
Red Hat build of Keycloak 24.0

Migration Guide

Last Updated: 2024-06-27

Red Hat build of Keycloak 24.0 Migration Guide

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of the migration guide for Red Hat build of Keycloak.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. MIGRATING RED HAT SINGLE SIGN-ON 7.6 TO RED HAT BUILD OF KEYCLOAK

CHAPTER 2. MIGRATING A RED HAT SINGLE SIGN-ON 7.6 SERVER
2.1. PREREQUISITES
2.2. MIGRATION PROCESS OVERVIEW
2.3. DOWNLOADING RED HAT BUILD OF KEYCLOAK
2.4. MIGRATING THE CONFIGURATION

2.4.1. Migrating the database configuration
2.4.2. Migrating HTTP and TLS configuration
2.4.3. Migrating clustering and cache configuration
2.4.4. Migrating hostname and proxy configuration
2.4.5. Migrating truststore configuration
2.4.6. Migrating vault configuration
2.4.7. Migrating JVM settings
2.4.8. Migrating SPI provider configuration
2.4.9. Troubleshooting the configuration

2.5. MIGRATING THE DATABASE
2.5.1. Automatic relational database migration
2.5.2. Manual relational database migration

2.6. STARTING THE RED HAT BUILD OF KEYCLOAK SERVER
2.6.1. Starting the server in development mode
2.6.2. Starting the server in production mode

CHAPTER 3. MIGRATING OPERATOR DEPLOYMENTS ON OPENSHIFT
3.1. PREREQUISITES
3.2. MIGRATION PROCESS
3.3. MIGRATING KEYCLOAK CR

3.3.1. Migrating database configuration
3.3.1.1. Supported database vendors

3.3.2. Migrating TLS configuration
3.3.3. Using a custom image for extensions
3.3.4. Upgrade strategy option removed
3.3.5. Health endpoint exposed by default
3.3.6. Migrating advanced deployment options using Pod templates
3.3.7. Connecting to an external instance is no longer supported
3.3.8. Migrating Horizontal Pod Autoscaler enabled deployments

3.4. MIGRATING THE KEYCLOAK REALM CR
3.5. REMOVED CRS

CHAPTER 4. MIGRATING TEMPLATES DEPLOYMENTS ON OPENSHIFT
4.1. MIGRATING DEPLOYMENTS WITH THE INTERNAL H2 DATABASE
4.2. MIGRATING DEPLOYMENTS WITH EPHEMERAL POSTGRESQL DATABASE
4.3. MIGRATING DEPLOYMENTS WITH PERSISTENT POSTGRESQL DATABASE

4.3.1. Prerequisites
4.4. MIGRATION PROCESS

4.4.1. General Parameter Migration
4.4.2. Database Deployment Parameter Migration
4.4.3. Database Connection Parameter Migration
4.4.4. Networking Parameter Migration
4.4.5. JGroups Parameter Migration

CHAPTER 5. MIGRATING APPLICATIONS SECURED BY RED HAT SINGLE SIGN-ON 7.6

5

6
6
6
6
6
7
8
9
11

12
13
13
14
14
14
15
15
15
15
16

17
17
17
17
18
19
19

20
20
21
22
22
22
22
23

24
24
24
24
25
25
26
27
27
27
28

29

Table of Contents

1

. .

. .

. .

5.1. MIGRATING OPENID CONNECT CLIENTS
5.1.1. Key changes in OpenID Connect protocol and client settings

5.1.1.1. Access Type client option no longer available
5.1.1.2. Changes in validating schemes for valid redirect URIs
5.1.1.3. Support for the client_id parameter in OpenID Connect Logout Endpoint

5.1.2. Valid Post Logout Redirect URIs
5.1.2.1. UserInfo Endpoint Changes

5.1.2.1.1. Error response changes
5.1.2.1.2. Other Changes to the UserInfo endpoint
5.1.2.1.3. Change of the default Client ID mapper of Service Account Client.
5.1.2.1.4. Added iss parameter to OAuth 2.0/OpenID Connect Authentication Response

5.2. MIGRATING RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM APPLICATIONS
5.2.1. Red Hat JBoss Enterprise Application Platform 8.x
5.2.2. Red Hat JBoss Enterprise Application Platform 7.x
5.2.3. Red Hat JBoss Enterprise Application Platform 6.x

5.3. MIGRATING SPRING BOOT APPLICATIONS
5.4. MIGRATING RED HAT FUSE APPLICATIONS
5.5. MIGRATING APPLICATIONS USING THE AUTHORIZATION SERVICES POLICY ENFORCER
5.6. MIGRATING SINGLE PAGE APPLICATIONS (SPA) USING THE RED HAT BUILD OF KEYCLOAK JS
ADAPTER

5.6.1. Legacy Promise API removed
5.6.2. Required to be instantiated with the new operator

5.7. MIGRATING SAML APPLICATIONS
5.7.1. Migrating Red Hat JBoss Enterprise Application Platform applications

5.7.1.1. Red Hat JBoss Enterprise Application Platform 8.x
5.7.1.2. Red Hat JBoss Enterprise Application Platform 7.x
5.7.1.3. Red Hat JBoss Enterprise Application Platform 6.x

5.7.2. Key changes in SAML protocol and client settings
5.7.2.1. SAML SP metadata changes
5.7.2.2. Deprecated RSA_SHA1 and DSA_SHA1 algorithms for SAML

CHAPTER 6. MIGRATING CUSTOM PROVIDERS
6.1. TRANSITION FROM JAVA EE TO JAKARTA EE
6.2. REMOVED THIRD PARTY DEPENDENCIES
6.3. CONTEXT AND DEPENDENCY INJECTION ARE NO LONGER ENABLED FOR JAX-RS RESOURCES
6.4. DEPRECATED METHODS FROM DATA PROVIDERS AND MODELS

6.4.1. List of changed interfaces
6.4.2. Refactorings in the storage layer

6.4.2.1. Changes in the module structure
6.4.2.2. Changes in KeycloakSession

6.4.3. Migrating existing providers
6.4.4. Changes to RealmModel
6.4.5. Interface UserCache moved to the legacy module
6.4.6. Credential management for users

CHAPTER 7. MIGRATING CUSTOM THEMES
7.1. NEW ADMIN CONSOLE
7.2. NEW ACCOUNT CONSOLE
7.3. MIGRATING LOGIN THEMES

CHAPTER 8. MIGRATING UPSTREAM KEYCLOAK TO RED HAT BUILD OF KEYCLOAK 24.0
8.1. MATCHING KEYCLOAK VERSION
8.2. MIGRATION BASED ON TYPE OF KEYCLOAK INSTALLATION

29
29
29
30
30
30
30
30
31
31
31
31
31
32
32
32
33
33

34
34
34
34
34
34
34
34
34
35
35

36
36
36
37
37
38
39
39
40
40
41
41

42

44
44
44
44

45
45
45

Red Hat build of Keycloak 24.0 Migration Guide

2

. .CHAPTER 9. OTHER NOTABLE CHANGES
9.1. JAVASCRIPT ENGINE AVAILABLE BY DEFAULT ON THE CLASSPATH
9.2. RENAMED KEYCLOAK ADMIN CLIENT ARTIFACTS

9.2.1. Jakarta EE support
9.2.2. Java EE support

9.3. NEVER EXPIRES OPTION REMOVED FROM CLIENT ADVANCED SETTINGS COMBOS
9.4. NEW EMAIL RULES AND LIMITS VALIDATION

46
46
46
46
46
47
47

Table of Contents

3

Red Hat build of Keycloak 24.0 Migration Guide

4

CHAPTER 1. MIGRATING RED HAT SINGLE SIGN-ON 7.6 TO
RED HAT BUILD OF KEYCLOAK

The purpose of this guide is to document the steps that are required to successfully migrate Red Hat
Single Sign-On 7.6 to Red Hat build of Keycloak 24.0. The instructions address migration of the
following elements:

Red Hat Single Sign-On 7.6 server

Operator deployments on OpenShift

Template deployments on OpenShift

Applications secured by Red Hat Single Sign-On 7.6

Custom providers

Custom themes

This guide also includes guidelines for migrating upstream Keycloak to Red Hat build of Keycloak 24.0.
Before you start the migration, you might consider installing a new instance of Red Hat build of Keycloak
to become familiar with the changes for this release. See the Red Hat build of Keycloak Getting Started
Guide.

CHAPTER 1. MIGRATING RED HAT SINGLE SIGN-ON 7.6 TO RED HAT BUILD OF KEYCLOAK

5

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/getting_started_guide/

CHAPTER 2. MIGRATING A RED HAT SINGLE SIGN-ON 7.6
SERVER

This section provides instructions for migrating a standalone server deployed from the ZIP distribution.
Red Hat build of Keycloak 24.0 is built with Quarkus, which replaces the Red Hat JBoss Enterprise
Application Platform (JBoss EAP) that was used by Red Hat Single Sign-On 7.6.

The main changes to the server are the following:

A revamped configuration experience, which is streamlined and supports great flexibility in
setting configuration options.

An RPM distribution of the server is no longer available

2.1. PREREQUISITES

The previous instance of Red Hat Single Sign-On 7.6 was shut down so that it does not use the
same database instance that will be used by Red Hat build of Keycloak .

You backed up the database.

OpenJDK17 is installed.

You reviewed the Release Notes.

2.2. MIGRATION PROCESS OVERVIEW

The following sections provide instructions for these migration steps:

1. Download Red Hat build of Keycloak .

2. Migrate the configuration.

3. Migrate the database.

4. Start the Red Hat build of Keycloak server.

2.3. DOWNLOADING RED HAT BUILD OF KEYCLOAK

The Red Hat build of Keycloak server download ZIP file contains the scripts and binaries to run the Red
Hat build of Keycloak server.

1. Download the Red Hat build of Keycloak server distribution file from the Red Hat customer
portal.

2. Unpack the ZIP file using the unzip command.

2.4. MIGRATING THE CONFIGURATION

A new unified way to configure the Red Hat build of Keycloak server is through configuration options.
The Red Hat Single Sign-On 7.6 configuration mechanism, such as standalone.xml, jboss-cli, and so on,
no longer applies.

Each option can be defined through the following configuration sources:

Red Hat build of Keycloak 24.0 Migration Guide

6

https://openjdk.java.net/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/release_notes/
https://access.redhat.com/products/red-hat-build-of-keycloak

CLI parameters

Environment variables

Configuration file

Java KeyStore file

If the same configuration option is specified through different configuration sources, the first source in
the list above is used.

All configuration options are available in all the different configuration sources, where the main
difference is the format of the key. For example, here are four ways to configure the database
hostname:

Source Format

CLI parameters --db-url-host cliValue

Environment variables KC_DB_URL_HOST=envVarValue

Configuration file db-url-host=confFileValue

Java KeyStore file kc.db-url-host=keystoreValue

The kc.sh --help command as well as the Red Hat build of Keycloak documentation provides a complete
list of all available configuration options, where options are grouped by categories such as cache,
database, and so on. Also, separate chapters exist for each area to configure, such as the chapter for
Configuring the database.

Additional resources

Configuring Keycloak

2.4.1. Migrating the database configuration

In contrast to Red Hat Single Sign-On 7.6, Red Hat build of Keycloak has built-in support for the
supported databases removing the need to manually install and configure the database drivers. The
exception is Oracle and Microsoft SQL Server, which still require manual installation of the drivers.

