny or allow listing of
IP addresses.

35

https://www.rfc-editor.org/rfc/rfc7239.html

Red Hat build of Keycloak 22.0 Server Guide

6.4. DIFFERENT CONTEXT-PATH ON REVERSE PROXY

Red Hat build of Keycloak assumes it is exposed through the reverse proxy under the same context path
as Red Hat build of Keycloak is configured for. By default Red Hat build of Keycloak is exposed through
the root (/), which means it expects to be exposed through the reverse proxy on /as well. You can use
hostname-path or hostname-url in these cases, for example using --hostname-path=/auth if Red Hat
build of Keycloak is exposed through the reverse proxy on /auth.

Alternatively you can also change the context path of Red Hat build of Keycloak itself to match the
context path for the reverse proxy using the http-relative-path option, which will change the context-
path of Red Hat build of Keycloak itself to match the context path used by the reverse proxy.

6.5. TRUST THE PROXY TO SET HOSTNAME

By default, Red Hat build of Keycloak needs to know under which hostname it will be called. If your
reverse proxy is configured to check for the correct hostname, you can set Red Hat build of Keycloak to
accept any hostname.

I bin/kc.[sh|bat] start --proxy <mode> --hostname-strict=false

6.6. ENABLE STICKY SESSIONS

Typical cluster deployment consists of the load balancer (reverse proxy) and 2 or more Red Hat build of
Keycloak servers on private network. For performance purposes, it may be useful if load balancer
forwards all requests related to particular browser session to the same Red Hat build of Keycloak
backend node.

The reason is, that Red Hat build of Keycloak is using Infinispan distributed cache under the covers for
save data related to current authentication session and user session. The Infinispan distributed caches
are configured with two owners by default. That means that particular session is primarily stored on two
cluster nodes and the other nodes need to lookup the session remotely if they want to access it.

For example if authentication session with ID 123 is saved in the Infinispan cache on nodel, and then
node2 needs to lookup this session, it needs to send the request to nodel over the network to return the
particular session entity.

It is beneficial if particular session entity is always available locally, which can be done with the help of
sticky sessions. The workflow in the cluster environment with the public frontend load balancer and two
backend Red Hat build of Keycloak nodes can be like this:

e User sends initial request to see the Red Hat build of Keycloak login screen

® This requestis served by the frontend load balancer, which forwards it to some random node
(eg. nodel). Strictly said, the node doesn’t need to be random, but can be chosen according to
some other criterias (client IP address etc). It all depends on the implementation and
configuration of underlying load balancer (reverse proxy).

® Red Hat build of Keycloak creates authentication session with random ID (eg. 123) and saves it
to the Infinispan cache.

e |nfinispan distributed cache assigns the primary owner of the session based on the hash of

session ID. See Infinispan documentation for more details around this. Let’s assume that
Infinispan assigned node?2 to be the owner of this session.

36

CHAPTER 6. USING A REVERSE PROXY

® Red Hat build of Keycloak creates the cookie AUTH_SESSION_ID with the format like <session-
id>.<owner-node-id>. In our example case, it will be 123.node2 .

® Response is returned to the user with the Red Hat build of Keycloak login screen and the
AUTH_SESSION_ID cookie in the browser

From this point, it is beneficial if load balancer forwards all the next requests to the node2 as this is the
node, who is owner of the authentication session with ID 123 and hence Infinispan can lookup this session
locally. After authentication is finished, the authentication session is converted to user session, which will
be also saved on node2 because it has same ID 123.

The sticky session is not mandatory for the cluster setup, however it is good for performance for the
reasons mentioned above. You need to configure your loadbalancer to sticky over the
AUTH_SESSION_ID cookie. How exactly do this is dependent on your loadbalancer.

If your proxy supports session affinity without processing cookies from backend nodes, you should set
the spi-sticky-session-encoder-infinispan-should-attach-route option to false in order to avoid
attaching the node to cookies and just rely on the reverse proxy capabilities.

I bin/kc.[sh|bat] start --spi-sticky-session-encoder-infinispan-should-attach-route=false

By default, the spi-sticky-session-encoder-infinispan-should-attach-route option value is true so
that the node name is attached to cookies to indicate to the reverse proxy the node that subsequent
requests should be sent to.

6.6.1. Exposing the administration console

By default, the administration console URLs are created solely based on the requests to resolve the
proper scheme, host name, and port. For instance, if you are using the edge proxy mode and your proxy
is misconfigured, backend requests from your TLS termination proxy are going to use plain HTTP and
potentially cause the administration console from being accessible because URLs are going to be
created using the http scheme and the proxy does not support plain HTTP.

In order to proper expose the administration console, you should make sure that your proxy is setting
the X-Forwarded-* headers herein mentioned in order to create URLs using the scheme, host name, and
port, being exposed by your proxy.

6.6.2. Exposed path recommendations

When using a reverse proxy, Red Hat build of Keycloak only requires certain paths need to be exposed.

The following table shows the recommended paths to expose.

Red Hat build of Reverse Proxy Path Exposed

Keycloak Path

/ - No When exposing all paths,
admin paths are
exposed unnecessarily.

/admin/ - No Exposed admin paths
lead to an unnecessary
attack vector.

37

Red Hat build of Keycloak 22.0 Server Guide

Red Hat build of Reverse Proxy Path Exposed Reason

Keycloak Path

/is/ - Yes (see note below) Access to keycloak.js
needed for "internal"
clients, e.g. the account
console

/welcome/ - No No need exists to
expose the welcome
page after initial
installation.

/realms/ /realms/ Yes This path is needed to
work correctly, for
example, for OIDC
endpoints.

/resources/ /resources/ Yes This path is needed to
serve assets correctly. It
may be served from a
CDN instead of the Red
Hat build of Keycloak

path.
robots.txt robots.txt Yes Search engine rules
g
/metrics - No Exposed metrics lead to
an unnecessary attack
vector.
/health - No Exposed health checks

lead to an unnecessary
attack vector.

NOTE

As it's true that the js path is needed for internal clients like the account console, it's
good practice to use keycloak.js from a JavaScript package manager like npm or yarn
for your external clients.

-

We assume you run Red Hat build of Keycloak on the root path / on your reverse proxy/gateway’s public
APL. If not, prefix the path with your desired one.
6.6.3. Enabling client certificate lookup

When the proxy is configured as a TLS termination proxy the client certificate information can be
forwarded to the server through specific HTTP request headers and then used to authenticate clients.
You are able to configure how the server is going to retrieve client certificate information depending on

38

CHAPTER 6. USING A REVERSE PROXY

the proxy you are using.

The server supports some of the most commons TLS termination proxies such as:

Proxy Provider

Apache HTTP Server apache
HAProxy haproxy
NGINX nginx

To configure how client certificates are retrieved from the requests you need to:

Enable the corresponding proxy provider
I bin/kc.[sh|bat] build --spi-x509cert-lookup-provider=<provider>
Configure the HTTP headers

bin/kc.[sh|bat] start --spi-x509cert-lookup-<provider>-ssl-client-cert=SSL_CLIENT_CERT --spi-
x509cert-lookup-<provider>-ssl-cert-chain-prefix=CERT_CHAIN --spi-x509cert-lookup-<provider>-
certificate-chain-length=10

When configuring the HTTP headers, you need to make sure the values you are using correspond to the
name of the headers forwarded by the proxy with the client certificate information.

The available options for configuring a provider are:

Option Description

ssl-client-cert The name of the header holding the client certificate

ssl-cert-chain-prefix The prefix of the headers holding additional
certificates in the chain and used to retrieve
individual certificates accordingly to the length of
the chain. For instance, a value CERT_CHAIN will
tell the server to load additional certificates from
headers CERT_CHAIN_0 to CERT_CHAIN_9if
certificate-chain-length is set to 10.

certificate-chain-length The maximum length of the certificate chain.

trust-proxy-verification Enable trusting NGINX proxy certificate verification,
instead of forwarding the certificate to Red Hat build
of Keycloak and verifying it in Red Hat build of
Keycloak.

6.6.3.1. Configuring the NGINX provider

39

Red Hat build of Keycloak 22.0 Server Guide

The NGINX SSL/TLS module does not expose the client certificate chain. Red Hat build of Keycloak’s
NGINX certificate lookup provider rebuilds it by using the Red Hat build of Keycloak truststore.

If you are using this provider, see Configuring trusted certificates for outgoing requests for how to
configure a Red Hat build of Keycloak Truststore.

6.7. RELEVANT OPTIONS

Value

hostname-path
This should be set if proxy uses a different context-path for Keycloak.

CLI: --hostname-path
Env: KC_HOSTNAME_PATH

hostname-url
Set the base URL for frontend URLs, including scheme, host, port and path.

CLI: --hostname-url
Env: KC_HOSTNAME_URL

http-relative-path Il / (default)
Set the path relative to/ for serving resources.
The path must start with &/.

CLI: --http-relative-path
Env: KC_HTTP_RELATIVE_PATH

proxy none (default), edge,
reencrypt,

The proxy address forwarding mode if the server is behind a reverse proxy. passthrough

CLI: --proxy

Env: KC_PROXY

40

CHAPTER 7. CONFIGURING THE DATABASE

CHAPTER 7. CONFIGURING THE DATABASE

This chapter explains how to configure the Red Hat build of Keycloak server to store data in a relational
database.

7.1. SUPPORTED DATABASES

The server has built-in support for different databases. You can query the available databases by
viewing the expected values for the db configuration option. The following table lists the supported
databases and their tested versions.

Database Option value Tested Version
MariaDB Server mariadb 10m

Microsoft SQL Server mssql 2022

MySQL mysql 8.0

Oracle Database oracle 19.3
PostgreSQL postgres 15

By default, the server uses the dev-file database. This is the default database that the server will use to
persist data and only exists for development use-cases. The dev-file database is not suitable for
production use-cases, and must be replaced before deploying to production.

7.2. INSTALLING A DATABASE DRIVER

Database drivers are shipped as part of Red Hat build of Keycloak except for the Oracle Database and
Micrsoft SQL Server drivers which need to be installed separately.

Install the necessary driver if you want to connect to one of these databases or skip this section if you
want to connect to a different database for which the database driver is already included.

7.2.1. Installing the Oracle Database driver

To install the Oracle Database driver for Red Hat build of Keycloak:

1. Download the ojdbc11 and orai18n JAR files from one of the following sources:

a. Zipped JDBC driver and Companion Jarsversion 23.2.0.0 from the Oracle driver
download page.

b. Maven Central via ojdbc11 and orai18n.
c. Installation media recommended by the database vendor for the specific database in use.

2. When running the unzipped distribution: Place the ojdbc11 and orai18n JAR files in Red Hat
build of Keycloak's providers folder

41

https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc11/23.2.0.0/ojdbc11-23.2.0.0.jar
https://repo1.maven.org/maven2/com/oracle/database/nls/orai18n/23.2.0.0/orai18n-23.2.0.0.jar

Red Hat build of Keycloak 22.0 Server Guide

3. When running containers: Build a custom Red Hat build of Keycloak image and add the JARs in

the providers folder. When building a custom image for the Keycloak Operator, those images
need to be optimized images with all build-time options of Keycloak set.

A minimal Dockerfile to build an image which can be used with the Red Hat build of Keycloak
Operator and includes Oracle Database JDBC drivers downloaded from Maven Central looks
like the following:

FROM registry.redhat.io/rhbk/keycloak-rhel9:22

ADD --chown=keycloak:keycloak
https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc11/23.2.0.0/0jdbc11-23.2.0.
0.jar /opt/keycloak/providers/ojdbc11.jar

ADD --chown=keycloak:keycloak
https://repo1.maven.org/maven2/com/oracle/database/nls/orai18n/23.2.0.0/orai18n-
23.2.0.0.jar /opt/keycloak/providers/orail8n.jar

Setting the build parameter for the database:

ENV KC_DB=oracle

Add all other build parameters needed, for example enable health and metrics:

ENV KC_HEALTH_ENABLED=true

ENV KC_METRICS_ENABLED=true

To be able to use the image with the {project_name} Operator, it needs to be optimized,
which requires {project_name}'s build step:

RUN /opt/keycloak/bin/kc.sh build

See the Running Red Hat build of Keycloak in a container chapter for details on how to build
optimized images.

Then continue configuring the database as described in the next section.

7.2.2. Installing the Microsoft SQL Server driver

To install the Microsoft SQL Server driver for Red Hat build of Keycloak:

42

1. Download the mssql-jdbc JAR file from one of the following sources:

a. Download a version from the Microsoft JDBC Driver for SQL Server page.
b. Maven Central via mssql-jdbc.

c. Installation media recommended by the database vendor for the specific database in use.

2. When running the unzipped distribution: Place the mssql-jdbc in Red Hat build of Keycloak's

providers folder

. When running containers: Build a custom Red Hat build of Keycloak image and add the JARs in

the providers folder. When building a custom image for the Red Hat build of Keycloak Operator,
those images need to be optimized images with all build-time options of Red Hat build of
Keycloak set.

A minimal Dockerfile to build an image which can be used with the Red Hat build of Keycloak
Operator and includes Microsoft SQL Server JDBC drivers downloaded from Maven Central
looks like the following:

FROM registry.redhat.io/rhbk/keycloak-rhel9:22

ADD --chown=keycloak:keycloak
https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/12.2.0.jre11/mssql-
jdbc-12.2.0.jre11.jar /opt/keycloak/providers/mssql-jdbc.jar

Setting the build parameter for the database:

https://learn.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server
https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/12.2.0.jre11/mssql-jdbc-12.2.0.jre11.jar

CHAPTER 7. CONFIGURING THE DATABASE

ENV KC_DB=mssq|

Add all other build parameters needed, for example enable health and metrics:

ENV KC_HEALTH_ENABLED=true

ENV KC_METRICS_ENABLED=true

To be able to use the image with the {project_name} Operator, it needs to be optimized,
which requires {project_name}'s build step:

RUN /opt/keycloak/bin/kc.sh build

See the Running Red Hat build of Keycloak in a container chapter for details on how to build
optimized images.

Then continue configuring the database as described in the next section.

7.3. CONFIGURING A DATABASE
For each supported database, the server provides some opinionated defaults to simplify database
configuration. You complete the configuration by providing some key settings such as the database host

and credentials.

1. Start the server and set the basic options to configure a database

bin/kc.[sh|bat] start --db postgres --db-url-host mypostgres --db-username myuser --db-
password change_me

This command includes the minimum settings needed to connect to the database.

The default schema is keycloak, but you can change it by using the db-schema configuration option.

' WARNING
A Do NOT use the --optimized flag for the start command if you want to use a

particular DB (except the H2). Executing the build phase before starting the server
instance is necessary. You can achieve it either by starting the instance without the -
-optimized flag, or by executing the build command before the optimized start. For
more information, see Configuring Red Hat build of Keycloak .

7.4. OVERRIDING DEFAULT CONNECTION SETTINGS

The server uses JDBC as the underlying technology to communicate with the database. If the default
connection settings are insufficient, you can specify a JDBC URL using the db-url configuration option.

The following is a sample command for a PostgreSQL database.

I bin/kc.[sh|bat] start --db postgres --db-url jdbc:postgresql://mypostgres/mydatabase

Be aware that you need to escape characters when invoking commands containing special shell
characters such as ; using the CLI, so you might want to set it in the configuration file instead.

7.5. OVERRIDING THE DEFAULT JDBC DRIVER

43

Red Hat build of Keycloak 22.0 Server Guide

The server uses a default JDBC driver accordingly to the database you chose.

To set a different driver you can set the db-driver with the fully qualified class name of the JDBC driver:

I bin/kc.[sh|bat] start --db postgres --db-driver=my.Driver

Regardless of the driver you set, the default driver is always available at runtime.

Only set this property if you really need to. For instance, when leveraging the capabilities from a JDBC
Driver Wrapper for a specific cloud database service.

7.6. CONFIGURING UNICODE SUPPORT FOR THE DATABASE

Unicode support for all fields depends on whether the database allows VARCHAR and CHAR fields to
use the Unicode character set.

e |f these fields can be set, Unicode is likely to work, usually at the expense of field length.

e |f the database only supports Unicode in the NVARCHAR and NCHAR fields, Unicode support
for all text fields is unlikely to work because the server schema uses VARCHAR and CHAR fields
extensively.

The database schema provides support for Unicode strings only for the following special fields:

® Realms: display name, HTML display name, localization texts (keys and values)

® Federation Providers: display name

® Users: username, given name, last name, attribute names and values

® Groups: name, attribute names and values

® Roles: name

® Descriptions of objects

Otherwise, characters are limited to those contained in database encoding, which is often 8-bit.
However, for some database systems, you can enable UTF-8 encoding of Unicode characters and use

the full Unicode character set in all text fields. For a given database, this choice might result in a shorter
maximum string length than the maximum string length supported by 8-bit encodings.

7.6.1. Configuring Unicode support for an Oracle database

Unicode characters are supported in an Oracle database if the database was created with Unicode
support in the VARCHAR and CHAR fields. For example, you configured AL32UTF8 as the database
character set. In this case, the JDBC driver requires no special settings.

If the database was not created with Unicode support, you need to configure the JDBC driver to
support Unicode characters in the special fields. You configure two properties. Note that you can
configure these properties as system properties or as connection properties.

