
Red Hat build of MicroShift 4.16

Networking

Configuring and managing cluster networking

Last Updated: 2024-06-28

Red Hat build of MicroShift 4.16 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your MicroShift cluster network,
including DNS, ingress, and the Pod network.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN
1.1. MICROSHIFT NETWORKING CONFIGURATION MATRIX

1.1.1. Default settings
1.2. NETWORK FEATURES
1.3. IP FORWARD
1.4. NETWORK PERFORMANCE OPTIMIZATIONS
1.5. MICROSHIFT NETWORKING COMPONENTS AND SERVICES
1.6. BRIDGE MAPPINGS
1.7. NETWORK TOPOLOGY

1.7.1. Description of the OVN logical components of the virtualized network
1.7.2. Description of the connections in the network topology figure

1.8. ADDITIONAL RESOURCES

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS
2.1. CREATING AN OVN-KUBERNETES CONFIGURATION FILE
2.2. RESTARTING THE OVNKUBE-MASTER POD
2.3. DEPLOYING MICROSHIFT BEHIND AN HTTP OR HTTPS PROXY
2.4. USING THE RPM-OSTREE HTTP OR HTTPS PROXY
2.5. USING A PROXY IN THE CRI-O CONTAINER RUNTIME
2.6. GETTING A SNAPSHOT OF OVS INTERFACES FROM A RUNNING CLUSTER
2.7. THE MICROSHIFT LOADBALANCER SERVICE FOR WORKLOADS
2.8. DEPLOYING A LOAD BALANCER FOR AN APPLICATION
2.9. BLOCKING EXTERNAL ACCESS TO THE NODEPORT SERVICE ON A SPECIFIC HOST INTERFACE
2.10. THE MULTICAST DNS PROTOCOL
2.11. AUDITING EXPOSED NETWORK PORTS

2.11.1. hostNetwork
2.11.2. hostPort
2.11.3. NodePort and LoadBalancer services

CHAPTER 3. UNDERSTANDING AND CONFIGURING THE ROUTER
3.1. ABOUT CONFIGURING THE ROUTER

3.1.1. Router settings and valid values
3.2. DISABLING THE ROUTER
3.3. CONFIGURING ROUTER INGRESS

3.3.1. Configuring router ports
3.3.2. Configuring router IP addresses

3.4. ADDITIONAL RESOURCES
3.5. CONFIGURING THE ROUTE ADMISSION POLICY

CHAPTER 4. NETWORK POLICIES
4.1. ABOUT NETWORK POLICIES

4.1.1. How network policy works in MicroShift
4.1.2. Optimizations for network policy with OVN-Kubernetes network plugin

4.2. CREATING NETWORK POLICIES
4.2.1. Example NetworkPolicy object
4.2.2. Creating a network policy using the CLI
4.2.3. Creating a default deny all network policy
4.2.4. Creating a network policy to allow traffic from external clients
4.2.5. Creating a network policy allowing traffic to an application from all namespaces
4.2.6. Creating a network policy allowing traffic to an application from a namespace

4.3. EDITING A NETWORK POLICY
4.3.1. Editing a network policy

5
5
6
9
9
9
9

10
10
11

12
12

13
13
14
14
15
15
16
17
17
21
22
22
22
23
23

25
25
25
26
27
27
28
29
29

31
31
31

33
35
35
36
37
38
39
41

43
43

Table of Contents

1

. .

. .

4.3.2. Example NetworkPolicy object
4.4. DELETING A NETWORK POLICY

4.4.1. Deleting a network policy using the CLI
4.5. VIEWING A NETWORK POLICY

4.5.1. Viewing network policies using the CLI

CHAPTER 5. MULTIPLE NETWORKS
5.1. ABOUT USING MULTIPLE NETWORKS

5.1.1. Additional networks in MicroShift
5.1.1.1. Supported additional networks for network isolation
5.1.1.2. Use case: Additional networks for network isolation
5.1.1.3. How additional networks are implemented
5.1.1.4. How to attached additional networks to pods
5.1.1.5. Configurations for additional network types