In terms of configuration, consider the datasource subsystem from your existing Red Hat Single Sign-
On 7.6 installation and map those configurations to the options available from the Database
configuration category in Red Hat build of Keycloak . For example, a previous configuration appears as
follows:

<datasource jndi-name="java:jboss/datasources/KeycloakDS" pool-name="KeycloakDS"
enabled="true" use-java-context="true" statistics-enabled="true">
 <connection-url>jdbc:postgresql://mypostgres:5432/mydb?
currentSchema=myschema</connection-url>
 <driver>postgresql</driver>
 <pool>
 <min-pool-size>5</min-pool-size>
 <max-pool-size>50</max-pool-size>

CHAPTER 2. MIGRATING A RED HAT SINGLE SIGN-ON 7.6 SERVER

7

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//db-
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//configuration~#configuration-

In Red Hat build of Keycloak , the equivalent configuration using CLI parameters would be:

NOTE

Consider storing database credentials in a secure KeyStore configuration source.

Additional resources

Configuring the database, which also includes instructions for installing the Oracle and
Microsoft SQL Server JDBC drivers

Setting sensitive options using a Java KeyStore file , which provides instructions for how to
securely store database credentials.

2.4.2. Migrating HTTP and TLS configuration

HTTP is disabled and TLS configuration is required by default, whenever the production mode
(represented by the start option) is used.

You can enable HTTP with the --http-enabled=true configuration option, but it is not recommended
unless the Red Hat build of Keycloak server is within a fully isolated network, and no risk exists of internal
or external attackers being able to observe networking traffic.

A Red Hat build of Keycloak instance has a different context root (URL path) as it uses the root of the
server while Red Hat Single Sign-On 7.6 by default appends /auth. To mimic the old behavior, the --
http-relative-path=/auth configuration option can be used. The default ports remain the same, but they
can also be changed by the --http-port and --https-port options.

Two ways exist to configure TLS, either through files in the PEM format or with a Java Keystore. For
example, a previous configuration by Java Keystore appears as follows:

 </pool>
 <security>
 <user-name>myuser</user-name>
 <password>myuser</password>
 </security>
</datasource>

kc.sh start
 --db postgres
 --db-url-host mypostgres
 --db-url-port 5432
 --db-url-database mydb
 --db-schema myschema
 --db-pool-min-size 5 --db-pool-max-size 50
 --db-username myser --db-password myuser

<tls>
 <key-stores>
 <key-store name="applicationKS">
 <credential-reference
 clear-text="password"/>
 <implementation type="JKS"/>
 <file

Red Hat build of Keycloak 24.0 Migration Guide

8

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//db-
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//configuration~#configuration-setting-sensitive-options-using-a-java-keystore-file

In Red Hat build of Keycloak , the equivalent configuration using CLI parameters would be as follows:

In Red Hat build of Keycloak , you can configure TLS by providing certificates in PEM format as follows:

Additional resources

Configuring TLS

2.4.3. Migrating clustering and cache configuration

Red Hat Single Sign-On 7.6 provided distinct operating modes for running the server as standalone,
standalone clustered, and domain clustered. These modes differed in the start script and configuration
files. Red Hat build of Keycloak offers a simplified solution with a single start script: kc.sh.

To run the server as standalone or standalone clustered, use the kc.sh script:

Red Hat build of Keycloak Red Hat Single Sign-On 7.6

./kc.sh start --cache=local ./standalone.sh

./kc.sh start [--cache=ispn] ./standalone.sh --server-config=standalone-ha.xml

The default values for the --cache parameter is start mode aware:

local - when the start-dev command is executed

ispn - when the start command is executed

In Red Hat Single Sign-On 7.6, clustering and cache configuration was done through the Infinispan

 path="/path/to/application.keystore”/>
 </key-store>
 </key-stores>
 <key-managers>
 <key-manager name="applicationKM"
 key-store="applicationKS">
 <credential-reference
 clear-text="password"/>
 </key-manager>
 </key-managers>
 <server-ssl-contexts>
 <server-ssl-context name="applicationSSC"
 key-manager="applicationKM"/>
 </server-ssl-contexts>
</tls>

kc.sh start
 --https-key-store-file /path/to/application.keystore
 --https-key-store-password password

kc.sh start
 --https-certificate-file /path/to/certfile.pem
 --https-certificate-key-file /path/to/keyfile.pem

CHAPTER 2. MIGRATING A RED HAT SINGLE SIGN-ON 7.6 SERVER

9

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//configuration~#enabletls-

In Red Hat Single Sign-On 7.6, clustering and cache configuration was done through the Infinispan
subsystem, while in Red Hat build of Keycloak the majority of the configuration is done through a
separate Infinispan configuration file. For example, a previous configuration of Infinispan appears as
follows:

In Red Hat build of Keycloak , the default Infinispan configuration file is located in the conf/cache-
ispn.xml file. You can provide your own Infinispan configuration file and specify it using the CLI
parameter as follows:

NOTE

Domain clustered mode is not supported with Red Hat build of Keycloak .

Transport stacks

No migration is needed for default and custom JGroups transport stacks in the Red Hat build of
Keycloak.

The only improvement is the possibility to override the stack defined in the cache configuration file by
providing a CLI option cache-stack, which takes precedence. Consider a part of the Infinispan
configuration file my-cache-file.xml, specified above, with the custom JGroups transport stack as
follows:

You can notice the transport stack for the keycloak cache container is set to tcp, but it can be
overridden using the CLI option as follows:

<subsystem xmlns="urn:jboss:domain:infinispan:13.0">
<cache-container name="keycloak" marshaller="JBOSS" modules="org.keycloak.keycloak-model-
infinispan">
 <local-cache name="realms">
 <heap-memory size="10000"/>
 </local-cache>
 <local-cache name="users">
 <heap-memory size="10000"/>
 </local-cache>
 <local-cache name="sessions"/>
 <local-cache name="authenticationSessions"/>
 <local-cache name="offlineSessions"/>
 ...
</cache-container>
</subsystem>

kc.sh start --cache-config-file my-cache-file.xml

<jgroups>
 <stack name=”my-encrypt-udp” extends=”udp”>
 …
 </stack>
</jgroups>

<cache-container name=”keycloak”>
 <transport stack=”tcp”/>
 …
</cache-container>

Red Hat build of Keycloak 24.0 Migration Guide

10

After executing the above commands, the my-encrypt-udp transport stack is used.

Additional resources

Configuring distributed caches

2.4.4. Migrating hostname and proxy configuration

In Red Hat build of Keycloak, you are now obligated to configure the Hostname SPI in order to set how
front and back end URLs are going to be created by the server when redirecting users or communicating
with their clients.

For example, consider if you have a configuration similar as the follows in your Red Hat Single Sign-On
7.6 installation:

You can translate it to the following configuration options in Red Hat build of Keycloak:

The hostname-url configuration option allows you to set the base URL where the cluster is exposed to
the public from an ingress layer running in front of your cluster. You can also set the URL for
administration resources by setting the hostname-admin-url configuration option.

Red Hat build of Keycloak allows you to configure which reverse proxy headers should be reflected. You
can use either the Forwarded header or the set of X-Forwarded-* headers. For example:

NOTE

kc.sh start
 --cache-config-file my-cache-file.xml
 --cache-stack my-encrypt-udp

<spi name="hostname">
 <default-provider>default</default-provider>
 <provider name="default" enabled="true">
 <properties>
 <property name="frontendUrl" value="myFrontendUrl"/>
 <property name="forceBackendUrlToFrontendUrl" value="true"/>
 </properties>
 </provider>
</spi>

kc.sh start
 --hostname-url myFrontendUrl
 --hostname-strict-backchannel true

kc.sh start --proxy-headers xforwarded

CHAPTER 2. MIGRATING A RED HAT SINGLE SIGN-ON 7.6 SERVER

11

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//~#caching-

NOTE

The hostname and proxy configuration are used for determining the resource URLs
(redirect URIs, CSS and JavaScript links, OIDC well-known endpoints, and so on) and not
for actively blocking incoming requests. None of the hostname/proxy options change the
actual binding addresses or ports that the Red Hat build of Keycloak server listens on -
this is a responsibility of the HTTP/TLS options. In Red Hat Single Sign-On 7.6, setting a
hostname was highly recommended, but not enforced. In Red Hat build of Keycloak ,
when the start command is used this is now required, unless explicitly disabled with the --
hostname-strict=false option.

Additional resources

Using a reverse proxy

Configuring the hostname

2.4.5. Migrating truststore configuration

The truststore is used for external TLS communication, for example HTTPS requests and LDAP servers.
To use a truststore, you import the remote server’s or CA’s certificate into the trustore. Then, you can
start the Red Hat build of Keycloak server specifying the system truststore.

For example, a previous configuration appears as follows:

Red Hat build of Keycloak supports truststores in the following formats: PEM files, or PKCS12 files with
the extensions .p12 and .pfx. For the PKCS12 files, the certs must be unencrypted, which means that no
password is expected. The JKS truststores need to be converted. For example:

In this example, the resulting CLI parameter would be as follows:

Additional resources

<spi name="truststore">
 <provider name="file" enabled="true">
 <properties>
 <property name="file" value="path/to/myTrustStore.jks"/>
 <property name="password" value="password"/>
 <property name="hostname-verification-policy" value="WILDCARD"/>
 </properties>
 </provider>
</spi>

keytool -importkeystore -srckeystore path/to/myTrustStore.jks \
 -destkeystore path/to/myTrustStore.p12 \
 -srcstoretype jks \
 -deststoretype pkcs12
 -srcstorepass password
 -deststorepass “”

kc.sh start
 --truststore-paths path/to/myTrustStore.p12
 --tls-hostname-verifier WILDCARD

Red Hat build of Keycloak 24.0 Migration Guide

12

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//#reverseproxy~
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//#hostname~

Configuring trusted certificates for outgoing requests

2.4.6. Migrating vault configuration

The Keystore Vault is an implementation of the Vault SPI and it is useful for storing secrets in bare metal
installations. This vault is a replacement of the Elytron Credential Store in Red Hat Single Sign-On 7.6..

In Red Hat build of Keycloak, the equivalent configuration using CLI parameters would be:

Secrets stored in the vault can be then accessed at multiple places within the Admin Console. When it
comes to the migration from the existing Elytron vault to the new Java KeyStore-based vault, no realm
configuration changes are required. If a newly created Java keystore contains the same secrets, your
existing realm configuration should work.

Given that you use the default REALM_UNDERSCORE_KEY key resolver, the secret can be accessed
by ${vault.realm-name_alias} (for example, in your LDAP User federation configuration) the same way
as before.

Additional resources

Using a vault .

2.4.7. Migrating JVM settings

The approach for JVM settings in Red Hat build of Keycloak is similar to the Red Hat Single Sign-On 7.6
approach. You still need to set particular environment variables, however, the /bin folder contains no
configuration files, such as standalone.conf.

Red Hat build of Keycloak provides various default JVM arguments, which proved to be suitable for the
majority of deployments as it provides good throughput and efficiency in memory allocation and CPU
overhead. Also, other default JVM arguments ensure a smooth run of the Red Hat build of Keycloak
instance, so use caution when you change the arguments for your use case.