1. Set oracle.jdbc.defaultNChar to true.

2. Optionally, set oracle.jdbc.convertNcharLiterals to true.

44

CHAPTER 7. CONFIGURING THE DATABASE

NOTE

For details on these properties and any performance implications, see the Oracle
JDBC driver configuration documentation.

7.6.2. Unicode support for a Microsoft SQL Server database

Unicode characters are supported only for the special fields for a Microsoft SQL Server database. The
database requires no special settings.

The sendStringParametersAsUnicode property of JDBC driver should be set to false to significantly
improve performance. Without this parameter, the Microsoft SQL Server might be unable to use
indexes.

7.6.3. Configuring Unicode support for a MySQL database

Unicode characters are supported in a MySQL database if the database was created with Unicode
support in the VARCHAR and CHAR fields when using the CREATE DATABASE command.

Note that the utf8mb4 character set is not supported due to different storage requirements for the
utf8 character set. See MySQL documentation for details. In that situation, the length restriction on
non-special fields does not apply because columns are created to accommodate the number of
characters, not bytes. If the database default character set does not allow Unicode storage, only the
special fields allow storing Unicode values.

1. Start MySQL Server.
2. Under JDBC driver settings, locate the JDBC connection settings.

3. Add this connection property: characterEncoding=UTF-8

7.6.4. Configuring Unicode support for a PostgreSQL database

Unicode is supported for a PostgreSQL database when the database character set is UTF8. Unicode
characters can be used in any field with no reduction of field length for non-special fields. The JDBC

driver requires no special settings. The character set is determined when the PostgreSQL database is
created.

1. Check the default character set for a PostgreSQL cluster by entering the following SQL
command.

I show server_encoding;

2. If the default character setis not UTF 8, create the database with the UTF8 as the default
character set using a command such as:

I create database keycloak with encoding 'UTF8';

7.7. CHANGING DATABASE LOCKING TIMEOUT IN A CLUSTER
CONFIGURATION

Because cluster nodes can boot concurrently, they take extra time for database actions. For example, a
booting server instance may perform some database migration, importing, or first time initializations. A
database lock prevents start actions from conflicting with each other when cluster nodes boot up

45

Red Hat build of Keycloak 22.0 Server Guide

concurrently.

The maximum timeout for this lock is 900 seconds. If a node waits on this lock for more than the
timeout, the boot fails. The need to change the default value is unlikely, but you can change it by
entering this command:

I bin/kc.[sh|bat] start --spi-dblock-jpa-lock-wait-timeout 900

7.8. USING DATABASE VENDORS WITHOUT XA TRANSACTION
SUPPORT

Red Hat build of Keycloak uses XA transactions and the appropriate database drivers by default. Certain
vendors, such as Azure SQL and MariaDB Galera, do not support or rely on the XA transaction
mechanism. To use Keycloak without XA transaction support using the appropriate JDBC driver, enter
the following command:

I bin/kc.[sh|bat] build --db=<vendor> --transaction-xa-enabled=false

Red Hat build of Keycloak automatically chooses the appropriate JDBC driver for your vendor.

7.9.SETTING JPA PROVIDER CONFIGURATION OPTION FOR
MIGRATIONSTRATEGY

To setup the JPA migrationStrategy (manual/update/validate) you should setup JPA provider as
follows:

Setting the migration-strategy for the quarkus provider of the connections-jpa SPI
I bin/kc.[sh|bat] start --spi-connections-jpa-legacy-migration-strategy=manual

If you want to get a SQL file for DB initialization, too, you have to add this additional SPI initializeEmpty
(true/false):

Setting the initialize-empty for the quarkus provider of the connections-jpa SPI
I bin/kc.[sh|bat] start --spi-connections-jpa-legacy-initialize-empty=false

In the same way the migrationExport to point to a specific file and location:

Setting the migration-export for the quarkus provider of the connections-jpa SPI

I bin/kc.[sh|bat] start --spi-connections-jpa-legacy-migration-export=<path>/<file.sql>

7.10. RELEVANT OPTIONS

46

CHAPTER 7. CONFIGURING THE DATABASE

Value

dbl dev-file (default), dev-
mem, mariadb,

The database vendor. mssq|, mysq|, orac|e,
postgres

CLI: --db

Env: KC_DB

db-driver

The fully qualified class name of the JDBC driver.
If not set, a default driver is set accordingly to the chosen database.

CLI: --db-driver
Env: KC_DB_DRIVER

db-password
The password of the database user.

CLI: --db-password
Env:KC_DB_PASSWORD

db-pool-initial-size
The initial size of the connection pool.

CLI: --db-pool-initial-size
Env: KC_DB_POOL_INITIAL_SIZE

db-pool-max-size 100 (default)
The maximum size of the connection pool.

CLI: --db-pool-max-size
Env:KC_DB_POOL_MAX_SIZE

db-pool-min-size
The minimal size of the connection pool.

CLI: --db-pool-min-size
Env: KC_DB_POOL_MIN_SIZE

db-schema
The database schema to be used.

CLI: --db-schema
Env: KC_DB_SCHEMA

47

Red Hat build of Keycloak 22.0 Server Guide

Value

48

db-url
The full database JDBC URL.

If not provided, a default URL is set based on the selected database vendor. For
instance, if using postgres, the default JDBC URL would be
jdbc:postgresql://localhost/keycloak.

CLI: --db-url
Env: KC_DB_URL

db-url-database
Sets the database name of the default JDBC URL of the chosen vendor.
If the db-url option is set, this option is ignored.

CLI: --db-url-database
Env: KC_DB_URL_DATABASE

db-url-host
Sets the hostname of the default JDBC URL of the chosen vendor.
If the db-url option is set, this option is ignored.

CLI: --db-url-host
Env: KC_DB_URL_HOST

db-url-port
Sets the port of the default JDBC URL of the chosen vendor.
If the db-url option is set, this option is ignored.

CLI: --db-url-port
Env:KC_DB_URL_PORT

db-url-properties
Sets the properties of the default JDBC URL of the chosen vendor.

Make sure to set the properties accordingly to the format expected by the
database vendor, as well as appending the right character at the beginning of this
property value. If the db-url option is set, this option is ignored.

CLI: --db-url-properties
Env:KC_DB_URL_PROPERTIES

CHAPTER 7. CONFIGURING THE DATABASE

Value

db-username
The username of the database user.

CLI: --db-username
Env: KC_DB_USERNAME

transaction-xa-enabled I true (default), false

If set to false, Keycloak uses a non-XA datasource in case the database does not
support XA transactions.

CLI: --transaction-xa-enabled
Env: KC_TRANSACTION_XA ENABLED

49

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 8. CONFIGURING DISTRIBUTED CACHES

Red Hat build of Keycloak is designed for high availability and multi-node clustered setups. The current
distributed cache implementation is built on top of Infinispan, a high-performance, distributable in-
memory data grid.

8.1. ENABLE DISTRIBUTED CACHING

When you start Red Hat build of Keycloak in production mode, by using the start command, caching is
enabled and all Red Hat build of Keycloak nodes in your network are discovered.

By default, caches are using a UDP transport stack so that nodes are discovered using IP multicast
transport based on UDP. For most production environments, there are better discovery alternatives to
UDP available. Red Hat build of Keycloak allows you to either choose from a set of pre-defined default
transport stacks, or to define your own custom stack, as you will see later in this chapter.

To explicitly enable distributed infinispan caching, enter this command:

I bin/kc.[sh|bat] build --cache=ispn

When you start Red Hat build of Keycloak in development mode, by using the start-dev command, Red
Hat build of Keycloak uses only local caches and distributed caches are completely disabled by implicitly

setting the --cache=local option. The local cache mode is intended only for development and testing
purposes.

8.2. CONFIGURING CACHES

Red Hat build of Keycloak provides a cache configuration file with sensible defaults located at
conf/cache-ispn.xml.

The cache configuration is a regular Infinispan configuration file.

The following table gives an overview of the specific caches Red Hat build of Keycloak uses. You
configure these caches in conf/cache-ispn.xml:

Cache name Cache Type Description

realms Local Cache persisted realm data

users Local Cache persisted user data

authorization Local Cache persisted authorization
data

keys Local Cache external public keys

work Replicated Propagate invalidation messages

across nodes

50

https://infinispan.org
https://infinispan.org/docs/stable/titles/configuring/configuring.html

CHAPTER 8. CONFIGURING DISTRIBUTED CACHES

authenticationSessions Distributed Caches authentication sessions,
created/destroyed/expired
during the authentication process

sessions Distributed Caches user sessions, created
upon successful authentication
and destroyed during logout,
token revocation, or due to
expiration

clientSessions Distributed Caches client sessions, created
upon successful authentication to
a specific client and destroyed
during logout, token revocation,
or due to expiration

offlineSessions Distributed Caches offline user sessions,
created upon successful
authentication and destroyed
during logout, token revocation,
or due to expiration

offlineClientSessions Distributed Caches client sessions, created
upon successful authentication to
a specific client and destroyed
during logout, token revocation,
or due to expiration

loginFailures Distributed keep track of failed logins, fraud
detection
actionTokens Distributed Caches action Tokens

8.2.1. Cache types and defaults

Local caches

Red Hat build of Keycloak caches persistent data locally to avoid unnecessary round-trips to the
database.

The following data is kept local to each node in the cluster using local caches:
® realms and related data like clients, roles, and groups.
® users and related data like granted roles and group memberships.
® authorization and related data like resources, permissions, and policies.
® keys
Local caches for realms, users, and authorization are configured to hold up to 10,000 entries per default.

The local key cache can hold up to 1,000 entries per default and defaults to expire every one hour.
Therefore, keys are forced to be periodically downloaded from external clients or identity providers.

51

Red Hat build of Keycloak 22.0 Server Guide

In order to achieve an optimal runtime and avoid additional round-trips to the database you should
consider looking at the configuration for each cache to make sure the maximum number of entries is
aligned with the size of your database. More entries you can cache, less often the server needs to fetch
data from the database. You should evaluate the trade-offs between memory utilization and
performance.

Invalidation of local caches

Local caching improves performance, but adds a challenge in multi-node setups.

When one Red Hat build of Keycloak node updates data in the shared database, all other nodes need to
be aware of it, so they invalidate that data from their caches.

The work cache is a replicated cache and used for sending these invalidation messages. The
entries/messages in this cache are very short-lived, and you should not expect this cache growing in size
over time.

Authentication sessions

Authentication sessions are created whenever a user tries to authenticate. They are automatically
destroyed once the authentication process completes or due to reaching their expiration time.

The authenticationSessions distributed cache is used to store authentication sessions and any other
data associated with it during the authentication process.

By relying on a distributable cache, authentication sessions are available to any node in the cluster so
that users can be redirected to any node without losing their authentication state. However, production-
ready deployments should always consider session affinity and favor redirecting users to the node where
their sessions were initially created. By doing that, you are going to avoid unnecessary state transfer
between nodes and improve CPU, memory, and network utilization.

User sessions

Once the user is authenticated, a user session is created. The user session tracks your active users and
their state so that they can seamlessly authenticate to any application without being asked for their
credentials again. For each application, the user authenticates with a client session is created too, so
that the server can track the applications the user is authenticated with and their state on a per-
application basis.

User and client sessions are automatically destroyed whenever the user performs a logout, the client
performs a token revocation, or due to reaching their expiration time.

The following caches are used to store both user and client sessions:

® sessions

® clientSessions
By relying on a distributable cache, user and client sessions are available to any node in the cluster so
that users can be redirected to any node without loosing their state. However, production-ready
deployments should always consider session affinity and favor redirecting users to the node where their
sessions were initially created. By doing that, you are going to avoid unnecessary state transfer between
nodes and improve CPU, memory, and network utilization.
As an OpenlD Connect Provider, the server is also capable of authenticating users and issuing offline

tokens. Similarly to regular user and client sessions, when an offline token is issued by the server upon
successful authentication, the server also creates a user and client sessions. However, due to the nature

52

CHAPTER 8. CONFIGURING DISTRIBUTED CACHES

of offline tokens, offline sessions are handled differently as they are long-lived and should survive a
complete cluster shutdown. Because of that, they are also persisted to the database.

The following caches are used to store offline sessions:
e offlineSessions
e offlineClientSessions

Upon a cluster restart, offline sessions are lazily loaded from the database and kept in a shared cache
using the two caches above.

Password brute force detection

The loginFailures distributed cache is used to track data about failed login attempts. This cache is
needed for the Brute Force Protection feature to work in a multi-node Red Hat build of Keycloak setup.

Action tokens

Action tokens are used for scenarios when a user needs to confirm an action asynchronously, for
example in the emails sent by the forgot password flow. The actionTokens distributed cache is used to
track metadata about action tokens.

8.2.2. Configuring caches for availability

Distributed caches replicate cache entries on a subset of nodes in a cluster and assigns entries to fixed
owner nodes.

Each distributed cache has two owners per default, which means that two nodes have a copy of the
specific cache entries. Non-owner nodes query the owners of a specific cache to obtain data. When

both owner nodes are offline, all data is lost. This situation usually leads to users being logged out at the
next request and having to log in again.

The default number of owners is enough to survive 1 node (owner) failure in a cluster setup with at least
three nodes. You are free to change the number of owners accordingly to better fit into your availability

requirements. To change the number of owners, open conf/cache-ispn.xml and change the value for
owners=<values> for the distributed caches to your desired value.

8.2.3. Specify your own cache configuration file
To specify your own cache configuration file, enter this command:
I bin/kc.[sh|bat] build --cache-config-file=my-cache-file.xml

The configuration file is relative to the conf/ directory.

8.3. TRANSPORT STACKS

Transport stacks ensure that distributed cache nodes in a cluster communicate in a reliable fashion. Red
Hat build of Keycloak supports a wide range of transport stacks:

® tcp
® udp

® kubernetes

53

Red Hat build of Keycloak 22.0 Server Guide

® ec2
® azure
® google

To apply a specific cache stack, enter this command:
I bin/kc.[sh|bat] build --cache-stack=<stack>
The default stack is set to UDP when distributed caches are enabled.

8.3.1. Available transport stacks

The following table shows transport stacks that are available without any further configuration than
using the --cache-stack build option:

Stack name Transport protocol Discovery
tcp TCP MPING (uses UDP multicast).
udp UDP UDP multicast

The following table shows transport stacks that are available using the --cache-stack build option and a
minimum configuration:

Stack name Transport protocol Discovery
kubernetes TCP DNS_PING (requires =
Djgroups.dns.query=

<headless-service-FQDN> to
be added to JAVA_OPTS or
JAVA_OPTS_APPEND
environment variable).

8.3.2. Additional transport stacks

The following table shows transport stacks that are supported by Red Hat build of Keycloak, but need
some extra steps to work. Note that none of these stacks are Kubernetes / OpenShift stacks, so no need
exists to enable the "google" stack if you want to run Red Hat build of Keycloak on top of the Google
Kubernetes engine. In that case, use the kubernetes stack. Instead, when you have a distributed cache
setup running on AWS EC2 instances, you would need to set the stack to ec2, because ec2 does not
support a default discovery mechanism such as UDP.

Stack name Transport protocol Discovery
ec2 TCP NATIVE_S3_PING
google TCP GOOGLE_PING2

54

CHAPTER 8. CONFIGURING DISTRIBUTED CACHES

azure TCP AZURE_PING

Cloud vendor specific stacks have additional dependencies for Red Hat build of Keycloak. For more
information and links to repositories with these dependencies, see the Infinispan documentation.

To provide the dependencies to Red Hat build of Keycloak, put the respective JAR in the providers
directory and build Keycloak by entering this command:

I bin/kc.[sh|bat] build --cache-stack=<ec2|google|azure>

8.3.3. Custom transport stacks

If none of the available transport stacks are enough for your deployment, you are able to change your
cache configuration file and define your own transport stack.

For more details, see Using inline JGroups stacks.

defining a custom transport stack

<jgroups>
<stack name="my-encrypt-udp" extends="udp">
<SSL_KEY_EXCHANGE keystore_name="server.jks"
keystore_password="password"
stack.combine="INSERT_AFTER"
stack.position="VERIFY_SUSPECT2"/>
<ASYM_ENCRYPT asym_keylength="2048"
asym_algorithm="RSA"
change_key_on_coord_leave = "false"
change_key_on_leave = "false"
use_external_key exchange = "true"
stack.combine="INSERT_BEFORE"
stack.position="pbcast. NAKACK2"/>
</stack>
</jgroups>

<cache-container name="keycloak">
<transport lock-timeout="60000" stack="my-encrypt-udp"/>

</cache-container>

By default, the value set to the cache-stack option has precedence over the transport stack you define
in the cache configuration file. If you are defining a custom stack, make sure the cache-stack option is
not used for the custom changes to take effect.

8.4. SECURING CACHE COMMUNICATION

The current Infinispan cache implementation should be secured by various security measures such as
RBAC, ACLs, and Transport stack encryption. For more information about securing cache
communication, see the Infinispan security guide.

8.5. EXPOSING METRICS FROM CACHES

55

https://infinispan.org/docs/dev/titles/embedding/embedding.html#jgroups-cloud-discovery-protocols_cluster-transport
https://infinispan.org/docs/stable/titles/server/server.html#using-inline-jgroups-stacks_cluster-transport
https://infinispan.org/docs/dev/titles/security/security.html#

Red Hat build of Keycloak 22.0 Server Guide

By default, metrics from caches are not automatically exposed when the metrics are enabled. For more
details about how to enable metrics, see Enabling Red Hat build of Keycloak Metrics .