5.1.2. Installing the Multus CNI plugin on a running cluster
5.1.3. Configuration for a bridge additional network

5.1.3.1. Bridge CNI plugin configuration example
5.1.4. Configuration for an ipvlan additional network

5.1.4.1. IPVLAN CNI plugin configuration example
5.1.5. Configuration for a macvlan additional network

5.1.5.1. MACVLAN CNI plugin configuration example
5.1.6. Additional resources

5.2. CONFIGURING AND USING MULTIPLE NETWORKS
5.2.1. IP address management types and additional networks

5.2.1.1. bridge interface specifics
5.2.1.2. macvlan interface specifics
5.2.1.3. ipvlan interface specifics

5.2.2. Creating a NetworkAttachmentDefinition for an additional network
5.2.3. Adding a pod to an additional network
5.2.4. Configuring an additional network
5.2.5. Removing a pod from an additional network
5.2.6. Troubleshooting Multus networking

5.2.6.1. Pod networking cannot be configured
5.2.6.2. Missing configuration file

5.2.7. Additional resources

CHAPTER 6. CONFIGURING ROUTES
6.1. CREATING AN HTTP-BASED ROUTE

6.1.1. HTTP Strict Transport Security
6.1.2. Enabling HTTP Strict Transport Security per-route
6.1.3. Disabling HTTP Strict Transport Security per-route
6.1.4. Enforcing HTTP Strict Transport Security per-domain

6.2. THROUGHPUT ISSUE TROUBLESHOOTING METHODS
6.3. USING COOKIES TO KEEP ROUTE STATEFULNESS

6.3.1. Annotating a route with a cookie
6.4. PATH-BASED ROUTES
6.5. HTTP HEADER CONFIGURATION

6.5.1. Special case headers
6.6. SETTING OR DELETING HTTP REQUEST AND RESPONSE HEADERS IN A ROUTE
6.7. CREATING A ROUTE THROUGH AN INGRESS OBJECT
6.8. CREATING A ROUTE USING THE DEFAULT CERTIFICATE THROUGH AN INGRESS OBJECT
6.9. CREATING A ROUTE USING THE DESTINATION CA CERTIFICATE IN THE INGRESS ANNOTATION
6.10. SECURED ROUTES

44
45
45
45
46

47
47
47
47
47
48
48
48
48
49
50
51
52
53
53
54
54
54
54
54
54
54
56
59
62
62
62
63
63

64
64
65
65
67
68
68
69
69
70
71
72
73
74
77
78
79

Red Hat build of MicroShift 4.16 Networking

2

. .

. .

CHAPTER 7. USING A FIREWALL
7.1. ABOUT NETWORK TRAFFIC THROUGH THE FIREWALL
7.2. INSTALLING THE FIREWALLD SERVICE
7.3. REQUIRED FIREWALL SETTINGS
7.4. USING OPTIONAL PORT SETTINGS
7.5. ADDING SERVICES TO OPEN PORTS
7.6. ALLOWING NETWORK TRAFFIC THROUGH THE FIREWALL

7.6.1. Applying firewall settings
7.7. VERIFYING FIREWALL SETTINGS
7.8. OVERVIEW OF FIREWALL PORTS WHEN A SERVICE IS EXPOSED
7.9. ADDITIONAL RESOURCES
7.10. KNOWN FIREWALL ISSUE

CHAPTER 8. CONFIGURING NETWORK SETTINGS FOR FULLY DISCONNECTED HOSTS
8.1. PREPARING NETWORKING FOR FULLY DISCONNECTED HOSTS

8.1.1. Procedure summary
8.2. RESTORING MICROSHIFT NETWORKING SETTINGS TO DEFAULT
8.3. CONFIGURING THE NETWORKING SETTINGS FOR FULLY DISCONNECTED HOSTS

80
80
80
81
81

82
83
83
83
84
84
84

85
85
85
86
86

Table of Contents

3

Red Hat build of MicroShift 4.16 Networking

4

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK
PLUGIN

The OVN-Kubernetes Container Network Interface (CNI) plugin is the default networking solution for
MicroShift clusters. OVN-Kubernetes is a virtualized network for pods and services that is based on
Open Virtual Network (OVN).

Default network configuration and connections are applied automatically in MicroShift with the
microshift-networking RPM during installation.

A cluster that uses the OVN-Kubernetes network plugin also runs Open vSwitch (OVS) on the
node.

