
Red Hat build of Keycloak 24.0

Server Administration Guide

Last Updated: 2024-06-27

Red Hat build of Keycloak 24.0 Server Administration Guide

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for administrators to configure Red Hat build of Keycloak 24.0.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. RED HAT BUILD OF KEYCLOAK FEATURES AND CONCEPTS
1.1. FEATURES
1.2. BASIC RED HAT BUILD OF KEYCLOAK OPERATIONS
1.3. CORE CONCEPTS AND TERMS

CHAPTER 2. CREATING THE FIRST ADMINISTRATOR
2.1. CREATING THE ACCOUNT ON THE LOCAL HOST
2.2. CREATING THE ACCOUNT REMOTELY

CHAPTER 3. CONFIGURING REALMS
3.1. USING THE ADMIN CONSOLE
3.2. THE MASTER REALM
3.3. CREATING A REALM
3.4. CONFIGURING SSL FOR A REALM
3.5. CONFIGURING EMAIL FOR A REALM
3.6. CONFIGURING THEMES
3.7. ENABLING INTERNATIONALIZATION

3.7.1. User locale selection
3.8. CONTROLLING LOGIN OPTIONS

3.8.1. Enabling forgot password
3.8.2. Enabling Remember Me
3.8.3. ACR to Level of Authentication (LoA) Mapping
3.8.4. Update Email Workflow (UpdateEmail)

3.9. CONFIGURING REALM KEYS
3.9.1. Rotating keys
3.9.2. Adding a generated key pair
3.9.3. Rotating keys by extracting a certificate
3.9.4. Adding an existing key pair and certificate
3.9.5. Loading keys from a Java Keystore
3.9.6. Making keys passive
3.9.7. Disabling keys
3.9.8. Compromised keys

CHAPTER 4. USING EXTERNAL STORAGE
4.1. ADDING A PROVIDER
4.2. DEALING WITH PROVIDER FAILURES
4.3. LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) AND ACTIVE DIRECTORY

4.3.1. Configuring federated LDAP storage
4.3.2. Storage mode
4.3.3. Edit mode
4.3.4. Other configuration options
4.3.5. Connecting to LDAP over SSL
4.3.6. Synchronizing LDAP users to Red Hat build of Keycloak
4.3.7. LDAP mappers
4.3.8. Password hashing
4.3.9. Troubleshooting

4.4. SSSD AND FREEIPA IDENTITY MANAGEMENT INTEGRATION
4.4.1. FreeIPA/IdM server
4.4.2. SSSD and D-Bus
4.4.3. Enabling the SSSD federation provider
4.4.4. Configuring a federated SSSD store

4.5. CUSTOM PROVIDERS

12
12
13
13

16
16
16

18
18
19

20
21
23
25
26
27
28
28
33
35
35
36
36
37
37
38
38
39
39
40

41
41
41

42
42
42
43
44
44
44
45
46
47
47
48
49
50
50
51

Table of Contents

1

. .

. .

CHAPTER 5. MANAGING USERS
5.1. CREATING USERS
5.2. MANAGING USER ATTRIBUTES

5.2.1. Understanding the Default Configuration
5.2.2. Understanding the User Profile Contexts
5.2.3. Understanding Managed and Unmanaged Attributes
5.2.4. Managing the User Profile
5.2.5. Managing Attributes
5.2.6. Validating Attributes

5.2.6.1. Built-in Validators
5.2.7. Defining UI Annotations

5.2.7.1. Built-in Annotations
5.2.7.2. Changing the HTML type for an Attribute
5.2.7.3. Defining options for select and multiselect fields
5.2.7.4. Changing the DOM representation of an Attribute

5.2.8. Managing Attribute Groups
5.2.9. Using the JSON configuration

5.2.9.1. Attribute Schema
5.2.9.2. Attribute Group Schema

5.2.10. Customizing How UIs are Rendered
5.2.10.1. Ordering attributes
5.2.10.2. Grouping attributes

5.2.11. Enabling Progressive Profiling
5.2.12. Using Internationalized Messages

5.3. DEFINING USER CREDENTIALS
5.3.1. Setting a password for a user
5.3.2. Requesting a user reset a password
5.3.3. Creating an OTP

5.4. ALLOWING USERS TO SELF-REGISTER
5.4.1. Enabling user registration
5.4.2. Registering as a new user
5.4.3. Requiring user to agree to terms and conditions during registration

5.5. DEFINING ACTIONS REQUIRED AT LOGIN
5.5.1. Setting required actions for one user
5.5.2. Setting required actions for all users
5.5.3. Enabling terms and conditions as a required action

5.6. APPLICATION INITIATED ACTIONS
5.6.1. Re-authentication during AIA
5.6.2. Available actions

5.7. SEARCHING FOR A USER
5.8. DELETING A USER
5.9. ENABLING ACCOUNT DELETION BY USERS

5.9.1. Enabling the Delete Account Capability
5.9.2. Giving a user the delete-account role
5.9.3. Deleting your account

5.10. IMPERSONATING A USER
5.11. ENABLING RECAPTCHA
5.12. PERSONAL DATA COLLECTED BY RED HAT BUILD OF KEYCLOAK

CHAPTER 6. MANAGING USER SESSIONS
6.1. ADMINISTERING SESSIONS

6.1.1. Signing out all active sessions
6.1.2. Viewing client sessions

52
52
52
53
53
54
55
56
58
59
60
61

63
65
69
70
71
72
74
74
74
75
77
78
78
79
79
79
80
81
81

83
85
86
86
87
87
88
88
88
89
89
90
90
91

93
94
96

97
97
97
98

Red Hat build of Keycloak 24.0 Server Administration Guide

2

. .

. .

6.1.3. Viewing user sessions
6.2. REVOKING ACTIVE SESSIONS
6.3. SESSION AND TOKEN TIMEOUTS
6.4. OFFLINE ACCESS
6.5. OFFLINE SESSIONS PRELOADING
6.6. TRANSIENT SESSIONS

CHAPTER 7. ASSIGNING PERMISSIONS USING ROLES AND GROUPS
7.1. CREATING A REALM ROLE
7.2. CLIENT ROLES
7.3. CONVERTING A ROLE TO A COMPOSITE ROLE
7.4. ASSIGNING ROLE MAPPINGS
7.5. USING DEFAULT ROLES
7.6. ROLE SCOPE MAPPINGS
7.7. GROUPS

7.7.1. Groups compared to roles
7.7.2. Using default groups

CHAPTER 8. CONFIGURING AUTHENTICATION
8.1. PASSWORD POLICIES

8.1.1. Password policy types
8.1.1.1. HashAlgorithm
8.1.1.2. Hashing iterations
8.1.1.3. Digits
8.1.1.4. Lowercase characters
8.1.1.5. Uppercase characters
8.1.1.6. Special characters
8.1.1.7. Not username
8.1.1.8. Not email
8.1.1.9. Regular expression
8.1.1.10. Expire password
8.1.1.11. Not recently used
8.1.1.12. Password blacklist
8.1.1.13. Maximum Authentication Age

8.2. ONE TIME PASSWORD (OTP) POLICIES
8.2.1. Time-based or counter-based one time passwords
8.2.2. TOTP configuration options

8.2.2.1. OTP hash algorithm
8.2.2.2. Number of digits
8.2.2.3. Look around window
8.2.2.4. OTP token period
8.2.2.5. Reusable code

8.2.3. HOTP configuration options
8.2.3.1. OTP hash algorithm
8.2.3.2. Number of digits
8.2.3.3. Look around window
8.2.3.4. Initial counter

8.3. AUTHENTICATION FLOWS
8.3.1. Built-in flows

8.3.1.1. Auth type
8.3.1.2. Requirement

8.3.1.2.1. Required
8.3.1.2.2. Alternative

98
98
99

105
106
106

107
107
108
108
109
110
111

112
114
115

116
116
117
117
117
117
117
117
117
117
118
118
118
118
118
118
119
119

120
120
120
120
120
120
120
120
121
121
121
121
121
122
123
123
123

Table of Contents

3

. .

8.3.1.2.3. Disabled
8.3.1.2.4. Conditional

8.3.2. Creating flows
8.3.3. Creating a password-less browser login flow
8.3.4. Creating a browser login flow with step-up mechanism
8.3.5. Registration or Reset credentials requested by client

8.4. USER SESSION LIMITS
8.5. KERBEROS

8.5.1. Setup of Kerberos server
8.5.2. Setup and configuration of Red Hat build of Keycloak server

8.5.2.1. Enabling SPNEGO processing
8.5.2.2. Configure Kerberos user storage federation providers

8.5.3. Setup and configuration of client machines
8.5.4. Credential delegation
8.5.5. Cross-realm trust
8.5.6. Troubleshooting

8.6. X.509 CLIENT CERTIFICATE USER AUTHENTICATION
8.6.1. Features

8.6.1.1. Regular expressions
8.6.1.1.1. Mapping certificate identity to an existing user
8.6.1.1.2. Extended certificate validation

8.6.2. Adding X.509 client certificate authentication to browser flows
8.6.3. Configuring X.509 client certificate authentication
8.6.4. Adding X.509 Client Certificate Authentication to a Direct Grant Flow

8.7. W3C WEB AUTHENTICATION (WEBAUTHN)
8.7.1. Setup

8.7.1.1. Enable WebAuthn authenticator registration
8.7.2. Adding WebAuthn authentication to a browser flow
8.7.3. Authenticate with WebAuthn authenticator
8.7.4. Managing WebAuthn as an administrator

8.7.4.1. Managing credentials
8.7.4.2. Managing policy

8.7.5. Attestation statement verification
8.7.6. Managing WebAuthn credentials as a user

8.7.6.1. Register WebAuthn authenticator
8.7.6.2. New user
8.7.6.3. Existing user

8.7.7. Passwordless WebAuthn together with Two-Factor
8.7.7.1. Setup

8.7.8. LoginLess WebAuthn
8.7.8.1. Setup
8.7.8.2. Vendor specific remarks

8.7.8.2.1. Compatibility check list
8.7.8.2.2. Windows Hello
8.7.8.2.3. Supported Passkeys

8.8. RECOVERY CODES (RECOVERYCODES)
8.9. CONDITIONS IN CONDITIONAL FLOWS

8.9.1. Available conditions
8.9.2. Explicitly deny/allow access in conditional flows

8.10. PASSKEYS

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS
9.1. BROKERING OVERVIEW

123
123
123
128
132
139
139
142
143
144
144
145
147
147
148
149
149
150
150
151
151
151

153
156
158
158
158
158
161
161
161
161

163
164
164
164
164
164
165
166
167
167
167
168
168
168
168
168
169
171

172
172

Red Hat build of Keycloak 24.0 Server Administration Guide

4

. .

9.2. DEFAULT IDENTITY PROVIDER
9.3. GENERAL CONFIGURATION
9.4. SOCIAL IDENTITY PROVIDERS

9.4.1. Bitbucket
9.4.2. Facebook
9.4.3. GitHub
9.4.4. GitLab
9.4.5. Google
9.4.6. Instagram
9.4.7. LinkedIn
9.4.8. Microsoft
9.4.9. OpenShift 3
9.4.10. OpenShift 4
9.4.11. PayPal
9.4.12. Stack overflow
9.4.13. Twitter

9.5. OPENID CONNECT V1.0 IDENTITY PROVIDERS
9.6. SAML V2.0 IDENTITY PROVIDERS

9.6.1. Requesting specific AuthnContexts
9.6.2. SP Descriptor
9.6.3. Send subject in SAML requests

9.7. CLIENT-SUGGESTED IDENTITY PROVIDER
9.8. MAPPING CLAIMS AND ASSERTIONS
9.9. AVAILABLE USER SESSION DATA
9.10. FIRST LOGIN FLOW

9.10.1. Default first login flow authenticators
9.10.2. Automatically link existing first login flow
9.10.3. Disabling automatic user creation
9.10.4. Detect existing user first login flow

9.11. RETRIEVING EXTERNAL IDP TOKENS
9.12. IDENTITY BROKER LOGOUT

CHAPTER 10. SSO PROTOCOLS
10.1. OPENID CONNECT

10.1.1. OIDC auth flows
10.1.1.1. Authorization Code Flow
10.1.1.2. Implicit Flow
10.1.1.3. Resource owner password credentials grant (Direct Access Grants)
10.1.1.4. Client credentials grant

10.1.2. Refresh token grant
10.1.2.1. Refresh token rotation
10.1.2.2. Device authorization grant
10.1.2.3. Client initiated backchannel authentication grant

10.1.2.3.1. CIBA Policy
10.1.2.3.2. Provider Setting
10.1.2.3.3. Authentication Channel Provider
10.1.2.3.4. User Resolver Provider

10.1.3. OIDC Logout
10.1.3.1. Session Management
10.1.3.2. RP-Initiated Logout
10.1.3.3. Front-channel Logout
10.1.3.4. Backchannel Logout

10.1.4. Red Hat build of Keycloak server OIDC URI endpoints

174
174
178
178
179
182
183
183
185
189
190
190
191

193
194
196
197
201

205
205
206
206
206
208
208
209
210
211
211
212
212

213
213
213
213
214
215
215
215
215
216
216
216
217
218
221
221
221
221
222
222
222

Table of Contents

5

. .

. .

10.2. SAML
10.2.1. SAML bindings

10.2.1.1. Redirect binding
10.2.1.2. POST binding
10.2.1.3. ECP

10.2.2. Red Hat build of Keycloak Server SAML URI Endpoints
10.3. OPENID CONNECT COMPARED TO SAML
10.4. DOCKER REGISTRY V2 AUTHENTICATION

10.4.1. Docker authentication flow
10.4.2. Red Hat build of Keycloak Docker Registry v2 Authentication Server URI Endpoints

CHAPTER 11. CONTROLLING ACCESS TO THE ADMIN CONSOLE
11.1. MASTER REALM ACCESS CONTROL

11.1.1. Global roles
11.1.2. Realm specific roles

11.2. DEDICATED REALM ADMIN CONSOLES

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS
12.1. MANAGING OPENID CONNECT CLIENTS

12.1.1. Creating an OpenID Connect client
12.1.2. Basic configuration

12.1.2.1. General Settings
12.1.2.2. Access Settings
12.1.2.3. Capability Config
12.1.2.4. Login settings
12.1.2.5. Logout settings

12.1.3. Advanced configuration
12.1.3.1. Advanced tab
12.1.3.2. Fine grain OpenID Connect configuration
12.1.3.3. OpenID Connect Compatibility Modes

12.1.4. Confidential client credentials
12.1.5. Client Secret Rotation

12.1.5.1. Rules for client secret rotation
12.1.6. Creating an OIDC Client Secret Rotation Policy
12.1.7. Using a service account
12.1.8. Audience support

12.1.8.1. Setup
12.1.8.2. Automatically add audience
12.1.8.3. Hardcoded audience

12.2. CREATING A SAML CLIENT
12.2.1. Settings tab

12.2.1.1. General settings
12.2.1.2. Access Settings
12.2.1.3. SAML capabilities
12.2.1.4. Signature and Encryption
12.2.1.5. Login settings
12.2.1.6. Logout settings

12.2.2. Keys tab
12.2.3. Advanced tab

12.2.3.1. Fine Grain SAML Endpoint Configuration
12.2.4. IDP Initiated login
12.2.5. Using an entity descriptor to create a client

12.3. CLIENT LINKS

223
223
223
224
224
224
225
225
225
226

227
227
227
227
228

229
229
229
230
230
230
231

232
232
233
233
233
234
238
242
243
243
246
248
249
249
250
251

252
252
253
253
254
254
255
255
255
255
256
257
258

Red Hat build of Keycloak 24.0 Server Administration Guide

6

. .

. .

. .

12.4. OIDC TOKEN AND SAML ASSERTION MAPPINGS
12.4.1. Priority order
12.4.2. OIDC user session note mappers
12.4.3. Script mapper
12.4.4. Using lightweight access token

12.5. GENERATING CLIENT ADAPTER CONFIG
12.6. CLIENT SCOPES

12.6.1. Protocol
12.6.2. Consent related settings
12.6.3. Link client scope with the client

12.6.3.1. Example
12.6.4. Evaluating Client Scopes
12.6.5. Client scopes permissions
12.6.6. Realm default client scopes
12.6.7. Scopes explained

12.7. CLIENT POLICIES
12.7.1. Use-cases
12.7.2. Protocol
12.7.3. Architecture

12.7.3.1. Condition
12.7.3.2. Executor
12.7.3.3. Profile
12.7.3.4. Policy

12.7.4. Configuration
12.7.5. Backward Compatibility
12.7.6. Client Secret Rotation Example

CHAPTER 13. USING A VAULT TO OBTAIN SECRETS
13.1. KEY RESOLVERS

CHAPTER 14. CONFIGURING AUDITING TO TRACK EVENTS
14.1. AUDITING USER EVENTS

14.1.1. Event types
14.1.2. Event listener

14.1.2.1. The logging event listener
14.1.2.2. The Email Event Listener

14.2. AUDITING ADMIN EVENTS

CHAPTER 15. MITIGATING SECURITY THREATS
15.1. HOST
15.2. ADMIN ENDPOINTS AND ADMIN CONSOLE
15.3. BRUTE FORCE ATTACKS

15.3.1. Password policies
15.4. READ-ONLY USER ATTRIBUTES
15.5. VALIDATE USER ATTRIBUTES
15.6. CLICKJACKING
15.7. SSL/HTTPS REQUIREMENT
15.8. CSRF ATTACKS
15.9. UNSPECIFIC REDIRECT URIS
15.10. FAPI COMPLIANCE
15.11. OAUTH 2.1 COMPLIANCE
15.12. COMPROMISED ACCESS AND REFRESH TOKENS
15.13. COMPROMISED AUTHORIZATION CODE
15.14. OPEN REDIRECTORS

258
260
260
261
261
261
262
263
264
265
265
265
266
266
267
267
267
268
268
268
269
271
271
271
271

272

273
273

275
275
278
279
279
280
281

283
283
283
283
287
287
288
288
289
289
290
290
290
290
291
291

Table of Contents

7

. .

. .

15.15. PASSWORD DATABASE COMPROMISED
15.16. LIMITING SCOPE
15.17. LIMIT TOKEN AUDIENCE
15.18. LIMIT AUTHENTICATION SESSIONS
15.19. SQL INJECTION ATTACKS

CHAPTER 16. ACCOUNT CONSOLE
16.1. ACCESSING THE ACCOUNT CONSOLE
16.2. CONFIGURING WAYS TO SIGN IN

16.2.1. Two-factor authentication with OTP
16.2.2. Two-factor authentication with WebAuthn
16.2.3. Passwordless authentication with WebAuthn

16.3. VIEWING DEVICE ACTIVITY
16.4. ADDING AN IDENTITY PROVIDER ACCOUNT
16.5. ACCESSING OTHER APPLICATIONS
16.6. VIEWING GROUP MEMBERSHIPS

CHAPTER 17. ADMIN CLI
17.1. INSTALLING THE ADMIN CLI
17.2. USING THE ADMIN CLI
17.3. AUTHENTICATING
17.4. WORKING WITH ALTERNATIVE CONFIGURATIONS
17.5. BASIC OPERATIONS AND RESOURCE URIS
17.6. REALM OPERATIONS

Creating a new realm
Listing existing realms
Getting a specific realm
Updating a realm
Deleting a realm
Turning on all login page options for the realm
Listing the realm keys
Generating new realm keys
Adding new realm keys from a Java Key Store file
Making the key passive or disabling the key
Deleting an old key
Configuring event logging for a realm
Flushing the caches
Importing a realm from exported .json file

17.7. ROLE OPERATIONS
Creating a realm role
Creating a client role
Listing realm roles
Listing client roles
Getting a specific realm role
Getting a specific client role
Updating a realm role
Updating a client role
Deleting a realm role
Deleting a client role
Listing assigned, available, and effective realm roles for a composite role
Listing assigned, available, and effective client roles for a composite role
Adding realm roles to a composite role
Removing realm roles from a composite role

291
291
292
292
293

294
294
294
295
295
296
297
298
299
300

301
301
301
302
303
303
305
305
305
306
306
306
306
306
306
307
308
308
308
310
310
310
310
310
311
311
311
311
312
312
312
312
312
312
313
313

Red Hat build of Keycloak 24.0 Server Administration Guide

8

Adding client roles to a realm role
Adding client roles to a client role
Removing client roles from a composite role
Adding client roles to a group
Removing client roles from a group

17.8. CLIENT OPERATIONS
Creating a client
Listing clients
Getting a specific client
Getting the current secret for a specific client
Generate a new secret for a specific client
Updating the current secret for a specific client
Getting an adapter configuration file (keycloak.json) for a specific client
Getting a WildFly subsystem adapter configuration for a specific client
Getting a Docker-v2 example configuration for a specific client
Updating a client
Deleting a client
Adding or removing roles for client’s service account

17.9. USER OPERATIONS
Creating a user
Listing users
Getting a specific user
Updating a user
Deleting a user
Resetting a user’s password
Listing assigned, available, and effective realm roles for a user
Listing assigned, available, and effective client roles for a user
Adding realm roles to a user
Removing realm roles from a user
Adding client roles to a user
Removing client roles from a user
Listing a user’s sessions
Logging out a user from a specific session
Logging out a user from all sessions

17.10. GROUP OPERATIONS
Creating a group
Listing groups
Getting a specific group
Updating a group
Deleting a group
Creating a subgroup
Moving a group under another group
Get groups for a specific user
Adding a user to a group
Removing a user from a group
Listing assigned, available, and effective realm roles for a group
Listing assigned, available, and effective client roles for a group

17.11. IDENTITY PROVIDER OPERATIONS
Listing available identity providers
Listing configured identity providers
Getting a specific configured identity provider
Removing a specific configured identity provider
Configuring a Keycloak OpenID Connect identity provider

313
313
314
314
314
314
314
315
315
315
315
315
315
315
316
316
316
316
316
316
316
317
317
317
318
318
318
319
319
319
319
319

320
320
320
320
320
320
320
320
321
321
321
321
321

322
322
322
322
323
323
323
323

Table of Contents

9

Configuring an OpenID Connect identity provider
Configuring a SAML 2 identity provider
Configuring a Facebook identity provider
Configuring a Google identity provider
Configuring a Twitter identity provider
Configuring a GitHub identity provider
Configuring a LinkedIn identity provider
Configuring a Microsoft Live identity provider
Configuring a Stack Overflow identity provider

17.12. STORAGE PROVIDER OPERATIONS
Configuring a Kerberos storage provider
Configuring an LDAP user storage provider
Removing a user storage provider instance
Triggering synchronization of all users for a specific user storage provider
Triggering synchronization of changed users for a specific user storage provider
Test LDAP user storage connectivity
Test LDAP user storage authentication

17.13. ADDING MAPPERS
Adding a hard-coded role LDAP mapper
Adding an MS Active Directory mapper
Adding a user attribute LDAP mapper
Adding a group LDAP mapper
Adding a full name LDAP mapper

17.14. AUTHENTICATION OPERATIONS
Setting a password policy
Obtaining the current password policy
Listing authentication flows
Getting a specific authentication flow
Listing executions for a flow
Adding configuration to an execution
Getting configuration for an execution
Updating configuration for an execution
Deleting configuration for an execution

323
323
324
324
324
324
325
325
325
325
325
326
326
326
327
327
327
327
327
328
328
328
329
329
329
330
330
330
331
331
331
331
332

Red Hat build of Keycloak 24.0 Server Administration Guide

10

Table of Contents

11

CHAPTER 1. RED HAT BUILD OF KEYCLOAK FEATURES AND
CONCEPTS

Red Hat build of Keycloak is a single sign on solution for web apps and RESTful web services. The goal
of Red Hat build of Keycloak is to make security simple so that it is easy for application developers to
secure the apps and services they have deployed in their organization. Security features that developers
normally have to write for themselves are provided out of the box and are easily tailorable to the
individual requirements of your organization. Red Hat build of Keycloak provides customizable user
interfaces for login, registration, administration, and account management. You can also use Red Hat
build of Keycloak as an integration platform to hook it into existing LDAP and Active Directory servers.
You can also delegate authentication to third party identity providers like Facebook and Google.

1.1. FEATURES

Red Hat build of Keycloak provides the following features:

Single-Sign On and Single-Sign Out for browser applications.

OpenID Connect support.

OAuth 2.0 support.

SAML support.

Identity Brokering - Authenticate with external OpenID Connect or SAML Identity Providers.

Social Login - Enable login with Google, GitHub, Facebook, Twitter, and other social networks.

User Federation - Sync users from LDAP and Active Directory servers.

Kerberos bridge - Automatically authenticate users that are logged-in to a Kerberos server.

Admin Console for central management of users, roles, role mappings, clients and configuration.

Account Console that allows users to centrally manage their account.

Theme support - Customize all user facing pages to integrate with your applications and
branding.

Two-factor Authentication - Support for TOTP/HOTP via Google Authenticator or FreeOTP.

Login flows - optional user self-registration, recover password, verify email, require password
update, etc.

Session management - Admins and users themselves can view and manage user sessions.

Token mappers - Map user attributes, roles, etc. how you want into tokens and statements.

Not-before revocation policies per realm, application and user.

CORS support - Client adapters have built-in support for CORS.

Client adapters for JavaScript applications, JBoss EAP, etc.

Supports any platform/language that has an OpenID Connect Relying Party library or SAML 2.0
Service Provider library.

Red Hat build of Keycloak 24.0 Server Administration Guide

12

1.2. BASIC RED HAT BUILD OF KEYCLOAK OPERATIONS

Red Hat build of Keycloak is a separate server that you manage on your network. Applications are
configured to point to and be secured by this server. Red Hat build of Keycloak uses open protocol
standards like OpenID Connect or SAML 2.0 to secure your applications. Browser applications redirect a
user’s browser from the application to the Red Hat build of Keycloak authentication server where they
enter their credentials. This redirection is important because users are completely isolated from
applications and applications never see a user’s credentials. Applications instead are given an identity
token or assertion that is cryptographically signed. These tokens can have identity information like
username, address, email, and other profile data. They can also hold permission data so that applications
can make authorization decisions. These tokens can also be used to make secure invocations on REST-
based services.

1.3. CORE CONCEPTS AND TERMS

Consider these core concepts and terms before attempting to use Red Hat build of Keycloak to secure
your web applications and REST services.

users

Users are entities that are able to log into your system. They can have attributes associated with
themselves like email, username, address, phone number, and birthday. They can be assigned group
membership and have specific roles assigned to them.

authentication

The process of identifying and validating a user.

authorization

The process of granting access to a user.

credentials

Credentials are pieces of data that Red Hat build of Keycloak uses to verify the identity of a user.
Some examples are passwords, one-time-passwords, digital certificates, or even fingerprints.

roles

Roles identify a type or category of user. Admin, user, manager, and employee are all typical roles
that may exist in an organization. Applications often assign access and permissions to specific roles
rather than individual users as dealing with users can be too fine-grained and hard to manage.

user role mapping

A user role mapping defines a mapping between a role and a user. A user can be associated with zero
or more roles. This role mapping information can be encapsulated into tokens and assertions so that
applications can decide access permissions on various resources they manage.

composite roles

A composite role is a role that can be associated with other roles. For example a superuser
composite role could be associated with the sales-admin and order-entry-admin roles. If a user is
mapped to the superuser role they also inherit the sales-admin and order-entry-admin roles.

groups

Groups manage groups of users. Attributes can be defined for a group. You can map roles to a group
as well. Users that become members of a group inherit the attributes and role mappings that group
defines.

realms

A realm manages a set of users, credentials, roles, and groups. A user belongs to and logs into a
realm. Realms are isolated from one another and can only manage and authenticate the users that
they control.

CHAPTER 1. RED HAT BUILD OF KEYCLOAK FEATURES AND CONCEPTS

13

https://openid.net/developers/how-connect-works/
https://saml.xml.org/saml-specifications

clients

Clients are entities that can request Red Hat build of Keycloak to authenticate a user. Most often,
clients are applications and services that want to use Red Hat build of Keycloak to secure themselves
and provide a single sign-on solution. Clients can also be entities that just want to request identity
information or an access token so that they can securely invoke other services on the network that
are secured by Red Hat build of Keycloak.

client adapters

Client adapters are plugins that you install into your application environment to be able to
communicate and be secured by Red Hat build of Keycloak. Red Hat build of Keycloak has a number
of adapters for different platforms that you can download. There are also third-party adapters you
can get for environments that we don’t cover.

consent

Consent is when you as an admin want a user to give permission to a client before that client can
participate in the authentication process. After a user provides their credentials, Red Hat build of
Keycloak will pop up a screen identifying the client requesting a login and what identity information is
requested of the user. User can decide whether or not to grant the request.

client scopes

When a client is registered, you must define protocol mappers and role scope mappings for that
client. It is often useful to store a client scope, to make creating new clients easier by sharing some
common settings. This is also useful for requesting some claims or roles to be conditionally based on
the value of scope parameter. Red Hat build of Keycloak provides the concept of a client scope for
this.

client role

Clients can define roles that are specific to them. This is basically a role namespace dedicated to the
client.

identity token

A token that provides identity information about the user. Part of the OpenID Connect specification.

access token

A token that can be provided as part of an HTTP request that grants access to the service being
invoked on. This is part of the OpenID Connect and OAuth 2.0 specification.

assertion

Information about a user. This usually pertains to an XML blob that is included in a SAML
authentication response that provided identity metadata about an authenticated user.

service account

Each client has a built-in service account which allows it to obtain an access token.

direct grant

A way for a client to obtain an access token on behalf of a user via a REST invocation.

protocol mappers

For each client you can tailor what claims and assertions are stored in the OIDC token or SAML
assertion. You do this per client by creating and configuring protocol mappers.

session

When a user logs in, a session is created to manage the login session. A session contains information
like when the user logged in and what applications have participated within single-sign on during that
session. Both admins and users can view session information.

user federation provider

Red Hat build of Keycloak can store and manage users. Often, companies already have LDAP or

Red Hat build of Keycloak 24.0 Server Administration Guide

14

Red Hat build of Keycloak can store and manage users. Often, companies already have LDAP or
Active Directory services that store user and credential information. You can point Red Hat build of
Keycloak to validate credentials from those external stores and pull in identity information.

identity provider

An identity provider (IDP) is a service that can authenticate a user. Red Hat build of Keycloak is an
IDP.

identity provider federation

Red Hat build of Keycloak can be configured to delegate authentication to one or more IDPs. Social
login via Facebook or Google+ is an example of identity provider federation. You can also hook Red
Hat build of Keycloak to delegate authentication to any other OpenID Connect or SAML 2.0 IDP.

identity provider mappers

When doing IDP federation you can map incoming tokens and assertions to user and session
attributes. This helps you propagate identity information from the external IDP to your client
requesting authentication.

required actions

Required actions are actions a user must perform during the authentication process. A user will not
be able to complete the authentication process until these actions are complete. For example, an
admin may schedule users to reset their passwords every month. An update password required
action would be set for all these users.

authentication flows

Authentication flows are work flows a user must perform when interacting with certain aspects of the
system. A login flow can define what credential types are required. A registration flow defines what
profile information a user must enter and whether something like reCAPTCHA must be used to filter
out bots. Credential reset flow defines what actions a user must do before they can reset their
password.

events

Events are audit streams that admins can view and hook into.

themes

Every screen provided by Red Hat build of Keycloak is backed by a theme. Themes define HTML
templates and stylesheets which you can override as needed.

CHAPTER 1. RED HAT BUILD OF KEYCLOAK FEATURES AND CONCEPTS

15

CHAPTER 2. CREATING THE FIRST ADMINISTRATOR
After installing Red Hat build of Keycloak, you need an administrator account that can act as a super
admin with full permissions to manage Red Hat build of Keycloak. With this account, you can log in to the
Red Hat build of Keycloak Admin Console where you create realms and users and register applications
that are secured by Red Hat build of Keycloak.

2.1. CREATING THE ACCOUNT ON THE LOCAL HOST

If your server is accessible from localhost, perform these steps.

Procedure

1. In a web browser, go to the http://localhost:8080 URL.

2. Supply a username and password that you can recall.

Welcome page

2.2. CREATING THE ACCOUNT REMOTELY

Red Hat build of Keycloak 24.0 Server Administration Guide

16

http://localhost:8080

If you cannot access the server from a localhost address or just want to start Red Hat build of Keycloak
from the command line, use the KEYCLOAK_ADMIN and KEYCLOAK_ADMIN_PASSWORD
environment variables to create an initial admin account.

For example:

export KEYCLOAK_ADMIN=<username>
export KEYCLOAK_ADMIN_PASSWORD=<password>

bin/kc.[sh|bat] start

CHAPTER 2. CREATING THE FIRST ADMINISTRATOR

17

CHAPTER 3. CONFIGURING REALMS
Once you have an administrative account for the Admin Console, you can configure realms. A realm is a
space where you manage objects, including users, applications, roles, and groups. A user belongs to and
logs into a realm. One Red Hat build of Keycloak deployment can define, store, and manage as many
realms as there is space for in the database.

3.1. USING THE ADMIN CONSOLE

You configure realms and perform most administrative tasks in the Red Hat build of Keycloak Admin
Console.

Prerequisites

You need an administrator account. See Creating the first administrator .

Procedure

1. Go to the URL for the Admin Console.
For example, for localhost, use this URL: http://localhost:8080/admin/

Login page

2. Enter the username and password you created on the Welcome Page or through environment
variables as per Creating the initial admin user guide. This action displays the Admin Console.

Admin Console

Red Hat build of Keycloak 24.0 Server Administration Guide

18

http://localhost:8080/admin/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide/#configuration-

3. Note the menus and other options that you can use:

Click the menu labeled Master to pick a realm you want to manage or to create a new one.

Click the top right list to view your account or log out.

Hover over a question mark ? icon to show a tooltip text that describes that field. The image
above shows the tooltip in action.

Click a question mark ? icon to show a tooltip text that describes that field. The image
above shows the tooltip in action.

NOTE

Export files from the Admin Console are not suitable for backups or data transfer
between servers. Only boot-time exports are suitable for backups or data transfer
between servers.

3.2. THE MASTER REALM

In the Admin Console, two types of realms exist:

Master realm - This realm was created for you when you first started Red Hat build of Keycloak.

CHAPTER 3. CONFIGURING REALMS

19

Master realm - This realm was created for you when you first started Red Hat build of Keycloak.
It contains the administrator account you created at the first login. Use the master realm only to
create and manage the realms in your system.

Other realms - These realms are created by the administrator in the master realm. In these
realms, administrators manage the users in your organization and the applications they need.
The applications are owned by the users.

Realms and applications

Realms are isolated from one another and can only manage and authenticate the users that they
control. Following this security model helps prevent accidental changes and follows the tradition of
permitting user accounts access to only those privileges and powers necessary for the successful
completion of their current task.

Additional resources

See Dedicated Realm Admin Consoles if you want to disable the master realm and define
administrator accounts within any new realm you create. Each realm has its own dedicated
Admin Console that you can log into with local accounts.

3.3. CREATING A REALM

You create a realm to provide a management space where you can create users and give them
permissions to use applications. At first login, you are typically in the master realm, the top-level realm
from which you create other realms.

When deciding what realms you need, consider the kind of isolation you want to have for your users and
applications. For example, you might create a realm for the employees of your company and a separate
realm for your customers. Your employees would log into the employee realm and only be able to visit
internal company applications. Customers would log into the customer realm and only be able to
interact with customer-facing apps.

Procedure

Red Hat build of Keycloak 24.0 Server Administration Guide

20

1. Click Red Hat build of Keycloak next to master realm, then click Create Realm.

Add realm menu

2. Enter a name for the realm.

3. Click Create.

Create realm

The current realm is now set to the realm you just created. You can switch between realms by
clicking the realm name in the menu.

3.4. CONFIGURING SSL FOR A REALM

Each realm has an associated SSL Mode, which defines the SSL/HTTPS requirements for interacting

CHAPTER 3. CONFIGURING REALMS

21

Each realm has an associated SSL Mode, which defines the SSL/HTTPS requirements for interacting
with the realm. Browsers and applications that interact with the realm honor the SSL/HTTPS
requirements defined by the SSL Mode or they cannot interact with the server.

Procedure

1. Click Realm settings in the menu.

2. Click the General tab.

General tab

3. Set Require SSL to one of the following SSL modes:

External requests Users can interact with Red Hat build of Keycloak without SSL so long as
they stick to private IP addresses such as localhost, 127.0.0.1, 10.x.x.x, 192.168.x.x, and
172.16.x.x. If you try to access Red Hat build of Keycloak without SSL from a non-private IP
address, you will get an error.

None Red Hat build of Keycloak does not require SSL. This choice applies only in
development when you are experimenting and do not plan to support this deployment.

All requests Red Hat build of Keycloak requires SSL for all IP addresses.

Red Hat build of Keycloak 24.0 Server Administration Guide

22

3.5. CONFIGURING EMAIL FOR A REALM

Red Hat build of Keycloak sends emails to users to verify their email addresses, when they forget their
passwords, or when an administrator needs to receive notifications about a server event. To enable Red
Hat build of Keycloak to send emails, you provide Red Hat build of Keycloak with your SMTP server
settings.

Procedure

1. Click Realm settings in the menu.

2. Click the Email tab.

Email tab

CHAPTER 3. CONFIGURING REALMS

23

3. Fill in the fields and toggle the switches as needed.

Template

From

From denotes the address used for the From SMTP-Header for the emails sent.

From display name

From display name allows to configure a user-friendly email address aliases (optional). If not set the

Red Hat build of Keycloak 24.0 Server Administration Guide

24

From display name allows to configure a user-friendly email address aliases (optional). If not set the
plain From email address will be displayed in email clients.

Reply to

Reply to denotes the address used for the Reply-To SMTP-Header for the mails sent (optional). If
not set the plain From email address will be used.

Reply to display name

Reply to display name allows to configure a user-friendly email address aliases (optional). If not set
the plain Reply To email address will be displayed.

Envelope from

Envelope from denotes the Bounce Address used for the Return-Path SMTP-Header for the mails
sent (optional).

Connection & Authentication

Host

Host denotes the SMTP server hostname used for sending emails.

Port

Port denotes the SMTP server port.

Encryption

Tick one of these checkboxes to support sending emails for recovering usernames and passwords,
especially if the SMTP server is on an external network. You will most likely need to change the Port
to 465, the default port for SSL/TLS.

Authentication

Set this switch to ON if your SMTP server requires authentication. When prompted, supply the
Username and Password. The value of the Password field can refer a value from an external vault.

3.6. CONFIGURING THEMES

For a given realm, you can change the appearance of any UI in Red Hat build of Keycloak by using
themes.

Procedure

1. Click Realm setting in the menu.

2. Click the Themes tab.

Themes tab

CHAPTER 3. CONFIGURING REALMS

25

https://en.wikipedia.org/wiki/Bounce_address

3. Pick the theme you want for each UI category and click Save.

Login theme

Username password entry, OTP entry, new user registration, and other similar screens
related to login.

Account theme

The console used by the user to manage his or her account.

Admin console theme

The skin of the Red Hat build of Keycloak Admin Console.

Email theme

Whenever Red Hat build of Keycloak has to send out an email, it uses templates defined in
this theme to craft the email.

Additional resources

The Server Developer Guide describes how to create a new theme or modify existing ones.

3.7. ENABLING INTERNATIONALIZATION

Every UI screen is internationalized in Red Hat build of Keycloak. The default language is English, but you
can choose which locales you want to support and what the default locale will be.

Procedure

1. Click Realm Settings in the menu.

2. Click the Localization tab.

3. Enable Internationalization.

Red Hat build of Keycloak 24.0 Server Administration Guide

26

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

4. Select the languages you will support.

Localization tab

The next time a user logs in, that user can choose a language on the login page to use for the
login screens, Account Console, and Admin Console.

Additional resources

The Server Developer Guide explains how you can offer additional languages. All
internationalized texts which are provided by the theme can be overwritten by realm-specific
texts on the Localization tab.

3.7.1. User locale selection

A locale selector provider suggests the best locale on the information available. However, it is often
unknown who the user is. For this reason, the previously authenticated user’s locale is remembered in a
persisted cookie.

The logic for selecting the locale uses the first of the following that is available:

User selected - when the user has selected a locale using the drop-down locale selector

User profile - when there is an authenticated user and the user has a preferred locale set

Client selected - passed by the client using for example ui_locales parameter

Cookie - last locale selected on the browser

Accepted language - locale from Accept-Language header

Realm default

CHAPTER 3. CONFIGURING REALMS

27

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

If none of the above, fall back to English

When a user is authenticated an action is triggered to update the locale in the persisted cookie
mentioned earlier. If the user has actively switched the locale through the locale selector on the login
pages the users locale is also updated at this point.

If you want to change the logic for selecting the locale, you have an option to create custom
LocaleSelectorProvider. For details, please refer to the Server Developer Guide.

3.8. CONTROLLING LOGIN OPTIONS

Red Hat build of Keycloak includes several built-in login page features.

3.8.1. Enabling forgot password

If you enable Forgot password, users can reset their login credentials if they forget their passwords or
lose their OTP generator.

Procedure

1. Click Realm settings in the menu.

2. Click the Login tab.

Login tab

Red Hat build of Keycloak 24.0 Server Administration Guide

28

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/#_locale_selector

3. Toggle Forgot password to ON.
A Forgot Password? link displays in your login pages.

Forgot password link

CHAPTER 3. CONFIGURING REALMS

29

4. Specify Host and From in the Email tab in order for Red Hat build of Keycloak to be able to
send the reset email.

5. Click this link to bring users where they can enter their username or email address and receive
an email with a link to reset their credentials.

Forgot password page

Red Hat build of Keycloak 24.0 Server Administration Guide

30

The text sent in the email is configurable. See Server Developer Guide for more information.

When users click the email link, Red Hat build of Keycloak asks them to update their password, and if
they have set up an OTP generator, Red Hat build of Keycloak asks them to reconfigure the OTP
generator. Depending on security requirements of your organization, you may not want users to reset
their OTP generator through email.

To change this behavior, perform these steps:

Procedure

1. Click Authentication in the menu.

2. Click the Flows tab.

3. Select the Reset Credentials flow.

Reset credentials flow

CHAPTER 3. CONFIGURING REALMS

31

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

If you do not want to reset the OTP, set the Reset - Conditional OTP sub-flow requirement to
Disabled.

4. Click Authentication in the menu.

5. Click the Required actions tab.

6. Ensure Update Password is enabled.

Required Actions

Red Hat build of Keycloak 24.0 Server Administration Guide

32

3.8.2. Enabling Remember Me

A logged-in user closing their browser destroys their session, and that user must log in again. You can
set Red Hat build of Keycloak to keep the user’s login session open if that user clicks the Remember Me
checkbox upon login. This action turns the login cookie from a session-only cookie to a persistence
cookie.

Procedure

1. Click Realm settings in the menu.

2. Click the Login tab.

3. Toggle the Remember Me switch to On.

Login tab

CHAPTER 3. CONFIGURING REALMS

33

When you save this setting, a remember me checkbox displays on the realm’s login page.

Remember Me

Red Hat build of Keycloak 24.0 Server Administration Guide

34

3.8.3. ACR to Level of Authentication (LoA) Mapping

In the login settings of a realm, you can define which Authentication Context Class Reference (ACR)
value is mapped to which Level of Authentication (LoA). The ACR can be any value, whereas the LoA
must be numeric. The acr claim can be requested in the claims or acr_values parameter sent in the
OIDC request and it is also included in the access token and ID token. The mapped number is used in the
authentication flow conditions.

Mapping can be also specified at the client level in case that particular client needs to use different
values than realm. However, a best practice is to stick to realm mappings.

For further details see Step-up Authentication and the official OIDC specification.

3.8.4. Update Email Workflow (UpdateEmail)

With this workflow, users will have to use an UPDATE_EMAIL action to change their own email address.

The action is associated with a single email input form. If the realm has email verification disabled, this
action will allow to update the email without verification. If the realm has email verification enabled, the
action will send an email update action token to the new email address without changing the account
email. Only the action token triggering will complete the email update.

CHAPTER 3. CONFIGURING REALMS

35

https://openid.net/specs/openid-connect-core-1_0.html#acrSemantics

Applications are able to send their users to the email update form by leveraging UPDATE_EMAIL as an
AIA (Application Initiated Action).

NOTE

UpdateEmail is Technology Preview and is not fully supported. This feature is disabled
by default.

To enable start the server with --features=preview or --features=update-email

NOTE

If you enable this feature and you are migrating from a previous version, enable the
Update Email required action in your realms. Otherwise, users cannot update their email
addresses.

3.9. CONFIGURING REALM KEYS

The authentication protocols that are used by Red Hat build of Keycloak require cryptographic
signatures and sometimes encryption. Red Hat build of Keycloak uses asymmetric key pairs, a private
and public key, to accomplish this.

Red Hat build of Keycloak has a single active key pair at a time, but can have several passive keys as well.
The active key pair is used to create new signatures, while the passive key pair can be used to verify
previous signatures. This makes it possible to regularly rotate the keys without any downtime or
interruption to users.

When a realm is created, a key pair and a self-signed certificate is automatically generated.

Procedure

1. Click Realm settings in the menu.

2. Click Keys.

3. Select Passive keys from the filter dropdown to view passive keys.

4. Select Disabled keys from the filter dropdown to view disabled keys.

A key pair can have the status Active, but still not be selected as the currently active key pair for the
realm. The selected active pair which is used for signatures is selected based on the first key provider
sorted by priority that is able to provide an active key pair.

3.9.1. Rotating keys

We recommend that you regularly rotate keys. Start by creating new keys with a higher priority than the
existing active keys. You can instead create new keys with the same priority and making the previous
keys passive.

Once new keys are available, all new tokens and cookies will be signed with the new keys. When a user
authenticates to an application, the SSO cookie is updated with the new signature. When OpenID
Connect tokens are refreshed new tokens are signed with the new keys. Eventually, all cookies and
tokens use the new keys and after a while the old keys can be removed.

The frequency of deleting old keys is a tradeoff between security and making sure all cookies and

Red Hat build of Keycloak 24.0 Server Administration Guide

36

tokens are updated. Consider creating new keys every three to six months and deleting old keys one to
two months after you create the new keys. If a user was inactive in the period between the new keys
being added and the old keys being removed, that user will have to re-authenticate.

Rotating keys also applies to offline tokens. To make sure they are updated, the applications need to
refresh the tokens before the old keys are removed.

3.9.2. Adding a generated key pair

Use this procedure to generate a key pair including a self-signed certificate.

Procedure

1. Select the realm in the Admin Console.

2. Click Realm settings in the menu.

3. Click the Keys tab.

4. Click the Providers tab.

5. Click Add provider and select rsa-generated .

6. Enter a number in the Priority field. This number determines if the new key pair becomes the
active key pair. The highest number makes the key pair active.

7. Select a value for AES Key size.

8. Click Save.

Changing the priority for a provider will not cause the keys to be re-generated, but if you want to
change the keysize you can edit the provider and new keys will be generated.

3.9.3. Rotating keys by extracting a certificate

You can rotate keys by extracting a certificate from an RSA generated key pair and using that certificate
in a new keystore.

Prerequisites

A generated key pair

Procedure

1. Select the realm in the Admin Console.

2. Click Realm Settings.

3. Click the Keys tab.
A list of Active keys appears.

4. On a row with an RSA key, click Certificate under Public Keys.
The certificate appears in text form.

5. Save the certificate to a file and enclose it in these lines.

CHAPTER 3. CONFIGURING REALMS

37

6. Use the keytool command to convert the key file to PEM Format.

7. Remove the current RSA public key certificate from the keystore.

8. Import the new certificate into the keystore

9. Rebuild the application.

3.9.4. Adding an existing key pair and certificate

To add a key pair and certificate obtained elsewhere select Providers and choose rsa from the
dropdown. You can change the priority to make sure the new key pair becomes the active key pair.

Prerequisites

A private key file. The file must be PEM formatted.

Procedure

1. Select the realm in the Admin Console.

2. Click Realm settings.

3. Click the Keys tab.

4. Click the Providers tab.

5. Click Add provider and select rsa.

6. Enter a number in the Priority field. This number determines if the new key pair becomes the
active key pair.

7. Click Browse…​ beside Private RSA Key to upload the private key file.

8. If you have a signed certificate for your private key, click Browse…​ beside X509 Certificate to
upload the certificate file. Red Hat build of Keycloak automatically generates a self-signed
certificate if you do not upload a certificate.

9. Click Save.

3.9.5. Loading keys from a Java Keystore

To add a key pair and certificate stored in a Java Keystore file on the host select Providers and choose

----Begin Certificate----
<Output>
----End Certificate----

keytool -delete -keystore <keystore>.jks -storepass <password> -alias <key>

keytool -importcert -file domain.crt -keystore <keystore>.jks -storepass <password> -alias
<key>

mvn clean install wildfly:deploy

Red Hat build of Keycloak 24.0 Server Administration Guide

38

To add a key pair and certificate stored in a Java Keystore file on the host select Providers and choose
java-keystore from the dropdown. You can change the priority to make sure the new key pair becomes
the active key pair.

For the associated certificate chain to be loaded it must be imported to the Java Keystore file with the
same Key Alias used to load the key pair.

Procedure

1. Select the realm in the Admin Console.

2. Click Realm settings in the menu.

3. Click the Keys tab.

4. Click the Providers tab.

5. Click Add provider and select java-keystore.

6. Enter a number in the Priority field. This number determines if the new key pair becomes the
active key pair.

7. Enter a value for Keystore.

8. Enter a value for Keystore Password.

9. Enter a value for Key Alias.

10. Enter a value for Key Password.

11. Click Save.

3.9.6. Making keys passive

Procedure

1. Select the realm in the Admin Console.

2. Click Realm settings in the menu.

3. Click the Keys tab.

4. Click the Providers tab.

5. Click the provider of the key you want to make passive.

6. Toggle Active to Off.

7. Click Save.

3.9.7. Disabling keys

Procedure

1. Select the realm in the Admin Console.

CHAPTER 3. CONFIGURING REALMS

39

2. Click Realm settings in the menu.

3. Click the Keys tab.

4. Click the Providers tab.

5. Click the provider of the key you want to make passive.

6. Toggle Enabled to Off.

7. Click Save.

3.9.8. Compromised keys

Red Hat build of Keycloak has the signing keys stored just locally and they are never shared with the
client applications, users or other entities. However, if you think that your realm signing key was
compromised, you should first generate new key pair as described above and then immediately remove
the compromised key pair.

Alternatively, you can delete the provider from the Providers table.

Procedure

1. Click Clients in the menu.

2. Click security-admin-console.

3. Scroll down to the Access settings section.

4. Fill in the Admin URL field.

5. Click the Advanced tab.

6. Click Set to now in the Revocation section.

7. Click Push.

Pushing the not-before policy ensures that client applications do not accept the existing tokens signed
by the compromised key. The client application is forced to download new key pairs from Red Hat build
of Keycloak also so the tokens signed by the compromised key will be invalid.

NOTE

REST and confidential clients must set Admin URL so Red Hat build of Keycloak can
send clients the pushed not-before policy request.

Red Hat build of Keycloak 24.0 Server Administration Guide

40

CHAPTER 4. USING EXTERNAL STORAGE
Organizations can have databases containing information, passwords, and other credentials. Typically,
you cannot migrate existing data storage to a Red Hat build of Keycloak deployment so Red Hat build of
Keycloak can federate existing external user databases. Red Hat build of Keycloak supports LDAP and
Active Directory, but you can also code extensions for any custom user database by using the Red Hat
build of Keycloak User Storage SPI.

When a user attempts to log in, Red Hat build of Keycloak examines that user’s storage to find that user.
If Red Hat build of Keycloak does not find the user, Red Hat build of Keycloak iterates over each User
Storage provider for the realm until it finds a match. Data from the external data storage then maps into
a standard user model the Red Hat build of Keycloak runtime consumes. This user model then maps to
OIDC token claims and SAML assertion attributes.

External user databases rarely have the data necessary to support all the features of Red Hat build of
Keycloak, so the User Storage Provider can opt to store items locally in Red Hat build of Keycloak user
data storage. Providers can import users locally and sync periodically with external data storage. This
approach depends on the capabilities of the provider and the configuration of the provider. For
example, your external user data storage may not support OTP. The OTP can be handled and stored by
Red Hat build of Keycloak, depending on the provider.

4.1. ADDING A PROVIDER

To add a storage provider, perform the following procedure:

Procedure

1. Click User Federation in the menu.

User federation

2. Select the provider type card from the listed cards.
Red Hat build of Keycloak brings you to that provider’s configuration page.

4.2. DEALING WITH PROVIDER FAILURES

If a User Storage Provider fails, you may not be able to log in and view users in the Admin Console. Red
Hat build of Keycloak does not detect failures when using a Storage Provider to look up a user, so it
cancels the invocation. If you have a Storage Provider with a high priority that fails during user lookup,
the login or user query fails with an exception and will not fail over to the next configured provider.

Red Hat build of Keycloak searches the local Red Hat build of Keycloak user database first to resolve

CHAPTER 4. USING EXTERNAL STORAGE

41

Red Hat build of Keycloak searches the local Red Hat build of Keycloak user database first to resolve
users before any LDAP or custom User Storage Provider. Consider creating an administrator account
stored in the local Red Hat build of Keycloak user database in case of problems connecting to your
LDAP and back ends.

Each LDAP and custom User Storage Provider has an enable toggle on its Admin Console page.
Disabling the User Storage Provider skips the provider when performing queries, so you can view and log
in with user accounts in a different provider with lower priority. If your provider uses an import strategy
and is disabled, imported users are still available for lookup in read-only mode.

When a Storage Provider lookup fails, Red Hat build of Keycloak does not fail over because user
databases often have duplicate usernames or duplicate emails between them. Duplicate usernames and
emails can cause problems because the user loads from one external data store when the admin expects
them to load from another data store.

4.3. LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) AND
ACTIVE DIRECTORY

Red Hat build of Keycloak includes an LDAP/AD provider. You can federate multiple different LDAP
servers in one Red Hat build of Keycloak realm and map LDAP user attributes into the Red Hat build of
Keycloak common user model.

By default, Red Hat build of Keycloak maps the username, email, first name, and last name of the user
account, but you can also configure additional mappings. Red Hat build of Keycloak’s LDAP/AD provider
supports password validation using LDAP/AD protocols and storage, edit, and synchronization modes.

4.3.1. Configuring federated LDAP storage

Procedure

1. Click User Federation in the menu.

User federation

2. Click Add LDAP providers.
Red Hat build of Keycloak brings you to the LDAP configuration page.

4.3.2. Storage mode

Red Hat build of Keycloak imports users from LDAP into the local Red Hat build of Keycloak user
database. This copy of the user database synchronizes on-demand or through a periodic background

Red Hat build of Keycloak 24.0 Server Administration Guide

42

task. An exception exists for synchronizing passwords. Red Hat build of Keycloak never imports
passwords. Password validation always occurs on the LDAP server.

The advantage of synchronization is that all Red Hat build of Keycloak features work efficiently because
any required extra per-user data is stored locally. The disadvantage is that each time Red Hat build of
Keycloak queries a specific user for the first time, Red Hat build of Keycloak performs a corresponding
database insert.

You can synchronize the import with your LDAP server. Import synchronization is unnecessary when
LDAP mappers always read particular attributes from the LDAP rather than the database.

You can use LDAP with Red Hat build of Keycloak without importing users into the Red Hat build of
Keycloak user database. The LDAP server backs up the common user model that the Red Hat build of
Keycloak runtime uses. If LDAP does not support data that a Red Hat build of Keycloak feature requires,
that feature will not work. The advantage of this approach is that you do not have the resource usage of
importing and synchronizing copies of LDAP users into the Red Hat build of Keycloak user database.

The Import Users switch on the LDAP configuration page controls this storage mode. To import users,
toggle this switch to ON.

NOTE

If you disable Import Users, you cannot save user profile attributes into the Red Hat build
of Keycloak database. Also, you cannot save metadata except for user profile metadata
mapped to the LDAP. This metadata can include role mappings, group mappings, and
other metadata based on the LDAP mappers' configuration.

When you attempt to change the non-LDAP mapped user data, the user update is not
possible. For example, you cannot disable the LDAP mapped user unless the user’s
enabled flag maps to an LDAP attribute.

4.3.3. Edit mode

Users and admins can modify user metadata, users through the Account Console, and administrators
through the Admin Console. The Edit Mode configuration on the LDAP configuration page defines the
user’s LDAP update privileges.

READONLY

You cannot change the username, email, first name, last name, and other mapped attributes. Red
Hat build of Keycloak shows an error anytime a user attempts to update these fields. Password
updates are not supported.

WRITABLE

You can change the username, email, first name, last name, and other mapped attributes and
passwords and synchronize them automatically with the LDAP store.

UNSYNCED

Red Hat build of Keycloak stores changes to the username, email, first name, last name, and
passwords in Red Hat build of Keycloak local storage, so the administrator must synchronize this data
back to LDAP. In this mode, Red Hat build of Keycloak deployments can update user metadata on
read-only LDAP servers. This option also applies when importing users from LDAP into the local Red
Hat build of Keycloak user database.

NOTE

CHAPTER 4. USING EXTERNAL STORAGE

43

NOTE

When Red Hat build of Keycloak creates the LDAP provider, Red Hat build of Keycloak
also creates a set of initial LDAP mappers. Red Hat build of Keycloak configures these
mappers based on a combination of the Vendor, Edit Mode, and Import Users switches.
For example, when edit mode is UNSYNCED, Red Hat build of Keycloak configures the
mappers to read a particular user attribute from the database and not from the LDAP
server. However, if you later change the edit mode, the mapper’s configuration does not
change because it is impossible to detect if the configuration changes changed in
UNSYNCED mode. Decide the Edit Mode when creating the LDAP provider. This note
applies to Import Users switch also.

4.3.4. Other configuration options

Console Display Name

The name of the provider to display in the admin console.

Priority

The priority of the provider when looking up users or adding a user.

Sync Registrations

Toggle this switch to ON if you want new users created by Red Hat build of Keycloak added to LDAP.

Allow Kerberos authentication

Enable Kerberos/SPNEGO authentication in the realm with user data provisioned from LDAP. For
more information, see the Kerberos section.