To enable global metrics for all caches within the cache-container, you need to change your cache
configuration file (e.g.: conf/cache-ispn.xml) to enable statistics at the cache-container level as
follows:

enabling metrics for all caches

<cache-container name="keycloak" statistics="true">

</cache-container>

Similarly, you can enable metrics individually for each cache by enabling statistics as follows:

enabling metrics for a specific cache

<local-cache name="realms" statistics="true">

</local-cache>

8.6. RELEVANT OPTIONS

Value

cachel ispn (default), local
Defines the cache mechanism for high-availability.

By default in production mode, aispn cache is used to create a cluster between
multiple server nodes. By default in development mode, a local cache disables
clustering and is intended for development and testing purposes.

CLI: --cache
Env: KC_CACHE

cache-config-filell
Defines the file from which cache configuration should be loaded from.
The configuration file is relative to the conf/ directory.

CLI: --cache-config-file
Env: KC_CACHE_CONFIG_FILE

cache-stackl tcp, udp, kubernetes,
ec2 azure, google
Define the default stack to use for cluster communication and node discovery.

This option only takes effect ifcache is set to ispn. Default: udp.

CLI: --cache-stack
Env: KC_CACHE_STACK

56

CHAPTER 9. CONFIGURING OUTGOING HTTP REQUESTS

CHAPTER 9. CONFIGURING OUTGOING HTTP REQUESTS

Red Hat build of Keycloak often needs to make requests to the applications and services that it secures.

Red Hat build of Keycloak manages these outgoing connections using an HTTP client. This chapter
shows how to configure the client, connection pool, proxy environment settings, timeouts, and more.

9.1. CLIENT CONFIGURATION COMMAND

The HTTP client that Red Hat build of Keycloak uses for outgoing communication is highly configurable.

To configure the Red Hat build of Keycloak outgoing HTTP client, enter this command:

I bin/kc.[sh|bat] start --spi-connections-http-client-default-<configurationoption>=<value>

The following are the command options:

establish-connection-timeout-millis
Maximum time in milliseconds until establishing a connection times out. Default: Not set.
socket-timeout-millis

Maximum time of inactivity between two data packets until a socket connection times out, in
milliseconds. Default: 5000ms

connection-pool-size

Size of the connection pool for outgoing connections. Default: 128.
max-pooled-per-route

How many connections can be pooled per host. Default: 64.
connection-ttl-millis

Maximum connection time to live in milliseconds. Default: Not set.
max-connection-idle-time-millis

Maximum time an idle connection stays in the connection pool, in milliseconds. Idle connections will

be removed from the pool by a background cleaner thread. Set this option to -1to disable this check.

Default: 900000.
disable-cookies

Enable or disable caching of cookies. Default: true.
client-keystore

File path to a Java keystore file. This keystore contains client certificates for two-way SSL.
client-keystore-password

Password for the client keystore. REQUIRED, when client-keystore is set.
client-key-password

Password for the private key of the client. REQUIRED, when client-keystore is set.
proxy-mappings

Specify proxy configurations for outgoing HTTP requests. For more details, see Section 9.2, “Proxy
mappings for outgoing HTTP requests”.

disable-trust-manager

If an outgoing request requires HTTPS and this configuration option is set to true, you do not have to

specify a truststore. This setting should be used only during development and never in production
because it will disable verification of SSL certificates. Default: false.

57

Red Hat build of Keycloak 22.0 Server Guide

9.2. PROXY MAPPINGS FOR OUTGOING HTTP REQUESTS

To configure outgoing requests to use a proxy, you can use the following standard proxy environment
variables to configure the proxy mappings: HTTP_PROXY, HTTPS_PROXY, and NO_PROXY.

e The HTTP_PROXY and HTTPS_PROXY variables represent the proxy server that is used for
outgoing HTTP requests. Red Hat build of Keycloak does not differentiate between the two
variables. If you define both variables, HTTPS_PROXY takes precedence regardless of the
actual scheme that the proxy server uses.

e The NO_PROXY variable defines a comma separated list of hostnames that should not use the
proxy. For each hostname that you specify, all its subdomains are also excluded from using

Proxy.

The environment variables can be lowercase or uppercase. Lowercase takes precedence. For example, if
you define both HTTP_PROXY and http_proxy, http_proxy is used.

Example of proxy mappings and environment variables

HTTPS_PROXY=https://www-proxy.acme.com:8080
NO_PROXY=google.com,login.facebook.com

In this example, the following results occur:

® All outgoing requests use the proxy https://www-proxy.acme.com:8080 except for requests to
google.com or any subdomain of google.com, such as auth.google.com.

® |ogin.facebook.com and all its subdomains do not use the defined proxy, but
groups.facebook.com uses the proxy because it is not a subdomain of login.facebook.com.

9.3. PROXY MAPPINGS USING REGULAR EXPRESSIONS

An alternative to using environment variables for proxy mappings is to configure a comma-delimited list
of proxy-mappings for outgoing requests sent by Red Hat build of Keycloak. A proxy-mapping consists
of a regex-based hostname pattern and a proxy-uri, using the format hostname-pattern;proxy-uri.

For example, consider the following regex:
I \.(google|googleapis)\.com
You apply a regex-based hostname pattern by entering this command:

bin/kc.[sh|bat] start --spi-connections-http-client-default-proxy-mappings=""\\\.
(google|googleapis)\\\.com;http://www-proxy.acme.com:8080"

To determine the proxy for the outgoing HTTP request, the following occurs:
® The target hostname is matched against all configured hostname patterns.
® The proxy-uri of the first matching pattern is used.
® |f no configured pattern matches the hostname, no proxy is used.

When your proxy server requires authentication, include the credentials of the proxy user in the format
username:password@. For example:

58

https://www-proxy.acme.com:8080

CHAPTER 9. CONFIGURING OUTGOING HTTP REQUESTS

I A\.(google|googleapis)\.com;http://proxyuser:password@www-proxy.acme.com:8080
Example of regular expressions for proxy-mapping:

All requests to Google APIs use http://www-proxy.acme.com:8080 as proxy
\.(google|googleapis)\.com;http://www-proxy.acme.com:8080

All requests to internal systems use no proxy
.acme\.com;NO_PROXY

All other requests use http:/fallback:8080 as proxy
.*;http://fallback:8080

In this example, the following occurs:

® The special value NO_PROXY for the proxy-uriis used, which means that no proxy is used for
hosts matching the associated hostname pattern.

® A catch-all pattern ends the proxy-mappings, providing a default proxy for all outgoing
requests.

9.4. CONFIGURING TRUSTED CERTIFICATES FOR TLS CONNECTIONS

See Configuring trusted certificates for outgoing requests for how to configure a Red Hat build of
Keycloak Truststore so that Red Hat build of Keycloak is able to perform outgoing requests using TLS.

59

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 10. CONFIGURING TRUSTED CERTIFICATES FOR
OUTGOING REQUESTS

When Red Hat build of Keycloak communicates with external services through TLS, it has to validate the
remote server’s certificate in order to ensure it is connecting to a trusted server. This is necessary in
order to prevent man-in-the-middle attacks. The certificates of these remote server’s or the CA that
signed these certificates must be put in a truststore. This truststore is managed by the Keycloak server.

The truststore is used when connecting securely to identity brokers, LDAP identity providers, when
sending emails, and for backchannel communication with client applications. It is also useful when you
want to change the policy on how host names are verified and trusted by the server.

By default, a truststore provider is not configured, and any TLS/HTTPS connections fall back to
standard Java Truststore configuration. If there is no trust established, then these outgoing requests will
fail.

10.1. CONFIGURING THE RED HAT BUILD OF KEYCLOAK TRUSTSTORE

You can add your truststore configuration by entering this command:

bin/kc.[sh|bat] start --spi-truststore-file-file=myTrustStore.jks --spi-truststore-file-password=password
--spi-truststore-file-hostname-verification-policy=ANY

The following are possible configuration options for this setting:

file

The path to a Java keystore file. TLS requests need a way to verify the host of the server to which
they are talking. This is what the truststore does. The keystore contains one or more trusted host
certificates or certificate authorities. This truststore file should only contain public certificates of
your secured hosts. This is REQUIRED if any of these properties are defined.

password
Password of the keystore. This option is REQUIRED if any of these properties are defined.
hostname-verification-policy
For HTTPS requests, this option verifies the hostname of the server's certificate. Default:
WILDCARD

e ANY means that the hostname is not verified.
e WILDCARD allows wildcards in subdomain names, such as *.foo.com.

® When using STRICT, the Common Name (CN) must match the hostname exactly.

Please note that this setting does not apply to LDAP secure connections, which require strict
hostname checking.

type
The type of truststore, such as jks, pkes12 or befks. If not provided, the type would be detected
based on the truststore file extension or platform default type.

10.1.1. Example of a truststore configuration

The following is an example configuration for a truststore that allows you to create trustful connections
to allmycompany.org domains and its subdomains:

60

CHAPTER 10. CONFIGURING TRUSTED CERTIFICATES FOR OUTGOING REQUESTS

bin/kc.[sh|bat] start --spi-truststore-file-file=path/to/truststore.jks --spi-truststore-file-
password=change_me --spi-truststore-file-hostname-verification-policy=WILDCARD

61

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 1. ENABLING AND DISABLING FEATURES

Red Hat build of Keycloak has packed some functionality in features, including some disabled features,
such as Technology Preview and deprecated features. Other features are enabled by default, but you
can disable them if they do not apply to your use of Red Hat build of Keycloak.

11.1. ENABLING FEATURES

Some supported features, and all preview features, are disabled by default. To enable a feature, enter
this command:

I bin/kc.[sh|bat] build --features="<name>[,<name>]"

For example, to enable docker and token-exchange, enter this command:
I bin/kc.[sh|bat] build --features="docker,token-exchange"

To enable all preview features, enter this command:

I bin/kc.[sh|bat] build --features="preview"

11.2. DISABLING FEATURES

To disable a feature that is enabled by default, enter this command:

I bin/kc.[sh|bat] build --features-disabled="<name>[,<name>]"

For example to disable impersonation, enter this command:

I bin/kc.[sh|bat] build --features-disabled="impersonation"

You can disable all default features by entering this command:

I bin/kc.[sh|bat] build --features-disabled="default"

This command can be used in combination with features to explicitly set what features should be
available. If a feature is added both to the features-disabled list and the features list, it will be enabled.

11.3. SUPPORTED FEATURES

The following list contains supported features that are enabled by default, and can be disabled if not
needed.

account-api

Account Management REST API
account2

Account Management Console version 2
admin-api

Admin API

62

CHAPTER 11. ENABLING AND DISABLING FEATURES

admin2
New Admin Console
authorization
Authorization Service
ciba
OpenlID Connect Client Initiated Backchannel Authentication (CIBA)
client-policies
Client configuration policies
impersonation
Ability for admins to impersonate users
js-adapter
Host keycloak.js and keycloak-authz.js through the Keycloak server
kerberos
Kerberos
par
OAuth 2.0 Pushed Authorization Requests (PAR)
step-up-authentication
Step-up Authentication
web-authn
W3C Web Authentication (WebAuthn)

11.3.1. Disabled by default

The following list contains supported features that are disabled by default, and can be enabled if
needed.

docker

Docker Registry protocol
fips

FIPS140-2 mode

11.4. PREVIEW FEATURES

Preview features are disabled by default and are not recommended for use in production. These
features may change or be removed at a future release.

account3

Account Management Console version 3
admin-fine-grained-authz

Fine-Grained Admin Permissions
client-secret-rotation

Client Secret Rotation
declarative-user-profile

Configure user profiles using a declarative style

multi-site

63

Red Hat build of Keycloak 22.0 Server Guide

Multi-site support
recovery-codes
Recovery codes
scripts
Write custom authenticators using JavaScript
token-exchange
Token Exchange Service
update-email

Update Email Action

11.5. DEPRECATED FEATURES

The following list contains deprecated features that will be removed in a future release. These features
are disabled by default.

linkedin-oauth
LinkedIn Social Identity Provider based on OAuth

11.6. RELEVANT OPTIONS

Value

features| account-api,
account2, account3,

Enables a set of one or more features. admin-api, admin-
fine-grained-authz,

CLI: --features admin2

Env: KC_FEATURES authorization, ciba,

client-policies, client-
secret-rotation,
declarative-user-
profile, docker,
dynamic-scopes,
fips, impersonation,
js-adapter, kerberos,
linkedin-oauth, map-
storage, multi-site,
par, preview,
recovery-codes,
scripts, step-up-
authentication,
token-exchange,
update-email, web-
authn

64

CHAPTER 11. ENABLING AND DISABLING FEATURES

Value

features-disabled I

Disables a set of one or more features.

CLI: --features-disabled

Env: KC_FEATURES_DISABLED

account-api,
account2, account3,
admin-api, admin-
fine-grained-authz,
admin2,
authorization, ciba,
client-policies, client-
secret-rotation,
declarative-user-
profile, docker,
dynamic-scopes,
fips, impersonation,
js-adapter, kerberos,
linkedin-oauth, map-
storage, multi-site,
par, preview,
recovery-codes,
scripts, step-up-
authentication,
token-exchange,
update-email, web-
authn

65

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 12. CONFIGURING PROVIDERS

The server is built with extensibility in mind and for that it provides a number of Service Provider
Interfaces or SPIs, each one responsible for providing a specific capability to the server. In this chapter,
you are going to understand the core concepts around the configuration of SPIs and their respective
providers.

After reading this chapter, you should be able to use the concepts and the steps herein explained to

install, uninstall, enable, disable, and configure any provider, including those you have implemented to
extend the server capabilities in order to better fulfill your requirements.

12.1. CONFIGURATION OPTION FORMAT

Providers can be configured by using a specific configuration format. The format consists of:
I spi-<spi-id>-<provider-id>-<property>=<value>

The <spi-id> is the name of the SPI you want to configure.

The <provider-id> is the id of the provider you want to configure. This is the id set to the corresponding
provider factory implementation.

The <propertys is the actual name of the property you want to set for a given provider.

All those names (for spi, provider, and property) should be in lower case and if the name is in camel-case
such as myKeycloakProvider, it should include dashes (-) before upper-case letters as follows: my-
keycloak-provider.

Taking the HttpClientSpi SPI as an example, the name of the SPlis connectionsHttpClient and one of

the provider implementations available is named default. In order to set the connectionPoolSize
property you would use a configuration option as follows:

I spi-connections-http-client-default-connection-pool-size=10

12.2. SETTING A PROVIDER CONFIGURATION OPTION

Provider configuration options are provided when starting the server, as shown in the following example:

Setting the connection-pool-size for the default provider of the connections-http-client SPI

I bin/kc.[sh|bat] start --spi-connections-http-client-default-connection-pool-size=10

12.3. CONFIGURING A DEFAULT PROVIDER

Depending on the SPI, multiple provider implementations can co-exist but only one of them is going to
be used at runtime. For these SPls, a default provider is the primary implementation that is going to be
active and used at runtime.

To configure a provider as the default you should run the build command as follows:

Marking the mycustomprovider provider as the default provider for the email-template SPI

66

CHAPTER 12. CONFIGURING PROVIDERS

I bin/kc.[sh|bat] build --spi-email-template-provider=mycustomprovider

In the example above, we are using the provider property to set the id of the provider we want to mark
as the default.

12.4. ENABLING AND DISABLING A PROVIDER

To enable or disable a provider you should run the build command as follows:

Enabling a provider
I bin/kc.[sh|bat] build --spi-email-template-mycustomprovider-enabled=true

To disable a provider, use the same command and set the enabled property to false.

12.5. INSTALLING AND UNINSTALLING A PROVIDER
Custom providers should be packaged in a Java Archive (JAR) file and copied to the providers
directory of the distribution. After that, you must run the build command in order to update the server’s

provider registry with the implementations from the JAR file.

This step is needed in order to optimize the server runtime so that all providers are known ahead-of-
time rather than discovered only when starting the server or at runtime.

To uninstall a provider, you should remove the JAR file from the providers directory and run the build
command again.

12.6. USING THIRD-PARTY DEPENDENCIES

When implementing a provider you might need to use some third-party dependency that is not available
from the server distribution.

In this case, you should copy any additional dependency to the providers directory and run the build

command. Once you do that, the server is going to make these additional dependencies available at
runtime for any provider that depends on them.

12.7. REFERENCES
® Configuring Red Hat build of Keycloak

® Server Developer Documentation

67

https://www.keycloak.org/docs/latest/server_development/#_providers

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 13. CONFIGURING LOGGING

Red Hat build of Keycloak uses the JBoss Logging framework. The following is a high-level overview for
the available log handlers:

® root

o console (default)

o file

13.1. LOGGING CONFIGURATION

Logging is done on a per-category basis in Red Hat build of Keycloak. You can configure logging for the
root log level or for more specific categories such as org.hibernate or org.keycloak. This chapter
describes how to configure logging.

13.1.1. Log levels

The following table defines the available log levels.

Level Description

FATAL Critical failures with complete inability to serve any
kind of request.

ERROR A significant error or problem leading to the inability
to process requests.

WARN A non-critical error or problem that might not require
immediate correction.

INFO Red Hat build of Keycloak lifecycle events or
important information. Low frequency.

DEBUG More detailed information for debugging purposes,
such as database logs. Higher frequency.

TRACE Most detailed debugging information. Very high
frequency.

ALL Special level for all log messages.

OFF Special level to turn logging off entirely (not
recommended).