To change JVM arguments or GC settings, you set particular environment variables, which are specified
as Java options. For a complete override of these settings, you specify the JAVA_OPTS environment
variable.

When only an append of a particular Java property is required, you specify the JAVA_OPTS_APPEND
environment variable. When no JAVA_OPTS environment variable is specified, the default Java
properties are used and can be found inside the ./kc.sh script.

<spi name="vault">
 <provider name="elytron-cs-keystore" enabled="true">
 <properties>
 <property name="location" value="path/to/keystore.p12"/>
 <property name="secret" value="password"/>
 </properties>
 </provider>
</spi>

kc.sh start
 --vault keystore
 --vault-file /path/to/keystore.p12
 --vault-pass password

CHAPTER 2. MIGRATING A RED HAT SINGLE SIGN-ON 7.6 SERVER

13

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//~#keycloak-truststore-
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//#vault-

For instance, you can specify a particular Java option as follows:

2.4.8. Migrating SPI provider configuration

Configuration for SPI providers is available through the new configuration system. This is the old format:

This is the new format:

Source Format

CLI ./kc.sh start --spi-connections-http-client-default-
connection-pool-size 10

Environment Variable KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_
CONNECTION_POOL_SIZE=10

Configuration file spi-connections-http-client-default-connection-
pool-size=10

Java Keystore file kc.spi-connections-http-client-default-connection-
pool-size=10

Additional resources

All Provider Config.

2.4.9. Troubleshooting the configuration

Use these commands for troubleshooting:

kc.sh show-config - shows you the configuration sources from which particular properties are
loaded and what their values are. You can check whether a property and its value is propagated
correctly.

kc.sh --verbose start - prints out the whole error stack trace, when there is an error.

2.5. MIGRATING THE DATABASE

export JAVA_OPTS_APPEND=-XX:+HeapDumpOnOutOfMemoryError
kc.sh start

<spi name="<spi-id>">
 <provider name="<provider-id>" enabled="true">
 <properties>
 <property name="<property>" value="<value>"/>
 </properties>
 </provider>
</spi>

spi-<spi-id>-<provider-id>-<property>=<value>

Red Hat build of Keycloak 24.0 Migration Guide

14

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//#all-provider-config-

Red Hat build of Keycloak can automatically migrate the database schema, or you can choose to do it
manually. By default the database is automatically migrated when you start the new installation for the
first time.

2.5.1. Automatic relational database migration

To perform an automatic migration, start the server connected to the desired database. If the database
schema has changed for the new version of the server, it will be migrated.

2.5.2. Manual relational database migration

To enable manual upgrading of the database schema, set the migration-strategy property value to
manual for the default connections-jpa provider:

When you start the server with this configuration, it checks if the database needs to be migrated. The
required changes are written to the bin/keycloak-database-update.sql SQL file that you can review
and manually run against the database.

To change the path and name of the exported SQL file, set the migration-export property for the
default connections-jpa provider:

For further details on how to apply this file to the database, see the documentation for your relational
database. After the changes have been written to the file, the server exits.

2.6. STARTING THE RED HAT BUILD OF KEYCLOAK SERVER

The difference in starting the distribution of Red Hat Single Sign-On 7.6 and Red Hat build of Keycloak
is in the executed script. These scripts live in the /bin folder of the server distribution.

2.6.1. Starting the server in development mode

To try out Red Hat build of Keycloak without worrying about supplying any properties, you can start the
distribution in the development mode as described in the table below. However, note that this mode is
strictly for development and should not be used in production.

Red Hat build of Keycloak Red Hat Single Sign-On 7.6

./kc.sh start-dev ./standalone.sh

WARNING

The development mode should NOT be used in production.

kc.sh start --spi-connections-jpa-legacy-migration-strategy manual

kc.sh start
 --spi-connections-jpa-legacy-migration-export <path>/<file.sql>



CHAPTER 2. MIGRATING A RED HAT SINGLE SIGN-ON 7.6 SERVER

15

2.6.2. Starting the server in production mode

Red Hat build of Keycloak has a dedicated start mode for production: ./kc.sh start. The difference from
running with start-dev is different default configuration values. It automatically uses a strict and by-
default secured configuration setup. In the production mode, HTTP is disabled, and explicit TLS and
hostname configuration is required.

Additional resources

Configuring Keycloak for production

Optimize the Keycloak startup

Red Hat build of Keycloak 24.0 Migration Guide

16

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//#configuration-production-
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//#configuration-optimize-the-keycloak-startup

CHAPTER 3. MIGRATING OPERATOR DEPLOYMENTS ON
OPENSHIFT

To adapt to the revamped server configuration, the Red Hat build of Keycloak Operator was completely
recreated. The Operator provides full integration with Red Hat build of Keycloak, but it is not backward
compatible with the Red Hat Single Sign-On 7.6 Operator. Using the new Operator requires creating a
new Red Hat build of Keycloak deployment. For full details, see the Operator Guide.

3.1. PREREQUISITES

The previous instance of Red Hat Single Sign-On 7.6 was shut down so that it does not use the
same database instance that will be used by Red Hat build of Keycloak .

In case the unsupported embedded database (that is managed by the Red Hat Single Sign-On
7.6 Operator)) was used, it has been converted to an external database that is provisioned by
the user.

Database backup was created.

You reviewed the Release Notes.

3.2. MIGRATION PROCESS

1. Install Red Hat build of Keycloak Operator to the namespace.

2. Create new CRs and related Secrets. Manually migrate your Red Hat Single Sign-On 7.6
configuration to your new Keycloak CR.

3. If custom providers were used, migrate them and create a custom Red Hat build of Keycloak
container image to include them.

4. If custom themes were used, migrate them and create a custom Red Hat build of Keycloak
container image to include them.

3.3. MIGRATING KEYCLOAK CR

Keycloak CR now supports all server configuration options. All relevant options are available as first class
citizen fields directly under the spec of the CR. All options in the CR follow the same naming
conventions as the server options making the experience between bare metal and Operator
deployments seamless.

Additionally, you can define any options that are missing from the CR in the additionalOptions field
such as SPI providers configuration. Another option is to use podTemplate, a Technology Preview field,
to modify the raw Kubernetes deployment pod template in case a supported alternative does not exist
as a first class citizen field in the CR.

The following shows an example Keycloak CR to deploy Red Hat build of Keycloak through the Operator:

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: example-kc
spec:
 instances: 1

CHAPTER 3. MIGRATING OPERATOR DEPLOYMENTS ON OPENSHIFT

17

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/operator_guide//~
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/release_notes/

Notice the resemblance with CLI configuration:

Additional resources

Basic Keycloak deployment

Advanced configuration

3.3.1. Migrating database configuration

Red Hat build of Keycloak can use the same database instance as was previously used by Red Hat Single
Sign-On 7.6. The database schema will be migrated automatically the first time Red Hat build of
Keycloak connects to it.

WARNING

Migrating the embedded database managed by Red Hat Single Sign-On 7.6
Operator is not supported.

In the Red Hat Single Sign-On 7.6 Operator, the external database connection was configured using a
Secret, for example:

 db:
 vendor: postgres
 host: postgres-db
 usernameSecret:
 name: keycloak-db-secret
 key: username
 passwordSecret:
 name: keycloak-db-secret
 key: password
 http:
 tlsSecret: example-tls-secret
 hostname:
 hostname: test.keycloak.org
 additionalOptions:
 - name: spi-connections-http-client-default-connection-pool-size
 value: 20

./kc.sh start --db=postgres --db-url-host=postgres-db --db-username=user --db-password=pass --
https-certificate-file=mycertfile --https-certificate-key-file=myprivatekey --hostname=test.keycloak.org
--spi-connections-http-client-default-connection-pool-size=20



apiVersion: v1
kind: Secret
metadata:
 name: keycloak-db-secret
 namespace: keycloak
 labels:

Red Hat build of Keycloak 24.0 Migration Guide

18

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/operator_guide//#basic-deployment-
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/operator_guide//#advanced-configuration-

In Red Hat build of Keycloak , the database is configured directly in the Keycloak CR with credentials
referenced as Secrets, for example:

3.3.1.1. Supported database vendors

Red Hat Single Sign-On 7.6 Operator supported only PostgreSQL databases, but the Red Hat build of
Keycloak Operator supports all database vendors that are supported by the server.

3.3.2. Migrating TLS configuration

Red Hat Single Sign-On 7.6 Operator by default configured the server to use the TLS Secret generated
by OpenShift CA. Red Hat build of Keycloak Operator does not make any assumptions around TLS to
meet production best practices and requires users to provide their own TLS certificate and key pair, for
example:

 app: sso
stringData:
 POSTGRES_DATABASE: kc-db-name
 POSTGRES_EXTERNAL_ADDRESS: my-postgres-hostname
 POSTGRES_EXTERNAL_PORT: 5432
 POSTGRES_USERNAME: user
 POSTGRES_PASSWORD: pass
type: Opaque

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: example-kc
spec:
 db:
 vendor: postgres
 host: my-postgres-hostname
 port: 5432
 usernameSecret:
 name: keycloak-db-secret
 key: username
 passwordSecret:
 name: keycloak-db-secret
 key: password
 ...

apiVersion: v1
kind: Secret
metadata:
 name: keycloak-db-secret
stringData:
 username: "user"
 password: "pass"
type: Opaque

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: example-kc

CHAPTER 3. MIGRATING OPERATOR DEPLOYMENTS ON OPENSHIFT

19

The expected format of the secret referred to in tlsSecret should use the standard Kubernetes TLS
Secret (kubernetes.io/tls) type.

The Red Hat Single Sign-On 7.6 Operator used the reencrypt TLS termination strategy by default on
Route. Red Hat build of Keycloak Operator uses the passthrough strategy by default. Additionally, the
Red Hat Single Sign-On 7.6 Operator supported configuring TLS termination. Red Hat build of Keycloak
Operator does not support TLS termination in the current release.

If the default Operator-managed Route does not meet desired TLS configuration, a custom Route
needs to be created by the user and the default one disabled as:

3.3.3. Using a custom image for extensions

To reflect best practices and support immutable containers, the Red Hat build of Keycloak Operator no
longer supports specifying extensions in the Keycloak CR. In order to deploy an extension, an optimized
custom image must be built. Keycloak CR now includes a dedicated field for specifying Red Hat build of
Keycloak images, for example:

NOTE

When specifying a custom image, the Operator assumes it is already optimized and does
not perform the costly optimization at each server start.

Additional resources

Using custom Keycloak images in the Operator

Creating a customized and optimized container image

3.3.4. Upgrade strategy option removed

The Red Hat Single Sign-On 7.6 Operator supported recreate and rolling strategies when performing a

spec:
 http:
 tlsSecret: example-tls-secret
 ...

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: example-kc
spec:
 ingress:
 enabled: false
 ...

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: example-kc
spec:
 image: quay.io/my-company/my-keycloak:latest
 ...

Red Hat build of Keycloak 24.0 Migration Guide

20

https://kubernetes.io/docs/concepts/configuration/secret/#tls-secrets
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/operator_guide//
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//#configuration-creating-an-optimized-keycloak-build

server upgrade. This approach was not practical. It was up to the user to choose if the Red Hat Single
Sign-On 7.6 Operator should scale down the deployment before performing an upgrade and database
migration. It was not clear to the users when the rolling strategy could be safely used.

