
Red Hat build of Keycloak 24.0

High Availability Guide

Last Updated: 2024-06-27

Red Hat build of Keycloak 24.0 High Availability Guide

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for administrators to configure and use the Red Hat build of
Keycloak 24.0 for high availability.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. MULTI-SITE DEPLOYMENTS

CHAPTER 2. CONCEPTS FOR ACTIVE-PASSIVE DEPLOYMENTS
2.1. WHEN TO USE THIS SETUP
2.2. DEPLOYMENT, DATA STORAGE AND CACHING
2.3. CAUSES OF DATA AND SERVICE LOSS
2.4. FAILURES WHICH THIS SETUP CAN SURVIVE
2.5. KNOWN LIMITATIONS
2.6. QUESTIONS AND ANSWERS
2.7. NEXT STEPS

CHAPTER 3. BUILDING BLOCKS ACTIVE-PASSIVE DEPLOYMENTS
3.1. PREREQUISITES
3.2. TWO SITES WITH LOW-LATENCY CONNECTION
3.3. ENVIRONMENT FOR RED HAT BUILD OF KEYCLOAK AND DATA GRID
3.4. DATABASE
3.5. DATA GRID
3.6. RED HAT BUILD OF KEYCLOAK
3.7. LOAD BALANCER

CHAPTER 4. DEPLOY AWS AURORA IN MULTIPLE AVAILABILITY ZONES
4.1. ARCHITECTURE
4.2. PROCEDURE

4.2.1. Create Aurora database Cluster
4.2.2. Establish Peering Connections with ROSA clusters

4.3. VERIFYING THE CONNECTION
4.4. DEPLOYING RED HAT BUILD OF KEYCLOAK

CHAPTER 5. DEPLOY RED HAT BUILD OF KEYCLOAK FOR HA WITH THE RED HAT BUILD OF KEYCLOAK
OPERATOR

5.1. PREREQUISITES
5.2. PROCEDURE
5.3. VERIFYING THE DEPLOYMENT
5.4. OPTIONAL: LOAD SHEDDING
5.5. OPTIONAL: DISABLE STICKY SESSIONS

CHAPTER 6. DEPLOY DATA GRID FOR HA WITH THE DATA GRID OPERATOR
6.1. ARCHITECTURE
6.2. PREREQUISITES
6.3. PROCEDURE
6.4. VERIFYING THE DEPLOYMENT
6.5. NEXT STEPS

CHAPTER 7. CONNECT RED HAT BUILD OF KEYCLOAK WITH AN EXTERNAL DATA GRID
7.1. ARCHITECTURE
7.2. PREREQUISITES
7.3. PROCEDURE
7.4. RELEVANT OPTIONS

CHAPTER 8. DEPLOY AN AWS ROUTE 53 LOADBALANCER
8.1. ARCHITECTURE
8.2. PREREQUISITES
8.3. PROCEDURE

4

5
5
5
5
6
9
9

10

11
11
11
11
11
11

12
12

13
13
13
14

20
24
24

25
25
25
27
27
27

28
28
28
28
35
35

36
36
36
36
37

39
39
39
39

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

8.4. VERIFY

CHAPTER 9. FAIL OVER TO THE SECONDARY SITE
9.1. WHEN TO USE PROCEDURE
9.2. PROCEDURE

9.2.1. Route53

CHAPTER 10. SWITCH OVER TO THE SECONDARY SITE
10.1. WHEN TO USE THIS PROCEDURE
10.2. PROCEDURES

10.2.1. Data Grid Cluster
10.2.1.1. Procedures to transfer state from secondary to primary site

10.2.2. AWS Aurora Database
10.2.3. Red Hat build of Keycloak Cluster
10.2.4. Route53

10.3. FURTHER READING

CHAPTER 11. RECOVER FROM AN OUT-OF-SYNC PASSIVE SITE
11.1. WHEN TO USE PROCEDURE
11.2. PROCEDURES

11.2.1. Data Grid Cluster
11.2.2. AWS Aurora Database
11.2.3. Route53

11.3. FURTHER READING

CHAPTER 12. SWITCH BACK TO THE PRIMARY SITE
12.1. WHEN TO USE THIS PROCEDURE
12.2. PROCEDURES

12.2.1. Data Grid Cluster
12.2.2. AWS Aurora Database
12.2.3. Route53

12.3. FURTHER READING

CHAPTER 13. CONCEPTS FOR CONFIGURING THREAD POOLS
13.1. CONCEPTS

13.1.1. Quarkus executor pool
13.1.2. JGroups connection pool
13.1.3. Load Shedding
13.1.4. Probes
13.1.5. OS Resources

CHAPTER 14. CONCEPTS FOR DATABASE CONNECTION POOLS
14.1. CONCEPTS

CHAPTER 15. CONCEPTS FOR SIZING CPU AND MEMORY RESOURCES
15.1. PERFORMANCE RECOMMENDATIONS

15.1.1. Calculation example
15.2. REFERENCE ARCHITECTURE

CHAPTER 16. CONCEPTS TO AUTOMATE DATA GRID CLI COMMANDS
16.1. WHEN TO USE IT
16.2. EXAMPLE
16.3. FURTHER READING

44

45
45
45
45

46
46
46
46
46
47
48
48
48

49
49
49
49
54
54
54

55
55
55
55
60
61
61

62
62
62
62
63
63
63

64
64

65
65
66
66

68
68
68
68

Red Hat build of Keycloak 24.0 High Availability Guide

2

Table of Contents

3

CHAPTER 1. MULTI-SITE DEPLOYMENTS
Red Hat build of Keycloak supports deployments that consist of multiple Red Hat build of Keycloak
instances that connect to each other using its Infinispan caches; load balancers can distribute the load
evenly across those instances. Those setups are intended for a transparent network on a single site.

The Red Hat build of Keycloak high-availability guide goes one step further to describe setups across
multiple sites. While this setup adds additional complexity, that extra amount of high availability may be
needed for some environments.

The different chapters introduce the necessary concepts and building blocks. For each building block, a
blueprint shows how to set a fully functional example. Additional performance tuning and security
hardening are still recommended when preparing a production setup.

Red Hat build of Keycloak 24.0 High Availability Guide

4

CHAPTER 2. CONCEPTS FOR ACTIVE-PASSIVE
DEPLOYMENTS

This topic describes a highly available active/passive setup and the behavior to expect. It outlines the
requirements of the high availability active/passive architecture and describes the benefits and
tradeoffs.

2.1. WHEN TO USE THIS SETUP

Use this setup to be able to fail over automatically in the event of a site failure, which reduces the
likelihood of losing data or sessions. Manual interactions are usually required to restore the redundancy
after the failover.

2.2. DEPLOYMENT, DATA STORAGE AND CACHING

Two independent Red Hat build of Keycloak deployments running in different sites are connected with a
low latency network connection. Users, realms, clients, offline sessions, and other entities are stored in a
database that is replicated synchronously across the two sites. The data is also cached in the Red Hat
build of Keycloak Infinispan caches as local caches. When the data is changed in one Red Hat build of
Keycloak instance, that data is updated in the database, and an invalidation message is sent to the other
site using the replicated work cache.

Session-related data is stored in the replicated caches of the Infinispan caches of Red Hat build of
Keycloak, and forwarded to the external Data Grid, which forwards information to the external Data Grid
running synchronously in the other site. As session data of the external Data Grid is also cached in the
Infinispan caches, invalidation messages of the replicated work cache are needed for invalidation.

In the following paragraphs and diagrams, references to deploying Data Grid apply to the external Data
Grid.

Primary site
(active)

2.3. CAUSES OF DATA AND SERVICE LOSS

While this setup aims for high availability, the following situations can still lead to service or data loss:

Network failures between the sites or failures of components can lead to short service
downtimes while those failures are detected. The service will be restored automatically. The
system is degraded until the failures are detected and the backup cluster is promoted to service
requests.

Once failures occur in the communication between the sites, manual steps are necessary to re-
synchronize a degraded setup.

Degraded setups can lead to service or data loss if additional components fail. Monitoring is

CHAPTER 2. CONCEPTS FOR ACTIVE-PASSIVE DEPLOYMENTS

5

Degraded setups can lead to service or data loss if additional components fail. Monitoring is
necessary to detect degraded setups.

2.4. FAILURES WHICH THIS SETUP CAN SURVIVE

Failure Recovery RPO1 RTO2

Database node If the writer instance
fails, the database can
promote a reader
instance in the same or
other site to be the new
writer.

No data loss Seconds to minutes
(depending on the
database)

Red Hat build of
Keycloak node

Multiple Red Hat build
of Keycloak instances
run in each site. If one
instance fails, it takes a
few seconds for the
other nodes to notice
the change, and some
incoming requests might
receive an error
message or are delayed
for some seconds.

No data loss Less than one minute

Data Grid node Multiple Data Grid
instances run in each
site. If one instance fails,
it takes a few seconds
for the other nodes to
notice the change.
Sessions are stored in at
least two Data Grid
nodes, so a single node
failure does not lead to
data loss.

No data loss Less than one minute

Red Hat build of Keycloak 24.0 High Availability Guide

6

Data Grid cluster failure If the Data Grid cluster
fails in the active site,
Red Hat build of
Keycloak will not be able
to communicate with
the external Data Grid,
and the Red Hat build of
Keycloak service will be
unavailable. The
loadbalancer will detect
the situation as /lb-
check returns an error,
and will fail over to the
other site.

The setup is degraded
until the Data Grid
cluster is restored and
the session data is re-
synchronized to the
primary.

No data loss3 Seconds to minutes
(depending on load
balancer setup)

Connectivity Data Grid If the connectivity
between the two sites is
lost, session information
cannot be sent to the
other site. Incoming
requests might receive
an error message or are
delayed for some
seconds. The primary
site marks the secondary
site offline, and will stop
sending data to the
secondary. The setup is
degraded until the
connection is restored
and the session data is
re-synchronized to the
secondary site.

No data loss3 Less than one minute

Failure Recovery RPO1 RTO2

CHAPTER 2. CONCEPTS FOR ACTIVE-PASSIVE DEPLOYMENTS

7

Connectivity database If the connectivity
between the two sites is
lost, the synchronous
replication will fail, and it
might take some time
for the primary site to
mark the secondary
offline. Some requests
might receive an error
message or be delayed
for a few seconds.
Manual operations might
be necessary depending
on the database.

No data loss3 Seconds to minutes
(depending on the
database)

Primary site If none of the Red Hat
build of Keycloak nodes
are available, the
loadbalancer will detect
the outage and redirect
the traffic to the
secondary site. Some
requests might receive
an error message while
the loadbalancer has not
detected the primary
site failure. The setup
will be degraded until
the primary site is back
up and the session state
has been manually
synchronized from the
secondary to the
primary site.

No data loss3 Less than one minute

Secondary site If the secondary site is
not available, it will take
a moment for the
primary Data Grid and
database to mark the
secondary site offline.
Some requests might
receive an error
message while the
detection takes place.
Once the secondary site
is up again, the session
state needs to be
manually synced from
the primary site to the
secondary site.

No data loss3 Less than one minute

Failure Recovery RPO1 RTO2

Red Hat build of Keycloak 24.0 High Availability Guide

8

Table footnotes:

1 Recovery point objective, assuming all parts of the setup were healthy at the time this occurred.
2 Recovery time objective.
3 Manual operations needed to restore the degraded setup.

The statement “No data loss” depends on the setup not being degraded from previous failures, which
includes completing any pending manual operations to resynchronize the state between the sites.

2.5. KNOWN LIMITATIONS

Upgrades

On Red Hat build of Keycloak or Data Grid version upgrades (major, minor and patch), all
session data (except offline session) will be lost as neither supports zero downtime
upgrades.

Failovers

A successful failover requires a setup not degraded from previous failures. All manual
operations like a re-synchronization after a previous failure must be complete to prevent
data loss. Use monitoring to ensure degradations are detected and handled in a timely
manner.

Switchovers

A successful switchover requires a setup not degraded from previous failures. All manual
operations like a re-synchronization after a previous failure must be complete to prevent
data loss. Use monitoring to ensure degradations are detected and handled in a timely
manner.

Out-of-sync sites

The sites can become out of sync when a synchronous Data Grid request fails. This situation
is currently difficult to monitor, and it would need a full manual re-sync of Data Grid to
recover. Monitoring the number of cache entries in both sites and the Red Hat build of
Keycloak log file can show when resynch would become necessary.

Manual operations

Manual operations that re-synchronize the Data Grid state between the sites will issue a full
state transfer which will put a stress on the system (network, CPU, Java heap in Data Grid
and Red Hat build of Keycloak).

2.6. QUESTIONS AND ANSWERS

Why synchronous database replication?

A synchronously replicated database ensures that data written in the primary site is always available
in the secondary site on failover and no data is lost.

Why synchronous Data Grid replication?

A synchronously replicated Data Grid ensures that sessions created, updated and deleted in the
primary site are always available in the secondary site on failover and no data is lost.

CHAPTER 2. CONCEPTS FOR ACTIVE-PASSIVE DEPLOYMENTS

9

Why is a low-latency network between sites needed?

Synchronous replication defers the response to the caller until the data is received at the secondary
site. For synchronous database replication and synchronous Data Grid replication, a low latency is
necessary as each request can have potentially multiple interactions between the sites when data is
updated which would amplify the latency.

Why active-passive?