Other options

Hover the mouse pointer over the tooltips in the Admin Console to see more details about these
options.

4.3.5. Connecting to LDAP over SSL

When you configure a secure connection URL to your LDAP store (for
example,ldaps://myhost.com:636), Red Hat build of Keycloak uses SSL to communicate with the LDAP
server. Configure a truststore on the Red Hat build of Keycloak server side so that Red Hat build of
Keycloak can trust the SSL connection to LDAP - see Configuring a Truststore chapter.

The Use Truststore SPI configuration property is deprecated. It should normally be left as Always.

4.3.6. Synchronizing LDAP users to Red Hat build of Keycloak

If you set the Import Users option, the LDAP Provider handles importing LDAP users into the Red Hat
build of Keycloak local database. The first time a user logs in or is returned as part of a user query (e.g.
using the search field in the admin console), the LDAP provider imports the LDAP user into the Red Hat
build of Keycloak database. During authentication, the LDAP password is validated.

If you want to sync all LDAP users into the Red Hat build of Keycloak database, configure and enable
the Sync Settings on the LDAP provider configuration page.

Two types of synchronization exist:

Periodic Full sync

This type synchronizes all LDAP users into the Red Hat build of Keycloak database. The LDAP users
already in Red Hat build of Keycloak, but different in LDAP, directly update in the Red Hat build of
Keycloak database.

Red Hat build of Keycloak 24.0 Server Administration Guide

44

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide/#keycloak-truststore-

Periodic Changed users sync

When synchronizing, Red Hat build of Keycloak creates or updates users created or updated after
the last sync only.

The best way to synchronize is to click Synchronize all users when you first create the LDAP provider,
then set up periodic synchronization of changed users.

4.3.7. LDAP mappers

LDAP mappers are listeners triggered by the LDAP Provider. They provide another extension point to
LDAP integration. LDAP mappers are triggered when:

Users log in by using LDAP.

Users initially register.

The Admin Console queries a user.

When you create an LDAP Federation provider, Red Hat build of Keycloak automatically provides a set
of mappers for this provider. This set is changeable by users, who can also develop mappers or
update/delete existing ones.

User Attribute Mapper

This mapper specifies which LDAP attribute maps to the attribute of the Red Hat build of Keycloak
user. For example, you can configure the mail LDAP attribute to the email attribute in the Red Hat
build of Keycloak database. For this mapper implementation, a one-to-one mapping always exists.

FullName Mapper

This mapper specifies the full name of the user. Red Hat build of Keycloak saves the name in an
LDAP attribute (usually cn) and maps the name to the firstName and lastname attributes in the
Red Hat build of Keycloak database. Having cn to contain the full name of the user is common for
LDAP deployments.

NOTE

When you register new users in Red Hat build of Keycloak and Sync Registrations is ON
for the LDAP provider, the fullName mapper permits falling back to the username. This
fallback is useful when using Microsoft Active Directory (MSAD). The common setup for
MSAD is to configure the cn LDAP attribute as fullName and, at the same time, use the
cn LDAP attribute as the RDN LDAP Attribute in the LDAP provider configuration. With
this setup, Red Hat build of Keycloak falls back to the username. For example, if you
create Red Hat build of Keycloak user "john123" and leave firstName and lastName
empty, then the fullname mapper saves "john123" as the value of the cn in LDAP. When
you enter "John Doe" for firstName and lastName later, the fullname mapper updates
LDAP cn to the "John Doe" value as falling back to the username is unnecessary.

Hardcoded Attribute Mapper

This mapper adds a hardcoded attribute value to each Red Hat build of Keycloak user linked with
LDAP. This mapper can also force values for the enabled or emailVerified user properties.

Role Mapper

This mapper configures role mappings from LDAP into Red Hat build of Keycloak role mappings. A
single role mapper can map LDAP roles (usually groups from a particular branch of the LDAP tree)
into roles corresponding to a specified client’s realm roles or client roles. You can configure more

CHAPTER 4. USING EXTERNAL STORAGE

45

Role mappers for the same LDAP provider. For example, you can specify that role mappings from
groups under ou=main,dc=example,dc=org map to realm role mappings, and role mappings from
groups under ou=finance,dc=example,dc=org map to client role mappings of client finance.

Hardcoded Role Mapper

This mapper grants a specified Red Hat build of Keycloak role to each Red Hat build of Keycloak user
from the LDAP provider.

Group Mapper

This mapper maps LDAP groups from a branch of an LDAP tree into groups within Red Hat build of
Keycloak. This mapper also propagates user-group mappings from LDAP into user-group mappings
in Red Hat build of Keycloak.

MSAD User Account Mapper

This mapper is specific to Microsoft Active Directory (MSAD). It can integrate the MSAD user
account state into the Red Hat build of Keycloak account state, such as enabled account or expired
password. This mapper uses the userAccountControl, and pwdLastSet LDAP attributes, specific to
MSAD and are not the LDAP standard. For example, if the value of pwdLastSet is 0, the Red Hat
build of Keycloak user must update their password. The result is an UPDATE_PASSWORD required
action added to the user. If the value of userAccountControl is 514 (disabled account), the Red Hat
build of Keycloak user is disabled.

Certificate Mapper

This mapper maps X.509 certificates. Red Hat build of Keycloak uses it in conjunction with X.509
authentication and Full certificate in PEM format as an identity source. This mapper behaves
similarly to the User Attribute Mapper, but Red Hat build of Keycloak can filter for an LDAP attribute
storing a PEM or DER format certificate. Enable Always Read Value From LDAP with this mapper.

User Attribute mappers that map basic Red Hat build of Keycloak user attributes, such as username,
firstname, lastname, and email, to corresponding LDAP attributes. You can extend these and provide
your own additional attribute mappings. The Admin Console provides tooltips to help with configuring
the corresponding mappers.

4.3.8. Password hashing

When Red Hat build of Keycloak updates a password, Red Hat build of Keycloak sends the password in
plain-text format. This action is different from updating the password in the built-in Red Hat build of
Keycloak database, where Red Hat build of Keycloak hashes and salts the password before sending it to
the database. For LDAP, Red Hat build of Keycloak relies on the LDAP server to hash and salt the
password.

By default, LDAP servers such as MSAD, RHDS, or FreeIPA hash and salt passwords. Other LDAP
servers such as OpenLDAP or ApacheDS store the passwords in plain-text unless you use the LDAPv3
Password Modify Extended Operation as described in RFC3062. Enable the LDAPv3 Password Modify
Extended Operation in the LDAP configuration page. See the documentation of your LDAP server for
more details.

WARNING

Always verify that user passwords are properly hashed and not stored as plaintext
by inspecting a changed directory entry using ldapsearch and base64 decode the
userPassword attribute value.



Red Hat build of Keycloak 24.0 Server Administration Guide

46

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.3

4.3.9. Troubleshooting

It is useful to increase the logging level to TRACE for the category org.keycloak.storage.ldap. With this
setting, many logging messages are sent to the server log in the TRACE level, including the logging for
all queries to the LDAP server and the parameters, which were used to send the queries. When you are
creating any LDAP question on user forum or JIRA, consider attaching the server log with enabled
TRACE logging. If it is too big, the good alternative is to include just the snippet from server log with the
messages, which were added to the log during the operation, which causes the issues to you.

When you create an LDAP provider, a message appears in the server log in the INFO level
starting with:

Creating new LDAP Store for the LDAP storage provider: ...

It shows the configuration of your LDAP provider. Before you are asking the questions or reporting bugs,
it will be nice to include this message to show your LDAP configuration. Eventually feel free to replace
some config changes, which you do not want to include, with some placeholder values. One example is
bindDn=some-placeholder . For connectionUrl, feel free to replace it as well, but it is generally useful
to include at least the protocol, which was used (ldap vs ldaps)`. Similarly it can be useful to include the
details for configuration of your LDAP mappers, which are displayed with the message like this at the
DEBUG level:

Mapper for provider: XXX, Mapper name: YYY, Provider: ZZZ ...

Note those messages are displayed just with the enabled DEBUG logging.

For tracking the performance or connection pooling issues, consider setting the value of
property Connection Pool Debug Level of the LDAP provider to value all. This will add lots of
additional messages to server log with the included logging for the LDAP connection pooling.
This can be used to track the issues related to connection pooling or performance.

NOTE

After changing the configuration of connection pooling, you may need to restart the Red
Hat build of Keycloak server to enforce re-initialization of the LDAP provider connection.

If no more messages appear for connection pooling even after server restart, it can indicate that
connection pooling does not work with your LDAP server.

For the case of reporting LDAP issue, you may consider to attach some part of your LDAP tree
with the target data, which causes issues in your environment. For example if login of some user
takes lot of time, you can consider attach his LDAP entry showing count of member attributes
of various "group" entries. In this case, it might be useful to add if those group entries are
mapped to some Group LDAP mapper (or Role LDAP Mapper) in Red Hat build of Keycloak and
so on.

4.4. SSSD AND FREEIPA IDENTITY MANAGEMENT INTEGRATION

Red Hat build of Keycloak includes the System Security Services Daemon (SSSD) plugin. SSSD is part
of the Fedora and Red Hat Enterprise Linux (RHEL), and it provides access to multiple identities and
authentication providers. SSSD also provides benefits such as failover and offline support. For more
information, see the Red Hat Enterprise Linux Identity Management documentation .

SSSD integrates with the FreeIPA identity management (IdM) server, providing authentication and

CHAPTER 4. USING EXTERNAL STORAGE

47

https://fedoraproject.org/wiki/Features/SSSD
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/system-level_authentication_guide/sssd

access control. With this integration, Red Hat build of Keycloak can authenticate against privileged
access management (PAM) services and retrieve user data from SSSD. For more information about
using Red Hat Identity Management in Linux environments, see the Red Hat Enterprise Linux Identity
Management documentation.

Red Hat build of Keycloak and SSSD communicate through read-only D-Bus interfaces. For this reason,
the way to provision and update users is to use the FreeIPA/IdM administration interface. By default, the
interface imports the username, email, first name, and last name.

NOTE

Red Hat build of Keycloak registers groups and roles automatically but does not
synchronize them. Any changes made by the Red Hat build of Keycloak administrator in
Red Hat build of Keycloak do not synchronize with SSSD.

4.4.1. FreeIPA/IdM server

The FreeIPA Container image is available at Quay.io. To set up the FreeIPA server, see the FreeIPA
documentation.

Procedure

1. Run your FreeIPA server using this command:

The parameter -h with server.freeipa.local represents the FreeIPA/IdM server hostname.
Change YOUR_PASSWORD to a password of your own.

2. After the container starts, change the /etc/hosts file to include:

 docker run --name freeipa-server-container -it \
 -h server.freeipa.local -e PASSWORD=YOUR_PASSWORD \
 -v /sys/fs/cgroup:/sys/fs/cgroup:ro \
 -v /var/lib/ipa-data:/data:Z freeipa/freeipa-server

x.x.x.x server.freeipa.local

Red Hat build of Keycloak 24.0 Server Administration Guide

48

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/index
https://quay.io/repository/freeipa/freeipa-server?tab=tags/
https://quay.io/
https://www.freeipa.org/page/Quick_Start_Guide

If you do not make this change, you must set up a DNS server.

3. Use the following command to enroll your Linux server in the IPA domain so that the SSSD
federation provider starts and runs on Red Hat build of Keycloak:

4. Run the following command on the client to verify the installation is working:

5. Enter your password.

6. Add users to the IPA server using this command:

7. Force set the user’s password using kinit.

8. Enter the following to restore normal IPA operation:

4.4.2. SSSD and D-Bus

The federation provider obtains the data from SSSD using D-BUS. It authenticates the data using PAM.

Procedure

1. Install the sssd-dbus RPM.

2. Run the following provisioning script:

The script can also be used as a guide to configure SSSD and PAM for Red Hat build of
Keycloak. It makes the following changes to /etc/sssd/sssd.conf:

 ipa-client-install --mkhomedir -p admin -w password

 kinit admin

$ ipa user-add <username> --first=<first name> --last=<surname> --email=<email address>
--phone=<telephoneNumber> --street=<street> --city=<city> --state=<state> --postalcode=
<postal code> --password

 kinit <username>

kdestroy -A
kinit admin

$ sudo yum install sssd-dbus

$ bin/federation-sssd-setup.sh

 [domain/your-hostname.local]
 ...
 ldap_user_extra_attrs = mail:mail, sn:sn, givenname:givenname,
telephoneNumber:telephoneNumber
 ...
 [sssd]
 services = nss, sudo, pam, ssh, ifp

CHAPTER 4. USING EXTERNAL STORAGE

49

The ifp service is added to SSSD and configured to allow the OS user to interrogate the IPA
server through this interface.

The script also creates a new PAM service /etc/pam.d/keycloak to authenticate users via SSSD:

3. Run dbus-send to ensure the setup is successful.

If the setup is successful, each command displays the user’s attributes and groups respectively.
If there is a timeout or an error, the federation provider running on Red Hat build of Keycloak
cannot retrieve any data. This error usually happens because the server is not enrolled in the
FreeIPA IdM server, or does not have permission to access the SSSD service.

If you do not have permission to access the SSSD service, ensure that the user running the Red
Hat build of Keycloak server is in the /etc/sssd/sssd.conf file in the following section:

And the ipaapi system user is created inside the host. This user is necessary for the ifp service.
Check the user is created in the system.

4.4.3. Enabling the SSSD federation provider

Red Hat build of Keycloak uses DBus-Java project to communicate at a low level with D-Bus and JNA
to authenticate via Operating System Pluggable Authentication Modules (PAM).

Although now Red Hat build of Keycloak contains all the needed libraries to run the SSSD provider, JDK
version 17 is needed. Therefore the SSSD provider will only be displayed when the host configuration is
correct and JDK 17 is used to run Red Hat build of Keycloak.

4.4.4. Configuring a federated SSSD store

After the installation, configure a federated SSSD store.

 ...
 [ifp]
 allowed_uids = root, yourOSUsername
 user_attributes = +mail, +telephoneNumber, +givenname, +sn

auth required pam_sss.so
account required pam_sss.so

dbus-send --print-reply --system --dest=org.freedesktop.sssd.infopipe
/org/freedesktop/sssd/infopipe org.freedesktop.sssd.infopipe.GetUserAttr string:<username>
array:string:mail,givenname,sn,telephoneNumber

dbus-send --print-reply --system --dest=org.freedesktop.sssd.infopipe
/org/freedesktop/sssd/infopipe org.freedesktop.sssd.infopipe.GetUserGroups string:
<username>

[ifp]
allowed_uids = root, yourOSUsername

grep ipaapi /etc/passwd
ipaapi:x:992:988:IPA Framework User:/:/sbin/nologin

Red Hat build of Keycloak 24.0 Server Administration Guide

50

https://github.com/hypfvieh/dbus-java
https://github.com/java-native-access/jna

Procedure

1. Click User Federation in the menu.

2. If everything is setup successfully the Add Sssd providers button will be displayed in the page.
Click on it.

3. Assign a name to the new provider.

4. Click Save.

You can now authenticate against Red Hat build of Keycloak using a FreeIPA/IdM user and credentials.

4.5. CUSTOM PROVIDERS

Red Hat build of Keycloak does have a Service Provider Interface (SPI) for User Storage Federation to
develop custom providers. You can find documentation on developing customer providers in the Server
Developer Guide.

CHAPTER 4. USING EXTERNAL STORAGE

51

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

CHAPTER 5. MANAGING USERS
From the Admin Console, you have a wide range of actions you can perform to manage users.

5.1. CREATING USERS

You create users in the realm where you intend to have applications needed by those users. Avoid
creating users in the master realm, which is only intended for creating other realms.

Prerequisite

You are in a realm other than the master realm.

Procedure

1. Click Users in the menu.

2. Click Add User.

3. Enter the details for the new user.

NOTE

Username is the only required field.

4. Click Save. After saving the details, the Management page for the new user is displayed.

5.2. MANAGING USER ATTRIBUTES

In Red Hat build of Keycloak a user is associated with a set of attributes. These attributes are used to
better describe and identify users within Red Hat build of Keycloak as well as to pass over additional
information about them to applications.

A user profile defines a well-defined schema for representing user attributes and how they are managed
within a realm. By providing a consistent view over user information, it allows administrators to control
the different aspects on how attributes are managed as well as to make it much easier to extend Red
Hat build of Keycloak to support additional attributes.

Although the user profile is mainly targeted for attributes that end-users can manage (e.g.: first and last
names, phone, etc) it also serves for managing any other metadata you want to associate with your
users.

Among other capabilities, user profile enables administrators to:

Define a schema for user attributes

Define whether an attribute is required based on contextual information (e.g.: if required only
for users, or admins, or both, or depending on the scope being requested.)

Define specific permissions for viewing and editing user attributes, making possible to adhere to
strong privacy requirements where some attributes can not be seen or be changed by third-
parties (including administrators)

Dynamically enforce user profile compliance so that user information is always updated and in

Red Hat build of Keycloak 24.0 Server Administration Guide

52

Dynamically enforce user profile compliance so that user information is always updated and in
compliance with the metadata and rules associated with attributes

Define validation rules on a per-attribute basis by leveraging the built-in validators or writing
custom ones

Dynamically render forms that users interact with like registration, update profile, brokering, and
personal information in the account console, according to the attribute definitions and without
any need to manually change themes.

Customize user management interfaces in the administration console so that attributes are
rendered dynamically based on the user profile schema

The user profile schema or configuration uses a JSON format to represent attributes and their
metadata. From the administration console, you are able to manage the configuration by clicking on the
Realm Settings on the left side menu and then clicking on the User Profile tab on that page.

In the next sections, we’ll be looking at how to create your own user profile schema or configuration, and
how to manage attributes.

5.2.1. Understanding the Default Configuration

By default, Red Hat build of Keycloak provides a basic user profile configuration covering some of the
most common user attributes:

Name Description

username The username

email End-User’s preferred e-mail address.

firstName Given name(s) or first name(s) of the end-user

lastName Surname(s) or last name(s) of the End-User

In Red Hat build of Keycloak, both username and email attributes have a special handling as they are
often used to identify, authenticate, and link user accounts. For those attributes, you are limited to
changing their settings, and you can not remove them.

NOTE

The behavior of both username and email attributes changes accordingly to the Login
settings of your realm. For instance, changing the Email as username or the Edit
username settings will override any configuration you have set in the user profile
configuration.

As you will see in the following sections, you are free to change the default configuration by bringing
your own attributes or changing the settings for any of the available attributes to better fit it to your
needs.

5.2.2. Understanding the User Profile Contexts

CHAPTER 5. MANAGING USERS

53

In Red Hat build of Keycloak, users are managed through different contexts:

Registration

Update Profile

Reviewing Profile when authenticating through a broker or social provider

Account Console

Administrative (e.g.: administration console and Admin REST API)

Except for the Administrative context, all other contexts are considered end-user contexts as they are
related to user self-service flows.

Knowing these contexts is important to understand where your user profile configuration will take effect
when managing users. Regardless of the context where the user is being managed, the same user profile
configuration will be used to render UIs and validate attribute values.

As you will see in the following sections, you might restrict certain attributes to be available only from
the administrative context and disable them completely for end-users. The other way around is also true
if you don’t want administrators to have access to certain user attributes but only the end-user.

5.2.3. Understanding Managed and Unmanaged Attributes

By default, Red Hat build of Keycloak will only recognize the attributes defined in your user profile
configuration. The server ignores any other attribute not explicitly defined there.

By being strict about which user attributes can be set to your users, as well as how their values are
validated, Red Hat build of Keycloak can add another defense barrier to your realm and help you to
prevent unexpected attributes and values associated to your users.

That said, user attributes can be categorized as follows:

Managed. These are attributes controlled by your user profile, to which you want to allow end-
users and administrators to manage from any user profile context. For these attributes, you
want complete control on how and when they are managed.

Unmanaged. These are attributes you do not explicitly define in your user profile so that they
are completely ignored by Red Hat build of Keycloak, by default.

Although unmanaged attributes are disabled by default, you can configure your realm using different
policies to define how they are handled by the server. For that, click on the Realm Settings at the left
side menu, click on the General tab, and then choose any of the following options from the Unmanaged
Attributes setting:

Disabled. This is the default policy so that unmanaged attributes are disabled from all user
profile contexts.

Enabled. This policy enables unmanaged attributes to all user profile contexts.

Admin can view. This policy enables unmanaged attributes only from the administrative context
as read-only.

Admin can edit. This policy enables unmanaged attributes only from the administrative context
for reads and writes.

Red Hat build of Keycloak 24.0 Server Administration Guide

54

These policies give you a fine-grained control over how the server will handle unmanaged attributes. You
can choose to completely disable or only support unmanaged attributes when managing users through
the administrative context.

When unmanaged attributes are enabled (even if partially) you can manage them from the
administration console at the Attributes tab in the User Details UI. If the policy is set to Disabled this
tab is not available.

As a security recommendation, try to adhere to the most strict policy as much as possible (e.g.: Disabled
or Admin can edit) to prevent unexpected attributes (and values) set to your users when they are
managing their profile through end-user contexts. Avoid setting the Enabled policy and prefer defining
all the attributes that end-users can manage in your user profile configuration, under your control.

NOTE

The Enabled policy is targeted for realms migrating from previous versions of Red Hat
build of Keycloak and to avoid breaking behavior when using custom themes and
extending the server with their own custom user attributes.

As you will see in the following sections, you can also restrict the audience for an attribute by choosing if
it should be visible or writable by users and/or administrators.

For unmanaged attributes, the maximum length is 2048 characters. To specify a different minimum or
maximum length, change the unmanaged attribute to a managed attribute and add a length validator.

WARNING

Red Hat build of Keycloak caches user-related objects in its internal caches. The
longer the attributes are, the more memory the cache consumes. Therefore, limiting
the size of the length attributes is recommended. Consider storing large objects
outside Red Hat build of Keycloak and reference them by ID or URL.

5.2.4. Managing the User Profile

The user profile configuration is managed on a per-realm basis. For that, click on the Realm Settings
link on the left side menu and then click on the User Profile tab.

User Profile Tab



CHAPTER 5. MANAGING USERS

55

In the Attributes sub-tab you have a list of all managed attributes.

In the Attribute Groups sub-tab you can manage attribute groups. An attribute group allows you to
correlate attributes so that they are displayed together when rendering user facing forms.

In the JSON Editor sub-tab you can view and edit the JSON configuration. You can use this tab to grab
your current configuration or manage it manually. Any change you make to this tab is reflected in the
other tabs, and vice-versa.

In the next section, you are going to learn how to manage attributes.

5.2.5. Managing Attributes

At the Attributes sub-tab you can create, edit, and delete the managed attributes.

To define a new attribute and associate it with the user profile, click on the Create attribute button at
the top of the attribute listing.

Attribute Configuration

Red Hat build of Keycloak 24.0 Server Administration Guide

56

When configuring the attribute you can define the following settings:

Name

The name of the attribute, used to uniquely identify an attribute.

Display name

A user-friendly name for the attribute, mainly used when rendering user-facing forms. It also
supports Using Internationalized Messages

Multivalued

If enabled, the attribute supports multiple values and UIs are rendered accordingly to allow setting
many values. When enabling this setting, make sure to add a validator to set a hard limit to the
number of values.

Attribute Group

The attribute group to which the attribute belongs to, if any.

Enabled when

Enables or disables an attribute. If set to Always, the attribute is available from any user profile
context. If set to Scopes are requested, the attribute is only available when the client acting on
behalf of the user is requesting a set of one or more scopes. You can use this option to dynamically
enforce certain attributes depending on the client scopes being requested. For the account and
administration consoles, scopes are not evaluated and the attribute is always enabled. That is
because filtering attributes by scopes only works when running authentication flows.

Required

Set the conditions to mark an attribute as required. If disabled, the attribute is optional. If enabled,
you can set the Required for setting to mark the attribute as required depending on the user profile
context so that the attribute is required for end-users (via end-user contexts) or to administrators
(via administrative context), or both. You can also set the Required when setting to mark the
attribute as required only when a set of one or more client scopes are requested. If set to Always, the
attribute is required from any user profile context. If set to Scopes are requested, the attribute is

CHAPTER 5. MANAGING USERS

57

only required when the client acting on behalf of the user is requesting a set of one or more scopes.
For the account and administration consoles, scopes are not evaluated and the attribute is not
required. That is because filtering attributes by scopes only works when running authentication flows.

Permission

In this section, you can define read and write permissions when the attribute is being managed from
an end-user or administrative context. The Who can edit setting mark an attribute as writable by
User and/or Admin, from an end-user and administrative context, respectively. The Who can view
setting mark an attribute as read-only by User and/or Admin from an end-user and administrative
context, respectively.

Validation

In this section, you can define the validations that will be performed when managing the attribute
value. Red Hat build of Keycloak provides a set of built-in validators you can choose from with the
possibility to add your own. For more details, look at the Validating Attributes section.

Annotation

In this section, you can associate annotations to the attribute. Annotations are mainly useful to pass
over additional metadata to frontends for rendering purposes. For more details, look at the Defining
UI Annotations section.

When you create an attribute, the attribute is only available from administrative contexts to avoid
unexpectedly exposing attributes to end-users. Effectively, the attribute won’t be accessible to end-
users when they are managing their profile through the end-user contexts. You can change the
Permissions settings anytime accordingly to your needs.

5.2.6. Validating Attributes

You can enable validation to managed attributes to make sure the attribute value conforms to specific
rules. For that, you can add or remove validators from the Validations settings when managing an
attribute.

Attribute Validation

Validation happens at any time when writing to an attribute, and they can throw errors that will be shown
in UIs when the value fails a validation.

For security reasons, every attribute that is editable by users should have a validation to restrict the size
of the values users enter. If no length validator has been specified, Red Hat build of Keycloak defaults to
a maximum length of 2048 characters.

Red Hat build of Keycloak 24.0 Server Administration Guide

58

5.2.6.1. Built-in Validators

Red Hat build of Keycloak provides some built-in validators that you can choose from, and you are also
able to provide your own validators by extending the Validator SPI.

The list below provides a list of all the built-in validators:

Name Description Configuration

length Check the length of a string value
based on a minimum and
maximum length.

min: an integer to define the
minimum allowed length.

max: an integer to define the
maximum allowed length.

trim-disabled: a boolean to
define whether the value is
trimmed prior to validation.

integer Check if the value is an integer
and within a lower and/or upper
range. If no range is defined, the
validator only checks whether the
value is a valid number.

min: an integer to define the lower
range.

max: an integer to define the
upper range.

double Check if the value is a double and
within a lower and/or upper range.
If no range is defined, the
validator only checks whether the
value is a valid number.

min: an integer to define the lower
range.

max: an integer to define the
upper range.

uri Check if the value is a valid URI. None

pattern Check if the value matches a
specific RegEx pattern.

pattern: the RegEx pattern to use
when validating values.

error-message: the key of the
error message in i18n bundle. If
not set a generic message is used.

email Check if the value has a valid e-
mail format.

max-local-length: an integer to
define the maximum length for
the local part of the email. It
defaults to 64 per specification.

local-date Check if the value has a valid
format based on the realm and/or
user locale.

None

CHAPTER 5. MANAGING USERS

59

person-name-prohibited-
characters

Check if the value is a valid person
name as an additional barrier for
attacks such as script injection.
The validation is based on a
default RegEx pattern that blocks
characters not common in person
names.

error-message: the key of the
error message in i18n bundle. If
not set a generic message is used.

username-prohibited-characters Check if the value is a valid
username as an additional barrier
for attacks such as script injection.
The validation is based on a
default RegEx pattern that blocks
characters not common in
usernames.

error-message: the key of the
error message in i18n bundle. If
not set a generic message is used.

options Check if the value is from the
defined set of allowed values.
Useful to validate values entered
through select and multiselect
fields.

options: array of strings
containing allowed values.

up-username-not-idn-homograph The field can contain only latin
characters and common unicode
characters. Useful for the fields,
which can be subject of IDN
homograph attacks (typically
username).

error-message: the key of the
error message in i18n bundle. If
not set a generic message is used.

multivalued Validates the size of a multivalued
attribute.

min: an integer to define the
minimum allowed count of
attribute values.

max: an integer to define the
maximum allowed count of
attribute values.

Name Description Configuration

5.2.7. Defining UI Annotations

In order to pass additional information to frontends, attributes can be decorated with annotations to
dictate how attributes are rendered. This capability is mainly useful when extending Red Hat build of
Keycloak themes to render pages dynamically based on the annotations associated with attributes.

Annotations are used, for example, for Changing the HTML type for an Attribute and Changing the
DOM representation of an Attribute, as you will see in the following sections.

Attribute Annotation

Red Hat build of Keycloak 24.0 Server Administration Guide

60

An annotation is a key/value pair shared with the UI so that they can change how the HTML element
corresponding to the attribute is rendered. You can set any annotation you want to an attribute as long
as the annotation is supported by the theme your realm is using.

NOTE

The only restriction you have is to avoid using annotations using the kc prefix in their keys
because these annotations using this prefix are reserved for Red Hat build of Keycloak.

5.2.7.1. Built-in Annotations

The following annotations are supported by Red Hat build of Keycloak built-in themes:

Name Description

inputType Type of the form input field. Available types are
described in a table below.

inputHelperTextBefore Helper text rendered before (above) the input field.
Direct text or internationalization pattern (like
${i18n.key}) can be used here. Text is NOT html
escaped when rendered into the page, so you can
use html tags here to format the text, but you also
have to correctly escape html control characters.

inputHelperTextAfter Helper text rendered after (under) the input field.
Direct text or internationalization pattern (like
${i18n.key}) can be used here. Text is NOT html
escaped when rendered into the page, so you can
use html tags here to format the text, but you also
have to correctly escape html control characters.

inputOptionsFromValidation Annotation for select and multiselect types. Optional
name of custom attribute validation to get input
options from. See detailed description below.

inputOptionLabelsI18nPrefix Annotation for select and multiselect types.
Internationalization key prefix to render options in UI.
See detailed description below.

CHAPTER 5. MANAGING USERS

61

inputOptionLabels Annotation for select and multiselect types. Optional
map to define UI labels for options (directly or using
internationalization). See detailed description below.

inputTypePlaceholder HTML input placeholder attribute applied to the
field - specifies a short hint that describes the
expected value of an input field (e.g. a sample value
or a short description of the expected format). The
short hint is displayed in the input field before the
user enters a value.

inputTypeSize HTML input size attribute applied to the field -
specifies the width, in characters, of a single line
input field. For fields based on HTML select type it
specifies number of rows with options shown. May
not work, depending on css in used theme!

inputTypeCols HTML input cols attribute applied to the field -
specifies the width, in characters, for textarea type.
May not work, depending on css in used theme!

inputTypeRows HTML input rows attribute applied to the field -
specifies the height, in characters, for textarea type.
For select fields it specifies number of rows with
options shown. May not work, depending on css in
used theme!

inputTypePattern HTML input pattern attribute applied to the field
providing client side validation - specifies a regular
expression that an input field’s value is checked
against. Useful for single line inputs.

inputTypeMaxLength HTML input maxlength attribute applied to the
field providing client side validation - maximal length
of the text which can be entered into the input field.
Useful for text fields.

inputTypeMinLength HTML input minlength attribute applied to the field
providing client side validation - minimal length of
the text which can be entered into the input field.
Useful for text fields.

inputTypeMax HTML input max attribute applied to the field
providing client side validation - maximal value which
can be entered into the input field. Useful for
numeric fields.

Name Description

Red Hat build of Keycloak 24.0 Server Administration Guide

62

inputTypeMin HTML input min attribute applied to the field
providing client side validation - minimal value which
can be entered into the input field. Useful for
numeric fields.

inputTypeStep HTML input step attribute applied to the field -
Specifies the interval between legal numbers in an
input field. Useful for numeric fields.

Number Format If set, the data-kcNumberFormat attribute is
added to the field to format the value based on a
given format. This annotation is targeted for numbers
where the format is based on the number of digits
expected in a determined position. For instance, a
format ({2}) {5}-{4} will format the field value to
(00) 00000-0000.

Number UnFormat If set, the data-kcNumberUnFormat attribute is
added to the field to format the value based on a
given format before submitting the form. This
annotation is useful if you do not want to store any
format for a specific attribute but only format the
value on the client side. For instance, if the current
value is (00) 00000-0000, the value will change to
00000000000 if you set the value {11} to this
annotation or any other format you want by
specifying a set of one or ore group of digits. Make
sure to add validators to perform server-side
validations before storing values.

Name Description

NOTE

Field types use HTML form field tags and attributes applied to them - they behave based
on the HTML specifications and browser support for them.

Visual rendering also depends on css styles applied in the used theme.

5.2.7.2. Changing the HTML type for an Attribute

You can change the type of a HTML5 input element by setting the inputType annotation. The available
types are:

Name Description HTML tag used

text Single line text input. input

textarea Multiple line text input. textarea

CHAPTER 5. MANAGING USERS

63

select Common single select input. See
description how to configure
options below.

select

select-radiobuttons Single select input through group
of radio buttons. See description
how to configure options below.

group of input

multiselect Common multiselect input. See
description how to configure
options below.

select

multiselect-checkboxes Multiselect input through group
of checkboxes. See description
how to configure options below.

group of input

html5-email Single line text input for email
address based on HTML 5 spec.

input

html5-tel Single line text input for phone
number based on HTML 5 spec.

input

html5-url Single line text input for URL
based on HTML 5 spec.

input

html5-number Single line input for number
(integer or float depending on
step) based on HTML 5 spec.

input

html5-range Slider for number entering based
on HTML 5 spec.

input

html5-datetime-local Date Time input based on HTML
5 spec.

input

html5-date Date input based on HTML 5
spec.

input

html5-month Month input based on HTML 5
spec.

input

html5-week Week input based on HTML 5
spec.

input

html5-time Time input based on HTML 5
spec.

input

Name Description HTML tag used

Red Hat build of Keycloak 24.0 Server Administration Guide

64

5.2.7.3. Defining options for select and multiselect fields

Options for select and multiselect fields are taken from validation applied to the attribute to be sure
validation and field options presented in UI are always consistent. By default, options are taken from
built-in options validation.

You can use various ways to provide nice human-readable labels for select and multiselect options. The
simplest case is when attribute values are same as UI labels. No extra configuration is necessary in this
case.

Option values same as UI labels

When attribute value is kind of ID not suitable for UI, you can use simple internationalization support
provided by inputOptionLabelsI18nPrefix annotation. It defines prefix for internationalization keys,
option value is dot appended to this prefix.

Simple internationalization for UI labels using i18n key prefix

CHAPTER 5. MANAGING USERS

65

Localized UI label texts for option value have to be provided by userprofile.jobtitle.sweng and
userprofile.jobtitle.swarch keys then, using common localization mechanism.

You can also use inputOptionLabels annotation to provide labels for individual options. It contains a
map of labels for option - key in the map is option value (defined in validation), and value in the map is UI
label text itself or its internationalization pattern (like ${i18n.key}) for that option.

NOTE

You have to use User Profile JSON Editor to enter map as inputOptionLabels
annotation value.

Example of directly entered labels for individual options without internationalization:

"attributes": [
<...
{
 "name": "jobTitle",
 "validations": {
 "options": {
 "options":[
 "sweng",

Red Hat build of Keycloak 24.0 Server Administration Guide

66

Example of the internationalized labels for individual options:

Localized texts have to be provided by jobtitle.swengineer and jobtitle.swarchitect keys then, using
common localization mechanism.

Custom validator can be used to provide options thanks to inputOptionsFromValidation attribute
annotation. This validation have to have options config providing array of options. Internationalization
works the same way as for options provided by built-in options validation.

Options provided by custom validator

 "swarch"
]
 }
 },
 "annotations": {
 "inputType": "select",
 "inputOptionLabels": {
 "sweng": "Software Engineer",
 "swarch": "Software Architect"
 }
 }
}
...
]

"attributes": [
...
{
 "name": "jobTitle",
 "validations": {
 "options": {
 "options":[
 "sweng",
 "swarch"
]
 }
 },
 "annotations": {
 "inputType": "select-radiobuttons",
 "inputOptionLabels": {
 "sweng": "${jobtitle.swengineer}",
 "swarch": "${jobtitle.swarchitect}"
 }
 }
}
...
]

CHAPTER 5. MANAGING USERS

67

Red Hat build of Keycloak 24.0 Server Administration Guide

68

5.2.7.4. Changing the DOM representation of an Attribute

You can enable additional client-side behavior by setting annotations with the kc prefix. These
annotations are going to translate into an HTML attribute in the corresponding element of an attribute,
prefixed with data-, and a script with the same name will be loaded to the dynamic pages so that you can
select elements from the DOM based on the custom data- attribute and decorate them accordingly by
modifying their DOM representation.

For instance, if you add a kcMyCustomValidation annotation to an attribute, the HTML attribute data-
kcMyCustomValidation is added to the corresponding HTML element for the attribute, and a
JavaScript module is loaded from your custom theme at <THEME
TYPE>/resources/js/kcMyCustomValidation.js. See the Server Developer Guide for more information
about how to deploy a custom JavaScript module to your theme.

The JavaScript module can run any code to customize the DOM and the elements rendered for each
attribute. For that, you can use the userProfile.js module to register an annotation descriptor for your
custom annotation as follows:

The registerElementAnnotatedBy is a method to register annotation descriptors. A descriptor is an
object with a name, referencing the annotation name, and a onAdd function. Whenever the page is
rendered or an attribute with the annotation is added to the DOM, the onAdd function is invoked so
that you can customize the behavior for the element.

The onAdd function can also return a function to perform a cleanup. For instance, if you are adding
event listeners to elements, you might want to remove them in case the element is removed from the
DOM.

Alternatively, you can also use any JavaScript code you want if the userProfile.js is not enough for your
needs:

import { registerElementAnnotatedBy } from "./userProfile.js";

registerElementAnnotatedBy({
 name: 'kcMyCustomValidation',
 onAdd(element) {
 var listener = function (event) {
 // do something on keyup
 };

 element.addEventListener("keyup", listener);

 // returns a cleanup function to remove the event listener
 return () => element.removeEventListener("keyup", listener);
 }
});

document.querySelectorAll(`[data-kcMyCustomValidation]`).forEach((element) => {
 var listener = function (evt) {
 // do something on keyup
 };

 element.addEventListener("keyup", listener);
 });

CHAPTER 5. MANAGING USERS

69

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

5.2.8. Managing Attribute Groups

At the Attribute Groups sub-tab you can create, edit, and delete attribute groups. An attribute group
allows you to define a container for correlated attributes so that they are rendered together when at the
user-facing forms.

Attribute Group List

NOTE

You can’t delete attribute groups that are bound to attributes. For that, you should first
update the attributes to remove the binding.

To create a new group, click on the Create attributes group button on the top of the attribute groups
listing.

Attribute Group Configuration

When configuring the group you can define the following settings:

Red Hat build of Keycloak 24.0 Server Administration Guide

70

Name

The name of the attribute, used to uniquely identify an attribute.

Display name

A user-friendly name for the attribute, mainly used when rendering user-facing forms. It also
supports Using Internationalized Messages

Display description

A user-friendly text that will be displayed as a tooltip when rendering user-facing forms. It also
supports Using Internationalized Messages

Annotation

In this section, you can associate annotations to the attribute. Annotations are mainly useful to pass
over additional metadata to frontends for rendering purposes.

5.2.9. Using the JSON configuration

The user profile configuration is stored using a well-defined JSON schema. You can choose from editing
the user profile configuration directly by clicking on the JSON Editor sub-tab.

JSON Configuration

The JSON schema is defined as follows:

{
 "unmanagedAttributePolicy": "DISABLED",
 "attributes": [
 {
 "name": "myattribute",
 "multivalued": false,

CHAPTER 5. MANAGING USERS

71

The schema supports as many attributes and groups as you need.

The unmanagedAttributePolicy property defines the unmanaged attribute policy by setting one of
following values. For more details, look at the Understanding Managed and Unmanaged Attributes.

DISABLED

ENABLED

ADMIN_VIEW

ADMIN_EDIT

5.2.9.1. Attribute Schema

For each attribute you should define a name and, optionally, the required, permission, and the
annotations settings.

The required property defines whether an attribute is required. Red Hat build of Keycloak allows you to
set an attribute as required based on different conditions.

 "displayName": "My Attribute",
 "group": "personalInfo",
 "required": {
 "roles": ["user", "admin"],
 "scopes": ["foo", "bar"]
 },
 "permissions": {
 "view": ["admin", "user"],
 "edit": ["admin", "user"]
 },
 "validations": {
 "email": {
 "max-local-length": 64
 },
 "length": {
 "max": 255
 }
 },
 "annotations": {
 "myannotation": "myannotation-value"
 }
 }
],
 "groups": [
 {
 "name": "personalInfo",
 "displayHeader": "Personal Information",
 "annotations": {
 "foo": ["foo-value"],
 "bar": ["bar-value"]
 }
 }
]
}

Red Hat build of Keycloak 24.0 Server Administration Guide

72

When the required property is defined as an empty object, the attribute is always required.

On the other hand, you can choose to make the attribute required only for users, or administrators, or
both. As well as mark the attribute as required only in case a specific scope is requested when the user is
authenticating in Red Hat build of Keycloak.

To mark an attribute as required for a user and/or administrator, set the roles property as follows:

The roles property expects an array whose values can be either user or admin, depending on whether
the attribute is required by the user or the administrator, respectively.

Similarly, you can choose to make the attribute required when a set of one or more scopes is requested
by a client when authenticating a user. For that, you can use the scopes property as follows:

The scopes property is an array whose values can be any string representing a client scope.

The attribute-level permissions property can be used to define the read and write permissions to an
attribute. The permissions are set based on whether these operations can be performed on the attribute
by a user, or administrator, or both.

{
 "attributes": [
 {
 "name": "myattribute",
 "required": {}
]
}

{
 "attributes": [
 {
 "name": "myattribute",
 "required": {
 "roles": ["user"]
 }
]
}

{
 "attributes": [
 {
 "name": "myattribute",
 "required": {
 "scopes": ["foo"]
 }
]
}

{
 "attributes": [
 {
 "name": "myattribute",
 "permissions": {
 "view": ["admin"],
 "edit": ["user"]

CHAPTER 5. MANAGING USERS

73

Both view and edit properties expect an array whose values can be either user or admin, depending on
whether the attribute is viewable or editable by the user or the administrator, respectively.

When the edit permission is granted, the view permission is implicitly granted.

The attribute-level annotation property can be used to associate additional metadata to attributes.
Annotations are mainly useful for passing over additional information about attributes to frontends
rendering user attributes based on the user profile configuration. Each annotation is a key/value pair.

5.2.9.2. Attribute Group Schema

For each attribute group you should define a name and, optionally, the annotations settings.

The attribute-level annotation property can be used to associate additional metadata to attributes.
Annotations are mainly useful for passing over additional information about attributes to frontends
rendering user attributes based on the user profile configuration. Each annotation is a key/value pair.

5.2.10. Customizing How UIs are Rendered

The UIs from all the user profile contexts (including the administration console) are rendered
dynamically accordingly to your user profile configuration.

The default rendering mechanism provides the following capabilities:

Show or hide fields based on the permissions set to attributes.

Render markers for required fields based on the constraints set to the attributes.

Change the field input type (text, date, number, select, multiselect) set to an attribute.

Mark fields as read-only depending on the permissions set to an attribute.

Order fields depending on the order set to the attributes.

Group fields that belong to the same attribute group.

Dynamically group fields that belong to the same attribute group.

5.2.10.1. Ordering attributes

 }
]
}

{
 "attributes": [
 {
 "name": "myattribute",
 "annotations": {
 "foo": ["foo-value"],
 "bar": ["bar-value"]
 }
]
}

Red Hat build of Keycloak 24.0 Server Administration Guide

74

The attribute order is set by dragging and dropping the attribute rows on the attribute listing page.

Ordering Attributes

The order you set in this page is respected when fields are rendered in dynamic forms.

5.2.10.2. Grouping attributes

When dynamic forms are rendered, they will try to group together attributes that belong to the same
attribute group.

Dynamic Update Profile Form

CHAPTER 5. MANAGING USERS

75

NOTE

When attributes are linked to an attribute group, the attribute order is also important to
make sure attributes within the same group are close together, within a same group
header. Otherwise, if attributes within a group do not have a sequential order you might
have the same group header rendered multiple times in the dynamic form.

Red Hat build of Keycloak 24.0 Server Administration Guide

76

5.2.11. Enabling Progressive Profiling

In order to make sure end-user profiles are in compliance with the configuration, administrators can use
the VerifyProfile required action to eventually force users to update their profiles when authenticating
to Red Hat build of Keycloak.

NOTE

The VerifyProfile action is similar to the UpdateProfile action. However, it leverages all
the capabilities provided by the user profile to automatically enforce compliance with the
user profile configuration.

When enabled, the VerifyProfile action is going to perform the following steps when the user is
authenticating:

Check whether the user profile is fully compliant with the user profile configuration set to the
realm. That means running validations and make sure all of them are successful.

If not, perform an additional step during the authentication so that the user can update any
missing or invalid attribute.

If the user profile is compliant with the configuration, no additional step is performed, and the
user continues with the authentication process.

The VerifyProfile action is enabled by default. To disable it, click on the Authentication link on the left
side menu and then click on the Required Actions tab. At this tab, use the Enabled switch of the
VerifyProfile action to disable it.

Registering the VerifyProfile Required Action

CHAPTER 5. MANAGING USERS

77

5.2.12. Using Internationalized Messages

If you want to use internationalized messages when configuring attributes, attributes groups, and
annotations, you can set their display name, description, and values, using a placeholder that will
translate to a message from a message bundle.

For that, you can use a placeholder to resolve messages keys such as ${myAttributeName}, where
myAttributeName is the key for a message in a message bundle. For more details, look at Server
Developer Guide about how to add message bundles to custom themes.

5.3. DEFINING USER CREDENTIALS

You can manage credentials of a user in the Credentials tab.

Credential management

You change the priority of credentials by dragging and dropping rows. The new order determines the
priority of the credentials for that user. The topmost credential has the highest priority. The priority
determines which credential is displayed first after a user logs in.

Type

This column displays the type of credential, for example password or OTP.

User Label

This is an assignable label to recognize the credential when presented as a selection option during
login. It can be set to any value to describe the credential.

Data

This is the non-confidential technical information about the credential. It is hidden, by default. You
can click Show data…​ to display the data for a credential.

Actions

Click Reset password to change the password for the user and Delete to remove the credential.

You cannot configure other types of credentials for a specific user in the Admin Console; that task is the
user’s responsibility.

You can delete the credentials of a user in the event a user loses an OTP device or if credentials have

Red Hat build of Keycloak 24.0 Server Administration Guide

78

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/#messages

You can delete the credentials of a user in the event a user loses an OTP device or if credentials have
been compromised. You can only delete credentials of a user in the Credentials tab.

5.3.1. Setting a password for a user

If a user does not have a password, or if the password has been deleted, the Set Password section is
displayed.

If a user already has a password, it can be reset in the Reset Password section.

Procedure

1. Click Users in the menu. The Users page is displayed.

2. Select a user.

3. Click the Credentials tab.

4. Type a new password in the Set Password section.

5. Click Set Password.

NOTE

If Temporary is ON, the user must change the password at the first login. To
allow users to keep the password supplied, set Temporary to OFF. The user
must click Set Password to change the password.

5.3.2. Requesting a user reset a password

You can also request that the user reset the password.

Procedure

1. Click Users in the menu. The Users page is displayed.

2. Select a user.

3. Click the Credentials tab.

4. Click Credential Reset.

5. Select Update Password from the list.

6. Click Send Email. The sent email contains a link that directs the user to the Update Password
window.

7. Optionally, you can set the validity of the email link. This is set to the default preset in the
Tokens tab in Realm Settings.

5.3.3. Creating an OTP

If OTP is conditional in your realm, the user must navigate to Red Hat build of Keycloak Account Console
to reconfigure a new OTP generator. If OTP is required, then the user must reconfigure a new OTP
generator when logging in.

CHAPTER 5. MANAGING USERS

79

Alternatively, you can send an email to the user that requests the user reset the OTP generator. The
following procedure also applies if the user already has an OTP credential.

Prerequisite

You are logged in to the appropriate realm.

Procedure

1. Click Users in the main menu. The Users page is displayed.

2. Select a user.

3. Click the Credentials tab.

4. Click Credential Reset.

5. Set Reset Actions to Configure OTP.

6. Click Send Email. The sent email contains a link that directs the user to the OTP setup page.

5.4. ALLOWING USERS TO SELF-REGISTER

You can use Red Hat build of Keycloak as a third-party authorization server to manage application users,
including users who self-register. If you enable self-registration, the login page displays a registration link
so that user can create an account.

Registration link

Red Hat build of Keycloak 24.0 Server Administration Guide

80

A user must add profile information to the registration form to complete registration. The registration
form can be customized by removing or adding the fields that must be completed by a user.

Clarification on identity brokering and admin API

Even when self-registrations is disabled, new users can be still added to Red Hat build of Keycloak by
either:

Administrator can add new users with the usage of admin console (or admin REST API)

When identity brokering is enabled, new users authenticated by identity provider may be
automatically added/registered in Red Hat build of Keycloak storage. See the First login flow
section in the Identity Brokering chapter for more information.

Also users coming from the 3rd-party user storage (for example LDAP) are automatically available in
Red Hat build of Keycloak when the particular user storage is enabled

Additional resources

For more information on customizing user registration, see the Server Developer Guide.

5.4.1. Enabling user registration

Enable users to self-register.

Procedure

1. Click Realm Settings in the main menu.

2. Click the Login tab.

3. Toggle User Registration to ON.

After you enable this setting, a Register link displays on the login page of the Admin Console.

5.4.2. Registering as a new user

As a new user, you must complete a registration form to log in for the first time. You add profile
information and a password to register.

Registration form

CHAPTER 5. MANAGING USERS

81

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

Prerequisite

User registration is enabled.

Procedure

1. Click the Register link on the login page. The registration page is displayed.

2. Enter the user profile information.

Red Hat build of Keycloak 24.0 Server Administration Guide

82

3. Enter the new password.

4. Click Register.

5.4.3. Requiring user to agree to terms and conditions during registration

For a user to register, you can require agreement to your terms and conditions.

Registration form with required terms and conditions agreement

CHAPTER 5. MANAGING USERS

83

Prerequisite

Red Hat build of Keycloak 24.0 Server Administration Guide

84

Prerequisite

User registration is enabled.

Terms and conditions required action is enabled.

Procedure

1. Click Authentication in the menu. Click the Flows tab.

2. Click the registration flow.

3. Select Required on the Terms and Conditions row.

Make the terms and conditions agreement required at registration

5.5. DEFINING ACTIONS REQUIRED AT LOGIN

You can set the actions that a user must perform at the first login. These actions are required after the
user provides credentials. After the first login, these actions are no longer required. You add required
actions on the Details tab of that user.

Some required actions are automatically triggered for the user during login even if they are not explicitly
added to this user by the administrator. For example Update password action can be triggered if
Password policies are configured in a way that the user password needs to be changed every X days. Or
verify profile action can require the user to update the User profile as long as some user attributes do
not match the requirements according to the user profile configuration.

The following are examples of required action types:

Update Password

CHAPTER 5. MANAGING USERS

85

The user must change their password.

Configure OTP

The user must configure a one-time password generator on their mobile device using either the Free
OTP or Google Authenticator application.

Verify Email

The user must verify their email account. An email will be sent to the user with a validation link that
they must click. Once this workflow is successfully completed, the user will be allowed to log in.

Update Profile

The user must update profile information, such as name, address, email, and phone number.

5.5.1. Setting required actions for one user

You can set the actions that are required for any user.

Procedure

1. Click Users in the menu.

2. Select a user from the list.

3. Navigate to the Required User Actions list.

4. Select all the actions you want to add to the account.

5. Click the X next to the action name to remove it.

6. Click Save after you select which actions to add.

5.5.2. Setting required actions for all users

You can specify what actions are required before the first login of all new users. The requirements apply
to a user created by the Add User button on the Users page or the Register link on the login page.

Procedure

1. Click Authentication in the menu.

Red Hat build of Keycloak 24.0 Server Administration Guide

86

2. Click the Required Actions tab.

3. Click the checkbox in the Set as default action column for one or more required actions. When
a new user logs in for the first time, the selected actions must be executed.

5.5.3. Enabling terms and conditions as a required action

You can enable a required action that new users must accept the terms and conditions before logging in
to Red Hat build of Keycloak for the first time.

Procedure

1. Click Authentication in the menu.

2. Click the Required Actions tab.

3. Enable the Terms and Conditions action.

4. Edit the terms.ftl file in the base login theme.

Additional resources

For more information on extending and creating themes, see the Server Developer Guide.

5.6. APPLICATION INITIATED ACTIONS

Application initiated actions (AIA) allow client applications to request a user to perform an action on the
Red Hat build of Keycloak side. Usually, when an OIDC client application wants a user to log in, it
redirects that user to the login URL as described in the OIDC section. After login, the user is redirected
back to the client application. The user performs the actions that were required by the administrator as
described in the previous section and then is immediately redirected back to the application. However,
AIA allows the client application to request some required actions from the user during login. This can be
done even if the user is already authenticated on the client and has an active SSO session. It is triggered
by adding the kc_action parameter to the OIDC login URL with the value containing the requested
action. For instance kc_action=UPDATE_PASSWORD parameter.

NOTE

The kc_action parameter is a Red Hat build of Keycloak proprietary mechanism
unsupported by the OIDC specification.

NOTE

Application initiated actions are supported only for OIDC clients.

So if AIA is used, an example flow is similar to the following:

A client application redirects the user to the OIDC login URL with the additional parameter such
as kc_action=UPDATE_PASSWORD

There is a browser flow always triggered as described in the Authentication flows section . If the
user was not authenticated, that user needs to authenticate as during normal login. In case the
user was already authenticated, that user might be automatically re-authenticated by an SSO
cookie without needing to actively re-authenticate and supply the credentials again. In this case,

CHAPTER 5. MANAGING USERS

87

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

that user will be directly redirected to the screen with the particular action (update password in
this case). However, in some cases, active re-authentication is required even if the user has an
SSO cookie (See below for the details).

The screen with particular action (in this case update password) is displayed to the user, so
that user needs to perform a particular action

Then user is redirected back to the client application

Note that AIA are used by the Red Hat build of Keycloak Account Console to request update password
or to reset other credentials such as OTP or WebAuthn.

WARNING

Even if the parameter kc_action was used, it is not sufficient to assume that the
user always performs the action. For example, a user could have manually deleted
the kc_action parameter from the browser URL. Therefore, no guarantee exists
that the user has an OTP for the account after the client requested
kc_action=CONFIGURE_TOTP. If you want to verify that the user configured two-
factor authenticator, the client application may need to check it was configured. For
instance by checking the claims like acr in the tokens.

5.6.1. Re-authentication during AIA

In case the user is already authenticated due to an active SSO session, that user usually does not need
to actively re-authenticate. However, if that user actively authenticated longer than five minutes ago,
the client can still request re-authentication when some AIA is requested. Exceptions exist from this
guideline as follows:

The action delete_account will always require the user to actively re-authenticate

The action update_password might require the user to actively re-authenticate according to
the configured Maximum Authentication Age Password policy . In case the policy is not
configured, it also defaults to five minutes.

If you want to use a shorter re-authentication, you can still use a parameter query parameter
such as max_age with the specified shorter value or eventually prompt=login, which will always
require user to actively re-authenticate as described in the OIDC specification. Note that using
max_age for a longer value than the default five minutes (or the one prescribed by password
policy) is not supported. The max_age can be currently used only to make the value shorter
than the default five minutes.

5.6.2. Available actions

To see all available actions, log in to the Admin Console and go to the top right top corner to click Realm
info → tab Provider info → Find provider required-action . But note that this can be further restricted
based on what actions are enabled for your realm in the Required actions tab.

5.7. SEARCHING FOR A USER



Red Hat build of Keycloak 24.0 Server Administration Guide

88

Search for a user to view detailed information about the user, such as the user’s groups and roles.

Prerequisite

You are in the realm where the user exists.

Procedure

1. Click Users in the main menu. This Users page is displayed.

2. Type the full name, last name, first name, or email address of the user you want to search for in
the search box. The search returns all users that match your criteria.
The criteria used to match users depends on the syntax used on the search box:

a. "somevalue" → performs exact search of the string "somevalue";

b. *somevalue* → performs infix search, akin to a LIKE '%somevalue%' DB query;

c. somevalue* or somevalue → performs prefix search, akin to a LIKE 'somevalue%' DB
query.

NOTE

Searches performed in the Users page encompasses searching both Red Hat
build of Keycloak’s database and configured user federated backends, such
as LDAP. Users found in federated backends will be imported into Red Hat
build of Keycloak’s database if they don’t already exist there.

Additional resources

For more information on user federation, see User Federation.

5.8. DELETING A USER

You can delete a user, who no longer needs access to applications. If a user is deleted, the user profile
and data is also deleted.

Procedure

1. Click Users in the menu. The Users page is displayed.

2. Click View all users to find a user to delete.

NOTE

Alternatively, you can use the search bar to find a user.

3. Click Delete from the action menu next to the user you want to remove and confirm deletion.

5.9. ENABLING ACCOUNT DELETION BY USERS

End users and applications can delete their accounts in the Account Console if you enable this capability
in the Admin Console. Once you enable this capability, you can give that capability to specific users.

CHAPTER 5. MANAGING USERS

89

5.9.1. Enabling the Delete Account Capability

You enable this capability on the Required Actions tab.

Procedure

1. Click Authentication in the menu.

2. Click the Required Actions tab.

3. Select Enabled on the Delete Account row.

Delete account on required actions tab

5.9.2. Giving a user the delete-account role

You can give specific users a role that allows account deletion.

Procedure

1. Click Users in the menu.

2. Select a user.

3. Click the Role Mappings tab.

4. Click the Assign role button.

5. Click account delete-account.

6. Click Assign.

Delete-account role

Red Hat build of Keycloak 24.0 Server Administration Guide

90

Delete-account role

5.9.3. Deleting your account

Once you have the delete-account role, you can delete your own account.