Therefore, this option was removed in the Red Hat build of Keycloak Operator and it always implicitly
performs the recreate strategy, which scales down the whole deployment before creating Pods with the
new server container image to ensure only a single server version accesses the database.

3.3.5. Health endpoint exposed by default

The Red Hat build of Keycloak configures the server to expose a simple health endpoint by default that
is used by OpenShift probes. The endpoint does not expose any security sensitive data about
deployment but it is accessible without any authentication. As an alternative, <your-server-context-
root>/health endpoint can be blocked on a custom Route.

For example,

1. Create Keycloak configured for TLS edge termination.
Make sure to omit the tlsSecret field:

2. Create a blocking Route to prohibit access to the health endpoint:

NOTE

Path-based Routes require TLS termination to be configured for either edge or
reencrypt. By default, the Operator uses passthrough.

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: example-kc
spec:
 proxy:
 Headers:xforwarded
 hostname:
 hostname: example.com
 ...

kind: Route
apiVersion: route.openshift.io/v1
metadata:
 name: example-kc-block-health
 annotations:
 haproxy.router.openshift.io/rewrite-target: /404
spec:
 host: example.com
 path: /health
 to:
 kind: Service
 name: example-kc-service
 port:
 targetPort: http
 tls:
 termination: edge

CHAPTER 3. MIGRATING OPERATOR DEPLOYMENTS ON OPENSHIFT

21

3.3.6. Migrating advanced deployment options using Pod templates

The Red Hat Single Sign-On 7.6 Operator exposed multiple low-level fields for deployment
configuration, such as volumes. Red Hat build of Keycloak Operator is more opinionated and does not
expose most of these fields. However, it is still possible to configure any desired deployment fields
specified as the podTemplate, for example:

NOTE

The spec.unsupported.podTemplate field offers only limited support as it exposes low-
level configuration where full functionality has not been tested under all conditions.
Whenever possible, use the fully supported first class citizen fields in the top level of the
CR spec.

For example, instead of spec.unsupported.podTemplate.spec.imagePullSecrets, use
directly spec.imagePullSecrets.

3.3.7. Connecting to an external instance is no longer supported

The Red Hat Single Sign-On 7.6 Operator supported connecting to an external instance of Red Hat
Single Sign-On 7.6. For example, creating clients within an existing realm through Client CRs is no longer
supported in the Red Hat build of Keycloak Operator.

3.3.8. Migrating Horizontal Pod Autoscaler enabled deployments

To use a Horizontal Pod Autoscaler (HPA) with Red Hat Single Sign-On 7.6, it was necessary to set the
disableReplicasSyncing: true field in the Keycloak CR and scale the server StatefulSet. This is no
longer necessary as the Keycloak CR in Red Hat build of Keycloak Operator can be scaled directly by an
HPA.

3.4. MIGRATING THE KEYCLOAK REALM CR

The Realm CR was replaced by the Realm Import CR, which offers similar functionality and has a similar

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: example-kc
spec:
 unsupported:
 podTemplate:
 metadata:
 labels:
 foo: "bar"
 spec:
 containers:
 - volumeMounts:
 - name: test-volume
 mountPath: /mnt/test
 volumes:
 - name: test-volume
 secret:
 secretName: test-secret
 ...

Red Hat build of Keycloak 24.0 Migration Guide

22

The Realm CR was replaced by the Realm Import CR, which offers similar functionality and has a similar
schema. The Realm Import CR offers only Realm bootstrapping and as such no longer supports Realm
deletion. It also does not support updates, similarly to the previous Realm CR.

Full Realm representation is now included in the Realm Import CR, in comparison to the previous Realm
CR that offered only a few selected fields.

Example of Red Hat Single Sign-On 7.6 Realm CR:

Example of corresponding Red Hat build of Keycloak Realm Import CR:

Additional resources

Realm Import

3.5. REMOVED CRS

The Client and User CRs were removed from Red Hat build of Keycloak Operator. The lack of these CRs
can be partially mitigated by the new Realm Import CR. Adding support for Client CRs is on the road-
map for a future Red Hat build of Keycloak release, while User CRs are not currently a planned feature.

apiVersion: keycloak.org/v1alpha1
kind: KeycloakRealm
metadata:
 name: example-keycloakrealm
spec:
 instanceSelector:
 matchLabels:
 app: sso
 realm:
 id: "basic"
 realm: "basic"
 enabled: True
 displayName: "Basic Realm"

apiVersion: k8s.keycloak.org/v2alpha1
kind: KeycloakRealmImport
metadata:
 name: example-keycloakrealm
spec:
 keycloakCRName: example-kc
 realm:
 id: "basic"
 realm: "basic"
 enabled: True
 displayName: "Basic Realm"

CHAPTER 3. MIGRATING OPERATOR DEPLOYMENTS ON OPENSHIFT

23

{guide_link}/#realm-import-

CHAPTER 4. MIGRATING TEMPLATES DEPLOYMENTS ON
OPENSHIFT

OpenShift templates were deprecated and removed from the Red Hat build of Keycloak container
images. Using the Operator is the recommended alternative for deploying Red Hat build of Keycloak on
OpenShift.

NOTE

OpenShift 3.x is no longer supported.

You will generally need to create a Keycloak CR (of the Red Hat build of Keycloak Operator) that
references an externally managed database. The PostgreSQL database with this template is managed
by a DeploymentConfig. You initially retain the application_name-postgresql DeploymentConfig that
was created by the template. The PostgreSQL database instance created by the DeploymentConfig will
be usable by the Red Hat build of Keycloak Operator.

This guide does not include directions for migrating from this instance to a self-managed database,
either by an operator or your cloud provider.

The Red Hat build of Keycloak Operator does not manage a database and it is required to have a
database provisioned and managed separately.

4.1. MIGRATING DEPLOYMENTS WITH THE INTERNAL H2 DATABASE

The following are the affected templates:

sso76-ocp3-https

sso76-ocp4-https

sso76-ocp3-x509-https

sso76-ocp4-x509-https

These templates rely upon the devel database and are not supported for production use.

4.2. MIGRATING DEPLOYMENTS WITH EPHEMERAL POSTGRESQL
DATABASE

The following are the affected templates:

sso76-ocp3-postgresql

sso76-ocp4-postgresql

This template creates a PostgreSQL database without persistent storage, which is only recommended
for development purposes.

4.3. MIGRATING DEPLOYMENTS WITH PERSISTENT POSTGRESQL
DATABASE

The following are the affected templates:

Red Hat build of Keycloak 24.0 Migration Guide

24

sso76-ocp3-postgresql-persistent

sso76-ocp4-postgresql-persistent

sso76-ocp3-x509-postgresql-persistent

sso76-ocp4-x509-postgresql-persistent

4.3.1. Prerequisites

The previous instance of Red Hat Single Sign-On 7.6 was shut down so that it does not use the
same database instance that will be used by Red Hat build of Keycloak .

Database backup was created.

You reviewed the Release Notes.

4.4. MIGRATION PROCESS

1. Install Red Hat build of Keycloak Operator to the namespace.

2. Create new CRs and related Secrets.
Manually migrate your template based Red Hat Single Sign-On 7.6 configuration to your new
Red Hat build of Keycloak CR. See the following examples for suggested mappings between
Template parameters and Keycloak CR fields.

The following examples compare a Red Hat build of Keycloak Operator CR to the DeploymentConfig
that was previously created by a Red Hat Single Sign-On 7.6 Template.

Operator CR for Red Hat build of Keycloak

DeploymentConfig for Red Hat Single Sign-On 7.6

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: rhbk
spec:
 instances: 1
 db:
 vendor: postgres
 host: postgres-db
 usernameSecret:
 name: keycloak-db-secret
 key: username
 passwordSecret:
 name: keycloak-db-secret
 key: password
 http:
 tlsSecret: sso-x509-https-secret

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 name: rhsso

CHAPTER 4. MIGRATING TEMPLATES DEPLOYMENTS ON OPENSHIFT

25

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/release_notes/

The following tables refer to fields of Keycloak CR by a JSON path notation. For example, .spec refers
to the spec field. Note that spec.unsupported is a Technology Preview field. It is more an indication
that eventually that functionality will be achievable by other CR fields. Parameters marked in bold are
supported by both the passthrough and reencrypt templates.

4.4.1. General Parameter Migration

Red Hat Single Sign-On 7.6 Red Hat build of Keycloak 24.0

APPLICATION_NAME .metadata.name

IMAGE_STREAM_NAMESPACE N/A - the image is controlled by the operator or you
main use spec.image to specify a custom image

SSO_ADMIN_USERNAME No direct setting, defaults to admin

SSO_ADMIN_PASSWORD N/A - created by the operator during the initial
reconciliation

MEMORY_LIMIT .spec.unsupported.podTemplate.spec.contai
ners[0].resources.limits[‘memory’]

SSO_SERVICE_PASSWORD,
SSO_SERVICE_USERNAME

No longer used.

SSO_TRUSTSTORE,
SSO_TRUSTSTORE_PASSWORD,
SSO_TRUSTSTORE_SECRET

.spec.truststores Notice that truststores must not
be password protected.

spec:
 replicas: 1
 template:
 spec:
 volumes:
 - name: sso-x509-https-volume
 secret:
 secretName: sso-x509-https-secret
 defaultMode: 420
 containers:
 volumeMounts:
 - name: sso-x509-https-volume
 readOnly: true
 env:
 - name: DB_SERVICE_PREFIX_MAPPING
 value: postgres-db=DB
 - name: DB_USERNAME
 value: username
 - name: DB_PASSWORD
 value: password

Red Hat build of Keycloak 24.0 Migration Guide

26

SSO_REALM Not needed if you are reusing the existing database.
An alternative is the RealmImport CR.

Red Hat Single Sign-On 7.6 Red Hat build of Keycloak 24.0

4.4.2. Database Deployment Parameter Migration

POSTGRESQL_IMAGE_STREAM_TAG, POSTGRESQL_MAX_CONNECTIONS,
VOLUME_CAPACITY and POSTGRESQL_SHARED_BUFFERS will need to be migrated to whatever
replacement you have chosen creating the database deployment.

4.4.3. Database Connection Parameter Migration

Red Hat Single Sign-On 7.6 Red Hat build of Keycloak 24.0

DB_VENDOR .spec.db.vendor - will need to be set to
PostgreSQL if PostgreSQL is still being used

DB_DATABASE .spec.db.database

DB_MIN_POOL_SIZE .spec.db.poolMinSize

DB_MAX_POOL_SIZE .spec.db.maxPoolSize

DB_TX_ISOLATION may be set by the spec.db.url if it is supported by
the driver or as a general setting on the target
database

DB_USERNAME .spec.db.usernameSecret

DB_PASSWORD .spec.db.passwordSecret

DB_JNDI No longer applicable

4.4.4. Networking Parameter Migration

Red Hat Single Sign-On 7.6 Red Hat build of Keycloak 24.0

HOSTNAME_HTTP .spec.hostname.hostname - with
.spec.http.httpEnabled=true. Since the Red Hat
build of Keycloak operator will only create a single
Ingress/Route, for this to create an http route
.spec.http.tlsSecret needs to be left unspecified

HOSTNAME_HTTPS .spec.hostname.hostname - with
.spec.http.tlsSecret specified.