13.1.2. Configuring the root log level

When no log level configuration exists for a more specific category logger, the enclosing category is
used instead. When there is no enclosing category, the root logger level is used.

68

CHAPTER 13. CONFIGURING LOGGING

To set the root log level, enter the following command:

I bin/kc.[sh|bat] start --log-level=<root-level>

Use these guidelines for this command:
® For <root-levels, supply a level defined in the preceding table.
® The log level is case-insensitive. For example, you could either use DEBUG or debug.
e |f you were to accidentally set the log level twice, the last occurrence in the list becomes the log

level. For example, if you included the syntax --log-level="info,...,DEBUG,...", the root logger
would be DEBUG.

13.1.3. Configuring category-specific log levels

You can set different log levels for specific areas in Red Hat build of Keycloak. Use this command to
provide a comma-separated list of categories for which you want a different log level:

I bin/kc.[sh|bat] start --log-level="<root-level>,<org.category1>:<org.category1-level>"

A configuration that applies to a category also applies to its sub-categories unless you include a more
specific matching sub-category.

Example

I bin/kc.[sh|bat] start --log-level="INFO,org.hibernate:debug,org.hibernate.hgl.internal.ast:info"

This example sets the following log levels:
® Root log level for all loggers is set to INFO.
® The hibernate log level in general is set to debug.

® To keep SQL abstract syntax trees from creating verbose log output, the specific subcategory
org.hibernate.hql.internal.ast is set to info. As a result, the SQL abstract syntax trees are
omitted instead of appearing at the debug level.

13.2. ENABLING LOG HANDLERS

To enable log handlers, enter the following command:

I bin/kc.[sh|bat] start --log="<handler1>,<handler2>"

The available handlers are console and file. The more specific handler configuration mentioned below
will only take effect when the handler is added to this comma-separated list.

13.3. CONSOLE LOG HANDLER

The console log handler is enabled by default, providing unstructured log messages for the console.

13.3.1. Configuring the console log format

69

Red Hat build of Keycloak 22.0 Server Guide

Red Hat build of Keycloak uses a pattern-based logging formatter that generates human-readable text
logs by default.

The logging format template for these lines can be applied at the root level. The default format
template is:

® %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%cC] (%t) Y%s%e%n

The format string supports the symbols in the following table:

Symbol Summary Description

%% % Renders a simple % character.

%c Category Renders the log category name.

%d{xxx} Date Renders a date with the given
date format string.String syntax
defined by

java.text.SimpleDateFormat

%e Exception Renders a thrown exception.
%h Hostname Renders the simple host name.
%H Qualified host name Renders the fully qualified

hostname, which may be the
same as the simple host name,
depending on the OS
configuration.

%I Process ID Renders the current process PID.

%m Full Message Renders the log message and an
exception, if thrown.

%n Newline Renders the platform-specific line
separator string.

%N Process name Renders the name of the current
process.

%p Level Renders the log level of the
message.

%r Relative time Render the time in milliseconds
since the start of the application
log.

%s Simple message Renders only the log message

without exception trace.

70

CHAPTER 13. CONFIGURING LOGGING

%t Thread name Renders the thread name.
%t{id} Thread ID Render the thread ID.
%z{<zone name>} Timezone Set the time zone of log output to

<zone name>.

%L Line number Render the line number of the log
message.

13.3.2. Setting the logging format

To set the logging format for a logged line, perform these steps:
1. Build your desired format template using the preceding table.

2. Enter the following command:

I bin/kc.[sh|bat] start --log-console-format=""<format>""

Note that you need to escape characters when invoking commands containing special shell characters
such as ; using the CLI. Therefore, consider setting it in the configuration file instead.

Example: Abbreviate the fully qualified category name

I bin/kc.[sh|bat] start --log-console-format=""%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c{3.}] (%t)
Y%S%e%n"

This example abbreviates the category name to three characters by setting [%¢{3.}] in the template
instead of the default [%c].

13.3.3. Configuring JSON or plain console logging

By default, the console log handler logs plain unstructured data to the console. To use structured JSON
log output instead, enter the following command:

I bin/kc.[sh|bat] start --log-console-output=json
Example Log Message

{"timestamp":"2022-02-
25T10:31:32.452+01:00","sequence":8442,"loggerClassName":"org.jboss.logging.Logger","loggerNa
me":"io.quarkus","level":"INFO","message":"Keycloak 18.0.0-SNAPSHOT on JVM (powered by
Quarkus 2.7.2.Final) started in 3.253s. Listening on:
http://0.0.0.0:8080","threadName":"main","threadld":1,"mdc":{},"ndc":"","hostName":"host-
name","processName":"QuarkusEntryPoint","processld":36946}

71

Red Hat build of Keycloak 22.0 Server Guide

When using JSON output, colors are disabled and the format settings set by --log-console-format will
not apply.

To use unstructured logging, enter the following command:
I bin/kc.[sh|bat] start --log-console-output=default

Example Log Message:

2022-03-02 10:36:50,603 INFO [io.quarkus] (main) Keycloak 18.0.0-SNAPSHOT on JVM (powered
by Quarkus 2.7.2.Final) started in 3.615s. Listening on: http://0.0.0.0:8080

13.3.4. Colors

Colored console log output for unstructured logs is disabled by default. Colors may improve readability,
but they can cause problems when shipping logs to external log aggregation systems. To enable or
disable color-coded console log output, enter following command:

I bin/kc.[sh|bat] start --log-console-color=<false|true>

13.4. FILE LOGGING

As an alternative to logging to the console, you can use unstructured logging to a file.

13.4.1. Enable file logging

Logging to a file is disabled by default. To enable it, enter the following command:
I bin/kc.[sh|bat] start --log="console,file"
Alog file named keycloak.log is created inside the data/log directory of your Keycloak installation.

13.4.2. Configuring the location and name of the log file

To change where the log file is created and the file name, perform these steps:
1. Create a writable directory to store the log file.
If the directory is not writable, Red Hat build of Keycloak will start correctly, but it will issue an

error and no log file will be created.

2. Enter this command:

I bin/kc.[sh|bat] start --log="console,file" --log-file=<path-to>/<your-file.log>

13.4.3. Configuring the file handler format

To configure a different logging format for the file log handler, enter the following command:

I bin/kc.[sh|bat] start --log-file-format="<pattern>"

72

CHAPTER 13. CONFIGURING LOGGING

See Section 13.3.1, “Configuring the console log format” for more information and a table of the available

pattern configuration.

13.5. RELEVANT OPTIONS

Value

log-console-color
Enable or disable colors when logging to console.

CLI: --log-console-color
Env: KC_LOG_CONSOLE_COLOR

log-console-format
The format of unstructured console log entries.
If the format has spaces in it, escape the value using "<format>".

CLI: --log-console-format
Env:KC_LOG_CONSOLE_FORMAT

log-console-output

Set the log output to JSON or default (plain) unstructured logging.

CLI: --log-console-output
Env: KC_LOG_CONSOLE_OUTPUT

log-file
Set the log file path and filename.

CLI: --log-file
Env:KC_LOG_FILE

log-file-format
Set a format specific to file log entries.

CLI: --log-file-format
Env: KC_LOG_FILE_FORMAT

log-file-output

Set the log output to JSON or default (plain) unstructured logging.

CLI: --log-file-output
Env:KC_LOG_FILE_OUTPUT

true, false (default)

%d{yyyy-MM-dd
HH:mm:ss,SSS} %-
5p [%c] (%t)
%Ss%e%n (default)

default (default), json

data/log/keycloak.lo
g (default)

%d{yyyy-MM-dd
HH:mm:ss,SSS} %-
5p [%c] (%t)
%Ss%e%n (default)

default (default), json

73

Red Hat build of Keycloak 22.0 Server Guide

Value

log-level info (default)

The log level of the root category or a comma-separated list of individual
categories and their levels.

For the root category, you don’t need to specify a category.

CLI: --log-level
Env:KC_LOG_LEVEL

74

CHAPTER 14. FIPS 140-2 SUPPORT

CHAPTER 14. FIPS 140-2 SUPPORT

The Federal Information Processing Standard Publication 140-2, (FIPS 140-2), is a U.S. government
computer security standard used to approve cryptographic modules. Red Hat build of Keycloak supports
to run in FIPS 140-2 compliant mode. In this case, Red Hat build of Keycloak will use only FIPS approved
cryptography algorithms for it's functionality.

To runin FIPS 140-2, Red Hat build of Keycloak should run on a FIPS 140-2 enabled system. This
requirement usually assumes RHEL or Fedora where FIPS was enabled during installation. See RHEL
documentation for the details. When the system is in FIPS mode, it makes sure that the underlying
OpendDK s in FIPS mode as well and would use only FIPS enabled security providers.

To check that the system is in FIPS mode, you can check it with the following command from the
command line:

I fips-mode-setup --check

If the system is not in FIPS mode, you can enable it with the following command, however it is
recommended that system is in FIPS mode since the installation rather than later enabled this way:

I fips-mode-setup --enable

14.1. BOUNCYCASTLE LIBRARY

Red Hat build of Keycloak internally uses the BouncyCastle library for many cryptography utilities.
However, the default flavor of the BouncyCastle library that shipped with Red Hat build of Keycloak is
not FIPS compliant, but, BouncyCastle also provides a FIPS validated version of it's library. The FIPS
validated BouncyCastle library cannot be shipped with Red Hat build of Keycloak due to license
constraints and Red Hat build of Keycloak cannot provide official support of it. Therefore, to runin FIPS
compliant mode, you need to download BouncyCastle-FIPS bits and add them to the Red Hat build of
Keycloak distribution. When Red Hat build of Keycloak executes in fips-mode, it will use the BCFIPS bits
instead of the default BouncyCastle bits, which achieves FIPS compliance.

14.1.1. BouncyCastle FIPS bits

BouncyCastle FIPS can be downloaded from the BouncyCastle official page. Then you can add them to
the directory KEYCLOAK_HOME/providers of your distribution. Make sure to use proper versions
compatible with BouncyCastle Keycloak dependencies. The supported BCFIPS bits needed are:

® bc-fips-1.0.2.3.jar

® bctls-fips-1.0.16.jar

® bcpkix-fips-1.0.7.jar

14.2. GENERATING KEYSTORE

You can create either pkes12 or befks keystore to be used for the Red Hat build of Keycloak server
SSL.

14.2.1. PKCS12 keystore

The p12 (or pkes12) keystore (and/or truststore) works well in BCFIPS non-approved mode.

75

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/security_hardening/index#assembly_installing-the-system-in-fips-mode_security-hardening
https://access.redhat.com/documentation/en-us/openjdk/17/html/configuring_openjdk_17_on_rhel_with_fips/openjdk-default-fips-configuration
https://www.bouncycastle.org/fips-java/

Red Hat build of Keycloak 22.0 Server Guide

PKCS12 keystore can be generated with OpenJDK 17 Java on RHEL 9 in the standard way. For instance
this command can be used to generate such keystore:

keytool -genkeypair -sigalg SHA512withRSA -keyalg RSA -storepass passwordpassword \
-keystore $KEYCLOAK_HOME/conf/server.keystore \
-alias localhost \
-dname CN=localhost -keypass passwordpassword

When system is in FIPS mode, the default java.security file is changed in order to use FIPS enabled
security providers, so no additional configuration is needed. Additionally, in PKCS12 keystore you can
store PBE (password-based encryption) keys simply via the keytool command, which makes it ideal for
using it with Red Hat build of Keycloak KeyStore Vault and/or to store configuration properties in the
KeyStore Config Source. For more details, see the Configuring Red Hat build of Keycloak and the Using
a vault.

14.2.2. BCFKS keystore

BCFKS keystore generation requires the use of the BouncyCastle FIPS libraries and a custom security
file.

You can start with create a helper file, such as /tmp/kc.keystore-create.java.security. The content of
the file needs only to have the following property:

I securerandom.strongAlgorithms=PKCS11:SunPKCS11-NSS-FIPS

Next enter a command such as the following to generate the keystore:

keytool -keystore $KEYCLOAK_HOME/conf/server.keystore \
-storetype bctks \
-providername BCFIPS \
-providerclass org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider \
-provider org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider \
-providerpath $KEYCLOAK_HOME/providers/bc-fips-*.jar \
-alias localhost \
-genkeypair -sigalg SHA512withRSA -keyalg RSA -storepass passwordpassword \
-dname CN=localhost -keypass passwordpassword \
-J-Djava.security.properties=/tmp/kc.keystore-create.java.security

' WARNING
A Using self-signed certificates is for demonstration purposes only, so replace these

certificates with proper certificates when you move to a production environment.

Similar options are needed when you are doing any other manipulation with keystore/truststore of betks
type.

14.3. RUNNING THE SERVER.

76

CHAPTER 14. FIPS 140-2 SUPPORT

To run the server with BCFIPS in non-approved mode, enter the following command

password=passwordpassword --log-

bin/kc.[sh|bat] start --features=fips --hostname=Ilocalhost --https-key-store-
level=INFO,org.keycloak.common.crypto:TRACE,org.keycloak.crypto:TRACE

as well if you want to use it.

NOTE
In non-approved mode, the default keystore type (as well as default truststore type) is
PKCS12. Hence if you generated BCFKS keystore as described above, it is also needed to
' use command --https-key-store-type=bcfks. Similar might be needed for the truststore
% e

You can disable logging in production if everything works as expected.

14.4. STRICT MODE

There is the fips-mode option, which is automatically set to non-strict when the fips feature is enabled.
This means to run BCFIPS in the "non-approved mode". The more secure alternative is to use --
features=fips --fips-mode=strict in which case BouncyCastle FIPS will use "approved mode". Using
that option results in stricter security requirements on cryptography and security algorithms.

NOTE

In strict mode, the default keystore type (as well as default truststore type) is BCFKS. If
you want to use different keystore type it is needed to use option --https-key-store-type
with appropriate type. Similar might be needed for the truststore as well if you want to
use it.

When starting server, you can check that the startup log contains KC provider with the note about
Approved Mode such as the following:

KC(BCFIPS version 1.000203 Approved Mode, FIPS-JVM: enabled) version 1.0 - class
org.keycloak.crypto.fips.KeycloakFipsSecurityProvider,

14.4.1. Cryptography restrictions in strict mode

® As mentioned in the previous section, strict mode may not work with pkcs12 keystore. It is
needed to use another keystore (like befks) as mentioned earlier. Also jks and pkcs12
keystores are not supported in Red Hat build of Keycloak when using strict mode. Some
examples are importing or generating a keystore of an OIDC or SAML client in the Admin
Console or for a java-keystore provider in the realm keys.

® User passwords must be 14 characters or longer. Red Hat build of Keycloak uses PBKDF2 based
password encoding by default. BCFIPS approved mode requires passwords to be at least 112 bits
(effectively 14 characters) with PBKDF 2 algorithm. If you want to allow a shorter password, set
the property max-padding-length of provider pbkdf2-sha256 of SPI password-hashing to
value 14 to provide additional padding when verifying a hash created by this algorithm. This
setting is also backwards compatible with previously stored passwords. For example, if the user’s

77

Red Hat build of Keycloak 22.0 Server Guide

database is in a non-FIPS environment and you have shorter passwords and you want to verify
them now with Red Hat build of Keycloak using BCFIPS in approved mode, the passwords
should work. So effectively, you can use an option such as the following when starting the server:

I --spi-password-hashing-pbkdf2-sha256-max-padding-length=14

NOTE

Using the option above does not break FIPS compliance. However, note that longer
passwords are good practice anyway. For example, passwords auto-generated by modern
browsers match this requirement as they are longer than 14 characters.

® RSA keys of 1024 bits do not work (2048 is the minimum). This applies for keys used by the Red
Hat build of Keycloak realm itself (Realm keys from the Keys tab in the admin console), but also
client keys and IDP keys

o HMAC SHA-XXX keys must be at least 112 bits (or 14 characters long). For example if you use
OIDC clients with the client authentication Signed Jwt with Client Secret (or client-secret-jwt
in the OIDC notation), then your client secrets should be at least 14 characters long. Note that
for good security, it is recommended to use client secrets generated by Red Hat build of
Keycloak server, which always match this requirement.

14.5. OTHER RESTRICTIONS

To have SAML working, make sure that a XMLDSig security provider is available in your security
providers. To have Kerberos working, make sure that a SUndJGSS security provider is available. In FIPS
enabled RHEL 9 in OpenJDK 17.0.6, these security providers are not present in the java.security, which
means that they effectively cannot work.

To have SAML working, you can manually add the provider into

JAVA_HOME/conf/security/java.security into the list fips providers. For example, add the line such as
the following:

I fips.provider.7=XMLDSig

Adding this security provider should work well. In fact, it is FIPS compliant and likely will be added by
default in the future OpenJDK 17 micro version. Details are in the bugzilla.

NOTE

It is recommended to look at JAVA_HOME/conf/security/java.security and check all
configured providers here and make sure that the number matches. In other words,
fips.provider.7 assumes that there are already 6 providers configured with prefix like
fips.provider.N in this file.