1. Log into the Account Console.

2. At the bottom of the Personal Info page, click Delete Account.

Delete account page

CHAPTER 5. MANAGING USERS

91

3. Enter your credentials and confirm the deletion.

Delete confirmation

Red Hat build of Keycloak 24.0 Server Administration Guide

92

NOTE

This action is irreversible. All your data in Red Hat build of Keycloak will be
removed.

5.10. IMPERSONATING A USER

An administrator with the appropriate permissions can impersonate a user. For example, if a user
experiences a bug in an application, an administrator can impersonate the user to investigate or
duplicate the issue.

Any user with the impersonation role in the realm can impersonate a user.

Procedure

1. Click Users in the menu.

2. Click a user to impersonate.

3. From the Actions list, select Impersonate.

CHAPTER 5. MANAGING USERS

93

If the administrator and the user are in the same realm, then the administrator will be logged
out and automatically logged in as the user being impersonated.

If the administrator and user are in different realms, the administrator will remain logged in,
and additionally will be logged in as the user in that user’s realm.

In both instances, the Account Console of the impersonated user is displayed.

Additional resources

For more information on assigning administration permissions, see the Admin Console Access
Control chapter.

5.11. ENABLING RECAPTCHA

To safeguard registration against bots, Red Hat build of Keycloak has integration with Google
reCAPTCHA.

Once reCAPTCHA is enabled, you can edit register.ftl in your login theme to configure the placement
and styling of the reCAPTCHA button on the registration page.

Procedure

1. Enter the following URL in a browser:

2. Create an API key to get your reCAPTCHA site key and secret. Note the reCAPTCHA site key
and secret for future use in this procedure.

NOTE

The localhost works by default. You do not have to specify a domain.

3. Navigate to the Red Hat build of Keycloak admin console.

4. Click Authentication in the menu.

https://developers.google.com/recaptcha/

Red Hat build of Keycloak 24.0 Server Administration Guide

94

5. Click the Flows tab.

6. Select Registration from the list.

7. Set the reCAPTCHA requirement to Required. This enables reCAPTCHA.

8. Click the gear icon ⚙� on the reCAPTCHA row.

9. Click the Config link.

Recaptcha config page

a. Enter the Recaptcha Site Key generated from the Google reCAPTCHA website.

b. Enter the Recaptcha Secret generated from the Google reCAPTCHA website.

10. Authorize Google to use the registration page as an iframe.

NOTE

In Red Hat build of Keycloak, websites cannot include a login page dialog in an
iframe. This restriction is to prevent clickjacking attacks. You need to change the
default HTTP response headers that is set in Red Hat build of Keycloak.

CHAPTER 5. MANAGING USERS

95

a. Click Realm Settings in the menu.

b. Click the Security Defenses tab.

c. Enter https://www.google.com in the field for the X-Frame-Options header.

d. Enter https://www.google.com in the field for the Content-Security-Policy header.

Additional resources

For more information on extending and creating themes, see the Server Developer Guide.

5.12. PERSONAL DATA COLLECTED BY RED HAT BUILD OF
KEYCLOAK

By default, Red Hat build of Keycloak collects the following data:

Basic user profile data, such as the user email, first name, and last name.

Basic user profile data used for social accounts and references to the social account when using
a social login.

Device information collected for audit and security purposes, such as the IP address, operating
system name, and the browser name.

The information collected in Red Hat build of Keycloak is highly customizable. The following guidelines
apply when making customizations:

Registration and account forms can contain custom fields, such as birthday, gender, and
nationality. An administrator can configure Red Hat build of Keycloak to retrieve data from a
social provider or a user storage provider such as LDAP.

Red Hat build of Keycloak collects user credentials, such as password, OTP codes, and
WebAuthn public keys. This information is encrypted and saved in a database, so it is not visible
to Red Hat build of Keycloak administrators. Each type of credential can include non-
confidential metadata that is visible to administrators such as the algorithm that is used to hash
the password and the number of hash iterations used to hash the password.

With authorization services and UMA support enabled, Red Hat build of Keycloak can hold
information about some objects for which a particular user is the owner.

Red Hat build of Keycloak 24.0 Server Administration Guide

96

https://www.google.com
https://www.google.com
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

CHAPTER 6. MANAGING USER SESSIONS
When users log into realms, Red Hat build of Keycloak maintains a user session for each user and
remembers each client visited by the user within the session. Realm administrators can perform multiple
actions on each user session:

View login statistics for the realm.

View active users and where they logged in.

Log a user out of their session.

Revoke tokens.

Set up token timeouts.

Set up session timeouts.

6.1. ADMINISTERING SESSIONS

To see a top-level view of the active clients and sessions in Red Hat build of Keycloak, click Sessions
from the menu.

Sessions

6.1.1. Signing out all active sessions

You can sign out all users in the realm. From the Action list, select Sign out all active sessions. All SSO
cookies become invalid. Red Hat build of Keycloak notifies clients by using the Red Hat build of Keycloak
OIDC client adapter of the logout event. Clients requesting authentication within active browser
sessions must log in again. Client types such as SAML do not receive a back-channel logout request.

NOTE

CHAPTER 6. MANAGING USER SESSIONS

97

NOTE

Clicking Sign out all active sessions does not revoke outstanding access tokens.
Outstanding tokens must expire naturally. For clients using the Red Hat build of Keycloak
OIDC client adapter, you can push a revocation policy to revoke the token, but this does
not work for other adapters.

6.1.2. Viewing client sessions

Procedure

1. Click Clients in the menu.

2. Click the Sessions tab.

3. Click a client to see that client’s sessions.

Client sessions

6.1.3. Viewing user sessions

Procedure

1. Click Users in the menu.

2. Click the Sessions tab.

3. Click a user to see that user’s sessions.

User sessions

6.2. REVOKING ACTIVE SESSIONS

If your system is compromised, you can revoke all active sessions and access tokens.

Red Hat build of Keycloak 24.0 Server Administration Guide

98

Procedure

1. Click Sessions in the menu.

2. From the Actions list, select Revocation.

Revocation

3. Specify a time and date where sessions or tokens issued before that time and date are invalid
using this console.

Click Set to now to set the policy to the current time and date.

Click Push to push this revocation policy to any registered OIDC client with the Red Hat
build of Keycloak OIDC client adapter.

6.3. SESSION AND TOKEN TIMEOUTS

Red Hat build of Keycloak includes control of the session, cookie, and token timeouts through the
Sessions and Tokens tabs in the Realm settings menu.

Sessions tab

CHAPTER 6. MANAGING USER SESSIONS

99

Configuration Description

SSO Session Idle This setting is for OIDC clients only. If a user is
inactive for longer than this timeout, the user session
is invalidated. This timeout value resets when clients
request authentication or send a refresh token
request. Red Hat build of Keycloak adds a window of
time to the idle timeout before the session
invalidation takes effect. See the note later in this
section.

Red Hat build of Keycloak 24.0 Server Administration Guide

100

SSO Session Max The maximum time before a user session expires.

SSO Session Idle Remember Me This setting is similar to the standard SSO Session
Idle configuration but specific to logins with
Remember Me enabled. Users can specify longer
session idle timeouts when they click Remember Me
when logging in. This setting is an optional
configuration and, if its value is not greater than zero,
it uses the same idle timeout as the SSO Session Idle
configuration.

SSO Session Max Remember Me This setting is similar to the standard SSO Session
Max but specific to Remember Me logins. Users can
specify longer sessions when they click Remember
Me when logging in. This setting is an optional
configuration and, if its value is not greater than zero,
it uses the same session lifespan as the SSO Session
Max configuration.

Client Session Idle Idle timeout for the client session. If the user is
inactive for longer than this timeout, the client
session is invalidated and the refresh token requests
bump the idle timeout. This setting never affects the
general SSO user session, which is unique. Note the
SSO user session is the parent of zero or more client
sessions, one client session is created for every
different client app the user logs in. This value should
specify a shorter idle timeout than the SSO Session
Idle. Users can override it for individual clients in the
Advanced Settings client tab. This setting is an
optional configuration and, when set to zero, uses the
same idle timeout in the SSO Session Idle
configuration.

Client Session Max The maximum time for a client session and before a
refresh token expires and invalidates. As in the
previous option, this setting never affects the SSO
user session and should specify a shorter value than
the SSO Session Max. Users can override it for
individual clients in the Advanced Settings client tab.
This setting is an optional configuration and, when set
to zero, uses the same max timeout in the SSO
Session Max configuration.

Configuration Description

CHAPTER 6. MANAGING USER SESSIONS

101

Offline Session Idle This setting is for offline access. The amount of time
the session remains idle before Red Hat build of
Keycloak revokes its offline token. Red Hat build of
Keycloak adds a window of time to the idle timeout
before the session invalidation takes effect. See the
note later in this section.

Offline Session Max Limited This setting is for offline access. If this flag is Enabled,
Offline Session Max can control the maximum time
the offline token remains active, regardless of user
activity. If the flag is Disabled, offline sessions never
expire by lifespan, only by idle. Once this option is
activated, the Offline Session Max (global option at
realm level) and Client Offline Session Max (specific
client level option in the Advanced Settings tab) can
be configured.

Offline Session Max This setting is for offline access, and it is the
maximum time before Red Hat build of Keycloak
revokes the corresponding offline token. This option
controls the maximum amount of time the offline
token remains active, regardless of user activity.

Login timeout The total time a logging in must take. If
authentication takes longer than this time, the user
must start the authentication process again.

Login action timeout The Maximum time users can spend on any one page
during the authentication process.

Configuration Description

Tokens tab

Red Hat build of Keycloak 24.0 Server Administration Guide

102

Configuration Description

CHAPTER 6. MANAGING USER SESSIONS

103

Default Signature Algorithm The default algorithm used to assign tokens for the
realm.

Revoke Refresh Token When Enabled, Red Hat build of Keycloak revokes
refresh tokens and issues another token that the
client must use. This action applies to OIDC clients
performing the refresh token flow.

Access Token Lifespan When Red Hat build of Keycloak creates an OIDC
access token, this value controls the lifetime of the
token.

Access Token Lifespan For Implicit Flow With the Implicit Flow, Red Hat build of Keycloak
does not provide a refresh token. A separate timeout
exists for access tokens created by the Implicit Flow.

Client login timeout The maximum time before clients must finish the
Authorization Code Flow in OIDC.

User-Initiated Action Lifespan The maximum time before a user’s action permission
expires. Keep this value short because users generally
react to self-created actions quickly.

Default Admin-Initiated Action Lifespan The maximum time before an action permission sent
to a user by an administrator expires. Keep this value
long to allow administrators to send e-mails to offline
users. An administrator can override the default
timeout before issuing the token.

Email Verification Specifies independent timeout for email verification.

IdP account email verification Specifies independent timeout for IdP account email
verification.

Forgot password Specifies independent timeout for forgot password.

Execute actions Specifies independent timeout for execute actions.

Configuration Description

NOTE

For idle timeouts, a two-minute window of time exists that the session is active. For
example, when you have the timeout set to 30 minutes, it will be 32 minutes before the
session expires.

This action is necessary for some scenarios in cluster and cross-data center environments
where the token refreshes on one cluster node a short time before the expiration and the
other cluster nodes incorrectly consider the session as expired because they have not yet
received the message about a successful refresh from the refreshing node.

Red Hat build of Keycloak 24.0 Server Administration Guide

104

6.4. OFFLINE ACCESS

During offline access logins, the client application requests an offline token instead of a refresh token.
The client application saves this offline token and can use it for future logins if the user logs out. This
action is useful if your application needs to perform offline actions on behalf of the user even when the
user is not online. For example, a regular data backup.

The client application is responsible for persisting the offline token in storage and then using it to
retrieve new access tokens from the Red Hat build of Keycloak server.

The difference between a refresh token and an offline token is that an offline token never expires and is
not subject to the SSO Session Idle timeout and SSO Session Max lifespan. The offline token is valid
after a user logout or server restart. You must use the offline token for a refresh token action at least
once per thirty days or for the value of the Offline Session Idle .

If you enable Offline Session Max Limited , offline tokens expire after 60 days even if you use the offline
token for a refresh token action. You can change this value, Offline Session Max , in the Admin Console.

When using offline access, client idle and max timeouts can be overridden at the client level . The options
Client Offline Session Idle and Client Offline Session Max, in the client Advanced Settings tab, allow
you to have a shorter offline timeouts for a specific application. Note that client session values also
control the refresh token expiration but they never affect the global offline user SSO session. The
option Client Offline Session Max is only evaluated in the client if Offline Session Max Limited is
Enabled at the realm level.

If you enable the Revoke Refresh Token option, you can use each offline token once only. After refresh,
you must store the new offline token from the refresh response instead of the previous one.

Users can view and revoke offline tokens that Red Hat build of Keycloak grants them in the User
Account Console. Administrators can revoke offline tokens for individual users in the Admin Console in
the Consents tab. Administrators can view all offline tokens issued in the Offline Access tab of each
client. Administrators can revoke offline tokens by setting a revocation policy.

To issue an offline token, users must have the role mapping for the realm-level offline_access role.
Clients must also have that role in their scope. Clients must add an offline_access client scope as an
Optional client scope to the role, which is done by default.

Clients can request an offline token by adding the parameter scope=offline_access when sending their
authorization request to Red Hat build of Keycloak. The Red Hat build of Keycloak OIDC client adapter
automatically adds this parameter when you use it to access your application’s secured URL (such as,
http://localhost:8080/customer-portal/secured?scope=offline_access). The Direct Access Grant and
Service Accounts support offline tokens if you include scope=offline_access in the authentication
request body.

Offline sessions are besides the Infinispan caches stored also in the database. Whenever the Red Hat
build of Keycloak server is restarted or an offline session is evicted from the Infinispan cache, it is still
available in the database. Any following attempt to access the offline session will load the session from
the database, and also import it to the Infinispan cache. To reduce memory requirements, we introduced
a configuration option to shorten lifespan for imported offline sessions. Such sessions will be evicted
from the Infinispan caches after the specified lifespan, but still available in the database. This will lower
memory consumption, especially for deployments with a large number of offline sessions. Currently, the
offline session lifespan override is disabled by default. To specify the lifespan override for offline user
sessions, start Red Hat build of Keycloak server with the following parameter:

--spi-user-sessions-infinispan-offline-session-cache-entry-lifespan-override=<lifespan-in-seconds>

CHAPTER 6. MANAGING USER SESSIONS

105

https://openid.net/specs/openid-connect-core-1_0.html#OfflineAccess

Similarly for offline client sessions:

6.5. OFFLINE SESSIONS PRELOADING

In addition to Infinispan caches, offline sessions are stored in a database which means they will be
available even after server restart. By default, the offline sessions are not preloaded from the database
into the Infinispan caches during the server startup, because this approach has a drawback if there are
many offline sessions to be preloaded. It can significantly slow down the server startup time. Therefore,
the offline sessions are lazily fetched from the database by default.

However, Red Hat build of Keycloak can be configured to preload the offline sessions from the database
into the Infinispan caches during the server startup. It can be achieved by setting
preloadOfflineSessionsFromDatabase property in the userSessions SPI to true. This functionality is
currently deprecated and will be removed in a future release.

The following example shows how to configure offline sessions preloading.

6.6. TRANSIENT SESSIONS

You can conduct transient sessions in Red Hat build of Keycloak. When using transient sessions, Red Hat
build of Keycloak does not create a user session after successful authentication. Red Hat build of
Keycloak creates a temporary, transient session for the scope of the current request that successfully
authenticates the user. Red Hat build of Keycloak can run protocol mappers using transient sessions
after authentication.

The sid and session_state of the tokens are usually empty when the token is issued with transient
sessions. So during transient sessions, the client application cannot refresh tokens or validate a specific
session. Sometimes these actions are unnecessary, so you can avoid the additional resource use of
persisting user sessions. This session saves performance, memory, and network communication (in
cluster and cross-data center environments) resources.

At this moment, transient sessions are automatically used just during service account authentication with
disabled token refresh. Note that token refresh is automatically disabled during service account
authentication unless explicitly enabled by client switch Use refresh tokens for client credentials
grant.

--spi-user-sessions-infinispan-offline-client-session-cache-entry-lifespan-override=<lifespan-in-
seconds>

bin/kc.[sh|bat] start --features-enabled offline-session-preloading --spi-user-sessions-infinispan-
preload-offline-sessions-from-database=true

Red Hat build of Keycloak 24.0 Server Administration Guide

106

CHAPTER 7. ASSIGNING PERMISSIONS USING ROLES AND
GROUPS

Roles and groups have a similar purpose, which is to give users access and permissions to use
applications. Groups are a collection of users to which you apply roles and attributes. Roles define
specific applications permissions and access control.

A role typically applies to one type of user. For example, an organization may include admin, user,
manager, and employee roles. An application can assign access and permissions to a role and then
assign multiple users to that role so the users have the same access and permissions. For example, the
Admin Console has roles that give permission to users to access different parts of the Admin Console.

There is a global namespace for roles and each client also has its own dedicated namespace where roles
can be defined.

7.1. CREATING A REALM ROLE

Realm-level roles are a namespace for defining your roles. To see the list of roles, click Realm Roles in
the menu.

Procedure

1. Click Create Role.

2. Enter a Role Name.

3. Enter a Description.

4. Click Save.

Add role

CHAPTER 7. ASSIGNING PERMISSIONS USING ROLES AND GROUPS

107

The description field can be localized by specifying a substitution variable with ${var-name} strings.
The localized value is configured to your theme within the themes property files. See the Server
Developer Guide for more details.

7.2. CLIENT ROLES

Client roles are namespaces dedicated to clients. Each client gets its own namespace. Client roles are
managed under the Roles tab for each client. You interact with this UI the same way you do for realm-
level roles.

7.3. CONVERTING A ROLE TO A COMPOSITE ROLE

Any realm or client level role can become a composite role. A composite role is a role that has one or
more additional roles associated with it. When a composite role is mapped to a user, the user gains the
roles associated with the composite role. This inheritance is recursive so users also inherit any composite
of composites. However, we recommend that composite roles are not overused.

Procedure

1. Click Realm Roles in the menu.

2. Click the role that you want to convert.

3. From the Action list, select Add associated roles.

Composite role

Red Hat build of Keycloak 24.0 Server Administration Guide

108

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

The role selection UI is displayed on the page and you can associate realm level and client level roles to
the composite role you are creating.

In this example, the employee realm-level role is associated with the developer composite role. Any
user with the developer role also inherits the employee role.

NOTE

When creating tokens and SAML assertions, any composite also has its associated roles
added to the claims and assertions of the authentication response sent back to the client.

7.4. ASSIGNING ROLE MAPPINGS

You can assign role mappings to a user through the Role Mappings tab for that user.

Procedure

1. Click Users in the menu.

2. Click the user that you want to perform a role mapping on.

3. Click the Role mappings tab.

4. Click Assign role.

5. Select the role you want to assign to the user from the dialog.

6. Click Assign.

Role mappings

CHAPTER 7. ASSIGNING PERMISSIONS USING ROLES AND GROUPS

109

In the preceding example, we are assigning the composite role developer to a user. That role was
created in the Composite Roles topic.

Effective role mappings

When the developer role is assigned, the employee role associated with the developer composite is
displayed with Inherited "True". Inherited roles are the roles explicitly assigned to users and roles that
are inherited from composites.

7.5. USING DEFAULT ROLES

Use default roles to automatically assign user role mappings when a user is created or imported through
Identity Brokering.

Procedure

1. Click Realm settings in the menu.

Red Hat build of Keycloak 24.0 Server Administration Guide

110

2. Click the User registration tab.

Default roles

This screenshot shows that some default roles already exist.

7.6. ROLE SCOPE MAPPINGS

On creation of an OIDC access token or SAML assertion, the user role mappings become claims within
the token or assertion. Applications use these claims to make access decisions on the resources
controlled by the application. Red Hat build of Keycloak digitally signs access tokens and applications
re-use them to invoke remotely secured REST services. However, these tokens have an associated risk.
An attacker can obtain these tokens and use their permissions to compromise your networks. To prevent
this situation, use Role Scope Mappings .

Role Scope Mappings limit the roles declared inside an access token. When a client requests a user
authentication, the access token they receive contains only the role mappings that are explicitly
specified for the client’s scope. The result is that you limit the permissions of each individual access
token instead of giving the client access to all the users permissions.

By default, each client gets all the role mappings of the user. You can view the role mappings for a client.

Procedure

1. Click Clients in the menu.

2. Click the client to go to the details.

3. Click the Client scopes tab.

4. Click the link in the row with Dedicated scope and mappers for this client

5. Click the Scope tab.

Full scope

CHAPTER 7. ASSIGNING PERMISSIONS USING ROLES AND GROUPS

111

By default, the effective roles of scopes are every declared role in the realm. To change this default
behavior, toggle Full Scope Allowed to OFF and declare the specific roles you want in each client. You
can also use client scopes to define the same role scope mappings for a set of clients.

Partial scope

7.7. GROUPS

Groups in Red Hat build of Keycloak manage a common set of attributes and role mappings for each
user. Users can be members of any number of groups and inherit the attributes and role mappings
assigned to each group.

To manage groups, click Groups in the menu.

Groups

Red Hat build of Keycloak 24.0 Server Administration Guide

112

Groups are hierarchical. A group can have multiple subgroups but a group can have only one parent.
Subgroups inherit the attributes and role mappings from their parent. Users inherit the attributes and
role mappings from their parent as well.

If you have a parent group and a child group, and a user that belongs only to the child group, the user in
the child group inherits the attributes and role mappings of both the parent group and the child group.

The following example includes a top-level Sales group and a child North America subgroup.

To add a group:

1. Click the group.

2. Click Create group.

3. Enter a group name.

4. Click Create.

5. Click the group name.
The group management page is displayed.

Group

Attributes and role mappings you define are inherited by the groups and users that are members of the
group.

To add a user to a group:

1. Click Users in the menu.

2. Click the user that you want to perform a role mapping on. If the user is not displayed, click View
all users.

CHAPTER 7. ASSIGNING PERMISSIONS USING ROLES AND GROUPS

113

3. Click Groups.

User groups

4. Click Join Group.

5. Select a group from the dialog.

6. Select a group from the Available Groups tree.

7. Click Join.

To remove a group from a user:

1. Click Users in the menu.

2. Click the user to be removed from the group.

3. Click Leave on the group table row.

In this example, the user jimlincoln is in the North America group. You can see jimlincoln displayed under
the Members tab for the group.

Group membership

7.7.1. Groups compared to roles

Groups and roles have some similarities and differences. In Red Hat build of Keycloak, groups are a
collection of users to which you apply roles and attributes. Roles define types of users and applications
assign permissions and access control to roles.

Composite Roles are similar to Groups as they provide the same functionality. The difference between
them is conceptual. Composite roles apply the permission model to a set of services and applications.
Use composite roles to manage applications and services.

Red Hat build of Keycloak 24.0 Server Administration Guide

114

Groups focus on collections of users and their roles in an organization. Use groups to manage users.

7.7.2. Using default groups

To automatically assign group membership to any users who is created or who is imported through
Identity Brokering, you use default groups.

1. Click Realm settings in the menu.

2. Click the User registration tab.

3. Click the Default Groups tab.

Default groups

This screenshot shows that some default groups already exist.

CHAPTER 7. ASSIGNING PERMISSIONS USING ROLES AND GROUPS

115

CHAPTER 8. CONFIGURING AUTHENTICATION
This chapter covers several authentication topics. These topics include:

Enforcing strict password and One Time Password (OTP) policies.

Managing different credential types.

Logging in with Kerberos.

Disabling and enabling built-in credential types.

8.1. PASSWORD POLICIES

When Red Hat build of Keycloak creates a realm, it does not associate password policies with the realm.
You can set a simple password with no restrictions on its length, security, or complexity. Simple
passwords are unacceptable in production environments. Red Hat build of Keycloak has a set of
password policies available through the Admin Console.

Procedure

1. Click Authentication in the menu.

2. Click the Policies tab.

3. Select the policy to add in the Add policy drop-down box.

4. Enter a value that applies to the policy chosen.

5. Click Save.
Password policy

After saving the policy, Red Hat build of Keycloak enforces the policy for new users.

NOTE

Red Hat build of Keycloak 24.0 Server Administration Guide

116

NOTE

The new policy will not be effective for existing users. Therefore, make sure that you set
the password policy from the beginning of the realm creation or add "Update password"
to existing users or use "Expire password" to make sure that users update their passwords
in next "N" days, which will actually adjust to new password policies.

8.1.1. Password policy types

8.1.1.1. HashAlgorithm

Passwords are not stored in cleartext. Before storage or validation, Red Hat build of Keycloak hashes
passwords using standard hashing algorithms. PBKDF2 is the only built-in and default algorithm
available. See the Server Developer Guide on how to add your own hashing algorithm.

NOTE

If you change the hashing algorithm, password hashes in storage will not change until the
user logs in.

8.1.1.2. Hashing iterations

Specifies the number of times Red Hat build of Keycloak hashes passwords before storage or
verification. The default value is 210,000 in case that pbkdf2-sha512 is used as hashing algorithm, which
is by default. If other hash algorithms are explicitly set by using the`HashAlgorithm` policy, the default
count of hashing iterations could be different. For instance, it is 600,000 by default if the`pbkdf2-
sha256` algorithm is used or 1,300,000 if the pbkdf2 algorithm (Algorithm pbkdf2 corresponds to
PBKDF2 with HMAC-SHA1).

Red Hat build of Keycloak hashes passwords to ensure that hostile actors with access to the password
database cannot read passwords through reverse engineering.

NOTE

A high hashing iteration value can impact performance as it requires higher CPU power.

8.1.1.3. Digits

The number of numerical digits required in the password string.

8.1.1.4. Lowercase characters

The number of lower case letters required in the password string.

8.1.1.5. Uppercase characters

The number of upper case letters required in the password string.

8.1.1.6. Special characters

The number of special characters required in the password string.

8.1.1.7. Not username

CHAPTER 8. CONFIGURING AUTHENTICATION

117

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

The password cannot be the same as the username.

8.1.1.8. Not email

The password cannot be the same as the email address of the user.

8.1.1.9. Regular expression

Password must match one or more defined Java regular expression patterns. See Java’s regular
expression documentation for the syntax of those expressions.

8.1.1.10. Expire password

The number of days the password is valid. When the number of days has expired, the user must change
their password.

8.1.1.11. Not recently used

Password cannot be already used by the user. Red Hat build of Keycloak stores a history of used
passwords. The number of old passwords stored is configurable in Red Hat build of Keycloak.

8.1.1.12. Password blacklist

Password must not be in a blacklist file.

Blacklist files are UTF-8 plain-text files with Unix line endings. Every line represents a
blacklisted password.

Red Hat build of Keycloak compares passwords in a case-insensitive manner. All passwords in
the blacklist must be lowercase.

The value of the blacklist file must be the name of the blacklist file, for example,
100k_passwords.txt.

Blacklist files resolve against ${kc.home.dir}/data/password-blacklists/ by default. Customize
this path using:

The keycloak.password.blacklists.path system property.

The blacklistsPath property of the passwordBlacklist policy SPI configuration. To
configure the blacklist folder using the CLI, use --spi-password-policy-password-
blacklist-blacklists-path=/path/to/blacklistsFolder.

A note about False Positives

The current implementation uses a BloomFilter for fast and memory efficient containment checks, such
as whether a given password is contained in a blacklist, with the possibility for false positives.

By default a false positive probability of 0.01% is used.

To change the false positive probability by CLI configuration, use --spi-password-policy-
password-blacklist-false-positive-probability=0.00001.

8.1.1.13. Maximum Authentication Age

Specifies the maximum age of a user authentication in seconds with which the user can update a

Red Hat build of Keycloak 24.0 Server Administration Guide

118

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

Specifies the maximum age of a user authentication in seconds with which the user can update a
password without re-authentication. A value of 0 indicates that the user has to always re-authenticate
with their current password before they can update the password. See AIA section for some additional
details about this policy.

8.2. ONE TIME PASSWORD (OTP) POLICIES

Red Hat build of Keycloak has several policies for setting up a FreeOTP or Google Authenticator One-
Time Password generator.

Procedure

1. Click Authentication in the menu.

2. Click the Policy tab.

3. Click the OTP Policy tab.

Otp Policy

Red Hat build of Keycloak generates a QR code on the OTP set-up page, based on information
configured in the OTP Policy tab. FreeOTP and Google Authenticator scan the QR code when
configuring OTP.

8.2.1. Time-based or counter-based one time passwords

The algorithms available in Red Hat build of Keycloak for your OTP generators are time-based and
counter-based.

With Time-Based One Time Passwords (TOTP), the token generator will hash the current time and a

CHAPTER 8. CONFIGURING AUTHENTICATION

119

With Time-Based One Time Passwords (TOTP), the token generator will hash the current time and a
shared secret. The server validates the OTP by comparing the hashes within a window of time to the
submitted value. TOTPs are valid for a short window of time.

With Counter-Based One Time Passwords (HOTP), Red Hat build of Keycloak uses a shared counter
rather than the current time. The Red Hat build of Keycloak server increments the counter with each
successful OTP login. Valid OTPs change after a successful login.

TOTP is more secure than HOTP because the matchable OTP is valid for a short window of time, while
the OTP for HOTP is valid for an indeterminate amount of time. HOTP is more user-friendly than TOTP
because no time limit exists to enter the OTP.

HOTP requires a database update every time the server increments the counter. This update is a
performance drain on the authentication server during heavy load. To increase efficiency, TOTP does
not remember passwords used, so there is no need to perform database updates. The drawback is that
it is possible to re-use TOTPs in the valid time interval.

8.2.2. TOTP configuration options

8.2.2.1. OTP hash algorithm

The default algorithm is SHA1. The other, more secure options are SHA256 and SHA512.

8.2.2.2. Number of digits

The length of the OTP. Short OTP’s are user-friendly, easier to type, and easier to remember. Longer
OTP’s are more secure than shorter OTP’s.

8.2.2.3. Look around window

The number of intervals the server attempts to match the hash. This option is present in Red Hat build of
Keycloak if the clock of the TOTP generator or authentication server becomes out-of-sync. The default
value of 1 is adequate. For example, if the time interval for a token is 30 seconds, the default value of 1
means it will accept valid tokens in the 90-second window (time interval 30 seconds + look ahead 30
seconds + look behind 30 seconds). Every increment of this value increases the valid window by 60
seconds (look ahead 30 seconds + look behind 30 seconds).

8.2.2.4. OTP token period

The time interval in seconds the server matches a hash. Each time the interval passes, the token
generator generates a TOTP.

8.2.2.5. Reusable code

Determine whether OTP tokens can be reused in the authentication process or user needs to wait for
the next token. Users cannot reuse those tokens by default, and the administrator needs to explicitly
specify that those tokens can be reused.

8.2.3. HOTP configuration options

8.2.3.1. OTP hash algorithm

The default algorithm is SHA1. The other, more secure options are SHA256 and SHA512.

Red Hat build of Keycloak 24.0 Server Administration Guide

120

8.2.3.2. Number of digits

The length of the OTP. Short OTPs are user-friendly, easier to type, and easier to remember. Longer
OTPs are more secure than shorter OTPs.

8.2.3.3. Look around window

The number of previous and following intervals the server attempts to match the hash. This option is
present in Red Hat build of Keycloak if the clock of the TOTP generator or authentication server
become out-of-sync. The default value of 1 is adequate. This option is present in Red Hat build of
Keycloak to cover when the user’s counter gets ahead of the server.

8.2.3.4. Initial counter

The value of the initial counter.

8.3. AUTHENTICATION FLOWS

An authentication flow is a container of authentications, screens, and actions, during log in, registration,
and other Red Hat build of Keycloak workflows.

8.3.1. Built-in flows

Red Hat build of Keycloak has several built-in flows. You cannot modify these flows, but you can alter
the flow’s requirements to suit your needs.

Procedure

1. Click Authentication in the menu.

2. Click on the Browser item in the list to see the details.

Browser flow

CHAPTER 8. CONFIGURING AUTHENTICATION

121

8.3.1.1. Auth type

The name of the authentication or the action to execute. If an authentication is indented, it is in a sub-
flow. It may or may not be executed, depending on the behavior of its parent.

1. Cookie
The first time a user logs in successfully, Red Hat build of Keycloak sets a session cookie. If the
cookie is already set, this authentication type is successful. Since the cookie provider returned
success and each execution at this level of the flow is alternative, Red Hat build of Keycloak does
not perform any other execution. This results in a successful login.

2. Kerberos
This authenticator is disabled by default and is skipped during the Browser Flow.

3. Identity Provider Redirector
This action is configured through the Actions > Config link. It redirects to another IdP for
identity brokering.

4. Forms
Since this sub-flow is marked as alternative, it will not be executed if the Cookie authentication
type passed. This sub-flow contains an additional authentication type that needs to be
executed. Red Hat build of Keycloak loads the executions for this sub-flow and processes them.

The first execution is the Username Password Form, an authentication type that renders the username
and password page. It is marked as required, so the user must enter a valid username and password.

The second execution is the Browser - Conditional OTP sub-flow. This sub-flow is conditional and

Red Hat build of Keycloak 24.0 Server Administration Guide

122

The second execution is the Browser - Conditional OTP sub-flow. This sub-flow is conditional and
executes depending on the result of the Condition - User Configured execution. If the result is true,
Red Hat build of Keycloak loads the executions for this sub-flow and processes them.

The next execution is the Condition - User Configured authentication. This authentication checks if
Red Hat build of Keycloak has configured other executions in the flow for the user. The Browser -
Conditional OTP sub-flow executes only when the user has a configured OTP credential.

The final execution is the OTP Form. Red Hat build of Keycloak marks this execution as required but it
runs only when the user has an OTP credential set up because of the setup in the conditional sub-flow. If
not, the user does not see an OTP form.

8.3.1.2. Requirement

A set of radio buttons that control the execution of an action executes.

8.3.1.2.1. Required

All Required elements in the flow must be successfully sequentially executed. The flow terminates if a
required element fails.

8.3.1.2.2. Alternative

Only a single element must successfully execute for the flow to evaluate as successful. Because the
Required flow elements are sufficient to mark a flow as successful, any Alternative flow element within a
flow containing Required flow elements will not execute.

8.3.1.2.3. Disabled

The element does not count to mark a flow as successful.

8.3.1.2.4. Conditional

This requirement type is only set on sub-flows.

A Conditional sub-flow contains executions. These executions must evaluate to logical
statements.

If all executions evaluate as true, the Conditional sub-flow acts as Required.

If any executions evaluate as false, the Conditional sub-flow acts as Disabled.

If you do not set an execution, the Conditional sub-flow acts as Disabled.

If a flow contains executions and the flow is not set to Conditional, Red Hat build of Keycloak
does not evaluate the executions, and the executions are considered functionally Disabled.

8.3.2. Creating flows

Important functionality and security considerations apply when you design a flow.

To create a flow, perform the following:

Procedure

CHAPTER 8. CONFIGURING AUTHENTICATION

123

1. Click Authentication in the menu.

2. Click Create flow.

NOTE

You can copy and then modify an existing flow. Click the "Action list" (the three dots at
the end of the row), click Duplicate, and enter a name for the new flow.

When creating a new flow, you must create a top-level flow first with the following options:

Name

The name of the flow.

Description

The description you can set to the flow.

Top-Level Flow Type

The type of flow. The type client is used only for the authentication of clients (applications). For all
other cases, choose basic.

Create a top-level flow

When Red Hat build of Keycloak has created the flow, Red Hat build of Keycloak displays the Add step,
and Add sub-flow buttons.

An empty new flow

Red Hat build of Keycloak 24.0 Server Administration Guide

124

Three factors determine the behavior of flows and sub-flows.

The structure of the flow and sub-flows.

The executions within the flows

The requirements set within the sub-flows and the executions.

Executions have a wide variety of actions, from sending a reset email to validating an OTP. Add
executions with the Add step button.

Adding an authentication execution

CHAPTER 8. CONFIGURING AUTHENTICATION

125

Authentication executions can optionally have a reference value configured. This can be utilized by the
Authentication Method Reference (AMR) protocol mapper to populate the amr claim in OIDC access and
ID tokens (for more information on the AMR claim, see RFC-8176). When the Authentication Method
Reference (AMR) protocol mapper is configured for a client, it will populate the amr claim with the
reference value for any authenticator execution the user successfully completes during the
authentication flow.

Red Hat build of Keycloak 24.0 Server Administration Guide

126

https://www.rfc-editor.org/rfc/rfc8176.html

Adding an authenticator reference value

Two types of executions exist, automatic executions and interactive executions. Automatic executions
are similar to the Cookie execution and will automatically perform their action in the flow. Interactive
executions halt the flow to get input. Executions executing successfully set their status to success. For a
flow to complete, it needs at least one execution with a status of success.

You can add sub-flows to top-level flows with the Add sub-flow button. The Add sub-flow button
displays the Create Execution Flow page. This page is similar to the Create Top Level Form page. The
difference is that the Flow Type can be basic (default) or form. The form type constructs a sub-flow
that generates a form for the user, similar to the built-in Registration flow. Sub-flows success depends
on how their executions evaluate, including their contained sub-flows. See the execution requirements
section for an in-depth explanation of how sub-flows work.

NOTE

After adding an execution, check the requirement has the correct value.

All elements in a flow have a Delete option next to the element. Some executions have a ⚙� menu item
(the gear icon) to configure the execution. It is also possible to add executions and sub-flows to sub-
flows with the Add step and Add sub-flow links.

Since the order of execution is important, you can move executions and sub-flows up and down by
dragging their names.

CHAPTER 8. CONFIGURING AUTHENTICATION

127

WARNING

Make sure to properly test your configuration when you configure the
authentication flow to confirm that no security holes exist in your setup. We
recommend that you test various corner cases. For example, consider testing the
authentication behavior for a user when you remove various credentials from the
user’s account before authentication.

As an example, when 2nd-factor authenticators, such as OTP Form or WebAuthn
Authenticator, are configured in the flow as REQUIRED and the user does not have
credential of particular type, the user will be able to set up the particular credential
during authentication itself. This situation means that the user does not
authenticate with this credential as he set up it right during the authentication. So
for browser authentication, make sure to configure your authentication flow with
some 1st-factor credentials such as Password or WebAuthn Passwordless
Authenticator.

8.3.3. Creating a password-less browser login flow

To illustrate the creation of flows, this section describes creating an advanced browser login flow. The
purpose of this flow is to allow a user a choice between logging in using a password-less manner with
WebAuthn, or two-factor authentication with a password and OTP.

Procedure

1. Click Authentication in the menu.

2. Click the Flows tab.

3. Click Create flow.

4. Enter Browser Password-less as a name.

5. Click Create.

6. Click Add execution.

7. Select Cookie from the list.

8. Click Add.

9. Select Alternative for the Cookie authentication type to set its requirement to alternative.

10. Click Add step.

11. Select Kerberos from the list.

12. Click Add.

13. Click Add step.

14. Select Identity Provider Redirector from the list.



Red Hat build of Keycloak 24.0 Server Administration Guide

128

15. Click Add.

16. Select Alternative for the Identity Provider Redirector authentication type to set its
requirement to alternative.

17. Click Add sub-flow.

18. Enter Forms as a name.

19. Click Add.

20. Select Alternative for the Forms authentication type to set its requirement to alternative.

The common part with the browser flow

21. Click + menu of the Forms execution.

22. Select Add step.

23. Select Username Form from the list.

24. Click Add.

At this stage, the form requires a username but no password. We must enable password authentication
to avoid security risks.

1. Click + menu of the Forms sub-flow.

2. Click Add sub-flow.

3. Enter Authentication as name.

4. Click Add.

5. Select Required for the Authentication authentication type to set its requirement to required.

6. Click + menu of the Authentication sub-flow.

CHAPTER 8. CONFIGURING AUTHENTICATION

129

7. Click Add step.

8. Select WebAuthn Passwordless Authenticator from the list.

9. Click Add.

10. Select Alternative for the Webauthn Passwordless Authenticator authentication type to set
its requirement to alternative.

11. Click + menu of the Authentication sub-flow.

12. Click Add sub-flow.

13. Enter Password with OTP as name.

14. Click Add.

15. Select Alternative for the Password with OTP authentication type to set its requirement to
alternative.

16. Click + menu of the Password with OTP sub-flow.

17. Click Add step.

18. Select Password Form from the list.

19. Click Add.

20. Select Required for the Password Form authentication type to set its requirement to required.

21. Click + menu of the Password with OTP sub-flow.

22. Click Add step.

23. Select OTP Form from the list.

24. Click Add.

25. Click Required for the OTP Form authentication type to set its requirement to required.

Finally, change the bindings.

1. Click the Action menu at the top of the screen.

2. Select Bind flow from the menu.

3. Click the Browser Flow drop-down list.

4. Click Save.

A password-less browser login

Red Hat build of Keycloak 24.0 Server Administration Guide

130

After entering the username, the flow works as follows:

If users have WebAuthn passwordless credentials recorded, they can use these credentials to log in
directly. This is the password-less login. The user can also select Password with OTP because the
WebAuthn Passwordless execution and the Password with OTP flow are set to Alternative. If they
are set to Required, the user has to enter WebAuthn, password, and OTP.

If the user selects the Try another way link with WebAuthn passwordless authentication, the user can
choose between Password and Passkey (WebAuthn passwordless). When selecting the password, the
user will need to continue and log in with the assigned OTP. If the user has no WebAuthn credentials, the
user must enter the password and then the OTP. If the user has no OTP credential, they will be asked to
record one.

NOTE

CHAPTER 8. CONFIGURING AUTHENTICATION

131

NOTE

Since the WebAuthn Passwordless execution is set to Alternative rather than Required,
this flow will never ask the user to register a WebAuthn credential. For a user to have a
Webauthn credential, an administrator must add a required action to the user. Do this by:

1. Enabling the Webauthn Register Passwordless required action in the realm (see
the WebAuthn documentation).

2. Setting the required action using the Credential Reset part of a user’s
Credentials management menu.

Creating an advanced flow such as this can have side effects. For example, if you enable
the ability to reset the password for users, this would be accessible from the password
form. In the default Reset Credentials flow, users must enter their username. Since the
user has already entered a username earlier in the Browser Password-less flow, this
action is unnecessary for Red Hat build of Keycloak and suboptimal for user experience.
To correct this problem, you can:

Duplicate the Reset Credentials flow. Set its name to Reset Credentials for
password-less, for example.

Click Delete (trash icon) of the Choose user step.

In the Action menu, select Bind flow and select Reset credentials flow from the
dropdown and click Save

8.3.4. Creating a browser login flow with step-up mechanism

This section describes how to create advanced browser login flow using the step-up mechanism. The
purpose of step-up authentication is to allow access to clients or resources based on a specific
authentication level of a user.

Procedure

1. Click Authentication in the menu.

2. Click the Flows tab.

3. Click Create flow.

4. Enter Browser Incl Step up Mechanism as a name.

5. Click Save.

6. Click Add execution.

7. Select Cookie from the list.

8. Click Add.

9. Select Alternative for the Cookie authentication type to set its requirement to alternative.

10. Click Add sub-flow.

11. Enter Auth Flow as a name.

Red Hat build of Keycloak 24.0 Server Administration Guide

132

12. Click Add.

13. Click Alternative for the Auth Flow authentication type to set its requirement to alternative.

Now you configure the flow for the first authentication level.

1. Click + menu of the Auth Flow.

2. Click Add sub-flow.

3. Enter 1st Condition Flow as a name.

4. Click Add.

5. Click Conditional for the 1st Condition Flow authentication type to set its requirement to
conditional.

6. Click + menu of the 1st Condition Flow.

7. Click Add condition.

8. Select Conditional - Level Of Authentication from the list.

9. Click Add.

10. Click Required for the Conditional - Level Of Authentication authentication type to set its
requirement to required.

11. Click ⚙� (gear icon).

12. Enter Level 1 as an alias.

13. Enter 1 for the Level of Authentication (LoA).

14. Set Max Age to 36000. This value is in seconds and it is equivalent to 10 hours, which is the
default SSO Session Max timeout set in the realm. As a result, when a user authenticates with
this level, subsequent SSO logins can re-use this level and the user does not need to
authenticate with this level until the end of the user session, which is 10 hours by default.

15. Click Save

Configure the condition for the first authentication level

CHAPTER 8. CONFIGURING AUTHENTICATION

133

16. Click + menu of the 1st Condition Flow.

17. Click Add step.

18. Select Username Password Form from the list.

19. Click Add.

Now you configure the flow for the second authentication level.

1. Click + menu of the Auth Flow.

2. Click Add sub-flow.

3. Enter 2nd Condition Flow as an alias.

4. Click Add.

5. Click Conditional for the 2nd Condition Flow authentication type to set its requirement to
conditional.

6. Click + menu of the 2nd Condition Flow.

7. Click Add condition.

8. Select Conditional - Level Of Authentication from the item list.

9. Click Add.

10. Click Required for the Conditional - Level Of Authentication authentication type to set its

Red Hat build of Keycloak 24.0 Server Administration Guide

134

10. Click Required for the Conditional - Level Of Authentication authentication type to set its
requirement to required.

11. Click ⚙� (gear icon).

12. Enter Level 2 as an alias.

13. Enter 2 for the Level of Authentication (LoA).

14. Set Max Age to 0. As a result, when a user authenticates, this level is valid just for the current
authentication, but not any subsequent SSO authentications. So the user will always need to
authenticate again with this level when this level is requested.

15. Click Save

Configure the condition for the second authentication level

16. Click + menu of the 2nd Condition Flow.

17. Click Add step.

18. Select OTP Form from the list.

19. Click Add.

20. Click Required for the OTP Form authentication type to set its requirement to required.

Finally, change the bindings.

1. Click the Action menu at the top of the screen.

CHAPTER 8. CONFIGURING AUTHENTICATION

135

2. Select Bind flow from the list.

3. Select Browser Flow in the dropdown.

4. Click Save.

Browser login with step-up mechanism

Request a certain authentication level

To use the step-up mechanism, you specify a requested level of authentication (LoA) in your
authentication request. The claims parameter is used for this purpose:

https://{DOMAIN}/realms/{REALMNAME}/protocol/openid-connect/auth?client_id={CLIENT-
ID}&redirect_uri={REDIRECT-
URI}&scope=openid&response_type=code&response_mode=query&nonce=exg16fxdjcu&claims=%7B%
22id_token%22%3A%7B%22acr%22%3A%7B%22essential%22%3Atrue%2C%22values%22%3A%5
B%22gold%22%5D%7D%7D%7D

The claims parameter is specified in a JSON representation:

claims= {
 "id_token": {
 "acr": {
 "essential": true,
 "values": ["gold"]

Red Hat build of Keycloak 24.0 Server Administration Guide

136

 }
 }
 }

The Red Hat build of Keycloak javascript adapter has support for easy construct of this JSON and
sending it in the login request. See Javascript adapter documentation for more details.

You can also use simpler parameter acr_values instead of claims parameter to request particular levels
as non-essential. This is mentioned in the OIDC specification.

You can also configure the default level for the particular client, which is used when the parameter
acr_values or the parameter claims with the acr claim is not present. For further details, see Client
ACR configuration).

NOTE

To request the acr_values as text (such as gold) instead of a numeric value, you configure
the mapping between the ACR and the LoA. It is possible to configure it at the realm level
(recommended) or at the client level. For configuration see ACR to LoA Mapping.

For more details see the official OIDC specification.

Flow logic

The logic for the previous configured authentication flow is as follows:
If a client request a high authentication level, meaning Level of Authentication 2 (LoA 2), a user has to
perform full 2-factor authentication: Username/Password + OTP. However, if a user already has a
session in Red Hat build of Keycloak, that was logged in with username and password (LoA 1), the user is
only asked for the second authentication factor (OTP).

The option Max Age in the condition determines how long (how much seconds) the subsequent
authentication level is valid. This setting helps to decide whether the user will be asked to present the
authentication factor again during a subsequent authentication. If the particular level X is requested by
the claims or acr_values parameter and user already authenticated with level X, but it is expired (for
example max age is configured to 300 and user authenticated before 310 seconds) then the user will be
asked to re-authenticate again with the particular level. However if the level is not yet expired, the user
will be automatically considered as authenticated with that level.

Using Max Age with the value 0 means, that particular level is valid just for this single authentication.
Hence every re-authentication requesting that level will need to authenticate again with that level. This
is useful for operations that require higher security in the application (e.g. send payment) and always
require authentication with the specific level.

CHAPTER 8. CONFIGURING AUTHENTICATION

137

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#javascript_adapter
https://openid.net/specs/openid-connect-core-1_0.html#acrSemantics

WARNING

Note that parameters such as claims or acr_values might be changed by the user
in the URL when the login request is sent from the client to the Red Hat build of
Keycloak via the user’s browser. This situation can be mitigated if client uses PAR
(Pushed authorization request), a request object, or other mechanisms that
prevents the user from rewrite the parameters in the URL. Hence after the
authentication, clients are encouraged to check the ID Token to double-check that
acr in the token corresponds to the expected level.

If no explicit level is requested by parameters, the Red Hat build of Keycloak will require the
authentication with the first LoA condition found in the authentication flow, such as the
Username/Password in the preceding example. When a user was already authenticated with that level
and that level expired, the user is not required to re-authenticate, but acr in the token will have the
value 0. This result is considered as authentication based solely on long-lived browser cookie as
mentioned in the section 2 of OIDC Core 1.0 specification.

NOTE

A conflict situation may arise when an admin specifies several flows, sets different LoA
levels to each, and assigns the flows to different clients. However, the rule is always the
same: if a user has a certain level, it needs only have that level to connect to a client. It’s
up to the admin to make sure that the LoA is coherent.

Example scenario

1. Max Age is configured as 300 seconds for level 1 condition.

2. Login request is sent without requesting any acr. Level 1 will be used and the user needs to
authenticate with username and password. The token will have acr=1.

3. Another login request is sent after 100 seconds. The user is automatically authenticated due to
the SSO and the token will return acr=1.

4. Another login request is sent after another 201 seconds (301 seconds since authentication in
point 2). The user is automatically authenticated due to the SSO, but the token will return acr=0
due the level 1 is considered expired.

5. Another login request is sent, but now it will explicitly request ACR of level 1 in the claims
parameter. User will be asked to re-authenticate with username/password and then acr=1 will
be returned in the token.

ACR claim in the token

ACR claim is added to the token by the acr loa level protocol mapper defined in the acr client scope.
This client scope is the realm default client scope and hence will be added to all newly created clients in
the realm.

In case you do not want acr claim inside tokens or you need some custom logic for adding it, you can
remove the client scope from your client.



Red Hat build of Keycloak 24.0 Server Administration Guide

138

Note when the login request initiates a request with the claims parameter requesting acr as essential
claim, then Red Hat build of Keycloak will always return one of the specified levels. If it is not able to
return one of the specified levels (For example if the requested level is unknown or bigger than
configured conditions in the authentication flow), then Red Hat build of Keycloak will throw an error.

8.3.5. Registration or Reset credentials requested by client

Usually when the user is redirected to the Red Hat build of Keycloak from client application, the browser
flow is triggered. This flow may allow the user to register in case that realm registration is enabled and
the user clicks Register on the login screen. Also, if Forget password is enabled for the realm, the user
can click Forget password on the login screen, which triggers the Reset credentials flow where users
can reset credentials after email address confirmation.

Sometimes it can be useful for the client application to directly redirect the user to the Registration
screen or to the Reset credentials flow. The resulting action will match the action of when the user
clicks Register or Forget password on the normal login screen. Automatic redirect to the registration or
reset-credentials screen can be done as follows:

When the client wants the user to be redirected directly to the registration, the OIDC client
should replace the very last snippet from the OIDC login URL path (/auth) with /registrations .
So the full URL might be similar to the following:
https://keycloak.example.com/realms/your_realm/protocol/openid-connect/registrations.

When the client wants a user to be redirected directly to the Reset credentials flow, the OIDC
client should replace the very last snippet from the OIDC login URL path (/auth) with /forgot-
credentials .

WARNING

The preceding steps are the only supported method for a client to directly request a
registration or reset-credentials flow. For security purposes, it is not supported and
recommended for client applications to bypass OIDC/SAML flows and directly
redirect to other Red Hat build of Keycloak endpoints (such as for instance
endpoints under /realms/realm_name/login-actions or
/realms/realm_name/broker).

8.4. USER SESSION LIMITS

Limits on the number of session that a user can have can be configured. Sessions can be limited per
realm or per client.

To add session limits to a flow, perform the following steps.

1. Click Add step for the flow.

2. Select User session count limiter from the item list.

3. Click Add.

4. Click Required for the User Session Count Limiter authentication type to set its requirement
to required.



CHAPTER 8. CONFIGURING AUTHENTICATION

139

https://keycloak.example.com/realms/your_realm/protocol/openid-connect/registrations

5. Click ⚙� (gear icon) for the User Session Count Limiter.

6. Enter an alias for this config.

7. Enter the required maximum number of sessions that a user can have in this realm. For example,
if 2 is the value, 2 SSO sessions is the maximum that each user can have in this realm. If 0 is the
value, this check is disabled.

8. Enter the required maximum number of sessions a user can have for the client. For example, if 2
is the value, then 2 SSO sessions is the maximum in this realm for each client. So when a user is
trying to authenticate to client foo, but that user has already authenticated in 2 SSO sessions to
client foo, either the authentication will be denied or an existing sessions will be killed based on
the behavior configured. If a value of 0 is used, this check is disabled. If both session limits and
client session limits are enabled, it makes sense to have client session limits to be always lower
than session limits. The limit per client can never exceed the limit of all SSO sessions of this user.

9. Select the behavior that is required when the user tries to create a session after the limit is
reached. Available behaviors are:

Deny new session - when a new session is requested and the session limit is reached, no
new sessions can be created.

Terminate oldest session - when a new session is requested and the session limit has been
reached, the oldest session will be removed and the new session created.

10. Optionally, add a custom error message to be displayed when the limit is reached.

Note that the user session limits should be added to your bound Browser flow, Direct grant flow, Reset
credentials and also to any Post broker login flow. The authenticator should be added at the point
when the user is already known during authentication (usually at the end of the authentication flow) and
should be typically REQUIRED. Note that it is not possible to have ALTERNATIVE and REQUIRED
executions at the same level.

For most of authenticators like Direct grant flow, Reset credentials or Post broker login flow, it is
recommended to add the authenticator as REQUIRED at the end of the authentication flow. Here is an
example for the Reset credentials flow:

Red Hat build of Keycloak 24.0 Server Administration Guide

140

For Browser flow, consider not adding the Session Limits authenticator at the top level flow. This
recommendation is due to the Cookie authenticator, which automatically re-authenticates users based
on SSO cookie. It is at the top level and it is better to not check session limits during SSO re-
authentication because a user session already exists. So instead, consider adding a separate
ALTERNATIVE subflow, such as the following authenticate-user-with-session-limit example at the
same level like Cookie. Then you can add a REQUIRED subflow, in the following real-authentication-
subflow`example, as a nested subflow of `authenticate-user-with-session-limit and add a User
Session Limit at the same level as well. Inside the real-authentication-subflow, you can add real
authenticators in a similar fashion to the default browser flow. The following example flow allows to
users to authenticate with an identity provider or with password and OTP:

CHAPTER 8. CONFIGURING AUTHENTICATION

141

Regarding Post Broker login flow, you can add the User Session Limits as the only authenticator in
the authentication flow as long as you have no other authenticators that you trigger after authentication
with your identity provider. However, make sure that this flow is configured as Post Broker Flow at your
identity providers. This requirement exists needed so that the authentication with Identity providers also
participates in the session limits.

NOTE

Currently, the administrator is responsible for maintaining consistency between the
different configurations. So make sure that all your flows use same the configuration of
User Session Limits.

NOTE

User session limit feature is not available for CIBA.

8.5. KERBEROS

Red Hat build of Keycloak supports login with a Kerberos ticket through the Simple and Protected
GSSAPI Negotiation Mechanism (SPNEGO) protocol. SPNEGO authenticates transparently through
the web browser after the user authenticates the session. For non-web cases, or when a ticket is not
available during login, Red Hat build of Keycloak supports login with Kerberos username and password.

A typical use case for web authentication is the following:

1. The user logs into the desktop.

2. The user accesses a web application secured by Red Hat build of Keycloak using a browser.

3. The application redirects to Red Hat build of Keycloak login.

Red Hat build of Keycloak 24.0 Server Administration Guide

142

4. Red Hat build of Keycloak renders the HTML login screen with status 401 and HTTP header
WWW-Authenticate: Negotiate

5. If the browser has a Kerberos ticket from desktop login, the browser transfers the desktop sign-
on information to Red Hat build of Keycloak in header Authorization: Negotiate 'spnego-
token'. Otherwise, it displays the standard login screen, and the user enters the login
credentials.

6. Red Hat build of Keycloak validates the token from the browser and authenticates the user.

7. If using LDAPFederationProvider with Kerberos authentication support, Red Hat build of
Keycloak provisions user data from LDAP. If using KerberosFederationProvider, Red Hat build of
Keycloak lets the user update the profile and pre-fill login data.

8. Red Hat build of Keycloak returns to the application. Red Hat build of Keycloak and the
application communicate through OpenID Connect or SAML messages. Red Hat build of
Keycloak acts as a broker to Kerberos/SPNEGO login. Therefore Red Hat build of Keycloak
authenticating through Kerberos is hidden from the application.

WARNING

The Negotiate www-authenticate scheme allows NTLM as a fallback to Kerberos
and on some web browsers in Windows NTLM is supported by default. If a www-
authenticate challenge comes from a server outside a browsers permitted list, users
may encounter an NTLM dialog prompt. A user would need to click the cancel
button on the dialog to continue as Red Hat build of Keycloak does not support this
mechanism. This situation can happen if Intranet web browsers are not strictly
configured or if Red Hat build of Keycloak serves users in both the Intranet and
Internet. A custom authenticator can be used to restrict Negotiate challenges to a
whitelist of hosts.

Perform the following steps to set up Kerberos authentication:

1. The setup and configuration of the Kerberos server (KDC).

2. The setup and configuration of the Red Hat build of Keycloak server.

3. The setup and configuration of the client machines.

8.5.1. Setup of Kerberos server

The steps to set up a Kerberos server depends on the operating system (OS) and the Kerberos vendor.
Consult Windows Active Directory, MIT Kerberos, and your OS documentation for instructions on setting
up and configuring a Kerberos server.

