
Red Hat build of MicroShift 4.16

Configuring

Configuring MicroShift

Last Updated: 2024-06-26

Red Hat build of MicroShift 4.16 Configuring

Configuring MicroShift

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring MicroShift.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. HOW CONFIGURATION TOOLS WORK
1.1. DEFAULT SETTINGS
1.2. USING A YAML CONFIGURATION FILE

1.2.1. Custom settings
1.2.2. Configuring the advertise address network flag
1.2.3. Extending the port range for NodePort services

1.3. ADDITIONAL RESOURCES

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG
2.1. KUBECONFIG FILES FOR CONFIGURING CLUSTER ACCESS
2.2. LOCAL ACCESS KUBECONFIG FILE

2.2.1. Accessing the MicroShift cluster locally
2.3. REMOTE ACCESS KUBECONFIG FILES

2.3.1. Remote access customization
2.4. GENERATING ADDITIONAL KUBECONFIG FILES FOR REMOTE ACCESS

2.4.1. Opening the firewall for remote access to the MicroShift cluster
2.4.2. Accessing the MicroShift cluster remotely

CHAPTER 3. CONFIGURING CUSTOM CERTIFICATE AUTHORITIES
3.1. HOW CUSTOM CERTIFICATE AUTHORITIES WORK IN MICROSHIFT
3.2. CONFIGURING CUSTOM CERTIFICATE AUTHORITIES
3.3. CUSTOM CERTIFICATES RESERVED NAME VALUES
3.4. TROUBLESHOOTING CUSTOM CERTIFICATES
3.5. CLEANING UP AND RECREATING THE CUSTOM CERTIFICATES
3.6. ADDITIONAL RESOURCES

CHAPTER 4. CHECKING GREENBOOT SCRIPTS STATUS
4.1. CHECKING THE STATUS OF GREENBOOT HEALTH CHECKS

CHAPTER 5. CONFIGURING AUDIT LOGGING POLICIES
5.1. ABOUT SETTING LIMITS ON AUDIT LOG FILES

5.1.1. Default audit log values
5.2. ABOUT AUDIT LOG POLICY PROFILES
5.3. CONFIGURING AUDIT LOG VALUES
5.4. TROUBLESHOOTING AUDIT LOG CONFIGURATION

3
3
5
5
5
6
7

8
8
8
9
9

10
10
11

12

14
14
15
17
18
18
19

20
20

21
21
21
22
22
24

Table of Contents

1

Red Hat build of MicroShift 4.16 Configuring

2

CHAPTER 1. HOW CONFIGURATION TOOLS WORK
A YAML file customizes MicroShift instances with your preferences, settings, and parameters.

NOTE

If you want to make configuration changes or deploy applications through the MicroShift
API with tools other than kustomize manifests, you must wait until the Greenboot health
checks have finished. This ensures that your changes are not lost if Greenboot rolls your
rpm-ostree system back to an earlier state.

1.1. DEFAULT SETTINGS

If you do not create a config.yaml file, default values are used. The following example shows the default
configuration settings.

To see the default values, run the following command:

Default values example output in YAML form

$ microshift show-config

apiServer:
 advertiseAddress: 10.44.0.0/32 1
 auditLog:
 maxFileAge: 0 2
 maxFileSize: 200 3
 maxFiles: 10 4
 profile: Default 5
 namedCertificates:
 - certPath: ""
 keyPath: ""
 names:
 - ""
 subjectAltNames: [] 6
debugging:
 logLevel: "Normal" 7
dns:
 baseDomain: microshift.example.com 8
etcd:
 memoryLimitMB: 0 9
ingress:
 listenAddress:
 - "" 10
 ports: 11
 http: 80
 https: 443
 routeAdmissionPolicy:
 namespaceOwnership: InterNamespaceAllowed 12
 status: Managed 13
manifests: 14
 kustomizePaths:

CHAPTER 1. HOW CONFIGURATION TOOLS WORK

3

1

2

3

4

5

6

7

8

9

10

11

12

13

A string that specifies the IP address from which the API server is advertised to members
of the cluster. The default value is calculated based on the address of the service network.

How long log files are kept before automatic deletion. The default value of 0 in the
maxFileAge parameter means a log file is never deleted based on age. This value can be
configured.

By default, when the audit.log file reaches the maxFileSize limit, the audit.log file is
rotated and MicroShift begins writing to a new audit.log file. This value can be configured.

The total number of log files kept. By default, MicroShift retains 10 log files. The oldest is
deleted when an excess file is created. This value can be configured.

Logs only metadata for read and write requests; does not log request bodies except for
OAuth access token requests. If you do not specify this field, the Default profile is used.

Subject Alternative Names for API server certificates.

Log verbosity. Valid values for this field are Normal, Debug, Trace, or TraceAll.

By default, etcd uses as much memory as needed to handle the load on the system.
However, in memory constrained systems, it might be preferred or necessary to limit the
amount of memory etcd can to use at a given time.

Base domain of the cluster. All managed DNS records are subdomains of this base.