Some databases support a single writer instance with a reader instance which is then promoted to be
the new writer once the original writer fails. In such a setup, it is beneficial for the latency to have the
writer instance in the same site as the currently active Red Hat build of Keycloak. Synchronous Data
Grid replication can lead to deadlocks when entries in both sites are modified concurrently.

Is this setup limited to two sites?

This setup could be extended to multiple sites, and there are no fundamental changes necessary to
have, for example, three sites. Once more sites are added, the overall latency between the sites
increases, and the likeliness of network failures, and therefore short downtimes, increases as well.
Therefore, such a deployment is expected to have worse performance and an inferior. For now, it has
been tested and documented with blueprints only for two sites.

Is a synchronous cluster less stable than an asynchronous cluster?

An asynchronous setup would handle network failures between the sites gracefully, while the
synchronous setup would delay requests and will throw errors to the caller where the asynchronous
setup would have deferred the writes to Data Grid or the database to the secondary site. However,
as the secondary site would never be fully up-to-date with the primary site, this setup could lead to
data loss during failover. This would include:

Lost logouts, meaning sessions are logged in the secondary site although they are logged
out in to the primary site at the point of failover when using an asynchronous Data Grid
replication of sessions.

Lost changes leading to users being able to log in with an old password because database
changes are not replicated to the secondary site at the point of failover when using an
asynchronous database.

Invalid caches leading to users being able to log in with an old password because invalidating
caches are not propagated at the point of failover to the secondary site when using an
asynchronous Data Grid replication.

Therefore, tradeoffs exist between high availability and consistency. The focus of this topic is to
prioritize consistency over availability with Red Hat build of Keycloak.

2.7. NEXT STEPS

Continue reading in the Building blocks active-passive deployments chapter to find blueprints for the
different building blocks.

Red Hat build of Keycloak 24.0 High Availability Guide

10

CHAPTER 3. BUILDING BLOCKS ACTIVE-PASSIVE
DEPLOYMENTS

The following building blocks are needed to set up an active-passive deployment with synchronous
replication.

The building blocks link to a blueprint with an example configuration. They are listed in the order in which
they need to be installed.

NOTE

We provide these blueprints to show a minimal functionally complete example with a
good baseline performance for regular installations. You would still need to adapt it to
your environment and your organization’s standards and security best practices.

3.1. PREREQUISITES

Understanding the concepts laid out in the Concepts for active-passive deployments chapter.

3.2. TWO SITES WITH LOW-LATENCY CONNECTION

Ensures that synchronous replication is available for both the database and the external Data Grid.

Suggested setup: Two AWS Availablity Zones within the same AWS Region.

Not considered: Two regions on the same or different continents, as it would increase the latency and
the likelihood of network failures. Synchronous replication of databases as a services with Aurora
Regional Deployments on AWS is only available within the same region.

3.3. ENVIRONMENT FOR RED HAT BUILD OF KEYCLOAK AND DATA
GRID

Ensures that the instances are deployed and restarted as needed.

Suggested setup: Red Hat OpenShift Service on AWS (ROSA) deployed in each availability zone.

Not considered: A stretched ROSA cluster which spans multiple availability zones, as this could be a
single point of failure if misconfigured.

3.4. DATABASE

A synchronously replicated database across two sites.

Blueprint: Deploy AWS Aurora in multiple availability zones .

3.5. DATA GRID

A deployment of Data Grid that leverages the Data Grid’s Cross-DC functionality.

Blueprint: Deploy Data Grid for HA with the Data Grid Operator using the Data Grid Operator, and
connect the two sites using Data Grid’s Gossip Router.

Not considered: Direct interconnections between the Kubernetes clusters on the network layer. It might

CHAPTER 3. BUILDING BLOCKS ACTIVE-PASSIVE DEPLOYMENTS

11

Not considered: Direct interconnections between the Kubernetes clusters on the network layer. It might
be considered in the future.

3.6. RED HAT BUILD OF KEYCLOAK

A clustered deployment of Red Hat build of Keycloak in each site, connected to an external Data Grid.

Blueprint: Deploy Red Hat build of Keycloak for HA with the Red Hat build of Keycloak Operator
together with Connect Red Hat build of Keycloak with an external Data Grid and the Aurora database.

3.7. LOAD BALANCER

A load balancer which checks the /lb-check URL of the Red Hat build of Keycloak deployment in each
site.

Blueprint: Deploy an AWS Route 53 loadbalancer .

Not considered: AWS Global Accelerator as it supports only weighted traffic routing and not active-
passive failover. To support active-passive failover, additional logic using, for example, AWS
CloudWatch and AWS Lambda would be necessary to simulate the active-passive handling by adjusting
the weights when the probes fail.

Red Hat build of Keycloak 24.0 High Availability Guide

12

CHAPTER 4. DEPLOY AWS AURORA IN MULTIPLE
AVAILABILITY ZONES

This topic describes how to deploy an Aurora regional deployment of a PostgreSQL instance across
multiple availability zones to tolerate one or more availability zone failures in a given AWS region.

This deployment is intended to be used with the setup described in the Concepts for active-passive
deployments chapter. Use this deployment with the other building blocks outlined in the Building blocks
active-passive deployments chapter.

NOTE

We provide these blueprints to show a minimal functionally complete example with a
good baseline performance for regular installations. You would still need to adapt it to
your environment and your organization’s standards and security best practices.

4.1. ARCHITECTURE

Aurora database clusters consist of multiple Aurora database instances, with one instance designated as
the primary writer and all others as backup readers. To ensure high availability in the event of availability
zone failures, Aurora allows database instances to be deployed across multiple zones in a single AWS
region. In the event of a failure on the availability zone that is hosting the Primary database instance,
Aurora automatically heals itself and promotes a reader instance from a non-failed availability zone to be
the new writer instance.

Figure 4.1. Aurora Multiple Availability Zone Deployment

AWS Region

Availability
Zone

See the AWS Aurora documentation for more details on the semantics provided by Aurora databases.

This documentation follows AWS best practices and creates a private Aurora database that is not
exposed to the Internet. To access the database from a ROSA cluster, establish a peering connection
between the database and the ROSA cluster.

4.2. PROCEDURE

The following procedure contains two sections:

Creation of an Aurora Multi-AZ database cluster with the name "keycloak-aurora" in eu-west-1.

Creation of a peering connection between the ROSA cluster(s) and the Aurora VPC to allow
applications deployed on the ROSA clusters to establish connections with the database.

CHAPTER 4. DEPLOY AWS AURORA IN MULTIPLE AVAILABILITY ZONES

13

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html

1

4.2.1. Create Aurora database Cluster

1. Create a VPC for the Aurora cluster

Command:

We add an optional tag with the name of the Aurora cluster so that we can easily retrieve
the VPC.

Output:

2. Create a subnet for each availability zone that Aurora will be deployed to, using the VpcId of the
newly created VPC.

NOTE

The cidr-block range specified for each of the availability zones must not overlap.

a. Zone A

Command:

aws ec2 create-vpc \
 --cidr-block 192.168.0.0/16 \
 --tag-specifications "ResourceType=vpc, Tags=[{Key=AuroraCluster,Value=keycloak-
aurora}]" \ 1
 --region eu-west-1

{
 "Vpc": {
 "CidrBlock": "192.168.0.0/16",
 "DhcpOptionsId": "dopt-0bae7798158bc344f",
 "State": "pending",
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "OwnerId": "606671647913",
 "InstanceTenancy": "default",
 "Ipv6CidrBlockAssociationSet": [],
 "CidrBlockAssociationSet": [
 {
 "AssociationId": "vpc-cidr-assoc-09a02a83059ba5ab6",
 "CidrBlock": "192.168.0.0/16",
 "CidrBlockState": {
 "State": "associated"
 }
 }
],
 "IsDefault": false
 }
}

aws ec2 create-subnet \
 --availability-zone "eu-west-1a" \
 --vpc-id vpc-0b40bd7c59dbe4277 \

Red Hat build of Keycloak 24.0 High Availability Guide

14

Output:

b. Zone B

Command:

Output:

 --cidr-block 192.168.0.0/19 \
 --region eu-west-1

{
 "Subnet": {
 "AvailabilityZone": "eu-west-1a",
 "AvailabilityZoneId": "euw1-az3",
 "AvailableIpAddressCount": 8187,
 "CidrBlock": "192.168.0.0/19",
 "DefaultForAz": false,
 "MapPublicIpOnLaunch": false,
 "State": "available",
 "SubnetId": "subnet-0d491a1a798aa878d",
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "OwnerId": "606671647913",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],
 "SubnetArn": "arn:aws:ec2:eu-west-1:606671647913:subnet/subnet-
0d491a1a798aa878d",
 "EnableDns64": false,
 "Ipv6Native": false,
 "PrivateDnsNameOptionsOnLaunch": {
 "HostnameType": "ip-name",
 "EnableResourceNameDnsARecord": false,
 "EnableResourceNameDnsAAAARecord": false
 }
 }
}

aws ec2 create-subnet \
 --availability-zone "eu-west-1b" \
 --vpc-id vpc-0b40bd7c59dbe4277 \
 --cidr-block 192.168.32.0/19 \
 --region eu-west-1

{
 "Subnet": {
 "AvailabilityZone": "eu-west-1b",
 "AvailabilityZoneId": "euw1-az1",
 "AvailableIpAddressCount": 8187,
 "CidrBlock": "192.168.32.0/19",
 "DefaultForAz": false,
 "MapPublicIpOnLaunch": false,
 "State": "available",
 "SubnetId": "subnet-057181b1e3728530e",
 "VpcId": "vpc-0b40bd7c59dbe4277",

CHAPTER 4. DEPLOY AWS AURORA IN MULTIPLE AVAILABILITY ZONES

15

3. Obtain the ID of the Aurora VPC route-table

Command:

Output:

 "OwnerId": "606671647913",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],
 "SubnetArn": "arn:aws:ec2:eu-west-1:606671647913:subnet/subnet-
057181b1e3728530e",
 "EnableDns64": false,
 "Ipv6Native": false,
 "PrivateDnsNameOptionsOnLaunch": {
 "HostnameType": "ip-name",
 "EnableResourceNameDnsARecord": false,
 "EnableResourceNameDnsAAAARecord": false
 }
 }
}

aws ec2 describe-route-tables \
 --filters Name=vpc-id,Values=vpc-0b40bd7c59dbe4277 \
 --region eu-west-1

{
 "RouteTables": [
 {
 "Associations": [
 {
 "Main": true,
 "RouteTableAssociationId": "rtbassoc-02dfa06f4c7b4f99a",
 "RouteTableId": "rtb-04a644ad3cd7de351",
 "AssociationState": {
 "State": "associated"
 }
 }
],
 "PropagatingVgws": [],
 "RouteTableId": "rtb-04a644ad3cd7de351",
 "Routes": [
 {
 "DestinationCidrBlock": "192.168.0.0/16",
 "GatewayId": "local",
 "Origin": "CreateRouteTable",
 "State": "active"
 }
],
 "Tags": [],
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "OwnerId": "606671647913"
 }
]
}

Red Hat build of Keycloak 24.0 High Availability Guide

16

4. Associate the Aurora VPC route-table each availability zone’s subnet

a. Zone A

Command:

b. Zone B

Command:

5. Create Aurora Subnet Group

Command:

6. Create Aurora Security Group

Command:

Output:

7. Create the Aurora DB Cluster

Command:

aws ec2 associate-route-table \
 --route-table-id rtb-04a644ad3cd7de351 \
 --subnet-id subnet-0d491a1a798aa878d \
 --region eu-west-1

aws ec2 associate-route-table \
 --route-table-id rtb-04a644ad3cd7de351 \
 --subnet-id subnet-057181b1e3728530e \
 --region eu-west-1

aws rds create-db-subnet-group \
 --db-subnet-group-name keycloak-aurora-subnet-group \
 --db-subnet-group-description "Aurora DB Subnet Group" \
 --subnet-ids subnet-0d491a1a798aa878d subnet-057181b1e3728530e \
 --region eu-west-1

aws ec2 create-security-group \
 --group-name keycloak-aurora-security-group \
 --description "Aurora DB Security Group" \
 --vpc-id vpc-0b40bd7c59dbe4277 \
 --region eu-west-1

{
 "GroupId": "sg-0d746cc8ad8d2e63b"
}

aws rds create-db-cluster \
 --db-cluster-identifier keycloak-aurora \
 --database-name keycloak \

CHAPTER 4. DEPLOY AWS AURORA IN MULTIPLE AVAILABILITY ZONES

17

NOTE

You should replace the --master-username and --master-user-password
values. The values specified here must be used when configuring the Red Hat
build of Keycloak database credentials.