During setup, perform these steps:

1. Add some user principals to your Kerberos database. You can also integrate your Kerberos with
LDAP, so user accounts provision from the LDAP server.

2. Add service principal for "HTTP" service. For example, if the Red Hat build of Keycloak server



CHAPTER 8. CONFIGURING AUTHENTICATION

143

https://www.ietf.org/rfc/rfc4559.txt
https://github.com/keycloak/keycloak/issues/8989

2. Add service principal for "HTTP" service. For example, if the Red Hat build of Keycloak server
runs on www.mydomain.org, add the service principal HTTP/www.mydomain.org@<kerberos
realm>.
On MIT Kerberos, you run a "kadmin" session. On a machine with MIT Kerberos, you can use the
command:

sudo kadmin.local

Then, add HTTP principal and export its key to a keytab file with commands such as:

addprinc -randkey HTTP/www.mydomain.org@MYDOMAIN.ORG
ktadd -k /tmp/http.keytab HTTP/www.mydomain.org@MYDOMAIN.ORG

Ensure the keytab file /tmp/http.keytab is accessible on the host where Red Hat build of Keycloak is
running.

8.5.2. Setup and configuration of Red Hat build of Keycloak server

Install a Kerberos client on your machine.

Procedure

1. Install a Kerberos client. If your machine runs Fedora, Ubuntu, or RHEL, install the freeipa-client
package, containing a Kerberos client and other utilities.

2. Configure the Kerberos client (on Linux, the configuration settings are in the /etc/krb5.conf file
).
Add your Kerberos realm to the configuration and configure the HTTP domains your server runs
on.

For example, for the MYDOMAIN.ORG realm, you can configure the domain_realm section like
this:

[domain_realm]
 .mydomain.org = MYDOMAIN.ORG
 mydomain.org = MYDOMAIN.ORG

3. Export the keytab file with the HTTP principal and ensure the file is accessible to the process
running the Red Hat build of Keycloak server. For production, ensure that the file is readable by
this process only.
For the MIT Kerberos example above, we exported keytab to the /tmp/http.keytab file. If your
Key Distribution Centre (KDC) and Red Hat build of Keycloak run on the same host, the file is
already available.

8.5.2.1. Enabling SPNEGO processing

By default, Red Hat build of Keycloak disables SPNEGO protocol support. To enable it, go to the
browser flow and enable Kerberos.

Browser flow

Red Hat build of Keycloak 24.0 Server Administration Guide

144

https://www.freeipa.org/page/Downloads
https://web.mit.edu/kerberos/krb5-1.12/doc/admin/conf_files/krb5_conf.html

Set the Kerberos requirement from disabled to alternative (Kerberos is optional) or required (browser
must have Kerberos enabled). If you have not configured the browser to work with SPNEGO or
Kerberos, Red Hat build of Keycloak falls back to the regular login screen.

8.5.2.2. Configure Kerberos user storage federation providers

You must now use User Storage Federation to configure how Red Hat build of Keycloak interprets
Kerberos tickets. Two different federation providers exist with Kerberos authentication support.

To authenticate with Kerberos backed by an LDAP server, configure the LDAP Federation Provider.

Procedure

1. Go to the configuration page for your LDAP provider.

Ldap kerberos integration

CHAPTER 8. CONFIGURING AUTHENTICATION

145

2. Toggle Allow Kerberos authentication to ON

Allow Kerberos authentication makes Red Hat build of Keycloak use the Kerberos principal access user
information so information can import into the Red Hat build of Keycloak environment.

If an LDAP server is not backing up your Kerberos solution, use the Kerberos User Storage Federation
Provider.

Procedure

1. Click User Federation in the menu.

2. Select Kerberos from the Add provider select box.

Kerberos user storage provider

The Kerberos provider parses the Kerberos ticket for simple principal information and imports the

Red Hat build of Keycloak 24.0 Server Administration Guide

146

The Kerberos provider parses the Kerberos ticket for simple principal information and imports the
information into the local Red Hat build of Keycloak database. User profile information, such as first
name, last name, and email, are not provisioned.

8.5.3. Setup and configuration of client machines

Client machines must have a Kerberos client and set up the krb5.conf as described above. The client
machines must also enable SPNEGO login support in their browser. See configuring Firefox for Kerberos
if you are using the Firefox browser.

The .mydomain.org URI must be in the network.negotiate-auth.trusted-uris configuration option.

In Windows domains, clients do not need to adjust their configuration. Internet Explorer and Edge can
already participate in SPNEGO authentication.

8.5.4. Credential delegation

Kerberos supports the credential delegation. Applications may need access to the Kerberos ticket so
they can re-use it to interact with other services secured by Kerberos. Because the Red Hat build of
Keycloak server processed the SPNEGO protocol, you must propagate the GSS credential to your
application within the OpenID Connect token claim or a SAML assertion attribute. Red Hat build of
Keycloak transmits this to your application from the Red Hat build of Keycloak server. To insert this claim
into the token or assertion, each application must enable the built-in protocol mapper gss delegation
credential. This mapper is available in the Mappers tab of the application’s client page. See Protocol
Mappers chapter for more details.

Applications must deserialize the claim it receives from Red Hat build of Keycloak before using it to make
GSS calls against other services. When you deserialize the credential from the access token to the
GSSCredential object, create the GSSContext with this credential passed to the
GSSManager.createContext method. For example:

NOTE

Configure forwardable Kerberos tickets in krb5.conf file and add support for delegated
credentials to your browser.

// Obtain accessToken in your application.
KeycloakPrincipal keycloakPrincipal = (KeycloakPrincipal) servletReq.getUserPrincipal();
AccessToken accessToken = keycloakPrincipal.getKeycloakSecurityContext().getToken();

// Retrieve Kerberos credential from accessToken and deserialize it
String serializedGssCredential = (String) accessToken.getOtherClaims().
 get(org.keycloak.common.constants.KerberosConstants.GSS_DELEGATION_CREDENTIAL);

GSSCredential deserializedGssCredential = org.keycloak.common.util.KerberosSerializationUtils.
 deserializeCredential(serializedGssCredential);

// Create GSSContext to call other Kerberos-secured services
GSSContext context = gssManager.createContext(serviceName, krb5Oid,
 deserializedGssCredential, GSSContext.DEFAULT_LIFETIME);

CHAPTER 8. CONFIGURING AUTHENTICATION

147

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/system-level_authentication_guide/configuring_applications_for_sso

WARNING

Credential delegation has security implications, so use it only if necessary and only
with HTTPS. See this article for more details and an example.

8.5.5. Cross-realm trust

In the Kerberos protocol, the realm is a set of Kerberos principals. The definition of these principals
exists in the Kerberos database, which is typically an LDAP server.

The Kerberos protocol allows cross-realm trust. For example, if 2 Kerberos realms, A and B, exist, then
cross-realm trust will allow the users from realm A to access realm B’s resources. Realm B trusts realm A.

Kerberos cross-realm trust

The Red Hat build of Keycloak server supports cross-realm trust. To implement this, perform the
following:

Configure the Kerberos servers for the cross-realm trust. Implementing this step depends on
the Kerberos server implementations. This step is necessary to add the Kerberos principal
krbtgt/B@A to the Kerberos databases of realm A and B. This principal must have the same
keys on both Kerberos realms. The principals must have the same password, key version
numbers, and ciphers in both realms. Consult the Kerberos server documentation for more
details.

NOTE

The cross-realm trust is unidirectional by default. You must add the principal krbtgt/A@B
to both Kerberos databases for bidirectional trust between realm A and realm B.
However, trust is transitive by default. If realm B trusts realm A and realm C trusts realm
B, then realm C trusts realm A without the principal, krbtgt/C@A, available. Additional
configuration (for example, capaths) may be necessary on the Kerberos client-side so
clients can find the trust path. Consult the Kerberos documentation for more details.

Configure Red Hat build of Keycloak server

When using an LDAP storage provider with Kerberos support, configure the server principal
for realm B, as in this example: HTTP/mydomain.com@B. The LDAP server must find the



Red Hat build of Keycloak 24.0 Server Administration Guide

148

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/system-level_authentication_guide/configuring_applications_for_sso

users from realm A if users from realm A are to successfully authenticate to Red Hat build of
Keycloak, because Red Hat build of Keycloak must perform the SPNEGO flow and then find
the users.

Finding users is based on the LDAP storage provider option Kerberos principal attribute. When this is
configured for instance with value like userPrincipalName, then after SPNEGO authentication of user
john@A, Red Hat build of Keycloak will try to lookup LDAP user with attribute userPrincipalName
equivalent to john@A. If Kerberos principal attribute is left empty, then Red Hat build of Keycloak will
lookup the LDAP user based on the prefix of his kerberos principal with the realm omitted. For example,
Kerberos principal user john@A must be available in the LDAP under username john, so typically under
an LDAP DN such as uid=john,ou=People,dc=example,dc=com. If you want users from realm A and B
to authenticate, ensure that LDAP can find users from both realms A and B.

When using a Kerberos user storage provider (typically, Kerberos without LDAP integration),
configure the server principal as HTTP/mydomain.com@B, and users from Kerberos realms A
and B must be able to authenticate.

Users from multiple Kerberos realms are allowed to authenticate as every user would have attribute
KERBEROS_PRINCIPAL referring to the kerberos principal used for authentication and this is used for
further lookups of this user. To avoid conflicts when there is user john in both kerberos realms A and B,
the username of the Red Hat build of Keycloak user might contain the kerberos realm lowercased. For
instance username would be john@a. Just in case when realm matches with the configured Kerberos
realm, the realm suffix might be omitted from the generated username. For instance username would
be john for the Kerberos principal john@A as long as the Kerberos realm is configured on the
Kerberos provider is A.

8.5.6. Troubleshooting

If you have issues, enable additional logging to debug the problem:

Enable Debug flag in the Admin Console for Kerberos or LDAP federation providers

Enable TRACE logging for category org.keycloak to receive more information in server logs

Add system properties -Dsun.security.krb5.debug=true and -
Dsun.security.spnego.debug=true

8.6. X.509 CLIENT CERTIFICATE USER AUTHENTICATION

Red Hat build of Keycloak supports logging in with an X.509 client certificate if you have configured the
server to use mutual SSL authentication.

A typical workflow:

A client sends an authentication request over SSL/TLS channel.

During the SSL/TLS handshake, the server and the client exchange their x.509/v3 certificates.

The container (JBoss EAP) validates the certificate PKIX path and the certificate expiration
date.

The x.509 client certificate authenticator validates the client certificate by using the following
methods:

Checks the certificate revocation status by using CRL or CRL Distribution Points.

Checks the Certificate revocation status by using OCSP (Online Certificate Status

CHAPTER 8. CONFIGURING AUTHENTICATION

149

Checks the Certificate revocation status by using OCSP (Online Certificate Status
Protocol).

Validates whether the key in the certificate matches the expected key.

Validates whether the extended key in the certificate matches the expected extended key.

If any of the these checks fail, the x.509 authentication fails. Otherwise, the authenticator
extracts the certificate identity and maps it to an existing user.

When the certificate maps to an existing user, the behavior diverges depending on the authentication
flow:

In the Browser Flow, the server prompts users to confirm their identity or sign in with a
username and password.

In the Direct Grant Flow, the server signs in the user.

IMPORTANT

Note that it is the responsibility of the web container to validate certificate PKIX path.
X.509 authenticator on the Red Hat build of Keycloak side provides just the additional
support for check the certificate expiration, certificate revocation status and key usage. If
you are using Red Hat build of Keycloak deployed behind reverse proxy, make sure that
your reverse proxy is configured to validate PKIX path. If you do not use reverse proxy and
users directly access the JBoss EAP, you should be fine as JBoss EAP makes sure that
PKIX path is validated as long as it is configured as described below.

8.6.1. Features

Supported Certificate Identity Sources:

Match SubjectDN by using regular expressions

X500 Subject’s email attribute

X500 Subject’s email from Subject Alternative Name Extension (RFC822Name General Name)

X500 Subject’s other name from Subject Alternative Name Extension. This other name is the
User Principal Name (UPN), typically.

X500 Subject’s Common Name attribute

Match IssuerDN by using regular expressions

Certificate Serial Number

Certificate Serial Number and IssuerDN

SHA-256 Certificate thumbprint

Full certificate in PEM format

8.6.1.1. Regular expressions

Red Hat build of Keycloak extracts the certificate identity from Subject DN or Issuer DN by using a

Red Hat build of Keycloak 24.0 Server Administration Guide

150

Red Hat build of Keycloak extracts the certificate identity from Subject DN or Issuer DN by using a
regular expression as a filter. For example, this regular expression matches the email attribute:

emailAddress=(.*?)(?:,|$)

The regular expression filtering applies if the Identity Source is set to either Match SubjectDN using
regular expression or Match IssuerDN using regular expression.

8.6.1.1.1. Mapping certificate identity to an existing user

The certificate identity mapping can map the extracted user identity to an existing user’s username,
email, or a custom attribute whose value matches the certificate identity. For example, setting Identity
source to Subject’s email or User mapping method to Username or email makes the X.509 client
certificate authenticator use the email attribute in the certificate’s Subject DN as the search criteria
when searching for an existing user by username or by email.

IMPORTANT

If you disable Login with email at realm settings, the same rules apply to
certificate authentication. Users are unable to log in by using the email attribute.

Using Certificate Serial Number and IssuerDN as an identity source requires
two custom attributes for the serial number and the IssuerDN.

SHA-256 Certificate thumbprint is the lowercase hexadecimal representation of
SHA-256 certificate thumbprint.

Using Full certificate in PEM format as an identity source is limited to the
custom attributes mapped to external federation sources, such as LDAP. Red Hat
build of Keycloak cannot store certificates in its database due to length
limitations, so in the case of LDAP, you must enable Always Read Value From
LDAP.

8.6.1.1.2. Extended certificate validation

Revocation status checking using CRL.

Revocation status checking using CRL/Distribution Point.

Revocation status checking using OCSP/Responder URI.

Certificate KeyUsage validation.

Certificate ExtendedKeyUsage validation.

8.6.2. Adding X.509 client certificate authentication to browser flows

1. Click Authentication in the menu.

2. Click the Browser flow.

3. From the Action list, select Duplicate.

4. Enter a name for the copy.

5. Click Duplicate.

CHAPTER 8. CONFIGURING AUTHENTICATION

151

6. Click Add step.

7. Click "X509/Validate Username Form".

8. Click Add.

X509 execution

9. Click and drag the "X509/Validate Username Form" over the "Browser Forms" execution.

Red Hat build of Keycloak 24.0 Server Administration Guide

152

10. Set the requirement to "ALTERNATIVE".

X509 browser flow

11. Click the Action menu.

12. Click the Bind flow.

13. Click the Browser flow from the drop-down list.

14. Click Save.

X509 browser flow bindings

8.6.3. Configuring X.509 client certificate authentication

X509 configuration

CHAPTER 8. CONFIGURING AUTHENTICATION

153

Red Hat build of Keycloak 24.0 Server Administration Guide

154

User Identity Source

Defines the method for extracting the user identity from a client certificate.

Canonical DN representation enabled

Defines whether to use canonical format to determine a distinguished name. The official Java API
documentation describes the format. This option affects the two User Identity Sources Match
SubjectDN using regular expression and Match IssuerDN using regular expression only. Enable this
option when you set up a new Red Hat build of Keycloak instance. Disable this option to retain
backward compatibility with existing Red Hat build of Keycloak instances.

Enable Serial Number hexadecimal representation

Represent the serial number as hexadecimal. The serial number with the sign bit set to 1 must be left
padded with 00 octet. For example, a serial number with decimal value 161, or a1 in hexadecimal
representation is encoded as 00a1, according to RFC5280. See RFC5280, appendix-B for more
details.

A regular expression

A regular expression to use as a filter for extracting the certificate identity. The expression must
contain a single group.

User Mapping Method

Defines the method to match the certificate identity with an existing user. Username or email
searches for existing users by username or email. Custom Attribute Mapper searches for existing
users with a custom attribute that matches the certificate identity. The name of the custom attribute
is configurable.

A name of user attribute

A custom attribute whose value matches against the certificate identity. Use multiple custom
attributes when attribute mapping is related to multiple values, For example, 'Certificate Serial
Number and IssuerDN'.

CRL Checking Enabled

Check the revocation status of the certificate by using the Certificate Revocation List. The location
of the list is defined in the CRL file path attribute.

Enable CRL Distribution Point to check certificate revocation status

Use CDP to check the certificate revocation status. Most PKI authorities include CDP in their
certificates.

CRL file path

The path to a file containing a CRL list. The value must be a path to a valid file if the CRL Checking
Enabled option is enabled.

OCSP Checking Enabled

Checks the certificate revocation status by using Online Certificate Status Protocol.

OCSP Fail-Open Behavior

By default the OCSP check must return a positive response in order to continue with a successful

CHAPTER 8. CONFIGURING AUTHENTICATION

155

https://docs.oracle.com/javase/8/docs/api/javax/security/auth/x500/X500Principal.html#getName-java.lang.String-
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.2
https://datatracker.ietf.org/doc/html/rfc5280#appendix-B

authentication. Sometimes however this check can be inconclusive: for example, the OCSP server
could be unreachable, overloaded, or the client certificate may not contain an OCSP responder URI.
When this setting is turned ON, authentication will be denied only if an explicit negative response is
received by the OCSP responder and the certificate is definitely revoked. If a valid OCSP response is
not available the authentication attempt will be accepted.

OCSP Responder URI

Override the value of the OCSP responder URI in the certificate.

Validate Key Usage

Verifies the certificate’s KeyUsage extension bits are set. For example,
"digitalSignature,KeyEncipherment" verifies if bits 0 and 2 in the KeyUsage extension are set. Leave
this parameter empty to disable the Key Usage validation. See RFC5280, Section-4.2.1.3 for more
information. Red Hat build of Keycloak raises an error when a key usage mismatch occurs.

Validate Extended Key Usage

Verifies one or more purposes defined in the Extended Key Usage extension. See RFC5280,
Section-4.2.1.12 for more information. Leave this parameter empty to disable the Extended Key
Usage validation. Red Hat build of Keycloak raises an error when flagged as critical by the issuing CA
and a key usage extension mismatch occurs.

Validate Certificate Policy

Verifies one or more policy OIDs as defined in the Certificate Policy extension. See RFC5280,
Section-4.2.1.4. Leave the parameter empty to disable the Certificate Policy validation. Multiple
policies should be separated using a comma.

Certificate Policy Validation Mode

When more than one policy is specified in the Validate Certificate Policy setting, it decides whether
the matching should check for all requested policies to be present, or one match is enough for a
successful authentication. Default value is All, meaning that all requested policies should be present
in the client certificate.

Bypass identity confirmation

If enabled, X.509 client certificate authentication does not prompt the user to confirm the certificate
identity. Red Hat build of Keycloak signs in the user upon successful authentication.

Revalidate client certificate

If set, the client certificate trust chain will be always verified at the application level using the
certificates present in the configured trust store. This can be useful if the underlying web server does
not enforce client certificate chain validation, for example because it is behind a non-validating load
balancer or reverse proxy, or when the number of allowed CAs is too large for the mutual SSL
negotiation (most browsers cap the maximum SSL negotiation packet size at 32767 bytes, which
corresponds to about 200 advertised CAs). By default this option is off.

8.6.4. Adding X.509 Client Certificate Authentication to a Direct Grant Flow

1. Click Authentication in the menu.

2. Select Duplicate from the "Action list" to make a copy of the built-in "Direct grant" flow.

3. Enter a name for the copy.

4. Click Duplicate.

5. Click the created flow.

6. Click the trash can icon �� of the "Username Validation" and click Delete.

Red Hat build of Keycloak 24.0 Server Administration Guide

156

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.3
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.12
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.4

7. Click the trash can icon �� of the "Password" and click Delete.

8. Click Add step.

9. Click "X509/Validate Username".

10. Click Add.

X509 direct grant execution

11. Set up the x509 authentication configuration by following the steps described in the x509

CHAPTER 8. CONFIGURING AUTHENTICATION

157

11. Set up the x509 authentication configuration by following the steps described in the x509
Browser Flow section.

12. Click the Bindings tab.

13. Click the Direct Grant Flow drop-down list.

14. Click the newly created "x509 Direct Grant" flow.

15. Click Save.

X509 direct grant flow bindings

8.7. W3C WEB AUTHENTICATION (WEBAUTHN)

Red Hat build of Keycloak provides support for W3C Web Authentication (WebAuthn) . Red Hat build of
Keycloak works as a WebAuthn’s Relying Party (RP).

NOTE

WebAuthn’s operations success depends on the user’s WebAuthn supporting
authenticator, browser, and platform. Make sure your authenticator, browser, and
platform support the WebAuthn specification.

8.7.1. Setup

The setup procedure of WebAuthn support for 2FA is the following:

8.7.1.1. Enable WebAuthn authenticator registration

1. Click Authentication in the menu.

2. Click the Required Actions tab.

3. Toggle the Webauthn Register switch to ON.

Toggle the Default Action switch to ON if you want all new users to be required to register their
WebAuthn credentials.

8.7.2. Adding WebAuthn authentication to a browser flow

1. Click Authentication in the menu.

2. Click the Browser flow.

3. Select Duplicate from the "Action list" to make a copy of the built-in Browser flow.

4. Enter "WebAuthn Browser" as the name of the copy.

5. Click Duplicate.

6. Click the name to go to the details

7. Click the trash can icon �� of the "WebAuthn Browser Browser - Conditional OTP" and click

Red Hat build of Keycloak 24.0 Server Administration Guide

158

https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/#webauthn-relying-party

7. Click the trash can icon �� of the "WebAuthn Browser Browser - Conditional OTP" and click
Delete.

If you require WebAuthn for all users:

1. Click + menu of the WebAuthn Browser Forms.

2. Click Add step.

3. Click WebAuthn Authenticator.

4. Click Add.

5. Select Required for the WebAuthn Authenticator authentication type to set its requirement
to required.

6. Click the Action menu at the top of the screen.

7. Select Bind flow from the drop-down list.

8. Select Browser from the drop-down list.

9. Click Save.

NOTE

If a user does not have WebAuthn credentials, the user must register WebAuthn
credentials.

Users can log in with WebAuthn if they have a WebAuthn credential registered only. So instead of
adding the WebAuthn Authenticator execution, you can:

Procedure

CHAPTER 8. CONFIGURING AUTHENTICATION

159

1. Click + menu of the WebAuthn Browser Forms row.

2. Click Add sub-flow.

3. Enter "Conditional 2FA" for the name field.

4. Select Conditional for the Conditional 2FA to set its requirement to conditional.

5. On the Conditional 2FA row, click the plus sign + and select Add condition.

6. Click Add condition.

7. Select Condition - User Configured.

8. Click Add.

9. Select Required for the Condition - User Configured to set its requirement to required.

10. Drag and drop WebAuthn Authenticator into the Conditional 2FA flow

11. Select Alternative for the WebAuthn Authenticator to set its requirement to alternative.

The user can choose between using WebAuthn and OTP for the second factor:

Procedure

1. On the Conditional 2FA row, click the plus sign + and select Add step.

2. Select OTP Form from the list.

3. Click Add.

Red Hat build of Keycloak 24.0 Server Administration Guide

160

4. Select Alternative for the OTP Form to set its requirement to alternative.

8.7.3. Authenticate with WebAuthn authenticator

After registering a WebAuthn authenticator, the user carries out the following operations:

Open the login form. The user must authenticate with a username and password.

The user’s browser asks the user to authenticate by using their WebAuthn authenticator.

8.7.4. Managing WebAuthn as an administrator

8.7.4.1. Managing credentials

Red Hat build of Keycloak manages WebAuthn credentials similarly to other credentials from User
credential management:

Red Hat build of Keycloak assigns users a required action to create a WebAuthn credential from
the Reset Actions list and select Webauthn Register.

Administrators can delete a WebAuthn credential by clicking Delete.

Administrators can view the credential’s data, such as the AAGUID, by selecting Show data…​.

Administrators can set a label for the credential by setting a value in the User Label field and
saving the data.

8.7.4.2. Managing policy

Administrators can configure WebAuthn related operations as WebAuthn Policy per realm.

CHAPTER 8. CONFIGURING AUTHENTICATION

161

Procedure

1. Click Authentication in the menu.

2. Click the Policy tab.

3. Click the WebAuthn Policy tab.

4. Configure the items within the policy (see description below).

5. Click Save.

The configurable items and their description are as follows:

Configuration Description

Relying Party Entity Name The readable server name as a WebAuthn Relying
Party. This item is mandatory and applies to the
registration of the WebAuthn authenticator. The
default setting is "keycloak". For more details, see
WebAuthn Specification.

Signature Algorithms The algorithms telling the WebAuthn authenticator
which signature algorithms to use for the Public Key
Credential. Red Hat build of Keycloak uses the Public
Key Credential to sign and verify Authentication
Assertions. If no algorithms exist, the default ES256
is adapted. ES256 is an optional configuration item
applying to the registration of WebAuthn
authenticators. For more details, see WebAuthn
Specification.

Relying Party ID The ID of a WebAuthn Relying Party that determines
the scope of Public Key Credentials. The ID must be
the origin’s effective domain. This ID is an optional
configuration item applied to the registration of
WebAuthn authenticators. If this entry is blank, Red
Hat build of Keycloak adapts the host part of Red
Hat build of Keycloak’s base URL. For more details,
see WebAuthn Specification.

Attestation Conveyance Preference The WebAuthn API implementation on the browser
(WebAuthn Client) is the preferential method to
generate Attestation statements. This preference is
an optional configuration item applying to the
registration of the WebAuthn authenticator. If no
option exists, its behavior is the same as selecting
"none". For more details, see WebAuthn
Specification.

Red Hat build of Keycloak 24.0 Server Administration Guide

162

https://www.w3.org/TR/webauthn/#dictionary-pkcredentialentity
https://www.w3.org/TR/webauthn/#iface-pkcredential
https://www.w3.org/TR/webauthn/#authentication-assertion
https://datatracker.ietf.org/doc/html/rfc8152#section-8.1
https://www.w3.org/TR/webauthn/#dictdef-publickeycredentialparameters
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/#webauthn-client
https://www.w3.org/TR/webauthn/

Authenticator Attachment The acceptable attachment pattern of a WebAuthn
authenticator for the WebAuthn Client. This pattern
is an optional configuration item applying to the
registration of the WebAuthn authenticator. For
more details, see WebAuthn Specification.

Require Discoverable Credential The option requiring that the WebAuthn
authenticator generates the Public Key Credential as
Client-side discoverable Credential. This option
applies to the registration of the WebAuthn
authenticator. If left blank, its behavior is the same as
selecting "No". For more details, see WebAuthn
Specification.

User Verification Requirement The option requiring that the WebAuthn
authenticator confirms the verification of a user. This
is an optional configuration item applying to the
registration of a WebAuthn authenticator and the
authentication of a user by a WebAuthn
authenticator. If no option exists, its behavior is the
same as selecting "preferred". For more details, see
WebAuthn Specification for registering a WebAuthn
authenticator and WebAuthn Specification for
authenticating the user by a WebAuthn
authenticator.

Timeout The timeout value, in seconds, for registering a
WebAuthn authenticator and authenticating the user
by using a WebAuthn authenticator. If set to zero, its
behavior depends on the WebAuthn authenticator’s
implementation. The default value is 0. For more
details, see WebAuthn Specification for registering a
WebAuthn authenticator and WebAuthn
Specification for authenticating the user by a
WebAuthn authenticator.

Avoid Same Authenticator Registration If enabled, Red Hat build of Keycloak cannot re-
register an already registered WebAuthn
authenticator.

Acceptable AAGUIDs The white list of AAGUIDs which a WebAuthn
authenticator must register against.

Configuration Description

8.7.5. Attestation statement verification

When registering a WebAuthn authenticator, Red Hat build of Keycloak verifies the trustworthiness of
the attestation statement generated by the WebAuthn authenticator. Red Hat build of Keycloak
requires the trust anchor’s certificates imported into the truststore.

CHAPTER 8. CONFIGURING AUTHENTICATION

163

https://www.w3.org/TR/webauthn/#enumdef-authenticatorattachment
https://www.w3.org/TR/webauthn-3/
https://www.w3.org/TR/webauthn/#dom-authenticatorselectioncriteria-requireresidentkey
https://www.w3.org/TR/webauthn/#dom-authenticatorselectioncriteria-userverification
https://www.w3.org/TR/webauthn/#dom-publickeycredentialrequestoptions-userverification
https://www.w3.org/TR/webauthn/#dom-publickeycredentialcreationoptions-timeout
https://www.w3.org/TR/webauthn/#dom-publickeycredentialrequestoptions-timeout
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide/#keycloak-truststore-

To omit this validation, disable this truststore or set the WebAuthn policy’s configuration item
"Attestation Conveyance Preference" to "none".

8.7.6. Managing WebAuthn credentials as a user

8.7.6.1. Register WebAuthn authenticator

The appropriate method to register a WebAuthn authenticator depends on whether the user has already
registered an account on Red Hat build of Keycloak.

8.7.6.2. New user

If the WebAuthn Register required action is Default Action in a realm, new users must set up the
Passkey after their first login.

Procedure

1. Open the login form.

2. Click Register.

3. Fill in the items on the form.

4. Click Register.

After successfully registering, the browser asks the user to enter the text of their WebAuthn
authenticator’s label.

8.7.6.3. Existing user

If WebAuthn Authenticator is set up as required as shown in the first example, then when existing users
try to log in, they are required to register their WebAuthn authenticator automatically:

Procedure

1. Open the login form.

2. Enter the items on the form.

3. Click Save.

4. Click Login.

After successful registration, the user’s browser asks the user to enter the text of their WebAuthn
authenticator’s label.

8.7.7. Passwordless WebAuthn together with Two-Factor

Red Hat build of Keycloak uses WebAuthn for two-factor authentication, but you can use WebAuthn as
the first-factor authentication. In this case, users with passwordless WebAuthn credentials can
authenticate to Red Hat build of Keycloak without a password. Red Hat build of Keycloak can use
WebAuthn as both the passwordless and two-factor authentication mechanism in the context of a realm
and a single authentication flow.

An administrator typically requires that Passkeys registered by users for the WebAuthn passwordless

Red Hat build of Keycloak 24.0 Server Administration Guide

164

An administrator typically requires that Passkeys registered by users for the WebAuthn passwordless
authentication meet different requirements. For example, the Passkeys may require users to
authenticate to the Passkey using a PIN, or the Passkey attests with a stronger certificate authority.

Because of this, Red Hat build of Keycloak permits administrators to configure a separate WebAuthn
Passwordless Policy. There is a required Webauthn Register Passwordless action of type and
separate authenticator of type WebAuthn Passwordless Authenticator.

8.7.7.1. Setup

Set up WebAuthn passwordless support as follows:

1. (if not already present) Register a new required action for WebAuthn passwordless support. Use
the steps described in Enable WebAuthn Authenticator Registration . Register the Webauthn
Register Passwordless action.

2. Configure the policy. You can use the steps and configuration options described in Managing
Policy. Perform the configuration in the Admin Console in the tab WebAuthn Passwordless
Policy. Typically the requirements for the Passkey will be stronger than for the two-factor
policy. For example, you can set the User Verification Requirement to Required when you
configure the passwordless policy.

3. Configure the authentication flow. Use the WebAuthn Browser flow described in Adding
WebAuthn Authentication to a Browser Flow. Configure the flow as follows:

The WebAuthn Browser Forms subflow contains Username Form as the first
authenticator. Delete the default Username Password Form authenticator and add the
Username Form authenticator. This action requires the user to provide a username as the
first step.

There will be a required subflow, which can be named Passwordless Or Two-factor, for
example. This subflow indicates the user can authenticate with Passwordless WebAuthn
credential or with Two-factor authentication.

The flow contains WebAuthn Passwordless Authenticator as the first alternative.

The second alternative will be a subflow named Password And Two-factor Webauthn, for
example. This subflow contains a Password Form and a WebAuthn Authenticator.

The final configuration of the flow looks similar to this:

PasswordLess flow

CHAPTER 8. CONFIGURING AUTHENTICATION

165

You can now add WebAuthn Register Passwordless as the required action to a user, already known to
Red Hat build of Keycloak, to test this. During the first authentication, the user must use the password
and second-factor WebAuthn credential. The user does not need to provide the password and second-
factor WebAuthn credential if they use the WebAuthn Passwordless credential.

8.7.8. LoginLess WebAuthn

Red Hat build of Keycloak uses WebAuthn for two-factor authentication, but you can use WebAuthn as
the first-factor authentication. In this case, users with passwordless WebAuthn credentials can
authenticate to Red Hat build of Keycloak without submitting a login or a password. Red Hat build of
Keycloak can use WebAuthn as both the loginless/passwordless and two-factor authentication
mechanism in the context of a realm.

An administrator typically requires that Passkeys registered by users for the WebAuthn loginless
authentication meet different requirements. Loginless authentication requires users to authenticate to
the Passkey (for example by using a PIN code or a fingerprint) and that the cryptographic keys
associated with the loginless credential are stored physically on the Passkey. Not all Passkeys meet that
kind of requirement. Check with your Passkey vendor if your device supports 'user verification' and
'discoverable credential'. See Supported Passkeys.

Red Hat build of Keycloak permits administrators to configure the WebAuthn Passwordless Policy in a

Red Hat build of Keycloak 24.0 Server Administration Guide

166

Red Hat build of Keycloak permits administrators to configure the WebAuthn Passwordless Policy in a
way that allows loginless authentication. Note that loginless authentication can only be configured with
WebAuthn Passwordless Policy and with WebAuthn Passwordless credentials. WebAuthn loginless
authentication and WebAuthn passwordless authentication can be configured on the same realm but
will share the same policy WebAuthn Passwordless Policy.

8.7.8.1. Setup

Procedure

Set up WebAuthn Loginless support as follows:

1. (if not already present) Register a new required action for WebAuthn passwordless support. Use
the steps described in Enable WebAuthn Authenticator Registration . Register the Webauthn
Register Passwordless action.

2. Configure the WebAuthn Passwordless Policy. Perform the configuration in the Admin
Console, Authentication section, in the tab Policies → WebAuthn Passwordless Policy. You
have to set User Verification Requirement to required and Require Discoverable Credential
to Yes when you configure the policy for loginless scenario. Note that since there isn’t a
dedicated Loginless policy it won’t be possible to mix authentication scenarios with user
verification=no/discoverable credential=no and loginless scenarios (user
verification=yes/discoverable credential=yes). Storage capacity is usually very limited on
Passkeys meaning that you won’t be able to store many discoverable credentials on your
Passkey.

3. Configure the authentication flow. Create a new authentication flow, add the "WebAuthn
Passwordless" execution and set the Requirement setting of the execution to Required

The final configuration of the flow looks similar to this:

LoginLess flow

You can now add the required action WebAuthn Register Passwordless to a user, already known to
Red Hat build of Keycloak, to test this. The user with the required action configured will have to
authenticate (with a username/password for example) and will then be prompted to register a Passkey
to be used for loginless authentication.

8.7.8.2. Vendor specific remarks

8.7.8.2.1. Compatibility check list

Loginless authentication with Red Hat build of Keycloak requires the Passkey to meet the following
features

FIDO2 compliance: not to be confused with FIDO/U2F

CHAPTER 8. CONFIGURING AUTHENTICATION

167

User verification: the ability for the Passkey to authenticate the user (prevents someone finding
your Passkey to be able to authenticate loginless and passwordless)

Discoverable Credential: the ability for the Passkey to store the login and the cryptographic
keys associated with the client application

8.7.8.2.2. Windows Hello

To use Windows Hello based credentials to authenticate against Red Hat build of Keycloak, configure
the Signature Algorithms setting of the WebAuthn Passwordless Policy to include the RS256 value.
Note that some browsers don’t allow access to platform Passkey (like Windows Hello) inside private
windows.

8.7.8.2.3. Supported Passkeys

The following Passkeys have been successfully tested for loginless authentication with Red Hat build of
Keycloak:

Windows Hello (Windows 10 21H1/21H2)

Yubico Yubikey 5 NFC

Feitian ePass FIDO-NFC

8.8. RECOVERY CODES (RECOVERYCODES)

You can configure Recovery codes for two-factor authentication by adding 'Recovery Authentication
Code Form' as a two-factor authenticator to your authentication flow. For an example of configuring
this authenticator, see WebAuthn.

NOTE

RecoveryCodes is Technology Preview and is not fully supported. This feature is
disabled by default.

To enable start the server with --features=preview or --features=recovery-codes

8.9. CONDITIONS IN CONDITIONAL FLOWS

As was mentioned in Execution requirements, Condition executions can be only contained in Conditional
subflow. If all Condition executions evaluate as true, then the Conditional sub-flow acts as Required. You
can process the next execution in the Conditional sub-flow. If some executions included in the
Conditional sub-flow evaluate as false, then the whole sub-flow is considered as Disabled.

8.9.1. Available conditions

Condition - User Role

This execution has the ability to determine if the user has a role defined by User role field. If the user
has the required role, the execution is considered as true and other executions are evaluated. The
administrator has to define the following fields:

Alias

Describes a name of the execution, which will be shown in the authentication flow.

User role

Red Hat build of Keycloak 24.0 Server Administration Guide

168

Role the user should have to execute this flow. To specify an application role the syntax is
appname.approle (for example myapp.myrole).

Condition - User Configured

This checks if the other executions in the flow are configured for the user. The Execution
requirements section includes an example of the OTP form.

Condition - User Attribute

This checks if the user has set up the required attribute: optionally, the check can also evaluate the
group attributes. There is a possibility to negate output, which means the user should not have the
attribute. The User Attributes section shows how to add a custom attribute. You can provide these
fields:

Alias

Describes a name of the execution, which will be shown in the authentication flow.

Attribute name

Name of the attribute to check.

Expected attribute value

Expected value in the attribute.

Include group attributes

If On, the condition checks if any of the joined group has one attribute matching the configured
name and value: this option can affect performance

Negate output

You can negate the output. In other words, the attribute should not be present.

8.9.2. Explicitly deny/allow access in conditional flows

You can allow or deny access to resources in a conditional flow. The two authenticators Deny Access
and Allow Access control access to the resources by conditions.

Allow Access

Authenticator will always successfully authenticate. This authenticator is not configurable.

Deny Access

Access will always be denied. You can define an error message, which will be shown to the user. You
can provide these fields:

Alias

Describes a name of the execution, which will be shown in the authentication flow.

Error message

Error message which will be shown to the user. The error message could be provided as a
particular message or as a property in order to use it with localization. (i.e. "You do not have the
role 'admin'.", my-property-deny in messages properties) Leave blank for the default message
defined as property access-denied.

Here is an example how to deny access to all users who do not have the role role1 and show an error
message defined by a property deny-role1. This example includes Condition - User Role and Deny
Access executions.

Browser flow

CHAPTER 8. CONFIGURING AUTHENTICATION

169

Condition - user role configuration

Configuration of the Deny Access is really easy. You can specify an arbitrary Alias and
required message like this:

Red Hat build of Keycloak 24.0 Server Administration Guide

170

The last thing is defining the property with an error message in the login theme
messages_en.properties (for English):

deny-role1 = You do not have required role!

8.10. PASSKEYS

Red Hat build of Keycloak provides preview support for Passkeys. Red Hat build of Keycloak works as a
Passkeys Relying Party (RP).

Passkey registration and authentication are realized by the features of WebAuthn. Therefore, users of
Red Hat build of Keycloak can do Passkey registration and authentication by existing WebAuthn
registration and authentication.

NOTE

Both synced Passkeys and device-bound Passkeys can be used for both Same-Device
and Cross-Device Authentication (CDA). However, Passkeys operations success depends
on the user’s environment. Make sure which operations can succeed in the environment.

CHAPTER 8. CONFIGURING AUTHENTICATION

171

https://fidoalliance.org/passkeys/
https://passkeys.dev/device-support/

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS
An Identity Broker is an intermediary service connecting service providers with identity providers. The
identity broker creates a relationship with an external identity provider to use the provider’s identities to
access the internal services the service provider exposes.

From a user perspective, identity brokers provide a user-centric, centralized way to manage identities
for security domains and realms. You can link an account with one or more identities from identity
providers or create an account based on the identity information from them.

An identity provider derives from a specific protocol used to authenticate and send authentication and
authorization information to users. It can be:

A social provider such as Facebook, Google, or Twitter.

A business partner whose users need to access your services.

A cloud-based identity service you want to integrate.

Typically, Red Hat build of Keycloak bases identity providers on the following protocols:

SAML v2.0

OpenID Connect v1.0

OAuth v2.0

9.1. BROKERING OVERVIEW

When using Red Hat build of Keycloak as an identity broker, Red Hat build of Keycloak does not force
users to provide their credentials to authenticate in a specific realm. Red Hat build of Keycloak displays a
list of identity providers from which they can authenticate.

If you configure a default identity provider, Red Hat build of Keycloak redirects users to the default
provider.

NOTE

Different protocols may require different authentication flows. All the identity providers
supported by Red Hat build of Keycloak use the following flow.

Identity broker flow

Red Hat build of Keycloak 24.0 Server Administration Guide

172

1. The unauthenticated user requests a protected resource in a client application.

2. The client application redirects the user to Red Hat build of Keycloak to authenticate.

3. Red Hat build of Keycloak displays the login page with a list of identity providers configured in a
realm.

4. The user selects one of the identity providers by clicking its button or link.

5. Red Hat build of Keycloak issues an authentication request to the target identity provider
requesting authentication and redirects the user to the identity provider’s login page. The
administrator has already set the connection properties and other configuration options for the
Admin Console’s identity provider.

6. The user provides credentials or consents to authenticate with the identity provider.

7. Upon successful authentication by the identity provider, the user redirects back to Red Hat
build of Keycloak with an authentication response. Usually, the response contains a security
token used by Red Hat build of Keycloak to trust the identity provider’s authentication and
retrieve user information.

8. Red Hat build of Keycloak checks if the response from the identity provider is valid. If valid, Red
Hat build of Keycloak imports and creates a user if the user does not already exist. Red Hat build
of Keycloak may ask the identity provider for further user information if the token does not
contain that information. This behavior is identity federation. If the user already exists, Red Hat
build of Keycloak may ask the user to link the identity returned from the identity provider with
the existing account. This behavior is account linking . With Red Hat build of Keycloak, you can
configure Account linking and specify it in the First Login Flow. At this step, Red Hat build of
Keycloak authenticates the user and issues its token to access the requested resource in the
service provider.

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

173

9. When the user authenticates, Red Hat build of Keycloak redirects the user to the service
provider by sending the token previously issued during the local authentication.

10. The service provider receives the token from Red Hat build of Keycloak and permits access to
the protected resource.

Variations of this flow are possible. For example, the client application can request a specific identity
provider rather than displaying a list of them, or you can set Red Hat build of Keycloak to force users to
provide additional information before federating their identity.

At the end of the authentication process, Red Hat build of Keycloak issues its token to client
applications. Client applications are separate from the external identity providers, so they cannot see
the client application’s protocol or how they validate the user’s identity. The provider only needs to know
about Red Hat build of Keycloak.

9.2. DEFAULT IDENTITY PROVIDER

Red Hat build of Keycloak can redirect to an identity provider rather than displaying the login form. To
enable this redirection:

Procedure

1. Click Authentication in the menu.

2. Click the Browser flow.

3. Click the gear icon ⚙� on the Identity Provider Redirector row.

4. Set Default Identity Provider to the identity provider you want to redirect users to.

If Red Hat build of Keycloak does not find the configured default identity provider, the login form is
displayed.

This authenticator is responsible for processing the kc_idp_hint query parameter. See the client
suggested identity provider section for more information.

9.3. GENERAL CONFIGURATION

The foundations of the identity broker configuration are identity providers (IDPs). Red Hat build of
Keycloak creates identity providers for each realm and enables them for every application by default.
Users from a realm can use any of the registered identity providers when signing in to an application.

Procedure

1. Click Identity Providers in the menu.

Identity Providers

Red Hat build of Keycloak 24.0 Server Administration Guide

174

2. Select an identity provider. Red Hat build of Keycloak displays the configuration page for the
identity provider you selected.

Add Facebook identity Provider

When you configure an identity provider, the identity provider appears on the Red Hat build of
Keycloak login page as an option. You can place custom icons on the login screen for each
identity provider. See custom icons for more information.

IDP login page

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

175

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/#custom-identity-providers-icons

Social

Social providers enable social authentication in your realm. With Red Hat build of Keycloak,
users can log in to your application using a social network account. Supported providers
include Twitter, Facebook, Google, LinkedIn, Instagram, Microsoft, PayPal, Openshift v3,
GitHub, GitLab, Bitbucket, and Stack Overflow.

Protocol-based

Protocol-based providers rely on specific protocols to authenticate and authorize users.
Using these providers, you can connect to any identity provider compliant with a specific
protocol. Red Hat build of Keycloak provides support for SAML v2.0 and OpenID Connect
v1.0 protocols. You can configure and broker any identity provider based on these open
standards.

Although each type of identity provider has its configuration options, all share a common configuration.
The following configuration options available:

Table 9.1. Common Configuration

Red Hat build of Keycloak 24.0 Server Administration Guide

176

Configuration Description

Alias The alias is a unique identifier for an identity provider
and references an internal identity provider. Red Hat
build of Keycloak uses the alias to build redirect URIs
for OpenID Connect protocols that require a redirect
URI or callback URL to communicate with an identity
provider. All identity providers must have an alias.
Alias examples include facebook, google, and
idp.acme.com.

Enabled Toggles the provider ON or OFF.

Hide on Login Page When ON, Red Hat build of Keycloak does not display
this provider as a login option on the login page.
Clients can request this provider by using the
'kc_idp_hint' parameter in the URL to request a login.

Account Linking Only When ON, Red Hat build of Keycloak links existing
accounts with this provider. This provider cannot log
users in, and Red Hat build of Keycloak does not
display this provider as an option on the login page.

Store Tokens When ON, Red Hat build of Keycloak stores tokens
from the identity provider.

Stored Tokens Readable When ON, users can retrieve the stored identity
provider token. This action also applies to the broker
client-level role read token.

Trust Email When ON, Red Hat build of Keycloak trusts email
addresses from the identity provider. If the realm
requires email validation, users that log in from this
identity provider do not need to perform the email
verification process.

GUI Order The sort order of the available identity providers on
the login page.

Verify essential claim When ON, ID tokens issued by the identity provider
must have a specific claim, otherwise, the user can
not authenticate through this broker

Essential claim When Verify essential claim is ON, the name of the
JWT token claim to filter (match is case sensitive)

Essential claim value When Verify essential claim is ON, the value of the
JWT token claim to match (supports regular
expression format)

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

177

First Login Flow The authentication flow Red Hat build of Keycloak
triggers when users use this identity provider to log
into Red Hat build of Keycloak for the first time.

Post Login Flow The authentication flow Red Hat build of Keycloak
triggers when a user finishes logging in with the
external identity provider.

Sync Mode Strategy to update user information from the identity
provider through mappers. When choosing legacy,
Red Hat build of Keycloak used the current behavior.
Import does not update user data and force updates
user data when possible. See Identity Provider
Mappers for more information.

Configuration Description

9.4. SOCIAL IDENTITY PROVIDERS

A social identity provider can delegate authentication to a trusted, respected social media account. Red
Hat build of Keycloak includes support for social networks such as Google, Facebook, Twitter, GitHub,
LinkedIn, Microsoft, and Stack Overflow.

9.4.1. Bitbucket

To log in with Bitbucket, perform the following procedure.

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Bitbucket.

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

Red Hat build of Keycloak 24.0 Server Administration Guide

178

4. In a separate browser tab, perform the OAuth on Bitbucket Cloud process. When you click Add
Consumer:

a. Paste the value of Redirect URI into the Callback URL field.

b. Ensure you select Email and Read in the Account section to permit your application to read
email.

5. Note the Key and Secret values Bitbucket displays when you create your consumer.

6. In Red Hat build of Keycloak, paste the value of the Key into the Client ID field.

7. In Red Hat build of Keycloak, paste the value of the Secret into the Client Secret field.

8. Click Add.

9.4.2. Facebook

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Facebook.

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

4. In a separate browser tab, open the Meta for Developers .

a. Click My Apps.

b. Select Create App.

Add a use case

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

179

https://support.atlassian.com/bitbucket-cloud/docs/use-oauth-on-bitbucket-cloud/
https://developers.facebook.com/

c. Select Other.

Select an app type

d. Select Consumer.

Create an app

Red Hat build of Keycloak 24.0 Server Administration Guide

180

e. Fill in all required fields.

f. Click Create app. Meta then brings you to the dashboard.

Add a product

g. Click Set Up in the Facebook Login box.

h. Select Web.

i. Enter the Redirect URI’s value into the Site URL field and click Save.

j. In the navigation panel, select App settings - Basic.

k. Click Show in the App Secret field.

l. Note the App ID and the App Secret.

5. Enter the App ID and App Secret values from your Facebook app into the Client ID and Client

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

181

5. Enter the App ID and App Secret values from your Facebook app into the Client ID and Client
Secret fields in Red Hat build of Keycloak.

6. Click Add

7. Enter the required scopes into the Default Scopes field. By default, Red Hat build of Keycloak
uses the email scope. See Graph API for more information about Facebook scopes.

Red Hat build of Keycloak sends profile requests to graph.facebook.com/me?
fields=id,name,email,first_name,last_name by default. The response contains the id, name, email,
first_name, and last_name fields only. To fetch additional fields from the Facebook profile, add a
corresponding scope and add the field name in the Additional user’s profile fields configuration
option field.

9.4.3. GitHub

To log in with GitHub, perform the following procedure.

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Github.

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

4. In a separate browser tab, create an OAUTH app .

a. Enter the value of Redirect URI into the Authorization callback URL field when creating
the app.

b. Note the Client ID and Client secret on the management page of your OAUTH app.

5. In Red Hat build of Keycloak, paste the value of the Client ID into the Client ID field.

6. In Red Hat build of Keycloak, paste the value of the Client secret into the Client Secret field.

Red Hat build of Keycloak 24.0 Server Administration Guide

182

https://developers.facebook.com/docs/facebook-login/guides/access-tokens
https://developers.facebook.com/docs/graph-api
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app

7. Click Add.

9.4.4. GitLab

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select GitLab.

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

4. In a separate browser tab, add a new GitLab application .

a. Use the Redirect URI in your clipboard as the Redirect URI.

b. Note the Application ID and Secret when you save the application.

5. In Red Hat build of Keycloak, paste the value of the Application ID into the Client ID field.

6. In Red Hat build of Keycloak, paste the value of the Secret into the Client Secret field.

7. Click Add.

9.4.5. Google

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Google.

Add identity provider

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

183

https://docs.gitlab.com/ee/integration/oauth_provider.html

3. Copy the value of Redirect URI to your clipboard.

4. In a separate browser tab open the Google Cloud Platform console .

5. In the Google dashboard for your Google app, in the Navigation menu on the left side, hover
over APIs & Services and then click on the OAuth consent screen option. Create a consent
screen, ensuring that the user type of the consent screen is External.

6. In the Google dashboard:

a. Click the Credentials menu.

b. Click CREATE CREDENTIALS - OAuth Client ID.

c. From the Application type list, select Web application.

d. Use the Redirect URI in your clipboard as the Authorized redirect URIs

e. Click Create.

f. Note Your Client ID and Your Client secret.

7. In Red Hat build of Keycloak, paste the value of the Your Client ID into the Client ID field.

8. In Red Hat build of Keycloak, paste the value of the Your Client secret into the Client Secret
field.

9. Click Add

10. Enter the required scopes into the Default Scopes field. By default, Red Hat build of Keycloak
uses the following scopes: openid profile email. See the OAuth Playground for a list of Google
scopes.

11. To restrict access to your GSuite organization’s members only, enter the G Suite domain into
the Hosted Domain field.

Red Hat build of Keycloak 24.0 Server Administration Guide

184

https://console.cloud.google.com/
https://developers.google.com/oauthplayground/

12. Click Save.

9.4.6. Instagram

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Instagram.

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

4. In a separate browser tab, open the Meta for Developers .

a. Click My Apps.

b. Select Create App.

Add a use case

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

185

https://developers.facebook.com/

c. Select Other.

Select an app type

d. Select Consumer.

Create an app

Red Hat build of Keycloak 24.0 Server Administration Guide

186

e. Fill in all required fields.

f. Click Create app. Meta then brings you to the dashboard.

g. In the navigation panel, select App settings - Basic.

h. Select + Add Platform at the bottom of the page.

i. Click [Website].

j. Enter a URL for your site.

Add a product

k. Select Dashboard from the menu.

l. Click Set Up in the Instagram Basic Display box.

m. Click Create New App.

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

187

Create a New Instagram App ID

n. Enter a value into the Display name field.

Set up the app

o. Paste the Redirect URL from Red Hat build of Keycloak into the Valid OAuth Redirect
URIs field.

p. Paste the Redirect URL from Red Hat build of Keycloak into the Deauthorize Callback
URL field.

q. Paste the Redirect URL from Red Hat build of Keycloak into the Data Deletion Request
URL field.

Red Hat build of Keycloak 24.0 Server Administration Guide

188

r. Click Show in the Instagram App Secret field.

s. Note the Instagram App ID and the Instagram App Secret.

t. Click App Review - Requests.

u. Follow the instructions on the screen.

5. In Red Hat build of Keycloak, paste the value of the Instagram App ID into the Client ID field.

6. In Red Hat build of Keycloak, paste the value of the Instagram App Secret into the Client
Secret field.

7. Click Add.

9.4.7. LinkedIn

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select LinkedIn.

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

4. In a separate browser tab, create an app in the LinkedIn developer portal.

a. After you create the app, click the Auth tab.

b. Enter the value of Redirect URI into the Authorized redirect URLs for your app field.

c. Note Your Client ID and Your Client Secret.

d. Click the Products tab and Request access for the Sign In with LinkedIn using OpenID
Connect product.

5. In Red Hat build of Keycloak, paste the value of the Client ID into the Client ID field.

6. In Red Hat build of Keycloak, paste the value of the Client Secret into the Client Secret field.

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

189

https://developer.linkedin.com

7. Click Add.

9.4.8. Microsoft

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Microsoft.

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

4. In a separate browser tab, register an app on Microsoft Azure under App registrations.

a. In the Redirect URI section, select Web as a platform and paste the value of Redirect URI
into the field.

b. Find you application under App registrations and add a new client secret in the Certificates
& secrets section.

c. Note the Value of the created secret.

d. Note the Application (client) ID in the Overview section.

5. In Red Hat build of Keycloak, paste the value of the Application (client) ID into the Client ID
field.

6. In Red Hat build of Keycloak, paste the Value of the secret into the Client Secret field.

7. Click Add.

9.4.9. OpenShift 3

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Openshift v3.

Add identity provider

Red Hat build of Keycloak 24.0 Server Administration Guide

190

https://azure.microsoft.com/en-us/

1

2

3

4

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

4. Register your client using the oc command-line tool.

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: v1
metadata:
 name: kc-client 1
secret: "..." 2
redirectURIs:
 - "http://www.example.com/" 3
grantMethod: prompt 4
')

The name of your OAuth client. Passed as client_id request parameter when making requests to
<openshift_master>/oauth/authorize and <openshift_master>/oauth/token.

The secret Red Hat build of Keycloak uses for the client_secret request parameter.

The redirect_uri parameter specified in requests to <openshift_master>/oauth/authorize and
<openshift_master>/oauth/token must be equal to (or prefixed by) one of the URIs in
redirectURIs. You can obtain this from the Redirect URI field in the Identity Provider screen

The grantMethod Red Hat build of Keycloak uses to determine the action when this client requests
tokens but has not been granted access by the user.

1. In Red Hat build of Keycloak, paste the value of the Client ID into the Client ID field.

2. In Red Hat build of Keycloak, paste the value of the Client Secret into the Client Secret
field.

3. Click Add.

9.4.10. OpenShift 4

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

191

1

2

Prerequisites

1. A certificate of the OpenShift 4 instance stored in the Red Hat build of Keycloak Truststore.

2. A Red Hat build of Keycloak server configured in order to use the truststore. For more
information, see the Configuring a Truststore chapter.

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Openshift v4.

3. Enter the Client ID and Client Secret and in the Base URL field, enter the API URL of your
OpenShift 4 instance. Additionally, you can copy the Redirect URI to your clipboard.

Add identity provider

4. Register your client, either via OpenShift 4 Console (Home → API Explorer → OAuth Client →
Instances) or using the oc command-line tool.

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: oauth.openshift.io/v1
metadata:
 name: kc-client 1
secret: "..." 2
redirectURIs:
 - "<here you can paste the Redirect URI that you copied in the previous step>" 3
grantMethod: prompt 4
')

The name of your OAuth client. Passed as client_id request parameter when making requests to
<openshift_master>/oauth/authorize and <openshift_master>/oauth/token. The name
parameter must be the same in the OAuthClient object and the Red Hat build of Keycloak
configuration.

The secret Red Hat build of Keycloak uses as the client_secret request parameter.

Red Hat build of Keycloak 24.0 Server Administration Guide

192

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide/#keycloak-truststore-

3

4

The redirect_uri parameter specified in requests to <openshift_master>/oauth/authorize and
<openshift_master>/oauth/token must be equal to (or prefixed by) one of the URIs in

The grantMethod Red Hat build of Keycloak uses to determine the action when this client requests
tokens but has not been granted access by the user.

In the end you should see the OpenShift 4 Identity Provider on the login page of your Red Hat build of
Keycloak instance. After clicking on it, you should be redirected to the OpenShift 4 login page.

Result

See official OpenShift documentation for more information.

9.4.11. PayPal

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select PayPal.