CHAPTER 4. MIGRATING TEMPLATES DEPLOYMENTS ON OPENSHIFT

27

SSO_HOSTNAME .spec.hostname.hostname

HTTPS_SECRET .spec.http.tlsSecret - see the other HTTPS
parameters below

HTTPS_KEYSTORE HTTPS_KEYSTORE_TYPE
HTTPS_NAME HTTPS_PASSWORD

No longer applicable. The secret referenced by
.spec.http.tlsSecret should be of type
kubernetes.io/tls with tls.crt and tls.key entries

X509_CA_BUNDLE .spec.truststores

Red Hat Single Sign-On 7.6 Red Hat build of Keycloak 24.0

Note that the Red Hat build of Keycloak Operator does not currently support a way to configure the TLS
termination. By default, the passthrough strategy is used. Therefore, the proxy option is not yet exposed
as a first-class citizen option field, because it does not matter whether the passthrough or reencrypt
strategy is used. However, if you need this option, you can replace the default Ingress Operator
certificate and manually configure a Route in order to trust Red Hat build of Keycloak’s certificate.

The default behavior of the Red Hat build of Keycloak Operator can be then overridden by:

4.4.5. JGroups Parameter Migration

JGROUPS_ENCRYPT_SECRET, JGROUPS_ENCRYPT_KEYSTORE, JGROUPS_ENCRYPT_NAME,
JGROUPS_ENCRYPT_PASSWORD, and JGROUPS_CLUSTER_PASSWORD have no first-class
representation in the Keycloak CR. Securing cache communication is still possible using the cache
configuration file.

Additional resources

Configuring distributed cache

additionalOptions:
 name: proxy
 value: reencrypt

Red Hat build of Keycloak 24.0 Migration Guide

28

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//#caching-

CHAPTER 5. MIGRATING APPLICATIONS SECURED BY RED
HAT SINGLE SIGN-ON 7.6

Red Hat build of Keycloak introduces key changes to how applications are using some of the Red Hat
Single Sign-On 7.6 Client Adapters.

In addition to no longer releasing some client adapters, Red Hat build of Keycloak also introduces fixes
and improvements that impact how client applications use OpenID Connect and SAML protocols.

In this chapter, you will find the instructions to address these changes and migrate your application to
integrate with Red Hat build of Keycloak .

5.1. MIGRATING OPENID CONNECT CLIENTS

The following Java Client OpenID Connect Adapters are no longer released starting with this release of
Red Hat build of Keycloak

Red Hat JBoss Enterprise Application Platform 6.x

Red Hat JBoss Enterprise Application Platform 7.x

Spring Boot

Red Hat Fuse

Compared to when these adapters were first released, OpenID Connect is now widely available across
the Java Ecosystem. Also, much better interoperability and support is achieved by using the capabilities
available from the technology stack, such as your application server or framework.

These adapters have reached their end of life and are only available from Red Hat Single Sign-On 7.6. It
is highly recommended to look for alternatives to keep your applications updated with the latest updates
from OAuth2 and OpenID connect protocols.

5.1.1. Key changes in OpenID Connect protocol and client settings

5.1.1.1. Access Type client option no longer available

When you create or update an OpenID Connect client, Access Type is no longer available. However, you
can use other methods to achieve this capability.

To achieve the Bearer Only capability, create a client with no authentication flow. In the
Capability config section of the client details, make sure that no flow is selected. The client
cannot obtain any tokens from Keycloak, which is equivalent to using the Bearer Only access
type.

To achieve the Public capability, make sure that client authentication is disabled for this client
and at least one flow is enabled.

To achieve Confidential capability, make sure that Client Authentication is enabled for the
client and at least one flow is enabled.

The boolean flags bearerOnly and publicClient still exist on the client JSON object. They can be used
when creating or updating a client by the admin REST API or when importing this client by partial import
or realm import. However, these options are not directly available in the Admin Console v2.

CHAPTER 5. MIGRATING APPLICATIONS SECURED BY RED HAT SINGLE SIGN-ON 7.6

29

5.1.1.2. Changes in validating schemes for valid redirect URIs

If an application client is using non http(s) custom schemes, the validation now requires that a valid
redirect pattern explicitly allows that scheme. Example patterns for allowing custom scheme are
custom:/test, custom:/test/* or custom:. For security reasons, a general pattern such as * no longer
covers them.

5.1.1.3. Support for the client_id parameter in OpenID Connect Logout Endpoint

Support for the client_id parameter, which is based on the OIDC RP-Initiated Logout 1.0 specification.
This capability is useful to detect what client should be used for Post Logout Redirect URI verification in
case that id_token_hint parameter cannot be used. The logout confirmation screen still needs to be
displayed to the user when only the client_id parameter is used without parameter id_token_hint, so
clients are encouraged to use id_token_hint parameter if they do not want the logout confirmation
screen to be displayed to the user.

5.1.2. Valid Post Logout Redirect URIs

The Valid Post Logout Redirect URIs configuration option is added to the OIDC client and is aligned
with the OIDC specification. You can use a different set of redirect URIs for redirection after login and
logout. The value + used for Valid Post Logout Redirect URIs means that the logout uses the same set
of redirect URIs as specified by the option of Valid Redirect URIs. This change also matches the default
behavior when migrating from a previous version due to backwards compatibility.

5.1.2.1. UserInfo Endpoint Changes

5.1.2.1.1. Error response changes

The UserInfo endpoint is now returning error responses fully compliant with RFC 6750 (The OAuth 2.0
Authorization Framework: Bearer Token Usage). Error code and description (if available) are provided as
WWW-Authenticate challenge attributes rather than JSON object fields.

The responses will be the following, depending on the error condition:

In case no access token is provided:

In case several methods are used simultaneously to provide an access token (for example,
Authorization header + POST access_token parameter), or POST parameters are duplicated:

In case an access token is missing openid scope:

In case of inability to resolve cryptographic keys for UserInfo response signing/encryption:

401 Unauthorized
WWW-Authenticate: Bearer realm="myrealm"

400 Bad Request
WWW-Authenticate: Bearer realm="myrealm", error="invalid_request", error_description="..."

403 Forbidden
WWW-Authenticate: Bearer realm="myrealm", error="insufficient_scope",
error_description="Missing openid scope"

500 Internal Server Error

Red Hat build of Keycloak 24.0 Migration Guide

30

https://datatracker.ietf.org/doc/html/rfc6750

In case of a token validation error, a 401 Unauthorized is returned in combination with the
invalid_token error code. This error includes user and client related checks and actually
captures all the remaining error cases:

5.1.2.1.2. Other Changes to the UserInfo endpoint

It is now required for access tokens to have the openid scope, which is stipulated by UserInfo being a
feature specific to OpenID Connect and not OAuth 2.0. If the openid scope is missing from the token,
the request will be denied as 403 Forbidden. See the preceding section.

UserInfo now checks the user status, and returns the invalid_token response if the user is disabled.

5.1.2.1.3. Change of the default Client ID mapper of Service Account Client.

Default Client ID mapper of Service Account Client has been changed. Token Claim Name field value
has been changed from clientId to client_id. client_id claim is compliant with OAuth2 specifications:

JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens

OAuth 2.0 Token Introspection

OAuth 2.0 Token Exchange

clientId userSession note still exists.

5.1.2.1.4. Added iss parameter to OAuth 2.0/OpenID Connect Authentication Response

RFC 9207 OAuth 2.0 Authorization Server Issuer Identification specification adds the parameter iss in
the OAuth 2.0/OpenID Connect Authentication Response for realizing secure authorization responses.

In past releases, we did not have this parameter, but now Red Hat build of Keycloak adds this parameter
by default, as required by the specification. However, some OpenID Connect / OAuth2 adapters, and
especially older Red Hat build of Keycloak adapters, may have issues with this new parameter. For
example, the parameter will be always present in the browser URL after successful authentication to the
client application.

In these cases, it may be useful to disable adding the iss parameter to the authentication response. This
can be done for the particular client in the Admin Console, in client details in the section with OpenID
Connect Compatibility Modes. You can enable Exclude Issuer From Authentication Response to
prevent adding the iss parameter to the authentication response.

5.2. MIGRATING RED HAT JBOSS ENTERPRISE APPLICATION
PLATFORM APPLICATIONS

5.2.1. Red Hat JBoss Enterprise Application Platform 8.x

Your applications no longer need any additional dependency to integrate with Red Hat build of Keycloak
or any other OpenID Provider.

Instead, you can leverage the OpenID Connect support from the JBoss EAP native OpenID Connect

401 Unauthorized
WWW-Authenticate: Bearer realm="myrealm", error="invalid_token", error_description="..."

CHAPTER 5. MIGRATING APPLICATIONS SECURED BY RED HAT SINGLE SIGN-ON 7.6

31

https://datatracker.ietf.org/doc/html/rfc9068#section-2.2
https://www.rfc-editor.org/rfc/rfc7662#section-2.2
https://datatracker.ietf.org/doc/html/rfc8693#section-4.3

Instead, you can leverage the OpenID Connect support from the JBoss EAP native OpenID Connect
Client. For more information, take a look at OpenID Connect in JBoss EAP.

The JBoss EAP native adapter relies on a configuration schema very similar to the Red Hat build of
Keycloak Adapter JSON Configuration. For instance, a deployment using a keycloak.json configuration
file can be mapped to the following configuration in JBoss EAP:

For examples about integrating Jakarta-based applications using the JBoss EAP native adapter with
Red Hat build of Keycloak, see the following examples at the Red Hat build of Keycloak Quickstart
Repository:

JAX-RS Resource Server

Servlet Application

It is strongly recommended to migrate to JBoss EAP native OpenID Connect client as it is the best
candidate for Jakarta applications deployed to JBoss EAP 8 and newer.

5.2.2. Red Hat JBoss Enterprise Application Platform 7.x

As Red Hat JBoss Enterprise Application Platform 7.x is close to ending full support, Red Hat build of
Keycloak will not provide support for it. For existing applications deployed to Red Hat JBoss Enterprise
Application Platform 7.x adapters with maintenance support are available through Red Hat Single Sign-
On 7.6.

Red Hat Single Sign-On 7.6 adapters are supported to be used in combination with the Red Hat build of
Keycloak 24.0 server.

5.2.3. Red Hat JBoss Enterprise Application Platform 6.x

As Red Hat JBoss Enterprise Application PlatformJBoss EAP 6.x has reached end of maintenance
support, going forward neither Red Hat Single Sign-On 7.6 or Red Hat build of Keycloak will provide
support for it.

5.3. MIGRATING SPRING BOOT APPLICATIONS

The Spring Framework ecosystem is evolving fast and you should have a much better experience by
leveraging the OpenID Connect support already available there.

Your applications no longer need any additional dependency to integrate with Red Hat build of Keycloak
or any other OpenID Provider but rely on the comprehensive OAuth2/OpenID Connect support from
Spring Security. For more information, see OAuth2/OpenID Connect support from Spring Security .