Output:

 --engine aurora-postgresql \
 --engine-version ${properties["aurora-postgresql.version"]} \
 --master-username keycloak \
 --master-user-password secret99 \
 --vpc-security-group-ids sg-0d746cc8ad8d2e63b \
 --db-subnet-group-name keycloak-aurora-subnet-group \
 --region eu-west-1

{
 "DBCluster": {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "eu-west-1b",
 "eu-west-1c",
 "eu-west-1a"
],
 "BackupRetentionPeriod": 1,
 "DatabaseName": "keycloak",
 "DBClusterIdentifier": "keycloak-aurora",
 "DBClusterParameterGroup": "default.aurora-postgresql15",
 "DBSubnetGroup": "keycloak-aurora-subnet-group",
 "Status": "creating",
 "Endpoint": "keycloak-aurora.cluster-clhthfqe0h8p.eu-west-1.rds.amazonaws.com",
 "ReaderEndpoint": "keycloak-aurora.cluster-ro-clhthfqe0h8p.eu-west-
1.rds.amazonaws.com",
 "MultiAZ": false,
 "Engine": "aurora-postgresql",
 "EngineVersion": "15.3",
 "Port": 5432,
 "MasterUsername": "keycloak",
 "PreferredBackupWindow": "02:21-02:51",
 "PreferredMaintenanceWindow": "fri:03:34-fri:04:04",
 "ReadReplicaIdentifiers": [],
 "DBClusterMembers": [],
 "VpcSecurityGroups": [
 {
 "VpcSecurityGroupId": "sg-0d746cc8ad8d2e63b",
 "Status": "active"
 }
],
 "HostedZoneId": "Z29XKXDKYMONMX",
 "StorageEncrypted": false,
 "DbClusterResourceId": "cluster-IBWXUWQYM3MS5BH557ZJ6ZQU4I",
 "DBClusterArn": "arn:aws:rds:eu-west-1:606671647913:cluster:keycloak-aurora",
 "AssociatedRoles": [],
 "IAMDatabaseAuthenticationEnabled": false,
 "ClusterCreateTime": "2023-11-01T10:40:45.964000+00:00",

Red Hat build of Keycloak 24.0 High Availability Guide

18

8. Create Aurora DB instances

a. Create Zone A Writer instance

Command:

b. Create Zone B Reader instance

Command:

9. Wait for all Writer and Reader instances to be ready

Command:

10. Obtain the Writer endpoint URL for use by Keycloak

Command:

 "EngineMode": "provisioned",
 "DeletionProtection": false,
 "HttpEndpointEnabled": false,
 "CopyTagsToSnapshot": false,
 "CrossAccountClone": false,
 "DomainMemberships": [],
 "TagList": [],
 "AutoMinorVersionUpgrade": true,
 "NetworkType": "IPV4"
 }
}

 aws rds create-db-instance \
 --db-cluster-identifier keycloak-aurora \
 --db-instance-identifier "keycloak-aurora-instance-1" \
 --db-instance-class db.t4g.large \
 --engine aurora-postgresql \
 --region eu-west-1

 aws rds create-db-instance \
 --db-cluster-identifier keycloak-aurora \
 --db-instance-identifier "keycloak-aurora-instance-2" \
 --db-instance-class db.t4g.large \
 --engine aurora-postgresql \
 --region eu-west-1

aws rds wait db-instance-available --db-instance-identifier keycloak-aurora-instance-1 --
region eu-west-1
aws rds wait db-instance-available --db-instance-identifier keycloak-aurora-instance-2 --
region eu-west-1

aws rds describe-db-clusters \
 --db-cluster-identifier keycloak-aurora \
 --query 'DBClusters[*].Endpoint' \
 --region eu-west-1 \
 --output text

CHAPTER 4. DEPLOY AWS AURORA IN MULTIPLE AVAILABILITY ZONES

19

Output:

4.2.2. Establish Peering Connections with ROSA clusters

Perform these steps once for each ROSA cluster that contains a Red Hat build of Keycloak deployment.

1. Retrieve the Aurora VPC

Command:

Output:

vpc-0b40bd7c59dbe4277

2. Retrieve the ROSA cluster VPC

a. Login to the ROSA cluster using oc

b. Retrieve the ROSA VPC

Command:

Output:

vpc-0b721449398429559

3. Create Peering Connection

Command:

[
 "keycloak-aurora.cluster-clhthfqe0h8p.eu-west-1.rds.amazonaws.com"
]

aws ec2 describe-vpcs \
 --filters "Name=tag:AuroraCluster,Values=keycloak-aurora" \
 --query 'Vpcs[*].VpcId' \
 --region eu-west-1 \
 --output text

NODE=$(oc get nodes --selector=node-role.kubernetes.io/worker -o
jsonpath='{.items[0].metadata.name}')
aws ec2 describe-instances \
 --filters "Name=private-dns-name,Values=${NODE}" \
 --query 'Reservations[0].Instances[0].VpcId' \
 --region eu-west-1 \
 --output text

aws ec2 create-vpc-peering-connection \
 --vpc-id vpc-0b721449398429559 \ 1
 --peer-vpc-id vpc-0b40bd7c59dbe4277 \ 2

Red Hat build of Keycloak 24.0 High Availability Guide

20

1

2

ROSA cluster VPC

Aurora VPC

Output:

4. Wait for Peering connection to exist

Command:

5. Accept the peering connection

Command:

 --peer-region eu-west-1 \
 --region eu-west-1

{
 "VpcPeeringConnection": {
 "AccepterVpcInfo": {
 "OwnerId": "606671647913",
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "Region": "eu-west-1"
 },
 "ExpirationTime": "2023-11-08T13:26:30+00:00",
 "RequesterVpcInfo": {
 "CidrBlock": "10.0.17.0/24",
 "CidrBlockSet": [
 {
 "CidrBlock": "10.0.17.0/24"
 }
],
 "OwnerId": "606671647913",
 "PeeringOptions": {
 "AllowDnsResolutionFromRemoteVpc": false,
 "AllowEgressFromLocalClassicLinkToRemoteVpc": false,
 "AllowEgressFromLocalVpcToRemoteClassicLink": false
 },
 "VpcId": "vpc-0b721449398429559",
 "Region": "eu-west-1"
 },
 "Status": {
 "Code": "initiating-request",
 "Message": "Initiating Request to 606671647913"
 },
 "Tags": [],
 "VpcPeeringConnectionId": "pcx-0cb23d66dea3dca9f"
 }
}

aws ec2 wait vpc-peering-connection-exists --vpc-peering-connection-ids pcx-
0cb23d66dea3dca9f

CHAPTER 4. DEPLOY AWS AURORA IN MULTIPLE AVAILABILITY ZONES

21

Output:

6. Update ROSA cluster VPC route-table

Command:

aws ec2 accept-vpc-peering-connection \
 --vpc-peering-connection-id pcx-0cb23d66dea3dca9f \
 --region eu-west-1

{
 "VpcPeeringConnection": {
 "AccepterVpcInfo": {
 "CidrBlock": "192.168.0.0/16",
 "CidrBlockSet": [
 {
 "CidrBlock": "192.168.0.0/16"
 }
],
 "OwnerId": "606671647913",
 "PeeringOptions": {
 "AllowDnsResolutionFromRemoteVpc": false,
 "AllowEgressFromLocalClassicLinkToRemoteVpc": false,
 "AllowEgressFromLocalVpcToRemoteClassicLink": false
 },
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "Region": "eu-west-1"
 },
 "RequesterVpcInfo": {
 "CidrBlock": "10.0.17.0/24",
 "CidrBlockSet": [
 {
 "CidrBlock": "10.0.17.0/24"
 }
],
 "OwnerId": "606671647913",
 "PeeringOptions": {
 "AllowDnsResolutionFromRemoteVpc": false,
 "AllowEgressFromLocalClassicLinkToRemoteVpc": false,
 "AllowEgressFromLocalVpcToRemoteClassicLink": false
 },
 "VpcId": "vpc-0b721449398429559",
 "Region": "eu-west-1"
 },
 "Status": {
 "Code": "provisioning",
 "Message": "Provisioning"
 },
 "Tags": [],
 "VpcPeeringConnectionId": "pcx-0cb23d66dea3dca9f"
 }
}

ROSA_PUBLIC_ROUTE_TABLE_ID=$(aws ec2 describe-route-tables \
 --filters "Name=vpc-id,Values=vpc-0b721449398429559"

Red Hat build of Keycloak 24.0 High Availability Guide

22

1

2

1

ROSA cluster VPC

This must be the same as the cidr-block used when creating the Aurora VPC

7. Update the Aurora Security Group

Command:

The "machine_cidr" of the ROSA cluster

Output:

"Name=association.main,Values=true" \ 1
 --query "RouteTables[*].RouteTableId" \
 --output text \
 --region eu-west-1
)
aws ec2 create-route \
 --route-table-id ${ROSA_PUBLIC_ROUTE_TABLE_ID} \
 --destination-cidr-block 192.168.0.0/16 \ 2
 --vpc-peering-connection-id pcx-0cb23d66dea3dca9f \
 --region eu-west-1

AURORA_SECURITY_GROUP_ID=$(aws ec2 describe-security-groups \
 --filters "Name=group-name,Values=keycloak-aurora-security-group" \
 --query "SecurityGroups[*].GroupId" \
 --region eu-west-1 \
 --output text
)
aws ec2 authorize-security-group-ingress \
 --group-id ${AURORA_SECURITY_GROUP_ID} \
 --protocol tcp \
 --port 5432 \
 --cidr 10.0.17.0/24 \ 1
 --region eu-west-1

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-0785d2f04b9cec3f5",
 "GroupId": "sg-0d746cc8ad8d2e63b",
 "GroupOwnerId": "606671647913",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 5432,
 "ToPort": 5432,
 "CidrIpv4": "10.0.17.0/24"
 }
]
}

CHAPTER 4. DEPLOY AWS AURORA IN MULTIPLE AVAILABILITY ZONES

23

1

2

3

4

4.3. VERIFYING THE CONNECTION

The simplest way to verify that a connection is possible between a ROSA cluster and an Aurora DB
cluster is to deploy psql on the Openshift cluster and attempt to connect to the writer endpoint.

The following command creates a pod in the default namespace and establishes a psql connection with
the Aurora cluster if possible. Upon exiting the pod shell, the pod is deleted.

Aurora DB user, this can be the same as --master-username used when creating the DB.

Aurora DB user-password, this can be the same as --master— user-password used when creating
the DB.

The name of the Aurora DB, such as --database-name.

The name of your Aurora DB cluster.

4.4. DEPLOYING RED HAT BUILD OF KEYCLOAK

Now that an Aurora database has been established and linked with all of your ROSA clusters, the next
step is to deploy Red Hat build of Keycloak as described in the Deploy Red Hat build of Keycloak for HA
with the Red Hat build of Keycloak Operator chapter with the JDBC url configured to use the Aurora
database writer endpoint. To do this, create a Keycloak CR with the following adjustments:

1. Update spec.db.url to be jdbc:aws-wrapper:postgresql://$HOST:5432/keycloak where
$HOST is the Aurora writer endpoint URL .

2. Ensure that the Secrets referenced by spec.db.usernameSecret and
spec.db.passwordSecret contain usernames and passwords defined when creating Aurora.

USER=keycloak 1
PASSWORD=secret99 2
DATABASE=keycloak 3
HOST=$(aws rds describe-db-clusters \
 --db-cluster-identifier keycloak-aurora \ 4
 --query 'DBClusters[*].Endpoint' \
 --region eu-west-1 \
 --output text
)
oc run -i --tty --rm debug --image=postgres:15 --restart=Never -- psql
postgresql://${USER}:${PASSWORD}@${HOST}/${DATABASE}

Red Hat build of Keycloak 24.0 High Availability Guide

24

CHAPTER 5. DEPLOY RED HAT BUILD OF KEYCLOAK FOR HA
WITH THE RED HAT BUILD OF KEYCLOAK OPERATOR

This guide describes advanced Red Hat build of Keycloak configurations for Kubernetes which are load
tested and will recover from single Pod failures.

These instructions are intended for use with the setup described in the Concepts for active-passive
deployments chapter. Use it together with the other building blocks outlined in the Building blocks
active-passive deployments chapter.

5.1. PREREQUISITES

OpenShift or Kubernetes cluster running.

Understanding of a Basic Red Hat build of Keycloak deployment of Red Hat build of Keycloak
with the Red Hat build of Keycloak Operator.

5.2. PROCEDURE

1. Determine the sizing of the deployment using the Concepts for sizing CPU and memory
resources chapter.

2. Install the Red Hat build of Keycloak Operator as described in the Red Hat build of Keycloak
Operator installation chapter.

3. Deploy Aurora AWS as described in the Deploy AWS Aurora in multiple availability zones
chapter.

4. Build a custom Red Hat build of Keycloak image which is prepared for usage with the Amazon
Aurora PostgreSQL database.

5. Deploy the Red Hat build of Keycloak CR with the following values with the resource requests
and limits calculated in the first step:

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 labels:
 app: keycloak
 name: keycloak
 namespace: keycloak
spec:
 hostname:
 hostname: <KEYCLOAK_URL_HERE>
 resources:
 requests:
 cpu: "2"
 memory: "1250M"
 limits:
 cpu: "6"
 memory: "2250M"
 db:
 vendor: postgres
 url: jdbc:aws-wrapper:postgresql://<AWS_AURORA_URL_HERE>:5432/keycloak

CHAPTER 5. DEPLOY RED HAT BUILD OF KEYCLOAK FOR HA WITH THE RED HAT BUILD OF KEYCLOAK OPERATOR

25

http://localhost:5000/keycloak-antora/guide-operator/basic-deployment
http://localhost:5000/keycloak-antora/guide-operator/installation
{links_server_db_url}#preparing-keycloak-for-amazon-aurora-postgresql

1

2 3

4

5

6

7

The database connection pool initial, max and min size should be identical to allow
statement caching for the database. Adjust this number to meet the needs of your system.
As most requests will not touch the database due to the Red Hat build of Keycloak
embedded cache, this change can server several hundreds of requests per second. See the
Concepts for database connection pools chapter for details.

Specify the URL to your custom Red Hat build of Keycloak image. If your image is
optimized, set the startOptimized flag to true.

Enable additional features for multi-site support like the loadbalancer probe /lb-check.