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

193

https://docs.okd.io/latest/authentication/configuring-oauth-clients.html#oauth-register-additional-client_configuring-oauth-clients

4. In a separate browser tab, open the PayPal Developer applications area .

a. Click Create App to create a PayPal app.

b. Note the Client ID and Client Secret. Click the Show link to view the secret.

c. Ensure Log in with PayPal is checked.

d. Under Log in with PayPal click on Advanced Settings.

e. Set the value of the Return URL field to the value of Redirect URI from Red Hat build of
Keycloak. Note that the URL can not contain localhost. If you want to use Red Hat build of
Keycloak locally, replace the localhost in the Return URL by 127.0.0.1 and then access Red
Hat build of Keycloak using 127.0.0.1 in the browser intead of localhost.

f. Ensure Full Name and Email fields are checked.

g. Click Save and then Save Changes.

5. In Red Hat build of Keycloak, paste the value of the Client ID into the Client ID field.

6. In Red Hat build of Keycloak, paste the value of the Secret key 1 into the Client Secret field.

7. Click Add.

9.4.12. Stack overflow

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Stack Overflow.

Add identity provider

3. In a separate browser tab, log into registering your application on Stack Apps .

Register application

Red Hat build of Keycloak 24.0 Server Administration Guide

194

https://developer.paypal.com/developer/applications
https://stackapps.com/apps/oauth/register

a. Enter your application name into the Application Name field.

b. Enter the OAuth domain into the OAuth Domain field.

c. Click Register Your Application.

Settings

4. Note the Client Id, Client Secret, and Key.

5. In Red Hat build of Keycloak, paste the value of the Client Id into the Client ID field.

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

195

6. In Red Hat build of Keycloak, paste the value of the Client Secret into the Client Secret field.

7. In Red Hat build of Keycloak, paste the value of the Key into the Key field.

8. Click Add.

9.4.13. Twitter

Prerequisites

1. A Twitter developer account.

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select Twitter.

Add identity provider

3. Copy the value of Redirect URI to your clipboard.

4. In a separate browser tab, create an app in Twitter Application Management.

a. Enter App name and click Next.

b. Note the value of API Key and API Key Secret and click App settings.

c. In the User authentication settings section click on the Set up button.

d. Select Web App as the Type of App.

e. Paste the value of the Redirect URL into the Callback URI / Redirect URL field.

f. The value for Website URL can be any valid URL except localhost.

g. Click Save and then Done.

5. In Red Hat build of Keycloak, paste the value of the API Key into the Client ID field.

6. In Red Hat build of Keycloak, paste the value of the API Key Secret into the Client Secret field.

Red Hat build of Keycloak 24.0 Server Administration Guide

196

https://developer.twitter.com/apps/

7. Click Add.

9.5. OPENID CONNECT V1.0 IDENTITY PROVIDERS

Red Hat build of Keycloak brokers identity providers based on the OpenID Connect protocol. These
identity providers (IDPs) must support the Authorization Code Flow defined in the specification to
authenticate users and authorize access.

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select OpenID Connect v1.0.

Add identity provider

3. Enter your initial configuration options. See General IDP Configuration for more information
about configuration options.

Table 9.2. OpenID connect config

Configuration Description

Authorization URL The authorization URL endpoint the OIDC
protocol requires.

Token URL The token URL endpoint the OIDC protocol
requires.

Logout URL The logout URL endpoint in the OIDC protocol.
This value is optional.

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

197

Backchannel Logout A background, out-of-band, REST request to
the IDP to log out the user. Some IDPs perform
logout through browser redirects only, as they
may identify sessions using a browser cookie.

User Info URL An endpoint the OIDC protocol defines. This
endpoint points to user profile information.

Client Authentication Defines the Client Authentication method Red
Hat build of Keycloak uses with the Authorization
Code Flow. In the case of JWT signed with a
private key, Red Hat build of Keycloak uses the
realm private key. In the other cases, define a
client secret. See the Client Authentication
specifications for more information.

Client ID A realm acting as an OIDC client to the external
IDP. The realm must have an OIDC client ID if
you use the Authorization Code Flow to interact
with the external IDP.

Client Secret Client secret from an external vault. This secret
is necessary if you are using the Authorization
Code Flow.

Client Assertion Signature Algorithm Signature algorithm to create JWT assertion as
client authentication. In the case of JWT signed
with private key or Client secret as jwt, it is
required. If no algorithm is specified, the
following algorithm is adapted. RS256 is
adapted in the case of JWT signed with private
key. HS256 is adapted in the case of Client
secret as jwt.

Client Assertion Audience The audience to use for the client assertion. The
default value is the IDP’s token endpoint URL.

Issuer Red Hat build of Keycloak validates issuer claims,
in responses from the IDP, against this value.

Default Scopes A list of OIDC scopes Red Hat build of Keycloak
sends with the authentication request. The
default value is openid. A space separates each
scope.

Configuration Description

Red Hat build of Keycloak 24.0 Server Administration Guide

198

https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

Prompt The prompt parameter in the OIDC specification.
Through this parameter, you can force re-
authentication and other options. See the
specification for more details.

Accepts prompt=none forward from client Specifies if the IDP accepts forwarded
authentication requests containing the
prompt=none query parameter. If a realm
receives an auth request with prompt=none,
the realm checks if the user is currently
authenticated and returns a login_required
error if the user has not logged in. When Red Hat
build of Keycloak determines a default IDP for
the auth request (using the kc_idp_hint query
parameter or having a default IDP for the
realm), you can forward the auth request with
prompt=none to the default IDP. The default
IDP checks the authentication of the user there.
Because not all IDPs support requests with
prompt=none, Red Hat build of Keycloak uses
this switch to indicate that the default IDP
supports the parameter before redirecting the
authentication request.

If the user is unauthenticated in the IDP, the
client still receives a login_required error. If
the user is authentic in the IDP, the client can still
receive an interaction_required error if Red
Hat build of Keycloak must display
authentication pages that require user
interaction. This authentication includes required
actions (for example, password change), consent
screens, and screens set to display by the first
broker login flow or post broker login flow.

Validate Signatures Specifies if Red Hat build of Keycloak verifies
signatures on the external ID Token signed by
this IDP. If ON, Red Hat build of Keycloak must
know the public key of the external OIDC IDP.
For performance purposes, Red Hat build of
Keycloak caches the public key of the external
OIDC identity provider.

Configuration Description

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

199

Use JWKS URL This switch is applicable if Validate Signatures
is ON. If Use JWKS URL is ON, Red Hat build of
Keycloak downloads the IDP’s public keys from
the JWKS URL. New keys download when the
identity provider generates a new keypair. If
OFF, Red Hat build of Keycloak uses the public
key (or certificate) from its database, so when
the IDP keypair changes, import the new key to
the Red Hat build of Keycloak database as well.

JWKS URL The URL pointing to the location of the IDP JWK
keys. For more information, see the JWK
specification. If you use an external Red Hat
build of Keycloak as an IDP, you can use a URL
such as http://broker-
keycloak:8180/realms/test/protocol/openid-
connect/certs if your brokered Red Hat build of
Keycloak is running on http://broker-
keycloak:8180 and its realm is test.

Validating Public Key The public key in PEM format that Red Hat build
of Keycloak uses to verify external IDP
signatures. This key applies if Use JWKS URL
is OFF.

Validating Public Key Id This setting applies if Use JWKS URL is OFF.
This setting specifies the ID of the public key in
PEM format. Because there is no standard way
for computing key ID from the key, external
identity providers can use different algorithms
from what Red Hat build of Keycloak uses. If this
field’s value is not specified, Red Hat build of
Keycloak uses the validating public key for all
requests, regardless of the key ID sent by the
external IDP. When ON, this field’s value is the
key ID used by Red Hat build of Keycloak for
validating signatures from providers and must
match the key ID specified by the IDP.

Configuration Description

You can import all this configuration data by providing a URL or file that points to OpenID Provider
Metadata. If you connect to a Red Hat build of Keycloak external IDP, you can import the IDP settings
from <root>/realms/{realm-name}/.well-known/openid-configuration. This link is a JSON document
describing metadata about the IDP.

If you want to use Json Web Encryption (JWE) ID Tokens or UserInfo responses in the provider, the IDP
needs to know the public key to use with Red Hat build of Keycloak. The provider uses the realm keys
defined for the different encryption algorithms to decrypt the tokens. Red Hat build of Keycloak
provides a standard JWKS endpoint which the IDP can use for downloading the keys automatically.

Red Hat build of Keycloak 24.0 Server Administration Guide

200

https://datatracker.ietf.org/doc/html/rfc7517
http://broker-keycloak:8180/realms/test/protocol/openid-connect/certs
http://broker-keycloak:8180
https://datatracker.ietf.org/doc/html/rfc7516

9.6. SAML V2.0 IDENTITY PROVIDERS

Red Hat build of Keycloak can broker identity providers based on the SAML v2.0 protocol.

Procedure

1. Click Identity Providers in the menu.

2. From the Add provider list, select SAML v2.0.

Add identity provider

3. Enter your initial configuration options. See General IDP Configuration for more information
about configuration options.

Table 9.3. SAML Config

Configuration Description

Service Provider Entity ID The SAML Entity ID that the remote Identity Provider
uses to identify requests from this Service Provider.
By default, this setting is set to the realms base URL
<root>/realms/{realm-name}.

Identity Provider Entity ID The Entity ID used to validate the Issuer for received
SAML assertions. If empty, no Issuer validation is
performed.

Single Sign-On Service URL The SAML endpoint that starts the authentication
process. If your SAML IDP publishes an IDP entity
descriptor, the value of this field is specified there.

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

201

Single Logout Service URL The SAML logout endpoint. If your SAML IDP
publishes an IDP entity descriptor, the value of this
field is specified there.

Backchannel Logout Toggle this switch to ON if your SAML IDP supports
back channel logout.

NameID Policy Format The URI reference corresponding to a name identifier
format. By default, Red Hat build of Keycloak sets it
to urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent.

Principal Type Specifies which part of the SAML assertion will be
used to identify and track external user identities.
Can be either Subject NameID or SAML attribute
(either by name or by friendly name). Subject
NameID value can not be set together with
'urn:oasis:names:tc:SAML:2.0:nameid-
format:transient' NameID Policy Format value.

Principal Attribute If a Principal type is non-blank, this field specifies the
name ("Attribute [Name]") or the friendly name
("Attribute [Friendly Name]") of the identifying
attribute.

Allow create Allow the external identity provider to create a new
identifier to represent the principal.

HTTP-POST Binding Response Controls the SAML binding in response to any SAML
requests sent by an external IDP. When OFF, Red
Hat build of Keycloak uses Redirect Binding.

HTTP-POST Binding for AuthnRequest Controls the SAML binding when requesting
authentication from an external IDP. When OFF, Red
Hat build of Keycloak uses Redirect Binding.

Want AuthnRequests Signed When ON, Red Hat build of Keycloak uses the realm’s
keypair to sign requests sent to the external SAML
IDP.

Want Assertions Signed Indicates whether this service provider expects a
signed Assertion.

Want Assertions Encrypted Indicates whether this service provider expects an
encrypted Assertion.

Configuration Description

Red Hat build of Keycloak 24.0 Server Administration Guide

202

Signature Algorithm If Want AuthnRequests Signed is ON, the signature
algorithm to use. Note that SHA1 based algorithms
are deprecated and may be removed in a future
release. We recommend to use some more secure
algorithm instead of *_SHA1. Also, with *_SHA1
algorithms, verifying signatures do not work if the
SAML identity provider (for example another
instance of Red Hat build of Keycloak) runs on Java
17 or higher.

Encryption Algorithm Encryption algorithm, which is used by SAML IDP for
encryption of SAML documents, assertions, or IDs.
The corresponding decryption key for decrypt SAML
document parts will be chosen based on this
configured algorithm and should be available in realm
keys for the encryption (ENC) usage. If the algorithm
is not configured, any supported algorithm is allowed
and a decryption key will be chosen based on the
algorithm specified in SAML document itself.

SAML Signature Key Name Signed SAML documents sent using POST binding
contain the identification of signing key in KeyName
element, which, by default, contains the Red Hat
build of Keycloak key ID. External SAML IDPs can
expect a different key name. This switch controls
whether KeyName contains: * KEY_ID - Key ID. *
CERT_SUBJECT - the subject from the certificate
corresponding to the realm key. Microsoft Active
Directory Federation Services expect
CERT_SUBJECT. * NONE - Red Hat build of
Keycloak omits the key name hint from the SAML
message.

Force Authentication The user must enter their credentials at the external
IDP even when the user is already logged in.

Validate Signature When ON, the realm expects SAML requests and
responses from the external IDP to be digitally
signed.

Metadata descriptor URL External URL where Identity Provider publishes the
IDPSSODescriptor metadata. This URL is used to
download the Identity Provider certificates when the
Reload keys or Import keys actions are clicked.

Configuration Description

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

203

Use metadata descriptor URL When ON, the certificates to validate signatures are
automatically downloaded from the Metadata
descriptor URL and cached in Red Hat build of
Keycloak. The SAML provider can validate signatures
in two different ways. If a specific certificate is
requested (usually in POST binding) and it is not in
the cache, certificates are automatically refreshed
from the URL. If all certificates are requested to
validate the signature (REDIRECT binding) the
refresh is only done after a max cache time (see
public-key-storage spi in the all provider config guide
for more information about how the cache works).
The cache can also be manually updated using the
action Reload Keys in the identity provider page.

When the option is OFF, the certificates in
Validating X509 Certificates are used to validate
signatures.

Validating X509 Certificates The public certificates Red Hat build of Keycloak
uses to validate the signatures of SAML requests and
responses from the external IDP when Use
metadata descriptor URL is OFF. Multiple
certificates can be entered separated by comma (,).
The certificates can be re-imported from the
Metadata descriptor URL clicking the Import
Keys action in the identity provider page. The action
downloads the current certificates in the metadata
endpoint and assigns them to the config in this same
option. You need to click Save to definitely store the
re-imported certificates.

Sign Service Provider Metadata When ON, Red Hat build of Keycloak uses the realm’s
key pair to sign the SAML Service Provider Metadata
descriptor.

Pass subject Controls if Red Hat build of Keycloak forwards a
login_hint query parameter to the IDP. Red Hat
build of Keycloak adds this field’s value to the
login_hint parameter in the AuthnRequest’s Subject
so destination providers can pre-fill their login form.

Attribute Consuming Service Index Identifies the attribute set to request to the remote
IDP. Red Hat build of Keycloak automatically adds
the attributes mapped in the identity provider
configuration to the autogenerated SP metadata
document.

Configuration Description

Red Hat build of Keycloak 24.0 Server Administration Guide

204

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide/#all-provider-config-

Attribute Consuming Service Name A descriptive name for the set of attributes that are
advertised in the autogenerated SP metadata
document.

Configuration Description

You can import all configuration data by providing a URL or a file pointing to the SAML IDP entity
descriptor of the external IDP. If you are connecting to a Red Hat build of Keycloak external IDP, you can
import the IDP settings from the URL <root>/realms/{realm-name}/protocol/saml/descriptor. This link
is an XML document describing metadata about the IDP. You can also import all this configuration data
by providing a URL or XML file pointing to the external SAML IDP’s entity descriptor to connect to.

9.6.1. Requesting specific AuthnContexts

Identity Providers facilitate clients specifying constraints on the authentication method verifying the
user identity. For example, asking for MFA, Kerberos authentication, or security requirements. These
constraints use particular AuthnContext criteria. A client can ask for one or more criteria and specify
how the Identity Provider must match the requested AuthnContext, exactly, or by satisfying other
equivalents.

You can list the criteria your Service Provider requires by adding ClassRefs or DeclRefs in the Requested
AuthnContext Constraints section. Usually, you need to provide either ClassRefs or DeclRefs, so check
with your Identity Provider documentation which values are supported. If no ClassRefs or DeclRefs are
present, the Identity Provider does not enforce additional constraints.

Table 9.4. Requested AuthnContext Constraints

Configuration Description

Comparison The method the Identity Provider uses to evaluate
the context requirements. The available values are
Exact, Minimum, Maximum, or Better. The
default value is Exact.

AuthnContext ClassRefs The AuthnContext ClassRefs describing the required
criteria.

AuthnContext DeclRefs The AuthnContext DeclRefs describing the required
criteria.

9.6.2. SP Descriptor

When you access the provider’s SAML SP metadata, look for the Endpoints item in the identity
provider configuration settings. It contains a SAML 2.0 Service Provider Metadata link which generates
the SAML entity descriptor for the Service Provider. You can download the descriptor or copy its URL
and then import it into the remote Identity Provider.

This metadata is also available publicly by going to the following URL:

http[s]://{host:port}/realms/{realm-name}/broker/{broker-alias}/endpoint/descriptor

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

205

Ensure you save any configuration changes before accessing the descriptor.

9.6.3. Send subject in SAML requests

By default, a social button pointing to a SAML Identity Provider redirects the user to the following login
URL:

http[s]://{host:port}/realms/${realm-name}/broker/{broker-alias}/login

Adding a query parameter named login_hint to this URL adds the parameter’s value to SAML request as
a Subject attribute. If this query parameter is empty, Red Hat build of Keycloak does not add a subject to
the request.

Enable the "Pass subject" option to send the subject in SAML requests.

9.7. CLIENT-SUGGESTED IDENTITY PROVIDER

OIDC applications can bypass the Red Hat build of Keycloak login page by hinting at the identity
provider they want to use. You can enable this by setting the kc_idp_hint query parameter in the
Authorization Code Flow authorization endpoint.

With Red Hat build of Keycloak OIDC client adapters, you can specify this query parameter when you
access a secured resource in the application.

For example:

In this case, your realm must have an identity provider with a facebook alias. If this provider does not
exist, the login form is displayed.

If you are using the keycloak.js adapter, you can also achieve the same behavior as follows:

With the kc_idp_hint query parameter, the client can override the default identity provider if you
configure one for the Identity Provider Redirector authenticator. The client can disable the automatic
redirecting by setting the kc_idp_hint query parameter to an empty value.

9.8. MAPPING CLAIMS AND ASSERTIONS

You can import the SAML and OpenID Connect metadata, provided by the external IDP you are
authenticating with, into the realm. After importing, you can extract user profile metadata and other
information, so you can make it available to your applications.

Each user logging into your realm using an external identity provider has an entry in the local Red Hat
build of Keycloak database, based on the metadata from the SAML or OIDC assertions and claims.

GET /myapplication.com?kc_idp_hint=facebook HTTP/1.1
Host: localhost:8080

const keycloak = new Keycloak('keycloak.json');

keycloak.createLoginUrl({
 idpHint: 'facebook'
});

Red Hat build of Keycloak 24.0 Server Administration Guide

206

Procedure

1. Click Identity Providers in the menu.

2. Select one of the identity providers in the list.

3. Click the Mappers tab.

Identity provider mappers

4. Click Add mapper.

Identity provider mapper

5. Select a value for Sync Mode Override. The mapper updates user information when users log in
repeatedly according to this setting.

a. Select legacy to use the behavior of the previous Red Hat build of Keycloak version.

b. Select import to import data from when the user was first created in Red Hat build of
Keycloak during the first login to Red Hat build of Keycloak with a particular identity
provider.

c. Select force to update user data at each user login.

d. Select inherit to use the sync mode configured in the identity provider. All other options will
override this sync mode.

6. Select a mapper from the Mapper Type list. Hover over the Mapper Type for a description of

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

207

6. Select a mapper from the Mapper Type list. Hover over the Mapper Type for a description of
the mapper and configuration to enter for the mapper.

7. Click Save.

For JSON-based claims, you can use dot notation for nesting and square brackets to access array fields
by index. For example, contact.address[0].country.

To investigate the structure of user profile JSON data provided by social providers, you can enable the
DEBUG level logger org.keycloak.social.user_profile_dump when starting the server.

9.9. AVAILABLE USER SESSION DATA

After a user login from an external IDP, Red Hat build of Keycloak stores user session note data that you
can access. This data can be propagated to the client requesting log in using the token or SAML
assertion passed back to the client using an appropriate client mapper.

identity_provider

The IDP alias of the broker used to perform the login.

identity_provider_identity

The IDP username of the currently authenticated user. Often, but not always, the same as the Red
Hat build of Keycloak username. For example, Red Hat build of Keycloak can link a user john` to a
Facebook user john123@gmail.com. In that case, the value of the user session note is
john123@gmail.com.

You can use a Protocol Mapper of type User Session Note to propagate this information to your
clients.

9.10. FIRST LOGIN FLOW

When users log in through identity brokering, Red Hat build of Keycloak imports and links aspects of the
user within the realm’s local database. When Red Hat build of Keycloak successfully authenticates users
through an external identity provider, two situations can exist:

Red Hat build of Keycloak has already imported and linked a user account with the
authenticated identity provider account. In this case, Red Hat build of Keycloak authenticates as
the existing user and redirects back to the application.

No account exists for this user in Red Hat build of Keycloak. Usually, you register and import a
new account into the Red Hat build of Keycloak database, but there may be an existing Red Hat
build of Keycloak account with the same email address. Automatically linking the existing local
account to the external identity provider is a potential security hole. You cannot always trust the
information you get from the external identity provider.

Different organizations have different requirements when dealing with some of these situations. With
Red Hat build of Keycloak, you can use the First Login Flow option in the IDP settings to choose a
workflow for a user logging in from an external IDP for the first time. By default, the First Login Flow
option points to the first broker login flow, but you can use your flow or different flows for different
identity providers.

The flow is in the Admin Console under the Authentication tab. When you choose the First Broker
Login flow, you see the authenticators used by default. You can re-configure the existing flow. For
example, you can disable some authenticators, mark some of them as required, or configure some
authenticators.

Red Hat build of Keycloak 24.0 Server Administration Guide

208

9.10.1. Default first login flow authenticators

Review Profile

This authenticator displays the profile information page, so the users can review their profile
that Red Hat build of Keycloak retrieves from an identity provider.

You can set the Update Profile On First Login option in the Actions menu.

When ON, users are presented with the profile page requesting additional information to
federate the user’s identities.

When missing, users are presented with the profile page if the identity provider does not
provide mandatory information, such as email, first name, or last name.

When OFF, the profile page does not display unless the user clicks in a later phase on the
Review profile info link in the page displayed by the Confirm Link Existing Account
authenticator.

Create User If Unique

This authenticator checks if there is already an existing Red Hat build of Keycloak account with the
same email or username like the account from the identity provider. If it’s not, then the authenticator
just creates a new local Red Hat build of Keycloak account and links it with the identity provider and
the whole flow is finished. Otherwise it goes to the next Handle Existing Account subflow. If you
always want to ensure that there is no duplicated account, you can mark this authenticator as
REQUIRED. In this case, the user will see the error page if there is an existing Red Hat build of
Keycloak account and the user will need to link the identity provider account through Account
management.

This authenticator verifies that there is already a Red Hat build of Keycloak account with the
same email or username as the identity provider’s account.

If an account does not exist, the authenticator creates a local Red Hat build of Keycloak
account, links this account with the identity provider, and terminates the flow.

If an account exists, the authenticator implements the next Handle Existing Account sub-
flow.

To ensure there is no duplicated account, you can mark this authenticator as REQUIRED.
The user sees the error page if a Red Hat build of Keycloak account exists, and users must
link their identity provider account through Account management.

Confirm Link Existing Account

On the information page, users see a Red Hat build of Keycloak account with the same email.
Users can review their profile again and use a different email or username. The flow restarts
and goes back to the Review Profile authenticator.

Alternatively, users can confirm that they want to link their identity provider account with
their existing Red Hat build of Keycloak account.

Disable this authenticator if you do not want users to see this confirmation page and go
straight to linking identity provider account by email verification or re-authentication.

Verify Existing Account By Email

This authenticator is ALTERNATIVE by default. Red Hat build of Keycloak uses this

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

209

This authenticator is ALTERNATIVE by default. Red Hat build of Keycloak uses this
authenticator if the realm has an SMTP setup configured.

The authenticator sends an email to users to confirm that they want to link the identity
provider with their Red Hat build of Keycloak account.

Disable this authenticator if you do not want to confirm linking by email, but want users to
reauthenticate with their password.

Verify Existing Account By Re-authentication

Use this authenticator if the email authenticator is not available. For example, you have not
configured SMTP for your realm. This authenticator displays a login screen for users to
authenticate to link their Red Hat build of Keycloak account with the Identity Provider.

Users can also re-authenticate with another identity provider already linked to their Red Hat
build of Keycloak account.

You can force users to use OTP. Otherwise, it is optional and used if you have set OTP for
the user account.

9.10.2. Automatically link existing first login flow

WARNING

The AutoLink authenticator is dangerous in a generic environment where users can
register themselves using arbitrary usernames or email addresses. Do not use this
authenticator unless you are carefully curating user registration and assigning
usernames and email addresses.

To configure a first login flow that links users automatically without prompting, create a new flow with
the following two authenticators:

Create User If Unique

This authenticator ensures Red Hat build of Keycloak handles unique users. Set the authenticator
requirement to Alternative.

Automatically Set Existing User

This authenticator sets an existing user to the authentication context without verification. Set the
authenticator requirement to "Alternative".

NOTE

This setup is the simplest setup available, but it is possible to use other authenticators.
For example: * You can add the Review Profile authenticator to the beginning of the flow
if you want end users to confirm their profile information. * You can add authentication
mechanisms to this flow, forcing a user to verify their credentials. Adding authentication
mechanisms requires a complex flow. For example, you can set the "Automatically Set
Existing User" and "Password Form" as "Required" in an "Alternative" sub-flow.



Red Hat build of Keycloak 24.0 Server Administration Guide

210

9.10.3. Disabling automatic user creation

The Default first login flow looks up the Red Hat build of Keycloak account matching the external
identity and offers to link them. If no matching Red Hat build of Keycloak account exists, the flow
automatically creates one.

This default behavior may be unsuitable for some setups. One example is when you use a read-only
LDAP user store, where all users are pre-created. In this case, you must switch off automatic user
creation.

To disable user creation:

Procedure

1. Click Authentication in the menu.

2. Select First Broker Login from the list.

3. Set Create User If Unique to DISABLED.

4. Set Confirm Link Existing Account to DISABLED.

This configuration also implies that Red Hat build of Keycloak itself won’t be able to determine which
internal account would correspond to the external identity. Therefore, the Verify Existing Account By
Re-authentication authenticator will ask the user to provide both username and password.

NOTE

Enabling or disabling user creation by identity provider is completely independent on the
realm User Registration switch . You can have enabled user-creation by identity provider
and at the same time disabled user self-registration in the realm login settings or vice-
versa.

9.10.4. Detect existing user first login flow

In order to configure a first login flow in which:

only users already registered in this realm can log in,

users are automatically linked without being prompted,

create a new flow with the following two authenticators:

Detect Existing Broker User

This authenticator ensures that unique users are handled. Set the authenticator requirement to
REQUIRED.

Automatically Set Existing User

Automatically sets an existing user to the authentication context without any verification. Set the
authenticator requirement to REQUIRED.

You have to set the First Login Flow of the identity provider configuration to that flow. You could set
the also set Sync Mode to force if you want to update the user profile (Last Name, First Name…​) with
the identity provider attributes.

NOTE

CHAPTER 9. INTEGRATING IDENTITY PROVIDERS

211

NOTE

This flow can be used if you want to delegate the identity to other identity providers
(such as GitHub, Facebook …​) but you want to manage which users that can log in.

With this configuration, Red Hat build of Keycloak is unable to determine which internal account
corresponds to the external identity. The Verify Existing Account By Re-authentication authenticator
asks the provider for the username and password.

9.11. RETRIEVING EXTERNAL IDP TOKENS

With Red Hat build of Keycloak, you can store tokens and responses from the authentication process
with the external IDP using the Store Token configuration option on the IDP’s settings page.

Application code can retrieve these tokens and responses to import extra user information or to request
the external IDP securely. For example, an application can use the Google token to use other Google
services and REST APIs. To retrieve a token for a particular identity provider, send a request as follows:

GET /realms/{realm}/broker/{provider_alias}/token HTTP/1.1
Host: localhost:8080
Authorization: Bearer <KEYCLOAK ACCESS TOKEN>

An application must authenticate with Red Hat build of Keycloak and receive an access token. This
access token must have the broker client-level role read-token set, so the user must have a role
mapping for this role, and the client application must have that role within its scope. In this case, since
you are accessing a protected service in Red Hat build of Keycloak, send the access token issued by Red
Hat build of Keycloak during the user authentication. You can assign this role to newly imported users in
the broker configuration page by setting the Stored Tokens Readable switch to ON.

These external tokens can be re-established by logging in again through the provider or using the client-
initiated account linking API.

9.12. IDENTITY BROKER LOGOUT

When logging out, Red Hat build of Keycloak sends a request to the external identity provider that is
used to log in initially and logs the user out of this identity provider. You can skip this behavior and avoid
logging out of the external identity provider. See adapter logout documentation for more information.

Red Hat build of Keycloak 24.0 Server Administration Guide

212

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#java_adapter_logout

CHAPTER 10. SSO PROTOCOLS
This section discusses authentication protocols, the Red Hat build of Keycloak authentication server and
how applications, secured by the Red Hat build of Keycloak authentication server, interact with these
protocols.

10.1. OPENID CONNECT

OpenID Connect (OIDC) is an authentication protocol that is an extension of OAuth 2.0.

OAuth 2.0 is a framework for building authorization protocols and is incomplete. OIDC, however, is a full
authentication and authorization protocol that uses the Json Web Token (JWT) standards. The JWT
standards define an identity token JSON format and methods to digitally sign and encrypt data in a
compact and web-friendly way.

In general, OIDC implements two use cases. The first case is an application requesting that a Red Hat
build of Keycloak server authenticates a user. Upon successful login, the application receives an identity
token and an access token. The identity token contains user information including user name, email, and
profile information. The realm digitally signs the access token which contains access information (such
as user role mappings) that applications use to determine the resources users can access in the
application.

The second use case is a client accessing remote services.

The client requests an access token from Red Hat build of Keycloak to invoke on remote services
on behalf of the user.

Red Hat build of Keycloak authenticates the user and asks the user for consent to grant access
to the requesting client.

The client receives the access token which is digitally signed by the realm.

The client makes REST requests on remote services using the access token.

The remote REST service extracts the access token.

The remote REST service verifies the tokens signature.

The remote REST service decides, based on access information within the token, to process or
reject the request.

10.1.1. OIDC auth flows

OIDC has several methods, or flows, that clients or applications can use to authenticate users and
receive identity and access tokens. The method depends on the type of application or client requesting
access.

10.1.1.1. Authorization Code Flow

The Authorization Code Flow is a browser-based protocol and suits authenticating and authorizing
browser-based applications. It uses browser redirects to obtain identity and access tokens.

1. A user connects to an application using a browser. The application detects the user is not logged
into the application.

CHAPTER 10. SSO PROTOCOLS

213

https://openid.net/developers/how-connect-works/
https://datatracker.ietf.org/doc/html/rfc6749
https://jwt.io

2. The application redirects the browser to Red Hat build of Keycloak for authentication.

3. The application passes a callback URL as a query parameter in the browser redirect. Red Hat
build of Keycloak uses the parameter upon successful authentication.

4. Red Hat build of Keycloak authenticates the user and creates a one-time, short-lived, temporary
code.

5. Red Hat build of Keycloak redirects to the application using the callback URL and adds the
temporary code as a query parameter in the callback URL.

6. The application extracts the temporary code and makes a background REST invocation to Red
Hat build of Keycloak to exchange the code for an identity and access and refresh token. To
prevent replay attacks, the temporary code cannot be used more than once.

NOTE

A system is vulnerable to a stolen token for the lifetime of that token. For security and
scalability reasons, access tokens are generally set to expire quickly so subsequent token
requests fail. If a token expires, an application can obtain a new access token using the
additional refresh token sent by the login protocol.

Confidential clients provide client secrets when they exchange the temporary codes for tokens. Public
clients are not required to provide client secrets. Public clients are secure when HTTPS is strictly
enforced and redirect URIs registered for the client are strictly controlled. HTML5/JavaScript clients
have to be public clients because there is no way to securely transmit the client secret to
HTML5/JavaScript clients. For more details, see the Managing Clients chapter.

Red Hat build of Keycloak also supports the Proof Key for Code Exchange specification.

10.1.1.2. Implicit Flow

The Implicit Flow is a browser-based protocol. It is similar to the Authorization Code Flow but with fewer
requests and no refresh tokens.

NOTE

The possibility exists of access tokens leaking in the browser history when tokens are
transmitted via redirect URIs (see below).

Also, this flow does not provide clients with refresh tokens. Therefore, access tokens have
to be long-lived or users have to re-authenticate when they expire.

We do not advise using this flow. This flow is supported because it is in the OIDC and
OAuth 2.0 specification.

The protocol works as follows:

1. A user connects to an application using a browser. The application detects the user is not logged
into the application.

2. The application redirects the browser to Red Hat build of Keycloak for authentication.

3. The application passes a callback URL as a query parameter in the browser redirect. Red Hat
build of Keycloak uses the query parameter upon successful authentication.

4. Red Hat build of Keycloak authenticates the user and creates an identity and access token. Red

Red Hat build of Keycloak 24.0 Server Administration Guide

214

https://datatracker.ietf.org/doc/html/rfc7636

4. Red Hat build of Keycloak authenticates the user and creates an identity and access token. Red
Hat build of Keycloak redirects to the application using the callback URL and additionally adds
the identity and access tokens as a query parameter in the callback URL.

5. The application extracts the identity and access tokens from the callback URL.

10.1.1.3. Resource owner password credentials grant (Direct Access Grants)

Direct Access Grants are used by REST clients to obtain tokens on behalf of users. It is a HTTP POST
request that contains:

The credentials of the user. The credentials are sent within form parameters.

The id of the client.

The clients secret (if it is a confidential client).

The HTTP response contains the identity, access, and refresh tokens.

10.1.1.4. Client credentials grant

The Client Credentials Grant creates a token based on the metadata and permissions of a service
account associated with the client instead of obtaining a token that works on behalf of an external user.
Client Credentials Grants are used by REST clients.

See the Service Accounts chapter for more information.

10.1.2. Refresh token grant

By default, Red Hat build of Keycloak returns refresh tokens in the token responses from most of the
flows. Some exceptions are implicit flow or client credentials grant described above.

Refresh token is tied to the user session of the SSO browser session and can be valid for the lifetime of
the user session. However, that client should send a refresh-token request at least once per specified
interval. Otherwise, the session can be considered "idle" and can expire. See the timeouts section for
more information.

Red Hat build of Keycloak supports offline tokens, which can be used typically when client needs to use
refresh token even if corresponding browser SSO session is already expired.

10.1.2.1. Refresh token rotation

It is possible to specify that the refresh token is considered invalid once it is used. This means that client
must always save the refresh token from the last refresh response because older refresh tokens, which
were already used, would not be considered valid anymore by Red Hat build of Keycloak. This is possible
to set with the use of Revoke Refresh token option as specified in the timeouts section.

Red Hat build of Keycloak also supports the situation that no refresh token rotation exists. In this case, a
refresh token is returned during login, but subsequent responses from refresh-token requests will not
return new refresh tokens. This practice is recommended for instance in the FAPI 2 draft specification.
In Red Hat build of Keycloak, it is possible to skip refresh token rotation with the use of client policies.
You can add executor suppress-refresh-token-rotation to some client profile and configure client
policy to specify for which clients would be the profile triggered, which means that for those clients the
refresh token rotation is going to be skipped.

CHAPTER 10. SSO PROTOCOLS

215

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_fapi-support

10.1.2.2. Device authorization grant

This is used by clients running on internet-connected devices that have limited input capabilities or lack
a suitable browser. Here’s a brief summary of the protocol:

1. The application requests Red Hat build of Keycloak a device code and a user code. Red Hat build
of Keycloak creates a device code and a user code. Red Hat build of Keycloak returns a response
including the device code and the user code to the application.

2. The application provides the user with the user code and the verification URI. The user accesses
a verification URI to be authenticated by using another browser. You could define a short
verification_uri that will be redirected to Red Hat build of Keycloak verification URI
(/realms/realm_name/device)outside Red Hat build of Keycloak - fe in a proxy.

3. The application repeatedly polls Red Hat build of Keycloak to find out if the user completed the
user authorization. If user authentication is complete, the application exchanges the device
code for an identity, access and refresh token.

10.1.2.3. Client initiated backchannel authentication grant

This feature is used by clients who want to initiate the authentication flow by communicating with the
OpenID Provider directly without redirect through the user’s browser like OAuth 2.0’s authorization
code grant. Here’s a brief summary of the protocol:

1. The client requests Red Hat build of Keycloak an auth_req_id that identifies the authentication
request made by the client. Red Hat build of Keycloak creates the auth_req_id.

2. After receiving this auth_req_id, this client repeatedly needs to poll Red Hat build of Keycloak to
obtain an Access Token, Refresh Token and ID Token from Red Hat build of Keycloak in return
for the auth_req_id until the user is authenticated.

An administrator can configure Client Initiated Backchannel Authentication (CIBA) related operations as
CIBA Policy per realm.

Also please refer to other places of Red Hat build of Keycloak documentation like Backchannel
Authentication Endpoint section of Securing Applications and Services Guide and Client Initiated
Backchannel Authentication Grant section of Securing Applications and Services Guide.

10.1.2.3.1. CIBA Policy

An administrator carries out the following operations on the Admin Console :

Open the Authentication → CIBA Policy tab.

Configure items and click Save.

The configurable items and their description follow.

Configuration Description

Red Hat build of Keycloak 24.0 Server Administration Guide

216

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_backchannel_authentication_endpoint
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_client_initiated_backchannel_authentication_grant

Backchannel Token Delivery Mode Specifying how the CD (Consumption Device) gets
the authentication result and related tokens. There
are three modes, "poll", "ping" and "push". Red Hat
build of Keycloak only supports "poll". The default
setting is "poll". This configuration is required. For
more details, see CIBA Specification.

Expires In The expiration time of the "auth_req_id" in seconds
since the authentication request was received. The
default setting is 120. This configuration is required.
For more details, see CIBA Specification.

Interval The interval in seconds the CD (Consumption
Device) needs to wait for between polling requests
to the token endpoint. The default setting is 5. This
configuration is optional. For more details, see CIBA
Specification.

Authentication Requested User Hint The way of identifying the end-user for whom
authentication is being requested. The default
setting is "login_hint". There are three modes,
"login_hint", "login_hint_token" and "id_token_hint".
Red Hat build of Keycloak only supports "login_hint".
This configuration is required. For more details, see
CIBA Specification.

Configuration Description

10.1.2.3.2. Provider Setting

The CIBA grant uses the following two providers.

1. Authentication Channel Provider : provides the communication between Red Hat build of
Keycloak and the entity that actually authenticates the user via AD (Authentication Device).

2. User Resolver Provider : get UserModel of Red Hat build of Keycloak from the information
provided by the client to identify the user.

Red Hat build of Keycloak has both default providers. However, the administrator needs to set up
Authentication Channel Provider like this:

The configurable items and their description follow.

Configuration Description

kc.[sh|bat] start --spi-ciba-auth-channel-ciba-http-auth-channel-http-authentication-channel-
uri=https://backend.internal.example.com

CHAPTER 10. SSO PROTOCOLS

217

https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html#rfc.section.5
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html#successful_authentication_request_acknowdlegment
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html#successful_authentication_request_acknowdlegment
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html#rfc.section.7.1

http-authentication-channel-uri Specifying URI of the entity that actually
authenticates the user via AD (Authentication
Device).

Configuration Description

10.1.2.3.3. Authentication Channel Provider

CIBA standard document does not specify how to authenticate the user by AD. Therefore, it might be
implemented at the discretion of products. Red Hat build of Keycloak delegates this authentication to
an external authentication entity. To communicate with the authentication entity, Red Hat build of
Keycloak provides Authentication Channel Provider.

Its implementation of Red Hat build of Keycloak assumes that the authentication entity is under the
control of the administrator of Red Hat build of Keycloak so that Red Hat build of Keycloak trusts the
authentication entity. It is not recommended to use the authentication entity that the administrator of
Red Hat build of Keycloak cannot control.

Authentication Channel Provider is provided as SPI provider so that users of Red Hat build of Keycloak
can implement their own provider in order to meet their environment. Red Hat build of Keycloak
provides its default provider called HTTP Authentication Channel Provider that uses HTTP to
communicate with the authentication entity.

If a user of Red Hat build of Keycloak user want to use the HTTP Authentication Channel Provider, they
need to know its contract between Red Hat build of Keycloak and the authentication entity consisting of
the following two parts.

Authentication Delegation Request/Response

Red Hat build of Keycloak sends an authentication request to the authentication entity.

Authentication Result Notification/ACK

The authentication entity notifies the result of the authentication to Red Hat build of Keycloak.

Authentication Delegation Request/Response consists of the following messaging.

Authentication Delegation Request

The request is sent from Red Hat build of Keycloak to the authentication entity to ask it for user
authentication by AD.

POST [delegation_reception]

Headers

Name Value Description

Content-Type application/json The message body is json
formatted.

Authorization Bearer [token] The [token] is used when the
authentication entity notifies the
result of the authentication to
Red Hat build of Keycloak.

Red Hat build of Keycloak 24.0 Server Administration Guide

218

Parameters

Type Name Description

Path delegation_reception The endpoint provided by the
authentication entity to receive
the delegation request

Body

Name Description

login_hint It tells the authentication entity who is authenticated
by AD.
By default, it is the user’s "username".
This field is required and was defined by CIBA
standard document.

scope It tells which scopes the authentication entity gets
consent from the authenticated user.
This field is required and was defined by CIBA
standard document.

is_consent_required It shows whether the authentication entity needs to
get consent from the authenticated user about the
scope.
This field is required.

binding_message Its value is intended to be shown in both CD and AD’s
UI to make the user recognize that the authentication
by AD is triggered by CD.
This field is optional and was defined by CIBA
standard document.

acr_values It tells the requesting Authentication Context Class
Reference from CD.
This field is optional and was defined by CIBA
standard document.

Authentication Delegation Response

The response is returned from the authentication entity to Red Hat build of Keycloak to notify that
the authentication entity received the authentication request from Red Hat build of Keycloak.

Responses

HTTP Status Code Description

CHAPTER 10. SSO PROTOCOLS

219

201 It notifies Red Hat build of Keycloak of receiving the
authentication delegation request.

HTTP Status Code Description

Authentication Result Notification/ACK consists of the following messaging.

Authentication Result Notification

The authentication entity sends the result of the authentication request to Red Hat build of
Keycloak.

POST /realms/[realm]/protocol/openid-connect/ext/ciba/auth/callback

Headers

Name Value Description

Content-Type application/json The message body is json
formatted.

Authorization Bearer [token] The [token] must be the one the
authentication entity has received
from Red Hat build of Keycloak in
Authentication Delegation
Request.

Parameters

Type Name Description

Path realm The realm name

Body

Name Description

status It tells the result of user authentication by AD.
It must be one of the following status.
SUCCEED : The authentication by AD has been
successfully completed.
UNAUTHORIZED : The authentication by AD has not
been completed.
CANCELLED : The authentication by AD has been
cancelled by the user.

Authentication Result ACK

The response is returned from Red Hat build of Keycloak to the authentication entity to notify Red

Red Hat build of Keycloak 24.0 Server Administration Guide

220

The response is returned from Red Hat build of Keycloak to the authentication entity to notify Red
Hat build of Keycloak received the result of user authentication by AD from the authentication entity.

Responses

HTTP Status Code Description

200 It notifies the authentication entity of receiving the
notification of the authentication result.

10.1.2.3.4. User Resolver Provider

Even if the same user, its representation may differ in each CD, Red Hat build of Keycloak and the
authentication entity.

For CD, Red Hat build of Keycloak and the authentication entity to recognize the same user, this User
Resolver Provider converts their own user representations among them.

User Resolver Provider is provided as SPI provider so that users of Red Hat build of Keycloak can
implement their own provider in order to meet their environment. Red Hat build of Keycloak provides its
default provider called Default User Resolver Provider that has the following characteristics.

Only support login_hint parameter and is used as default.

username of UserModel in Red Hat build of Keycloak is used to represent the user on CD, Red
Hat build of Keycloak and the authentication entity.

10.1.3. OIDC Logout

OIDC has four specifications relevant to logout mechanisms:

1. Session Management

2. RP-Initiated Logout

3. Front-Channel Logout

4. Back-Channel Logout

Again since all of this is described in the OIDC specification we will only give a brief overview here.

10.1.3.1. Session Management

This is a browser-based logout. The application obtains session status information from Red Hat build of
Keycloak at a regular basis. When the session is terminated at Red Hat build of Keycloak the application
will notice and trigger its own logout.

10.1.3.2. RP-Initiated Logout

This is also a browser-based logout where the logout starts by redirecting the user to a specific endpoint
at Red Hat build of Keycloak. This redirect usually happens when the user clicks the Log Out link on the
page of some application, which previously used Red Hat build of Keycloak to authenticate the user.

CHAPTER 10. SSO PROTOCOLS

221

https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html

Once the user is redirected to the logout endpoint, Red Hat build of Keycloak is going to send logout
requests to clients to let them invalidate their local user sessions, and potentially redirect the user to
some URL once the logout process is finished. The user might be optionally requested to confirm the
logout in case the id_token_hint parameter was not used. After logout, the user is automatically
redirected to the specified post_logout_redirect_uri as long as it is provided as a parameter. Note that
you need to include either the client_id or id_token_hint parameter in case the
post_logout_redirect_uri is included. Also the post_logout_redirect_uri parameter needs to match
one of the Valid Post Logout Redirect URIs specified in the client configuration.

Depending on the client configuration, logout requests can be sent to clients through the front-channel
or through the back-channel. For the frontend browser clients, which rely on the Session Management
described in the previous section, Red Hat build of Keycloak does not need to send any logout requests
to them; these clients automatically detect that SSO session in the browser is logged out.

10.1.3.3. Front-channel Logout

To configure clients to receive logout requests through the front-channel, look at the Front-Channel
Logout client setting. When using this method, consider the following:

Logout requests sent by Red Hat build of Keycloak to clients rely on the browser and on
embedded iframes that are rendered for the logout page.

By being based on iframes, front-channel logout might be impacted by Content Security
Policies (CSP) and logout requests might be blocked.

If the user closes the browser prior to rendering the logout page or before logout requests are
actually sent to clients, their sessions at the client might not be invalidated.

NOTE

Consider using Back-Channel Logout as it provides a more reliable and secure approach
to log out users and terminate their sessions on the clients.

If the client is not enabled with front-channel logout, then Red Hat build of Keycloak is going to try first
to send logout requests through the back-channel using the Back-Channel Logout URL . If not defined,
the server is going to fall back to using the Admin URL.

10.1.3.4. Backchannel Logout

This is a non-browser-based logout that uses direct backchannel communication between Red Hat build
of Keycloak and clients. Red Hat build of Keycloak sends a HTTP POST request containing a logout
token to all clients logged into Red Hat build of Keycloak. These requests are sent to a registered
backchannel logout URLs at Red Hat build of Keycloak and are supposed to trigger a logout at client
side.

10.1.4. Red Hat build of Keycloak server OIDC URI endpoints

The following is a list of OIDC endpoints that Red Hat build of Keycloak publishes. These endpoints can
be used when a non-Red Hat build of Keycloak client adapter uses OIDC to communicate with the
authentication server. They are all relative URLs. The root of the URL consists of the HTTP(S) protocol,
hostname, and optionally the path: For example

https://localhost:8080

Red Hat build of Keycloak 24.0 Server Administration Guide

222

/realms/{realm-name}/protocol/openid-connect/auth

Used for obtaining a temporary code in the Authorization Code Flow or obtaining tokens using the
Implicit Flow, Direct Grants, or Client Grants.

/realms/{realm-name}/protocol/openid-connect/token

Used by the Authorization Code Flow to convert a temporary code into a token.

/realms/{realm-name}/protocol/openid-connect/logout

Used for performing logouts.

/realms/{realm-name}/protocol/openid-connect/userinfo

Used for the User Info service described in the OIDC specification.

/realms/{realm-name}/protocol/openid-connect/revoke

Used for OAuth 2.0 Token Revocation described in RFC7009.

/realms/{realm-name}/protocol/openid-connect/certs

Used for the JSON Web Key Set (JWKS) containing the public keys used to verify any JSON Web
Token (jwks_uri)

/realms/{realm-name}/protocol/openid-connect/auth/device

Used for Device Authorization Grant to obtain a device code and a user code.

/realms/{realm-name}/protocol/openid-connect/ext/ciba/auth

This is the URL endpoint for Client Initiated Backchannel Authentication Grant to obtain an
auth_req_id that identifies the authentication request made by the client.

/realms/{realm-name}/protocol/openid-connect/logout/backchannel-logout

This is the URL endpoint for performing backchannel logouts described in the OIDC specification.

In all of these, replace {realm-name} with the name of the realm.

10.2. SAML

SAML 2.0 is a similar specification to OIDC but more mature. It is descended from SOAP and web
service messaging specifications so is generally more verbose than OIDC. SAML 2.0 is an authentication
protocol that exchanges XML documents between authentication servers and applications. XML
signatures and encryption are used to verify requests and responses.

In general, SAML implements two use cases.

The first use case is an application that requests the Red Hat build of Keycloak server authenticates a
user. Upon successful login, the application will receive an XML document. This document contains an
SAML assertion that specifies user attributes. The realm digitally signs the document which contains
access information (such as user role mappings) that applications use to determine the resources users
are allowed to access in the application.

The second use case is a client accessing remote services. The client requests a SAML assertion from
Red Hat build of Keycloak to invoke on remote services on behalf of the user.

10.2.1. SAML bindings

Red Hat build of Keycloak supports three binding types.

10.2.1.1. Redirect binding

Redirect binding uses a series of browser redirect URIs to exchange information.

1. A user connects to an application using a browser. The application detects the user is not

CHAPTER 10. SSO PROTOCOLS

223

https://datatracker.ietf.org/doc/html/rfc7009
https://saml.xml.org/saml-specifications

1. A user connects to an application using a browser. The application detects the user is not
authenticated.

2. The application generates an XML authentication request document and encodes it as a query
parameter in a URI. The URI is used to redirect to the Red Hat build of Keycloak server.
Depending on your settings, the application can also digitally sign the XML document and
include the signature as a query parameter in the redirect URI to Red Hat build of Keycloak. This
signature is used to validate the client that sends the request.

3. The browser redirects to Red Hat build of Keycloak.

4. The server extracts the XML auth request document and verifies the digital signature, if
required.

5. The user enters their authentication credentials.

6. After authentication, the server generates an XML authentication response document. The
document contains a SAML assertion that holds metadata about the user, including name,
address, email, and any role mappings the user has. The document is usually digitally signed
using XML signatures, and may also be encrypted.

7. The XML authentication response document is encoded as a query parameter in a redirect URI.
The URI brings the browser back to the application. The digital signature is also included as a
query parameter.

8. The application receives the redirect URI and extracts the XML document.

9. The application verifies the realm’s signature to ensure it is receiving a valid authentication
response. The information inside the SAML assertion is used to make access decisions or display
user data.

10.2.1.2. POST binding

POST binding is similar to Redirect binding but POST binding exchanges XML documents using POST
requests instead of using GET requests. POST Binding uses JavaScript to make the browser send a
POST request to the Red Hat build of Keycloak server or application when exchanging documents.
HTTP responds with an HTML document which contains an HTML form containing embedded
JavaScript. When the page loads, the JavaScript automatically invokes the form.

POST binding is recommended due to two restrictions:

Security — With Redirect binding, the SAML response is part of the URL. It is less secure as it is
possible to capture the response in logs.

Size — Sending the document in the HTTP payload provides more scope for large amounts of
data than in a limited URL.

10.2.1.3. ECP

Enhanced Client or Proxy (ECP) is a SAML v.2.0 profile which allows the exchange of SAML attributes
outside the context of a web browser. It is often used by REST or SOAP-based clients.

10.2.2. Red Hat build of Keycloak Server SAML URI Endpoints

Red Hat build of Keycloak has one endpoint for all SAML requests.

Red Hat build of Keycloak 24.0 Server Administration Guide

224

http(s)://authserver.host/realms/{realm-name}/protocol/saml

All bindings use this endpoint.

10.3. OPENID CONNECT COMPARED TO SAML

The following lists a number of factors to consider when choosing a protocol.

For most purposes, Red Hat build of Keycloak recommends using OIDC.

OIDC

OIDC is specifically designed to work with the web.

OIDC is suited for HTML5/JavaScript applications because it is easier to implement on the
client side than SAML.

OIDC tokens are in the JSON format which makes them easier for Javascript to consume.

OIDC has features to make security implementation easier. For example, see the iframe trick
that the specification uses to determine a users login status.

SAML

SAML is designed as a layer to work on top of the web.

SAML can be more verbose than OIDC.

Users pick SAML over OIDC because there is a perception that it is mature.

Users pick SAML over OIDC existing applications that are secured with it.

10.4. DOCKER REGISTRY V2 AUTHENTICATION

NOTE

Docker authentication is disabled by default. To enable docker authentication, see the
Enabling and disabling features chapter.

Docker Registry V2 Authentication is a protocol, similar to OIDC, that authenticates users against
Docker registries. Red Hat build of Keycloak’s implementation of this protocol lets Docker clients use a
Red Hat build of Keycloak authentication server authenticate against a registry. This protocol uses
standard token and signature mechanisms but it does deviate from a true OIDC implementation. It
deviates by using a very specific JSON format for requests and responses as well as mapping repository
names and permissions to the OAuth scope mechanism.

10.4.1. Docker authentication flow

The authentication flow is described in the Docker API documentation. The following is a summary from
the perspective of the Red Hat build of Keycloak authentication server:

Perform a docker login.

The Docker client requests a resource from the Docker registry. If the resource is protected and
no authentication token is in the request, the Docker registry server responds with a 401 HTTP

CHAPTER 10. SSO PROTOCOLS

225

https://openid.net/specs/openid-connect-session-1_0.html#ChangeNotification
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_guide/#features-
https://distribution.github.io/distribution/spec/auth/
https://distribution.github.io/distribution/spec/auth/token/

message with some information on the permissions that are required and the location of the
authorization server.

The Docker client constructs an authentication request based on the 401 HTTP message from
the Docker registry. The client uses the locally cached credentials (from the docker login
command) as part of the HTTP Basic Authentication request to the Red Hat build of Keycloak
authentication server.

The Red Hat build of Keycloak authentication server attempts to authenticate the user and
return a JSON body containing an OAuth-style Bearer token.

The Docker client receives a bearer token from the JSON response and uses it in the
authorization header to request the protected resource.

The Docker registry receives the new request for the protected resource with the token from
the Red Hat build of Keycloak server. The registry validates the token and grants access to the
requested resource (if appropriate).

NOTE

Red Hat build of Keycloak does not create a browser SSO session after successful
authentication with the Docker protocol. The browser SSO session does not use the
Docker protocol as it cannot refresh tokens or obtain the status of a token or session
from the Red Hat build of Keycloak server; therefore a browser SSO session is not
necessary. For more details, see the transient session section.

10.4.2. Red Hat build of Keycloak Docker Registry v2 Authentication Server URI
Endpoints

Red Hat build of Keycloak has one endpoint for all Docker auth v2 requests.

http(s)://authserver.host/realms/{realm-name}/protocol/docker-v2

Red Hat build of Keycloak 24.0 Server Administration Guide

226

https://datatracker.ietf.org/doc/html/rfc2617

CHAPTER 11. CONTROLLING ACCESS TO THE ADMIN
CONSOLE

Each realm created on the Red Hat build of Keycloak has a dedicated Admin Console from which that
realm can be managed. The master realm is a special realm that allows admins to manage more than one
realm on the system. This chapter goes over all the scenarios for this.

11.1. MASTER REALM ACCESS CONTROL

The master realm in Red Hat build of Keycloak is a special realm and treated differently than other
realms. Users in the Red Hat build of Keycloak master realm can be granted permission to manage zero
or more realms that are deployed on the Red Hat build of Keycloak server. When a realm is created, Red
Hat build of Keycloak automatically creates various roles that grant fine-grain permissions to access that
new realm. Access to The Admin Console and Admin REST endpoints can be controlled by mapping
these roles to users in the master realm. It’s possible to create multiple superusers, as well as users that
can only manage specific realms.

11.1.1. Global roles

There are two realm-level roles in the master realm. These are:

admin

create-realm

Users with the admin role are superusers and have full access to manage any realm on the server. Users
with the create-realm role are allowed to create new realms. They will be granted full access to any new
realm they create.

11.1.2. Realm specific roles

Admin users within the master realm can be granted management privileges to one or more other
realms in the system. Each realm in Red Hat build of Keycloak is represented by a client in the master
realm. The name of the client is <realm name>-realm. These clients each have client-level roles defined
which define varying level of access to manage an individual realm.

The roles available are:

view-realm

view-users

view-clients

view-events

manage-realm

manage-users

create-client

manage-clients

manage-events

CHAPTER 11. CONTROLLING ACCESS TO THE ADMIN CONSOLE

227

view-identity-providers

manage-identity-providers

impersonation

Assign the roles you want to your users and they will only be able to use that specific part of the
administration console.

IMPORTANT

Admins with the manage-users role will only be able to assign admin roles to users that
they themselves have. So, if an admin has the manage-users role but doesn’t have the
manage-realm role, they will not be able to assign this role.

11.2. DEDICATED REALM ADMIN CONSOLES

Each realm has a dedicated Admin Console that can be accessed by going to the url /admin/{realm-
name}/console. Users within that realm can be granted realm management permissions by assigning
specific user role mappings.

Each realm has a built-in client called realm-management. You can view this client by going to the
Clients left menu item of your realm. This client defines client-level roles that specify permissions that
can be granted to manage the realm.

view-realm

view-users

view-clients

view-events

manage-realm

manage-users

create-client

manage-clients

manage-events

view-identity-providers

manage-identity-providers

impersonation

Assign the roles you want to your users and they will only be able to use that specific part of the
administration console.

Red Hat build of Keycloak 24.0 Server Administration Guide

228

CHAPTER 12. MANAGING OPENID CONNECT AND SAML
CLIENTS

Clients are entities that can request authentication of a user. Clients come in two forms. The first type
of client is an application that wants to participate in single-sign-on. These clients just want Red Hat
build of Keycloak to provide security for them. The other type of client is one that is requesting an
access token so that it can invoke other services on behalf of the authenticated user. This section
discusses various aspects around configuring clients and various ways to do it.