The ingress.listenAddress value defaults to the entire network of the host. The valid
configurable value is a list that can be either a single IP address or NIC name or multiple IP
addresses and NIC names.

Default ports shown. Configurable. Valid values for both port entries are a single, unique
port in the 1-65535 range. The values of the ports.http and ports.https fields cannot be
the same.

Describes how hostname claims across namespaces are handled. By default, allows routes
to claim different paths of the same hostname across namespaces. Valid values are Strict
and InterNamespaceAllowed. Specifying Strict prevents routes in different namespaces
from claiming the same hostname. If the value is deleted in a customized MicroShift
config.yaml, the InterNamespaceAllowed value is automatically set.

Default router status, can be Managed or Removed.

 - /usr/lib/microshift/manifests
 - /usr/lib/microshift/manifests.d/*
 - /etc/microshift/manifests
 - /etc/microshift/manifests.d/*
network:
 clusterNetwork:
 - 10.42.0.0/16 15
 serviceNetwork:
 - 10.43.0.0/16 16
 serviceNodePortRange: 30000-32767 17
node:
 hostnameOverride: "" 18
 nodeIP: "" 19

Red Hat build of MicroShift 4.16 Configuring

4

14

15

16

17

18

19

The locations on the file system to scan for kustomization files to use to load manifests.
Set to a list of paths to scan only those paths. Set to an empty list to disable loading

A block of IP addresses from which pod IP addresses are allocated. This field is immutable
after installation.

A block of virtual IP addresses for Kubernetes services. IP address pool for services. A
single entry is supported. This field is immutable after installation.

The port range allowed for Kubernetes services of type NodePort. If not specified, the
default range of 30000-32767 is used. Services without a NodePort specified are
automatically allocated one from this range. This parameter can be updated after the
cluster is installed.

The name of the node. The default value is the hostname. If non-empty, this string is used
to identify the node instead of the hostname.

The IP address of the node. The default value is the IP address of the default route.

1.2. USING A YAML CONFIGURATION FILE

At start up, MicroShift checks the system-wide /etc/microshift/ directory for a configuration file named
config.yaml. If the configuration file does not exist in the directory, the built-in default values are used
to start the service.

1.2.1. Custom settings

To create custom configurations, you must create a config.yaml file in the /etc/microshift/ directory,
and then change any settings that are expected to override the defaults before starting or restarting
MicroShift.

IMPORTANT

Restart MicroShift after changing any configuration settings to have them take effect.
The config.yaml file is read only when MicroShift starts.

TIP

If you add all of the configurations you need at the same time, you can minimize system restarts.

1.2.2. Configuring the advertise address network flag

The apiserver.advertiseAddress flag specifies the IP address on which to advertise the API server to
members of the cluster. This address must be reachable by the cluster. You can set a custom IP address
here, but you must also add the IP address to a host interface. Customizing this parameter preempts
MicroShift from adding a default IP address to the br-ex network interface.

IMPORTANT

If you customize the advertiseAddress IP address, make sure it is reachable by the
cluster when MicroShift starts by adding the IP address to a host interface.

If unset, the default value is set to the next immediate subnet after the service network. For example,

CHAPTER 1. HOW CONFIGURATION TOOLS WORK

5

If unset, the default value is set to the next immediate subnet after the service network. For example,
when the service network is 10.43.0.0/16, the advertiseAddress is set to 10.44.0.0/32.

1.2.3. Extending the port range for NodePort services

The serviceNodePortRange setting extends the port range available to NodePort services. This option
is useful when specific standard ports under the 30000-32767 range need to be exposed. For example, if
your device needs to expose the 1883/tcp MQ Telemetry Transport (MQTT) port on the network
because client devices cannot use a different port.

IMPORTANT

NodePorts can overlap with system ports, causing a malfunction of the system or
MicroShift.

Consider the following when configuring the NodePort service ranges:

Do not create any NodePort service without an explicit nodePort selection. When an explicit
nodePort is not specified, the port is assigned randomly by the kube-apiserver and cannot be
predicted.

Do not create any NodePort service for any system service port, MicroShift port, or other
services you expose on your device HostNetwork.

Table one specifies ports to avoid when extending the port range:

Table 1.1. Ports to avoid.

Port Description

22/tcp SSH port

80/tcp OpenShift Router HTTP endpoint

443/tcp OpenShift Router HTTPS endpoint

1936/tcp Metrics service for the openshift-router, not
exposed today

2379/tcp etcd port

2380/tcp etcd port

6443 kubernetes API

8445/tcp openshift-route-controller-manager

9537/tcp cri-o metrics

10250/tcp kubelet

Red Hat build of MicroShift 4.16 Configuring

6

10248/tcp kubelet healthz port

10259/tcp kube scheduler

Port Description

1.3. ADDITIONAL RESOURCES

Checking Greenboot status

CHAPTER 1. HOW CONFIGURATION TOOLS WORK

7

1

2

3

4

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG
Learn about how kubeconfig files are used with MicroShift deployments. CLI tools use kubeconfig
files to communicate with the API server of a cluster. These files provide cluster details, IP addresses,
and other information needed for authentication.