In terms of capabilities, it provides a standard-based OpenID Connect client implementation. An
example of a capability that you might want to review, if not already using the standard protocols, is

{
 "realm": "quickstart",
 "auth-server-url": "http://localhost:8180",
 "ssl-required": "external",
 "resource": "jakarta-servlet-authz-client",
 "credentials": {
 "secret": "secret"
 }
}

Red Hat build of Keycloak 24.0 Migration Guide

32

https://access.redhat.com/documentation/pt-br/red_hat_jboss_enterprise_application_platform/7.4/html/using_jboss_eap_xp_4.0.0/assembly-openid-connect-in-jboss-eap_default
https://github.com/redhat-developer/rhbk-quickstarts/blob/22.x/jakarta/jaxrs-resource-server
https://github.com/redhat-developer/rhbk-quickstarts/blob/22.x/jakarta/servlet-authz-client
https://docs.spring.io/spring-security/reference/6.1-SNAPSHOT/servlet/oauth2/index.html#page-title

Logout. Red Hat build of Keycloak provides full support for standard-based logout protocols from the
OpenID Connect ecosystem.

For examples of how to integrate Spring Security applications with Red Hat build of Keycloak, see the
Keycloak Quickstart Repository.

If migrating from the Red Hat build of Keycloak Client Adapter for Spring Boot is not an option, you still
have access to the adapter from Red Hat Single Sign-On 7.6, which is now in maintenance only support.

Red Hat Single Sign-On 7.6 adapters are supported to be used in combination with the Red Hat build of
Keycloak 24.0 server.

5.4. MIGRATING RED HAT FUSE APPLICATIONS

As Red Hat Fuse has reached the end of full support, Red Hat build of Keycloak 24.0 will not provide any
support for it. Red Hat Fuse adapters are still available with maintenance support through Red Hat
Single Sign-On 7.6.

Red Hat Single Sign-On 7.6 adapters are supported to be used in combination with the Red Hat build of
Keycloak 24.0 server.

5.5. MIGRATING APPLICATIONS USING THE AUTHORIZATION
SERVICES POLICY ENFORCER

To support integration with the Red Hat build of Keycloak Authorization Services, the policy enforcer is
available separately from the Java Client Adapters.

By decoupling it from the Java Client Adapters, it is possible now to integrate Red Hat build of Keycloak
to any Java technology that provides built-in support for OAuth2 or OpenID Connect. The Red Hat
build of Keycloak Policy Enforcer provides built-in support for the following types of applications:

Servlet Application Using Fine-grained Authorization

Spring Boot REST Service Protected Using Red Hat build of Keycloak Authorization Services

For integration of the Red Hat build of Keycloak Policy Enforcer with different types of applications,
consider the following examples:

Servlet Application Using Fine-grained Authorization

Spring Boot REST Service Protected Using Keycloak Authorization Services

If migrating from the Red Hat Single Sign-On 7.6 Java Adapter you are using is not an option, you still
have access to the adapter from Red Hat Single Sign-On 7.6, which is now in maintenance support.

Red Hat Single Sign-On 7.6 adapters are supported to be used in combination with the Red Hat build of
Keycloak 24.0 server.

Additional resources

<dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-policy-enforcer</artifactId>
 <version>${Red Hat build of Keycloak .version}</version>
</dependency>

CHAPTER 5. MIGRATING APPLICATIONS SECURED BY RED HAT SINGLE SIGN-ON 7.6

33

https://github.com/redhat-developer/rhbk-quickstarts/blob/22.x/spring
https://github.com/redhat-developer/rhbk-quickstarts/blob/22.x/jakarta/servlet-authz-client
https://github.com/redhat-developer/rhbk-quickstarts/tree/22.x/spring/rest-authz-resource-server

Policy enforcers

5.6. MIGRATING SINGLE PAGE APPLICATIONS (SPA) USING THE RED
HAT BUILD OF KEYCLOAK JS ADAPTER

To migrate applications secured with the Red Hat Single Sign-On 7.6 adapter, upgrade to Red Hat build
of Keycloak 24.0, which provides a more recent version of the adapter. Depending on how it is used,
there are some minor changes needed, which are described below.

5.6.1. Legacy Promise API removed

With this release, the legacy Promise API methods from the Red Hat build of Keycloak JS adapter is
removed. This means that calling .success() and .error() on promises returned from the adapter is no
longer possible.

5.6.2. Required to be instantiated with the new operator

In a previous release, deprecation warnings were logged when the Red Hat build of Keycloak JS adapter
is constructed without the new operator. Starting with this release, doing so will throw an exception
instead. This change is to align with the expected behavior of JavaScript classes, which will allow further
refactoring of the adapter in the future.

To migrate applications secured with the Red Hat Single Sign-On 7.6 adapter, upgrade to Red Hat build
of Keycloak 24.0, which provides a more recent version of the adapter.

5.7. MIGRATING SAML APPLICATIONS

5.7.1. Migrating Red Hat JBoss Enterprise Application Platform applications

5.7.1.1. Red Hat JBoss Enterprise Application Platform 8.x

Red Hat build of Keycloak 24.0 includes client adapters for Red Hat JBoss Enterprise Application
Platform 8.x, including support for Jakarta EE.

5.7.1.2. Red Hat JBoss Enterprise Application Platform 7.x

As Red Hat JBoss Enterprise Application Platform 7.x is close to ending full support, Red Hat build of
Keycloak will not provide support for it. For existing applications deployed to Red Hat JBoss Enterprise
Application Platform 7.x adapters with maintenance support are available through Red Hat Single Sign-
On 7.6.

Red Hat Single Sign-On 7.6 adapters are supported to be used in combination with the Red Hat build of
Keycloak 24.0 server.

5.7.1.3. Red Hat JBoss Enterprise Application Platform 6.x

As Red Hat JBoss Enterprise Application PlatformJBoss EAP 6.x has reached end of maintenance
support, going forward neither Red Hat Single Sign-On 7.6 or Red Hat build of Keycloak will provide
support for it..

5.7.2. Key changes in SAML protocol and client settings

Red Hat build of Keycloak 24.0 Migration Guide

34

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/authorization_services_guide//#enforcer_overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

5.7.2.1. SAML SP metadata changes

Prior to this release, SAML SP metadata contained the same key for both signing and encryption use.
Starting with this version of Keycloak, we include only encryption intended realm keys for encryption use
in SP metadata. For each encryption key descriptor we also specify the algorithm that it is supposed to
be used with. The following table shows the supported XML-Enc algorithms with the mapping to Red
Hat build of Keycloak realm keys.

XML-Enc algorithm Realm key algorithm

rsa-oaep-mgf1p RSA-OAEP

rsa-1_5 RSA1_5

Additional resources

Keycloak Upgrading Guide

5.7.2.2. Deprecated RSA_SHA1 and DSA_SHA1 algorithms for SAML

Algorithms RSA_SHA1 and DSA_SHA1, which can be configured as Signature algorithms on SAML
adapters, clients and identity providers are deprecated. We recommend to use safer alternatives based
on SHA256 or SHA512. Also, verifying signatures on signed SAML documents or assertions with these
algorithms do not work on Java 17 or higher. If you use this algorithm and the other party consuming your
SAML documents is running on Java 17 or higher, verifying signatures will not work.

The possible workaround is to remove algorithms such as the following:

http://www.w3.org/2000/09/xmldsig#rsa-sha1 or http://www.w3.org/2000/09/xmldsig#dsa-
sha1 from the list

"disallowed algorithms" configured on property jdk.xml.dsig.secureValidationPolicy in the file
$JAVA_HOME/conf/security/java.security

CHAPTER 5. MIGRATING APPLICATIONS SECURED BY RED HAT SINGLE SIGN-ON 7.6

35

https://www.keycloak.org/docs/latest/upgrading/index.html

CHAPTER 6. MIGRATING CUSTOM PROVIDERS
Similarly to the Red Hat Single Sign-On 7.6, custom providers are deployed to the Red Hat build of
Keycloak by copying them to a deployment directory. In the Red Hat build of Keycloak, copy your
providers to the providers directory instead of standalone/deployments, which no longer exists.
Additional dependencies should also be copied to the providers directory.

Red Hat build of Keycloak does not use a separate classpath for custom providers, so you may need to
be more careful with additional dependencies that you include. In addition, the EAR and WAR packaging
formats, and jboss-deployment-structure.xml files, are no longer supported.

While Red Hat Single Sign-On 7.6 automatically discovered custom providers, and even supported the
ability to hot-deploy custom providers while Keycloak is running, this behavior is no longer supported.
Also, after you make a change to the providers or dependencies in the providers directory, you have to
do a build or restart the server with the auto build feature.

Depending on what APIs your providers use you may also need to make some changes to the providers.
See the following sections for details.

6.1. TRANSITION FROM JAVA EE TO JAKARTA EE

Keycloak migrated its codebase from Java EE (Enterprise Edition) to Jakarta EE, which brought various
changes. We have upgraded all Jakarta EE specifications in order to support Jakarta EE 10, such as:

Jakarta Persistence 3.1

Jakarta RESTful Web Services 3.1

Jakarta Mail API 2.1

Jakarta Servlet 6.0

Jakarta Activation 2.1

Jakarta EE 10 provides a modernized, simplified, lightweight approach to building cloud-native Java
applications. The main changes provided within this initiative are changing the namespace from javax.*
to jakarta.*. This change does not apply for javax.* packages provided directly in the JDK, such as
javax.security, javax.net, javax.crypto, etc.

In addition, Jakarta EE APIs like session/stateless beans are no longer supported.

6.2. REMOVED THIRD PARTY DEPENDENCIES

Some dependencies were removed in Red Hat build of Keycloak including

openshift-rest-client

okio-jvm

okhttp

commons-lang

commons-compress

jboss-dmr

Red Hat build of Keycloak 24.0 Migration Guide

36

kotlin-stdlib

Also, since Red Hat build of Keycloak is no longer based on EAP, most of the EAP dependencies were
removed. This change means that if you use any of these libraries as dependencies of your own
providers deployed to the Red Hat build of Keycloak, you may also need to copy those JAR files
explicitly to the Keycloak distribution providers directory.

6.3. CONTEXT AND DEPENDENCY INJECTION ARE NO LONGER
ENABLED FOR JAX-RS RESOURCES

To provide a better runtime and leverage as much as possible the underlying stack, all injection points
for contextual data using the javax.ws.rs.core.Context annotation were removed. The expected
improvement in performance involves no longer creating proxies instances multiple times during the
request lifecycle, and drastically reducing the amount of reflection code at runtime.

If you need access to the current request and response objects, you can now obtain their instances
directly from the KeycloakSession:

was replaced by:

Additional contextual data can be obtained from the runtime through the KeycloakContext instance:

6.4. DEPRECATED METHODS FROM DATA PROVIDERS AND MODELS

Some previously deprecated methods are now removed in Red Hat build of Keycloak:

RealmModel#searchForGroupByNameStream(String, Integer, Integer)

UserProvider#getUsersStream(RealmModel, boolean)

UserSessionPersisterProvider#loadUserSessions(int, int, boolean, int, String)

Interfaces added for Streamification work, such as RoleMapperModel.Streams and similar

KeycloakModelUtils#getClientScopeMappings

Deprecated methods from KeycloakSession

@Context
org.jboss.resteasy.spi.HttpRequest request;
@Context
org.jboss.resteasy.spi.HttpResponse response;

KeycloakSession session = // obtain the session, which is usually available when creating a custom
provider from a factory
KeycloakContext context = session.getContext();

HttpRequest request = context.getHttpRequest();
HttpResponse response = context.getHttpResponse();

KeycloakSession session = // obtain the session
KeycloakContext context = session.getContext();
MyContextualObject myContextualObject = context.getContextObject(MyContextualObject.class);

CHAPTER 6. MIGRATING CUSTOM PROVIDERS

37

UserQueryProvider#getUsersStream methods

Also, these other changes were made:

Some methods from UserSessionProvider were moved to UserLoginFailureProvider.