If prefer not to edit your java.security file inside java itself, you can create a custom java security file
(for example named kc.java.security) and add only the single property above for adding XMLDSig
provider into that file. Then start your Red Hat build of Keycloak server with this property file attached:

I -Djava.security.properties=/location/to/your/file/kc.java.security

For Kerberos/SPNEGO, the security provider SundGSS is not yet fully FIPS compliant. Hence it is not
recommended to add it to your list of security providers if you want to be FIPS compliant. The

78

https://bugzilla.redhat.com/show_bug.cgi?id=1940064

CHAPTER 14. FIPS 140-2 SUPPORT

KERBEROS feature is disabled by default in Red Hat build of Keycloak when it is executed on FIPS
platform and when security provider is not available. Details are in the bugzilla.

14.6. RUN THE CLI ON THE FIPS HOST

If you want to run Client Registration CLI (kcreg.sh|bat script) or Admin CLI (kcadm.sh|bat script), the
CLI must also use the BouncyCastle FIPS dependencies instead of plain BouncyCastle dependencies.
To achieve this, you may copy the jars to the CLlI library folder and that is enough. CLI tool will
automatically use BCFIPS dependencies instead of plain BC when it detects that corresponding BCFIPS
jars are present (see above for the versions used). For example, use command such as the following
before running the CLI:

cp SKEYCLOAK_HOME/providers/bc-fips-*.jar SKEYCLOAK_HOME/bin/client/lib/

cp SKEYCLOAK_HOME/providers/bctls-fips-*.jar SKEYCLOAK_HOME/bin/client/lib/
NOTE
When trying to use BCFKS truststore/keystore with CLI, you may see issues due this
truststore is not the default java keystore type. It can be good to specify it as default in

java security properties. For example run this command on unix based systems before
doing any operation with kcadm|kcreg clients:

echo "keystore.type=bcftks
fips.keystore.type=bcfks" > /tmp/kcadm.java.security
export KC_OPTS="-Djava.security.properties=/tmp/kcadm.java.security"

14.7. RED HAT BUILD OF KEYCLOAK SERVER IN FIPS MODE IN THE
CONTAINER

When you want Red Hat build of Keycloak in FIPS mode to be executed inside a container, your "host"
must be using FIPS mode as well. The container will then "inherit" FIPS mode from the parent host. See
this section in the RHEL documentation for the details.

The Red Hat build of Keycloak container image will be just automatically in fips mode when executed
from the host in FIPS mode. However, make sure that the Red Hat build of Keycloak container also uses

BCFIPS jars (instead of BC jars) and proper options when started.

Regarding this, it is best to build your own container image as described in the Running Red Hat build of
Keycloak in a container and tweak it to use BCFIPS etc.

For example in the current directory, you can create sub-directory files and add:
® BCFIPS jar files as described above
e Custom keystore file - named for example keycloak-fips.keystore.bcfks
® Security file ke.java.security with added provider for SAML

Then create Dockerfile in the current directory similar to this:

Dockerfile:

I FROM registry.redhat.io/rhbk/keycloak-rhel9:22 as builder

79

https://bugzilla.redhat.com/show_bug.cgi?id=2051628
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#enabling-fips-mode-in-a-container_using-the-system-wide-cryptographic-policies

Red Hat build of Keycloak 22.0 Server Guide

ADD files /tmp/files/

WORKDIR /opt/keycloak

RUN cp /tmp/files/*.jar /opt/keycloak/providers/

RUN cp /tmp/files/keycloak-fips.keystore.* /opt/keycloak/conf/server.keystore
RUN cp /tmp/files/kc.java.security /opt/keycloak/conf/

RUN /opt/keycloak/bin/kc.sh build --features=fips --fips-mode=strict

FROM registry.redhat.io/rhbk/keycloak-rhel9:22
COPY --from=builder /opt/keycloak/ /opt/keycloak/

ENTRYPOINT ["/opt/keycloak/bin/kc.sh"]

Then build FIPS an optimized docker image and start it as described in the Running Red Hat build of
Keycloak in a container. These steps require that you use arguments as described above when starting
the image.

14.8. MIGRATION FROM NON-FIPS ENVIRONMENT

If you previously used Red Hat build of Keycloak in the non-fips environment, it is possible to migrate it
to FIPS environment including it's data. However, restrictions and considerations exist as mentioned in
previous sections. To highlight some of them:

® Make sure all the Red Hat build of Keycloak functionality relying on keystores uses only
supported keystore types. This differs based on whether strict or non-strict mode is used.

e Kerberos authentication may not work. If your authentication flow uses Kerberos authenticator,
this authenticator will be automatically switched to DISABLED when migrated to FIPS
environment. It is recommended to remove any Kerberos user storage providers from your
realm and disable Kerberos related functionality in LDAP providers before switching to FIPS
environment.

In addition to the preceding requirements, be sure to doublecheck this before switching to FIPS strict
mode:

® Make sure that all the Red Hat build of Keycloak functionality relying on keys (for example,
realm or client keys) use RSA keys of at least 2048 bits

® Make sure that clients relying on Signed JWT with Client Secret use at least 14 characters
long secrets (ideally generated secrets)

® Password length restriction as described earlier. In case your users have shorter passwords, be
sure to start the server with the max padding length set to 14 of PBKDF2 provider as mentioned
earlier. If you prefer to avoid this option, you can for instance ask all your users to reset their
password (for example by the Forget password link) during the first authentication in the new
environment.

14.9. RED HAT BUILD OF KEYCLOAK FIPS MODE ON THE NON-FIPS
SYSTEM

Red Hat build of Keycloak is supported and tested on a FIPS enabled RHEL 8 system and ubi8 image. It
is supported with RHEL 9 (and ubi9 image) as well. Running on the non-RHEL compatible platform or
on the non-FIPS enabled platform, the FIPS compliance cannot be strictly guaranteed and cannot be

80

CHAPTER 14. FIPS 140-2 SUPPORT

officially supported.

If you are still restricted to run Red Hat build of Keycloak on such a system, you can at least update your
security providers configured in java.security file. This update does not mean FIPS compliance, but at
least the setup is closer to it. It can be done by providing a custom security file with only an overriden list
of security providers as described earlier. For a list of recommended providers, see the OpenJDK 17
documentation.

You can check the Red Hat build of Keycloak server log at startup to see if the correct security providers
are used. TRACE logging should be enabled for crypto-related Keycloak packages as described in the
Keycloak startup command earlier.

81

https://access.redhat.com/documentation/en-us/openjdk/17/html/configuring_openjdk_17_on_rhel_with_fips/openjdk-default-fips-configuration

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 15. ENABLING RED HAT BUILD OF KEYCLOAK
HEALTH CHECKS

Red Hat build of Keycloak has built in support for health checks. This chapter describes how to enable
and use the Keycloak health checks.

15.1. RED HAT BUILD OF KEYCLOAK HEALTH CHECKS
Red Hat build of Keycloak exposed health endpoints are three:

e /health

e /health/live

e /health/ready

The result is returned in json format and it looks as follows:

{

"status": "UP",
"checks": []

}

15.2. ENABLING THE HEALTH CHECKS

It is possible to enable the health checks using the build time option health-enabled:

I bin/kc.[sh|bat] build --health-enabled=true

By default, no check is returned from the health endpoints.

15.3. USING THE HEALTH CHECKS

It is recommended that the health endpoints be monitored by external HTTP requests. Due to security
measures that remove curl and other packages from the Red Hat build of Keycloak container image,
local command-based monitoring will not function easily.

If you are not using Red Hat build of Keycloak in a container, use whatever you want to access the health
check endpoints.

15.3.1. curl

You may use a simple HTTP HEAD request to determine the live or ready state of Red Hat build of
Keycloak. curl is a good HTTP client for this purpose.

If Red Hat build of Keycloak is deployed in a container, you must run this command from outside it due to
the previously mentioned security measures. For example:

I curl --head -fsS http://localhost:8080/health/ready

If the command returns with status O, then Red Hat build of Keycloak is live or ready, depending on
which endpoint you called. Otherwise there is a problem.

82

CHAPTER 15. ENABLING RED HAT BUILD OF KEYCLOAK HEALTH CHECKS

15.3.2. Kubernetes

Define a HTTP Probe so that Kubernetes may externally monitor the health endpoints. Do not use a
liveness command.

15.3.3. HEALTHCHECK

The Dockerfile image HEALTHCHECK instruction defines a command that will be periodically executed
inside the container as it runs. The Red Hat build of Keycloak container does not have any CLIHTTP
clients installed. Consider installing curl as an additional RPM, as detailed by the Running Red Hat build
of Keycloak in a container chapter. Note that your container may be less secure because of this.

15.4. AVAILABLE CHECKS

The table below shows the available checks.

Check Description Requires Metrics

Database Returns the status of the Yes
database connection pool.

For some checks, you'll need to also enable metrics as indicated by the Requires Metrics column. To
enable metrics use the metrics-enabled option as follows:

I bin/kc.[sh|bat] build --health-enabled=true --metrics-enabled=true

15.5. RELEVANT OPTIONS
health-enabled I true, false (default)

If the server should expose health check endpoints.

If enabled, health checks are available at the/health, /health/ready and
/health/live endpoints.

CLI: --health-enabled
Env: KC_HEALTH_ENABLED

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#http-probes

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 16. ENABLING RED HAT BUILD OF KEYCLOAK
METRICS

Red Hat build of Keycloak has built in support for metrics. This chapter describes how to enable and
configure server metrics.

16.1. ENABLING METRICS

It is possible to enable metrics using the build time option metrics-enabled:

bin/kc.[sh|bat] start --metrics-enabled=true

16.2. QUERYING METRICS

Red Hat build of Keycloak exposes metrics at the following endpoint:

® /metrics

The response from the endpoint uses a application/openmetrics-text content type and it is based on
the Prometheus (OpenMetrics) text format. The snippet bellow is an example of a response:

84

HELP base_gc_total Displays the total number of collections that have occurred. This attribute lists
-1 if the collection count is undefined for this collector.

TYPE base_gc_total counter

base_gc_total{name="G1 Young Generation",} 14.0

HELP jvm_memory_usage_after_gc_percent The percentage of long-lived heap pool used after the
last GC event, in the range [0..1]

TYPE jvm_memory_usage_after_gc_percent gauge
jvm_memory_usage_after_gc_percent{area="heap",pool="long-lived";} 0.0

HELP jvm_threads_peak_threads The peak live thread count since the Java virtual machine
started or peak was reset

TYPE jvm_threads_peak_threads gauge

jvm_threads_peak_threads 113.0

HELP agroal_active_count Number of active connections. These connections are in use and not
available to be acquired.

TYPE agroal_active_count gauge

agroal_active_count{datasource="default",} 0.0

HELP base_memory_maxHeap_bytes Displays the maximum amount of memory, in bytes, that
can be used for memory management.

TYPE base_memory_maxHeap_bytes gauge

base_memory_maxHeap_bytes 1.6781410304E10

HELP process_start_time_seconds Start time of the process since unix epoch.

TYPE process_start_time_seconds gauge

process_start_time_seconds 1.675188449054E9

HELP system_load_average_1m The sum of the number of runnable entities queued to available
processors and the number of runnable entities running on the available processors averaged over a
period of time

TYPE system_load_average_1m gauge

system_load_average 1m 4.005859375

CHAPTER 16. ENABLING RED HAT BUILD OF KEYCLOAK METRICS

16.3. AVAILABLE METRICS

The table below summarizes the available metrics groups:

Metric Description

System A set of system-level metrics related to CPU and
memory usage.

JVM A set of metrics from the Java Virtual Machine
(JVM) related to GC, and heap.

Database A set of metrics from the database connection pool,
if using a database.

Cache A set of metrics from Infinispan caches. See
Configuring distributed caches for more details.

16.4. RELEVANT OPTIONS

Value

metrics-enabled I true, false (default)
If the server should expose metrics.
If enabled, metrics are available at the/metrics endpoint.

CLI: --metrics-enabled
Env: KC_METRICS_ENABLED

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 17. IMPORTING AND EXPORTING REALMS

In this chapter, you are going to understand the different approaches for importing and exporting realms
using JSON files.

9’ NOTE

Exporting and importing into single files can produce large files, so if your database
contains more than 500 users, export to a directory and not a single file. Using a directory
performs better as the directory provider uses a separate transaction for each "page" (a
file of users). The default count of users per file and per transaction is fifty. Increasing
this to a larger number leads to an exponentially increasing execution time.

17.1. PROVIDING OPTIONS FOR DATABASE CONNECTION
PARAMETERS

When using the export and the import commands below, Red Hat build of Keycloak needs to know how
to connect to the database where the information about realms, clients, users and other entities is
stored. As described in Configuring Red Hat build of Keycloak that information can be provided as
command line parameters, environment variables or a configuration file. Use the --help command line
option for each command to see the available options.

Some of the configuration options are build time configuration options. As default, Red Hat build of
Keycloak will re-build automatically for the export and import commands if it detects a change of a
build time parameter.

If you have built an optimized version of Red Hat build of Keycloak with the build command as outlined
in Configuring Red Hat build of Keycloak, use the command line option --optimized to have Keycloak

skip the build check for a faster startup time. When doing this, remove the build time options from the
command line and keep only the runtime options.

17.2. EXPORTING A REALM TO A DIRECTORY

To export a realm, you can use the export command. Your Red Hat build of Keycloak server instance
must not be started when invoking this command.

I bin/kc.[sh|bat] export --help
To export a realm to a directory, you can use the --dir <dir> option.
I bin/kc.[sh|bat] export --dir <dir>

When exporting realms to a directory, the server is going to create separate files for each realm being
exported.

17.2.1. Configuring how users are exported

You are also able to configure how users are going to be exported by setting the --users <strategy>
option. The values available for this option are:

e different_files: Users export into different json files, depending on the maximum number of
users per file set by --users-per-file. This is the default value.

86

CHAPTER 17. IMPORTING AND EXPORTING REALMS

® skip: Skips exporting users.

e realm_file: Users will be exported to the same file as the realm settings. For a realm named
"foo", this would be "foo-realm.json" with realm data and users.

e same_file: All users are exported to one explicit file. So you will get two json files for a realm, one
with realm data and one with users.

If you are exporting users using the different_files strategy, you can set how many users per file you
want by setting the --users-per-file option. The default value is 50.

I bin/kc.[sh|bat] export --dir <dir> --users different_files --users-per-file 100

17.3. EXPORTING AREALM TO AFILE

To export a realm to a file, you can use the --file <file> option.

I bin/kc.[sh|bat] export --file <file>

When exporting realms to a file, the server is going to use the same file to store the configuration for all
the realms being exported.

17.4. EXPORTING A SPECIFIC REALM

If you do not specify a specific realm to export, all realms are exported. To export a single realm, you can
use the --realm option as follows:

I bin/kc.[sh|bat] export [--dir|--file] <path> --realm my-realm

17.5. IMPORTING A REALM FROM A DIRECTORY

To import a realm, you can use the import command. Your Red Hat build of Keycloak server instance
must not be started when invoking this command.

I bin/kc.[sh|bat] import --help

After exporting a realm to a directory, you can use the --dir <dir> option to import the realm back to the
server as follows:

I bin/kc.[sh|bat] import --dir <dir>

When importing realms using the import command, you are able to set if existing realms should be
skipped, or if they should be overridden with the new configuration. For that, you can set the --override
option as follows:

I bin/kc.[sh|bat] import --dir <dir> --override false

By default, the --override option is set to true so that realms are always overridden with the new
configuration.

17.6. IMPORTING A REALM FROM A FILE

87

Red Hat build of Keycloak 22.0 Server Guide

To import a realm previously exported in a single file, you can use the --file <file> option as follows:

I bin/kc.[sh|bat] import --file <file>

17.7. IMPORTING A REALM DURING STARTUP

You are also able to import realms when the server is starting by using the --import-realm option.
I bin/kc.[sh|bat] start --import-realm

When you set the --import-realm option, the server is going to try to import any realm configuration file
from the data/import directory. Only regular files using the .json extension are read from this directory,
sub-directories are ignored.

NOTE

For the Red Hat build of Keycloak containers, the import directory is
/opt/keycloak/data/import

If a realm already exists in the server, the import operation is skipped. The main reason behind this
behavior is to avoid re-creating realms and potentially loose state between server restarts.

To re-create realms you should explicitly run the import command prior to starting the server.

Importing the master realm is not supported because as it is a very sensitive operation.

17.7.1. Using Environment Variables within the Realm Configuration Files

When importing a realm at startup, you are able to use placeholders to resolve values from environment
variables for any realm configuration.

Realm configuration using placeholders

{
"realm": "${MY_REALM_NAME}",

"enabled": true,

In the example above, the value set to the MY_REALM_NAME environment variable is going to be used
to set the realm property.

88

CHAPTER18. USING A VAULT

CHAPTER18. USING A VAULT

Red Hat build of Keycloak provides two out-of-the-box implementations of the Vault SPI: a plain-text
file-based vault and Java KeyStore-based vault.

The file-based vault implementation is especially useful for Kubernetes/OpenShift secrets. You can
mount Kubernetes secrets into the Red Hat build of Keycloak Container, and the data fields will be
available in the mounted folder with a flat-file structure.

The Java KeyStore-based vault implementation is useful for storing secrets in bare metal installations.
You can use the KeyStore vault, which is encrypted using a password.