2.1. KUBECONFIG FILES FOR CONFIGURING CLUSTER ACCESS

The two categories of kubeconfig files used in MicroShift are local access and remote access. Every
time MicroShift starts, a set of kubeconfig files for local and remote access to the API server are
generated. These files are generated in the /var/lib/microshift/resources/kubeadmin/ directory using
preexisting configuration information.

Each access type requires a different authentication certificate signed by different Certificate
Authorities (CAs). The generation of multiple kubeconfig files accommodates this need.

You can use the appropriate kubeconfig file for the access type needed in each case to provide
authentication details. The contents of MicroShift kubeconfig files are determined by either default
built-in values or a config.yaml file.

NOTE

A kubeconfig file must exist for the cluster to be accessible. The values are applied from
built-in default values or a config.yaml, if one was created.

Example contents of the kubeconfig files

Local host name. The main IP address of the host is always the default.

Subject Alternative Names for API server certificates.

DNS name.

MicroShift host name.

2.2. LOCAL ACCESS KUBECONFIG FILE

The local access kubeconfig file is written to /var/lib/microshift/resources/kubeadmin/kubeconfig.
This kubeconfig file provides access to the API server using localhost. Choose this file when you are
connecting the cluster locally.

Example contents of kubeconfig for local access

/var/lib/microshift/resources/kubeadmin/
├── kubeconfig 1
├── alt-name-1 2
│ └── kubeconfig
├── 1.2.3.4 3
│ └── kubeconfig
└── microshift-rhel9 4
 └── kubeconfig

Red Hat build of MicroShift 4.16 Configuring

8

The localhost kubeconfig file can only be used from a client connecting to the API server from the
same host. The certificates in the file do not work for remote connections.

2.2.1. Accessing the MicroShift cluster locally

Use the following procedure to access the MicroShift cluster locally by using a kubeconfig file.

Prerequisites

You have installed the oc binary.

Procedure

1. Optional: to create a ~/.kube/ folder if your RHEL machine does not have one, run the following
command:

2. Copy the generated local access kubeconfig file to the ~/.kube/ directory by running the
following command:

3. Update the permissions on your ~/.kube/config file by running the following command:

Verification

Verify that MicroShift is running by entering the following command:

2.3. REMOTE ACCESS KUBECONFIG FILES

When a MicroShift cluster connects to the API server from an external source, a certificate with all of the
alternative names in the SAN field is used for validation. MicroShift generates a default kubeconfig for
external access using the hostname value. The defaults are set in the <node.hostnameOverride>,
<node.nodeIP> and api.<dns.baseDomain> parameter values of the default kubeconfig file.

The /var/lib/microshift/resources/kubeadmin/<hostname>/kubeconfig file uses the hostname of the
machine, or node.hostnameOverride if that option is set, to reach the API server. The CA of the
kubeconfig file is able to validate certificates when accessed externally.

Example contents of a default kubeconfig file for remote access

clusters:
- cluster:
 certificate-authority-data: <base64 CA>
 server: https://localhost:6443

$ mkdir -p ~/.kube/

$ sudo cat /var/lib/microshift/resources/kubeadmin/kubeconfig > ~/.kube/config

$ chmod go-r ~/.kube/config

$ oc get all -A

clusters:

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG

9

2.3.1. Remote access customization

Multiple remote access kubeconfig file values can be generated for accessing the cluster with different
IP addresses or host names. An additional kubeconfig file generates for each entry in the
apiServer.subjectAltNames parameter. You can copy remote access kubeconfig files from the host
during times of IP connectivity and then use them to access the API server from other workstations.

2.4. GENERATING ADDITIONAL KUBECONFIG FILES FOR REMOTE
ACCESS

You can generate additional kubeconfig files to use if you need more host names or IP addresses than
the default remote access file provides.

IMPORTANT

You must restart MicroShift for configuration changes to be implemented.

Prerequisites

You have created a config.yaml for MicroShift.

Procedure

1. Optional: You can show the contents of the config.yaml. Run the following command:

2. Optional: You can show the contents of the remote-access kubeconfig file. Run the following
command:

IMPORTANT

Additional remote access kubeconfig files must include one of the server names
listed in the Red Hat build of MicroShift config.yaml file. Additional kubeconfig
files must also use the same CA for validation.

3. To generate additional kubeconfig files for additional DNS names SANs or external IP
addresses, add the entries you need to the apiServer.subjectAltNames field. In the following
example, the DNS name used is alt-name-1 and the IP address is 1.2.3.4.

Example config.yaml with additional authentication values

- cluster:
 certificate-authority-data: <base64 CA>
 server: https://microshift-rhel9:6443

$ cat /etc/microshift/config.yaml

$ cat /var/lib/microshift/resources/kubeadmin/<hostname>/kubeconfig

dns:
 baseDomain: example.com
node:
 hostnameOverride: "microshift-rhel9" 1

Red Hat build of MicroShift 4.16 Configuring

10

1

2

3

1

Hostname

DNS name

IP address or range

4. Restart MicroShift to apply configuration changes and auto-generate the kubeconfig files you
need by running the following command:

5. To check the contents of additional remote-access kubeconfig files, insert the name or IP
address as listed in the config.yaml into the cat command. For example, alt-name-1 is used in
the following example command:

6. Choose the kubeconfig file to use that contains the SAN or IP address you want to use to
connect your cluster. In this example, the kubeconfig containing`alt-name-1` in the
cluster.server field is the correct file.