Streams interfaces in federated storage provider classes were deprecated.

Streamification - interfaces now contain only Stream-based methods.
For example in GroupProvider interface

was replaced by

Consistent parameter ordering - methods now have strict parameter ordering where
RealmModel is always the first parameter.
For example in UserLookupProvider interface:

was replaced by

6.4.1. List of changed interfaces

(o.k. stands for org.keycloak. package)

server-spi module

o.k.credential.CredentialInputUpdater

o.k.credential.UserCredentialStore

o.k.models.ClientProvider

o.k.models.ClientSessionContext

o.k.models.GroupModel

o.k.models.GroupProvider

o.k.models.KeyManager

o.k.models.KeycloakSessionFactory

o.k.models.ProtocolMapperContainerModel

o.k.models.RealmModel

@Deprecated
List<GroupModel> getGroups(RealmModel realm);

Stream<GroupModel> getGroupsStream(RealmModel realm);

@Deprecated
UserModel getUserById(String id, RealmModel realm);

UserModel getUserById(RealmModel realm, String id)

Red Hat build of Keycloak 24.0 Migration Guide

38

https://github.com/keycloak/keycloak/blob/19.0.3/server-spi/src/main/java/org/keycloak/models/GroupProvider.java

o.k.models.RealmProvider

o.k.models.RoleContainerModel

o.k.models.RoleMapperModel

o.k.models.RoleModel

o.k.models.RoleProvider

o.k.models.ScopeContainerModel

o.k.models.UserCredentialManager

o.k.models.UserModel

o.k.models.UserProvider

o.k.models.UserSessionProvider

o.k.models.utils.RoleUtils

o.k.sessions.AuthenticationSessionProvider

o.k.storage.client.ClientLookupProvider

o.k.storage.group.GroupLookupProvider

o.k.storage.user.UserLookupProvider

o.k.storage.user.UserQueryProvider

server-spi-private module

o.k.events.EventQuery

o.k.events.admin.AdminEventQuery

o.k.keys.KeyProvider

6.4.2. Refactorings in the storage layer

Red Hat build of Keycloak undergoes a large refactoring to simplify the API usage, which impacts
existing code. Some of these changes require updates to existing code. The following sections provide
more detail.

6.4.2.1. Changes in the module structure

Several public APIs around storage functionality in KeycloakSession have been consolidated, and
some have been moved, deprecated, or removed. Three new modules have been introduced, and data-
oriented code from server-spi, server-spi-private, and services modules have been moved there:

org.keycloak:keycloak-model-legacy

Contains all public facing APIs from the legacy store, such as the User Storage API.

org.keycloak:keycloak-model-legacy-private

Contains private implementations that relate to user storage management, such as storage

CHAPTER 6. MIGRATING CUSTOM PROVIDERS

39

Contains private implementations that relate to user storage management, such as storage
*Manager classes.

org.keycloak:keycloak-model-legacy-services

Contains all REST endpoints that directly operate on the legacy store.

If you are using for example in your custom user storage provider implementation the classes which have
been moved to the new modules, you need to update your dependencies to include the new modules
listed above.

6.4.2.2. Changes in KeycloakSession

KeycloakSession has been simplified. Several methods have been removed in KeycloakSession.

KeycloakSession session contained several methods for obtaining a provider for a particular object
type, such as for a UserProvider there are users(), userLocalStorage(), userCache(),
userStorageManager(), and userFederatedStorage(). This situation may be confusing for the
developer who has to understand the exact meaning of each method.

For those reasons, only the users() method is kept in KeycloakSession, and should replace all other
calls listed above. The rest of the methods have been removed. The same pattern of depreciation
applies to methods of other object areas, such as clients() or groups(). All methods ending in
*StorageManager() and *LocalStorage() have been removed. The next section describes how to
migrate those calls to the new API or use the legacy API.

6.4.3. Migrating existing providers

The existing providers need no migration if they do not call a removed method, which should be the case
for most providers.

If the provider uses removed methods, but does not rely on local versus non-local storage, changing a
call from the now removed userLocalStorage() to the method users() is the best option. Be aware that
the semantics change here as the new method involves a cache if that has been enabled in the local
setup.

Before migration: accessing a removed API doesn’t compile

After migration: accessing the new API when caller does not depend on the legacy storage
API

In the rare case when a custom provider needs to distinguish between the mode of a particular provider,
access to the deprecated objects is provided by using the LegacyStoreManagers data store provider.
This might be the case if the provider accesses the local storage directly or wants to skip the cache. This
option will be available only if the legacy modules are part of the deployment.

Before migration: accessing a removed API

After migration: accessing the new functionality via the LegacyStoreManagers API

session.userLocalStorage();

session.users();

session.userLocalStorage();

Red Hat build of Keycloak 24.0 Migration Guide

40

Some user storage related APIs have been wrapped in org.keycloak.storage.UserStorageUtil for
convenience.

6.4.4. Changes to RealmModel

The methods getUserStorageProviders, getUserStorageProvidersStream,
getClientStorageProviders, getClientStorageProvidersStream, getRoleStorageProviders and
getRoleStorageProvidersStream have been removed. Code which depends on these methods should
cast the instance as follows:

Before migration: code will not compile due to the changed API

After migration: cast the instance to the legacy interface

Similarly, code that used to implement the interface RealmModel and wants to provide these methods
should implement the new interface LegacyRealmModel. This interface is a sub-interface of
RealmModel and includes the old methods:

Before migration: code implements the old interface

After migration: code implements the new interface

6.4.5. Interface UserCache moved to the legacy module

As the caching status of objects will be transparent to services, the interface UserCache has been
moved to the module keycloak-model-legacy.

Code that depends on the legacy implementation should access the UserCache directly.

Before migration: code will not compile[source,java,subs="+quotes"]

session**.userCache()**.evict(realm, user);

After migration: use the API directly

((LegacyDatastoreProvider) session.getProvider(DatastoreProvider.class)).userLocalStorage();

realm.getClientStorageProvidersStream()...;

((LegacyRealmModel) realm).getClientStorageProvidersStream()...;

public class MyClass extends RealmModel {
 /* might not compile due to @Override annotations for methods no longer present
 in the interface RealmModel. / / ... */
}

public class MyClass extends LegacyRealmModel {
 /* ... */
}

UserStorageUitl.userCache(session);

CHAPTER 6. MIGRATING CUSTOM PROVIDERS

41

To trigger the invalidation of a realm, instead of using the UserCache API, consider triggering an event:

Before migration: code uses cache API[source,java,subs="+quotes"]

UserCache cache = session.getProvider(UserCache.class);
if (cache != null) cache.evict(realm)();

After migration: use the invalidation API

6.4.6. Credential management for users

Credentials for users were previously managed using
session.userCredentialManager().method(realm, user, ...). The new way is to leverage
user.credentialManager().method(...). This form gets the credential functionality closer to the API of
users, and does not rely on prior knowledge of the user credential’s location in regard to realm and
storage.

The old APIs have been removed.

Before migration: accessing a removed API

After migration: accessing the new API

For a custom UserStorageProvider, there is a new method credentialManager() that needs to be
implemented when returning a UserModel. Those must return an instance of the
LegacyUserCredentialManager:

Before migration: code will not compile due to the new method credentialManager() required
by UserModel

After migration: implementation of the API UserModel.credentialManager() for the legacy
store.

session.invalidate(InvalidationHandler.ObjectType.REALM, realm.getId());

session.userCredentialManager().createCredential(realm, user, credentialModel)

user.credentialManager().createStoredCredential(credentialModel)

public class MyUserStorageProvider implements UserLookupProvider, ... {
 /* ... */
 protected UserModel createAdapter(RealmModel realm, String username) {
 return new AbstractUserAdapter(session, realm, model) {
 @Override
 public String getUsername() {
 return username;
 }
 };
 }
}

public class MyUserStorageProvider implements UserLookupProvider, ... {

Red Hat build of Keycloak 24.0 Migration Guide

42

 /* ... */
 protected UserModel createAdapter(RealmModel realm, String username) {
 return new AbstractUserAdapter(session, realm, model) {
 @Override
 public String getUsername() {
 return username;
 }

 @Override
 public SubjectCredentialManager credentialManager() {
 return new LegacyUserCredentialManager(session, realm, this);
 }
 };
 }
}

CHAPTER 6. MIGRATING CUSTOM PROVIDERS

43

CHAPTER 7. MIGRATING CUSTOM THEMES

7.1. NEW ADMIN CONSOLE

The new Admin Console (keycloak.v2) is built using React. The old Admin Console (keycloak) was built
with AngularJS 1.x, which reached end-of-life a while ago. Thus, there is no migration path from the old
console or any theme that extends it. The base theme Admin Console is also not supported for the
same reason.

7.2. NEW ACCOUNT CONSOLE

The new Account Console (keycloak.v2) is built using React, providing a better user experience. The old
Account Console (keycloak) was built with basic server-side templating. Thus, there is no migration path
from the old console or any theme that extends it.

7.3. MIGRATING LOGIN THEMES

Themes are used to configure the look and feel of login pages and the Account Console.

When creating or updating custom themes, especially when overriding templates, it may be useful to use
the built-in templates as a reference. These templates are in
${KC_HOME}/lib/lib/main/org.keycloak.keycloak-themes-${KC_VERSION}.jar, which can be opened
using any standard ZIP archive tool.

When running the server in development mode using start-dev, themes are not cached so that you can
easily work on them without a need to restart the server when making changes.

To install custom themes, you can choose from packaging your theme files as a JAR file and deploy it to
the ${KC_HOME}/providers directory, or copy files directly to the ${KC_HOME}/themes directory. In
both cases, see the Server Developer Guide for more details about the file and directory structure
expected by the server.

Red Hat build of Keycloak 24.0 Migration Guide

44

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/#themes

CHAPTER 8. MIGRATING UPSTREAM KEYCLOAK TO RED HAT
BUILD OF KEYCLOAK 24.0

Starting with version 22, minimal differences exist between Red Hat build of Keycloak and upstream
Keycloak. The following differences exist:

For upstream Keycloak, the distribution artifacts are on keycloak.org; for Red Hat build of
Keycloak, the distribution artifacts are on the Red Hat customer portal .

Oracle and MSSQL database drivers are bundled with upstream Keycloak, but not bundled with
Red Hat build of Keycloak. See Configuring the database for detailed steps on how to install
those drivers.

The GELF log handler is not available in Red Hat build of Keycloak.

The migration process depends on the version of Keycloak to be migrated and the type of Keycloak
installation. See the following sections for details.

8.1. MATCHING KEYCLOAK VERSION

The migration process depends on the version of Keycloak to be migrated.

If your Keycloak project version matches the Red Hat build of Keycloak version, migrate
Keycloak by using the Red Hat build of Keycloak artifacts on the Red Hat customer portal .