OVN-K configures OVS on the node to implement the declared network configuration.

Host physical interfaces are not bound by default to the OVN-K gateway bridge, br-ex. You can
use standard tools on the host for managing the default gateway, such as the Network Manager
CLI (nmcli).

Changing the CNI is not supported on MicroShift.

Using configuration files or custom scripts, you can configure the following networking settings:

You can use subnet CIDR ranges to allocate IP addresses to pods.

You can change the maximum transmission unit (MTU) value.

You can configure firewall ingress and egress.

You can define network policies in the MicroShift cluster, including ingress and egress rules.

You can use the MicroShift Multus plug-in to chain other CNI plugins.

You can configure or remove the ingress router.

1.1. MICROSHIFT NETWORKING CONFIGURATION MATRIX

The following table summarizes the status of networking features and capabilities that are either
present as defaults, supported for configuration, or not available with the MicroShift service:

Table 1.1. MicroShift networking features and capabilities overview

Network capability Availability Configuration supported

Advertise address Yes Yes [1]

Kubernetes network policy Yes Yes

Kubernetes network policy logs Not available N/A

Load balancing Yes Yes

Multicast DNS Yes Yes [2]

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

5

Network proxies Yes [3] CRI-O

Network performance Yes MTU configuration

Egress IPs Not available N/A

Egress firewall Not available N/A

Egress router Not available N/A

Firewall No [4] Yes

Hardware offloading Not available N/A

Hybrid networking Not available N/A

IPsec encryption for intra-cluster communication Not available N/A

IPv6 Not available [5] N/A

Ingress router Yes Yes [6]

Multiple networks plug-in Yes Yes

Network capability Availability Configuration supported

1. If unset, the default value is set to the next immediate subnet after the service network. For
example, when the service network is 10.43.0.0/16, the advertiseAddress is set to 10.44.0.0/32.

2. You can use the multicast DNS protocol (mDNS) to allow name resolution and service discovery
within a Local Area Network (LAN) using multicast exposed on the 5353/UDP port.

3. There is no built-in transparent proxying of egress traffic in MicroShift. Egress must be manually
configured.

4. Setting up the firewalld service is supported by RHEL for Edge.

5. IPv6 is not supported. IPv6 can only be used by connecting to other networks with the
MicroShift Multus CNI plugin.

6. Configure by using the MicroShift config.yaml file.

1.1.1. Default settings

If you do not create a config.yaml file, default values are used. The following example shows the default
configuration settings.

Red Hat build of MicroShift 4.16 Networking

6

1

To see the default values, run the following command:

Default values example output in YAML form

A string that specifies the IP address from which the API server is advertised to members
of the cluster. The default value is calculated based on the address of the service network.

How long log files are kept before automatic deletion. The default value of 0 in the

$ microshift show-config

apiServer:
 advertiseAddress: 10.44.0.0/32 1
 auditLog:
 maxFileAge: 0 2
 maxFileSize: 200 3
 maxFiles: 10 4
 profile: Default 5
 namedCertificates:
 - certPath: ""
 keyPath: ""
 names:
 - ""
 subjectAltNames: [] 6
debugging:
 logLevel: "Normal" 7
dns:
 baseDomain: microshift.example.com 8
etcd:
 memoryLimitMB: 0 9
ingress:
 listenAddress:
 - "" 10
 ports: 11
 http: 80
 https: 443
 routeAdmissionPolicy:
 namespaceOwnership: InterNamespaceAllowed 12
 status: Managed 13
manifests: 14
 kustomizePaths:
 - /usr/lib/microshift/manifests
 - /usr/lib/microshift/manifests.d/*
 - /etc/microshift/manifests
 - /etc/microshift/manifests.d/*
network:
 clusterNetwork:
 - 10.42.0.0/16 15
 serviceNetwork:
 - 10.43.0.0/16 16
 serviceNodePortRange: 30000-32767 17
node:
 hostnameOverride: "" 18
 nodeIP: "" 19

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

7

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

How long log files are kept before automatic deletion. The default value of 0 in the
maxFileAge parameter means a log file is never deleted based on age. This value can be

By default, when the audit.log file reaches the maxFileSize limit, the audit.log file is
rotated and MicroShift begins writing to a new audit.log file. This value can be configured.