Example contents of an additional kubeconfig file

The /var/lib/microshift/resources/kubeadmin/alt-name-1/kubeconfig file values are
from the apiServer.subjectAltNames configuration values.

NOTE

All of these parameters are included as common names (CN) and subject alternative
names (SAN) in the external serving certificates for the API server.

2.4.1. Opening the firewall for remote access to the MicroShift cluster

Use the following procedure to open the firewall so that a remote user can access the MicroShift
cluster. This procedure must be completed before a workstation user can access the cluster remotely.

For this procedure, user@microshift is the user on the MicroShift host machine and is responsible for
setting up that machine so that it can be accessed by a remote user on a separate workstation.

Prerequisites

 nodeIP: 10.0.0.1
apiServer:
 subjectAltNames:
 - alt-name-1 2
 - 1.2.3.4 3

$ sudo systemctl restart microshift

$ cat /var/lib/microshift/resources/kubeadmin/alt-name-1/kubeconfig

clusters:
- cluster:
 certificate-authority-data: <base64 CA>
 server: https://alt-name-1:6443 1

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG

11

You have installed the oc binary.

Your account has cluster administration privileges.

Procedure

As user@microshift on the MicroShift host, open the firewall port for the Kubernetes API
server (6443/tcp) by running the following command:

Verification

As user@microshift, verify that MicroShift is running by entering the following command:

2.4.2. Accessing the MicroShift cluster remotely

Use the following procedure to access the MicroShift cluster from a remote location by using a
kubeconfig file.

The user@workstation login is used to access the host machine remotely. The <user> value in the
procedure is the name of the user that user@workstation logs in with to the MicroShift host.

Prerequisites

You have installed the oc binary.

The user@microshift has opened the firewall from the local host.

Procedure

1. As user@workstation, create a ~/.kube/ folder if your RHEL machine does not have one by
running the following command:

2. As user@workstation, set a variable for the hostname of your MicroShift host by running the
following command:

3. As user@workstation, copy the generated kubeconfig file that contains the host name or IP
address you want to connect with from the RHEL machine running MicroShift to your local
machine by running the following command:

NOTE

[user@microshift]$ sudo firewall-cmd --permanent --zone=public --add-port=6443/tcp &&
sudo firewall-cmd --reload

[user@microshift]$ oc get all -A

[user@workstation]$ mkdir -p ~/.kube/

[user@workstation]$ MICROSHIFT_MACHINE=<name or IP address of MicroShift machine>

[user@workstation]$ ssh <user>@$MICROSHIFT_MACHINE "sudo cat
/var/lib/microshift/resources/kubeadmin/$MICROSHIFT_MACHINE/kubeconfig" >
~/.kube/config

Red Hat build of MicroShift 4.16 Configuring

12

NOTE

To generate the kubeconfig files for this step, see Generating additional
kubeconfig files for remote access.

4. As user@workstation, update the permissions on your ~/.kube/config file by running the
following command:

Verification

As user@workstation, verify that MicroShift is running by entering the following command:

$ chmod go-r ~/.kube/config

[user@workstation]$ oc get all -A

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG

13

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.16/html/configuring/microshift-kubeconfig#generating-additional-kubeconfig-files_microshift-kubeconfig

CHAPTER 3. CONFIGURING CUSTOM CERTIFICATE
AUTHORITIES

You can encrypt connections by using custom certificate authorities (CAs) with the MicroShift service.

3.1. HOW CUSTOM CERTIFICATE AUTHORITIES WORK IN MICROSHIFT

The default API server certificate is issued by an internal MicroShift cluster certificate authority (CA).
Clients outside of the cluster cannot verify the API server certificate by default. This certificate can be
replaced by a custom server certificate that is issued externally by a custom CA that clients trust. The
following steps illustrate the workflow in MicroShift:

1. Copy the certificates and keys to the preferred directory in the host operating system. Ensure
that the files are accessible by root only.

2. Update the MicroShift configuration for each custom CA by specifying the certificate names
and new fully qualified domain name (FQDN) in the MicroShift /etc/microshift/config.yaml
configuration file.
Each certificate configuration can contain the following values:

The certificate file location is a required value.

A single common name containing the API server DNS and IP address or IP address range.

TIP

In most cases, MicroShift generates a new kubeconfig for your custom CA that includes the
IP address or range that you specify. The exception is when wildcards are specified for the
IP address. In this case, MicroShift generates a kubeconfig with the public IP address of the
server. To use wildcards, you must update the kubeconfig file with your specific details.

Multiple Subject Alternative Names (SANs) containing the API server DNS and IP
addresses or a wildcard certificate.

You can provide additional DNS names for each certificate.