18.1. AVAILABLE INTEGRATIONS

Secrets stored in the vaults can be used at the following places of the Administration Console:
® Obtain the SMTP Mail server Password
® Obtain the LDAP Bind Credential when using LDAP-based User Federation

® Obtain the OIDC identity providers Client Secret when integrating external identity providers

18.2. ENABLING A VAULT

For enabling the file-based vault you need to build Red Hat build of Keycloak first using the following
build option:

I bin/ke.[shbat] build --vault=file

Analogically, for the Java KeyStore-based you need to specify the following build option:

I bin/kc.[sh|bat] build --vault=keystore

18.3. CONFIGURING THE FILE-BASED VAULT

18.3.1. Setting the base directory to lookup secrets

Kubernetes/OpenShift secrets are basically mounted files. To configure a directory where these files
should be mounted, enter this command:

I bin/kc.[sh|bat] start --vault-dir=/my/path

18.3.2. Realm-specific secret files

Kubernetes/OpenShift Secrets are used on a per-realm basis in Red Hat build of Keycloak, which
requires a naming convention for the file in place:

I ${vault.<realmname>_<secretname>}

18.3.3. Using underscores in the Name

89

Red Hat build of Keycloak 22.0 Server Guide

To process the secret correctly, you double all underscores in the <realmname> or the <secretname>,
separated by a single underscore.

Example

® Realm Name: sso_realm
® Desired Name: Idap_credential

® Resulting file Name:

I sso__realm_ldap__credential

Note the doubled underscores between sso and rea/m and also between Idap and credential.

18.4. CONFIGURING THE JAVA KEYSTORE-BASED VAULT

In order to use the Java KeyStore-based vault, you need to create a KeyStore file first. You can use the
following command for doing so:

keytool -importpass -alias <realm-name>_<alias> -keystore keystore.p12 -storepass
keystorepassword

and then enter a value you want to store in the vault. Note that the format of the -alias parameter
depends on the key resolver used. The default key resolver is REALM_UNDERSCORE_KEY.

This by default results to storing the value in a form of generic PBEKey (password based encryption)
within SecretKeyEntry.

You can then start Red Hat build of Keycloak using the following runtime options:

I bin/kc.[sh|bat] start --vault-file=/path/to/keystore.p12 --vault-pass=<value> --vault-type=<value>

Note that the --vault-type parameter is optional and defaults to PKCS12.

Secrets stored in the vault can then be accessed in a realm via the following placeholder (assuming using
the REALM_UNDERSCORE_KEY key resolver): ${vault.realm-name_alias}.

18.5. EXAMPLE: USE AN LDAP BIND CREDENTIAL SECRET IN THE
ADMIN CONSOLE

Example setup

® Arealm named secrettest
® A desired Name ldapBc for the bind Credential
® Resulting file name: secrettest_IldapBc

Usage in Admin Console

You can then use this secret from the Admin Console by using ${vault.ldapBc} as the value for the Bind
Credential when configuring your LDAP User federation.

90

CHAPTER18. USING A VAULT

18.6. RELEVANT OPTIONS
vault i file, keystore

Enables a vault provider.

CLI: --vault
Env: KC_VAULT

vault-dir

If set, secrets can be obtained by reading the content of files within the given
directory.

CLI: --vault-dir
Env: KC_VAULT_DIR

vault-file
Path to the keystore file.

CLI: --vault-file
Env: KC_VAULT_FILE

vault-pass
Password for the vault keystore.

CLI: --vault-pass
Env:KC_VAULT_PASS

vault-type PKCS12 (default)
Specifies the type of the keystore file.

CLI: --vault-type
Env:KC_VAULT_TYPE

o1

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 19. ALL CONFIGURATION

19.1. CACHE
cachel ispn (default), local

Defines the cache mechanism for high-availability.

By default in production mode, aispn cache is used to create a cluster between
multiple server nodes. By default in development mode, a local cache disables
clustering and is intended for development and testing purposes.

CLI: --cache
Env: KC_CACHE

cache-config-filell
Defines the file from which cache configuration should be loaded from.
The configuration file is relative to the conf/ directory.

CLI: --cache-config-file
Env: KC_CACHE_CONFIG_FILE

cache-stackl tcp, udp, kubernetes,
ec2 azure, google
Define the default stack to use for cluster communication and node discovery.

This option only takes effect ifcache is set to ispn. Default: udp.

CLI: --cache-stack
Env: KC_CACHE_STACK

19.2. DATABASE

Value

dbl dev-file (default), dev-
mem, mariadb,

The database vendor. mssql, mysql, oracle,
postgres

CLI:--db

Env: KC_DB

92

CHAPTER 19. ALL CONFIGURATION

Value

db-driver
The fully qualified class name of the JDBC driver.
If not set, a default driver is set accordingly to the chosen database.

CLI: --db-driver
Env: KC_DB_DRIVER

db-password
The password of the database user.

CLI: --db-password
Env:KC_DB_PASSWORD

db-pool-initial-size
The initial size of the connection pool.

CLI: --db-pool-initial-size
Env: KC_DB_POOL_INITIAL_SIZE

db-pool-max-size 100 (default)
The maximum size of the connection pool.

CLI: --db-pool-max-size
Env:KC_DB_POOL_MAX_SIZE

db-pool-min-size
The minimal size of the connection pool.

CLI: --db-pool-min-size
Env:KC_DB_POOL_MIN_SIZE

db-schema
The database schema to be used.

CLI: --db-schema
Env: KC_DB_SCHEMA

93

Red Hat build of Keycloak 22.0 Server Guide

Value

94

db-url
The full database JDBC URL.

If not provided, a default URL is set based on the selected database vendor. For
instance, if using postgres, the default JDBC URL would be
jdbc:postgresql://localhost/keycloak.

CLI: --db-url
Env: KC_DB_URL

db-url-database
Sets the database name of the default JDBC URL of the chosen vendor.
If the db-url option is set, this option is ignored.

CLI: --db-url-database
Env: KC_DB_URL_DATABASE

db-url-host
Sets the hostname of the default JDBC URL of the chosen vendor.
If the db-url option is set, this option is ignored.

CLI: --db-url-host
Env: KC_DB_URL_HOST

db-url-port
Sets the port of the default JDBC URL of the chosen vendor.
If the db-url option is set, this option is ignored.

CLI: --db-url-port
Env:KC_DB_URL_PORT

db-url-properties
Sets the properties of the default JDBC URL of the chosen vendor.

Make sure to set the properties accordingly to the format expected by the
database vendor, as well as appending the right character at the beginning of this
property value. If the db-url option is set, this option is ignored.

CLI: --db-url-properties
Env:KC_DB_URL_PROPERTIES

CHAPTER 19. ALL CONFIGURATION

Value

db-username
The username of the database user.

CLI: --db-username
Env: KC_DB_USERNAME

19.3. TRANSACTION

Value

transaction-xa-enabled I true (default), false

If set to false, Keycloak uses a non-XA datasource in case the database does not
support XA transactions.

CLI: --transaction-xa-enabled
Env: KC_TRANSACTION_XA ENABLED

19.4. FEATURE

Value

features| account-api,
account2, account3,

Enables a set of one or more features. admin-api, admin-
fine-grained-authz,

CLI: --features

admin2,
Env: KC_FEATURES

authorization, ciba,
client-policies, client-
secret-rotation,
declarative-user-
profile, docker,
dynamic-scopes,
fips, impersonation,
js-adapter, kerberos,
linkedin-oauth, map-
storage, multi-site,
par, preview,
recovery-codes,
scripts, step-up-
authentication,
token-exchange,
update-email, web-
authn

Red Hat build of Keycloak 22.0 Server Guide

Value

features-disabled I account-api,
account2, account3,

Disables a set of one or more features. admin-api, admin-
fine-grained-authz,

CLI: --features-disabled admin2,

Env: KC_FEATURES_DISABLED authorization, ciba,

client-policies, client-
secret-rotation,
declarative-user-
profile, docker,
dynamic-scopes,
fips, impersonation,
js-adapter, kerberos,
linkedin-oauth, map-
storage, multi-site,
par, preview,
recovery-codes,
scripts, step-up-
authentication,
token-exchange,
update-email, web-
authn

19.5. HOSTNAME

Value

hosthame
Hostname for the Keycloak server.

CLI: --hostname
Env: KC_HOSTNAME

hosthame-admin
The hostname for accessing the administration console.

Use this option if you are exposing the administration console using a hostname
other than the value set to the hostname option.

CLI: --hostname-admin
Env: KC_HOSTNAME_ADMIN

96

CHAPTER 19. ALL CONFIGURATION

Value

hosthame-admin-url

Set the base URL for accessing the administration console, including scheme,
host, port and path

CLI: --hostname-admin-url
Env: KC_HOSTNAME_ADMIN_URL

hostname-debug

Toggle the hostname debug page that is accessible at
/realms/master/hostname-debug

CLI: --hosthname-debug
Env: KC_HOSTNAME_DEBUG

hostname-path
This should be set if proxy uses a different context-path for Keycloak.

CLI: --hostname-path
Env: KC_HOSTNAME_PATH

hostname-port
The port used by the proxy when exposing the hostname.

Set this option if the proxy uses a port other than the default HTTP and HTTPS
ports.

CLI: --hosthame-port
Env: KC_HOSTNAME_PORT

hosthame-strict
Disables dynamically resolving the hostname from request headers.
Should always be set to true in production, unless proxy verifies the Host header.

CLI: --hostname-strict
Env: KC_HOSTNAME_STRICT

hostname-strict-backchannel

By default backchannel URLs are dynamically resolved from request headers to
allow internal and external applications.

If all applications use the public URL this option should be enabled.

CLI: --hostname-strict-backchannel
Env: KC_HOSTNAME_STRICT_BACKCHANNEL

true, false (default)

-1 (default)

true (default), false

true, false (default)

97

Red Hat build of Keycloak 22.0 Server Guide

Value

hostname-url
Set the base URL for frontend URLs, including scheme, host, port and path.

CLI: --hostname-url
Env: KC_HOSTNAME_URL

19.6. HTTP/TLS

Value

http-enabled true, false (default)
Enables the HTTP listener.

CLI: --http-enabled
Env:KC_HTTP_ENABLED

http-host 0.0.0.0 (default)
The used HTTP Host.

CLI: --http-host
Env:KC_HTTP_HOST

http-port 8080 (default)
The used HTTP port.

CLI: --http-port
Env:KC_HTTP_PORT

http-relative-path Il / (default)
Set the path relative to/ for serving resources.
The path must start with &/.

CLI: --http-relative-path
Env: KC_HTTP_RELATIVE_PATH

https-certificate-file
The file path to a server certificate or certificate chain in PEM format.

CLI: --https-certificate-file
Env: KC_HTTPS_CERTIFICATE_FILE

98

CHAPTER 19. ALL CONFIGURATION

Value

https-certificate-key-file
The file path to a private key in PEM format.

CLI: --https-certificate-key-file
Env: KC_HTTPS_CERTIFICATE_KEY_FILE

https-cipher-suites
The cipher suites to use.
If none is given, a reasonable default is selected.

CLI: --https-cipher-suites
Env: KC_HTTPS_CIPHER_SUITES

https-client-auth none (default),
request, required
Configures the server to require/request client authentication.

CLI: --https-client-auth
Env:KC_HTTPS_CLIENT_AUTH

https-key-store-file

The key store which holds the certificate information instead of specifying
separate files.

CLI: --https-key-store-file
Env:KC_HTTPS_KEY_STORE_FILE

https-key-store-password password (default)
The password of the key store file.

CLI: --https-key-store-password
Env:KC_HTTPS_KEY_STORE_PASSWORD

https-key-store-type
The type of the key store file.

If not given, the type is automatically detected based on the file name. Ifips-
mode is set to strict and no value is set, it defaults toBCFKS.

CLI: --https-key-store-type
Env:KC_HTTPS_KEY_STORE_TYPE

99

Red Hat build of Keycloak 22.0 Server Guide

Value

https-port 8443 (default)
The used HTTPS port.

CLI: --https-port
Env:KC_HTTPS_PORT

https-protocols TLSv1.3,TLSv1.2
(default)
The list of protocols to explicitly enable.

CLI: --https-protocols
Env:KC_HTTPS_PROTOCOLS

https-trust-store-file
The trust store which holds the certificate information of the certificates to trust.

CLI: --https-trust-store-file
Env:KC_HTTPS_TRUST_STORE_FILE

https-trust-store-password
The password of the trust store file.

CLlI: --https-trust-store-password
Env:KC_HTTPS_TRUST_STORE_PASSWORD

https-trust-store-type
The type of the trust store file.

If not given, the type is automatically detected based on the file name. Ifips-
mode is set to strict and no value is set, it defaults toBCFKS.

CLI: --https-trust-store-type
Env: KC_HTTPS_TRUST _STORE_TYPE

19.7. HEALTH

100

CHAPTER 19. ALL CONFIGURATION

Value

health-enabled I

If the server should expose health check endpoints.

If enabled, health checks are available at the/health, /health/ready and

/health/live endpoints.

CLI: --health-enabled
Env: KC_HEALTH_ENABLED

19.8. CONFIG

true, false (default)

config-keystore
Specifies a path to the KeyStore Configuration Source.

CLI: --config-keystore
Env: KC_CONFIG_KEYSTORE

config-keystore-password

Specifies a password to the KeyStore Configuration Source.

CLI: --config-keystore-password
Env: KC_CONFIG_KEYSTORE_PASSWORD

config-keystore-type
Specifies a type of the KeyStore Configuration Source.

CLI: --config-keystore-type
Env: KC_CONFIG_KEYSTORE_TYPE

19.9. METRICS

PKCS12 (default)

Value

metrics-enabled I

If the server should expose metrics.
If enabled, metrics are available at the/metrics endpoint.

CLI: --metrics-enabled
Env: KC_METRICS_ENABLED

true, false (default)

101

Red Hat build of Keycloak 22.0 Server Guide

19.10. PROXY
proxy none (default), edge,
reencrypt,
The proxy address forwarding mode if the server is behind a reverse proxy. passthrough
CLI: --proxy

Env: KC_PROXY

19.11. VAULT

Value

vault i file, keystore

Enables a vault provider.

CLI: --vault
Env: KC_VAULT

vault-dir

If set, secrets can be obtained by reading the content of files within the given
directory.

CLI: --vault-dir
Env: KC_VAULT_DIR

vault-file
Path to the keystore file.

CLI: --vault-file
Env: KC_VAULT_FILE

vault-pass
Password for the vault keystore.

CLI: --vault-pass
Env:KC_VAULT_PASS

vault-type PKCS12 (default)
Specifies the type of the keystore file.

CLI: --vault-type
Env:KC_VAULT_TYPE

102

19.12. LOGGING

CHAPTER 19. ALL CONFIGURATION

Value

log
Enable one or more log handlers in a comma-separated list.

CLI:--log
Env:KC_LOG

log-console-color
Enable or disable colors when logging to console.

CLI: --log-console-color
Env: KC_LOG_CONSOLE_COLOR

log-console-format
The format of unstructured console log entries.
If the format has spaces in it, escape the value using "<format>".

CLI: --log-console-format
Env:KC_LOG_CONSOLE_FORMAT

log-console-output

Set the log output to JSON or default (plain) unstructured logging.

CLI: --log-console-output
Env: KC_LOG_CONSOLE_OUTPUT

log-file
Set the log file path and filename.

CLI: --log-file
Env: KC_LOG_FILE

log-file-format
Set a format specific to file log entries.

CLI: --log-file-format
Env: KC_LOG_FILE_FORMAT

log-file-output

Set the log output to JSON or default (plain) unstructured logging.

CLI: --log-file-output
Env:KC_LOG_FILE_OUTPUT

console (default), file

true, false (default)

%d{yyyy-MM-dd
HH:mm:ss,SSS} %-
5p [%c] (%t)
%Ss%e%n (default)

default (default), json

data/log/keycloak.lo
g (default)

%d{yyyy-MM-dd
HH:mm:ss,SSS} %-
5p [%c] (%t)
%Ss%e%n (default)

default (default), json

103

Red Hat build of Keycloak 22.0 Server Guide

Value

log-level info (default)

The log level of the root category or a comma-separated list of individual
categories and their levels.

For the root category, you don’t need to specify a category.

CLI: --log-level
Env:KC_LOG_LEVEL

19.13. SECURITY

Value

fips-mode I non-strict, strict
Sets the FIPS mode.

If non-strict is set, FIPS is enabled but on non-approved mode. For full FIPS
compliance, set strict to run on approved mode. This option defaults to
disabled when fips feature is disabled, which is by default. This option defaults
to non-strict when fips feature is enabled.

CLI: --fips-mode
Env: KC_FIPS_MODE

19.14. EXPORT

Value

dir
Set the path to a directory where files will be created with the exported data.

CLI: --dir
Env: KC_DIR

realm
Set the name of the realm to export.
If not set, all realms are going to be exported.

CLI: --realm
Env: KC_REALM

104

CHAPTER 19. ALL CONFIGURATION

Value

users skip, realm_file,
same_file,

Set how users should be exported. different_files
(default)

CLI: --users

Env: KC_USERS

users-per-file 50 (default)
Set the number of users per file.

Itis used only ifusers is set to different_files. Increasing this number leads to
exponentially increasing export times.

CLI: --users-per-file
Env: KC_USERS_PER_FILE

19.15. IMPORT
file

Set the path to a file that will be read.

CLlI: -file
Env: KC_FILE

override true (default), false
Set if existing data should be overwritten.
If set to false, data will be ignored.

CLI: --override
Env: KC_OVERRIDE

105

Red Hat build of Keycloak 22.0 Server Guide

CHAPTER 20. ALL PROVIDER CONFIGURATION

20.1. AUTHENTICATION-SESSIONS

20.1.1. infinispan

Value

spi-authentication-sessions-infinispan-auth-sessions-limit 300 (default) or anyint

The maximum number of concurrent authentication sessions per
RootAuthenticationSession.