12.1. MANAGING OPENID CONNECT CLIENTS

OpenID Connect is the recommended protocol to secure applications. It was designed from the ground
up to be web friendly and it works best with HTML5/JavaScript applications.

12.1.1. Creating an OpenID Connect client

To protect an application that uses the OpenID connect protocol, you create a client.

Procedure

1. Click Clients in the menu.

2. Click Create client.

Create client

3. Leave Client type set to OpenID Connect.

4. Enter a Client ID.
This ID is an alphanumeric string that is used in OIDC requests and in the Red Hat build of
Keycloak database to identify the client.

5. Supply a Name for the client.
If you plan to localize this name, set up a replacement string value. For example, a string value
such as ${myapp}. See the Server Developer Guide for more information.

6. Click Save.

This action creates the client and bring you to the Settings tab, where you can perform Basic

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

229

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

This action creates the client and bring you to the Settings tab, where you can perform Basic
configuration.

12.1.2. Basic configuration

The Settings tab includes many options to configure this client.

Settings tab

12.1.2.1. General Settings

Client ID

The alphanumeric ID string that is used in OIDC requests and in the Red Hat build of Keycloak
database to identify the client.

Name

The name for the client in Red Hat build of Keycloak UI screen. To localize the name, set up a
replacement string value. For example, a string value such as ${myapp}. See the Server Developer
Guide for more information.

Description

The description of the client. This setting can also be localized.

Always Display in Console

Always list this client in the Account Console even if this user does not have an active session.

12.1.2.2. Access Settings

Root URL

If Red Hat build of Keycloak uses any configured relative URLs, this value is prepended to them.

Home URL

Provides the default URL for when the auth server needs to redirect or link back to the client.

Valid Redirect URIs

Required field. Enter a URL pattern and click + to add and - to remove existing URLs and click Save.
Exact (case sensitive) string matching is used to compare valid redirect URIs.
You can use wildcards at the end of the URL pattern. For example http://host.com/path/*. To avoid

Red Hat build of Keycloak 24.0 Server Administration Guide

230

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

security issues, if the passed redirect URI contains the userinfo part or its path manages access to
parent directory (/../) no wildcard comparison is performed but the standard and secure exact string
matching.

The full wildcard * valid redirect URI can also be configured to allow any http or https redirect URI.
Please do not use it in production environments.

Exclusive redirect URI patterns are typically more secure. See Unspecific Redirect URIs for more
information.

Web Origins

Enter a URL pattern and click + to add and - to remove existing URLs. Click Save.
This option handles Cross-Origin Resource Sharing (CORS). If browser JavaScript attempts an AJAX
HTTP request to a server whose domain is different from the one that the JavaScript code came
from, the request must use CORS. The server must handle CORS requests, otherwise the browser
will not display or allow the request to be processed. This protocol protects against XSS, CSRF, and
other JavaScript-based attacks.

Domain URLs listed here are embedded within the access token sent to the client application. The
client application uses this information to decide whether to allow a CORS request to be invoked on
it. Only Red Hat build of Keycloak client adapters support this feature. See Securing Applications and
Services Guide for more information.

Admin URL

Callback endpoint for a client. The server uses this URL to make callbacks like pushing revocation
policies, performing backchannel logout, and other administrative operations. For Red Hat build of
Keycloak servlet adapters, this URL can be the root URL of the servlet application. For more
information, see Securing Applications and Services Guide.

12.1.2.3. Capability Config

Client authentication

The type of OIDC client.

ON
For server-side clients that perform browser logins and require client secrets when making an
Access Token Request. This setting should be used for server-side applications.

OFF
For client-side clients that perform browser logins. As it is not possible to ensure that secrets
can be kept safe with client-side clients, it is important to restrict access by configuring
correct redirect URIs.

Authorization

Enables or disables fine-grained authorization support for this client.

Standard Flow

If enabled, this client can use the OIDC Authorization Code Flow.

Direct Access Grants

If enabled, this client can use the OIDC Direct Access Grants .

Implicit Flow

If enabled, this client can use the OIDC Implicit Flow.

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

231

https://fetch.spec.whatwg.org/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/

Service account roles

If enabled, this client can authenticate to Red Hat build of Keycloak and retrieve access token
dedicated to this client. In terms of OAuth2 specification, this enables support of Client Credentials
Grant for this client.

Auth 2.0 Device Authorization Grant

If enabled, this client can use the OIDC Device Authorization Grant .

OIDC CIBA Grant

If enabled, this client can use the OIDC Client Initiated Backchannel Authentication Grant .

12.1.2.4. Login settings

Login theme

A theme to use for login, OTP, grant registration, and forgotten password pages.

Consent required

If enabled, users have to consent to client access.
For client-side clients that perform browser logins. As it is not possible to ensure that secrets can be
kept safe with client-side clients, it is important to restrict access by configuring correct redirect
URIs.

Display client on screen

This switch applies if Consent Required is Off.

Off
The consent screen will contain only the consents corresponding to configured client scopes.

On
There will be also one item on the consent screen about this client itself.

Client consent screen text

Applies if Consent required and Display client on screen are enabled. Contains the text that will be
on the consent screen about permissions for this client.

12.1.2.5. Logout settings

Front channel logout

If Front Channel Logout is enabled, the application should be able to log out users through the front
channel as per OpenID Connect Front-Channel Logout specification. If enabled, you should also
provide the Front-Channel Logout URL.

Front-channel logout URL

URL that will be used by Red Hat build of Keycloak to send logout requests to clients through the
front-channel.

Backchannel logout URL

URL that will cause the client to log itself out when a logout request is sent to this realm (via
end_session_endpoint). If omitted, no logout requests are sent to the client.

Backchannel logout session required

Specifies whether a session ID Claim is included in the Logout Token when the Backchannel Logout
URL is used.

Backchannel logout revoke offline sessions

Red Hat build of Keycloak 24.0 Server Administration Guide

232

https://openid.net/specs/openid-connect-frontchannel-1_0.html

Specifies whether a revoke_offline_access event is included in the Logout Token when the
Backchannel Logout URL is used. Red Hat build of Keycloak will revoke offline sessions when
receiving a Logout Token with this event.

12.1.3. Advanced configuration

After completing the fields on the Settings tab, you can use the other tabs to perform advanced
configuration.

12.1.3.1. Advanced tab

When you click the Advanced tab, additional fields are displayed. For details on a specific field, click the
question mark icon for that field. However, certain fields are described in detail in this section.

12.1.3.2. Fine grain OpenID Connect configuration

Logo URL

URL that references a logo for the Client application.

Policy URL

URL that the Relying Party Client provides to the End-User to read about how the profile data will be
used.

Terms of Service URL

URL that the Relying Party Client provides to the End-User to read about the Relying Party’s terms of
service.

Signed and Encrypted ID Token Support

Red Hat build of Keycloak can encrypt ID tokens according to the Json Web Encryption (JWE)
specification. The administrator determines if ID tokens are encrypted for each client.

The key used for encrypting the ID token is the Content Encryption Key (CEK). Red Hat build of
Keycloak and a client must negotiate which CEK is used and how it is delivered. The method used to
determine the CEK is the Key Management Mode. The Key Management Mode that Red Hat build of
Keycloak supports is Key Encryption.

In Key Encryption:

1. The client generates an asymmetric cryptographic key pair.

2. The public key is used to encrypt the CEK.

3. Red Hat build of Keycloak generates a CEK per ID token

4. Red Hat build of Keycloak encrypts the ID token using this generated CEK

5. Red Hat build of Keycloak encrypts the CEK using the client’s public key.

6. The client decrypts this encrypted CEK using their private key

7. The client decrypts the ID token using the decrypted CEK.

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

233

https://datatracker.ietf.org/doc/html/rfc7516

No party, other than the client, can decrypt the ID token.

The client must pass its public key for encrypting CEK to Red Hat build of Keycloak. Red Hat build of
Keycloak supports downloading public keys from a URL provided by the client. The client must provide
public keys according to the Json Web Keys (JWK) specification.

The procedure is:

1. Open the client’s Keys tab.

2. Toggle JWKS URL to ON.

3. Input the client’s public key URL in the JWKS URL textbox.

Key Encryption’s algorithms are defined in the Json Web Algorithm (JWA) specification. Red Hat build
of Keycloak supports:

RSAES-PKCS1-v1_5(RSA1_5)

RSAES OAEP using default parameters (RSA-OAEP)

RSAES OAEP 256 using SHA-256 and MFG1 (RSA-OAEP-256)

The procedure to select the algorithm is:

1. Open the client’s Advanced tab.

2. Open Fine Grain OpenID Connect Configuration.

3. Select the algorithm from ID Token Encryption Content Encryption Algorithm pulldown
menu.

12.1.3.3. OpenID Connect Compatibility Modes

This section exists for backward compatibility. Click the question mark icons for details on each field.

OAuth 2.0 Mutual TLS Certificate Bound Access Tokens Enabled

Mutual TLS binds an access token and a refresh token together with a client certificate, which is
exchanged during a TLS handshake. This binding prevents an attacker from using stolen tokens.

This type of token is a holder-of-key token. Unlike bearer tokens, the recipient of a holder-of-key token
can verify if the sender of the token is legitimate.

If this setting is on, the workflow is:

1. A token request is sent to the token endpoint in an authorization code flow or hybrid flow.

2. Red Hat build of Keycloak requests a client certificate.

3. Red Hat build of Keycloak receives the client certificate.

4. Red Hat build of Keycloak successfully verifies the client certificate.

If verification fails, Red Hat build of Keycloak rejects the token.

In the following cases, Red Hat build of Keycloak will verify the client sending the access token or the

Red Hat build of Keycloak 24.0 Server Administration Guide

234

https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518#section-4.1

In the following cases, Red Hat build of Keycloak will verify the client sending the access token or the
refresh token:

A token refresh request is sent to the token endpoint with a holder-of-key refresh token.

A UserInfo request is sent to UserInfo endpoint with a holder-of-key access token.

A logout request is sent to non-OIDC compliant Red Hat build of Keycloak proprietary Logout
endpoint with a holder-of-key refresh token.

See Mutual TLS Client Certificate Bound Access Tokens in the OAuth 2.0 Mutual TLS Client
Authentication and Certificate Bound Access Tokens for more details.

NOTE

Currently, Red Hat build of Keycloak client adapters do not support holder-of-key token
verification. Red Hat build of Keycloak adapters treat access and refresh tokens as bearer
tokens.

OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer (DPoP)

DPoP binds an access token and a refresh token together with the public part of a client’s key pair. This
binding prevents an attacker from using stolen tokens.

This type of token is a holder-of-key token. Unlike bearer tokens, the recipient of a holder-of-key token
can verify if the sender of the token is legitimate.

If the client switch OAuth 2.0 DPoP Bound Access Tokens Enabled is on, the workflow is:

1. A token request is sent to the token endpoint in an authorization code flow or hybrid flow.

2. Red Hat build of Keycloak requests a DPoP proof.

3. Red Hat build of Keycloak receives the DPoP proof.

4. Red Hat build of Keycloak successfully verifies the DPoP proof.

If verification fails, Red Hat build of Keycloak rejects the token.

If the switch OAuth 2.0 DPoP Bound Access Tokens Enabled is off, the client can still send DPoP
proof in the token request. In that case, Red Hat build of Keycloak will verify DPoP proof and will add the
thumbprint to the token. But if the switch is off, DPoP binding is not enforced by the Red Hat build of
Keycloak server for this client. It is recommended to have this switch on if you want to make sure that
particular client always uses DPoP binding.

In the following cases, Red Hat build of Keycloak will verify the client sending the access token or the
refresh token:

A token refresh request is sent to the token endpoint with a holder-of-key refresh token. This
verification is done only for public clients as described in the DPoP specification. For
confidential clients, the verification is not done as client authentication with proper client
credentials is in place to ensure that request comes from the legitimate client. For public clients,
both access tokens and refresh tokens are DPoP bound. For confidential clients, only access
tokens are DPoP bound.

A UserInfo request is sent to UserInfo endpoint with a holder-of-key access token.

A logout request is sent to a non-OIDC compliant Red Hat build of Keycloak proprietary logout

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

235

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-08#section-3

A logout request is sent to a non-OIDC compliant Red Hat build of Keycloak proprietary logout
endpoint Logout endpoint with a holder-of-key refresh token. This verification is done only for
public clients as described above.

See OAuth 2.0 Demonstrating Proof of Possession (DPoP) for more details.

NOTE

Currently, Red Hat build of Keycloak client adapters do not support DPoP holder-of-key
token verification. Red Hat build of Keycloak adapters treat access and refresh tokens as
bearer tokens.

NOTE

DPoP is Technology Preview and is not fully supported. This feature is disabled by
default.

To enable start the server with --features=preview or --features=dpop

Advanced Settings for OIDC

The Advanced Settings for OpenID Connect allows you to configure overrides at the client level for
session and token timeouts .

Configuration Description

Access Token Lifespan The value overrides the realm option with same
name.

Red Hat build of Keycloak 24.0 Server Administration Guide

236

https://datatracker.ietf.org/doc/html/rfc9449

Client Session Idle The value overrides the realm option with same
name. The value should be shorter than the global
SSO Session Idle.

Client Session Max The value overrides the realm option with same
name. The value should be shorter than the global
SSO Session Max.

Client Offline Session Idle This setting allows you to configure a shorter offline
session idle timeout for the client. The timeout is
amount of time the session remains idle before Red
Hat build of Keycloak revokes its offline token. If not
set, realm Offline Session Idle is used.

Client Offline Session Max This setting allows you to configure a shorter offline
session max lifespan for the client. The lifespan is the
maximum time before Red Hat build of Keycloak
revokes the corresponding offline token. This option
needs Offline Session Max Limited enabled globally
in the realm, and defaults to Offline Session Max.

Configuration Description

Proof Key for Code Exchange Code Challenge Method

If an attacker steals an authorization code of a legitimate client, Proof Key for Code Exchange (PKCE)
prevents the attacker from receiving the tokens that apply to the code.

An administrator can select one of these options:

(blank)

Red Hat build of Keycloak does not apply PKCE unless the client sends appropriate PKCE parameters
to Red Hat build of Keycloaks authorization endpoint.

S256

Red Hat build of Keycloak applies to the client PKCE whose code challenge method is S256.

plain

Red Hat build of Keycloak applies to the client PKCE whose code challenge method is plain.

See RFC 7636 Proof Key for Code Exchange by OAuth Public Clients for more details.

ACR to Level of Authentication (LoA) Mapping

In the advanced settings of a client, you can define which Authentication Context Class Reference
(ACR) value is mapped to which Level of Authentication (LoA). This mapping can be specified also at
the realm as mentioned in the ACR to LoA Mapping. A best practice is to configure this mapping at the
realm level, which allows to share the same settings across multiple clients.

The Default ACR Values can be used to specify the default values when the login request is sent from

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

237

https://datatracker.ietf.org/doc/html/rfc7636

The Default ACR Values can be used to specify the default values when the login request is sent from
this client to Red Hat build of Keycloak without acr_values parameter and without a claims parameter
that has an acr claim attached. See official OIDC dynamic client registration specification .

WARNING

Note that default ACR values are used as the default level, however it cannot be
reliably used to enforce login with the particular level. For example, assume that you
configure the Default ACR Values to level 2. Then by default, users will be required
to authenticate with level 2. However when the user explicitly attaches the
parameter into login request such as acr_values=1, then the level 1 will be used. As
a result, if the client really requires level 2, the client is encouraged to check the
presence of the acr claim inside ID Token and double-check that it contains the
requested level 2.

For further details see Step-up Authentication and the official OIDC specification.

12.1.4. Confidential client credentials

If the Client authentication of the client is set to ON, the credentials of the client must be configured
under the Credentials tab.

Credentials tab



Red Hat build of Keycloak 24.0 Server Administration Guide

238

https://openid.net/specs/openid-connect-registration-1_0.html#ClientMetadata
https://openid.net/specs/openid-connect-core-1_0.html#acrSemantics

The Client Authenticator drop-down list specifies the type of credential to use for your client.

Client ID and Secret

This choice is the default setting. The secret is automatically generated. Click Regenerate to recreate
the secret if necessary.

Signed JWT

Signed JWT is "Signed Json Web Token".

When choosing this credential type you will have to also generate a private key and certificate for the
client in the tab Keys. The private key will be used to sign the JWT, while the certificate is used by the
server to verify the signature.

Keys tab

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

239

Click on the Generate new keys button to start this process.

Generate keys

1. Select the archive format you want to use.

2. Enter a key password.

3. Enter a store password.

4. Click Generate.

When you generate the keys, Red Hat build of Keycloak will store the certificate and you download the

Red Hat build of Keycloak 24.0 Server Administration Guide

240

When you generate the keys, Red Hat build of Keycloak will store the certificate and you download the
private key and certificate for your client.

You can also generate keys using an external tool and then import the client’s certificate by clicking
Import Certificate.

Import certificate

1. Select the archive format of the certificate.

2. Enter the store password.

3. Select the certificate file by clicking Import File.

4. Click Import.

Importing a certificate is unnecessary if you click Use JWKS URL. In this case, you can provide the URL
where the public key is published in JWK format. With this option, if the key is ever changed, Red Hat
build of Keycloak reimports the key.

If you are using a client secured by Red Hat build of Keycloak adapter, you can configure the JWKS URL
in this format, assuming that https://myhost.com/myapp is the root URL of your client application:

See Server Developer Guide for more details.

Signed JWT with Client Secret

If you select this option, you can use a JWT signed by client secret instead of the private key.

https://myhost.com/myapp/k_jwks

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

241

https://datatracker.ietf.org/doc/html/rfc7517
https://myhost.com/myapp
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

The client secret will be used to sign the JWT by the client.

X509 Certificate

Red Hat build of Keycloak will validate if the client uses proper X509 certificate during the TLS
Handshake.

X509 certificate

The validator also checks the Subject DN field of the certificate with a configured regexp validation
expression. For some use cases, it is sufficient to accept all certificates. In that case, you can use (.*?)
(?:$) expression.

Two ways exist for Red Hat build of Keycloak to obtain the Client ID from the request:

The client_id parameter in the query (described in Section 2.2 of the OAuth 2.0 Specification).

Supply client_id as a form parameter.

12.1.5. Client Secret Rotation

IMPORTANT

Please note that Client Secret Rotation support is in development. Use this feature
experimentally.

For a client with Confidential Client authentication Red Hat build of Keycloak supports the functionality
of rotating client secrets through Client Policies.

The client secrets rotation policy provides greater security in order to alleviate problems such as secret
leakage. Once enabled, Red Hat build of Keycloak supports up to two concurrently active secrets for
each client. The policy manages rotations according to the following settings:

Secret expiration: [seconds] - When the secret is rotated, this is the expiration of time of the
new secret. The amount, in seconds, added to the secret creation date. Calculated at policy
execution time.

Rotated secret expiration: [seconds] - When the secret is rotated, this value is the remaining

Red Hat build of Keycloak 24.0 Server Administration Guide

242

https://datatracker.ietf.org/doc/html/rfc6749

expiration time for the old secret. This value should be always smaller than Secret expiration.
When the value is 0, the old secret will be immediately removed during client rotation. The
amount, in seconds, added to the secret rotation date. Calculated at policy execution time.

Remaining expiration time for rotation during update: [seconds] - Time period when an
update to a dynamic client should perform client secret rotation. Calculated at policy execution
time.

When a client secret rotation occurs, a new main secret is generated and the old client main secret
becomes the secondary secret with a new expiration date.

12.1.5.1. Rules for client secret rotation

Rotations do not occur automatically or through a background process. In order to perform the rotation,
an update action is required on the client, either through the Red Hat build of Keycloak Admin Console
through the function of Regenerate Secret, in the client’s credentials tab or Admin REST API. When
invoking a client update action, secret rotation occurs according to the rules:

When the value of Secret expiration is less than the current date.

During dynamic client registration client-update request, the client secret will be automatically
rotated if the value of Remaining expiration time for rotation during update match the period
between the current date and the Secret expiration.

Additionally it is possible through Admin REST API to force a client secret rotation at any time.

NOTE

During the creation of new clients, if the client secret rotation policy is active, the
behavior will be applied automatically.

WARNING

To apply the secret rotation behavior to an existing client, update that client after
you define the policy so that the behavior is applied.

12.1.6. Creating an OIDC Client Secret Rotation Policy

The following is an example of defining a secret rotation policy:

Procedure

1. Click Realm Settings in the menu.

2. Click Client Policies tab.

3. On the Profiles page, click Create client profile.

Create a profile



CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

243

4. Enter any name for Name.

5. Enter a description that helps you identify the purpose of the profile for Description.

6. Click Save.
This action creates the profile and enables you to configure executors.

7. Click Add executor to configure an executor for this profile.

Create a profile executor

8. Select secret-rotation for Executor Type.

9. Enter the maximum duration time of each secret, in seconds, for Secret Expiration.

10. Enter the maximum duration time of each rotated secret, in seconds, for Rotated Secret
Expiration.

WARNING

Remember that the Rotated Secret Expiration value must always be less
than Secret Expiration.

11. Enter the amount of time, in seconds, after which any update action will update the client for
Remain Expiration Time.



Red Hat build of Keycloak 24.0 Server Administration Guide

244

12. Click Add.
In the example above:

Each secret is valid for one week.

The rotated secret expires after two days.

The window for updating dynamic clients starts one day before the secret expires.

13. Return to the Client Policies tab.

14. Click Policies.

15. Click Create client policy.

Create the Client Secret Rotation Policy

16. Enter any name for Name.

17. Enter a description that helps you identify the purpose of the policy for Description.

18. Click Save.
This action creates the policy and enables you to associate policies with profiles. It also allows
you to configure the conditions for policy execution.

19. Under Conditions, click Add condition.

Create the Client Secret Rotation Policy Condition

20. To apply the behavior to all confidential clients select client-access-type in the Condition Type
field

NOTE

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

245

NOTE

To apply to a specific group of clients, another approach would be to select the
client-roles type in the Condition Type field. In this way, you could create specific
roles and assign a custom rotation configuration to each role.

21. Add confidential to the field Client Access Type.

22. Click Add.

23. Back in the policy setting, under Client Profiles , click Add client profile and then select Weekly
Client Secret Rotation Profile from the list and then click Add.

Client Secret Rotation Policy

NOTE

To apply the secret rotation behavior to an existing client, follow the following steps:

Using the Admin Console

1. Click Clients in the menu.

2. Click a client.

3. Click the Credentials tab.

4. Click Re-generate of the client secret.

Using client REST services it can be executed in two ways:

Through an update operation on a client

Through the regenerate client secret endpoint

12.1.7. Using a service account

Each OIDC client has a built-in service account . Use this service account to obtain an access token.

Procedure

Red Hat build of Keycloak 24.0 Server Administration Guide

246

Procedure

1. Click Clients in the menu.

2. Select your client.

3. Click the Settings tab.

4. Toggle Client authentication to On.

5. Select Service accounts roles.

6. Click Save.

7. Configure your client credentials.

8. Click the Scope tab.

9. Verify that you have roles or toggle Full Scope Allowed to ON.

10. Click the Service Account Roles tab

11. Configure the roles available to this service account for your client.

Roles from access tokens are the intersection of:

Role scope mappings of a client combined with the role scope mappings inherited from linked
client scopes.

Service account roles.

The REST URL to invoke is /realms/{realm-name}/protocol/openid-connect/token. This URL must be
invoked as a POST request and requires that you post the client credentials with the request.

By default, client credentials are represented by the clientId and clientSecret of the client in the
Authorization: Basic header but you can also authenticate the client with a signed JWT assertion or any
other custom mechanism for client authentication.

You also need to set the grant_type parameter to "client_credentials" as per the OAuth2 specification.

For example, the POST invocation to retrieve a service account can look like this:

 POST /realms/demo/protocol/openid-connect/token
 Authorization: Basic cHJvZHVjdC1zYS1jbGllbnQ6cGFzc3dvcmQ=
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials

The response would be similar to this Access Token Response from the OAuth 2.0 specification.

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token":"2YotnFZFEjr1zCsicMWpAA",

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

247

https://datatracker.ietf.org/doc/html/rfc6749#section-4.4.3

 "token_type":"bearer",
 "expires_in":60
}

Only the access token is returned by default. No refresh token is returned and no user session is created
on the Red Hat build of Keycloak side upon successful authentication by default. Due to the lack of a
refresh token, re-authentication is required when the access token expires. However, this situation does
not mean any additional overhead for the Red Hat build of Keycloak server because sessions are not
created by default.

In this situation, logout is unnecessary. However, issued access tokens can be revoked by sending
requests to the OAuth2 Revocation Endpoint as described in the OpenID Connect Endpoints section.

Additional resources

For more details, see Client Credentials Grant.

12.1.8. Audience support

Typically, the environment where Red Hat build of Keycloak is deployed consists of a set of confidential
or public client applications that use Red Hat build of Keycloak for authentication.

Services (Resource Servers in the OAuth 2 specification) are also available that serve requests from
client applications and provide resources to these applications. These services require an Access token
(Bearer token) to be sent to them to authenticate a request. This token is obtained by the frontend
application upon login to Red Hat build of Keycloak.

In the environment where trust among services is low, you may encounter this scenario:

1. A frontend client application requires authentication against Red Hat build of Keycloak.

2. Red Hat build of Keycloak authenticates a user.

3. Red Hat build of Keycloak issues a token to the application.

4. The application uses the token to invoke an untrusted service.

5. The untrusted service returns the response to the application. However, it keeps the
applications token.

6. The untrusted service then invokes a trusted service using the applications token. This results in
broken security as the untrusted service misuses the token to access other services on behalf of
the client application.

This scenario is unlikely in environments with a high level of trust between services but not in
environments where trust is low. In some environments, this workflow may be correct as the untrusted
service may have to retrieve data from a trusted service to return data to the original client application.

An unlimited audience is useful when a high level of trust exists between services. Otherwise, the
audience should be limited. You can limit the audience and, at the same time, allow untrusted services to
retrieve data from trusted services. In this case, ensure that the untrusted service and the trusted
service are added as audiences to the token.

To prevent any misuse of the access token, limit the audience on the token and configure your services
to verify the audience on the token. The flow will change as follows:

Red Hat build of Keycloak 24.0 Server Administration Guide

248

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-08#section-4.2

1. A frontend application authenticates against Red Hat build of Keycloak.

2. Red Hat build of Keycloak authenticates a user.

3. Red Hat build of Keycloak issues a token to the application. The application knows that it will
need to invoke an untrusted service so it places scope=<untrusted service> in the
authentication request sent to Red Hat build of Keycloak (see Client Scopes section for more
details about the scope parameter).
The token issued to the application contains a reference to the untrusted service in its audience
("audience": ["<untrusted service>"]) which declares that the client uses this access token to
invoke the untrusted service.

4. The untrusted service invokes a trusted service with the token. Invocation is not successful
because the trusted service checks the audience on the token and find that its audience is only
for the untrusted service. This behavior is expected and security is not broken.

If the client wants to invoke the trusted service later, it must obtain another token by reissuing the SSO
login with scope=<trusted service>. The returned token will then contain the trusted service as an
audience:

Use this value to invoke the <trusted service>.

12.1.8.1. Setup

When setting up audience checking:

Ensure that services are configured to check audience on the access token sent to them by
adding the flag verify-token-audience in the adapter configuration. See Adapter configuration
for details.

Ensure that access tokens issued by Red Hat build of Keycloak contain all necessary audiences.
Audiences can be added using the client roles as described in the next section or hardcoded.
See Hardcoded audience.

12.1.8.2. Automatically add audience

An Audience Resolve protocol mapper is defined in the default client scope roles. The mapper checks for
clients that have at least one client role available for the current token. The client ID of each client is
then added as an audience, which is useful if your service clients rely on client roles. Service client could
be usually a client without any flows enabled, which may not have any tokens issued directly to itself. It
represents an OAuth 2 Resource Server.

For example, for a service client and a confidential client, you can use the access token issued for the
confidential client to invoke the service client REST service. The service client will be automatically
added as an audience to the access token issued for the confidential client if the following are true:

The service client has any client roles defined on itself.

Target user has at least one of those client roles assigned.

Confidential client has the role scope mappings for the assigned role.

NOTE

"audience": ["<trusted service>"]

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

249

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_java_adapter_config

NOTE

If you want to ensure that the audience is not added automatically, do not configure role
scope mappings directly on the confidential client. Instead, you can create a dedicated
client scope that contains the role scope mappings for the client roles of your dedicated
client scope.

Assuming that the client scope is added as an optional client scope to the confidential
client, the client roles and the audience will be added to the token if explicitly requested
by the scope=<trusted service> parameter.

NOTE

The frontend client itself is not automatically added to the access token audience,
therefore allowing easy differentiation between the access token and the ID token, since
the access token will not contain the client for which the token is issued as an audience.

If you need the client itself as an audience, see the hardcoded audience option. However,
using the same client as both frontend and REST service is not recommended.

12.1.8.3. Hardcoded audience

When your service relies on realm roles or does not rely on the roles in the token at all, it can be useful to
use a hardcoded audience. A hardcoded audience is a protocol mapper, that will add the client ID of the
specified service client as an audience to the token. You can use any custom value, for example a URL, if
you want to use a different audience than the client ID.

You can add the protocol mapper directly to the frontend client. If the protocol mapper is added
directly, the audience will always be added as well.

For more control over the protocol mapper, you can create the protocol mapper on the dedicated client
scope, which will be called for example good-service .

Audience protocol mapper

From the Client details tab of the good-service client, you can generate the adapter
configuration and confirm that verify-token-audience is set to true. This action forces the
adapter to verify the audience if you use this configuration.

Red Hat build of Keycloak 24.0 Server Administration Guide

250

You need to ensure that the confidential client is able to request good-service as an audience
in its tokens.
On the confidential client:

1. Click the Client Scopes tab.

2. Assign good-service as an optional (or default) client scope.
See Client Scopes Linking section for more details.

You can optionally Evaluate Client Scopes and generate an example access token. good-
service will be added to the audience of the generated access token if good-service is
included in the scope parameter, when you assigned it as an optional client scope.

In your confidential client application, ensure that the scope parameter is used. The value
good-service must be included when you want to issue the token for accessing good-service .
See:

parameters forwarding section if your application uses the servlet adapter.

javascript adapter section if your application uses the javascript adapter.

NOTE

Both the Audience and Audience Resolve protocol mappers add the audiences to the
access token only, by default. The ID Token typically contains only a single audience, the
client ID for which the token was issued, a requirement of the OpenID Connect
specification. However, the access token does not necessarily have the client ID, which
was the token issued for, unless the audience mappers added it.

12.2. CREATING A SAML CLIENT

Red Hat build of Keycloak supports SAML 2.0 for registered applications. POST and Redirect bindings
are supported. You can choose to require client signature validation. You can have the server sign and/or
encrypt responses as well.

Procedure

1. Click Clients in the menu.

2. Click Create client to go to the Create client page.

3. Set Client type to SAML.

Create client

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

251

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_params_forwarding
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_javascript_adapter

4. Enter the Client ID of the client. This is often a URL and is the expected issuer value in SAML
requests sent by the application.

5. Click Save. This action creates the client and brings you to the Settings tab.

The following sections describe each setting on this tab.

12.2.1. Settings tab

The Settings tab includes many options to configure this client.

Client settings

12.2.1.1. General settings

Client ID

The alphanumeric ID string that is used in OIDC requests and in the Red Hat build of Keycloak
database to identify the client. This value must match the issuer value sent with AuthNRequests. Red
Hat build of Keycloak pulls the issuer from the Authn SAML request and match it to a client by this

Red Hat build of Keycloak 24.0 Server Administration Guide

252

value.

Name

The name for the client in a Red Hat build of Keycloak UI screen. To localize the name, set up a
replacement string value. For example, a string value such as ${myapp}. See the Server Developer
Guide for more information.

Description

The description of the client. This setting can also be localized.

Always Display in Console

Always list this client in the Account Console even if this user does not have an active session.

12.2.1.2. Access Settings

Root URL

When Red Hat build of Keycloak uses a configured relative URL, this value is prepended to the URL.

Home URL

If Red Hat build of Keycloak needs to link to a client, this URL is used.

Valid Redirect URIs

Enter a URL pattern and click the + sign to add. Click the - sign to remove. Click Save to save these
changes. Wildcards values are allowed only at the end of a URL. For example, http://host.com/*$$.
This field is used when the exact SAML endpoints are not registered and Red Hat build of Keycloak
pulls the Assertion Consumer URL from a request.

IDP-Initiated SSO URL name

URL fragment name to reference client when you want to do IDP Initiated SSO. Leaving this empty
will disable IDP Initiated SSO. The URL you will reference from your browser will be: server-
root/realms/{realm}/protocol/saml/clients/{client-url-name}

IDP Initiated SSO Relay State

Relay state you want to send with SAML request when you want to do IDP Initiated SSO.

Master SAML Processing URL

This URL is used for all SAML requests and the response is directed to the SP. It is used as the
Assertion Consumer Service URL and the Single Logout Service URL.
If login requests contain the Assertion Consumer Service URL then those login requests will take
precedence. This URL must be validated by a registered Valid Redirect URI pattern.

12.2.1.3. SAML capabilities

Name ID Format

The Name ID Format for the subject. This format is used if no name ID policy is specified in a request,
or if the Force Name ID Format attribute is set to ON.

Force Name ID Format

If a request has a name ID policy, ignore it and use the value configured in the Admin Console under
Name ID Format.

Force POST Binding

By default, Red Hat build of Keycloak responds using the initial SAML binding of the original request.
By enabling Force POST Binding, Red Hat build of Keycloak responds using the SAML POST
binding even if the original request used the redirect binding.

Force artifact binding

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

253

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/
http://host.com/*$$

If enabled, response messages are returned to the client through the SAML ARTIFACT binding
system.

Include AuthnStatement

SAML login responses may specify the authentication method used, such as password, as well as
timestamps of the login and the session expiration. Include AuthnStatement is enabled by default,
so that the AuthnStatement element will be included in login responses. Setting this to OFF
prevents clients from determining the maximum session length, which can create client sessions that
do not expire.

Include OneTimeUse Condition

If enable, a OneTimeUse Condition is included in login responses.

Optimize REDIRECT signing key lookup

When set to ON, the SAML protocol messages include the Red Hat build of Keycloak native
extension. This extension contains a hint with the signing key ID. The SP uses the extension for
signature validation instead of attempting to validate the signature using keys.
This option applies to REDIRECT bindings where the signature is transferred in query parameters and
this information is not found in the signature information. This is contrary to POST binding messages
where key ID is always included in document signature.

This option is used when Red Hat build of Keycloak server and adapter provide the IDP and SP. This
option is only relevant when Sign Documents is set to ON.

12.2.1.4. Signature and Encryption

Sign Documents

When set to ON, Red Hat build of Keycloak signs the document using the realms private key.

Sign Assertions

The assertion is signed and embedded in the SAML XML Auth response.

Signature Algorithm

The algorithm used in signing SAML documents. Note that SHA1 based algorithms are deprecated
and may be removed in a future release. We recommend the use of some more secure algorithm
instead of *_SHA1. Also, with *_SHA1 algorithms, verifying signatures do not work if the SAML client
runs on Java 17 or higher.

SAML Signature Key Name

Signed SAML documents sent using POST binding contain the identification of the signing key in the
KeyName element. This action can be controlled by the SAML Signature Key Name option. This
option controls the contents of the Keyname.

KEY_ID The KeyName contains the key ID. This option is the default option.

CERT_SUBJECT The KeyName contains the subject from the certificate corresponding to
the realm key. This option is expected by Microsoft Active Directory Federation Services.

NONE The KeyName hint is completely omitted from the SAML message.

Canonicalization Method

The canonicalization method for XML signatures.

12.2.1.5. Login settings

Login theme

Red Hat build of Keycloak 24.0 Server Administration Guide

254

A theme to use for login, OTP, grant registration, and forgotten password pages.

Consent required

If enabled, users have to consent to client access.
For client-side clients that perform browser logins. As it is not possible to ensure that secrets can be
kept safe with client-side clients, it is important to restrict access by configuring correct redirect
URIs.

Display client on screen

This switch applies if Consent Required is Off.

Off
The consent screen will contain only the consents corresponding to configured client scopes.

On
There will be also one item on the consent screen about this client itself.

Client consent screen text

Applies if Consent required and Display client on screen are enabled. Contains the text that will be
on the consent screen about permissions for this client.

12.2.1.6. Logout settings

Front channel logout

If Front Channel Logout is enabled, the application requires a browser redirect to perform a logout.
For example, the application may require a cookie to be reset which could only be done via a redirect.
If Front Channel Logout is disabled, Red Hat build of Keycloak invokes a background SAML request
to log out of the application.

12.2.2. Keys tab

Encrypt Assertions

Encrypts the assertions in SAML documents with the realms private key. The AES algorithm uses a
key size of 128 bits.

Client Signature Required

If Client Signature Required is enabled, documents coming from a client are expected to be signed.
Red Hat build of Keycloak will validate this signature using the client public key or cert set up in the
Keys tab.

Allow ECP Flow

If true, this application is allowed to use SAML ECP profile for authentication.

12.2.3. Advanced tab

This tab has many fields for specific situations. Some fields are covered in other topics. For details on
other fields, click the question mark icon.

12.2.3.1. Fine Grain SAML Endpoint Configuration

Logo URL

URL that references a logo for the Client application.

Policy URL

URL that the Relying Party Client provides to the End-User to read about how the profile data will

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

255

URL that the Relying Party Client provides to the End-User to read about how the profile data will
be used.

Terms of Service URL

URL that the Relying Party Client provides to the End-User to read about the Relying Party’s terms
of service.

Assertion Consumer Service POST Binding URL

POST Binding URL for the Assertion Consumer Service.

Assertion Consumer Service Redirect Binding URL

Redirect Binding URL for the Assertion Consumer Service.

Logout Service POST Binding URL

POST Binding URL for the Logout Service.

Logout Service Redirect Binding URL

Redirect Binding URL for the Logout Service.

Logout Service Artifact Binding URL

Artifact Binding URL for the Logout Service. When set together with the Force Artifact Binding
option, Artifact binding is forced for both login and logout flows. Artifact binding is not used for
logout unless this property is set.

Logout Service SOAP Binding URL

Redirect Binding URL for the Logout Service. Only applicable if back channel logout is used.

Artifact Binding URL

URL to send the HTTP artifact messages to.

Artifact Resolution Service

URL of the client SOAP endpoint where to send the ArtifactResolve messages to.

12.2.4. IDP Initiated login

IDP Initiated Login is a feature that allows you to set up an endpoint on the Red Hat build of Keycloak
server that will log you into a specific application/client. In the Settings tab for your client, you need to
specify the IDP Initiated SSO URL Name. This is a simple string with no whitespace in it. After this you
can reference your client at the following URL: root/realms/{realm}/protocol/saml/clients/{url-name}

The IDP initiated login implementation prefers POST over REDIRECT binding (check saml bindings for
more information). Therefore the final binding and SP URL are selected in the following way:

1. If the specific Assertion Consumer Service POST Binding URL is defined (inside Fine Grain
SAML Endpoint Configuration section of the client settings) POST binding is used through
that URL.

2. If the general Master SAML Processing URL is specified then POST binding is used again
throughout this general URL.

3. As the last resort, if the Assertion Consumer Service Redirect Binding URL is configured
(inside Fine Grain SAML Endpoint Configuration) REDIRECT binding is used with this URL.

If your client requires a special relay state, you can also configure this on the Settings tab in the IDP
Initiated SSO Relay State field. Alternatively, browsers can specify the relay state in a RelayState
query parameter, i.e. root/realms/{realm}/protocol/saml/clients/{url-name}?RelayState=thestate.

When using identity brokering, it is possible to set up an IDP Initiated Login for a client from an external
IDP. The actual client is set up for IDP Initiated Login at broker IDP as described above. The external

Red Hat build of Keycloak 24.0 Server Administration Guide

256

IDP has to set up the client for application IDP Initiated Login that will point to a special URL pointing to
the broker and representing IDP Initiated Login endpoint for a selected client at the brokering IDP. This
means that in client settings at the external IDP:

IDP Initiated SSO URL Name is set to a name that will be published as IDP Initiated Login initial
point,

Assertion Consumer Service POST Binding URL in the Fine Grain SAML Endpoint
Configuration section has to be set to the following URL: broker-root/realms/{broker-
realm}/broker/{idp-name}/endpoint/clients/{client-id}, where:

broker-root is base broker URL

broker-realm is name of the realm at broker where external IDP is declared

idp-name is name of the external IDP at broker

client-id is the value of IDP Initiated SSO URL Name attribute of the SAML client defined
at broker. It is this client, which will be made available for IDP Initiated Login from the
external IDP.

Please note that you can import basic client settings from the brokering IDP into client settings of the
external IDP - just use SP Descriptor available from the settings of the identity provider in the brokering
IDP, and add clients/client-id to the endpoint URL.

12.2.5. Using an entity descriptor to create a client

Instead of registering a SAML 2.0 client manually, you can import the client using a standard SAML
Entity Descriptor XML file.

The Client page includes an Import client option.

Add client

Procedure

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

257

1. Click Browse.

2. Load the file that contains the XML entity descriptor information.

3. Review the information to ensure everything is set up correctly.

Some SAML client adapters, such as mod-auth-mellon , need the XML Entity Descriptor for the IDP. You
can find this descriptor by going to this URL:

root/realms/{realm}/protocol/saml/descriptor

where realm is the realm of your client.

12.3. CLIENT LINKS

To link from one client to another, Red Hat build of Keycloak provides a redirect endpoint:
/realms/realm_name/clients/{client-id}/redirect.

If a client accesses this endpoint using a HTTP GET request, Red Hat build of Keycloak returns the
configured base URL for the provided Client and Realm in the form of an HTTP 307 (Temporary
Redirect) in the response’s Location header. As a result of this, a client needs only to know the Realm
name and the Client ID to link to them. This indirection avoids hard-coding client base URLs.

As an example, given the realm master and the client-id account:

http://host:port/realms/master/clients/account/redirect

This URL temporarily redirects to: http://host:port/realms/master/account

12.4. OIDC TOKEN AND SAML ASSERTION MAPPINGS

Applications receiving ID tokens, access tokens, or SAML assertions may require different roles and user
metadata.

You can use Red Hat build of Keycloak to:

Hardcode roles, claims and custom attributes.

Pull user metadata into a token or assertion.

Rename roles.

You perform these actions in the Mappers tab in the Admin Console.

Mappers tab

Red Hat build of Keycloak 24.0 Server Administration Guide

258

New clients do not have built-in mappers but they can inherit some mappers from client scopes. See the
client scopes section for more details.

Protocol mappers map items (such as an email address, for example) to a specific claim in the identity
and access token. The function of a mapper should be self-explanatory from its name. You add pre-
configured mappers by clicking Add Builtin.

Each mapper has a set of common settings. Additional settings are available, depending on the mapper
type. Click Edit next to a mapper to access the configuration screen to adjust these settings.

Mapper config

Details on each option can be viewed by hovering over its tooltip.

You can use most OIDC mappers to control where the claim gets placed. You opt to include or exclude

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

259

You can use most OIDC mappers to control where the claim gets placed. You opt to include or exclude
the claim from the id and access tokens by adjusting the Add to ID token and Add to access token
switches.

You can add mapper types as follows:

Procedure

1. Go to the Mappers tab.

2. Click Configure a new mapper.

Add mapper

3. Select a Mapper Type from the list box.

12.4.1. Priority order

Mapper implementations have priority order. Priority order is not the configuration property of the
mapper. It is the property of the concrete implementation of the mapper.

Mappers are sorted by the order in the list of mappers. The changes in the token or assertion are applied
in that order with the lowest applying first. Therefore, the implementations that are dependent on other
implementations are processed in the necessary order.

For example, to compute the roles which will be included with a token:

1. Resolve audiences based on those roles.

2. Process a JavaScript script that uses the roles and audiences already available in the token.

12.4.2. OIDC user session note mappers

User session details are defined using mappers and are automatically included when you use or enable a

Red Hat build of Keycloak 24.0 Server Administration Guide

260

User session details are defined using mappers and are automatically included when you use or enable a
feature on a client. Click Add builtin to include session details.

Impersonated user sessions provide the following details:

IMPERSONATOR_ID: The ID of an impersonating user.

IMPERSONATOR_USERNAME: The username of an impersonating user.

Service account sessions provide the following details:

clientId: The client ID of the service account.

client_id: The client ID of the service account.

clientAddress: The remote host IP of the service account’s authenticated device.

clientHost: The remote host name of the service account’s authenticated device.

12.4.3. Script mapper

Use the Script Mapper to map claims to tokens by running user-defined JavaScript code. For more
details about deploying scripts to the server, see JavaScript Providers.

When scripts deploy, you should be able to select the deployed scripts from the list of available mappers.

12.4.4. Using lightweight access token

The access token in Red Hat build of Keycloak contains sensitive information, including Personal
Identifiable Information (PII). Therefore, if the resource server does not want to disclose this type of
information to third party entities such as clients, Red Hat build of Keycloak supports lightweight access
tokens that remove PII from access tokens. Further, when the resource server acquires the PII removed
from the access token, it can acquire the PII by sending the access token to Red Hat build of Keycloak’s
token introspection endpoint.

Information that cannot be removed from a lightweight access token

Protocol mappers can controls which information is put onto an access token and the lightweight
access token use the protocol mappers. Therefore, the following information cannot be removed
from the lightweight access.
exp, iat, auth_time, jti, iss, sub, typ, azp, nonce, session_state, sid, scope, cnf

Using a lightweight access token in Red Hat build of Keycloak

By applying use-lightweight-access-token executor of client policies to a client, the client can
receive a lightweight access token instead of an access token. The lightweight access token contains
a claim controlled by a protocol mapper where its setting Add to lightweight access token(default
OFF) is turned ON. Also, by turning ON its setting Add to token introspection of the protocol
mapper, the client can obtain the claim by sending the access token to Red Hat build of Keycloak’s
token introspection endpoint.

12.5. GENERATING CLIENT ADAPTER CONFIG

Red Hat build of Keycloak can generate configuration files that you can use to install a client adapter in
your application’s deployment environment. A number of adapter types are supported for OIDC and
SAML.

1. Click on the Action menu and select the Download adapter config option

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

261

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/#script_providers

2. Select the Format Option you want configuration generated for.

All Red Hat build of Keycloak client adapters for OIDC and SAML are supported. The mod-auth-mellon
Apache HTTPD adapter for SAML is supported as well as standard SAML entity descriptor files.

12.6. CLIENT SCOPES

Use Red Hat build of Keycloak to define a shared client configuration in an entity called a client scope. A
client scope configures protocol mappers and role scope mappings for multiple clients.

Client scopes also support the OAuth 2 scope parameter. Client applications use this parameter to
request claims or roles in the access token, depending on the requirement of the application.

To create a client scope, follow these steps:

1. Click Client Scopes in the menu.

Client scopes list

Red Hat build of Keycloak 24.0 Server Administration Guide

262

2. Click Create.

3. Name your client scope.

4. Click Save.

A client scope has similar tabs to regular clients. You can define protocol mappers and role scope
mappings. These mappings can be inherited by other clients and are configured to inherit from this client
scope.

12.6.1. Protocol

When you create a client scope, choose the Protocol. Clients linked in the same scope must have the
same protocol.

Each realm has a set of pre-defined built-in client scopes in the menu.

SAML protocol: The role_list. This scope contains one protocol mapper for the roles list in the
SAML assertion.

OpenID Connect protocol: Several client scopes are available:

roles
This scope is not defined in the OpenID Connect specification and is not added
automatically to the scope claim in the access token. This scope has mappers, which are
used to add the roles of the user to the access token and add audiences for clients that
have at least one client role. These mappers are described in more detail in the Audience
section.

web-origins
This scope is also not defined in the OpenID Connect specification and not added to the
scope claiming the access token. This scope is used to add allowed web origins to the
access token allowed-origins claim.

microprofile-jwt
This scope handles claims defined in the MicroProfile/JWT Auth Specification . This scope
defines a user property mapper for the upn claim and a realm role mapper for the groups
claim. These mappers can be changed so different properties can be used to create the
MicroProfile/JWT specific claims.

offline_access

This scope is used in cases when clients need to obtain offline tokens. More details on offline

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

263

https://wiki.eclipse.org/MicroProfile/JWT_Auth

This scope is used in cases when clients need to obtain offline tokens. More details on offline
tokens is available in the Offline Access section and in the OpenID Connect specification.

profile

email

address

phone

The client scopes profile, email, address and phone are defined in the OpenID Connect specification.
These scopes do not have any role scope mappings defined but they do have protocol mappers defined.
These mappers correspond to the claims defined in the OpenID Connect specification.

For example, when you open the phone client scope and open the Mappers tab, you will see the
protocol mappers which correspond to the claims defined in the specification for the scope phone.

Client scope mappers

When the phone client scope is linked to a client, the client automatically inherits all the protocol
mappers defined in the phone client scope. Access tokens issued for this client contain the phone
number information about the user, assuming that the user has a defined phone number.

Built-in client scopes contain the protocol mappers as defined in the specification. You are free to edit
client scopes and create, update, or remove any protocol mappers or role scope mappings.

12.6.2. Consent related settings

Client scopes contain options related to the consent screen. Those options are useful if the linked client
if Consent Required is enabled on the client.

Display On Consent Screen

If Display On Consent Screen is enabled, and the scope is added to a client that requires consent,
the text specified in Consent Screen Text will be displayed on the consent screen. This text is shown
when the user is authenticated and before the user is redirected from Red Hat build of Keycloak to
the client. If Display On Consent Screen is disabled, this client scope will not be displayed on the
consent screen.

Consent Screen Text

The text displayed on the consent screen when this client scope is added to a client when consent
required defaults to the name of client scope. The value for this text can be customised by specifying
a substitution variable with ${var-name} strings. The customised value is configured within the
property files in your theme. See the Server Developer Guide for more information on customisation.

Red Hat build of Keycloak 24.0 Server Administration Guide

264

https://openid.net/specs/openid-connect-core-1_0.html#OfflineAccess
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

12.6.3. Link client scope with the client

Linking between a client scope and a client is configured in the Client Scopes tab of the client. Two ways
of linking between client scope and client are available.

Default Client Scopes

This setting is applicable to the OpenID Connect and SAML clients. Default client scopes are applied
when issuing OpenID Connect tokens or SAML assertions for a client. The client will inherit Protocol
Mappers and Role Scope Mappings that are defined on the client scope. For the OpenID Connect
Protocol, the Mappers and Role Scope Mappings are always applied, regardless of the value used for
the scope parameter in the OpenID Connect authorization request.

Optional Client Scopes

This setting is applicable only for OpenID Connect clients. Optional client scopes are applied when
issuing tokens for this client but only when requested by the scope parameter in the OpenID
Connect authorization request.

12.6.3.1. Example

For this example, assume the client has profile and email linked as default client scopes, and phone and
address linked as optional client scopes. The client uses the value of the scope parameter when sending
a request to the OpenID Connect authorization endpoint.

The scope parameter contains the string, with the scope values divided by spaces. The value openid is
the meta-value used for all OpenID Connect requests. The token will contain mappers and role scope
mappings from the default client scopes profile and email as well as phone, an optional client scope
requested by the scope parameter.

12.6.4. Evaluating Client Scopes

The Mappers tab contains the protocol mappers and the Scope tab contains the role scope mappings
declared for this client. They do not contain the mappers and scope mappings inherited from client
scopes. It is possible to see the effective protocol mappers (that is the protocol mappers defined on the
client itself as well as inherited from the linked client scopes) and the effective role scope mappings used
when generating a token for a client.

Procedure

1. Click the Client Scopes tab for the client.

2. Open the sub-tab Evaluate.

3. Select the optional client scopes that you want to apply.

This will also show you the value of the scope parameter. This parameter needs to be sent from the
application to the Red Hat build of Keycloak OpenID Connect authorization endpoint.

Evaluating client scopes

scope=openid phone

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

265

NOTE

To send a custom value for a scope parameter from your application, see the parameters
forwarding section, for servlet adapters or the javascript adapter section , for javascript
adapters.

All examples are generated for the particular user and issued for the particular client, with the specified
value of the scope parameter. The examples include all of the claims and role mappings used.

12.6.5. Client scopes permissions

When issuing tokens to a user, the client scope applies only if the user is permitted to use it.

When a client scope does not have any role scope mappings defined, each user is permitted to use this
client scope. However, when a client scope has role scope mappings defined, the user must be a member
of at least one of the roles. There must be an intersection between the user roles and the roles of the
client scope. Composite roles are factored into evaluating this intersection.

If a user is not permitted to use the client scope, no protocol mappers or role scope mappings will be
used when generating tokens. The client scope will not appear in the scope value in the token.

12.6.6. Realm default client scopes

Use Realm Default Client Scopes to define sets of client scopes that are automatically linked to newly
created clients.

Procedure

1. Click the Client Scopes tab for the client.

2. Click Default Client Scopes.

From here, select the client scopes that you want to add as Default Client Scopes to newly created

Red Hat build of Keycloak 24.0 Server Administration Guide

266

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_params_forwarding
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_javascript_adapter

From here, select the client scopes that you want to add as Default Client Scopes to newly created
clients and Optional Client Scopes.

Default client scopes

When a client is created, you can unlink the default client scopes, if needed. This is similar to removing
Default Roles.

12.6.7. Scopes explained

Client scope

Client scopes are entities in Red Hat build of Keycloak that are configured at the realm level and can
be linked to clients. Client scopes are referenced by their name when a request is sent to the Red Hat
build of Keycloak authorization endpoint with a corresponding value of the scope parameter. See the
client scopes linking section for more details.

Role scope mapping

This is available under the Scope tab of a client or client scope. Use Role scope mapping to limit the
roles that can be used in the access tokens. See the Role Scope Mappings section for more details.

12.7. CLIENT POLICIES

To make it easy to secure client applications, it is beneficial to realize the following points in a unified
way.

Setting policies on what configuration a client can have

Validation of client configurations

Conformance to a required security standards and profiles such as Financial-grade API (FAPI)
and OAuth 2.1

To realize these points in a unified way, Client Policies concept is introduced.

12.7.1. Use-cases

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

267

Client Policies realize the following points mentioned as follows.

Setting policies on what configuration a client can have

Configuration settings on the client can be enforced by client policies during client creation/update,
but also during OpenID Connect requests to Red Hat build of Keycloak server, which are related to
particular client. Red Hat build of Keycloak supports similar thing also through the Client Registration
Policies described in the Securing Applications and Services Guide. However, Client Registration
Policies can only cover OIDC Dynamic Client Registration. Client Policies cover not only what Client
Registration Policies can do, but other client registration and configuration ways. The current plans
are for Client Registration to be replaced by Client Policies.

Validation of client configurations

Red Hat build of Keycloak supports validation whether the client follows settings like Proof Key for
Code Exchange, Request Object Signing Algorithm, Holder-of-Key Token, and so on some endpoints
like Authorization Endpoint, Token Endpoint, and so on. These can be specified by each setting item
(on Admin Console, switch, pull-down menu and so on). To make the client application secure, the
administrator needs to set many settings in the appropriate way, which makes it difficult for the
administrator to secure the client application. Client Policies can do these validation of client
configurations mentioned just above and they can also be used to autoconfigure some client
configuration switches to meet the advanced security requirements. In the future, individual client
configuration settings may be replaced by Client Policies directly performing required validations.

Conformance to a required security standards and profiles such as FAPI and OAuth 2.1

The Global client profiles are client profiles pre-configured in Red Hat build of Keycloak by default.
They are pre-configured to be compliant with standard security profiles like FAPI and OAuth 2.1,
which makes it easy for the administrator to secure their client application to be compliant with the
particular security profile. At this moment, Red Hat build of Keycloak has global profiles for the
support of FAPI and OAuth 2.1 specifications. The administrator will just need to configure the client
policies to specify which clients should be compliant with the FAPI and OAuth 2.1. The administrator
can configure client profiles and client policies, so that Red Hat build of Keycloak clients can be easily
made compliant with various other security profiles like SPA, Native App, Open Banking and so on.

12.7.2. Protocol

The client policy concept is independent of any specific protocol. However, Red Hat build of Keycloak
currently supports it only just for the OpenID Connect (OIDC) protocol.

12.7.3. Architecture

Client Policies consists of the four building blocks: Condition, Executor, Profile and Policy.

12.7.3.1. Condition

A condition determines to which client a policy is adopted and when it is adopted. Some conditions are
checked at the time of client create/update when some other conditions are checked during client
requests (OIDC Authorization request, Token endpoint request and so on). The condition checks
whether one specified criteria is satisfied. For example, some condition checks whether the access type
of the client is confidential.

The condition can not be used solely by itself. It can be used in a policy that is described afterwards.

A condition can be configurable the same as other configurable providers. What can be configured
depends on each condition’s nature.

The following conditions are provided:

Red Hat build of Keycloak 24.0 Server Administration Guide

268

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_client_registration_policies
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_fapi-support
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_oauth21-support
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_oidc

The way of creating/updating a client

Dynamic Client Registration (Anonymous or Authenticated with Initial access token or
Registration access token)

Admin REST API (Admin Console and so on)

So for example when creating a client, a condition can be configured to evaluate to true when this client
is created by OIDC Dynamic Client Registration without initial access token (Anonymous Dynamic Client
Registration). So this condition can be used for example to ensure that all clients registered through
OIDC Dynamic Client Registration are FAPI or OAuth 2.1 compliant.

Author of a client (Checked by presence to the particular role or group)

On OpenID Connect dynamic client registration, an author of a client is the end user who was
authenticated to get an access token for generating a new client, not Service Account of the existing
client that actually accesses the registration endpoint with the access token. On registration by
Admin REST API, an author of a client is the end user like the administrator of the Red Hat build of
Keycloak.

Client Access Type (confidential, public, bearer-only)

For example when a client sends an authorization request, a policy is adopted if this client is
confidential. Confidential client has enabled client authentication when public client has disabled
client authentication. Bearer-only is a deprecated client type.