The total number of log files kept. By default, MicroShift retains 10 log files. The oldest is
deleted when an excess file is created. This value can be configured.

Logs only metadata for read and write requests; does not log request bodies except for
OAuth access token requests. If you do not specify this field, the Default profile is used.

Subject Alternative Names for API server certificates.

Log verbosity. Valid values for this field are Normal, Debug, Trace, or TraceAll.

By default, etcd uses as much memory as needed to handle the load on the system.
However, in memory constrained systems, it might be preferred or necessary to limit the
amount of memory etcd can to use at a given time.

Base domain of the cluster. All managed DNS records are subdomains of this base.

The ingress.listenAddress value defaults to the entire network of the host. The valid
configurable value is a list that can be either a single IP address or NIC name or multiple IP
addresses and NIC names.

Default ports shown. Configurable. Valid values for both port entries are a single, unique
port in the 1-65535 range. The values of the ports.http and ports.https fields cannot be
the same.

Describes how hostname claims across namespaces are handled. By default, allows routes
to claim different paths of the same hostname across namespaces. Valid values are Strict
and InterNamespaceAllowed. Specifying Strict prevents routes in different namespaces
from claiming the same hostname. If the value is deleted in a customized MicroShift
config.yaml, the InterNamespaceAllowed value is automatically set.

Default router status, can be Managed or Removed.

The locations on the file system to scan for kustomization files to use to load manifests.
Set to a list of paths to scan only those paths. Set to an empty list to disable loading
manifests. The entries in the list can be glob patterns to match multiple subdirectories.

A block of IP addresses from which pod IP addresses are allocated. This field is immutable
after installation.

A block of virtual IP addresses for Kubernetes services. IP address pool for services. A
single entry is supported. This field is immutable after installation.

The port range allowed for Kubernetes services of type NodePort. If not specified, the
default range of 30000-32767 is used. Services without a NodePort specified are
automatically allocated one from this range. This parameter can be updated after the
cluster is installed.

The name of the node. The default value is the hostname. If non-empty, this string is used
to identify the node instead of the hostname.

The IP address of the node. The default value is the IP address of the default route.

Red Hat build of MicroShift 4.16 Networking

8

1.2. NETWORK FEATURES

Networking features available with MicroShift 4.16 include:

Kubernetes network policy

Dynamic node IP

Custom gateway interface

Second gateway interface

Cluster network on specified host interface

Blocking external access to NodePort service on specific host interfaces

Networking features not available with MicroShift 4.16:

Egress IP/firewall/QoS: disabled

Hybrid networking: not supported

IPsec: not supported

Hardware offload: not supported

1.3. IP FORWARD

The host network sysctl net.ipv4.ip_forward kernel parameter is automatically enabled by the
ovnkube-master container when started. This is required to forward incoming traffic to the CNI. For
example, accessing the NodePort service from outside of a cluster fails if ip_forward is disabled.

1.4. NETWORK PERFORMANCE OPTIMIZATIONS

By default, three performance optimizations are applied to OVS services to minimize resource
consumption:

CPU affinity to ovs-vswitchd.service and ovsdb-server.service

no-mlockall to openvswitch.service

Limit handler and revalidator threads to ovs-vswitchd.service

1.5. MICROSHIFT NETWORKING COMPONENTS AND SERVICES

This brief overview describes networking components and their operation in MicroShift. The microshift-
networking RPM is a package that automatically pulls in any networking-related dependencies and
systemd services to initialize networking, for example, the microshift-ovs-init systemd service.

NetworkManager

NetworkManager is required to set up the initial gateway bridge on the MicroShift node. The
NetworkManager and NetworkManager-ovs RPM packages are installed as dependencies to the
microshift-networking RPM package, which contains the necessary configuration files.
NetworkManager in MicroShift uses the keyfile plugin and is restarted after installation of the
microshift-networking RPM package.

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

9

microshift-ovs-init

The microshift-ovs-init.service is installed by the microshift-networking RPM package as a
dependent systemd service to microshift.service. It is responsible for setting up the OVS gateway
bridge.