CLI: --spi-authentication-sessions-infinispan-auth-sessions-limit
Env:

KC_SPI_AUTHENTICATION_SESSIONS_INFINISPAN_AUTH_SESSION
S_LIMIT

20.1.2. map

Value

spi-authentication-sessions-map-auth-sessions-limit 300 (default) or anyint

The maximum number of concurrent authentication sessions per
RootAuthenticationSession.

CLI: --spi-authentication-sessions-map-auth-sessions-limit

Env:
KC_SPI_AUTHENTICATION_SESSIONS_MAP_AUTH_SESSIONS_LIMI
T

20.2. CIBA-AUTH-CHANNEL

20.2.1. ciba-http-auth-channel

Value

spi-ciba-auth-channel-ciba-http-auth-channel-http-authentication- any string
channel-uri

The HTTP(S) URI of the authentication channel.

CLI: --spi-ciba-auth-channel-ciba-http-auth-channel-http-
authentication-channel-uri

Env:
KC_SPI_CIBA_AUTH_CHANNEL_CIBA_HTTP_AUTH_CHANNEL_HTT
P_AUTHENTICATION_CHANNEL_URI

106

CHAPTER 20. ALL PROVIDER CONFIGURATION

20.3. CONNECTIONS-HTTP-CLIENT

20.3.1. default

Value

spi-connections-http-client-default-client-key-password
The key password.

CLI: --spi-connections-http-client-default-client-key-password

Env:

KC_SPI_CONNECTIONS_ HTTP_CLIENT _DEFAULT_CLIENT_KEY_PA
SSWORD

spi-connections-http-client-default-client-keystore

The file path of the key store from where the key material is going to be read from
to set-up TLS connections.

CLI: --spi-connections-http-client-default-client-keystore

Env:

KC_SPI_CONNECTIONS_HTTP_CLIENT _DEFAULT_CLIENT_KEYSTO
RE

spi-connections-http-client-default-client-keystore-password
The key store password.

CLI: --spi-connections-http-client-default-client-keystore-password
Env:

KC_SPI_CONNECTIONS_ HTTP_CLIENT _DEFAULT_CLIENT_KEYSTO
RE_PASSWORD

spi-connections-http-client-default-connection-pool-size
Assigns maximum total connection value.

CLI: --spi-connections-http-client-default-connection-pool-size

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_CONNECTION_P
OOL_SIZE

spi-connections-http-client-default-connection-ttl-millis
Sets maximum time, in milliseconds, to live for persistent connections.

CLI: --spi-connections-http-client-default-connection-ttl-millis

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_CONNECTION_T
TL_MILLIS

-1 (default) or any
string

any string

any string

any int

-1 (default) or anylong

107

Red Hat build of Keycloak 22.0 Server Guide

Value

spi-connections-http-client-default-disable-cookies true (default), false
Disables state (cookie) management.

CLI: --spi-connections-http-client-default-disable-cookies

Env:

KC_SPI_CONNECTIONS_HTTP_CLIENT _DEFAULT_DISABLE_COOKI
ES

spi-connections-http-client-default-disable-trust-manager true, false (default)
Disable trust management and hostname verification.

NOTE this is a security hole, so only set this option if you cannot or do not want to
verify the identity of the host you are communicating with.

CLI: --spi-connections-http-client-default-disable-trust-manager

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_DISABLE_TRUST
_MANAGER

spi-connections-http-client-default-establish-connection-timeout- -1 (default) or anylong
millis

When trying to make an initial socket connection, what is the timeout?

CLI: --spi-connections-http-client-default-establish-connection-
timeout-millis

Env:
KC_SPI_CONNECTIONS HTTP_CLIENT _DEFAULT_ESTABLISH_CON
NECTION_TIMEOUT_MILLIS

spi-connections-http-client-default-max-connection-idle-time-millis 900000 (default) or any

long
Sets the time, in milliseconds, for evicting idle connections from the pool.

CLI: --spi-connections-http-client-default-max-connection-idle-time-
millis

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_MAX_CONNECTI
ON_IDLE_TIME_MILLIS

spi-connections-http-client-default-max-pooled-per-route 64 (default) or anyint
Assigns maximum connection per route value.

CLI: --spi-connections-http-client-default-max-pooled-per-route

Env:

KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_MAX_ POOLED_P
ER_ROUTE

108

CHAPTER 20. ALL PROVIDER CONFIGURATION

Value

spi-connections-http-client-default-proxy-mappings any string

Denotes the combination of a regex based hostname pattern and a proxy-uriin
the form of hostnamePattern;proxyUri.

CLI: --spi-connections-http-client-default-proxy-mappings
Env:

KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_PROXY_MAPPIN
GS

spi-connections-http-client-default-reuse-connections true (default), false
If connections should be reused.

CLI: --spi-connections-http-client-default-reuse-connections

Env:

KC_SPI_CONNECTIONS HTTP_CLIENT_DEFAULT_REUSE_CONNEC

TIONS

spi-connections-http-client-default-socket-timeout-millis 5000 (default) or any

long
Socket inactivity timeout.

CLI: --spi-connections-http-client-default-socket-timeout-millis

Env:
KC_SPI_CONNECTIONS HTTP_CLIENT _DEFAULT_SOCKET_TIMEO
UT_MILLIS

20.4. CONNECTIONS-JPA

20.4.1. legacy

Value

spi-connections-jpa-legacy-initialize-empty true (default), false
Initialize database if empty.

If set to false the database has to be manually initialized. If you want to manually
initialize the database set migrationStrategy to manual which will create a file with
SQL commands to initialize the database.

CLI: --spi-connections-jpa-legacy-initialize-empty
Env: KC_SPI_CONNECTIONS_JPA_LEGACY_INITIALIZE_EMPTY

109

Red Hat build of Keycloak 22.0 Server Guide

Value

spi-connections-jpa-legacy-migration-export any string
Path for where to write manual database initialization/migration file.

CLI: --spi-connections-jpa-legacy-migration-export
Env: KC_SPI_CONNECTIONS_JPA_LEGACY_MIGRATION_EXPORT

spi-connections-jpa-legacy-migration-strategy update (default),
manual, validate
Strategy to use to migrate database.

Valid values are update, manual and validate. Update will automatically migrate
the database schema. Manual will export the required changes to a file with SQL
commands that you can manually execute on the database. Validate will simply
check if the database is up-to-date.

CLI: --spi-connections-jpa-legacy-migration-strategy
Env: KC_SPI_CONNECTIONS_JPA_LEGACY_MIGRATION_STRATEGY

20.5.DBLOCK
20.5.1. jpa
spi-dblock-jpa-lock-wait-timeout any int

The maximum time to wait when waiting to release a database lock.

CLlI: --spi-dblock-jpa-lock-wait-timeout
Env: KC_SPI_DBLOCK_JPA_LOCK_WAIT_TIMEOUT

20.6. EVENTS-LISTENER

20.6.1. email
spi-events-listener-email-exclude-events authreqid_to_token,
authreqid_to_token_
A comma-separated list of events that should not be sent via email to the user’s error, client_delete,
account. client_delete_error,
client_info,

CLI: --spi-events-listener-email-exclude-events

client_info_error,
Env: KC_SPI_EVENTS_LISTENER_EMAIL_EXCLUDE_EVENTS

client_initiated_acco
unt_linking,
client_initiated_acco
unt_linking_error,

110

CHAPTER 20. ALL PROVIDER CONFIGURATION

client_register_error,
client_update,
client_update_error,
code_to_token,
code_to_token_error
custom_required_ac
tion,
custom_required_ac
tion_error,
delete_account,
delete_account_erro
r,
execute_action_toke
n,
execute_action_toke
n_error,
execute_actions,
execute_actions_err
or,
federated_identity_li
nk,
federated_identity_li
nk_error,
grant_consent,
grant_consent_error,
identity_provider_fir
st_login,
identity_provider_fir
st_login_error,
identity_provider_lin
k_account,
identity_provider_lin
k_account_error,
identity_provider_lo
gin,
identity_provider_lo
gin_error,
identity_provider_po
st_login,
identity_provider_po
st_login_error,
identity_provider_re
sponse,
identity_provider_re
sponse_error,
identity_provider_ret
rieve_token,
identity_provider_ret
rieve_token_error,
impersonate,
impersonate_error,
introspect_token,

m

Red Hat build of Keycloak 22.0 Server Guide

ror, login, login_error,
logout, logout_error,
oauth2_device_auth,
oauth2_device_auth
_error,
oauth2_device_code
_to_token,
oauth2_device_code
_to_token_error,
oauth2_device_verif
y_user_code,
oauth2_device_verif
y_user_code_error,
permission_token,
permission_token_e
rror,
pushed_authorizatio
n_request,
pushed_authorizatio
n_request_error,
refresh_token,
refresh_token_error,
register,
register_error,
register_node,
register_node_error,
remove_federated_i
dentity,
remove_federated_i
dentity_error,
remove_totp,
remove_totp_error,
reset_password,
reset_password_err
or,
restart_authenticatio
n,
restart_authenticatio
n_error,
revoke_grant,
revoke_grant_error,
send_identity_provi
der_link,
send_identity_provi
der_link_error,
send_reset_passwor
d,
send_reset_passwor
d_error,
send_verify_email,
send_verify_email_e
rror,
token_exchange,

12

CHAPTER 20. ALL PROVIDER CONFIGURATION

spi-events-listener-email-include-events

A comma-separated list of events that should be sent via email to the user's
account.

CLI: --spi-events-listener-email-include-events
Env: KC_SPI_EVENTS_LISTENER_EMAIL_INCLUDE_EVENTS

or,update_consent,
update_consent_err
or,update_email,
update_email_error,
update_password,
update_password_er
ror, update_profile,
update_profile_error,
update_totp,
update_totp_error,
user_info_request,
user_info_request_e
rror,
validate_access_tok
en,
validate_access_tok
en_error,
verify_email,
verify_email_error,
verify_profile,

verify profile_error

authreqid_to_token,
authreqid_to_token_
error, client_delete,
client_delete_error,
client_info,
client_info_error,
client_initiated_acco
unt_linking,
client_initiated_acco
unt_linking_error,
client_login,
client_login_error,
client_register,
client_register_error,
client_update,
client_update_error,
code_to_token,
code_to_token_error
custom_required_ac
tion,
custom_required_ac
tion_error,
delete_account,
delete_account_erro
r,
execute_action_toke
n,
execute_action_toke
n_error,
execute_actions,

13

Red Hat build of Keycloak 22.0 Server Guide

nk - B

federated_identity_li
nk_error,
grant_consent,
grant_consent_error,
identity_provider_fir
st_login,
identity_provider_fir
st_login_error,
identity_provider_lin
k_account,
identity_provider_lin
k_account_error,
identity_provider_lo
gin,
identity_provider_lo
gin_error,
identity_provider_po
st_login,
identity_provider_po
st_login_error,
identity_provider_re
sponse,
identity_provider_re
sponse_error,
identity_provider_ret
rieve_token,
identity_provider_ret
rieve_token_error,
impersonate,
impersonate_error,
introspect_token,
introspect_token_err
or,invalid_signature,
invalid_signature_er
ror, login, login_error,
logout, logout_error,
oauth2_device_auth,
oauth2_device_auth
_error,
oauth2_device_code
_to_token,
oauth2_device_code
_to_token_error,
oauth2_device_verif
y_user_code,
oauth2_device_verif
y_user_code_error,
permission_token,
permission_token_e
rror,
pushed_authorizatio
n_request,

14

CHAPTER 20. ALL PROVIDER CONFIGURATION

refresh_token_error,
register,
register_error,
register_node,
register_node_error,
remove_federated_i
dentity,
remove_federated_i
dentity_error,
remove_totp,
remove_totp_error,
reset_password,
reset_password_err
or,
restart_authenticatio
n,
restart_authenticatio
n_error,
revoke_grant,
revoke_grant_error,
send_identity_provi
der_link,
send_identity_provi
der_link_error,
send_reset_passwor
d,
send_reset_passwor
d_error,
send_verify_email,
send_verify_email_e
rror,
token_exchange,
token_exchange_err
or,unregister_node,
unregister_node_err
or,update_consent,
update_consent_err
or,update_email,
update_email_error,
update_password,
update_password_er
ror, update_profile,
update_profile_error,
update_totp,
update_totp_error,
user_info_request,
user_info_request_e
rror,
validate_access_tok
en,
validate_access_tok
en_error,
verify_email,

115

Red Hat build of Keycloak 22.0 Server Guide

20.6.2. jboss-logging

Value

spi-events-listener-jboss-logging-error-level debug, error, fatal,
info, trace, warn
The log level for error messages. (default)

CLI: --spi-events-listener-jboss-logging-error-level
Env: KC_SPI_EVENTS_LISTENER_JBOSS_LOGGING_ERROR_LEVEL

spi-events-listener-jboss-logging-quotes " (default) or any string
The quotes to use for values, it should be one character like " or ".
Use "none" if quotes are not needed.

CLI: --spi-events-listener-jboss-logging-quotes
Env: KC_SPI_EVENTS_LISTENER_JBOSS_LOGGING_QUOTES

spi-events-listener-jboss-logging-sanitize true (default), false
If true the log messages are sanitized to avoid line breaks.
If false messages are not sanitized.

CLI: --spi-events-listener-jboss-logging-sanitize
Env: KC_SPI_EVENTS_LISTENER_JBOSS LOGGING_SANITIZE

spi-events-listener-jboss-logging-success-level debug (default), error,
fatal, info, trace, warn
The log level for success messages.

CLI: --spi-events-listener-jboss-logging-success-level
Env:

KC_SPI_EVENTS_LISTENER_JBOSS_LOGGING_SUCCESS_LEVEL

20.7. EXPORT

20.7.1. dir

16

CHAPTER 20. ALL PROVIDER CONFIGURATION

Value

spi-export-dir-dir any string
Directory to export to

CLI: --spi-export-dir-dir
Env: KC_SPI_EXPORT_DIR_DIR

spi-export-dir-realm-name any string
Realm to export

CLlI: --spi-export-dir-realm-name
Env: KC_SPI_EXPORT_DIR_REALM_NAME

spi-export-dir-users-export-strategy DIFFERENT_FILES
(default) or any string
Users export strategy

CLI: --spi-export-dir-users-export-strategy
Env: KC_SPI_EXPORT_DIR_USERS_EXPORT_STRATEGY

spi-export-dir-users-per-file 50 (default) or anyint
Users per exported file

CLI: --spi-export-dir-users-per-file
Env: KC_SPI_EXPORT_DIR_USERS_PER_FILE

20.7.2. single-file

Value

spi-export-single-file-file any string
File to export to

CLlI: --spi-export-single-file-file
Env: KC_SPI_EXPORT_SINGLE_FILE_FILE

spi-export-single-file-realm-name any string
Realm to export

CLI: --spi-export-single-file-realm-name
Env: KC_SPI_EXPORT_SINGLE_FILE_REALM_NAME

20.8. GLOBAL-LOCK

20.8.1. map

17

Red Hat build of Keycloak 22.0 Server Guide

Value

spi-global-lock-map-default-timeout-milliseconds 5000 (default) or any

int
Default timeout when waiting for a lock

CLI: --spi-global-lock-map-default-timeout-milliseconds
Env:

KC_SPI_GLOBAL_LOCK_MAP_DEFAULT_TIMEOUT_MILLISECONDS

20.9. IMPORT
20.9.1.dir
spi-import-dir-dir any string

Directory to import from

CLI: --spi-import-dir-dir
Env: KC_SPI_IMPORT_DIR_DIR

spi-import-dir-realm-name any string
Realm to export

CLlI: --spi-import-dir-realm-name
Env: KC_SPI_IMPORT_DIR_REALM_NAME

spi-import-dir-strategy any string
Strategy for import: IGNORE_EXISTING, OVERWRITE_EXISTING

CLI: --spi-import-dir-strategy
Env: KC_SPI_IMPORT_DIR_STRATEGY

20.9.2. single-file

Value

spi-import-single-file-file any string
File to import from

CLlI: --spi-import-single-file-file
Env: KC_SPI_IMPORT_SINGLE_FILE_FILE

18

CHAPTER 20. ALL PROVIDER CONFIGURATION

Value

spi-import-single-file-realm-name any string
Realm to export

CLlI: --spi-import-single-file-realm-name
Env: KC_SPI_IMPORT_SINGLE_FILE_REALM_NAME

spi-import-single-file-strategy any string
Strategy for import: IGNORE_EXISTING, OVERWRITE_EXISTING

CLI: --spi-import-single-file-strategy
Env: KC_SPI_IMPORT_SINGLE_FILE_STRATEGY

20.10. MAP-STORAGE

20.10.1. hotrod

Value

spi-map-storage-hotrod-lock-timeout 10000 (default) or any
long

The maximum time to wait in milliseconds when waiting for acquiring a pessimistic
read lock.

If set to negative there is no timeout configured.

CLI: --spi-map-storage-hotrod-lock-timeout
Env:KC_SPI_MAP_STORAGE_HOTROD LOCK_TIMEOUT

20.10.2. jpa

Value

spi-map-storage-jpa-lock-timeout 10000 (default) or any
long

The maximum time to wait in milliseconds when waiting for acquiring a pessimistic
read lock.