XA transactions are not supported by the Amazon Web Services JDBC Driver .

To be able to analyze the system under load, enable the metrics endpoint. The
disadvantage of the setting is that the metrics will be available at the external Red Hat
build of Keycloak endpoint, so you must add a filter so that the endpoint is not available
from the outside. Use a reverse proxy in front of Red Hat build of Keycloak to filter out
those URLs.

The default setting for the internal JGroup thread pools is 200 threads maximum. The
number of all Red Hat build of Keycloak threads in the StatefulSet should not exceed the
number of JGroup threads to avoid a JGroup thread pool exhaustion which could stall Red
Hat build of Keycloak request processing. You might consider limiting the number of Red
Hat build of Keycloak threads further because multiple concurrent threads will lead to

 poolMinSize: 30 1
 poolInitialSize: 30
 poolMaxSize: 30
 usernameSecret:
 name: keycloak-db-secret
 key: username
 passwordSecret:
 name: keycloak-db-secret
 key: password
 image: <KEYCLOAK_IMAGE_HERE> 2
 startOptimized: false 3
 features:
 enabled:
 - multi-site 4
 transaction:
 xaEnabled: false 5
 additionalOptions:
 - name: http-max-queued-requests
 value: "1000"
 - name: log-console-output
 value: json
 - name: metrics-enabled 6
 value: 'true'
 - name: http-pool-max-threads 7
 value: "66"
 - name: db-driver
 value: software.amazon.jdbc.Driver
 http:
 tlsSecret: keycloak-tls-secret
 instances: 3

Red Hat build of Keycloak 24.0 High Availability Guide

26

https://github.com/awslabs/aws-advanced-jdbc-wrapper/releases/

throttling by Kubernetes once the requested CPU limit is reached. See the Concepts for
configuring thread pools chapter for details.

5.3. VERIFYING THE DEPLOYMENT

Confirm that the Red Hat build of Keycloak deployment is ready.

5.4. OPTIONAL: LOAD SHEDDING

To enable load shedding, limit the number of queued requests.

Load shedding with max queued http requests

All exceeding requests are served with an HTTP 503. See the Concepts for configuring thread pools
chapter about load shedding for details.

5.5. OPTIONAL: DISABLE STICKY SESSIONS

When running on OpenShift and the default passthrough Ingress setup as provided by the Red Hat build
of Keycloak Operator, the load balancing done by HAProxy is done by using sticky sessions based on the
IP address of the source. When running load tests, or when having a reverse proxy in front of HAProxy,
you might want to disable this setup to avoid receiving all requests on a single Red Hat build of Keycloak
Pod.

Add the following supplementary configuration under the spec in the Red Hat build of Keycloak Custom
Resource to disable sticky sessions.

oc wait --for=condition=Ready keycloaks.k8s.keycloak.org/keycloak
oc wait --for=condition=RollingUpdate=False keycloaks.k8s.keycloak.org/keycloak

spec:
 additionalOptions:
 - name: http-max-queued-requests
 value: "1000"

spec:
 ingress:
 enabled: true
 annotations:
 # When running load tests, disable sticky sessions on the OpenShift HAProxy router
 # to avoid receiving all requests on a single Red Hat build of Keycloak Pod.
 haproxy.router.openshift.io/balance: roundrobin
 haproxy.router.openshift.io/disable_cookies: 'true'

CHAPTER 5. DEPLOY RED HAT BUILD OF KEYCLOAK FOR HA WITH THE RED HAT BUILD OF KEYCLOAK OPERATOR

27

CHAPTER 6. DEPLOY DATA GRID FOR HA WITH THE DATA
GRID OPERATOR

This chapter describes the procedures required to deploy Data Grid in a multiple-cluster environment
(cross-site). For simplicity, this topic uses the minimum configuration possible that allows Red Hat build
of Keycloak to be used with an external Data Grid.

This chapter assumes two OpenShift clusters named Site-A and Site-B.

This is a building block following the concepts described in the Concepts for active-passive
deployments chapter. See the Multi-site deployments chapter for an overview.

6.1. ARCHITECTURE

This setup deploys two synchronously replicating Data Grid clusters in two sites with a low-latency
network connection. An example of this scenario could be two availability zones in one AWS region.

Red Hat build of Keycloak, loadbalancer and database have been removed from the following diagram
for simplicity.

Primary site
(active)

Kubernetes Cluster

«Pod»
Data Grid

6.2. PREREQUISITES

OpenShift or Kubernetes cluster running

Understanding of the Data Grid Operator

6.3. PROCEDURE

1. Install the Data Grid Operator

2. Configure the credential to access the Data Grid cluster.
Red Hat build of Keycloak needs this credential to be able to authenticate with the Data Grid
cluster. The following identities.yaml file sets the username and password with admin
permissions

credentials:
 - username: developer
 password: strong-password
 roles:
 - admin

Red Hat build of Keycloak 24.0 High Availability Guide

28

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_operator_guide/index
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_operator_guide/index#installation

1

1

2

The identities.yaml could be set in a secret as one of the following:

As a Kubernetes Resource:

Credential Secret

The identities.yaml from the previous example base64 encoded.

Using the CLI

Check the Configuring Authentication documentation for more details.

These commands must be executed on both OpenShift clusters.

3. Create a service account.
A service account is required to establish a connection between clusters. The Data Grid
Operator uses it to inspect the network configuration from the remote site and to configure the
local Data Grid cluster accordingly.

For more details, see the Managing Cross-Site Connections documentation.

a. Create a service-account-token secret type as follows. The same YAML file can be used in
both OpenShift clusters.

xsite-sa-secret-token.yaml

The secret name.

The service account name.

b. Create the service account and generate an access token in both OpenShift clusters.

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: connect-secret
 namespace: keycloak
data:
 identities.yaml:
Y3JlZGVudGlhbHM6CiAgLSB1c2VybmFtZTogZGV2ZWxvcGVyCiAgICBwYXNzd29yZDog
c3Ryb25nLXBhc3N3b3JkCiAgICByb2xlczoKICAgICAgLSBhZG1pbgo= 1

oc create secret generic connect-secret --from-file=identities.yaml

apiVersion: v1
kind: Secret
metadata:
 name: ispn-xsite-sa-token 1
 annotations:
 kubernetes.io/service-account.name: "xsite-sa" 2
type: kubernetes.io/service-account-token

CHAPTER 6. DEPLOY DATA GRID FOR HA WITH THE DATA GRID OPERATOR

29

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_operator_guide/index#configuring-authentication
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_operator_guide/index#managed-cross-site-connections_cross-site

1

2

Create the service account in Site-A

Create the service account in Site-B

c. The next step is to deploy the token from Site-A into Site-B and the reverse:

Deploy Site-B token into Site-A

Deploy Site-A token into Site-B

4. Create TLS secrets
In this chapter, Data Grid uses an OpenShift Route for the cross-site communication. It uses the
SNI extension of TLS to direct the traffic to the correct Pods. To achieve that, JGroups use
TLS sockets, which require a Keystore and Truststore with the correct certificates.

For more information, see the Securing Cross Site Connections documentation or this Red Hat
Developer Guide.

Upload the Keystore and the Truststore in an OpenShift Secret. The secret contains the file
content, the password to access it, and the type of the store. Instructions for creating the
certificates and the stores are beyond the scope of this guide.

To upload the Keystore as a Secret, use the following command:

Deploy a Keystore

The filename and the path to the Keystore.

The password to access the Keystore.

oc create sa -n keycloak xsite-sa
oc policy add-role-to-user view -n keycloak -z xsite-sa
oc create -f xsite-sa-secret-token.yaml
oc get secrets ispn-xsite-sa-token -o jsonpath="{.data.token}" | base64 -d > Site-A-
token.txt

oc create sa -n keycloak xsite-sa
oc policy add-role-to-user view -n keycloak -z xsite-sa
oc create -f xsite-sa-secret-token.yaml
oc get secrets ispn-xsite-sa-token -o jsonpath="{.data.token}" | base64 -d > Site-B-
token.txt

oc create secret generic -n keycloak xsite-token-secret \
 --from-literal=token="$(cat Site-B-token.txt)"

oc create secret generic -n keycloak xsite-token-secret \
 --from-literal=token="$(cat Site-A-token.txt)"

oc -n keycloak create secret generic xsite-keystore-secret \
 --from-file=keystore.p12="./certs/keystore.p12" \ 1
 --from-literal=password=secret \ 2
 --from-literal=type=pkcs12 3

Red Hat build of Keycloak 24.0 High Availability Guide

30

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_operator_guide/index#securing-cross-site-connections_cross-site
https://developers.redhat.com/learn/openshift/cross-site-and-cross-applications-red-hat-openshift-and-red-hat-data-grid

3

1

2

3

The Keystore type.

To upload the Truststore as a Secret, use the following command:

Deploy a Truststore

The filename and the path to the Truststore.

The password to access the Truststore.

The Truststore type.

NOTE

Keystore and Truststore must be uploaded in both OpenShift clusters.

5. Create a Cluster for Data Grid with Cross-Site enabled
The Setting Up Cross-Site documentation provides all the information on how to create and
configure your Data Grid cluster with cross-site enabled, including the previous steps.

A basic example is provided in this chapter using the credentials, tokens, and TLS
Keystore/Truststore created by the commands from the previous steps.

The Infinispan CR for Site-A

oc -n keycloak create secret generic xsite-truststore-secret \
 --from-file=truststore.p12="./certs/truststore.p12" \ 1
 --from-literal=password=caSecret \ 2
 --from-literal=type=pkcs12 3

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
 name: infinispan 1
 namespace: keycloak
 annotations:
 infinispan.org/monitoring: 'true' 2
spec:
 replicas: 3
 security:
 endpointSecretName: connect-secret 3
 service:
 type: DataGrid
 sites:
 local:
 name: site-a 4
 expose:
 type: Route 5
 maxRelayNodes: 128
 encryption:
 transportKeyStore:
 secretName: xsite-keystore-secret 6

CHAPTER 6. DEPLOY DATA GRID FOR HA WITH THE DATA GRID OPERATOR

31

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_operator_guide/index#setting-up-xsite

1

2

3

4

5

6 9

7 10

8 11

12

13

14

15

16

17

The cluster name

Allows the cluster to be monitored by Prometheus.

If using a custom credential, configure here the secret name.

The name of the local site, in this case Site-A.

Exposing the cross-site connection using OpenShift Route.

The secret name where the Keystore exists as defined in the previous step.

The alias of the certificate inside the Keystore.

The secret key (filename) of the Keystore as defined in the previous step.

The secret name where the Truststore exists as defined in the previous step.

The Truststore key (filename) of the Keystore as defined in the previous step.

The remote site’s name, in this case Site-B.

The namespace of the Data Grid cluster from the remote site.

The OpenShift API URL for the remote site.

The secret with the access toke to authenticate into the remote site.

For Site-B, the Infinispan CR looks similar to the above. Note the differences in point 4, 11 and
13.

The Infinispan CR for Site-B

 alias: xsite 7
 filename: keystore.p12 8
 routerKeyStore:
 secretName: xsite-keystore-secret 9
 alias: xsite 10
 filename: keystore.p12 11
 trustStore:
 secretName: xsite-truststore-secret 12
 filename: truststore.p12 13
 locations:
 - name: site-b 14
 clusterName: infinispan
 namespace: keycloak 15
 url: openshift://api.site-b 16
 secretName: xsite-token-secret 17

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
 name: infinispan 1
 namespace: keycloak

Red Hat build of Keycloak 24.0 High Availability Guide

32

6. Creating the caches for Red Hat build of Keycloak.
Red Hat build of Keycloak requires the following caches to be present: sessions,
actionTokens, authenticationSessions, offlineSessions, clientSessions,
offlineClientSessions, loginFailures, and work.

The Data Grid Cache CR allows deploying the caches in the Data Grid cluster. Cross-site needs
to be enabled per cache as documented by Cross Site Documentation . The documentation
contains more details about the options used by this chapter. The following example shows the
Cache CR for Site-A.

sessions in Site-A

 annotations:
 infinispan.org/monitoring: 'true' 2
spec:
 replicas: 3
 security:
 endpointSecretName: connect-secret 3
 service:
 type: DataGrid
 sites:
 local:
 name: site-b 4
 expose:
 type: Route 5
 maxRelayNodes: 128
 encryption:
 transportKeyStore:
 secretName: xsite-keystore-secret 6
 alias: xsite 7
 filename: keystore.p12 8
 routerKeyStore:
 secretName: xsite-keystore-secret 9
 alias: xsite 10
 filename: keystore.p12 11
 trustStore:
 secretName: xsite-truststore-secret 12
 filename: truststore.p12 13
 locations:
 - name: site-a 14
 clusterName: infinispan
 namespace: keycloak 15
 url: openshift://api.site-a 16
 secretName: xsite-token-secret 17

apiVersion: infinispan.org/v2alpha1
kind: Cache
metadata:
 name: sessions
 namespace: keycloak
spec:
 clusterName: infinispan
 name: sessions

CHAPTER 6. DEPLOY DATA GRID FOR HA WITH THE DATA GRID OPERATOR

33

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_operator_guide/index#creating-caches
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_cross-site_replication/index

1 1

2 2

3 3

The cross-site merge policy, invoked when there is a write-write conflict. Set this for the
caches sessions, authenticationSessions, offlineSessions, clientSessions and
offlineClientSessions, and do not set it for all other caches.

The remote site name.