If your Keycloak project version is an older version, use the Keycloak Upgrading Guide to
upgrade Keycloak to match the Red Hat build of Keycloak version. Then, migrate Keycloak using
the artifacts on the Red Hat customer portal .

If your Keycloak project version is greater than the Red Hat build of Keycloak version, you
cannot migrate to Red Hat build of Keycloak. Instead, create a new deployment of Red Hat build
of Keycloak or wait for a future Red Hat build of Keycloak release.

8.2. MIGRATION BASED ON TYPE OF KEYCLOAK INSTALLATION

Once you have a matching version of Keycloak, migrate Keycloak based on the type of installation.

If you installed Keycloak from a ZIP distribution, migrate Keycloak by using the artifacts on the
Red Hat customer portal .

If you deployed the Keycloak Operator, uninstall it and install the Red Hat build of Keycloak
Operator by using the Operator guide. The CRs are compatible between upstream Keycloak and
Red Hat build of Keycloak.

If you created a custom server container image, rebuild it by using the Red Hat build of Keycloak
image. See Running Keycloak in a Container .

CHAPTER 8. MIGRATING UPSTREAM KEYCLOAK TO RED HAT BUILD OF KEYCLOAK 24.0

45

https://www.keycloak.org
https://access.redhat.com/products/red-hat-build-of-keycloak
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide//#db
https://access.redhat.com/products/red-hat-build-of-keycloak
https://www.keycloak.org/docs/latest/upgrading/index.html
https://access.redhat.com/products/red-hat-build-of-keycloak
https://access.redhat.com/products/red-hat-build-of-keycloak
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/operator_guide/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide/#containers-

CHAPTER 9. OTHER NOTABLE CHANGES

9.1. JAVASCRIPT ENGINE AVAILABLE BY DEFAULT ON THE
CLASSPATH

In the previous version, when Keycloak was used on Java 17 with Javascript providers (Script
authenticator, Javascript authorization policy or Script protocol mappers for OIDC and SAML clients), it
was needed to copy the javascript engine to the distribution. This is no longer needed as Nashorn
javascript engine is available in Red Hat build of Keycloak server by default. When you deploy script
providers, it is recommended to not copy Nashorn’s script engine and its dependencies into the Red Hat
build of Keycloak distribution.

9.2. RENAMED KEYCLOAK ADMIN CLIENT ARTIFACTS

After the upgrade to Jakarta EE, artifacts for Keycloak Admin clients were renamed to more descriptive
names with consideration for long-term maintainability. However, two separate Keycloak Admin clients
still exist: one with Jakarta EE and the other with Java EE support.

The org.keycloak:keycloak-admin-client-jakarta artifact is no longer released. The default one for the
Keycloak Admin client with Jakarta EE support is org.keycloak:keycloak-admin-client (since version
24.0.0).

The new artifact with Java EE support is org.keycloak:keycloak-admin-client-jee.

9.2.1. Jakarta EE support

The new artifact with Java EE support is org.keycloak:keycloak-admin-client-jee. Jakarta EE support

Before migration:

After migration:

9.2.2. Java EE support

Before migration:

<dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-admin-client-jakarta</artifactId>
 <version>18.0.0.redhat-00001</version>
</dependency>

<dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-admin-client</artifactId>
 <version>22.0.0.redhat-00001</version>
</dependency>

<dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-admin-client</artifactId>

Red Hat build of Keycloak 24.0 Migration Guide

46

After migration:

9.3. NEVER EXPIRES OPTION REMOVED FROM CLIENT ADVANCED
SETTINGS COMBOS

The option Never expires is now removed from all the combos of the Advanced Settings client tab.
This option was misleading because the different lifespans or idle timeouts were never infinite, but
limited by the general user session or realm values. Therefore, this option is removed in favor of the
other two remaining options: Inherits from the realm settings (the client uses general realm timeouts)
and Expires in (the value is overridden for the client). Internally the Never expires was represented by
-1. Now that value is shown with a warning in the Admin Console and cannot be set directly by the
administrator.

9.4. NEW EMAIL RULES AND LIMITS VALIDATION

Red Hat build of Keycloak has new rules on email creation to allow ASCII characters during the email
creation. Also, a new limit of 64 characters on exists on local email part (before the @). So, a new
parameter --spi-user-profile-declarative-user-profile-max-email-local-part-length is added to set
max email local part length taking backwards compatibility into consideration. The default value is 64.

 <version>18.0.0.redhat-00001</version>
</dependency>

<dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-admin-client-jee</artifactId>
 <version>22.0.0.redhat-00001</version>
</dependency>

kc.sh start --spi-user-profile-declarative-user-profile-max-email-local-part-length=100

CHAPTER 9. OTHER NOTABLE CHANGES

47

	Table of Contents
	CHAPTER 1. MIGRATING RED HAT SINGLE SIGN-ON 7.6 TO RED HAT BUILD OF KEYCLOAK
	CHAPTER 2. MIGRATING A RED HAT SINGLE SIGN-ON 7.6 SERVER
	2.1. PREREQUISITES
	2.2. MIGRATION PROCESS OVERVIEW
	2.3. DOWNLOADING RED HAT BUILD OF KEYCLOAK
	2.4. MIGRATING THE CONFIGURATION
	2.4.1. Migrating the database configuration
	2.4.2. Migrating HTTP and TLS configuration
	2.4.3. Migrating clustering and cache configuration
	2.4.4. Migrating hostname and proxy configuration
	2.4.5. Migrating truststore configuration
	2.4.6. Migrating vault configuration
	2.4.7. Migrating JVM settings
	2.4.8. Migrating SPI provider configuration
	2.4.9. Troubleshooting the configuration

	2.5. MIGRATING THE DATABASE
	2.5.1. Automatic relational database migration
	2.5.2. Manual relational database migration

	2.6. STARTING THE RED HAT BUILD OF KEYCLOAK SERVER
	2.6.1. Starting the server in development mode
	2.6.2. Starting the server in production mode

	CHAPTER 3. MIGRATING OPERATOR DEPLOYMENTS ON OPENSHIFT
	3.1. PREREQUISITES
	3.2. MIGRATION PROCESS
	3.3. MIGRATING KEYCLOAK CR
	3.3.1. Migrating database configuration
	3.3.1.1. Supported database vendors

	3.3.2. Migrating TLS configuration
	3.3.3. Using a custom image for extensions
	3.3.4. Upgrade strategy option removed
	3.3.5. Health endpoint exposed by default
	3.3.6. Migrating advanced deployment options using Pod templates
	3.3.7. Connecting to an external instance is no longer supported
	3.3.8. Migrating Horizontal Pod Autoscaler enabled deployments

	3.4. MIGRATING THE KEYCLOAK REALM CR
	3.5. REMOVED CRS

	CHAPTER 4. MIGRATING TEMPLATES DEPLOYMENTS ON OPENSHIFT
	4.1. MIGRATING DEPLOYMENTS WITH THE INTERNAL H2 DATABASE
	4.2. MIGRATING DEPLOYMENTS WITH EPHEMERAL POSTGRESQL DATABASE
	4.3. MIGRATING DEPLOYMENTS WITH PERSISTENT POSTGRESQL DATABASE
	4.3.1. Prerequisites

	4.4. MIGRATION PROCESS
	4.4.1. General Parameter Migration
	4.4.2. Database Deployment Parameter Migration
	4.4.3. Database Connection Parameter Migration
	4.4.4. Networking Parameter Migration
	4.4.5. JGroups Parameter Migration

	CHAPTER 5. MIGRATING APPLICATIONS SECURED BY RED HAT SINGLE SIGN-ON 7.6
	5.1. MIGRATING OPENID CONNECT CLIENTS
	5.1.1. Key changes in OpenID Connect protocol and client settings
	5.1.1.1. Access Type client option no longer available
	5.1.1.2. Changes in validating schemes for valid redirect URIs
	5.1.1.3. Support for the client_id parameter in OpenID Connect Logout Endpoint

	5.1.2. Valid Post Logout Redirect URIs
	5.1.2.1. UserInfo Endpoint Changes

	5.2. MIGRATING RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM APPLICATIONS
	5.2.1. Red Hat JBoss Enterprise Application Platform 8.x
	5.2.2. Red Hat JBoss Enterprise Application Platform 7.x
	5.2.3. Red Hat JBoss Enterprise Application Platform 6.x

	5.3. MIGRATING SPRING BOOT APPLICATIONS
	5.4. MIGRATING RED HAT FUSE APPLICATIONS
	5.5. MIGRATING APPLICATIONS USING THE AUTHORIZATION SERVICES POLICY ENFORCER
	5.6. MIGRATING SINGLE PAGE APPLICATIONS (SPA) USING THE RED HAT BUILD OF KEYCLOAK JS ADAPTER
	5.6.1. Legacy Promise API removed
	5.6.2. Required to be instantiated with the new operator

	5.7. MIGRATING SAML APPLICATIONS
	5.7.1. Migrating Red Hat JBoss Enterprise Application Platform applications
	5.7.1.1. Red Hat JBoss Enterprise Application Platform 8.x
	5.7.1.2. Red Hat JBoss Enterprise Application Platform 7.x
	5.7.1.3. Red Hat JBoss Enterprise Application Platform 6.x

	5.7.2. Key changes in SAML protocol and client settings
	5.7.2.1. SAML SP metadata changes
	5.7.2.2. Deprecated RSA_SHA1 and DSA_SHA1 algorithms for SAML

	CHAPTER 6. MIGRATING CUSTOM PROVIDERS
	6.1. TRANSITION FROM JAVA EE TO JAKARTA EE
	6.2. REMOVED THIRD PARTY DEPENDENCIES
	6.3. CONTEXT AND DEPENDENCY INJECTION ARE NO LONGER ENABLED FOR JAX-RS RESOURCES
	6.4. DEPRECATED METHODS FROM DATA PROVIDERS AND MODELS
	6.4.1. List of changed interfaces
	6.4.2. Refactorings in the storage layer
	6.4.2.1. Changes in the module structure
	6.4.2.2. Changes in KeycloakSession

	6.4.3. Migrating existing providers
	6.4.4. Changes to RealmModel
	6.4.5. Interface UserCache moved to the legacy module
	6.4.6. Credential management for users

	CHAPTER 7. MIGRATING CUSTOM THEMES
	7.1. NEW ADMIN CONSOLE
	7.2. NEW ACCOUNT CONSOLE
	7.3. MIGRATING LOGIN THEMES

	CHAPTER 8. MIGRATING UPSTREAM KEYCLOAK TO RED HAT BUILD OF KEYCLOAK 24.0
	8.1. MATCHING KEYCLOAK VERSION
	8.2. MIGRATION BASED ON TYPE OF KEYCLOAK INSTALLATION

	CHAPTER 9. OTHER NOTABLE CHANGES
	9.1. JAVASCRIPT ENGINE AVAILABLE BY DEFAULT ON THE CLASSPATH
	9.2. RENAMED KEYCLOAK ADMIN CLIENT ARTIFACTS
	9.2.1. Jakarta EE support
	9.2.2. Java EE support

	9.3. NEVER EXPIRES OPTION REMOVED FROM CLIENT ADVANCED SETTINGS COMBOS
	9.4. NEW EMAIL RULES AND LIMITS VALIDATION