3. After the MicroShift service restarts, you must copy the generated kubeconfig files to the
client.

4. Configure additional CAs on the client system. For example, you can update CA bundles in the
Red Hat Enterprise Linux (RHEL) truststore.

5. The certificates and keys are read from the specified file location on the host. Testing and
validation of configuration is done from the client.

6. External server certificates are not automatically renewed. You must manually rotate your
external certificates.

NOTE

If any validation fails, the MicroShift service skips the custom configuration and uses the
default certificate to start. The priority is to continue the service uninterrupted.
MicroShift logs errors when the service starts. Common errors include expired
certificates, missing files, or incorrect IP addresses.

Red Hat build of MicroShift 4.16 Configuring

14

1

2

3

IMPORTANT

Custom server certificates have to be validated against CA data configured in the trust
root of the host operating system. For information, see The system-wide truststore .

3.2. CONFIGURING CUSTOM CERTIFICATE AUTHORITIES

To configure externally generated certificates and domain names using custom certificate authorities
(CAs), add them to the MicroShift /etc/microshift/config.yaml configuration file. You must also
configure the host operating system trust root.

NOTE

Externally generated kubeconfig files are created in the
/var/lib/microshift/resources/kubeadmin/<hostname>/kubeconfig directory. If you
need to use localhost in addition to externally generated configurations, retain the
original kubeconfig file in its default location. The localhost kubeconfig file uses the
self-signed certificate authority.

Prerequisites

The OpenShift CLI (oc) is installed.

You have access to the cluster as a user with the cluster administration role.

The certificate authority has issued the custom certificates.

A MicroShift /etc/microshift/config.yaml configuration file exists.

Procedure

1. Copy the custom certificates you want to add to the trust root of the MicroShift host. Ensure
that the certificate and private keys are only accessible to MicroShift.

2. For each custom CA that you need, add an apiServer section called namedCertificates to the
/etc/microshift/config.yaml MicroShift configuration file by using the following example:

Add the full path to the certificate.

Add the full path to the certificate key.

Optional. Add a list of explicit DNS names. Leading wildcards are allowed. If no names are
provided, the implicit names are extracted from the certificates.

apiServer:
 namedCertificates:
 - certPath: ~/certs/api_fqdn_1.crt 1
 keyPath: ~/certs/api_fqdn_1.key 2
 - certPath: ~/certs/api_fqdn_2.crt
 keyPath: ~/certs/api_fqdn_2.key
 names: 3
 - api_fqdn_1
 - *.apps.external.com

CHAPTER 3. CONFIGURING CUSTOM CERTIFICATE AUTHORITIES

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/using-shared-system-certificates_securing-networks#the-system-wide-trust-store_using-shared-system-certificates

1

3. Restart the {microshift-service} to apply the certificates by running the following command:

4. Wait a few minutes for the system to restart and apply the custom server. New kubeconfig files
are generated in the /var/lib/microshift/resources/kubeadmin/ directory.

5. Copy the kubeconfig files to the client. If you specified wildcards for the IP address, update the
kubeconfig to remove the public IP address of the server and replace that IP address with the
specific wildcard range you want to use.

6. From the client, use the following steps:

a. Specify the kubeconfig to use by running the following command:

Use the location of the copied kubeconfig file as the path.

b. Check that the certificates are applied by using the following command:

Example output

c. Add the new CA file to the $KUBECONFIG environment variable by running the following
command:

d. Verify that the new kubeconfig file contains the new CA by running the following
command:

Example externally generated kubeconfig file

$ systemctl microshift restart

$ export KUBECONFIG=~/custom-kubeconfigs/kubeconfig 1

$ oc --certificate-authority ~/certs/ca.ca get node

oc get node
NAME STATUS ROLES AGE VERSION
dhcp-1-235-195.arm.example.com Ready control-plane,master,worker 76m v1.29.2

$ oc config set clusters.microshift.certificate-authority /tmp/certificate-authority-data-
new.crt

$ oc config view --flatten

apiVersion: v1
clusters:
- cluster:
 certificate-authority: /tmp/certificate-authority-data-new.crt 1
 server: https://api.ci-ln-k0gim2b-76ef8.aws-2.ci.openshift.org:6443
 name: ci-ln-k0gim2b-76ef8
contexts:
- context:
 cluster: ci-ln-k0gim2b-76ef8
 user:

Red Hat build of MicroShift 4.16 Configuring

16

1 The certificate-authority-data section is not present in externally generated
kubeconfig files. It is added with the oc config set command used previously.

e. Verify the subject and issuer of your customized API server certificate authority by running
the following command:

Example output

Server certificate:
 subject: CN=kas-test-cert_server
 start date: Mar 12 11:39:46 2024 GMT
 expire date: Mar 12 11:39:46 2025 GMT
 subjectAltName: host "dhcp-1-235-3.arm.eng.rdu2.redhat.com" matched cert's "dhcp-1-
235-3.arm.eng.rdu2.redhat.com"
 issuer: CN=kas-test-cert_ca
 SSL certificate verify ok.