OVN containers

Two OVN-Kubernetes daemon sets are rendered and applied by MicroShift.

ovnkube-master Includes the northd, nbdb, sbdb and ovnkube-master containers.

ovnkube-node The ovnkube-node includes the OVN-Controller container.
After MicroShift starts, the OVN-Kubernetes daemon sets are deployed in the openshift-
ovn-kubernetes namespace.

Packaging

OVN-Kubernetes manifests and startup logic are built into MicroShift. The systemd services and
configurations included in the microshift-networking RPM are:

/etc/NetworkManager/conf.d/microshift-nm.conf for NetworkManager.service

/etc/systemd/system/ovs-vswitchd.service.d/microshift-cpuaffinity.conf for ovs-
vswitchd.service

/etc/systemd/system/ovsdb-server.service.d/microshift-cpuaffinity.conf for ovs-
server.service

/usr/bin/configure-ovs-microshift.sh for microshift-ovs-init.service

/usr/bin/configure-ovs.sh for microshift-ovs-init.service

/etc/crio/crio.conf.d/microshift-ovn.conf for the CRI-O service

1.6. BRIDGE MAPPINGS

Bridge mappings allow provider network traffic to reach the physical network. Traffic leaves the
provider network and arrives at the br-int bridge. A patch port between br-int and br-ex then allows the
traffic to traverse to and from the provider network and the edge network. Kubernetes pods are
connected to the br-int bridge through virtual ethernet pair: one end of the virtual ethernet pair is
attached to the pod namespace, and the other end is attached to the br-int bridge.

1.7. NETWORK TOPOLOGY

OVN-Kubernetes provides an overlay-based networking implementation. This overlay includes an OVS-
based implementation of Service and NetworkPolicy. The overlay network uses the Geneve (Generic
Network Virtualization Encapsulation) tunnel protocol. The pod maximum transmission unit (MTU) for
the Geneve tunnel is set to the default route MTU if it is not configured.

To configure the MTU, you must set an equal-to or less-than value than the MTU of the physical
interface on the host. A less-than value for the MTU makes room for the required information that is
added to the tunnel header before it is transmitted.

OVS runs as a systemd service on the MicroShift node. The OVS RPM package is installed as a
dependency to the microshift-networking RPM package. OVS is started immediately when the
microshift-networking RPM is installed.

Red Hat build of MicroShift 4.16 Networking

10

Red Hat build of MicroShift network topology

1.7.1. Description of the OVN logical components of the virtualized network

OVN node switch

A virtual switch named <node-name>. The OVN node switch is named according to the hostname of
the node.

In this example, the node-name is microshift-dev.

OVN cluster router

A virtual router named ovn_cluster_router, also known as the distributed router.

In this example, the cluster network is 10.42.0.0/16.

OVN join switch

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

11

A virtual switch named join.

OVN gateway router

A virtual router named GR_<node-name>, also known as the external gateway router.

OVN external switch

A virtual switch named ext_<node-name>.

1.7.2. Description of the connections in the network topology figure

The north-south traffic between the network service and the OVN external switch
ext_microshift-dev is provided through the host kernel by the gateway bridge br-ex.

The OVN gateway router GR_microshift-dev is connected to the external network switch
ext_microshift-dev through the logical router port 4. Port 4 is attached with the node IP
address 192.168.122.14.

The join switch join connects the OVN gateway router GR_microshift-dev to the OVN cluster
router ovn_cluster_router. The IP address range is 100.62.0.0/16.

The OVN gateway router GR_microshift-dev connects to the OVN join switch join through
the logical router port 3. Port 3 attaches with the internal IP address 100.64.0.2.

The OVN cluster router ovn_cluster_router connects to the join switch join through the
logical router port 2. Port 2 attaches with the internal IP address 100.64.0.1.

The OVN cluster router ovn_cluster_router connects to the node switch microshift-dev
through the logical router port 1. Port 1 is attached with the OVN cluster network IP address
10.42.0.1.

The east-west traffic between the pods and the network service is provided by the OVN cluster
router ovn_cluster_router and the node switch microshift-dev. The IP address range is
10.42.0.0/24.

The east-west traffic between pods is provided by the node switch microshift-dev without
network address translation (NAT).

The north-south traffic between the pods and the external network is provided by the OVN
cluster router ovn_cluster_router and the host network. This router is connected through the
ovn-kubernetes management port ovn-k8s-mp0, with the IP address 10.42.0.2.