The cross-site communication, in this case, SYNC.

For Site-B, the Cache CR is similar except in point 2.

session in Site-B

 template: |-
 distributedCache:
 mode: "SYNC"
 owners: "2"
 statistics: "true"
 remoteTimeout: 14000
 stateTransfer:
 chunkSize: 16
 backups:
 mergePolicy: ALWAYS_REMOVE 1
 site-b: 2
 backup:
 strategy: "SYNC" 3
 timeout: 13000
 stateTransfer:
 chunkSize: 16

apiVersion: infinispan.org/v2alpha1
kind: Cache
metadata:
 name: sessions
 namespace: keycloak
spec:
 clusterName: infinispan
 name: sessions
 template: |-
 distributedCache:
 mode: "SYNC"
 owners: "2"
 statistics: "true"
 remoteTimeout: 14000
 stateTransfer:
 chunkSize: 16
 backups:
 mergePolicy: ALWAYS_REMOVE 1
 site-a: 2
 backup:
 strategy: "SYNC" 3
 timeout: 13000
 stateTransfer:
 chunkSize: 16

Red Hat build of Keycloak 24.0 High Availability Guide

34

6.4. VERIFYING THE DEPLOYMENT

Confirm that the Data Grid cluster is formed, and the cross-site connection is established between the
OpenShift clusters.

Wait until the Data Grid cluster is formed

Wait until the Data Grid cross-site connection is established

6.5. NEXT STEPS

After Data Grid is deployed and running, use the procedure in the Connect Red Hat build of Keycloak
with an external Data Grid chapter to connect your Red Hat build of Keycloak cluster with the Data Grid
cluster.

oc wait --for condition=WellFormed --timeout=300s infinispans.infinispan.org -n keycloak infinispan

oc wait --for condition=CrossSiteViewFormed --timeout=300s infinispans.infinispan.org -n keycloak
infinispan

CHAPTER 6. DEPLOY DATA GRID FOR HA WITH THE DATA GRID OPERATOR

35

CHAPTER 7. CONNECT RED HAT BUILD OF KEYCLOAK WITH
AN EXTERNAL DATA GRID

This topic describes advanced Data Grid configurations for Red Hat build of Keycloak on Kubernetes.

7.1. ARCHITECTURE

This connects Red Hat build of Keycloak to Data Grid using TCP connections secured by TLS 1.3. It uses
the Red Hat build of Keycloak’s truststore to verify Data Grid’s server certificate. As Red Hat build of
Keycloak is deployed using its Operator on OpenShift in the prerequisites listed below, the Operator
already added the service-ca.crt to the truststore which is used to sign Data Grid’s server certificates. In
other environments, add the necessary certificates to Red Hat build of Keycloak’s truststore.

7.2. PREREQUISITES

Deploy Red Hat build of Keycloak for HA with the Red Hat build of Keycloak Operator as it will
be extended.

Deploy Data Grid for HA with the Data Grid Operator .

7.3. PROCEDURE

1. Create a Secret with the username and password to connect to the external Data Grid
deployment:

2. Extend the Red Hat build of Keycloak Custom Resource with additionalOptions as shown
below.

NOTE

All the memory, resource and database configurations are skipped from the CR
below as they have been described in Deploy Red Hat build of Keycloak for HA
with the Red Hat build of Keycloak Operator chapter already. Administrators
should leave those configurations untouched.

apiVersion: v1
kind: Secret
metadata:
 name: remote-store-secret
 namespace: keycloak
type: Opaque
data:
 username: ZGV2ZWxvcGVy # base64 encoding for 'developer'
 password: c2VjdXJlX3Bhc3N3b3Jk # base64 encoding for 'secure_password'

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 labels:
 app: keycloak
 name: keycloak
 namespace: keycloak

Red Hat build of Keycloak 24.0 High Availability Guide

36

1 1

2 2

3 3

4

5

The hostname of the remote Data Grid cluster.

The port of the remote Data Grid cluster. This is optional and it default to 11222.

The Secret name and key with the Data Grid username credential.

The Secret name and key with the Data Grid password credential.

The spi-connections-infinispan-quarkus-site-name is an arbitrary Data Grid site name
which Red Hat build of Keycloak needs for its Infinispan caches deployment when a remote
store is used. This site-name is related only to the Infinispan caches and does not need to
match any value from the external Data Grid deployment. If you are using multiple sites for
Red Hat build of Keycloak in a cross-DC setup such as Deploy Data Grid for HA with the
Data Grid Operator, the site name must be different in each site.

7.4. RELEVANT OPTIONS

 Value

cache-remote-host

The hostname of the remote server for the remote store configuration.

It replaces the host attribute of remote-server tag of the configuration
specified via XML file (see cache-config-file option.). If the option is specified,
cache-remote-username and cache-remote-password are required as well
and the related configuration in XML file should not be present.

CLI: --cache-remote-host
Env: KC_CACHE_REMOTE_HOST

spec:
 additionalOptions:
 - name: cache-remote-host 1
 value: "infinispan.keycloak.svc"
 - name: cache-remote-port 2
 value: "11222"
 - name: cache-remote-username 3
 secret:
 name: remote-store-secret
 key: username
 - name: cache-remote-password 4
 secret:
 name: remote-store-secret
 key: password
 - name: spi-connections-infinispan-quarkus-site-name 5
 value: keycloak

CHAPTER 7. CONNECT RED HAT BUILD OF KEYCLOAK WITH AN EXTERNAL DATA GRID

37

cache-remote-password

The password for the authentication to the remote server for the remote store.

It replaces the password attribute of digest tag of the configuration specified
via XML file (see cache-config-file option.). If the option is specified, cache-
remote-host and cache-remote-username are required as well and the
related configuration in XML file should not be present.

CLI: --cache-remote-password
Env: KC_CACHE_REMOTE_PASSWORD

cache-remote-port

The port of the remote server for the remote store configuration.

It replaces the port attribute of remote-server tag of the configuration
specified via XML file (see cache-config-file option.).

CLI: --cache-remote-port
Env: KC_CACHE_REMOTE_PORT

11222 (default)

cache-remote-username

The username for the authentication to the remote server for the remote store.

It replaces the username attribute of digest tag of the configuration specified
via XML file (see cache-config-file option.). If the option is specified, cache-
remote-host and cache-remote-password are required as well and the
related configuration in XML file should not be present.

CLI: --cache-remote-username
Env: KC_CACHE_REMOTE_USERNAME

 Value

Red Hat build of Keycloak 24.0 High Availability Guide

38

CHAPTER 8. DEPLOY AN AWS ROUTE 53 LOADBALANCER
This topic describes the procedure required to configure DNS based failover for Multi-AZ Red Hat build
of Keycloak clusters using AWS Route53 for an active/passive setup. These instructions are intended to
be used with the setup described in the Concepts for active-passive deployments chapter. Use it
together with the other building blocks outlined in the Building blocks active-passive deployments
chapter.

NOTE

We provide these blueprints to show a minimal functionally complete example with a
good baseline performance for regular installations. You would still need to adapt it to
your environment and your organization’s standards and security best practices.

8.1. ARCHITECTURE

All Red Hat build of Keycloak client requests are routed by a DNS name managed by Route53 records.
Route53 is responsibile to ensure that all client requests are routed to the Primary cluster when it is
available and healthy, or to the backup cluster in the event of the primary availability-zone or Red Hat
build of Keycloak deployment failing.

If the primary site fails, the DNS changes will need to propagate to the clients. Depending on the client’s
settings, the propagation may take some minutes based on the client’s configuration. When using
mobile connections, some internet providers might not respect the TTL of the DNS entries, which can
lead to an extended time before the clients can connect to the new site.

Figure 8.1. AWS Global Accelerator Failover

Two Openshift Routes are exposed on both the Primary and Backup ROSA cluster. The first Route uses
the Route53 DNS name to service client requests, whereas the second Route is used by Route53 to
monitor the health of the Red Hat build of Keycloak cluster.

8.2. PREREQUISITES

Deployment of Red Hat build of Keycloak as described in Deploy Red Hat build of Keycloak for
HA with the Red Hat build of Keycloak Operator on a ROSA cluster running OpenShift 4.14 or
later in two AWS availability zones in AWS one region.

An owned domain for client requests to be routed through.

8.3. PROCEDURE

1. Create a Route53 Hosted Zone using the root domain name through which you want all Red Hat

CHAPTER 8. DEPLOY AN AWS ROUTE 53 LOADBALANCER

39

1

1. Create a Route53 Hosted Zone using the root domain name through which you want all Red Hat
build of Keycloak clients to connect.
Take note of the "Hosted zone ID", because this ID is required in later steps.

2. Retrieve the "Hosted zone ID" and DNS name associated with each ROSA cluster.
For both the Primary and Backup cluster, perform the following steps:

a. Log in to the ROSA cluster.

b. Retrieve the cluster LoadBalancer Hosted Zone ID and DNS hostname

Command:

The AWS region hosting your ROSA cluster

Output:

NOTE

ROSA clusters running OpenShift 4.13 and earlier use classic load balancers
instead of application load balancers. Use the aws elb describe-load-
balancers command and an updated query string instead.

3. Create Route53 health checks

Command:

HOSTNAME=$(oc -n openshift-ingress get svc router-default \
-o jsonpath='{.status.loadBalancer.ingress[].hostname}'
)
aws elbv2 describe-load-balancers \
--query "LoadBalancers[?DNSName=='${HOSTNAME}'].
{CanonicalHostedZoneId:CanonicalHostedZoneId,DNSName:DNSName}" \
--region eu-west-1 \ 1
--output json

[
 {
 "CanonicalHostedZoneId": "Z2IFOLAFXWLO4F",
 "DNSName": "ad62c8d2fcffa4d54aec7ffff902c925-61f5d3e1cbdc5d42.elb.eu-west-
1.amazonaws.com"
 }
]

function createHealthCheck() {
 # Creating a hash of the caller reference to allow for names longer than 64 characters
 REF=($(echo $1 | sha1sum))
 aws route53 create-health-check \
 --caller-reference "$REF" \
 --query "HealthCheck.Id" \
 --no-cli-pager \
 --output text \
 --health-check-config '

Red Hat build of Keycloak 24.0 High Availability Guide

40

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingHostedZone.html

1

2

3

1

2

The domain which Red Hat build of Keycloak clients should connect to. This should be the
same, or a subdomain, of the root domain used to create the Hosted Zone.

The subdomain that will be used for health probes on the Primary cluster

The subdomain that will be used for health probes on the Backup cluster

Output:

The ID of the Primary Health check

The ID of the Backup Health check

4. Create the Route53 record set

Command:

 {
 "Type": "HTTPS",
 "ResourcePath": "/lb-check",
 "FullyQualifiedDomainName": "'$1'",
 "Port": 443,
 "RequestInterval": 30,
 "FailureThreshold": 1,
 "EnableSNI": true
 }
 '
}
CLIENT_DOMAIN="client.keycloak-benchmark.com" 1
PRIMARY_DOMAIN="primary.${CLIENT_DOMAIN}" 2
BACKUP_DOMAIN="backup.${CLIENT_DOMAIN}" 3
createHealthCheck ${PRIMARY_DOMAIN}
createHealthCheck ${BACKUP_DOMAIN}

233e180f-f023-45a3-954e-415303f21eab 1
799e2cbb-43ae-4848-9b72-0d9173f04912 2

HOSTED_ZONE_ID="Z09084361B6LKQQRCVBEY" 1
PRIMARY_LB_HOSTED_ZONE_ID="Z2IFOLAFXWLO4F"
PRIMARY_LB_DNS=ad62c8d2fcffa4d54aec7ffff902c925-61f5d3e1cbdc5d42.elb.eu-west-
1.amazonaws.com
PRIMARY_HEALTH_ID=233e180f-f023-45a3-954e-415303f21eab
BACKUP_LB_HOSTED_ZONE_ID="Z2IFOLAFXWLO4F"
BACKUP_LB_DNS=a184a0e02a5d44a9194e517c12c2b0ec-1203036292.elb.eu-west-
1.amazonaws.com
BACKUP_HEALTH_ID=799e2cbb-43ae-4848-9b72-0d9173f04912
aws route53 change-resource-record-sets \
 --hosted-zone-id Z09084361B6LKQQRCVBEY \
 --query "ChangeInfo.Id" \
 --output text \
 --change-batch '
 {
 "Comment": "Creating Record Set for '${CLIENT_DOMAIN}'",