IMPORTANT

Either replace the certificate-authority-data in the generated kubeconfig
file with the new rootCA or add the certificate-authority-data to the trust
root of the operating system. Do not use both methods.

f. Configure additional CAs in the trust root of the operating system. For example, in the
RHEL Client truststore on the client system. See The system-wide truststore for details.

Updating the certificate bundle with the configuration that contains the CA is
recommended.

If you do not want to configure your certificate bundles, you can alternately use the oc
login localhost:8443 --certificate-authority=/path/to/cert.crt command, but this
method is not preferred.

3.3. CUSTOM CERTIFICATES RESERVED NAME VALUES

The following certificate problems cause MicroShift to ignore certificates dynamically and log an error:

The certificate files do not exist on the disk or are not readable.

The certificate is not parsable.

The certificate overrides the internal certificates IPAddress/DNSNames in a
SubjectAlternativeNames (SAN) field. Do not use a reserved name when configuring SANs.

Table 3.1. Reserved Names values

 name:
current-context:
kind: Config
preferences: {}

$ curl --cacert /tmp/caCert.pem https://${fqdn_name}:6443/healthz -v

CHAPTER 3. CONFIGURING CUSTOM CERTIFICATE AUTHORITIES

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/using-shared-system-certificates_securing-networks#the-system-wide-trust-store_using-shared-system-certificates

Address Type Comment

localhost DNS

127.0.0.1 IP Address

10.42.0.0 IP Address Cluster Network

10.43.0.0/16,10.44.0.0/16 IP Address Service Network

169.254.169.2/29 IP Address br-ex Network

kubernetes.default.svc DNS

openshift.default.svc DNS

svc.cluster.local DNS

3.4. TROUBLESHOOTING CUSTOM CERTIFICATES

To troubleshoot the implementation of custom certificates, you can take the following steps.

Procedure

1. From MicroShift, ensure that the certificate is served by the kube-apiserver and verify that the
certificate path is appended to the --tls-sni-cert-key FLAG by running the following command:

Example output

2. From the client, ensure that the kube-apiserver is serving the correct certificate by running the
following command:

3.5. CLEANING UP AND RECREATING THE CUSTOM CERTIFICATES

$ journalctl -u microshift -b0 | grep tls-sni-cert-key

Jan 24 14:53:00 localhost.localdomain microshift[45313]: kube-apiserver I0124
14:53:00.649099 45313 flags.go:64] FLAG: --tls-sni-cert-key="
[/home/eslutsky/dev/certs/server.crt,/home/eslutsky/dev/certs/server.key;/var/lib/microshift/certs/
kube-apiserver-external-signer/kube-external-serving/server.crt,/var/lib/microshift/certs/kube-
apiserver-external-signer/kube-external-serving/server.key;/var/lib/microshift/certs/kube-
apiserver-localhost-signer/kube-apiserver-localhost-
serving/server.crt,/var/lib/microshift/certs/kube-apiserver-localhost-signer/kube-apiserver-
localhost-serving/server.key;/var/lib/microshift/certs/kube-apiserver-service-network-
signer/kube-apiserver-service-network-serving/server.crt,/var/lib/microshift/certs/kube-
apiserver-service-network-signer/kube-apiserver-service-network-serving/server.key

$ openssl s_client -connect <SNI_ADDRESS>:6443 -showcerts | openssl x509 -text -noout -
in - | grep -C 1 "Alternative\|CN"

Red Hat build of MicroShift 4.16 Configuring

18

To stop the MicroShift services, clean up the custom certificates and recreate the custom certificates,
use the following steps.

Procedure

1. Stop the MicroShift services and clean up the custom certificates by running the following
command:

Example output

2. Restart the MicroShift services to recreate the custom certificates by running the following
command:

3.6. ADDITIONAL RESOURCES

OpenShift: Add an API server named certificate

RHEL: Creating and managing TLS keys and certificates

The system-wide truststore

OpenShift CLI Reference: oc login

$ sudo microshift-cleanup-data --cert

Stopping MicroShift services
Removing MicroShift certificates
MicroShift service was stopped
Cleanup succeeded

$ sudo systemctl start microshift

CHAPTER 3. CONFIGURING CUSTOM CERTIFICATE AUTHORITIES

19

https://docs.openshift.com/container-platform/4.16/security/certificates/api-server.html#customize-certificates-api-add-named_api-server-certificates
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/creating-and-managing-tls-keys-and-certificates_securing-networks#doc-wrapper
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/using-shared-system-certificates_securing-networks#the-system-wide-trust-store_using-shared-system-certificates
https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/managing-cli-profiles.html

CHAPTER 4. CHECKING GREENBOOT SCRIPTS STATUS
To deploy applications or make other changes through the MicroShift API with tools other than
kustomize manifests, you must wait until the Greenboot health checks have finished. This ensures that
your changes are not lost if Greenboot rolls your rpm-ostree system back to an earlier state.

The greenboot-healthcheck service runs one time and then exits. After Greenboot has exited and the
system is in a healthy state, you can proceed with configuration changes and deployments.

4.1. CHECKING THE STATUS OF GREENBOOT HEALTH CHECKS

Check the status of Greenboot health checks before making changes to the system or during
troubleshooting. You can use any of the following commands to help you ensure that Greenboot scripts
have finished running.