If set to negative there is no timeout configured.

CLI: --spi-map-storage-jpa-lock-timeout
Env: KC_SPI_MAP_STORAGE_JPA_LOCK_TIMEOUT

20.11. RESOURCE-ENCODING

20.11.1. gzip

19

Red Hat build of Keycloak 22.0 Server Guide

Value

spi-resource-encoding-gzip-excluded-content-types image/png
image/jpeg (default)
A space separated list of content-types to exclude from encoding. or any string

CLI: --spi-resource-encoding-gzip-excluded-content-types

Env:
KC_SPI_RESOURCE_ENCODING_GZIP_EXCLUDED_CONTENT _TYP
ES

20.12. STICKY-SESSION-ENCODER

20.12.1. infinispan

Value

spi-sticky-session-encoder-infinispan-should-attach-route true (default), false

If the route should be attached to cookies to reflect the node that owns a
particular session.

CLI: --spi-sticky-session-encoder-infinispan-should-attach-route

Env:
KC_SPI_STICKY_SESSION_ENCODER_INFINISPAN_SHOULD_ATTA
CH_ROUTE

20.13. TRUSTSTORE

20.13.1. file

Value

spi-truststore-file-file any string

The file path of the trust store from where the certificates are going to be read
from to validate TLS connections.

CLI: --spi-truststore-file-file
Env: KC_SPI_TRUSTSTORE_FILE_FILE

spi-truststore-file-hostname-verification-policy any, wildcard

(default), strict
The hostname verification policy.

CLI: --spi-truststore-file-hosthame-verification-policy
Env:

KC_SPI_TRUSTSTORE_FILE_HOSTNAME_VERIFICATION_POLICY

120

CHAPTER 20. ALL PROVIDER CONFIGURATION

Value

spi-truststore-file-password any string
The trust store password.

CLI: --spi-truststore-file-password

Env: KC_SPI_TRUSTSTORE_FILE_PASSWORD

spi-truststore-file-type any string
Type of the truststore.

If not provided, the type would be detected based on the truststore file extension
or platform default type.

CLI: --spi-truststore-file-type
Env: KC_SPI_TRUSTSTORE_FILE_TYPE

20.14. USER-PROFILE

20.14.1. declarative-user-profile

Value

spi-user-profile-declarative-user-profile-admin-read-only-attributes any MultivaluedString

Array of regular expressions to identify fields that should be treated read-only so
administrators can't change them.

CLI: --spi-user-profile-declarative-user-profile-admin-read-only-
attributes

Env:
KC_SPI_USER_PROFILE_DECLARATIVE_USER_PROFILE_ADMIN_R
EAD_ONLY_ATTRIBUTES

spi-user-profile-declarative-user-profile-max-email-local-part-length any String
To set user profile max email local part length

CLI: --spi-user-profile-declarative-user-profile-max-email-local-part-
length

Env:
KC_SPI_USER_PROFILE_DECLARATIVE_USER_PROFILE_MAX_EMA
IL_LOCAL_PART_LENGTH

121

Red Hat build of Keycloak 22.0 Server Guide

Value

spi-user-profile-declarative-user-profile-read-only-attributes any MultivaluedString

Array of regular expressions to identify fields that should be treated read-only so
users can't change them.

CLI: --spi-user-profile-declarative-user-profile-read-only-attributes

Env:
KC_SPI_USER_PROFILE_DECLARATIVE_USER_PROFILE_READ_ON
LY_ATTRIBUTES

20.15. WELL-KNOWN

20.15.1. openid-configuration

Value

spi-well-known-openid-configuration-include-client-scopes true (default), false
If client scopes should be used to calculate the list of supported scopes.

CLI: --spi-well-known-openid-configuration-include-client-scopes

Env:
KC_SPI_WELL_KNOWN_OPENID_CONFIGURATION_INCLUDE_CLIE
NT_SCOPES

spi-well-known-openid-configuration-openid-configuration-override any string
The file path from where the metadata should be loaded from.

You can use an absolute file path or, if the file is in the server classpath, use the
classpath: prefix to load the file from the classpath.

CLI: --spi-well-known-openid-configuration-openid-configuration-
override

Env:
KC_SPI_WELL_KNOWN_OPENID_CONFIGURATION_OPENID_CONFI
GURATION_OVERRIDE

122

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. CONFIGURING RED HAT BUILD OF KEYCLOAK
	1.1. CONFIGURING SOURCES FOR RED HAT BUILD OF KEYCLOAK
	1.1.1. Example: Configuring the db-url-host parameter

	1.2. FORMATS FOR CONFIGURATION
	1.2.1. Example - Alternative formats based on configuration source
	1.2.2. Formats for command-line parameters
	1.2.3. Formats for environment variables
	1.2.4. Format to include a specific configuration file
	1.2.5. Setting sensitive options using a Java KeyStore file
	1.2.6. Format for raw Quarkus properties

	1.3. STARTING RED HAT BUILD OF KEYCLOAK
	1.3.1. Starting Red Hat build of Keycloak in development mode
	1.3.2. Starting Red Hat build of Keycloak in production mode

	1.4. CREATING THE INITIAL ADMIN USER
	1.5. OPTIMIZE THE RED HAT BUILD OF KEYCLOAK STARTUP
	1.5.1. Creating an optimized Red Hat build of Keycloak build
	1.5.1.1. First step: Run a build explicitly
	1.5.1.2. Second step: Start Red Hat build of Keycloak using --optimized

	1.6. UNDERLYING CONCEPTS

	CHAPTER 2. CONFIGURING RED HAT BUILD OF KEYCLOAK FOR PRODUCTION
	2.1. TLS FOR SECURE COMMUNICATION
	2.2. THE HOSTNAME FOR RED HAT BUILD OF KEYCLOAK
	2.3. REVERSE PROXY IN A DISTRIBUTED ENVIRONMENT
	2.4. PRODUCTION GRADE DATABASE
	2.5. SUPPORT FOR RED HAT BUILD OF KEYCLOAK IN A CLUSTER
	2.6. CONFIGURE RED HAT BUILD OF KEYCLOAK SERVER WITH IPV4 OR IPV6

	CHAPTER 3. RUNNING RED HAT BUILD OF KEYCLOAK IN A CONTAINER
	3.1. CREATING A CUSTOMIZED AND OPTIMIZED CONTAINER IMAGE
	3.1.1. Writing your optimized Red Hat build of Keycloak Dockerfile
	3.1.2. Installing additional RPM packages
	3.1.3. Building the container image
	3.1.4. Starting the optimized Red Hat build of Keycloak container image

	3.2. EXPOSING THE CONTAINER TO A DIFFERENT PORT
	3.3. TRYING RED HAT BUILD OF KEYCLOAK IN DEVELOPMENT MODE
	3.4. RUNNING A STANDARD RED HAT BUILD OF KEYCLOAK CONTAINER
	3.5. PROVIDE INITIAL ADMIN CREDENTIALS WHEN RUNNING IN A CONTAINER
	3.6. IMPORTING A REALM ON STARTUP
	3.7. RELEVANT OPTIONS

	CHAPTER 4. CONFIGURING TLS
	4.1. CONFIGURING TLS IN RED HAT BUILD OF KEYCLOAK
	4.1.1. Providing certificates in PEM format
	4.1.2. Providing a Java Keystore
	4.1.2.1. Setting the Keystore password

	4.2. CONFIGURING TLS PROTOCOLS
	4.3. SWITCHING THE HTTPS PORT
	4.4. USING A TRUSTSTORE
	4.4.1. Setting the truststore password

	4.5. SECURING CREDENTIALS
	4.6. ENABLING MUTUAL TLS
	4.7. RELEVANT OPTIONS

	CHAPTER 5. CONFIGURING THE HOSTNAME
	5.1. SERVER ENDPOINTS
	5.1.1. Frontend
	5.1.2. Backend
	5.1.3. Administration Console

	5.2. EXAMPLE SCENARIOS
	5.2.1. Exposing the server behind a TLS termination proxy
	5.2.2. Exposing the server without a proxy
	5.2.3. Forcing backend endpoints to use the same URL the server is exposed
	5.2.4. Exposing the server using a port other than the default ports
	5.2.5. Exposing Red Hat build of Keycloak behind a TLS reencrypt proxy using different ports

	5.3. TROUBLESHOOTING
	5.4. RELEVANT OPTIONS

	CHAPTER 6. USING A REVERSE PROXY
	6.1. PROXY MODES
	6.2. CONFIGURE THE PROXY MODE IN RED HAT BUILD OF KEYCLOAK
	6.3. CONFIGURE THE REVERSE PROXY
	6.4. DIFFERENT CONTEXT-PATH ON REVERSE PROXY
	6.5. TRUST THE PROXY TO SET HOSTNAME
	6.6. ENABLE STICKY SESSIONS
	6.6.1. Exposing the administration console
	6.6.2. Exposed path recommendations
	6.6.3. Enabling client certificate lookup
	6.6.3.1. Configuring the NGINX provider

	6.7. RELEVANT OPTIONS

	CHAPTER 7. CONFIGURING THE DATABASE
	7.1. SUPPORTED DATABASES
	7.2. INSTALLING A DATABASE DRIVER
	7.2.1. Installing the Oracle Database driver
	7.2.2. Installing the Microsoft SQL Server driver

	7.3. CONFIGURING A DATABASE
	7.4. OVERRIDING DEFAULT CONNECTION SETTINGS
	7.5. OVERRIDING THE DEFAULT JDBC DRIVER
	7.6. CONFIGURING UNICODE SUPPORT FOR THE DATABASE
	7.6.1. Configuring Unicode support for an Oracle database
	7.6.2. Unicode support for a Microsoft SQL Server database
	7.6.3. Configuring Unicode support for a MySQL database
	7.6.4. Configuring Unicode support for a PostgreSQL database

	7.7. CHANGING DATABASE LOCKING TIMEOUT IN A CLUSTER CONFIGURATION
	7.8. USING DATABASE VENDORS WITHOUT XA TRANSACTION SUPPORT
	7.9. SETTING JPA PROVIDER CONFIGURATION OPTION FOR MIGRATIONSTRATEGY
	7.10. RELEVANT OPTIONS

	CHAPTER 8. CONFIGURING DISTRIBUTED CACHES
	8.1. ENABLE DISTRIBUTED CACHING
	8.2. CONFIGURING CACHES
	8.2.1. Cache types and defaults
	8.2.2. Configuring caches for availability
	8.2.3. Specify your own cache configuration file

	8.3. TRANSPORT STACKS
	8.3.1. Available transport stacks
	8.3.2. Additional transport stacks
	8.3.3. Custom transport stacks

	8.4. SECURING CACHE COMMUNICATION
	8.5. EXPOSING METRICS FROM CACHES
	8.6. RELEVANT OPTIONS

	CHAPTER 9. CONFIGURING OUTGOING HTTP REQUESTS
	9.1. CLIENT CONFIGURATION COMMAND
	9.2. PROXY MAPPINGS FOR OUTGOING HTTP REQUESTS
	9.3. PROXY MAPPINGS USING REGULAR EXPRESSIONS
	9.4. CONFIGURING TRUSTED CERTIFICATES FOR TLS CONNECTIONS

	CHAPTER 10. CONFIGURING TRUSTED CERTIFICATES FOR OUTGOING REQUESTS
	10.1. CONFIGURING THE RED HAT BUILD OF KEYCLOAK TRUSTSTORE
	10.1.1. Example of a truststore configuration

	CHAPTER 11. ENABLING AND DISABLING FEATURES
	11.1. ENABLING FEATURES
	11.2. DISABLING FEATURES
	11.3. SUPPORTED FEATURES
	11.3.1. Disabled by default

	11.4. PREVIEW FEATURES
	11.5. DEPRECATED FEATURES
	11.6. RELEVANT OPTIONS

	CHAPTER 12. CONFIGURING PROVIDERS
	12.1. CONFIGURATION OPTION FORMAT
	12.2. SETTING A PROVIDER CONFIGURATION OPTION
	12.3. CONFIGURING A DEFAULT PROVIDER
	12.4. ENABLING AND DISABLING A PROVIDER
	12.5. INSTALLING AND UNINSTALLING A PROVIDER
	12.6. USING THIRD-PARTY DEPENDENCIES
	12.7. REFERENCES

	CHAPTER 13. CONFIGURING LOGGING
	13.1. LOGGING CONFIGURATION
	13.1.1. Log levels
	13.1.2. Configuring the root log level
	13.1.3. Configuring category-specific log levels

	13.2. ENABLING LOG HANDLERS
	13.3. CONSOLE LOG HANDLER
	13.3.1. Configuring the console log format
	13.3.2. Setting the logging format
	13.3.3. Configuring JSON or plain console logging
	13.3.4. Colors

	13.4. FILE LOGGING
	13.4.1. Enable file logging
	13.4.2. Configuring the location and name of the log file
	13.4.3. Configuring the file handler format

	13.5. RELEVANT OPTIONS

	CHAPTER 14. FIPS 140-2 SUPPORT
	14.1. BOUNCYCASTLE LIBRARY
	14.1.1. BouncyCastle FIPS bits

	14.2. GENERATING KEYSTORE
	14.2.1. PKCS12 keystore
	14.2.2. BCFKS keystore

	14.3. RUNNING THE SERVER.
	14.4. STRICT MODE
	14.4.1. Cryptography restrictions in strict mode

	14.5. OTHER RESTRICTIONS
	14.6. RUN THE CLI ON THE FIPS HOST
	14.7. RED HAT BUILD OF KEYCLOAK SERVER IN FIPS MODE IN THE CONTAINER
	14.8. MIGRATION FROM NON-FIPS ENVIRONMENT
	14.9. RED HAT BUILD OF KEYCLOAK FIPS MODE ON THE NON-FIPS SYSTEM

	CHAPTER 15. ENABLING RED HAT BUILD OF KEYCLOAK HEALTH CHECKS
	15.1. RED HAT BUILD OF KEYCLOAK HEALTH CHECKS
	15.2. ENABLING THE HEALTH CHECKS
	15.3. USING THE HEALTH CHECKS
	15.3.1. curl
	15.3.2. Kubernetes
	15.3.3. HEALTHCHECK

	15.4. AVAILABLE CHECKS
	15.5. RELEVANT OPTIONS

	CHAPTER 16. ENABLING RED HAT BUILD OF KEYCLOAK METRICS
	16.1. ENABLING METRICS
	16.2. QUERYING METRICS
	16.3. AVAILABLE METRICS
	16.4. RELEVANT OPTIONS

	CHAPTER 17. IMPORTING AND EXPORTING REALMS
	17.1. PROVIDING OPTIONS FOR DATABASE CONNECTION PARAMETERS
	17.2. EXPORTING A REALM TO A DIRECTORY
	17.2.1. Configuring how users are exported

	17.3. EXPORTING A REALM TO A FILE
	17.4. EXPORTING A SPECIFIC REALM
	17.5. IMPORTING A REALM FROM A DIRECTORY
	17.6. IMPORTING A REALM FROM A FILE
	17.7. IMPORTING A REALM DURING STARTUP
	17.7.1. Using Environment Variables within the Realm Configuration Files

	CHAPTER 18. USING A VAULT
	18.1. AVAILABLE INTEGRATIONS
	18.2. ENABLING A VAULT
	18.3. CONFIGURING THE FILE-BASED VAULT
	18.3.1. Setting the base directory to lookup secrets
	18.3.2. Realm-specific secret files
	18.3.3. Using underscores in the Name

	18.4. CONFIGURING THE JAVA KEYSTORE-BASED VAULT
	18.5. EXAMPLE: USE AN LDAP BIND CREDENTIAL SECRET IN THE ADMIN CONSOLE
	18.6. RELEVANT OPTIONS

	CHAPTER 19. ALL CONFIGURATION
	19.1. CACHE
	19.2. DATABASE
	19.3. TRANSACTION
	19.4. FEATURE
	19.5. HOSTNAME
	19.6. HTTP/TLS
	19.7. HEALTH
	19.8. CONFIG
	19.9. METRICS
	19.10. PROXY
	19.11. VAULT
	19.12. LOGGING
	19.13. SECURITY
	19.14. EXPORT
	19.15. IMPORT

	CHAPTER 20. ALL PROVIDER CONFIGURATION
	20.1. AUTHENTICATION-SESSIONS
	20.1.1. infinispan
	20.1.2. map

	20.2. CIBA-AUTH-CHANNEL
	20.2.1. ciba-http-auth-channel

	20.3. CONNECTIONS-HTTP-CLIENT
	20.3.1. default

	20.4. CONNECTIONS-JPA
	20.4.1. legacy

	20.5. DBLOCK
	20.5.1. jpa

	20.6. EVENTS-LISTENER
	20.6.1. email
	20.6.2. jboss-logging

	20.7. EXPORT
	20.7.1. dir
	20.7.2. single-file

	20.8. GLOBAL-LOCK
	20.8.1. map

	20.9. IMPORT
	20.9.1. dir
	20.9.2. single-file

	20.10. MAP-STORAGE
	20.10.1. hotrod
	20.10.2. jpa

	20.11. RESOURCE-ENCODING
	20.11.1. gzip

	20.12. STICKY-SESSION-ENCODER
	20.12.1. infinispan

	20.13. TRUSTSTORE
	20.13.1. file

	20.14. USER-PROFILE
	20.14.1. declarative-user-profile

	20.15. WELL-KNOWN
	20.15.1. openid-configuration