CHAPTER 8. DEPLOY AN AWS ROUTE 53 LOADBALANCER

41

1 The ID of the Hosted Zone created earlier

 "Changes": [{
 "Action": "CREATE",
 "ResourceRecordSet": {
 "Name": "'${PRIMARY_DOMAIN}'",
 "Type": "A",
 "AliasTarget": {
 "HostedZoneId": "'${PRIMARY_LB_HOSTED_ZONE_ID}'",
 "DNSName": "'${PRIMARY_LB_DNS}'",
 "EvaluateTargetHealth": true
 }
 }
 }, {
 "Action": "CREATE",
 "ResourceRecordSet": {
 "Name": "'${BACKUP_DOMAIN}'",
 "Type": "A",
 "AliasTarget": {
 "HostedZoneId": "'${BACKUP_LB_HOSTED_ZONE_ID}'",
 "DNSName": "'${BACKUP_LB_DNS}'",
 "EvaluateTargetHealth": true
 }
 }
 }, {
 "Action": "CREATE",
 "ResourceRecordSet": {
 "Name": "'${CLIENT_DOMAIN}'",
 "Type": "A",
 "SetIdentifier": "client-failover-primary-'${SUBDOMAIN}'",
 "Failover": "PRIMARY",
 "HealthCheckId": "'${PRIMARY_HEALTH_ID}'",
 "AliasTarget": {
 "HostedZoneId": "'${HOSTED_ZONE_ID}'",
 "DNSName": "'${PRIMARY_DOMAIN}'",
 "EvaluateTargetHealth": true
 }
 }
 }, {
 "Action": "CREATE",
 "ResourceRecordSet": {
 "Name": "'${CLIENT_DOMAIN}'",
 "Type": "A",
 "SetIdentifier": "client-failover-backup-'${SUBDOMAIN}'",
 "Failover": "SECONDARY",
 "HealthCheckId": "'${BACKUP_HEALTH_ID}'",
 "AliasTarget": {
 "HostedZoneId": "'${HOSTED_ZONE_ID}'",
 "DNSName": "'${BACKUP_DOMAIN}'",
 "EvaluateTargetHealth": true
 }
 }
 }]
 }
 '

Red Hat build of Keycloak 24.0 High Availability Guide

42

1

Output:

/change/C053410633T95FR9WN3YI

5. Wait for the Route53 records to be updated

Command:

6. Update or create the Red Hat build of Keycloak deployment
For both the Primary and Backup cluster, perform the following steps:

a. Log in to the ROSA cluster

b. Ensure the Keycloak CR has the following configuration

The domain clients used to connect to Red Hat build of Keycloak

To ensure that request forwarding works, edit the Red Hat build of Keycloak CR to specify
the hostname through which clients will access the Red Hat build of Keycloak instances. This
hostname must be the $CLIENT_DOMAIN used in the Route53 configuration.

c. Create health check Route

Command:

aws route53 wait resource-record-sets-changed --id /change/C053410633T95FR9WN3YI

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: keycloak
spec:
 hostname:
 hostname: ${CLIENT_DOMAIN} 1

cat <<EOF | oc apply -n $NAMESPACE -f - 1
apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: aws-health-route
spec:
 host: $DOMAIN 2
 port:
 targetPort: https
 tls:
 insecureEdgeTerminationPolicy: Redirect
 termination: passthrough
 to:
 kind: Service
 name: keycloak-service
 weight: 100

CHAPTER 8. DEPLOY AN AWS ROUTE 53 LOADBALANCER

43

1

2

$NAMESPACE should be replaced with the namespace of your Red Hat build of
Keycloak deployment

$DOMAIN should be replaced with either the PRIMARY_DOMAIN or
BACKUP_DOMAIN, if the current cluster is the Primary of Backup cluster,
respectively.

8.4. VERIFY

Navigate to the chosen CLIENT_DOMAIN in your local browser and log in to the Red Hat build of
Keycloak console.

To test failover works as expected, log in to the Primary cluster and scale the Red Hat build of Keycloak
deployment to zero Pods. Scaling will cause the Primary’s health checks to fail and Route53 should start
routing traffic to the Red Hat build of Keycloak Pods on the Backup cluster.

 wildcardPolicy: None

EOF

Red Hat build of Keycloak 24.0 High Availability Guide

44

CHAPTER 9. FAIL OVER TO THE SECONDARY SITE
This chapter describes the steps to fail over from primary site to secondary site in a setup as outlined in
Concepts for active-passive deployments together with the blueprints outlined in Building blocks
active-passive deployments.

9.1. WHEN TO USE PROCEDURE

A failover from the primary site to the secondary site will happen automatically based on the checks
configured in the loadbalancer.

When the primary site loses its state in Data Grid or a network partition occurs that prevents the
synchronization, manual procedures are necessary to recover the primary site before it can handle
traffic again, see the Switch back to the primary site chapter.

To prevent an automatic fallback to the primary site before those manual steps have been performed,
configure the loadbalancer as described following to prevent this from happening automatically.

For a graceful switch to the secondary site, follow the instructions in the Switch over to the secondary
site chapter.

See the Multi-site deployments chapter for different operational procedures.

9.2. PROCEDURE

Follow these steps to manually force a failover.

9.2.1. Route53

To force Route53 to mark the primary site as permanently not available and prevent an automatic
fallback, edit the health check in AWS to point to a non-existent route (health/down).

CHAPTER 9. FAIL OVER TO THE SECONDARY SITE

45

CHAPTER 10. SWITCH OVER TO THE SECONDARY SITE
This procedure switches from the primary site to the secondary site when using a setup as outlined in
Concepts for active-passive deployments together with the blueprints outlined in Building blocks
active-passive deployments.

10.1. WHEN TO USE THIS PROCEDURE

Use this procedure to gracefully take the primary offline.

Once the primary site is back online, use the chapters Recover from an out-of-sync passive site and
Switch back to the primary site to return to the original state with the primary site being active.

See the Multi-site deployments chapter for different operational procedures.

10.2. PROCEDURES

10.2.1. Data Grid Cluster

For the context of this chapter, Site-A is the primary site and Site-B is the secondary site.

When you are ready to take a site offline, a good practice is to disable the replication towards it. This
action prevents errors or delays when the channels are disconnected between the primary and the
secondary site.

10.2.1.1. Procedures to transfer state from secondary to primary site

1. Log in into your secondary site

2. Connect into Data Grid Cluster using the Data Grid CLI tool:

Command:

It asks for the username and password for the Data Grid cluster. Those credentials are the one
set in the Deploy Data Grid for HA with the Data Grid Operator chapter in the configuring
credentials section.

Output:

NOTE

The pod name depends on the cluster name defined in the Data Grid CR. The
connection can be done with any pod in the Data Grid cluster.

3. Disable the replication to the primary site by running the following command:

oc -n keycloak exec -it pods/infinispan-0 -- ./bin/cli.sh --trustall --connect
https://127.0.0.1:11222

Username: developer
Password:
[infinispan-0-29897@ISPN//containers/default]>

Red Hat build of Keycloak 24.0 High Availability Guide

46

Command:

Output:

4. Check the replication status is offline.

Command:

Output:

If the status is not offline, repeat the previous step.

The Data Grid cluster in the secondary site is ready to handle requests without trying to replicate to the
primary site.

10.2.2. AWS Aurora Database

Assuming a Regional multi-AZ Aurora deployment, the current writer instance should be in the same
region as the active Red Hat build of Keycloak cluster to avoid latencies and communication across
availability zones.

Switching the writer instance of Aurora will lead to a short downtime. The writer instance in the other
site with a slightly longer latency might be acceptable for some deployments. Therefore, this situation
might be deferred to a maintenance window or skipped depending on the circumstances of the
deployment.

To change the writer instance, run a failover. This change will make the database unavailable for a short
time. Red Hat build of Keycloak will need to re-establish database connections.

To fail over the writer instance to the other AZ, issue the following command:

site take-offline --all-caches --site=site-a

{
 "offlineClientSessions" : "ok",
 "authenticationSessions" : "ok",
 "sessions" : "ok",
 "clientSessions" : "ok",
 "work" : "ok",
 "offlineSessions" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

site status --all-caches --site=site-a

{
 "status" : "offline"
}

aws rds failover-db-cluster --db-cluster-identifier ...

CHAPTER 10. SWITCH OVER TO THE SECONDARY SITE

47

10.2.3. Red Hat build of Keycloak Cluster

No action required.

10.2.4. Route53

To force Route53 to mark the primary site as not available, edit the health check in AWS to point to a
non-existent route (health/down). After some minutes, the clients will notice the change and traffic will
gradually move over to the secondary site.

10.3. FURTHER READING

See Concepts to automate Data Grid CLI commands on how to automate Infinispan CLI commands.

Red Hat build of Keycloak 24.0 High Availability Guide

48

CHAPTER 11. RECOVER FROM AN OUT-OF-SYNC PASSIVE
SITE

This chapter describes the procedures required to synchronize the secondary site with the primary site
in a setup as outlined in Concepts for active-passive deployments together with the blueprints outlined
in Building blocks active-passive deployments.

11.1. WHEN TO USE PROCEDURE

Use this after a temporary disconnection between sites where Data Grid was disconnected and the
contents of the caches are out-of-sync.

At the end of the procedure, the session contents on the secondary site have been discarded and
replaced by the session contents of the primary site. All caches in the secondary site have been cleared
to prevent invalid cached contents.

See the Multi-site deployments chapter for different operational procedures.

11.2. PROCEDURES

11.2.1. Data Grid Cluster

For the context of this chapter, Site-A is the primary site and is active, and Site-B is the secondary site
and is passive.

Network partitions may happen between the site and the replication between the Data Grid cluster will
stop. These procedures bring both sites back in sync.

WARNING

Transferring the full state may impact the Data Grid cluster performance by
increasing the response time and/or resources usage.

The first procedure is to delete the stale data from the secondary site.

1. Login into your secondary site.

2. Shutdown Red Hat build of Keycloak. This will clear all Red Hat build of Keycloak caches, and it
prevents the state of Red Hat build of Keycloak from being out-of-sync with Data Grid.
When deploying Red Hat build of Keycloak using the Red Hat build of Keycloak Operator,
change the number of Red Hat build of Keycloak instances in the Red Hat build of Keycloak
Custom Resource to 0.

3. Connect into Data Grid Cluster using the Data Grid CLI tool:

Command:

CHAPTER 11. RECOVER FROM AN OUT-OF-SYNC PASSIVE SITE

49

It asks for the username and password for the Data Grid cluster. Those credentials are the one
set in the Deploy Data Grid for HA with the Data Grid Operator chapter in the configuring
credentials section.

Output:

NOTE

The pod name depends on the cluster name defined in the Data Grid CR. The
connection can be done with any pod in the Data Grid cluster.

4. Disable the replication from secondary site to the primary site by running the following
command. It prevents the clear request to reach the primary site and delete all the correct
cached data.

Command:

Output:

5. Check the replication status is offline.

Command:

Output:

If the status is not offline, repeat the previous step.

oc -n keycloak exec -it pods/infinispan-0 -- ./bin/cli.sh --trustall --connect
https://127.0.0.1:11222

Username: developer
Password:
[infinispan-0-29897@ISPN//containers/default]>

site take-offline --all-caches --site=site-a

{
 "offlineClientSessions" : "ok",
 "authenticationSessions" : "ok",
 "sessions" : "ok",
 "clientSessions" : "ok",
 "work" : "ok",
 "offlineSessions" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

site status --all-caches --site=site-a

{
 "status" : "offline"
}

Red Hat build of Keycloak 24.0 High Availability Guide

50

WARNING

Make sure the replication is offline otherwise the clear data will clear both
sites.

6. Clear all the cached data in secondary site using the following commands:

Command:

These commands do not print any output.

7. Re-enable the cross-site replication from secondary site to the primary site.

Command:

Output:

8. Check the replication status is online.

Command:

Output:

clearcache actionTokens
clearcache authenticationSessions
clearcache clientSessions
clearcache loginFailures
clearcache offlineClientSessions
clearcache offlineSessions
clearcache sessions
clearcache work

site bring-online --all-caches --site=site-a

{
 "offlineClientSessions" : "ok",
 "authenticationSessions" : "ok",
 "sessions" : "ok",
 "clientSessions" : "ok",
 "work" : "ok",
 "offlineSessions" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

site status --all-caches --site=site-a

CHAPTER 11. RECOVER FROM AN OUT-OF-SYNC PASSIVE SITE

51

Now we are ready to transfer the state from the primary site to the secondary site.

1. Login into your primary site

2. Connect into Data Grid Cluster using the Data Grid CLI tool:

Command:

It asks for the username and password for the Data Grid cluster. Those credentials are the one
set in the Deploy Data Grid for HA with the Data Grid Operator chapter in the configuring
credentials section.

Output:

NOTE

The pod name depends on the cluster name defined in the Data Grid CR. The
connection can be done with any pod in the Data Grid cluster.

3. Trigger the state transfer from the primary site to the secondary site.

Command:

Output:

4. Check the replication status is online for all caches.

Command:

{
 "status" : "online"
}

oc -n keycloak exec -it pods/infinispan-0 -- ./bin/cli.sh --trustall --connect
https://127.0.0.1:11222

Username: developer
Password:
[infinispan-0-29897@ISPN//containers/default]>

site push-site-state --all-caches --site=site-b

{
 "offlineClientSessions" : "ok",
 "authenticationSessions" : "ok",
 "sessions" : "ok",
 "clientSessions" : "ok",
 "work" : "ok",
 "offlineSessions" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

Red Hat build of Keycloak 24.0 High Availability Guide

52

Output:

5. Wait for the state transfer to complete by checking the output of push-site-status command
for all caches.

Command:

Output:

Check the table in this section for the Cross-Site Documentation for the possible status values.

If an error is reported, repeat the state transfer for that specific cache.