Procedure

To see a report of health check status, use the following command:

An output of start means that Greenboot checks are still running.

An output of exited means that checks have passed and Greenboot has exited. Greenboot
runs the scripts in the green.d directory when the system is a healthy state.

An output of failed means that checks have not passed. Greenboot runs the scripts in red.d
directory when the system is in this state and might restart the system.

To see a report showing the numerical exit code of the service where 0 means success and non-
zero values mean a failure occurred, use the following command:

To see a report showing a message about boot status, such as Boot Status is GREEN - Health
Check SUCCESS, use the following command:

$ systemctl show --property=SubState --value greenboot-healthcheck.service

$ systemctl show --property=ExecMainStatus --value greenboot-healthcheck.service

$ cat /run/motd.d/boot-status

Red Hat build of MicroShift 4.16 Configuring

20

CHAPTER 5. CONFIGURING AUDIT LOGGING POLICIES
You can control audit log file rotation and retention by using configuration values.

5.1. ABOUT SETTING LIMITS ON AUDIT LOG FILES

Controlling the rotation and retention of the audit log file by using configuration values helps keep the
limited storage capacities of far-edge devices from being exceeded. On such devices, logging data
accumulation can limit host system or cluster workloads, potentially causing the device stop working.
Setting audit log policies can help ensure that critical processing space is continually available.

The values you set to limit audit logs enable you to enforce the size, number, and age limits of audit log
backups. Field values are processed independently of one another and without prioritization.

You can set fields in combination to define a maximum storage limit for retained logs. For example:

Set both maxFileSize and maxFiles to create a log storage upper limit.

Set a maxFileAge value to automatically delete files older than the timestamp in the file name,
regardless of the maxFiles value.

5.1.1. Default audit log values

MicroShift includes the following default audit log rotation values:

Table 5.1. MicroShift default audit log values

Audit log parameter Default setting Definition

maxFileAge: 0 How long log files are retained before automatic deletion.
The default value means that a log file is never deleted
based on age. This value can be configured.

maxFiles: 10 The total number of log files retained. By default, MicroShift
retains 10 log files. The oldest is deleted when an excess file
is created. This value can be configured.

maxFileSize: 200 By default, when the audit.log file reaches the
maxFileSize limit, the audit.log file is rotated and
MicroShift begins writing to a new audit.log file. This value
is in megabytes and can be configured.

profile: Default The Default profile setting only logs metadata for read and
write requests; request bodies are not logged except for
OAuth access token requests. If you do not specify this field,
the Default profile is used.

The maximum default storage usage for audit log retention is 2000Mb if there are 10 or fewer files.

If you do not specify a value for a field, the default value is used. If you remove a previously set field
value, the default value is restored after the next MicroShift service restart.

CHAPTER 5. CONFIGURING AUDIT LOGGING POLICIES

21

5.2. ABOUT AUDIT LOG POLICY PROFILES

Audit log profiles define how to log requests that come to the OpenShift API server and the Kubernetes
API server.

MicroShift supports the following predefined audit policy profiles:

Profile Description

Default Logs only metadata for read and write requests; does not log request
bodies except for OAuth access token requests. This is the default
policy.

WriteRequestBodies In addition to logging metadata for all requests, logs request bodies for
every write request to the API servers (create, update, patch, delete,
deletecollection). This profile has more resource overhead than the

Default profile. [1]

AllRequestBodies In addition to logging metadata for all requests, logs request bodies for
every read and write request to the API servers (get, list, create,

update, patch). This profile has the most resource overhead. [1]

None No requests are logged, including OAuth access token requests and
OAuth authorize token requests.

WARNING

Do not disable audit logging by using the None
profile unless you are fully aware of the risks of
not logging data that can be beneficial when
troubleshooting issues. If you disable audit
logging and a support situation arises, you might
need to enable audit logging and reproduce the
issue to troubleshoot properly.

1. Sensitive resources, such as Secret, Route, and OAuthClient objects, are only logged at the
metadata level.

By default, MicroShift uses the Default audit log profile. You can use another audit policy profile that
also logs request bodies, but be aware of the increased resource usage such as CPU, memory, and I/O.

5.3. CONFIGURING AUDIT LOG VALUES

You can configure audit log settings by using the MicroShift service configuration file.

Procedure

1. Make a copy of the provided config.yaml.default file in the /etc/microshift/ directory, renaming



Red Hat build of MicroShift 4.16 Configuring

22

1

2

3

4

1

it config.yaml. Keep the new MicroShift config.yaml you create in the /etc/microshift/
directory. The new config.yaml is read whenever the MicroShift service starts. After you create
it, the config.yaml file takes precedence over built-in settings.

2. Replace the default values in the auditLog section of the YAML with your desired valid values.

Example default auditLog configuration

Specifies the maximum time in days that log files are kept. Files older than this limit are
deleted. In this example, after a log file is more than 7 days old, it is deleted. The files are
deleted regardless of whether or not the live log has reached the maximum file size
specified in the maxFileSize field. File age is determined by the timestamp written in the
name of the rotated log file, for example, audit-2024-05-16T17-03-59.994.log. When the
value is 0, the limit is disabled.