Client Scope

Evaluates to true if the client has a particular client scope (either as default or as an optional scope
used in current request). This can be used for example to ensure that OIDC authorization requests
with scope fapi-example-scope need to be FAPI compliant.

Client Role

Applies for clients with the client role of the specified name. Typically you can create a client role of
specified name to requested clients and use it as a "marker role" to make sure that specified client
policy will be applied for requested clients.

NOTE

A use-case often exists for requiring the application of a particular client policy for the
specified clients such as my-client-1 and my-client-2. The best way to achieve this result
is to use a Client Role condition in your policy and then a create client role of specified
name to requested clients. This client role can be used as a "marker role" used solely for
marking that particular client policy for particular clients.

Client Domain Name, Host or IP Address

Applied for specific domain names of client. Or for the cases when the administrator
registers/updates client from particular Host or IP Address.

Any Client

This condition always evaluates to true. It can be used for example to ensure that all clients in the
particular realm are FAPI compliant.

12.7.3.2. Executor

An executor specifies what action is executed on a client to which a policy is adopted. The executor
executes one or several specified actions. For example, some executor checks whether the value of the
parameter redirect_uri in the authorization request matches exactly with one of the pre-registered

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

269

redirect URIs on Authorization Endpoint and rejects this request if not.

The executor can not be used solely by itself. It can be used in a profile that is described afterwards.

An executor can be configurable the same as other configurable providers. What can be configured
depends on the nature of each executor.

An executor acts on various events. An executor implementation can ignore certain types of events (For
example, executor for checking OIDC request object acts just on the OIDC authorization request).
Events are:

Creating a client (including creation through dynamic client registration)

Updating a client

Sending an authorization request

Sending a token request

Sending a token refresh request

Sending a token revocation request

Sending a token introspection request

Sending a userinfo request

Sending a logout request with a refresh token (note that logout with refresh token is proprietary
Red Hat build of Keycloak functionality unsupported by any specification. It is rather
recommended to rely on the official OIDC logout).

On each event, an executor can work in multiple phases. For example, on creating/updating a client, the
executor can modify the client configuration by autoconfigure specific client settings. After that, the
executor validates this configuration in validation phase.

One of several purposes for this executor is to realize the security requirements of client conformance
profiles like FAPI and OAuth 2.1. To do so, the following executors are needed:

Enforce secure Client Authentication method is used for the client

Enforce Holder-of-key tokens are used

Enforce Proof Key for Code Exchange (PKCE) is used

Enforce secure signature algorithm for Signed JWT client authentication (private-key-jwt) is
used

Enforce HTTPS redirect URI and make sure that configured redirect URI does not contain
wildcards

Enforce OIDC request object satisfying high security level

Enforce Response Type of OIDC Hybrid Flow including ID Token used as detached signature as
described in the FAPI 1 specification, which means that ID Token returned from Authorization
response won’t contain user profile data

Enforce more secure state and nonce parameters treatment for preventing CSRF

Red Hat build of Keycloak 24.0 Server Administration Guide

270

Enforce more secure signature algorithm when client registration

Enforce binding_message parameter is used for CIBA requests

Enforce Client Secret Rotation

Enforce Client Registration Access Token

Enforce checking if a client is the one to which an intent was issued in a use case where an intent
is issued before starting an authorization code flow to get an access token like UK OpenBanking

Enforce prohibiting implicit and hybrid flow

Enforce checking if a PAR request includes necessary parameters included by an authorization
request

Enforce DPoP-binding tokens is used (available when dpop feature is enabled)

Enforce using lightweight access token

Enforce that refresh token rotation is skipped and there is no refresh token returned from the
refresh token response

Enforce a valid redirect URI that the OAuth 2.1 specification requires

12.7.3.3. Profile

A profile consists of several executors, which can realize a security profile like FAPI and OAuth 2.1. Profile
can be configured by the Admin REST API (Admin Console) together with its executors. Three global
profiles exist and they are configured in Red Hat build of Keycloak by default with pre-configured
executors compliant with the FAPI 1 Baseline, FAPI 1 Advanced, FAPI CIBA, FAPI 2 and OAuth 2.1
specifications. More details exist in the FAPI and OAuth 2.1 section of the Securing Applications and
Services Guide.

12.7.3.4. Policy

A policy consists of several conditions and profiles. The policy can be adopted to clients satisfying all
conditions of this policy. The policy refers several profiles and all executors of these profiles execute
their task against the client that this policy is adopted to.

12.7.4. Configuration

Policies, profiles, conditions, executors can be configured by Admin REST API, which means also the
Admin Console. To do so, there is a tab Realm → Realm Settings → Client Policies , which means the
administrator can have client policies per realm.

The Global Client Profiles are automatically available in each realm. However there are no client policies
configured by default. This means that the administrator is always required to create any client policy if
they want for example the clients of his realm to be FAPI compliant. Global profiles cannot be updated,
but the administrator can easily use them as a template and create their own profile if they want to do
some slight changes in the global profile configurations. There is JSON Editor available in the Admin
Console, which simplifies the creation of new profile based on some global profile.

12.7.5. Backward Compatibility

Client Policies can replace Client Registration Policies described in the Securing Applications and

CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS

271

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_fapi-support
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_client_registration_policies

Services Guide. However, Client Registration Policies also still co-exist. This means that for example
during a Dynamic Client Registration request to create/update a client, both client policies and client
registration policies are applied.

The current plans are for the Client Registration Policies feature to be removed and the existing client
registration policies will be migrated into new client policies automatically.

12.7.6. Client Secret Rotation Example

See an example configuration for client secret rotation.

Red Hat build of Keycloak 24.0 Server Administration Guide

272

CHAPTER 13. USING A VAULT TO OBTAIN SECRETS
Red Hat build of Keycloak currently provides two out-of-the-box implementations of the Vault SPI: a
plain-text file-based vault and Java KeyStore-based vault.

To obtain a secret from a vault rather than entering it directly, enter the following specially crafted string
into the appropriate field:

${vault.key}

where the key is the name of the secret recognized by the vault.

To prevent secrets from leaking across realms, Red Hat build of Keycloak combines the realm name with
the key obtained from the vault expression. This method means that the key does not directly map to
an entry in the vault but creates the final entry name according to the algorithm used to combine the
key with the realm name. In case of the file-based vault, such combination reflects to a specific filename,
for the Java KeyStore-based vault it’s a specific alias name.

You can obtain the secret from the vault in the following fields:

SMTP password

In the realm SMTP settings

LDAP bind credential

In the LDAP settings of LDAP-based user federation.

OIDC identity provider secret

In the Client Secret inside identity provider OpenID Connect Config

13.1. KEY RESOLVERS

All built-in providers support the configuration of key resolvers. A key resolver implements the algorithm
or strategy for combining the realm name with the key, obtained from the ${vault.key} expression, into
the final entry name used to retrieve the secret from the vault. Red Hat build of Keycloak uses the
keyResolvers property to configure the resolvers that the provider uses. The value is a comma-
separated list of resolver names. An example of the configuration for the files-plaintext provider
follows:

The resolvers run in the same order you declare them in the configuration. For each resolver, Red Hat
build of Keycloak uses the last entry name the resolver produces, which combines the realm with the
vault key to search for the vault’s secret. If Red Hat build of Keycloak finds a secret, it returns the secret.
If not, Red Hat build of Keycloak uses the next resolver. This search continues until Red Hat build of
Keycloak finds a non-empty secret or runs out of resolvers. If Red Hat build of Keycloak finds no secret,
Red Hat build of Keycloak returns an empty secret.

In the previous example, Red Hat build of Keycloak uses the REALM_UNDERSCORE_KEY resolver
first. If Red Hat build of Keycloak finds an entry in the vault that using that resolver, Red Hat build of
Keycloak returns that entry. If not, Red Hat build of Keycloak searches again using the KEY_ONLY
resolver. If Red Hat build of Keycloak finds an entry by using the KEY_ONLY resolver, Red Hat build of
Keycloak returns that entry. If Red Hat build of Keycloak uses all resolvers, Red Hat build of Keycloak
returns an empty secret.

A list of the currently available resolvers follows:

kc.[sh|bat] start --spi-vault-file-key-resolvers=REALM_UNDERSCORE_KEY,KEY_ONLY

CHAPTER 13. USING A VAULT TO OBTAIN SECRETS

273

Name Description

KEY_ONLY Red Hat build of Keycloak ignores the realm name
and uses the key from the vault expression.

REALM_UNDERSCORE_KEY Red Hat build of Keycloak combines the realm and
key by using an underscore character. Red Hat build
of Keycloak escapes occurrences of underscores in
the realm or key with another underscore character.
For example, if the realm is called master_realm
and the key is smtp_key, the combined key is
master__realm_smtp__key.

REALM_FILESEPARATOR_KEY Red Hat build of Keycloak combines the realm and
key by using the platform file separator character.

If you have not configured a resolver for the built-in providers, Red Hat build of Keycloak selects the
REALM_UNDERSCORE_KEY.

Red Hat build of Keycloak 24.0 Server Administration Guide

274

CHAPTER 14. CONFIGURING AUDITING TO TRACK EVENTS
Red Hat build of Keycloak includes a suite of auditing capabilities. You can record every login and
administrator action and review those actions in the Admin Console. Red Hat build of Keycloak also
includes a Listener SPI that listens for events and can trigger actions. Examples of built-in listeners
include log files and sending emails if an event occurs.

14.1. AUDITING USER EVENTS

You can record and view every event that affects users. Red Hat build of Keycloak triggers login events
for actions such as successful user login, a user entering an incorrect password, or a user account
updating. By default, Red Hat build of Keycloak does not store or display events in the Admin Console.
Only the error events are logged to the Admin Console and the server’s log file.

Procedure

Use this procedure to start auditing user events.

1. Click Realm settings in the menu.

2. Click the Events tab.

3. Click the User events settings tab.

4. Toggle Save events to ON.

User events settings

CHAPTER 14. CONFIGURING AUDITING TO TRACK EVENTS

275

5. Specify the length of time to store events in the Expiration field.

6. Click Add saved types to see other events you can save.

Add types

Red Hat build of Keycloak 24.0 Server Administration Guide

276

7. Click Add.

Click Clear user events when you want to delete all saved events.

Procedure

You can now view events.

1. Click the Events tab in the menu.

User events

2. To filter events, click Search user event.

Search user event

CHAPTER 14. CONFIGURING AUDITING TO TRACK EVENTS

277

14.1.1. Event types

Login events:

Event Description

Login A user logs in.

Register A user registers.

Logout A user logs out.

Code to Token An application, or client, exchanges a code for a
token.

Refresh Token An application, or client, refreshes a token.

Brute force protection:

Red Hat build of Keycloak 24.0 Server Administration Guide

278

Event Description

User disabled by permanent lockout Brute force protection disabled the user account
permanently due to too many login failures.

User disabled by temporary lockout Brute force protection disabled the user account
temporarily due to too many login failures.

Account events:

Event Description

Social Link A user account links to a social media provider.

Remove Social Link The link from a social media account to a user
account severs.

Update Email An email address for an account changes.

Update Profile A profile for an account changes.

Send Password Reset Red Hat build of Keycloak sends a password reset
email.

Update Password The password for an account changes.

Update TOTP The Time-based One-time Password (TOTP)
settings for an account changes.

Remove TOTP Red Hat build of Keycloak removes TOTP from an
account.

Send Verify Email Red Hat build of Keycloak sends an email verification
email.

Verify Email Red Hat build of Keycloak verifies the email address
for an account.

Each event has a corresponding error event.

14.1.2. Event listener

Event listeners listen for events and perform actions based on that event. Red Hat build of Keycloak
includes two built-in listeners, the Logging Event Listener and Email Event Listener.

14.1.2.1. The logging event listener

When the Logging Event Listener is enabled, this listener writes to a log file when an error event occurs.

CHAPTER 14. CONFIGURING AUDITING TO TRACK EVENTS

279

An example log message from a Logging Event Listener:

11:36:09,965 WARN [org.keycloak.events] (default task-51) type=LOGIN_ERROR, realmId=master,
 clientId=myapp,
 userId=19aeb848-96fc-44f6-b0a3-59a17570d374, ipAddress=127.0.0.1,
 error=invalid_user_credentials, auth_method=openid-connect, auth_type=code,
 redirect_uri=http://localhost:8180/myapp,
 code_id=b669da14-cdbb-41d0-b055-0810a0334607, username=admin

You can use the Logging Event Listener to protect against hacker bot attacks:

1. Parse the log file for the LOGIN_ERROR event.

2. Extract the IP Address of the failed login event.

3. Send the IP address to an intrusion prevention software framework tool.

The Logging Event Listener logs events to the org.keycloak.events log category. Red Hat build of
Keycloak does not include debug log events in server logs, by default.

To include debug log events in server logs:

1. Change the log level for the org.keycloak.events category

2. Change the log level used by the Logging Event listener.

To change the log level used by the Logging Event listener, add the following:

The valid values for log levels are debug, info, warn, error, and fatal.

14.1.2.2. The Email Event Listener

The Email Event Listener sends an email to the user’s account when an event occurs and supports the
following events:

Login Error.

Update Password.

Update Time-based One-time Password (TOTP).

Remove Time-based One-time Password (TOTP).

Procedure

To enable the Email Listener:

1. Click Realm settings in the menu.

2. Click the Events tab.

3. Click the Event listeners field.

4. Select email.

bin/kc.[sh|bat] start --spi-events-listener-jboss-logging-success-level=info --spi-events-listener-jboss-
logging-error-level=error

Red Hat build of Keycloak 24.0 Server Administration Guide

280

Event listeners

You can exclude events by using the --spi-events-listener-email-exclude-events argument. For
example:

14.2. AUDITING ADMIN EVENTS

You can record all actions that are performed by an administrator in the Admin Console. The Admin
Console performs administrative actions by invoking the Red Hat build of Keycloak REST interface and
Red Hat build of Keycloak audits these REST invocations. You can view the resulting events in the Admin
Console.

Procedure

Use this procedure to start auditing admin actions.

1. Click Realm settings in the menu.

2. Click the Events tab.

3. Click the Admin events settings tab.

4. Toggle Save events to ON.
Red Hat build of Keycloak displays the Include representation switch.

5. Toggle Include representation to ON.
The Include Representation switch includes JSON documents sent through the admin REST
API so you can view the administrators actions.

Admin events settings

kc.[sh|bat] --spi-events-listener-email-exclude-events=UPDATE_TOTP,REMOVE_TOTP

CHAPTER 14. CONFIGURING AUDITING TO TRACK EVENTS

281

6. Click Save.

7. To clear the database of stored actions, click Clear admin events.

Procedure

You can now view admin events.

1. Click Events in the menu.

2. Click the Admin events tab.

Admin events

When the Include Representation switch is ON, it can lead to storing a lot of information in the
database. You can set a maximum length of the representation by using the --spi-events-store-jpa-
max-field-length argument. This setting is useful if you want to adhere to the underlying storage
limitation. For example:

kc.[sh|bat] --spi-events-store-jpa-max-field-length=2500

Red Hat build of Keycloak 24.0 Server Administration Guide

282

CHAPTER 15. MITIGATING SECURITY THREATS
Security vulnerabilities exist in any authentication server. See the Internet Engineering Task Force’s
(IETF) OAuth 2.0 Threat Model and the OAuth 2.0 Security Best Current Practice for more information.

15.1. HOST

Red Hat build of Keycloak uses the public hostname in several ways, such as within token issuer fields
and URLs in password reset emails.

By default, the hostname derives from request headers. No validation exists to ensure a hostname is
valid. If you are not using a load balancer, or proxy, with Red Hat build of Keycloak to prevent invalid host
headers, configure the acceptable hostnames.

The hostname’s Service Provider Interface (SPI) provides a way to configure the hostname for requests.
You can use this built-in provider to set a fixed URL for frontend requests while allowing backend
requests based on the request URI. If the built-in provider does not have the required capability, you can
develop a customized provider.

15.2. ADMIN ENDPOINTS AND ADMIN CONSOLE

Red Hat build of Keycloak exposes the administrative REST API and the web console on the same port
as non-administrative usage. Do not expose administrative endpoints externally if external access is not
necessary.

15.3. BRUTE FORCE ATTACKS

A brute force attack attempts to guess a user’s password by trying to log in multiple times. Red Hat build
of Keycloak has brute force detection capabilities and can temporarily disable a user account if the
number of login failures exceeds a specified threshold.

NOTE

Red Hat build of Keycloak disables brute force detection by default. Enable this feature
to protect against brute force attacks.

Procedure

To enable this protection:

1. Click Realm Settings in the menu

2. Click the Security Defenses tab.

3. Click the Brute Force Detection tab.

Brute force detection

CHAPTER 15. MITIGATING SECURITY THREATS

283

https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

Red Hat build of Keycloak can deploy permanent lockout and temporary lockout actions when it detects
an attack. Permanent lockout disables a user account until an administrator re-enables it. Temporary
lockout disables a user account for a specific period of time. The time period that the account is
disabled increases as the attack continues and subsequent failures reach multiples of Max Login
Failures.

NOTE

When a user is temporarily locked and attempts to log in, Red Hat build of Keycloak
displays the default Invalid username or password error message. This message is the
same error message as the message displayed for an invalid username or invalid
password to ensure the attacker is unaware the account is disabled.

Common Parameters

Name Description Default

Max Login Failures The maximum number of login
failures.

30 failures.

Quick Login Check Milliseconds The minimum time between login
attempts.

1000 milliseconds.

Minimum Quick Login Wait The minimum time the user is
disabled when login attempts are
quicker than Quick Login Check
Milliseconds.

1 minute.

Red Hat build of Keycloak 24.0 Server Administration Guide

284

Temporary Lockout Parameters

Name Description Default

Wait Increment The time added to the time a user
is temporarily disabled when the
user’s login attempts exceed Max
Login Failures.

1 minute.

Max Wait The maximum time a user is
temporarily disabled.

15 minutes.

Failure Reset Time The time when the failure count
resets. The timer runs from the
last failed login. Make sure this
number is always greater than
Max wait; otherwise the effective
wait time will never reach the
value you have set to Max wait.

12 hours.

Temporary Lockout Algorithm

1. On successful login

a. Reset count

2. On failed login

a. If the time between this failure and the last failure is greater than Failure Reset Time

i. Reset count

b. Increment count

c. Calculate wait using Wait Increment * (count / Max Login Failures). The division is an
integer division rounded down to a whole number

d. If wait equals 0 and the time between this failure and the last failure is less than Quick Login
Check Milliseconds, set wait to Minimum Quick Login Wait .

i. Temporarily disable the user for the smallest of wait and Max Wait seconds

ii. Increment the temporary lockout counter

count does not increment when a temporarily disabled account commits a login failure.

For instance, if you have set Max Login Failures to 5 and a Wait Increment of 30 seconds, the
effective time an account will be disabled after several failed authentication attempts will be:

Number of Failures Wait Increment Max Login Failures Effective Wait Time

1 30 5 0

CHAPTER 15. MITIGATING SECURITY THREATS

285

2 30 5 0

3 30 5 0

4 30 5 0

5 30 5 30

6 30 5 30

7 30 5 30

8 30 5 30

9 30 5 30

10 30 5 60

Note that the Effective Wait Time at the 5th failed attempt will disable the account for 30 seconds.
Only after reaching the next multiple of Max Login Failures, in this case 10, will the time increase from
30 to 60. The time the account will be disabled is only increased when reaching multiples of Max Login
Failures.

Permanent Lockout Parameters

Name Description Default

Max temporary Lockouts The maximum number of
temporary lockouts permitted
before permanent lockout occurs.

0

Permanent Lockout Flow

1. Follow temporary lockout flow

2. If temporary lockout counter exceeds Max temporary lockouts

a. Permanently disable user

When Red Hat build of Keycloak disables a user, the user cannot log in until an administrator enables the
user. Enabling an account resets the count.

The downside of Red Hat build of Keycloak brute force detection is that the server becomes vulnerable
to denial of service attacks. When implementing a denial of service attack, an attacker can attempt to
log in by guessing passwords for any accounts it knows and eventually causing Red Hat build of Keycloak
to disable the accounts.

Consider using intrusion prevention software (IPS). Red Hat build of Keycloak logs every login failure
and client IP address failure. You can point the IPS to the Red Hat build of Keycloak server’s log file, and
the IPS can modify firewalls to block connections from these IP addresses.

Red Hat build of Keycloak 24.0 Server Administration Guide

286

15.3.1. Password policies

Ensure you have a complex password policy to force users to choose complex passwords. See the
Password Policies chapter for more information. Prevent password guessing by setting up the Red Hat
build of Keycloak server to use one-time-passwords.

15.4. READ-ONLY USER ATTRIBUTES

Typical users who are stored in Red Hat build of Keycloak have various attributes related to their user
profiles. Such attributes include email, firstName or lastName. However users may also have attributes,
which are not typical profile data, but rather metadata. The metadata attributes usually should be read-
only for the users and the typical users never should have a way to update those attributes from the Red
Hat build of Keycloak user interface or Account REST API. Some of the attributes should be even read-
only for the administrators when creating or updating user with the Admin REST API.

The metadata attributes are usually attributes from those groups:

Various links or metadata related to the user storage providers. For example in case of the
LDAP integration, the LDAP_ID attribute contains the ID of the user in the LDAP server.

Metadata provisioned by User Storage. For example createdTimestamp provisioned from the
LDAP should be always read-only by user or administrator.

Metadata related to various authenticators. For example KERBEROS_PRINCIPAL attribute
can contain the kerberos principal name of the particular user. Similarly attribute
usercertificate can contain metadata related to binding the user with the data from the X.509
certificate, which is used typically when X.509 certificate authentication is enabled.

Metadata related to the identificator of users by the applications/clients. For example
saml.persistent.name.id.for.my_app can contain SAML NameID, which will be used by the
client application my_app as the identifier of the user.

Metadata related to the authorization policies, which are used for the attribute based access
control (ABAC). Values of those attributes may be used for the authorization decisions. Hence it
is important that those attributes cannot be updated by the users.

From the long term perspective, Red Hat build of Keycloak will have a proper User Profile SPI, which will
allow fine-grained configuration of every user attribute. Currently this capability is not fully available yet.
So Red Hat build of Keycloak has the internal list of user attributes, which are read-only for the users and
read-only for the administrators configured at the server level.

This is the list of the read-only attributes, which are used internally by the Red Hat build of Keycloak
default providers and functionalities and hence are always read-only:

For users: KERBEROS_PRINCIPAL, LDAP_ID, LDAP_ENTRY_DN, CREATED_TIMESTAMP,
createTimestamp, modifyTimestamp, userCertificate, saml.persistent.name.id.for.*,
ENABLED, EMAIL_VERIFIED

For administrators: KERBEROS_PRINCIPAL, LDAP_ID, LDAP_ENTRY_DN,
CREATED_TIMESTAMP, createTimestamp, modifyTimestamp

System administrators have a way to add additional attributes to this list. The configuration is currently
available at the server level.

You can add this configuration by using the spi-user-profile-declarative-user-profile-read-only-

CHAPTER 15. MITIGATING SECURITY THREATS

287

You can add this configuration by using the spi-user-profile-declarative-user-profile-read-only-
attributes and `spi-user-profile-declarative-user-profile-admin-read-only-attributes options. For
example:

For this example, users and administrators would not be able to update attribute foo. Users would not be
able to edit any attributes starting with the bar. So for example bar or barrier. Configuration is case-
insensitive, so attributes like FOO or BarRier will be denied as well for this example. The wildcard
character * is supported only at the end of the attribute name, so the administrator can effectively deny
all the attributes starting with the specified character. The * in the middle of the attribute is considered
as a normal character.

15.5. VALIDATE USER ATTRIBUTES

With the functionality in Section 5.2, “Managing user attributes” , administrators can restrict the data
users enter for attributes, for example, in user registration or the account console.

Administrators should not allow unmanaged attributes for users to prevent attackers adding an
unlimited number of attributes. Attributes should have a validation that restricts the amount of data
entered by attackers.

When using regular expressions to validate user attributes, avoid regular expressions that use an
excessive amount of memory or CPU. See OWASP’s Regular expression Denial of Service for details.

15.6. CLICKJACKING

Clickjacking is a technique of tricking users into clicking on a user interface element different from what
users perceive. A malicious site loads the target site in a transparent iFrame, overlaid on top of a set of
dummy buttons placed directly under important buttons on the target site. When a user clicks a visible
button, they are clicking a button on the hidden page. An attacker can steal a user’s authentication
credentials and access their resources by using this method.

By default, every response by Red Hat build of Keycloak sets some specific HTTP headers that can
prevent this from happening. Specifically, it sets X-Frame-Options and Content-Security-Policy. You
should take a look at the definition of both of these headers as there is a lot of fine-grain browser
access you can control.

Procedure

In the Admin Console, you can specify the values of the X-Frame-Options and Content-Security-Policy
headers.

1. Click the Realm Settings menu item.

2. Click the Security Defenses tab.

Security Defenses

kc.[sh|bat] start --spi-user-profile-declarative-user-profile-read-only-attributes=foo,bar*

Red Hat build of Keycloak 24.0 Server Administration Guide

288

https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://datatracker.ietf.org/doc/html/rfc7034
https://www.w3.org/TR/CSP/

By default, Red Hat build of Keycloak only sets up a same-origin policy for iframes.

15.7. SSL/HTTPS REQUIREMENT

OAuth 2.0/OpenID Connect uses access tokens for security. Attackers can scan your network for
access tokens and use them to perform malicious operations for which the token has permission. This
attack is known as a man-in-the-middle attack. Use SSL/HTTPS for communication between the Red
Hat build of Keycloak auth server and the clients Red Hat build of Keycloak secures to prevent man-in-
the-middle attacks.

Red Hat build of Keycloak has three modes for SSL/HTTPS. SSL is complex to set up, so Red Hat build
of Keycloak allows non-HTTPS communication over private IP addresses such as localhost, 192.168.x.x,
and other private IP addresses. In production, ensure you enable SSL and SSL is compulsory for all
operations.

On the adapter/client-side, you can disable the SSL trust manager. The trust manager ensures the
client’s identity that Red Hat build of Keycloak communicates with is valid and ensures the DNS domain
name against the server’s certificate. In production, ensure that each of your client adapters uses a
truststore to prevent DNS man-in-the-middle attacks.

15.8. CSRF ATTACKS

A Cross-site request forgery (CSRF) attack uses HTTP requests from users that websites have already
authenticated. Any site using cookie-based authentication is vulnerable to CSRF attacks. You can
mitigate these attacks by matching a state cookie against a posted form or query parameter.

The OAuth 2.0 login specification requires that a state cookie matches against a transmitted state
parameter. Red Hat build of Keycloak fully implements this part of the specification, so all logins are
protected.

The Red Hat build of Keycloak Admin Console is a JavaScript/HTML5 application that makes REST calls

CHAPTER 15. MITIGATING SECURITY THREATS

289

to the backend Red Hat build of Keycloak admin REST API. These calls all require bearer token
authentication and consist of JavaScript Ajax calls, so CSRF is impossible. You can configure the admin
REST API to validate the CORS origins.

The Account Console in Red Hat build of Keycloak can be vulnerable to CSRF. To prevent CSRF attacks,
Red Hat build of Keycloak sets a state cookie and embeds the value of this cookie in hidden form fields
or query parameters within action links. Red Hat build of Keycloak checks the query/form parameter
against the state cookie to verify that the same user made the call.

15.9. UNSPECIFIC REDIRECT URIS

Make your registered redirect URIs as specific as feasible. Registering vague redirect URIs for
Authorization Code Flows can allow malicious clients to impersonate another client with broader access.
Impersonation can happen if two clients live under the same domain, for example.

You can use secure redirect uris enforcer executor for your realm. The result makes sure that client
administrators are able to register only clients with specific redirect-uris matching various requirements
such as requiring that a URL cannot have wildcards in the context path or can be limited to specified
permitted domains. See Client Policies for details about how to configure client policies with a specific
executor.

15.10. FAPI COMPLIANCE

To make sure that Red Hat build of Keycloak server will validate your client to be more secure and FAPI
compliant, you can configure client policies for the FAPI support. Details are described in the FAPI
section of Securing Applications and Services Guide. Among other things, this ensures some security
best practices described above like SSL required for clients, secure redirect URI used and more of
similar best practices.

15.11. OAUTH 2.1 COMPLIANCE

To make sure that Red Hat build of Keycloak server will validate your client to be more secure and OAuth
2.1 compliant, you can configure client policies for the OAuth 2.1 support. Details are described in the
OAuth 2.1 section of Securing Applications and Services Guide.

15.12. COMPROMISED ACCESS AND REFRESH TOKENS

Red Hat build of Keycloak includes several actions to prevent malicious actors from stealing access
tokens and refresh tokens. The crucial action is to enforce SSL/HTTPS communication between Red
Hat build of Keycloak and its clients and applications. Red Hat build of Keycloak does not enable SSL by
default.

Another action to mitigate damage from leaked access tokens is to shorten the token’s lifespans. You
can specify token lifespans within the timeouts page. Short lifespans for access tokens force clients and
applications to refresh their access tokens after a short time. If an admin detects a leak, the admin can
log out all user sessions to invalidate these refresh tokens or set up a revocation policy.

Ensure refresh tokens always stay private to the client and are never transmitted.

You can mitigate damage from leaked access tokens and refresh tokens by issuing these tokens as
holder-of-key tokens. See OAuth 2.0 Mutual TLS Client Certificate Bound Access Token for more
information.

If an access token or refresh token is compromised, access the Admin Console and push a not-before

Red Hat build of Keycloak 24.0 Server Administration Guide

290

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_fapi-support
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/securing_applications_and_services_guide/#_oauth21-support

revocation policy to all applications. Pushing a not-before policy ensures that any tokens issued before
that time become invalid. Pushing a new not-before policy ensures that applications must download new
public keys from Red Hat build of Keycloak and mitigate damage from a compromised realm signing key.
See the keys chapter for more information.

You can disable specific applications, clients, or users if they are compromised.

15.13. COMPROMISED AUTHORIZATION CODE

For the OIDC Auth Code Flow , Red Hat build of Keycloak generates a cryptographically strong random
value for its authorization codes. An authorization code is used only once to obtain an access token.

On the timeouts page in the Admin Console, you can specify the length of time an authorization code is
valid. Ensure that the length of time is less than 10 seconds, which is long enough for a client to request a
token from the code.

You can also defend against leaked authorization codes by applying Proof Key for Code Exchange
(PKCE) to clients.

15.14. OPEN REDIRECTORS

An open redirector is an endpoint using a parameter to automatically redirect a user agent to the
location specified by the parameter value without validation. An attacker can use the end-user
authorization endpoint and the redirect URI parameter to use the authorization server as an open
redirector, using a user’s trust in an authorization server to launch a phishing attack.

Red Hat build of Keycloak requires that all registered applications and clients register at least one
redirection URI pattern. When a client requests that Red Hat build of Keycloak performs a redirect, Red
Hat build of Keycloak checks the redirect URI against the list of valid registered URI patterns. Clients and
applications must register as specific a URI pattern as possible to mitigate open redirector attacks.

If an application requires a non http(s) custom scheme, it should be an explicit part of the validation
pattern (for example custom:/app/*). For security reasons a general pattern like * does not cover non
http(s) schemes.

By using Client Policies, an administrator can make sure that clients cannot register open redirect URLs
such as *.

15.15. PASSWORD DATABASE COMPROMISED

Red Hat build of Keycloak does not store passwords in raw text but as hashed text, using the PBKDF2-
HMAC-SHA512 message digest algorithm. Red Hat build of Keycloak performs 210,000 hashing
iterations, the number of iterations recommended by the security community. This number of hashing
iterations can adversely affect performance as PBKDF2 hashing uses a significant amount of CPU
resources.

15.16. LIMITING SCOPE

By default, new client applications have unlimited role scope mappings. Every access token for that
client contains all permissions that the user has. If an attacker compromises the client and obtains the
client’s access tokens, each system that the user can access is compromised.

Limit the roles of an access token by using the Scope menu for each client. Alternatively, you can set

CHAPTER 15. MITIGATING SECURITY THREATS

291

Limit the roles of an access token by using the Scope menu for each client. Alternatively, you can set
role scope mappings at the Client Scope level and assign Client Scopes to your client by using the Client
Scope menu.

15.17. LIMIT TOKEN AUDIENCE

In environments with low levels of trust among services, limit the audiences on the token. See the
OAuth2 Threat Model and the Audience Support section for more information.

15.18. LIMIT AUTHENTICATION SESSIONS

When a login page is opened for the first time in a web browser, Red Hat build of Keycloak creates an
object called authentication session that stores some useful information about the request. Whenever a
new login page is opened from a different tab in the same browser, Red Hat build of Keycloak creates a
new record called authentication sub-session that is stored within the authentication session.
Authentication requests can come from any type of clients such as the Admin CLI. In that case, a new
authentication session is also created with one authentication sub-session. Please note that
authentication sessions can be created also in other ways than using a browser flow. The text below is
applicable regardless of the source flow.

NOTE

This section describes deployments that use the Data Grid provider for authentication
sessions.

Authentication session is internally stored as RootAuthenticationSessionEntity. Each
RootAuthenticationSessionEntity can have multiple authentication sub-sessions stored within the
RootAuthenticationSessionEntity as a collection of AuthenticationSessionEntity objects. Red Hat
build of Keycloak stores authentication sessions in a dedicated Data Grid cache. The number of
AuthenticationSessionEntity per RootAuthenticationSessionEntity contributes to the size of each
cache entry. Total memory footprint of authentication session cache is determined by the number of
stored RootAuthenticationSessionEntity and by the number of AuthenticationSessionEntity within
each RootAuthenticationSessionEntity.

The number of maintained RootAuthenticationSessionEntity objects corresponds to the number of
unfinished login flows from the browser. To keep the number of RootAuthenticationSessionEntity
under control, using an advanced firewall control to limit ingress network traffic is recommended.

Higher memory usage may occur for deployments where there are many active
RootAuthenticationSessionEntity with a lot of AuthenticationSessionEntity. If the load balancer
does not support or is not configured for session stickiness, the load over network in a cluster can
increase significantly. The reason for this load is that each request that lands on a node that does not
own the appropriate authentication session needs to retrieve and update the authentication session
record in the owner node which involves a separate network transmission for both the retrieval and the
storage.

The maximum number of AuthenticationSessionEntity per RootAuthenticationSessionEntity can be
configured in authenticationSessions SPI by setting property authSessionsLimit. The default value is
set to 300 AuthenticationSessionEntity per a RootAuthenticationSessionEntity. When this limit is
reached, the oldest authentication sub-session will be removed after a new authentication session
request.

The following example shows how to limit the number of active AuthenticationSessionEntity per a
RootAuthenticationSessionEntity to 100.

Red Hat build of Keycloak 24.0 Server Administration Guide

292

https://datatracker.ietf.org/doc/html/rfc6819#section-5.1.5.5

15.19. SQL INJECTION ATTACKS

Currently, Red Hat build of Keycloak has no known SQL injection vulnerabilities.

bin/kc.[sh|bat] start --spi-authentication-sessions-infinispan-auth-sessions-limit=100

CHAPTER 15. MITIGATING SECURITY THREATS

293

CHAPTER 16. ACCOUNT CONSOLE
Red Hat build of Keycloak users can manage their accounts through the Account Console. They can
configure their profiles, add two-factor authentication, include identity provider accounts, and oversee
device activity.

Additional resources

The Account Console can be configured in terms of appearance and language preferences. An
example is adding additional attributes to the Personal info page. For more information, see
the Server Developer Guide.

16.1. ACCESSING THE ACCOUNT CONSOLE

Procedure

1. Make note of the realm name and IP address for the Red Hat build of Keycloak server where
your account exists.

2. In a web browser, enter a URL in this format: server-root/realms/{realm-name}/account.

3. Enter your login name and password.

Account Console

16.2. CONFIGURING WAYS TO SIGN IN

You can sign in to this console using basic authentication (a login name and password) or two-factor
authentication. For two-factor authentication, use one of the following procedures.

Red Hat build of Keycloak 24.0 Server Administration Guide

294

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/24.0/html-single/server_developer_guide/

16.2.1. Two-factor authentication with OTP

Prerequisites

OTP is a valid authentication mechanism for your realm.

Procedure

1. Click Account security in the menu.

2. Click Signing in.

3. Click Set up Authenticator application.

Signing in

4. Follow the directions that appear on the screen to use your mobile device as your OTP
generator.

5. Scan the QR code in the screen shot into the OTP generator on your mobile device.

6. Log out and log in again.

7. Respond to the prompt by entering an OTP that is provided on your mobile device.

16.2.2. Two-factor authentication with WebAuthn

Prerequisites

WebAuthn is a valid two-factor authentication mechanism for your realm. Please follow the
WebAuthn section for more details.

Procedure

CHAPTER 16. ACCOUNT CONSOLE

295

1. Click Account Security in the menu.

2. Click Signing In.

3. Click Set up a Passkey.

Signing In

4. Prepare your Passkey. How you prepare this key depends on the type of Passkey you use. For
example, for a USB based Yubikey, you may need to put your key into the USB port on your
laptop.

5. Click Register to register your Passkey.

6. Log out and log in again.

7. Assuming authentication flow was correctly set, a message appears asking you to authenticate
with your Passkey as second factor.

16.2.3. Passwordless authentication with WebAuthn

Prerequisites

WebAuthn is a valid passwordless authentication mechanism for your realm. Please follow the
Passwordless WebAuthn section for more details.

Procedure

1. Click Account Security in the menu.

2. Click Signing In.

Red Hat build of Keycloak 24.0 Server Administration Guide

296

3. Click Set up a Passkey in the Passwordless section.

Signing In

4. Prepare your Passkey. How you prepare this key depends on the type of Passkey you use. For
example, for a USB based Yubikey, you may need to put your key into the USB port on your
laptop.

5. Click Register to register your Passkey.

6. Log out and log in again.

7. Assuming authentication flow was correctly set, a message appears asking you to authenticate
with your Passkey as second factor. You no longer need to provide your password to log in.

16.3. VIEWING DEVICE ACTIVITY

You can view the devices that are logged in to your account.

Procedure

1. Click Account security in the menu.

2. Click Device activity.

3. Log out a device if it looks suspicious.

Devices

CHAPTER 16. ACCOUNT CONSOLE

297

16.4. ADDING AN IDENTITY PROVIDER ACCOUNT

You can link your account with an identity broker. This option is often used to link social provider
accounts.

Procedure

1. Log into the Admin Console.

2. Click Identity providers in the menu.

3. Select a provider and complete the fields.

4. Return to the Account Console.

5. Click Account security in the menu.

6. Click Linked accounts.

The identity provider you added appears in this page.

Linked Accounts

Red Hat build of Keycloak 24.0 Server Administration Guide

298

16.5. ACCESSING OTHER APPLICATIONS

The Applications menu item shows users which applications you can access. In this case, only the
Account Console is available.

Applications

CHAPTER 16. ACCOUNT CONSOLE

299

16.6. VIEWING GROUP MEMBERSHIPS

You can view the groups you are associated with by clicking the Groups menu. If you select Direct
membership checkbox, you will see only the groups you are direct associated with.

Prerequisites

You need to have the view-groups account role for being able to view Groups menu.

View group memberships

Red Hat build of Keycloak 24.0 Server Administration Guide

300

CHAPTER 17. ADMIN CLI
With Red Hat build of Keycloak, you can perform administration tasks from the command-line interface
(CLI) by using the Admin CLI command-line tool.

17.1. INSTALLING THE ADMIN CLI

Red Hat build of Keycloak packages the Admin CLI server distribution with the execution scripts in the
bin directory.

The Linux script is called kcadm.sh, and the script for Windows is called kcadm.bat. Add the Red Hat
build of Keycloak server directory to your PATH to use the client from any location on your file system.

For example:

Linux:

$ export PATH=$PATH:$KEYCLOAK_HOME/bin
$ kcadm.sh

Windows:

c:\> set PATH=%PATH%;%KEYCLOAK_HOME%\bin
c:\> kcadm

NOTE

You must set the KEYCLOAK_HOME environment variable to the path where you
extracted the Red Hat build of Keycloak Server distribution.

To avoid repetition, the rest of this document only uses Windows examples in places
where the CLI differences are more than just in the kcadm command name.

17.2. USING THE ADMIN CLI

The Admin CLI makes HTTP requests to Admin REST endpoints. Access to the Admin REST endpoints
requires authentication.

NOTE

Consult the Admin REST API documentation for details about JSON attributes for
specific endpoints.

1. Start an authenticated session by logging in. You can now perform create, read, update, and
delete (CRUD) operations.
For example:

Linux:

$ kcadm.sh config credentials --server http://localhost:8080 --realm demo --user admin --
client admin
$ kcadm.sh create realms -s realm=demorealm -s enabled=true -o

CHAPTER 17. ADMIN CLI

301

$ CID=$(kcadm.sh create clients -r demorealm -s clientId=my_client -s 'redirectUris=
["http://localhost:8980/myapp/*"]' -i)
$ kcadm.sh get clients/$CID/installation/providers/keycloak-oidc-keycloak-json

Windows:

c:\> kcadm config credentials --server http://localhost:8080 --realm demo --user admin --
client admin
c:\> kcadm create realms -s realm=demorealm -s enabled=true -o
c:\> kcadm create clients -r demorealm -s clientId=my_client -s "redirectUris=
[\"http://localhost:8980/myapp/*\"]" -i > clientid.txt
c:\> set /p CID=<clientid.txt
c:\> kcadm get clients/%CID%/installation/providers/keycloak-oidc-keycloak-json

2. In a production environment, access Red Hat build of Keycloak by using https: to avoid exposing
tokens. If a trusted certificate authority, included in Java’s default certificate truststore, has not
issued a server’s certificate, prepare a truststore.jks file and instruct the Admin CLI to use it.
For example:

Linux:

$ kcadm.sh config truststore --trustpass $PASSWORD ~/.keycloak/truststore.jks

Windows:

c:\> kcadm config truststore --trustpass %PASSWORD%
%HOMEPATH%\.keycloak\truststore.jks

17.3. AUTHENTICATING

When you log in with the Admin CLI, you specify:

A server endpoint URL

A realm

A user name

Another option is to specify a clientId only, which creates a unique service account for you to use.

When you log in using a user name, use a password for the specified user. When you log in using a
clientId, you need the client secret only, not the user password. You can also use the Signed JWT rather
than the client secret.

Ensure the account used for the session has the proper permissions to invoke Admin REST API
operations. For example, the realm-admin role of the realm-management client can administer the
realm of the user.

Two primary mechanisms are available for authentication. One mechanism uses kcadm config
credentials to start an authenticated session.

$ kcadm.sh config credentials --server http://localhost:8080 --realm master --user admin --password
admin

This mechanism maintains an authenticated session between the kcadm command invocations by

Red Hat build of Keycloak 24.0 Server Administration Guide

302

This mechanism maintains an authenticated session between the kcadm command invocations by
saving the obtained access token and its associated refresh token. It can maintain other secrets in a
private configuration file. See the next chapter for more information.

The second mechanism authenticates each command invocation for the duration of the invocation. This
mechanism increases the load on the server and the time spent on round trips obtaining tokens. The
benefit of this approach is that it is unnecessary to save tokens between invocations, so nothing is saved
to disk. Red Hat build of Keycloak uses this mode when the --no-config argument is specified.

For example, when performing an operation, specify all the information required for authentication.

$ kcadm.sh get realms --no-config --server http://localhost:8080 --realm master --user admin --
password admin

Run the kcadm.sh help command for more information on using the Admin CLI.

Run the kcadm.sh config credentials --help command for more information about starting an
authenticated session.

17.4. WORKING WITH ALTERNATIVE CONFIGURATIONS

By default, the Admin CLI maintains a configuration file named kcadm.config. Red Hat build of
Keycloak places this file in the user’s home directory. In Linux-based systems, the full pathname is
$HOME/.keycloak/kcadm.config. In Windows, the full pathname is
%HOMEPATH%\.keycloak\kcadm.config.

You can use the --config option to point to a different file or location so you can maintain multiple
authenticated sessions in parallel.

NOTE

Perform operations tied to a single configuration file from a single thread.

Ensure the configuration file is invisible to other users on the system. It contains access tokens and
secrets that must be private. Red Hat build of Keycloak creates the ~/.keycloak directory and its
contents automatically with proper access limits. If the directory already exists, Red Hat build of
Keycloak does not update the directory’s permissions.

It is possible to avoid storing secrets inside a configuration file, but doing so is inconvenient and
increases the number of token requests. Use the --no-config option with all commands and specify the
authentication information the config credentials command requires with each invocation of kcadm.

17.5. BASIC OPERATIONS AND RESOURCE URIS

The Admin CLI can generically perform CRUD operations against Admin REST API endpoints with
additional commands that simplify particular tasks.

The main usage pattern is listed here:

$ kcadm.sh create ENDPOINT [ARGUMENTS]
$ kcadm.sh get ENDPOINT [ARGUMENTS]
$ kcadm.sh update ENDPOINT [ARGUMENTS]
$ kcadm.sh delete ENDPOINT [ARGUMENTS]

CHAPTER 17. ADMIN CLI

303

The create, get, update, and delete commands map to the HTTP verbs POST, GET, PUT, and DELETE,
respectively. ENDPOINT is a target resource URI and can be absolute (starting with http: or https:) or
relative, that Red Hat build of Keycloak uses to compose absolute URLs in the following format:

SERVER_URI/admin/realms/REALM/ENDPOINT

For example, if you authenticate against the server http://localhost:8080 and realm is master, using
users as ENDPOINT creates the http://localhost:8080/admin/realms/master/users resource URL.

If you set ENDPOINT to clients, the effective resource URI is
http://localhost:8080/admin/realms/master/clients.

Red Hat build of Keycloak has a realms endpoint that is the container for realms. It resolves to:

SERVER_URI/admin/realms

Red Hat build of Keycloak has a serverinfo endpoint. This endpoint is independent of realms.

When you authenticate as a user with realm-admin powers, you may need to perform commands on
multiple realms. If so, specify the -r option to tell the CLI which realm the command is to execute against
explicitly. Instead of using REALM as specified by the --realm option of kcadm.sh config credentials,
the command uses TARGET_REALM.

SERVER_URI/admin/realms/TARGET_REALM/ENDPOINT

For example:

$ kcadm.sh config credentials --server http://localhost:8080 --realm master --user admin --password
admin
$ kcadm.sh create users -s username=testuser -s enabled=true -r demorealm

In this example, you start a session authenticated as the admin user in the master realm. You then
perform a POST call against the resource URL http://localhost:8080/admin/realms/demorealm/users.

The create and update commands send a JSON body to the server. You can use -f FILENAME to read a
pre-made document from a file. When you can use the -f - option, Red Hat build of Keycloak reads the
message body from the standard input. You can specify individual attributes and their values, as seen in
the create users example. Red Hat build of Keycloak composes the attributes into a JSON body and
sends them to the server.

Several methods are available in Red Hat build of Keycloak to update a resource using the update
command. You can determine the current state of a resource and save it to a file, edit that file, and send
it to the server for an update.

For example:

$ kcadm.sh get realms/demorealm > demorealm.json
$ vi demorealm.json
$ kcadm.sh update realms/demorealm -f demorealm.json

This method updates the resource on the server with the attributes in the sent JSON document.

Another method is to perform an on-the-fly update by using the -s, --set options to set new values.

For example:

Red Hat build of Keycloak 24.0 Server Administration Guide

304

http://localhost:8080
http://localhost:8080/admin/realms/master/users
http://localhost:8080/admin/realms/master/clients
http://localhost:8080/admin/realms/demorealm/users

$ kcadm.sh update realms/demorealm -s enabled=false

This method sets the enabled attribute to false.

By default, the update command performs a get and then merges the new attribute values with existing
values. In some cases, the endpoint may support the put command but not the get command. You can
use the -n option to perform a no-merge update, which performs a put command without first running a
get command.

17.6. REALM OPERATIONS

Creating a new realm
Use the create command on the realms endpoint to create a new enabled realm. Set the attributes to
realm and enabled.

$ kcadm.sh create realms -s realm=demorealm -s enabled=true

Red Hat build of Keycloak disables realms by default. You can use a realm immediately for
authentication by enabling it.

A description for a new object can also be in JSON format.

$ kcadm.sh create realms -f demorealm.json

You can send a JSON document with realm attributes directly from a file or pipe the document to
standard input.

For example:

Linux:

$ kcadm.sh create realms -f - << EOF
{ "realm": "demorealm", "enabled": true }
EOF

Windows:

c:\> echo { "realm": "demorealm", "enabled": true } | kcadm create realms -f -

Listing existing realms
This command returns a list of all realms.

$ kcadm.sh get realms

NOTE

Red Hat build of Keycloak filters the list of realms on the server to return realms a user
can see only.

The list of all realm attributes can be verbose, and most users are interested in a subset of attributes,
such as the realm name and the enabled status of the realm. You can specify the attributes to return by
using the --fields option.

CHAPTER 17. ADMIN CLI

305

$ kcadm.sh get realms --fields realm,enabled

You can display the result as comma-separated values.

$ kcadm.sh get realms --fields realm --format csv --noquotes

Getting a specific realm
Append a realm name to a collection URI to get an individual realm.

$ kcadm.sh get realms/master

Updating a realm

1. Use the -s option to set new values for the attributes when you do not want to change all of the
realm’s attributes.
For example:

$ kcadm.sh update realms/demorealm -s enabled=false

2. If you want to set all writable attributes to new values:

a. Run a get command.

b. Edit the current values in the JSON file.

c. Resubmit.
For example:

$ kcadm.sh get realms/demorealm > demorealm.json
$ vi demorealm.json
$ kcadm.sh update realms/demorealm -f demorealm.json

Deleting a realm
Run the following command to delete a realm:

$ kcadm.sh delete realms/demorealm

Turning on all login page options for the realm
Set the attributes that control specific capabilities to true.

For example:

$ kcadm.sh update realms/demorealm -s registrationAllowed=true -s
registrationEmailAsUsername=true -s rememberMe=true -s verifyEmail=true -s
resetPasswordAllowed=true -s editUsernameAllowed=true

Listing the realm keys
Use the get operation on the keys endpoint of the target realm.

$ kcadm.sh get keys -r demorealm

Generating new realm keys

1. Get the ID of the target realm before adding a new RSA-generated key pair.

Red Hat build of Keycloak 24.0 Server Administration Guide

306

1. Get the ID of the target realm before adding a new RSA-generated key pair.
For example:

$ kcadm.sh get realms/demorealm --fields id --format csv --noquotes

2. Add a new key provider with a higher priority than the existing providers as revealed by
kcadm.sh get keys -r demorealm.
For example:

Linux:

$ kcadm.sh create components -r demorealm -s name=rsa-generated -s providerId=rsa-
generated -s providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-d149-
41d7-8359-6aa527fca0b0 -s 'config.priority=["101"]' -s 'config.enabled=["true"]' -s
'config.active=["true"]' -s 'config.keySize=["2048"]'

Windows:

c:\> kcadm create components -r demorealm -s name=rsa-generated -s providerId=rsa-
generated -s providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-d149-
41d7-8359-6aa527fca0b0 -s "config.priority=[\"101\"]" -s "config.enabled=[\"true\"]" -s
"config.active=[\"true\"]" -s "config.keySize=[\"2048\"]"

3. Set the parentId attribute to the value of the target realm’s ID.
The newly added key is now the active key, as revealed by kcadm.sh get keys -r demorealm.

Adding new realm keys from a Java Key Store file

1. Add a new key provider to add a new key pair pre-prepared as a JKS file.
For example, on:

Linux:

$ kcadm.sh create components -r demorealm -s name=java-keystore -s providerId=java-
keystore -s providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-d149-
41d7-8359-6aa527fca0b0 -s 'config.priority=["101"]' -s 'config.enabled=["true"]' -s
'config.active=["true"]' -s 'config.keystore=["/opt/keycloak/keystore.jks"]' -s
'config.keystorePassword=["secret"]' -s 'config.keyPassword=["secret"]' -s
'config.keyAlias=["localhost"]'

Windows:

c:\> kcadm create components -r demorealm -s name=java-keystore -s providerId=java-
keystore -s providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-d149-
41d7-8359-6aa527fca0b0 -s "config.priority=[\"101\"]" -s "config.enabled=[\"true\"]" -s
"config.active=[\"true\"]" -s "config.keystore=[\"/opt/keycloak/keystore.jks\"]" -s
"config.keystorePassword=[\"secret\"]" -s "config.keyPassword=[\"secret\"]" -s
"config.keyAlias=[\"localhost\"]"

2. Ensure you change the attribute values for keystore, keystorePassword, keyPassword, and
alias to match your specific keystore.

3. Set the parentId attribute to the value of the target realm’s ID.

CHAPTER 17. ADMIN CLI

307

Making the key passive or disabling the key

1. Identify the key you want to make passive.

$ kcadm.sh get keys -r demorealm

2. Use the key’s providerId attribute to construct an endpoint URI, such as
components/PROVIDER_ID.

3. Perform an update.
For example:

Linux:

$ kcadm.sh update components/PROVIDER_ID -r demorealm -s 'config.active=["false"]'

Windows:

c:\> kcadm update components/PROVIDER_ID -r demorealm -s "config.active=[\"false\"]"

You can update other key attributes:

Set a new enabled value to disable the key, for example, config.enabled=["false"].

Set a new priority value to change the key’s priority, for example, config.priority=["110"].

Deleting an old key

1. Ensure the key you are deleting is inactive and you have disabled it. This action is to prevent
existing tokens held by applications and users from failing.

2. Identify the key to delete.

$ kcadm.sh get keys -r demorealm

3. Use the providerId of the key to perform the delete.

$ kcadm.sh delete components/PROVIDER_ID -r demorealm

Configuring event logging for a realm
Use the update command on the events/config endpoint.

The eventsListeners attribute contains a list of EventListenerProviderFactory IDs, specifying all event
listeners that receive events. Attributes are available that control built-in event storage, so you can
query past events using the Admin REST API. Red Hat build of Keycloak has separate control over the
logging of service calls (eventsEnabled) and the auditing events triggered by the Admin Console or
Admin REST API (adminEventsEnabled). You can set up the eventsExpiration event to expire to
prevent your database from filling. Red Hat build of Keycloak sets eventsExpiration to time-to-live
expressed in seconds.

You can set up a built-in event listener that receives all events and logs the events through JBoss-
logging. Using the org.keycloak.events logger, Red Hat build of Keycloak logs error events as WARN
and other events as DEBUG.

For example:

Red Hat build of Keycloak 24.0 Server Administration Guide

308

Linux:

$ kcadm.sh update events/config -r demorealm -s 'eventsListeners=["jboss-logging"]'

Windows:

c:\> kcadm update events/config -r demorealm -s "eventsListeners=[\"jboss-logging\"]"

For example:

You can turn on storage for all available ERROR events, not including auditing events, for two days so
you can retrieve the events through Admin REST.

Linux:

$ kcadm.sh update events/config -r demorealm -s eventsEnabled=true -s
'enabledEventTypes=
["LOGIN_ERROR","REGISTER_ERROR","LOGOUT_ERROR","CODE_TO_TOKEN_ERRO
R","CLIENT_LOGIN_ERROR","FEDERATED_IDENTITY_LINK_ERROR","REMOVE_FEDE
RATED_IDENTITY_ERROR","UPDATE_EMAIL_ERROR","UPDATE_PROFILE_ERROR","U
PDATE_PASSWORD_ERROR","UPDATE_TOTP_ERROR","VERIFY_EMAIL_ERROR","RE
MOVE_TOTP_ERROR","SEND_VERIFY_EMAIL_ERROR","SEND_RESET_PASSWORD_E
RROR","SEND_IDENTITY_PROVIDER_LINK_ERROR","RESET_PASSWORD_ERROR","ID
ENTITY_PROVIDER_FIRST_LOGIN_ERROR","IDENTITY_PROVIDER_POST_LOGIN_ER
ROR","CUSTOM_REQUIRED_ACTION_ERROR","EXECUTE_ACTIONS_ERROR","CLIEN
T_REGISTER_ERROR","CLIENT_UPDATE_ERROR","CLIENT_DELETE_ERROR"]' -s
eventsExpiration=172800

Windows:

c:\> kcadm update events/config -r demorealm -s eventsEnabled=true -s
"enabledEventTypes=
[\"LOGIN_ERROR\",\"REGISTER_ERROR\",\"LOGOUT_ERROR\",\"CODE_TO_TOKEN_ER
ROR\",\"CLIENT_LOGIN_ERROR\",\"FEDERATED_IDENTITY_LINK_ERROR\",\"REMOVE_
FEDERATED_IDENTITY_ERROR\",\"UPDATE_EMAIL_ERROR\",\"UPDATE_PROFILE_ER
ROR\",\"UPDATE_PASSWORD_ERROR\",\"UPDATE_TOTP_ERROR\",\"VERIFY_EMAIL_E
RROR\",\"REMOVE_TOTP_ERROR\",\"SEND_VERIFY_EMAIL_ERROR\",\"SEND_RESET_
PASSWORD_ERROR\",\"SEND_IDENTITY_PROVIDER_LINK_ERROR\",\"RESET_PASSW
ORD_ERROR\",\"IDENTITY_PROVIDER_FIRST_LOGIN_ERROR\",\"IDENTITY_PROVIDE
R_POST_LOGIN_ERROR\",\"CUSTOM_REQUIRED_ACTION_ERROR\",\"EXECUTE_ACTI
ONS_ERROR\",\"CLIENT_REGISTER_ERROR\",\"CLIENT_UPDATE_ERROR\",\"CLIENT_
DELETE_ERROR\"]" -s eventsExpiration=172800

You can reset stored event types to all available event types. Setting the value to an empty list is the
same as enumerating all.

$ kcadm.sh update events/config -r demorealm -s enabledEventTypes=[]

You can enable storage of auditing events.

$ kcadm.sh update events/config -r demorealm -s adminEventsEnabled=true -s
adminEventsDetailsEnabled=true

You can get the last 100 events. The events are ordered from newest to oldest.

CHAPTER 17. ADMIN CLI

309

$ kcadm.sh get events --offset 0 --limit 100

You can delete all saved events.