Command:

site status --all-caches --site=site-b

{
 "status" : "online"
}

site push-site-status --cache=actionTokens
site push-site-status --cache=authenticationSessions
site push-site-status --cache=clientSessions
site push-site-status --cache=loginFailures
site push-site-status --cache=offlineClientSessions
site push-site-status --cache=offlineSessions
site push-site-status --cache=sessions
site push-site-status --cache=work

{
 "site-b" : "OK"
}
{
 "site-b" : "OK"
}
{
 "site-b" : "OK"
}
{
 "site-b" : "OK"
}
{
 "site-b" : "OK"
}
{
 "site-b" : "OK"
}
{
 "site-b" : "OK"
}
{
 "site-b" : "OK"
}

CHAPTER 11. RECOVER FROM AN OUT-OF-SYNC PASSIVE SITE

53

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_cross-site_replication/index#rest_v2_xsite_state_push_cross-site-operations-rest

6. Clear/reset the state transfer status with the following command

Command:

Output:

As now the state is available in the secondary site, Red Hat build of Keycloak can be started again:

1. Login into your secondary site.

2. Startup Red Hat build of Keycloak.
When deploying Red Hat build of Keycloak using the Red Hat build of Keycloak Operator,
change the number of Red Hat build of Keycloak instances in the Red Hat build of Keycloak
Custom Resource to the original value.

11.2.2. AWS Aurora Database

No action required.

11.2.3. Route53

No action required.

11.3. FURTHER READING

See Concepts to automate Data Grid CLI commands on how to automate Infinispan CLI commands.

site push-site-state --cache=<cache-name> --site=site-b

site clear-push-site-status --cache=actionTokens
site clear-push-site-status --cache=authenticationSessions
site clear-push-site-status --cache=clientSessions
site clear-push-site-status --cache=loginFailures
site clear-push-site-status --cache=offlineClientSessions
site clear-push-site-status --cache=offlineSessions
site clear-push-site-status --cache=sessions
site clear-push-site-status --cache=work

"ok"
"ok"
"ok"
"ok"
"ok"
"ok"
"ok"
"ok"

Red Hat build of Keycloak 24.0 High Availability Guide

54

CHAPTER 12. SWITCH BACK TO THE PRIMARY SITE
These procedures switch back to the primary site back after a failover or switchover to the secondary
site. In a setup as outlined in Concepts for active-passive deployments together with the blueprints
outlined in Building blocks active-passive deployments.

12.1. WHEN TO USE THIS PROCEDURE

These procedures bring the primary site back to operation when the secondary site is handling all the
traffic. At the end of the chapter, the primary site is online again and handles the traffic.

This procedure is necessary when the primary site has lost its state in Data Grid, a network partition
occurred between the primary and the secondary site while the secondary site was active, or the
replication was disabled as described in the Switch over to the secondary site chapter.

If the data in Data Grid on both sites is still in sync, the procedure for Data Grid can be skipped.

See the Multi-site deployments chapter for different operational procedures.

12.2. PROCEDURES

12.2.1. Data Grid Cluster

For the context of this chapter, Site-A is the primary site, recovering back to operation, and Site-B is
the secondary site, running in production.

After the Data Grid in the primary site is back online and has joined the cross-site channel (see Deploy
Data Grid for HA with the Data Grid Operator#verifying-the-deployment on how to verify the Data Grid
deployment), the state transfer must be manually started from the secondary site.

After clearing the state in the primary site, it transfers the full state from the secondary site to the
primary site, and it must be completed before the primary site can start handling incoming requests.

WARNING

Transferring the full state may impact the Data Grid cluster perform by increasing
the response time and/or resources usage.

The first procedure is to delete any stale data from the primary site.

1. Log in to the primary site.

2. Shutdown Red Hat build of Keycloak. This action will clear all Red Hat build of Keycloak caches
and prevents the state of Red Hat build of Keycloak from being out-of-sync with Data Grid.
When deploying Red Hat build of Keycloak using the Red Hat build of Keycloak Operator,
change the number of Red Hat build of Keycloak instances in the Red Hat build of Keycloak
Custom Resource to 0.

3. Connect into Data Grid Cluster using the Data Grid CLI tool:

Command:

CHAPTER 12. SWITCH BACK TO THE PRIMARY SITE

55

Command:

It asks for the username and password for the Data Grid cluster. Those credentials are the one
set in the Deploy Data Grid for HA with the Data Grid Operator chapter in the configuring
credentials section.

Output:

NOTE

The pod name depends on the cluster name defined in the Data Grid CR. The
connection can be done with any pod in the Data Grid cluster.

4. Disable the replication from primary site to the secondary site by running the following
command. It prevents the clear request to reach the secondary site and delete all the correct
cached data.

Command:

Output:

5. Check the replication status is offline.

Command:

Output:

oc -n keycloak exec -it pods/infinispan-0 -- ./bin/cli.sh --trustall --connect
https://127.0.0.1:11222

Username: developer
Password:
[infinispan-0-29897@ISPN//containers/default]>

site take-offline --all-caches --site=site-b

{
 "offlineClientSessions" : "ok",
 "authenticationSessions" : "ok",
 "sessions" : "ok",
 "clientSessions" : "ok",
 "work" : "ok",
 "offlineSessions" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

site status --all-caches --site=site-b

{
 "status" : "offline"
}

Red Hat build of Keycloak 24.0 High Availability Guide

56

If the status is not offline, repeat the previous step.

WARNING

Make sure the replication is offline otherwise the clear data will clear both
sites.

6. Clear all the cached data in primary site using the following commands:

Command:

These commands do not print any output.

7. Re-enable the cross-site replication from primary site to the secondary site.

Command:

Output:

8. Check the replication status is online.

Command:

Output:

clearcache actionTokens
clearcache authenticationSessions
clearcache clientSessions
clearcache loginFailures
clearcache offlineClientSessions
clearcache offlineSessions
clearcache sessions
clearcache work

site bring-online --all-caches --site=site-b

{
 "offlineClientSessions" : "ok",
 "authenticationSessions" : "ok",
 "sessions" : "ok",
 "clientSessions" : "ok",
 "work" : "ok",
 "offlineSessions" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

site status --all-caches --site=site-b

CHAPTER 12. SWITCH BACK TO THE PRIMARY SITE

57

Now we are ready to transfer the state from the secondary site to the primary site.

1. Log in into your secondary site.

2. Connect into Data Grid Cluster using the Data Grid CLI tool:

Command:

It asks for the username and password for the Data Grid cluster. Those credentials are the one
set in the Deploy Data Grid for HA with the Data Grid Operator chapter in the configuring
credentials section.

Output:

NOTE

The pod name depends on the cluster name defined in the Data Grid CR. The
connection can be done with any pod in the Data Grid cluster.

3. Trigger the state transfer from the secondary site to the primary site.

Command:

Output:

4. Check the replication status is online for all caches.

Command:

{
 "status" : "online"
}

oc -n keycloak exec -it pods/infinispan-0 -- ./bin/cli.sh --trustall --connect
https://127.0.0.1:11222

Username: developer
Password:
[infinispan-0-29897@ISPN//containers/default]>

site push-site-state --all-caches --site=site-a

{
 "offlineClientSessions" : "ok",
 "authenticationSessions" : "ok",
 "sessions" : "ok",
 "clientSessions" : "ok",
 "work" : "ok",
 "offlineSessions" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

Red Hat build of Keycloak 24.0 High Availability Guide

58

Output:

5. Wait for the state transfer to complete by checking the output of push-site-status command
for all caches.

Command:

Output:

Check the table in this section for the Cross-Site Documentation for the possible status values.

If an error is reported, repeat the state transfer for that specific cache.

Command:

site status --all-caches --site=site-a

{
 "status" : "online"
}

site push-site-status --cache=actionTokens
site push-site-status --cache=authenticationSessions
site push-site-status --cache=clientSessions
site push-site-status --cache=loginFailures
site push-site-status --cache=offlineClientSessions
site push-site-status --cache=offlineSessions
site push-site-status --cache=sessions
site push-site-status --cache=work

{
 "site-a" : "OK"
}
{
 "site-a" : "OK"
}
{
 "site-a" : "OK"
}
{
 "site-a" : "OK"
}
{
 "site-a" : "OK"
}
{
 "site-a" : "OK"
}
{
 "site-a" : "OK"
}
{
 "site-a" : "OK"
}

CHAPTER 12. SWITCH BACK TO THE PRIMARY SITE

59

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_cross-site_replication/index#rest_v2_xsite_state_push_cross-site-operations-rest

6. Clear/reset the state transfer status with the following command

Command:

Output:

7. Log in to the primary site.

8. Start Red Hat build of Keycloak.
When deploying Red Hat build of Keycloak using the Red Hat build of Keycloak Operator,
change the number of Red Hat build of Keycloak instances in the Red Hat build of Keycloak
Custom Resource to the original value.

Both Data Grid clusters are in sync and the switchover from secondary back to the primary site can be
performed.

12.2.2. AWS Aurora Database

Assuming a Regional multi-AZ Aurora deployment, the current writer instance should be in the same
region as the active Red Hat build of Keycloak cluster to avoid latencies and communication across
availability zones.

Switching the writer instance of Aurora will lead to a short downtime. The writer instance in the other
site with a slightly longer latency might be acceptable for some deployments. Therefore, this situation
might be deferred to a maintenance window or skipped depending on the circumstances of the
deployment.

To change the writer instance, run a failover. This change will make the database unavailable for a short
time. Red Hat build of Keycloak will need to re-establish database connections.

To fail over the writer instance to the other AZ, issue the following command:

site push-site-state --cache=<cache-name> --site=site-a

site clear-push-site-status --cache=actionTokens
site clear-push-site-status --cache=authenticationSessions
site clear-push-site-status --cache=clientSessions
site clear-push-site-status --cache=loginFailures
site clear-push-site-status --cache=offlineClientSessions
site clear-push-site-status --cache=offlineSessions
site clear-push-site-status --cache=sessions
site clear-push-site-status --cache=work

"ok"
"ok"
"ok"
"ok"
"ok"
"ok"
"ok"
"ok"

aws rds failover-db-cluster --db-cluster-identifier ...

Red Hat build of Keycloak 24.0 High Availability Guide

60

12.2.3. Route53

If switching over to the secondary site has been triggered by changing the health endpoint, edit the
health check in AWS to point to a correct endpoint (health/live). After some minutes, the clients will
notice the change and traffic will gradually move over to the secondary site.

12.3. FURTHER READING

See Concepts to automate Data Grid CLI commands on how to automate Infinispan CLI commands.

CHAPTER 12. SWITCH BACK TO THE PRIMARY SITE

61

CHAPTER 13. CONCEPTS FOR CONFIGURING THREAD
POOLS

This section is intended when you want to understand the considerations and best practices on how to
configure thread pools connection pools for Red Hat build of Keycloak. For a configuration where this is
applied, visit Deploy Red Hat build of Keycloak for HA with the Red Hat build of Keycloak Operator .

13.1. CONCEPTS

13.1.1. Quarkus executor pool

Red Hat build of Keycloak requests, as well as blocking probes, are handled by an executor pool.
Depending on the available CPU cores, it has a maximum size of 200 or more threads. Threads are
created as needed, and will end when no longer needed, so the system will scale up and down
automatically. Red Hat build of Keycloak allows configuring the maximum thread pool size by the http-
pool-max-threads configuration option. See Deploy Red Hat build of Keycloak for HA with the Red Hat
build of Keycloak Operator for an example.

When running on Kubernetes, adjust the number of worker threads to avoid creating more load than
what the CPU limit allows for the Pod to avoid throttling, which would lead to congestion. When running
on physical machines, adjust the number of worker threads to avoid creating more load than the node
can handle to avoid congestion. Congestion would result in longer response times and an increased
memory usage, and eventually an unstable system.

Ideally, you should start with a low limit of threads and adjust it accordingly to the target throughput and
response time. When the load and the number of threads increases, the database connections can also
become a bottleneck. Once a request cannot acquire a database connection within 5 seconds, it will fail
with a message in the log like Unable to acquire JDBC Connection. The caller will receive a response
with a 5xx HTTP status code indicating a server side error.

If you increase the number of database connections and the number of threads too much, the system
will be congested under a high load with requests queueing up, which leads to a bad performance. The
number of database connections is configured via the Database settings db-pool-initial-size, db-pool-
min-size and db-pool-max-size respectively. Low numbers ensure fast response times for all clients,
even if there is an occasionally failing request when there is a load spike.

13.1.2. JGroups connection pool

The combined number of executor threads in all Red Hat build of Keycloak nodes in the cluster should
not exceed the number of threads available in JGroups thread pool to avoid the error
org.jgroups.util.ThreadPool: thread pool is full. To see the error the first time it happens, the system
property jgroups.thread_dumps_threshold needs to be set to 1, as otherwise the message appears
only after 10000 threads have been rejected.

The number of JGroup threads is 200 by default. While it can be configured using the property Java
system property jgroups.thread_pool.max_threads, we advise keeping it at this value. As shown in
experiments, the total number of Quarkus worker threads in the cluster must not exceed the number of
threads in the JGroup thread pool of 200 in each node to avoid deadlocks in the JGroups
communication. Given a Red Hat build of Keycloak cluster with four Pods, each Pod should then have 50
Quarkus worker threads. Use the Red Hat build of Keycloak configuration option http-pool-max-threads
to configure the maximum number of Quarkus worker threads.

Use the metrics vendor_jgroups_tcp_get_thread_pool_size to monitor the total JGroup threads in
the pool and vendor_jgroups_tcp_get_thread_pool_size_active for the threads active in the pool.

Red Hat build of Keycloak 24.0 High Availability Guide

62

{links_server_all-config_url}?q=http-pool-max-threads
{links_server_all-config_url}?q=db-pool

This is useful to monitor that limiting the Quarkus thread pool size keeps the number of active JGroup
threads below the maximum JGroup thread pool size.