The maximum audit log file size in megabytes. In this example, the file is rotated as soon as
the live log reaches the 200 MB limit. When the value is set to 0, the limit is disabled.

The maximum number of rotated audit log files retained. After the limit is reached, the log
files are deleted in order from oldest to newest. In this example, the value 1 results in only 1
file of size maxFileSize being retained in addition to the current active log. When the value
is set to 0, the limit is disabled.

Logs only metadata for read and write requests; does not log request bodies except for
OAuth access token requests. If you do not specify this field, the Default profile is used.

3. Optional: To specify a new directory for logs, you can stop MicroShift, and then move the
/var/log/kube-apiserver directory to your desired location:

a. Stop MicroShift by running the following command:

b. Move the /var/log/kube-apiserver directory to your desired location by running the
following command:

Replace <~/kube-apiserver> with the path to the directory that you want to use.

c. If you specified a new directory for logs, create a symlink to your custom directory at
/var/log/kube-apiserver by running the following command:

apiServer:
....
 auditLog:
 maxFileAge: 7 1
 maxFileSize: 200 2
 maxFiles: 1 3
 profile: Default 4
....

$ sudo systemctl stop microshift

$ sudo mv /var/log/kube-apiserver <~/kube-apiserver> 1

$ sudo ln -s <~/kube-apiserver> /var/log/kube-apiserver 1

CHAPTER 5. CONFIGURING AUDIT LOGGING POLICIES

23

1 Replace <~/kube-apiserver> with the path to the directory that you want to use. This
enables the collection of logs in sos reports.

4. If you are configuring audit log policies on a running instance, restart MicroShift by entering the
following command:

5.4. TROUBLESHOOTING AUDIT LOG CONFIGURATION

Use the following steps to troubleshoot custom audit log settings and file locations.

Procedure

Check the current values that are configured by running the following command:

Example output

Check the audit.log file permissions by running the following command:

Example output

List the contents of the current log directory by running the following command:

Example output

$ sudo systemctl restart microsohift

$ sudo microshift show-config --mode effective

auditLog:
 maxFileSize: 200
 maxFiles: 1
 maxFileAge: 7
 profile: AllRequestBodies

$ sudo ls -ltrh /var/log/kube-apiserver/audit.log

-rw-------. 1 root root 46M Mar 12 09:52 /var/log/kube-apiserver/audit.log

$ sudo ls -ltrh /var/log/kube-apiserver/

total 6.0M
-rw-------. 1 root root 2.0M Mar 12 10:56 audit-2024-03-12T14-56-16.267.log
-rw-------. 1 root root 2.0M Mar 12 10:56 audit-2024-03-12T14-56-49.444.log
-rw-------. 1 root root 962K Mar 12 10:57 audit.log

Red Hat build of MicroShift 4.16 Configuring

24

	Table of Contents
	CHAPTER 1. HOW CONFIGURATION TOOLS WORK
	1.1. DEFAULT SETTINGS
	1.2. USING A YAML CONFIGURATION FILE
	1.2.1. Custom settings
	1.2.2. Configuring the advertise address network flag
	1.2.3. Extending the port range for NodePort services

	1.3. ADDITIONAL RESOURCES

	CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG
	2.1. KUBECONFIG FILES FOR CONFIGURING CLUSTER ACCESS
	2.2. LOCAL ACCESS KUBECONFIG FILE
	2.2.1. Accessing the MicroShift cluster locally

	2.3. REMOTE ACCESS KUBECONFIG FILES
	2.3.1. Remote access customization

	2.4. GENERATING ADDITIONAL KUBECONFIG FILES FOR REMOTE ACCESS
	2.4.1. Opening the firewall for remote access to the MicroShift cluster
	2.4.2. Accessing the MicroShift cluster remotely

	CHAPTER 3. CONFIGURING CUSTOM CERTIFICATE AUTHORITIES
	3.1. HOW CUSTOM CERTIFICATE AUTHORITIES WORK IN MICROSHIFT
	3.2. CONFIGURING CUSTOM CERTIFICATE AUTHORITIES
	3.3. CUSTOM CERTIFICATES RESERVED NAME VALUES
	3.4. TROUBLESHOOTING CUSTOM CERTIFICATES
	3.5. CLEANING UP AND RECREATING THE CUSTOM CERTIFICATES
	3.6. ADDITIONAL RESOURCES

	CHAPTER 4. CHECKING GREENBOOT SCRIPTS STATUS
	4.1. CHECKING THE STATUS OF GREENBOOT HEALTH CHECKS

	CHAPTER 5. CONFIGURING AUDIT LOGGING POLICIES
	5.1. ABOUT SETTING LIMITS ON AUDIT LOG FILES
	5.1.1. Default audit log values

	5.2. ABOUT AUDIT LOG POLICY PROFILES
	5.3. CONFIGURING AUDIT LOG VALUES
	5.4. TROUBLESHOOTING AUDIT LOG CONFIGURATION