$ kcadm delete events

Flushing the caches

1. Use the create command with one of these endpoints to clear caches:

clear-realm-cache

clear-user-cache

clear-keys-cache

2. Set realm to the same value as the target realm.
For example:

$ kcadm.sh create clear-realm-cache -r demorealm -s realm=demorealm
$ kcadm.sh create clear-user-cache -r demorealm -s realm=demorealm
$ kcadm.sh create clear-keys-cache -r demorealm -s realm=demorealm

Importing a realm from exported .json file

1. Use the create command on the partialImport endpoint.

2. Set ifResourceExists to FAIL, SKIP, or OVERWRITE.

3. Use -f to submit the exported realm .json file.
For example:

$ kcadm.sh create partialImport -r demorealm2 -s ifResourceExists=FAIL -o -f
demorealm.json

If the realm does not yet exist, create it first.

For example:

$ kcadm.sh create realms -s realm=demorealm2 -s enabled=true

17.7. ROLE OPERATIONS

Creating a realm role
Use the roles endpoint to create a realm role.

$ kcadm.sh create roles -r demorealm -s name=user -s 'description=Regular user with a limited set of
permissions'

Creating a client role

1. Identify the client.

2. Use the get command to list the available clients.

Red Hat build of Keycloak 24.0 Server Administration Guide

310

$ kcadm.sh get clients -r demorealm --fields id,clientId

3. Create a new role by using the clientId attribute to construct an endpoint URI, such as
clients/ID/roles.
For example:

$ kcadm.sh create clients/a95b6af3-0bdc-4878-ae2e-6d61a4eca9a0/roles -r demorealm -s
name=editor -s 'description=Editor can edit, and publish any article'

Listing realm roles
Use the get command on the roles endpoint to list existing realm roles.

$ kcadm.sh get roles -r demorealm

You can use the get-roles command also.

$ kcadm.sh get-roles -r demorealm

Listing client roles
Red Hat build of Keycloak has a dedicated get-roles command to simplify the listing of realm and client
roles. The command is an extension of the get command and behaves the same as the get command but
with additional semantics for listing roles.

Use the get-roles command by passing it the clientId (--cclientid) option or the id (--cid) option to
identify the client to list client roles.

For example:

$ kcadm.sh get-roles -r demorealm --cclientid realm-management

Getting a specific realm role
Use the get command and the role name to construct an endpoint URI for a specific realm role,
roles/ROLE_NAME, where user is the existing role’s name.

For example:

$ kcadm.sh get roles/user -r demorealm

You can use the get-roles command, passing it a role name (--rolename option) or ID (--roleid option).

For example:

$ kcadm.sh get-roles -r demorealm --rolename user

Getting a specific client role
Use the get-roles command, passing it the clientId attribute (--cclientid option) or ID attribute (--cid
option) to identify the client, and pass the role name (--rolename option) or the role ID attribute (--
roleid) to identify a specific client role.

For example:

$ kcadm.sh get-roles -r demorealm --cclientid realm-management --rolename manage-clients

CHAPTER 17. ADMIN CLI

311

Updating a realm role
Use the update command with the endpoint URI you used to get a specific realm role.

For example:

$ kcadm.sh update roles/user -r demorealm -s 'description=Role representing a regular user'

Updating a client role
Use the update command with the endpoint URI that you used to get a specific client role.

For example:

$ kcadm.sh update clients/a95b6af3-0bdc-4878-ae2e-6d61a4eca9a0/roles/editor -r demorealm -s
'description=User that can edit, and publish articles'

Deleting a realm role
Use the delete command with the endpoint URI that you used to get a specific realm role.

For example:

$ kcadm.sh delete roles/user -r demorealm

Deleting a client role
Use the delete command with the endpoint URI that you used to get a specific client role.

For example:

$ kcadm.sh delete clients/a95b6af3-0bdc-4878-ae2e-6d61a4eca9a0/roles/editor -r demorealm

Listing assigned, available, and effective realm roles for a composite role
Use the get-roles command to list assigned, available, and effective realm roles for a composite role.

1. To list assigned realm roles for the composite role, specify the target composite role by name (-
-rname option) or ID (--rid option).
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole

2. Use the --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --effective

3. Use the --available option to list realm roles that you can add to the composite role.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --available

Listing assigned, available, and effective client roles for a composite role
Use the get-roles command to list assigned, available, and effective client roles for a composite role.

1. To list assigned client roles for the composite role, you can specify the target composite role by

Red Hat build of Keycloak 24.0 Server Administration Guide

312

1. To list assigned client roles for the composite role, you can specify the target composite role by
name (--rname option) or ID (--rid option) and client by the clientId attribute (--cclientid
option) or ID (--cid option).
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --cclientid realm-management

2. Use the --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --cclientid realm-management --effective

3. Use the --available option to list realm roles that you can add to the target composite role.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --cclientid realm-management --
available

Adding realm roles to a composite role
Red Hat build of Keycloak provides an add-roles command for adding realm roles and client roles.

This example adds the user role to the composite role testrole.

$ kcadm.sh add-roles --rname testrole --rolename user -r demorealm

Removing realm roles from a composite role
Red Hat build of Keycloak provides a remove-roles command for removing realm roles and client roles.

The following example removes the user role from the target composite role testrole.

$ kcadm.sh remove-roles --rname testrole --rolename user -r demorealm

Adding client roles to a realm role
Red Hat build of Keycloak provides an add-roles command for adding realm roles and client roles.

The following example adds the roles defined on the client realm-management, create-client, and
view-users, to the testrole composite role.

$ kcadm.sh add-roles -r demorealm --rname testrole --cclientid realm-management --rolename
create-client --rolename view-users

Adding client roles to a client role

1. Determine the ID of the composite client role by using the get-roles command.
For example:

$ kcadm.sh get-roles -r demorealm --cclientid test-client --rolename operations

2. Assume that a client exists with a clientId attribute named test-client, a client role named
support, and a client role named operations which becomes a composite role that has an ID of
"fc400897-ef6a-4e8c-872b-1581b7fa8a71".

3. Use the following example to add another role to the composite role.

CHAPTER 17. ADMIN CLI

313

$ kcadm.sh add-roles -r demorealm --cclientid test-client --rid fc400897-ef6a-4e8c-872b-
1581b7fa8a71 --rolename support

4. List the roles of a composite role by using the get-roles --all command.
For example:

$ kcadm.sh get-roles --rid fc400897-ef6a-4e8c-872b-1581b7fa8a71 --all

Removing client roles from a composite role
Use the remove-roles command to remove client roles from a composite role.

Use the following example to remove two roles defined on the client realm-management, the create-
client role and the view-users role, from the testrole composite role.

$ kcadm.sh remove-roles -r demorealm --rname testrole --cclientid realm-management --rolename
create-client --rolename view-users

Adding client roles to a group
Use the add-roles command to add realm roles and client roles.

The following example adds the roles defined on the client realm-management, create-client and view-
users, to the Group group (--gname option). Alternatively, you can specify the group by ID (--gid
option).

See Group operations for more information.

$ kcadm.sh add-roles -r demorealm --gname Group --cclientid realm-management --rolename
create-client --rolename view-users

Removing client roles from a group
Use the remove-roles command to remove client roles from a group.

The following example removes two roles defined on the client realm management, create-client and
view-users, from the Group group.

See Group operations for more information.

$ kcadm.sh remove-roles -r demorealm --gname Group --cclientid realm-management --rolename
create-client --rolename view-users

17.8. CLIENT OPERATIONS

Creating a client

1. Run the create command on a clients endpoint to create a new client.
For example:

$ kcadm.sh create clients -r demorealm -s clientId=myapp -s enabled=true

2. Specify a secret if to set a secret for adapters to authenticate.
For example:

Red Hat build of Keycloak 24.0 Server Administration Guide

314

$ kcadm.sh create clients -r demorealm -s clientId=myapp -s enabled=true -s
clientAuthenticatorType=client-secret -s secret=d0b8122f-8dfb-46b7-b68a-f5cc4e25d000

Listing clients
Use the get command on the clients endpoint to list clients.

This example filters the output to list only the id and clientId attributes:

$ kcadm.sh get clients -r demorealm --fields id,clientId

Getting a specific client
Use the client ID to construct an endpoint URI that targets a specific client, such as clients/ID.

For example:

$ kcadm.sh get clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r demorealm

Getting the current secret for a specific client
Use the client ID to construct an endpoint URI, such as clients/ID/client-secret.

For example:

$ kcadm.sh get clients/$CID/client-secret -r demorealm

Generate a new secret for a specific client
Use the client ID to construct an endpoint URI, such as clients/ID/client-secret.

For example:

$ kcadm.sh create clients/$CID/client-secret -r demorealm

Updating the current secret for a specific client
Use the client ID to construct an endpoint URI, such as clients/ID.

For example:

$ kcadm.sh update clients/$CID -s "secret=newSecret" -r demorealm

Getting an adapter configuration file (keycloak.json) for a specific client
Use the client ID to construct an endpoint URI that targets a specific client, such as
clients/ID/installation/providers/keycloak-oidc-keycloak-json.

For example:

$ kcadm.sh get clients/c7b8547f-e748-4333-95d0-410b76b3f4a3/installation/providers/keycloak-oidc-
keycloak-json -r demorealm

Getting a WildFly subsystem adapter configuration for a specific client
Use the client ID to construct an endpoint URI that targets a specific client, such as
clients/ID/installation/providers/keycloak-oidc-jboss-subsystem.

For example:

CHAPTER 17. ADMIN CLI

315

$ kcadm.sh get clients/c7b8547f-e748-4333-95d0-410b76b3f4a3/installation/providers/keycloak-oidc-
jboss-subsystem -r demorealm

Getting a Docker-v2 example configuration for a specific client
Use the client ID to construct an endpoint URI that targets a specific client, such as
clients/ID/installation/providers/docker-v2-compose-yaml.

The response is in .zip format.

For example:

$ kcadm.sh get http://localhost:8080/admin/realms/demorealm/clients/8f271c35-44e3-446f-8953-
b0893810ebe7/installation/providers/docker-v2-compose-yaml -r demorealm > keycloak-docker-
compose-yaml.zip

Updating a client
Use the update command with the same endpoint URI that you use to get a specific client.

For example:

Linux:

$ kcadm.sh update clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r demorealm -s
enabled=false -s publicClient=true -s 'redirectUris=["http://localhost:8080/myapp/*"]' -s
baseUrl=http://localhost:8080/myapp -s adminUrl=http://localhost:8080/myapp

Windows:

c:\> kcadm update clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r demorealm -s
enabled=false -s publicClient=true -s "redirectUris=[\"http://localhost:8080/myapp/*\"]" -s
baseUrl=http://localhost:8080/myapp -s adminUrl=http://localhost:8080/myapp

Deleting a client
Use the delete command with the same endpoint URI that you use to get a specific client.

For example:

$ kcadm.sh delete clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r demorealm

Adding or removing roles for client’s service account
A client’s service account is a user account with username service-account-CLIENT_ID. You can
perform the same user operations on this account as a regular account.

17.9. USER OPERATIONS

Creating a user
Run the create command on the users endpoint to create a new user.

For example:

$ kcadm.sh create users -r demorealm -s username=testuser -s enabled=true

Listing users

Use the users endpoint to list users. The target user must change their password the next time they log

Red Hat build of Keycloak 24.0 Server Administration Guide

316

Use the users endpoint to list users. The target user must change their password the next time they log
in.

For example:

$ kcadm.sh get users -r demorealm --offset 0 --limit 1000

You can filter users by username, firstName, lastName, or email.

For example:

$ kcadm.sh get users -r demorealm -q email=google.com
$ kcadm.sh get users -r demorealm -q username=testuser

NOTE

Filtering does not use exact matching. This example matches the value of the username
attribute against the *testuser* pattern.

You can filter across multiple attributes by specifying multiple -q options. Red Hat build of Keycloak
returns users that match the condition for all the attributes only.

Getting a specific user
Use the user ID to compose an endpoint URI, such as users/USER_ID.

For example:

$ kcadm.sh get users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm

Updating a user
Use the update command with the same endpoint URI that you use to get a specific user.

For example:

Linux:

$ kcadm.sh update users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm -s
'requiredActions=
["VERIFY_EMAIL","UPDATE_PROFILE","CONFIGURE_TOTP","UPDATE_PASSWORD"]'

Windows:

c:\> kcadm update users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm -s
"requiredActions=
[\"VERIFY_EMAIL\",\"UPDATE_PROFILE\",\"CONFIGURE_TOTP\",\"UPDATE_PASSWORD
\"]"

Deleting a user
Use the delete command with the same endpoint URI that you use to get a specific user.

For example:

$ kcadm.sh delete users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm

CHAPTER 17. ADMIN CLI

317

Resetting a user’s password
Use the dedicated set-password command to reset a user’s password.

For example:

$ kcadm.sh set-password -r demorealm --username testuser --new-password NEWPASSWORD --
temporary

This command sets a temporary password for the user. The target user must change the password the
next time they log in.

You can use --userid to specify the user by using the id attribute.

You can achieve the same result using the update command on an endpoint constructed from the one
you used to get a specific user, such as users/USER_ID/reset-password.

For example:

$ kcadm.sh update users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2/reset-password -r demorealm -s
type=password -s value=NEWPASSWORD -s temporary=true -n

The -n parameter ensures that Red Hat build of Keycloak performs the PUT command without
performing a GET command before the PUT command. This is necessary because the reset-password
endpoint does not support GET.

Listing assigned, available, and effective realm roles for a user
You can use a get-roles command to list assigned, available, and effective realm roles for a user.

1. Specify the target user by user name or ID to list the user’s assigned realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser

2. Use the --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --effective

3. Use the --available option to list realm roles that you can add to a user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --available

Listing assigned, available, and effective client roles for a user
Use a get-roles command to list assigned, available, and effective client roles for a user.

1. Specify the target user by user name (--uusername option) or ID (--uid option) and client by a
clientId attribute (--cclientid option) or an ID (--cid option) to list assigned client roles for the
user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --cclientid realm-management

Red Hat build of Keycloak 24.0 Server Administration Guide

318

2. Use the --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --cclientid realm-management --
effective

3. Use the --available option to list realm roles that you can add to a user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --cclientid realm-management --
available

Adding realm roles to a user
Use an add-roles command to add realm roles to a user.

Use the following example to add the user role to user testuser:

$ kcadm.sh add-roles --uusername testuser --rolename user -r demorealm

Removing realm roles from a user
Use a remove-roles command to remove realm roles from a user.

Use the following example to remove the user role from the user testuser:

$ kcadm.sh remove-roles --uusername testuser --rolename user -r demorealm

Adding client roles to a user
Use an add-roles command to add client roles to a user.

Use the following example to add two roles defined on the client realm management, the create-client
role and the view-users role, to the user testuser.

$ kcadm.sh add-roles -r demorealm --uusername testuser --cclientid realm-management --rolename
create-client --rolename view-users

Removing client roles from a user
Use a remove-roles command to remove client roles from a user.

Use the following example to remove two roles defined on the realm management client:

$ kcadm.sh remove-roles -r demorealm --uusername testuser --cclientid realm-management --
rolename create-client --rolename view-users

Listing a user’s sessions

1. Identify the user’s ID,

2. Use the ID to compose an endpoint URI, such as users/ID/sessions.

3. Use the get command to retrieve a list of the user’s sessions.
For example:

$ kcadm.sh get users/6da5ab89-3397-4205-afaa-e201ff638f9e/sessions -r demorealm

CHAPTER 17. ADMIN CLI

319

Logging out a user from a specific session

1. Determine the session’s ID as described earlier.

2. Use the session’s ID to compose an endpoint URI, such as sessions/ID.

3. Use the delete command to invalidate the session.
For example:

$ kcadm.sh delete sessions/d0eaa7cc-8c5d-489d-811a-69d3c4ec84d1 -r demorealm

Logging out a user from all sessions
Use the user’s ID to construct an endpoint URI, such as users/ID/logout.

Use the create command to perform POST on that endpoint URI.

For example:

$ kcadm.sh create users/6da5ab89-3397-4205-afaa-e201ff638f9e/logout -r demorealm -s
realm=demorealm -s user=6da5ab89-3397-4205-afaa-e201ff638f9e

17.10. GROUP OPERATIONS

Creating a group
Use the create command on the groups endpoint to create a new group.

For example:

$ kcadm.sh create groups -r demorealm -s name=Group

Listing groups
Use the get command on the groups endpoint to list groups.

For example:

$ kcadm.sh get groups -r demorealm

Getting a specific group
Use the group’s ID to construct an endpoint URI, such as groups/GROUP_ID.

For example:

$ kcadm.sh get groups/51204821-0580-46db-8f2d-27106c6b5ded -r demorealm

Updating a group
Use the update command with the same endpoint URI that you use to get a specific group.

For example:

$ kcadm.sh update groups/51204821-0580-46db-8f2d-27106c6b5ded -s 'attributes.email=
["group@example.com"]' -r demorealm

Deleting a group

Red Hat build of Keycloak 24.0 Server Administration Guide

320

Use the delete command with the same endpoint URI that you use to get a specific group.

For example:

$ kcadm.sh delete groups/51204821-0580-46db-8f2d-27106c6b5ded -r demorealm

Creating a subgroup
Find the ID of the parent group by listing groups. Use that ID to construct an endpoint URI, such as
groups/GROUP_ID/children.

For example:

$ kcadm.sh create groups/51204821-0580-46db-8f2d-27106c6b5ded/children -r demorealm -s
name=SubGroup

Moving a group under another group

1. Find the ID of an existing parent group and the ID of an existing child group.

2. Use the parent group’s ID to construct an endpoint URI, such as
groups/PARENT_GROUP_ID/children.

3. Run the create command on this endpoint and pass the child group’s ID as a JSON body.

For example:

$ kcadm.sh create groups/51204821-0580-46db-8f2d-27106c6b5ded/children -r demorealm -s
id=08d410c6-d585-4059-bb07-54dcb92c5094 -s name=SubGroup

Get groups for a specific user
Use a user’s ID to determine a user’s membership in groups to compose an endpoint URI, such as
users/USER_ID/groups.

For example:

$ kcadm.sh get users/b544f379-5fc4-49e5-8a8d-5cfb71f46f53/groups -r demorealm

Adding a user to a group
Use the update command with an endpoint URI composed of a user’s ID and a group’s ID, such as
users/USER_ID/groups/GROUP_ID, to add a user to a group.

For example:

$ kcadm.sh update users/b544f379-5fc4-49e5-8a8d-5cfb71f46f53/groups/ce01117a-7426-4670-
a29a-5c118056fe20 -r demorealm -s realm=demorealm -s userId=b544f379-5fc4-49e5-8a8d-
5cfb71f46f53 -s groupId=ce01117a-7426-4670-a29a-5c118056fe20 -n

Removing a user from a group
Use the delete command on the same endpoint URI you use for adding a user to a group, such as
users/USER_ID/groups/GROUP_ID, to remove a user from a group.

For example:

CHAPTER 17. ADMIN CLI

321

$ kcadm.sh delete users/b544f379-5fc4-49e5-8a8d-5cfb71f46f53/groups/ce01117a-7426-4670-a29a-
5c118056fe20 -r demorealm

Listing assigned, available, and effective realm roles for a group
Use a dedicated get-roles command to list assigned, available, and effective realm roles for a group.

1. Specify the target group by name (--gname option), path (--gpath option), or ID (--gid option)
to list assigned realm roles for the group.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group

2. Use the --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --effective

3. Use the --available option to list realm roles that you can add to the group.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --available

Listing assigned, available, and effective client roles for a group
Use the get-roles command to list assigned, available, and effective client roles for a group.

1. Specify the target group by name (--gname option) or ID (--gid option),

2. Specify the client by the clientId attribute (--cclientid option) or ID (--id option) to list
assigned client roles for the user.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --cclientid realm-management

3. Use the --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --cclientid realm-management --effective

4. Use the --available option to list realm roles that you can still add to the group.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --cclientid realm-management --available

17.11. IDENTITY PROVIDER OPERATIONS

Listing available identity providers
Use the serverinfo endpoint to list available identity providers.

For example:

$ kcadm.sh get serverinfo -r demorealm --fields 'identityProviders(*)'

Red Hat build of Keycloak 24.0 Server Administration Guide

322

NOTE

Red Hat build of Keycloak processes the serverinfo endpoint similarly to the realms
endpoint. Red Hat build of Keycloak does not resolve the endpoint relative to a target
realm because it exists outside any specific realm.

Listing configured identity providers
Use the identity-provider/instances endpoint.

For example:

$ kcadm.sh get identity-provider/instances -r demorealm --fields alias,providerId,enabled

Getting a specific configured identity provider
Use the identity provider’s alias attribute to construct an endpoint URI, such as identity-
provider/instances/ALIAS, to get a specific identity provider.

For example:

$ kcadm.sh get identity-provider/instances/facebook -r demorealm

Removing a specific configured identity provider
Use the delete command with the same endpoint URI that you use to get a specific configured identity
provider to remove a specific configured identity provider.

For example:

$ kcadm.sh delete identity-provider/instances/facebook -r demorealm

Configuring a Keycloak OpenID Connect identity provider

1. Use keycloak-oidc as the providerId when you create a new identity provider instance.

2. Provide the config attributes: authorizationUrl, tokenUrl, clientId, and clientSecret.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=keycloak-oidc -s
providerId=keycloak-oidc -s enabled=true -s 'config.useJwksUrl="true"' -s
config.authorizationUrl=http://localhost:8180/realms/demorealm/protocol/openid-connect/auth
-s config.tokenUrl=http://localhost:8180/realms/demorealm/protocol/openid-connect/token -s
config.clientId=demo-oidc-provider -s config.clientSecret=secret

Configuring an OpenID Connect identity provider
Configure the generic OpenID Connect provider the same way you configure the Keycloak OpenID
Connect provider, except you set the providerId attribute value to oidc.

Configuring a SAML 2 identity provider

1. Use saml as the providerId.

2. Provide the config attributes: singleSignOnServiceUrl, nameIDPolicyFormat, and
signatureAlgorithm.

For example:

CHAPTER 17. ADMIN CLI

323

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=saml -s providerId=saml -s
enabled=true -s 'config.useJwksUrl="true"' -s
config.singleSignOnServiceUrl=http://localhost:8180/realms/saml-broker-realm/protocol/saml -s
config.nameIDPolicyFormat=urn:oasis:names:tc:SAML:2.0:nameid-format:persistent -s
config.signatureAlgorithm=RSA_SHA256

Configuring a Facebook identity provider

1. Use facebook as the providerId.

2. Provide the config attributes: clientId and clientSecret. You can find these attributes in the
Facebook Developers application configuration page for your application. See the Facebook
identity broker page for more information.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=facebook -s
providerId=facebook -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=FACEBOOK_CLIENT_ID -s
config.clientSecret=FACEBOOK_CLIENT_SECRET

Configuring a Google identity provider

1. Use google as the providerId.

2. Provide the config attributes: clientId and clientSecret. You can find these attributes in the
Google Developers application configuration page for your application. See the Google identity
broker page for more information.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=google -s
providerId=google -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=GOOGLE_CLIENT_ID -s config.clientSecret=GOOGLE_CLIENT_SECRET

Configuring a Twitter identity provider

1. Use twitter as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in the
Twitter Application Management application configuration page for your application. See the
Twitter identity broker page for more information.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=google -s
providerId=google -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=TWITTER_API_KEY -s config.clientSecret=TWITTER_API_SECRET

Configuring a GitHub identity provider

1. Use github as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in the
GitHub Developer Application Settings page for your application. See the GitHub identity
broker page for more information.
For example:

Red Hat build of Keycloak 24.0 Server Administration Guide

324

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=github -s
providerId=github -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=GITHUB_CLIENT_ID -s config.clientSecret=GITHUB_CLIENT_SECRET

Configuring a LinkedIn identity provider

1. Use linkedin as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in the
LinkedIn Developer Console application page for your application. See the LinkedIn identity
broker page for more information.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=linkedin -s
providerId=linkedin -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=LINKEDIN_CLIENT_ID -s config.clientSecret=LINKEDIN_CLIENT_SECRET

Configuring a Microsoft Live identity provider

1. Use microsoft as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in the
Microsoft Application Registration Portal page for your application. See the Microsoft identity
broker page for more information.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=microsoft -s
providerId=microsoft -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=MICROSOFT_APP_ID -s config.clientSecret=MICROSOFT_PASSWORD

Configuring a Stack Overflow identity provider

1. Use stackoverflow command as the providerId.

2. Provide the config attributes clientId, clientSecret, and key. You can find these attributes in
the Stack Apps OAuth page for your application. See the Stack Overflow identity broker page
for more information.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=stackoverflow -s
providerId=stackoverflow -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=STACKAPPS_CLIENT_ID -s
config.clientSecret=STACKAPPS_CLIENT_SECRET -s config.key=STACKAPPS_KEY

17.12. STORAGE PROVIDER OPERATIONS

Configuring a Kerberos storage provider

1. Use the create command against the components endpoint.

2. Specify the realm id as a value of the parentId attribute.

3. Specify kerberos as the value of the providerId attribute, and
org.keycloak.storage.UserStorageProvider as the value of the providerType attribute.

CHAPTER 17. ADMIN CLI

325

4. For example:

$ kcadm.sh create components -r demorealm -s parentId=demorealmId -s id=demokerberos
-s name=demokerberos -s providerId=kerberos -s
providerType=org.keycloak.storage.UserStorageProvider -s 'config.priority=["0"]' -s
'config.debug=["false"]' -s 'config.allowPasswordAuthentication=["true"]' -s 'config.editMode=
["UNSYNCED"]' -s 'config.updateProfileFirstLogin=["true"]' -s
'config.allowKerberosAuthentication=["true"]' -s 'config.kerberosRealm=["KEYCLOAK.ORG"]'
-s 'config.keyTab=["http.keytab"]' -s 'config.serverPrincipal=
["HTTP/localhost@KEYCLOAK.ORG"]' -s 'config.cachePolicy=["DEFAULT"]'

Configuring an LDAP user storage provider

1. Use the create command against the components endpoint.

2. Specify ldap as the value of the providerId attribute, and
org.keycloak.storage.UserStorageProvider as the value of the providerType attribute.

3. Provide the realm ID as the value of the parentId attribute.

4. Use the following example to create a Kerberos-integrated LDAP provider.

$ kcadm.sh create components -r demorealm -s name=kerberos-ldap-provider -s
providerId=ldap -s providerType=org.keycloak.storage.UserStorageProvider -s
parentId=3d9c572b-8f33-483f-98a6-8bb421667867 -s 'config.priority=["1"]' -s
'config.fullSyncPeriod=["-1"]' -s 'config.changedSyncPeriod=["-1"]' -s 'config.cachePolicy=
["DEFAULT"]' -s config.evictionDay=[] -s config.evictionHour=[] -s config.evictionMinute=[] -s
config.maxLifespan=[] -s 'config.batchSizeForSync=["1000"]' -s 'config.editMode=
["WRITABLE"]' -s 'config.syncRegistrations=["false"]' -s 'config.vendor=["other"]' -s
'config.usernameLDAPAttribute=["uid"]' -s 'config.rdnLDAPAttribute=["uid"]' -s
'config.uuidLDAPAttribute=["entryUUID"]' -s 'config.userObjectClasses=["inetOrgPerson,
organizationalPerson"]' -s 'config.connectionUrl=["ldap://localhost:10389"]' -s
'config.usersDn=["ou=People,dc=keycloak,dc=org"]' -s 'config.authType=["simple"]' -s
'config.bindDn=["uid=admin,ou=system"]' -s 'config.bindCredential=["secret"]' -s
'config.searchScope=["1"]' -s 'config.useTruststoreSpi=["always"]' -s
'config.connectionPooling=["true"]' -s 'config.pagination=["true"]' -s
'config.allowKerberosAuthentication=["true"]' -s 'config.serverPrincipal=
["HTTP/localhost@KEYCLOAK.ORG"]' -s 'config.keyTab=["http.keytab"]' -s
'config.kerberosRealm=["KEYCLOAK.ORG"]' -s 'config.debug=["true"]' -s
'config.useKerberosForPasswordAuthentication=["true"]'

Removing a user storage provider instance

1. Use the storage provider instance’s id attribute to compose an endpoint URI, such as
components/ID.

2. Run the delete command against this endpoint.
For example:

$ kcadm.sh delete components/3d9c572b-8f33-483f-98a6-8bb421667867 -r demorealm

Triggering synchronization of all users for a specific user storage provider

1. Use the storage provider’s id attribute to compose an endpoint URI, such as user-
storage/ID_OF_USER_STORAGE_INSTANCE/sync.

Red Hat build of Keycloak 24.0 Server Administration Guide

326

2. Add the action=triggerFullSync query parameter.

3. Run the create command.
For example:

$ kcadm.sh create user-storage/b7c63d02-b62a-4fc1-977c-947d6a09e1ea/sync?
action=triggerFullSync

Triggering synchronization of changed users for a specific user storage provider

1. Use the storage provider’s id attribute to compose an endpoint URI, such as user-
storage/ID_OF_USER_STORAGE_INSTANCE/sync.

2. Add the action=triggerChangedUsersSync query parameter.

3. Run the create command.
For example:

$ kcadm.sh create user-storage/b7c63d02-b62a-4fc1-977c-947d6a09e1ea/sync?
action=triggerChangedUsersSync

Test LDAP user storage connectivity

1. Run the get command on the testLDAPConnection endpoint.

2. Provide query parameters bindCredential, bindDn, connectionUrl, and useTruststoreSpi.

3. Set the action query parameter to testConnection.
For example:

$ kcadm.sh create testLDAPConnection -s action=testConnection -s bindCredential=secret -s
bindDn=uid=admin,ou=system -s connectionUrl=ldap://localhost:10389 -s
useTruststoreSpi=always

Test LDAP user storage authentication

1. Run the get command on the testLDAPConnection endpoint.

2. Provide the query parameters bindCredential, bindDn, connectionUrl, and useTruststoreSpi.

3. Set the action query parameter to testAuthentication.
For example:

$ kcadm.sh create testLDAPConnection -s action=testAuthentication -s
bindCredential=secret -s bindDn=uid=admin,ou=system -s
connectionUrl=ldap://localhost:10389 -s useTruststoreSpi=always

17.13. ADDING MAPPERS

Adding a hard-coded role LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to

CHAPTER 17. ADMIN CLI

327

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to hardcoded-ldap-role-mapper. Ensure you provide a value of
role configuration parameter.
For example:

$ kcadm.sh create components -r demorealm -s name=hardcoded-ldap-role-mapper -s
providerId=hardcoded-ldap-role-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s 'config.role=["realm-
management.create-client"]'

Adding an MS Active Directory mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to msad-user-account-control-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=msad-user-account-control-mapper -
s providerId=msad-user-account-control-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea

Adding a user attribute LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to user-attribute-ldap-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=user-attribute-ldap-mapper -s
providerId=user-attribute-ldap-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s 'config."user.model.attribute"=
["email"]' -s 'config."ldap.attribute"=["mail"]' -s 'config."read.only"=["false"]' -s
'config."always.read.value.from.ldap"=["false"]' -s 'config."is.mandatory.in.ldap"=["false"]'

Adding a group LDAP mapper

1. Run the create command on the components endpoint.

Red Hat build of Keycloak 24.0 Server Administration Guide

328

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to group-ldap-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=group-ldap-mapper -s
providerId=group-ldap-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s 'config."groups.dn"=[]' -s
'config."group.name.ldap.attribute"=["cn"]' -s 'config."group.object.classes"=
["groupOfNames"]' -s 'config."preserve.group.inheritance"=["true"]' -s
'config."membership.ldap.attribute"=["member"]' -s 'config."membership.attribute.type"=
["DN"]' -s 'config."groups.ldap.filter"=[]' -s 'config.mode=["LDAP_ONLY"]' -s
'config."user.roles.retrieve.strategy"=["LOAD_GROUPS_BY_MEMBER_ATTRIBUTE"]' -s
'config."mapped.group.attributes"=["admins-group"]' -s
'config."drop.non.existing.groups.during.sync"=["false"]' -s 'config.roles=["admins"]' -s
'config.groups=["admins-group"]' -s 'config.group=[]' -s 'config.preserve=["true"]' -s
'config.membership=["member"]'

Adding a full name LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to full-name-ldap-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=full-name-ldap-mapper -s
providerId=full-name-ldap-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s 'config."ldap.full.name.attribute"=
["cn"]' -s 'config."read.only"=["false"]' -s 'config."write.only"=["true"]'

17.14. AUTHENTICATION OPERATIONS

Setting a password policy

1. Set the realm’s passwordPolicy attribute to an enumeration expression that includes the
specific policy provider ID and optional configuration.

2. Use the following example to set a password policy to default values. The default values include:

210,000 hashing iterations

at least one special character

at least one uppercase character

CHAPTER 17. ADMIN CLI

329

at least one digit character

not be equal to a user’s username

be at least eight characters long

$ kcadm.sh update realms/demorealm -s 'passwordPolicy="hashIterations and
specialChars and upperCase and digits and notUsername and length"'

3. To use values different from defaults, pass the configuration in brackets.

4. Use the following example to set a password policy to:

300,000 hash iterations

at least two special characters

at least two uppercase characters

at least two lowercase characters

at least two digits

be at least nine characters long

not be equal to a user’s username

not repeat for at least four changes back

$ kcadm.sh update realms/demorealm -s 'passwordPolicy="hashIterations(300000) and
specialChars(2) and upperCase(2) and lowerCase(2) and digits(2) and length(9) and
notUsername and passwordHistory(4)"'

Obtaining the current password policy
You can get the current realm configuration by filtering all output except for the passwordPolicy
attribute.

For example, display passwordPolicy for demorealm.

$ kcadm.sh get realms/demorealm --fields passwordPolicy

Listing authentication flows
Run the get command on the authentication/flows endpoint.

For example:

$ kcadm.sh get authentication/flows -r demorealm

Getting a specific authentication flow
Run the get command on the authentication/flows/FLOW_ID endpoint.

For example:

$ kcadm.sh get authentication/flows/febfd772-e1a1-42fb-b8ae-00c0566fafb8 -r demorealm

Red Hat build of Keycloak 24.0 Server Administration Guide

330

Listing executions for a flow
Run the get command on the authentication/flows/FLOW_ALIAS/executions endpoint.

For example:

$ kcadm.sh get authentication/flows/Copy%20of%20browser/executions -r demorealm

Adding configuration to an execution

1. Get execution for a flow.

2. Note the ID of the flow.

3. Run the create command on the authentication/executions/{executionId}/config endpoint.

For example:

$ kcadm.sh create "authentication/executions/a3147129-c402-4760-86d9-3f2345e401c7/config" -r
demorealm -b '{"config":{"x509-cert-auth.mapping-source-selection":"Match SubjectDN using regular
expression","x509-cert-auth.regular-expression":"(.*?)(?:$)","x509-cert-auth.mapper-
selection":"Custom Attribute Mapper","x509-cert-auth.mapper-selection.user-attribute-
name":"usercertificate","x509-cert-auth.crl-checking-enabled":"","x509-cert-auth.crldp-checking-
enabled":false,"x509-cert-auth.crl-relative-path":"crl.pem","x509-cert-auth.ocsp-checking-
enabled":"","x509-cert-auth.ocsp-responder-uri":"","x509-cert-auth.keyusage":"","x509-cert-
auth.extendedkeyusage":"","x509-cert-auth.confirmation-page-
disallowed":""},"alias":"my_otp_config"}'

Getting configuration for an execution

1. Get execution for a flow.

2. Note its authenticationConfig attribute, which contains the config ID.

3. Run the get command on the authentication/config/ID endpoint.

For example:

$ kcadm get "authentication/config/dd91611a-d25c-421a-87e2-227c18421833" -r demorealm

Updating configuration for an execution

1. Get the execution for the flow.

2. Get the flow’s authenticationConfig attribute.

3. Note the config ID from the attribute.

4. Run the update command on the authentication/config/ID endpoint.

For example:

$ kcadm update "authentication/config/dd91611a-d25c-421a-87e2-227c18421833" -r demorealm -b
'{"id":"dd91611a-d25c-421a-87e2-227c18421833","alias":"my_otp_config","config":{"x509-cert-
auth.extendedkeyusage":"","x509-cert-auth.mapper-selection.user-attribute-
name":"usercertificate","x509-cert-auth.ocsp-responder-uri":"","x509-cert-auth.regular-expression":"
(.*?)(?:$)","x509-cert-auth.crl-checking-enabled":"true","x509-cert-auth.confirmation-page-

CHAPTER 17. ADMIN CLI

331

disallowed":"","x509-cert-auth.keyusage":"","x509-cert-auth.mapper-selection":"Custom Attribute
Mapper","x509-cert-auth.crl-relative-path":"crl.pem","x509-cert-auth.crldp-checking-
enabled":"false","x509-cert-auth.mapping-source-selection":"Match SubjectDN using regular
expression","x509-cert-auth.ocsp-checking-enabled":""}}'

Deleting configuration for an execution

1. Get execution for a flow.

2. Get the flows authenticationConfig attribute.

3. Note the config ID from the attribute.

4. Run the delete command on the authentication/config/ID endpoint.

For example:

$ kcadm delete "authentication/config/dd91611a-d25c-421a-87e2-227c18421833" -r demorealm

Red Hat build of Keycloak 24.0 Server Administration Guide

332

	Table of Contents
	CHAPTER 1. RED HAT BUILD OF KEYCLOAK FEATURES AND CONCEPTS
	1.1. FEATURES
	1.2. BASIC RED HAT BUILD OF KEYCLOAK OPERATIONS
	1.3. CORE CONCEPTS AND TERMS

	CHAPTER 2. CREATING THE FIRST ADMINISTRATOR
	2.1. CREATING THE ACCOUNT ON THE LOCAL HOST
	2.2. CREATING THE ACCOUNT REMOTELY

	CHAPTER 3. CONFIGURING REALMS
	3.1. USING THE ADMIN CONSOLE
	3.2. THE MASTER REALM
	3.3. CREATING A REALM
	3.4. CONFIGURING SSL FOR A REALM
	3.5. CONFIGURING EMAIL FOR A REALM
	3.6. CONFIGURING THEMES
	3.7. ENABLING INTERNATIONALIZATION
	3.7.1. User locale selection

	3.8. CONTROLLING LOGIN OPTIONS
	3.8.1. Enabling forgot password
	3.8.2. Enabling Remember Me
	3.8.3. ACR to Level of Authentication (LoA) Mapping
	3.8.4. Update Email Workflow (UpdateEmail)

	3.9. CONFIGURING REALM KEYS
	3.9.1. Rotating keys
	3.9.2. Adding a generated key pair
	3.9.3. Rotating keys by extracting a certificate
	3.9.4. Adding an existing key pair and certificate
	3.9.5. Loading keys from a Java Keystore
	3.9.6. Making keys passive
	3.9.7. Disabling keys
	3.9.8. Compromised keys

	CHAPTER 4. USING EXTERNAL STORAGE
	4.1. ADDING A PROVIDER
	4.2. DEALING WITH PROVIDER FAILURES
	4.3. LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) AND ACTIVE DIRECTORY
	4.3.1. Configuring federated LDAP storage
	4.3.2. Storage mode
	4.3.3. Edit mode
	4.3.4. Other configuration options
	4.3.5. Connecting to LDAP over SSL
	4.3.6. Synchronizing LDAP users to Red Hat build of Keycloak
	4.3.7. LDAP mappers
	4.3.8. Password hashing
	4.3.9. Troubleshooting

	4.4. SSSD AND FREEIPA IDENTITY MANAGEMENT INTEGRATION
	4.4.1. FreeIPA/IdM server
	4.4.2. SSSD and D-Bus
	4.4.3. Enabling the SSSD federation provider
	4.4.4. Configuring a federated SSSD store

	4.5. CUSTOM PROVIDERS

	CHAPTER 5. MANAGING USERS
	5.1. CREATING USERS
	5.2. MANAGING USER ATTRIBUTES
	5.2.1. Understanding the Default Configuration
	5.2.2. Understanding the User Profile Contexts
	5.2.3. Understanding Managed and Unmanaged Attributes
	5.2.4. Managing the User Profile
	5.2.5. Managing Attributes
	5.2.6. Validating Attributes
	5.2.6.1. Built-in Validators

	5.2.7. Defining UI Annotations
	5.2.7.1. Built-in Annotations
	5.2.7.2. Changing the HTML type for an Attribute
	5.2.7.3. Defining options for select and multiselect fields
	5.2.7.4. Changing the DOM representation of an Attribute

	5.2.8. Managing Attribute Groups
	5.2.9. Using the JSON configuration
	5.2.9.1. Attribute Schema
	5.2.9.2. Attribute Group Schema

	5.2.10. Customizing How UIs are Rendered
	5.2.10.1. Ordering attributes
	5.2.10.2. Grouping attributes

	5.2.11. Enabling Progressive Profiling
	5.2.12. Using Internationalized Messages

	5.3. DEFINING USER CREDENTIALS
	5.3.1. Setting a password for a user
	5.3.2. Requesting a user reset a password
	5.3.3. Creating an OTP

	5.4. ALLOWING USERS TO SELF-REGISTER
	5.4.1. Enabling user registration
	5.4.2. Registering as a new user
	5.4.3. Requiring user to agree to terms and conditions during registration

	5.5. DEFINING ACTIONS REQUIRED AT LOGIN
	5.5.1. Setting required actions for one user
	5.5.2. Setting required actions for all users
	5.5.3. Enabling terms and conditions as a required action

	5.6. APPLICATION INITIATED ACTIONS
	5.6.1. Re-authentication during AIA
	5.6.2. Available actions

	5.7. SEARCHING FOR A USER
	5.8. DELETING A USER
	5.9. ENABLING ACCOUNT DELETION BY USERS
	5.9.1. Enabling the Delete Account Capability
	5.9.2. Giving a user the delete-account role
	5.9.3. Deleting your account

	5.10. IMPERSONATING A USER
	5.11. ENABLING RECAPTCHA
	5.12. PERSONAL DATA COLLECTED BY RED HAT BUILD OF KEYCLOAK

	CHAPTER 6. MANAGING USER SESSIONS
	6.1. ADMINISTERING SESSIONS
	6.1.1. Signing out all active sessions
	6.1.2. Viewing client sessions
	6.1.3. Viewing user sessions

	6.2. REVOKING ACTIVE SESSIONS
	6.3. SESSION AND TOKEN TIMEOUTS
	6.4. OFFLINE ACCESS
	6.5. OFFLINE SESSIONS PRELOADING
	6.6. TRANSIENT SESSIONS

	CHAPTER 7. ASSIGNING PERMISSIONS USING ROLES AND GROUPS
	7.1. CREATING A REALM ROLE
	7.2. CLIENT ROLES
	7.3. CONVERTING A ROLE TO A COMPOSITE ROLE
	7.4. ASSIGNING ROLE MAPPINGS
	7.5. USING DEFAULT ROLES
	7.6. ROLE SCOPE MAPPINGS
	7.7. GROUPS
	7.7.1. Groups compared to roles
	7.7.2. Using default groups

	CHAPTER 8. CONFIGURING AUTHENTICATION
	8.1. PASSWORD POLICIES
	8.1.1. Password policy types
	8.1.1.1. HashAlgorithm
	8.1.1.2. Hashing iterations
	8.1.1.3. Digits
	8.1.1.4. Lowercase characters
	8.1.1.5. Uppercase characters
	8.1.1.6. Special characters
	8.1.1.7. Not username
	8.1.1.8. Not email
	8.1.1.9. Regular expression
	8.1.1.10. Expire password
	8.1.1.11. Not recently used
	8.1.1.12. Password blacklist
	8.1.1.13. Maximum Authentication Age

	8.2. ONE TIME PASSWORD (OTP) POLICIES
	8.2.1. Time-based or counter-based one time passwords
	8.2.2. TOTP configuration options
	8.2.2.1. OTP hash algorithm
	8.2.2.2. Number of digits
	8.2.2.3. Look around window
	8.2.2.4. OTP token period
	8.2.2.5. Reusable code

	8.2.3. HOTP configuration options
	8.2.3.1. OTP hash algorithm
	8.2.3.2. Number of digits
	8.2.3.3. Look around window
	8.2.3.4. Initial counter

	8.3. AUTHENTICATION FLOWS
	8.3.1. Built-in flows
	8.3.1.1. Auth type
	8.3.1.2. Requirement

	8.3.2. Creating flows
	8.3.3. Creating a password-less browser login flow
	8.3.4. Creating a browser login flow with step-up mechanism
	8.3.5. Registration or Reset credentials requested by client

	8.4. USER SESSION LIMITS
	8.5. KERBEROS
	8.5.1. Setup of Kerberos server
	8.5.2. Setup and configuration of Red Hat build of Keycloak server
	8.5.2.1. Enabling SPNEGO processing
	8.5.2.2. Configure Kerberos user storage federation providers

	8.5.3. Setup and configuration of client machines
	8.5.4. Credential delegation
	8.5.5. Cross-realm trust
	8.5.6. Troubleshooting

	8.6. X.509 CLIENT CERTIFICATE USER AUTHENTICATION
	8.6.1. Features
	8.6.1.1. Regular expressions

	8.6.2. Adding X.509 client certificate authentication to browser flows
	8.6.3. Configuring X.509 client certificate authentication
	8.6.4. Adding X.509 Client Certificate Authentication to a Direct Grant Flow

	8.7. W3C WEB AUTHENTICATION (WEBAUTHN)
	8.7.1. Setup
	8.7.1.1. Enable WebAuthn authenticator registration

	8.7.2. Adding WebAuthn authentication to a browser flow
	8.7.3. Authenticate with WebAuthn authenticator
	8.7.4. Managing WebAuthn as an administrator
	8.7.4.1. Managing credentials
	8.7.4.2. Managing policy

	8.7.5. Attestation statement verification
	8.7.6. Managing WebAuthn credentials as a user
	8.7.6.1. Register WebAuthn authenticator
	8.7.6.2. New user
	8.7.6.3. Existing user

	8.7.7. Passwordless WebAuthn together with Two-Factor
	8.7.7.1. Setup

	8.7.8. LoginLess WebAuthn
	8.7.8.1. Setup
	8.7.8.2. Vendor specific remarks

	8.8. RECOVERY CODES (RECOVERYCODES)
	8.9. CONDITIONS IN CONDITIONAL FLOWS
	8.9.1. Available conditions
	8.9.2. Explicitly deny/allow access in conditional flows

	8.10. PASSKEYS

	CHAPTER 9. INTEGRATING IDENTITY PROVIDERS
	9.1. BROKERING OVERVIEW
	9.2. DEFAULT IDENTITY PROVIDER
	9.3. GENERAL CONFIGURATION
	9.4. SOCIAL IDENTITY PROVIDERS
	9.4.1. Bitbucket
	9.4.2. Facebook
	9.4.3. GitHub
	9.4.4. GitLab
	9.4.5. Google
	9.4.6. Instagram
	9.4.7. LinkedIn
	9.4.8. Microsoft
	9.4.9. OpenShift 3
	9.4.10. OpenShift 4
	9.4.11. PayPal
	9.4.12. Stack overflow
	9.4.13. Twitter

	9.5. OPENID CONNECT V1.0 IDENTITY PROVIDERS
	9.6. SAML V2.0 IDENTITY PROVIDERS
	9.6.1. Requesting specific AuthnContexts
	9.6.2. SP Descriptor
	9.6.3. Send subject in SAML requests

	9.7. CLIENT-SUGGESTED IDENTITY PROVIDER
	9.8. MAPPING CLAIMS AND ASSERTIONS
	9.9. AVAILABLE USER SESSION DATA
	9.10. FIRST LOGIN FLOW
	9.10.1. Default first login flow authenticators
	9.10.2. Automatically link existing first login flow
	9.10.3. Disabling automatic user creation
	9.10.4. Detect existing user first login flow

	9.11. RETRIEVING EXTERNAL IDP TOKENS
	9.12. IDENTITY BROKER LOGOUT

	CHAPTER 10. SSO PROTOCOLS
	10.1. OPENID CONNECT
	10.1.1. OIDC auth flows
	10.1.1.1. Authorization Code Flow
	10.1.1.2. Implicit Flow
	10.1.1.3. Resource owner password credentials grant (Direct Access Grants)
	10.1.1.4. Client credentials grant

	10.1.2. Refresh token grant
	10.1.2.1. Refresh token rotation
	10.1.2.2. Device authorization grant
	10.1.2.3. Client initiated backchannel authentication grant

	10.1.3. OIDC Logout
	10.1.3.1. Session Management
	10.1.3.2. RP-Initiated Logout
	10.1.3.3. Front-channel Logout
	10.1.3.4. Backchannel Logout

	10.1.4. Red Hat build of Keycloak server OIDC URI endpoints

	10.2. SAML
	10.2.1. SAML bindings
	10.2.1.1. Redirect binding
	10.2.1.2. POST binding
	10.2.1.3. ECP

	10.2.2. Red Hat build of Keycloak Server SAML URI Endpoints

	10.3. OPENID CONNECT COMPARED TO SAML
	10.4. DOCKER REGISTRY V2 AUTHENTICATION
	10.4.1. Docker authentication flow
	10.4.2. Red Hat build of Keycloak Docker Registry v2 Authentication Server URI Endpoints

	CHAPTER 11. CONTROLLING ACCESS TO THE ADMIN CONSOLE
	11.1. MASTER REALM ACCESS CONTROL
	11.1.1. Global roles
	11.1.2. Realm specific roles

	11.2. DEDICATED REALM ADMIN CONSOLES

	CHAPTER 12. MANAGING OPENID CONNECT AND SAML CLIENTS
	12.1. MANAGING OPENID CONNECT CLIENTS
	12.1.1. Creating an OpenID Connect client
	12.1.2. Basic configuration
	12.1.2.1. General Settings
	12.1.2.2. Access Settings
	12.1.2.3. Capability Config
	12.1.2.4. Login settings
	12.1.2.5. Logout settings

	12.1.3. Advanced configuration
	12.1.3.1. Advanced tab
	12.1.3.2. Fine grain OpenID Connect configuration
	12.1.3.3. OpenID Connect Compatibility Modes

	12.1.4. Confidential client credentials
	12.1.5. Client Secret Rotation
	12.1.5.1. Rules for client secret rotation

	12.1.6. Creating an OIDC Client Secret Rotation Policy
	12.1.7. Using a service account
	12.1.8. Audience support
	12.1.8.1. Setup
	12.1.8.2. Automatically add audience
	12.1.8.3. Hardcoded audience

	12.2. CREATING A SAML CLIENT
	12.2.1. Settings tab
	12.2.1.1. General settings
	12.2.1.2. Access Settings
	12.2.1.3. SAML capabilities
	12.2.1.4. Signature and Encryption
	12.2.1.5. Login settings
	12.2.1.6. Logout settings

	12.2.2. Keys tab
	12.2.3. Advanced tab
	12.2.3.1. Fine Grain SAML Endpoint Configuration

	12.2.4. IDP Initiated login
	12.2.5. Using an entity descriptor to create a client

	12.3. CLIENT LINKS
	12.4. OIDC TOKEN AND SAML ASSERTION MAPPINGS
	12.4.1. Priority order
	12.4.2. OIDC user session note mappers
	12.4.3. Script mapper
	12.4.4. Using lightweight access token

	12.5. GENERATING CLIENT ADAPTER CONFIG
	12.6. CLIENT SCOPES
	12.6.1. Protocol
	12.6.2. Consent related settings
	12.6.3. Link client scope with the client
	12.6.3.1. Example

	12.6.4. Evaluating Client Scopes
	12.6.5. Client scopes permissions
	12.6.6. Realm default client scopes
	12.6.7. Scopes explained

	12.7. CLIENT POLICIES
	12.7.1. Use-cases
	12.7.2. Protocol
	12.7.3. Architecture
	12.7.3.1. Condition
	12.7.3.2. Executor
	12.7.3.3. Profile
	12.7.3.4. Policy

	12.7.4. Configuration
	12.7.5. Backward Compatibility
	12.7.6. Client Secret Rotation Example

	CHAPTER 13. USING A VAULT TO OBTAIN SECRETS
	13.1. KEY RESOLVERS

	CHAPTER 14. CONFIGURING AUDITING TO TRACK EVENTS
	14.1. AUDITING USER EVENTS
	14.1.1. Event types
	14.1.2. Event listener
	14.1.2.1. The logging event listener
	14.1.2.2. The Email Event Listener

	14.2. AUDITING ADMIN EVENTS

	CHAPTER 15. MITIGATING SECURITY THREATS
	15.1. HOST
	15.2. ADMIN ENDPOINTS AND ADMIN CONSOLE
	15.3. BRUTE FORCE ATTACKS
	15.3.1. Password policies

	15.4. READ-ONLY USER ATTRIBUTES
	15.5. VALIDATE USER ATTRIBUTES
	15.6. CLICKJACKING
	15.7. SSL/HTTPS REQUIREMENT
	15.8. CSRF ATTACKS
	15.9. UNSPECIFIC REDIRECT URIS
	15.10. FAPI COMPLIANCE
	15.11. OAUTH 2.1 COMPLIANCE
	15.12. COMPROMISED ACCESS AND REFRESH TOKENS
	15.13. COMPROMISED AUTHORIZATION CODE
	15.14. OPEN REDIRECTORS
	15.15. PASSWORD DATABASE COMPROMISED
	15.16. LIMITING SCOPE
	15.17. LIMIT TOKEN AUDIENCE
	15.18. LIMIT AUTHENTICATION SESSIONS
	15.19. SQL INJECTION ATTACKS

	CHAPTER 16. ACCOUNT CONSOLE
	16.1. ACCESSING THE ACCOUNT CONSOLE
	16.2. CONFIGURING WAYS TO SIGN IN
	16.2.1. Two-factor authentication with OTP
	16.2.2. Two-factor authentication with WebAuthn
	16.2.3. Passwordless authentication with WebAuthn

	16.3. VIEWING DEVICE ACTIVITY
	16.4. ADDING AN IDENTITY PROVIDER ACCOUNT
	16.5. ACCESSING OTHER APPLICATIONS
	16.6. VIEWING GROUP MEMBERSHIPS

	CHAPTER 17. ADMIN CLI
	17.1. INSTALLING THE ADMIN CLI
	17.2. USING THE ADMIN CLI
	17.3. AUTHENTICATING
	17.4. WORKING WITH ALTERNATIVE CONFIGURATIONS
	17.5. BASIC OPERATIONS AND RESOURCE URIS
	17.6. REALM OPERATIONS
	Creating a new realm
	Listing existing realms
	Getting a specific realm
	Updating a realm
	Deleting a realm
	Turning on all login page options for the realm
	Listing the realm keys
	Generating new realm keys
	Adding new realm keys from a Java Key Store file
	Making the key passive or disabling the key
	Deleting an old key
	Configuring event logging for a realm
	Flushing the caches
	Importing a realm from exported .json file

	17.7. ROLE OPERATIONS
	Creating a realm role
	Creating a client role
	Listing realm roles
	Listing client roles
	Getting a specific realm role
	Getting a specific client role
	Updating a realm role
	Updating a client role
	Deleting a realm role
	Deleting a client role
	Listing assigned, available, and effective realm roles for a composite role
	Listing assigned, available, and effective client roles for a composite role
	Adding realm roles to a composite role
	Removing realm roles from a composite role
	Adding client roles to a realm role
	Adding client roles to a client role
	Removing client roles from a composite role
	Adding client roles to a group
	Removing client roles from a group

	17.8. CLIENT OPERATIONS
	Creating a client
	Listing clients
	Getting a specific client
	Getting the current secret for a specific client
	Generate a new secret for a specific client
	Updating the current secret for a specific client
	Getting an adapter configuration file (keycloak.json) for a specific client
	Getting a WildFly subsystem adapter configuration for a specific client
	Getting a Docker-v2 example configuration for a specific client
	Updating a client
	Deleting a client
	Adding or removing roles for client’s service account

	17.9. USER OPERATIONS
	Creating a user
	Listing users
	Getting a specific user
	Updating a user
	Deleting a user
	Resetting a user’s password
	Listing assigned, available, and effective realm roles for a user
	Listing assigned, available, and effective client roles for a user
	Adding realm roles to a user
	Removing realm roles from a user
	Adding client roles to a user
	Removing client roles from a user
	Listing a user’s sessions
	Logging out a user from a specific session
	Logging out a user from all sessions

	17.10. GROUP OPERATIONS
	Creating a group
	Listing groups
	Getting a specific group
	Updating a group
	Deleting a group
	Creating a subgroup
	Moving a group under another group
	Get groups for a specific user
	Adding a user to a group
	Removing a user from a group
	Listing assigned, available, and effective realm roles for a group
	Listing assigned, available, and effective client roles for a group

	17.11. IDENTITY PROVIDER OPERATIONS
	Listing available identity providers
	Listing configured identity providers
	Getting a specific configured identity provider
	Removing a specific configured identity provider
	Configuring a Keycloak OpenID Connect identity provider
	Configuring an OpenID Connect identity provider
	Configuring a SAML 2 identity provider
	Configuring a Facebook identity provider
	Configuring a Google identity provider
	Configuring a Twitter identity provider
	Configuring a GitHub identity provider
	Configuring a LinkedIn identity provider
	Configuring a Microsoft Live identity provider
	Configuring a Stack Overflow identity provider

	17.12. STORAGE PROVIDER OPERATIONS
	Configuring a Kerberos storage provider
	Configuring an LDAP user storage provider
	Removing a user storage provider instance
	Triggering synchronization of all users for a specific user storage provider
	Triggering synchronization of changed users for a specific user storage provider
	Test LDAP user storage connectivity
	Test LDAP user storage authentication

	17.13. ADDING MAPPERS
	Adding a hard-coded role LDAP mapper
	Adding an MS Active Directory mapper
	Adding a user attribute LDAP mapper
	Adding a group LDAP mapper
	Adding a full name LDAP mapper

	17.14. AUTHENTICATION OPERATIONS
	Setting a password policy
	Obtaining the current password policy
	Listing authentication flows
	Getting a specific authentication flow
	Listing executions for a flow
	Adding configuration to an execution
	Getting configuration for an execution
	Updating configuration for an execution
	Deleting configuration for an execution