13.1.3. Load Shedding

By default, Red Hat build of Keycloak will queue all incoming requests infinitely, even if the request
processing stalls. This will use additional memory in the Pod, can exhaust resources in the load
balancers, and the requests will eventually time out on the client side without the client knowing if the
request has been processed. To limit the number of queued requests in Red Hat build of Keycloak, set
an additional Quarkus configuration option.

Configure http-max-queued-requests to specify a maximum queue length to allow for effective load
shedding once this queue size is exceeded. Assuming a Red Hat build of Keycloak Pod processes around
200 requests per second, a queue of 1000 would lead to maximum waiting times of around 5 seconds.

When this setting is active, requests that exceed the number of queued requests will return with an
HTTP 503 error. Red Hat build of Keycloak logs the error message in its log.

13.1.4. Probes

Red Hat build of Keycloak’s liveness probe is non-blocking to avoid a restart of a Pod under a high load.

The overall health probe and the readiness can probe in some cases block to check the connection to
the database, so they might fail under a high load. Due to this, a Pod can become non-ready under a
high load.

13.1.5. OS Resources

In order for Java to create threads, when running on Linux it needs to have file handles available.
Therefore, the number of open files (as retrieved as ulimit -n on Linux) need to provide head-space for
Red Hat build of Keycloak to increase the number of threads needed. Each thread will also consume
memory, and the container memory limits need to be set to a value that allows for this or the Pod will be
killed by Kubernetes.

CHAPTER 13. CONCEPTS FOR CONFIGURING THREAD POOLS

63

CHAPTER 14. CONCEPTS FOR DATABASE CONNECTION
POOLS

This section is intended when you want to understand considerations and best practices on how to
configure database connection pools for Red Hat build of Keycloak. For a configuration where this is
applied, visit Deploy Red Hat build of Keycloak for HA with the Red Hat build of Keycloak Operator .

14.1. CONCEPTS

Creating new database connections is expensive as it takes time. Creating them when a request arrives
will delay the response, so it is good to have them created before the request arrives. It can also
contribute to a stampede effect where creating a lot of connections in a short time makes things worse
as it slows down the system and blocks threads. Closing a connection also invalidates all server side
statements caching for that connection.

For the best performance, the values for the initial, minimal and maximum database connection pool size
should all be equal. This avoids creating new database connections when a new request comes in which is
costly.

Keeping the database connection open for as long as possible allows for server side statement caching
bound to a connection. In the case of PostgreSQL, to use a server-side prepared statement, a query
needs to be executed (by default) at least five times.

See the PostgreSQL docs on prepared statements for more information.

Red Hat build of Keycloak 24.0 High Availability Guide

64

https://en.wikipedia.org/wiki/Cache_stampede
https://jdbc.postgresql.org/documentation/server-prepare/#activation
https://www.postgresql.org/docs/current/sql-prepare.html

CHAPTER 15. CONCEPTS FOR SIZING CPU AND MEMORY
RESOURCES

Use this as a starting point to size a product environment. Adjust the values for your environment as
needed based on your load tests.

15.1. PERFORMANCE RECOMMENDATIONS

WARNING

Performance will be lowered when scaling to more Pods (due to additional
overhead) and using a cross-datacenter setup (due to additional traffic and
operations).

Increased cache sizes can improve the performance when Red Hat build of
Keycloak instances running for a longer time. This will decrease response
times and reduce IOPS on the database. Still, those caches need to be filled
when an instance is restarted, so do not set resources too tight based on
the stable state measured once the caches have been filled.

Use these values as a starting point and perform your own load tests before
going into production.

Summary:

The used CPU scales linearly with the number of requests up to the tested limit below.

The used memory scales linearly with the number of active sessions up to the tested limit below.

Recommendations:

The base memory usage for an inactive Pod is 1000 MB of RAM.

For each 100,000 active user sessions, add 500 MB per Pod in a three-node cluster (tested
with up to 200,000 sessions).
This assumes that each user connects to only one client. Memory requirements increase with
the number of client sessions per user session (not tested yet).

In containers, Keycloak allocates 70% of the memory limit for heap based memory. It will also use
approximately 300 MB of non-heap-based memory. To calculate the requested memory, use
the calculation above. As memory limit, subtract the non-heap memory from the value above
and divide the result by 0.7.

For each 8 password-based user logins per second, 1 vCPU per Pod in a three-node cluster
(tested with up to 300 per second).
Red Hat build of Keycloak spends most of the CPU time hashing the password provided by the
user, and it is proportional to the number of hash iterations.

For each 450 client credential grants per second, 1 vCPU per Pod in a three node cluster
(tested with up to 2000 per second).

CHAPTER 15. CONCEPTS FOR SIZING CPU AND MEMORY RESOURCES

65

Most CPU time goes into creating new TLS connections, as each client runs only a single
request.

For each 350 refresh token requests per second, 1 vCPU per Pod in a three-node cluster
(tested with up to 435 refresh token requests per second).

Leave 200% extra head-room for CPU usage to handle spikes in the load. This ensures a fast
startup of the node, and sufficient capacity to handle failover tasks like, for example, re-
balancing Infinispan caches, when one node fails. Performance of Red Hat build of Keycloak
dropped significantly when its Pods were throttled in our tests.

15.1.1. Calculation example

Target size:

50,000 active user sessions

24 logins per seconds

450 client credential grants per second

350 refresh token requests per second

Limits calculated:

CPU requested: 5 vCPU
(24 logins per second = 3 vCPU, 450 client credential grants per second = 1 vCPU, 350 refresh
token = 1 vCPU)

CPU limit: 15 vCPU
(Allow for three times the CPU requested to handle peaks, startups and failover tasks)

Memory requested: 1250 MB
(1000 MB base memory plus 250 MB RAM for 50,000 active sessions)

Memory limit: 1360 MB
(1250 MB expected memory usage minus 300 non-heap-usage, divided by 0.7)

15.2. REFERENCE ARCHITECTURE

The following setup was used to retrieve the settings above to run tests of about 10 minutes for
different scenarios:

OpenShift 4.14.x deployed on AWS via ROSA.

Machinepool with m5.4xlarge instances.

Red Hat build of Keycloak deployed with the Operator and 3 pods in a high-availability setup
with two sites in active/passive mode.

OpenShift’s reverse proxy running in passthrough mode were the TLS connection of the client is
terminated at the Pod.

Database Amazon Aurora PostgreSQL in a multi-AZ setup, with the writer instance in the
availability zone of the primary site.

Default user password hashing with PBKDF2(SHA512) 210,000 hash iterations which is the

Red Hat build of Keycloak 24.0 High Availability Guide

66

Default user password hashing with PBKDF2(SHA512) 210,000 hash iterations which is the
default as recommended by OWASP .

Client credential grants don’t use refresh tokens (which is the default).

Database seeded with 20,000 users and 20,000 clients.

Infinispan local caches at default of 10,000 entries, so not all clients and users fit into the cache,
and some requests will need to fetch the data from the database.

All sessions in distributed caches as per default, with two owners per entries, allowing one failing
Pod without losing data.

CHAPTER 15. CONCEPTS FOR SIZING CPU AND MEMORY RESOURCES

67

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2

1

2

3

CHAPTER 16. CONCEPTS TO AUTOMATE DATA GRID CLI
COMMANDS

When interacting with an external Data Grid in Kubernetes, the Batch CR allows you to automate this
using standard oc commands.

16.1. WHEN TO USE IT

Use this when automating interactions on Kubernetes. This avoids providing usernames and passwords
and checking shell script outputs and their status.

For human interactions, the CLI shell might still be a better fit.

16.2. EXAMPLE

The following Batch CR takes a site offline as described in the operational procedure Switch over to the
secondary site.

The Batch CR must be created in the same namespace as the Data Grid deployment.

The name of the Infinispan CR.

A multiline string containing one or more Data Grid CLI commands.

Once the CR has been created, wait for the status to show the completion.

NOTE

Modifying a Batch CR instance has no effect. Batch operations are “one-time” events
that modify Infinispan resources. To update .spec fields for the CR, or when a batch
operation fails, you must create a new instance of the Batch CR.

16.3. FURTHER READING

For more information, see the Data Grid Operator Batch CR documentation.

apiVersion: infinispan.org/v2alpha1
kind: Batch
metadata:
 name: take-offline
 namespace: keycloak 1
spec:
 cluster: infinispan 2
 config: | 3
 site take-offline --all-caches --site=site-a
 site status --all-caches --site=site-a

oc -n keycloak wait --for=jsonpath='{.status.phase}'=Succeeded Batch/take-offline

Red Hat build of Keycloak 24.0 High Availability Guide

68

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_operator_guide/index#batch-cr

CHAPTER 16. CONCEPTS TO AUTOMATE DATA GRID CLI COMMANDS

69

	Table of Contents
	CHAPTER 1. MULTI-SITE DEPLOYMENTS
	CHAPTER 2. CONCEPTS FOR ACTIVE-PASSIVE DEPLOYMENTS
	2.1. WHEN TO USE THIS SETUP
	2.2. DEPLOYMENT, DATA STORAGE AND CACHING
	2.3. CAUSES OF DATA AND SERVICE LOSS
	2.4. FAILURES WHICH THIS SETUP CAN SURVIVE
	2.5. KNOWN LIMITATIONS
	2.6. QUESTIONS AND ANSWERS
	2.7. NEXT STEPS

	CHAPTER 3. BUILDING BLOCKS ACTIVE-PASSIVE DEPLOYMENTS
	3.1. PREREQUISITES
	3.2. TWO SITES WITH LOW-LATENCY CONNECTION
	3.3. ENVIRONMENT FOR RED HAT BUILD OF KEYCLOAK AND DATA GRID
	3.4. DATABASE
	3.5. DATA GRID
	3.6. RED HAT BUILD OF KEYCLOAK
	3.7. LOAD BALANCER

	CHAPTER 4. DEPLOY AWS AURORA IN MULTIPLE AVAILABILITY ZONES
	4.1. ARCHITECTURE
	4.2. PROCEDURE
	4.2.1. Create Aurora database Cluster
	4.2.2. Establish Peering Connections with ROSA clusters

	4.3. VERIFYING THE CONNECTION
	4.4. DEPLOYING RED HAT BUILD OF KEYCLOAK

	CHAPTER 5. DEPLOY RED HAT BUILD OF KEYCLOAK FOR HA WITH THE RED HAT BUILD OF KEYCLOAK OPERATOR
	5.1. PREREQUISITES
	5.2. PROCEDURE
	5.3. VERIFYING THE DEPLOYMENT
	5.4. OPTIONAL: LOAD SHEDDING
	5.5. OPTIONAL: DISABLE STICKY SESSIONS

	CHAPTER 6. DEPLOY DATA GRID FOR HA WITH THE DATA GRID OPERATOR
	6.1. ARCHITECTURE
	6.2. PREREQUISITES
	6.3. PROCEDURE
	6.4. VERIFYING THE DEPLOYMENT
	6.5. NEXT STEPS

	CHAPTER 7. CONNECT RED HAT BUILD OF KEYCLOAK WITH AN EXTERNAL DATA GRID
	7.1. ARCHITECTURE
	7.2. PREREQUISITES
	7.3. PROCEDURE
	7.4. RELEVANT OPTIONS

	CHAPTER 8. DEPLOY AN AWS ROUTE 53 LOADBALANCER
	8.1. ARCHITECTURE
	8.2. PREREQUISITES
	8.3. PROCEDURE
	8.4. VERIFY

	CHAPTER 9. FAIL OVER TO THE SECONDARY SITE
	9.1. WHEN TO USE PROCEDURE
	9.2. PROCEDURE
	9.2.1. Route53

	CHAPTER 10. SWITCH OVER TO THE SECONDARY SITE
	10.1. WHEN TO USE THIS PROCEDURE
	10.2. PROCEDURES
	10.2.1. Data Grid Cluster
	10.2.1.1. Procedures to transfer state from secondary to primary site

	10.2.2. AWS Aurora Database
	10.2.3. Red Hat build of Keycloak Cluster
	10.2.4. Route53

	10.3. FURTHER READING

	CHAPTER 11. RECOVER FROM AN OUT-OF-SYNC PASSIVE SITE
	11.1. WHEN TO USE PROCEDURE
	11.2. PROCEDURES
	11.2.1. Data Grid Cluster
	11.2.2. AWS Aurora Database
	11.2.3. Route53

	11.3. FURTHER READING

	CHAPTER 12. SWITCH BACK TO THE PRIMARY SITE
	12.1. WHEN TO USE THIS PROCEDURE
	12.2. PROCEDURES
	12.2.1. Data Grid Cluster
	12.2.2. AWS Aurora Database
	12.2.3. Route53

	12.3. FURTHER READING

	CHAPTER 13. CONCEPTS FOR CONFIGURING THREAD POOLS
	13.1. CONCEPTS
	13.1.1. Quarkus executor pool
	13.1.2. JGroups connection pool
	13.1.3. Load Shedding
	13.1.4. Probes
	13.1.5. OS Resources

	CHAPTER 14. CONCEPTS FOR DATABASE CONNECTION POOLS
	14.1. CONCEPTS

	CHAPTER 15. CONCEPTS FOR SIZING CPU AND MEMORY RESOURCES
	15.1. PERFORMANCE RECOMMENDATIONS
	15.1.1. Calculation example

	15.2. REFERENCE ARCHITECTURE

	CHAPTER 16. CONCEPTS TO AUTOMATE DATA GRID CLI COMMANDS
	16.1. WHEN TO USE IT
	16.2. EXAMPLE
	16.3. FURTHER READING