All the pods are connected to the OVN node switch through their interfaces.

In this example, Pod 1 and Pod 2 are connected to the node switch through Interface 1 and
Interface 2.

1.8. ADDITIONAL RESOURCES

Using a YAML configuration file

Understanding networking settings

About using multiple networks

About network policies

Red Hat build of MicroShift 4.16 Networking

12

https://docs.redhat.com/en/documentation/red_hat_build_of_microshift/4.16/html-single/configuring/#microshift-config-yaml_microshift-configuring

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS
Learn how to apply networking customization and default settings to MicroShift deployments. Each
node is contained to a single machine and single MicroShift, so each deployment requires individual
configuration, pods, and settings.

Cluster Administrators have several options for exposing applications that run inside a cluster to
external traffic and securing network connections:

A service such as NodePort

API resources, such as Ingress and Route

By default, Kubernetes allocates each pod an internal IP address for applications running within the pod.
Pods and their containers can have traffic between them, but clients outside the cluster do not have
direct network access to pods except when exposed with a service such as NodePort.

2.1. CREATING AN OVN-KUBERNETES CONFIGURATION FILE

MicroShift uses built-in default OVN-Kubernetes values if an OVN-Kubernetes configuration file is not
created. You can write an OVN-Kubernetes configuration file to /etc/microshift/ovn.yaml. An example
file is provided for your configuration.

Procedure

1. To create your ovn.yaml file, run the following command:

2. To list the contents of the configuration file you created, run the following command:

Example YAML file with default maximum transmission unit (MTU) value

3. To customize your configuration, you can change the MTU value. The table that follows
provides details:

Table 2.1. Supported optional OVN-Kubernetes configurations for MicroShift

Field Type Default Description Example

mtu uint32 auto MTU value used
for the pods

1300

IMPORTANT

If you change the mtu configuration value in the ovn.yaml file, you must restart
the host that Red Hat build of MicroShift is running on to apply the updated
setting.

$ sudo cp /etc/microshift/ovn.yaml.default /etc/microshift/ovn.yaml

$ cat /etc/microshift/ovn.yaml

mtu: 1400

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

13

Example custom ovn.yaml configuration file

2.2. RESTARTING THE OVNKUBE-MASTER POD

The following procedure restarts the ovnkube-master pod.

Prerequisites

The OpenShift CLI (oc) is installed.

Access to the cluster as a user with the cluster-admin role.

A cluster installed on infrastructure configured with the OVN-Kubernetes network plugin.

The KUBECONFIG environment variable is set.

Procedure

Use the following steps to restart the ovnkube-master pod.

1. Access the remote cluster by running the following command:

2. Find the name of the ovnkube-master pod that you want to restart by running the following
command:

3. Delete the ovnkube-master pod by running the following command:

4. Confirm that a new ovnkube-master pod is running by using the following command:

The listing of the running pods shows a new ovnkube-master pod name and age.

2.3. DEPLOYING MICROSHIFT BEHIND AN HTTP OR HTTPS PROXY

Deploy a MicroShift cluster behind an HTTP or HTTPS proxy when you want to add basic anonymity and
security measures to your pods.

You must configure the host operating system to use the proxy service with all components initiating
HTTP or HTTPS requests when deploying MicroShift behind a proxy.

All the user-specific workloads or pods with egress traffic, such as accessing cloud services, must be
configured to use the proxy. There is no built-in transparent proxying of egress traffic in MicroShift.

mtu: 1300

$ export KUBECONFIG=$PWD/kubeconfig

$ pod=$(oc get pods -n openshift-ovn-kubernetes | awk -F " " '/ovnkube-master/{print $1}')

$ oc -n openshift-ovn-kubernetes delete pod $pod

$ oc get pods -n openshift-ovn-kubernetes

Red Hat build of MicroShift 4.16 Networking

14

2.4. USING THE RPM-OSTREE HTTP OR HTTPS PROXY

To use the HTTP or HTTPS proxy in RPM-OStree, you must add a Service section to the configuration
file and set the http_proxy environment variable for the rpm-ostreed service.

Procedure

1. Add this setting to the /etc/systemd/system/rpm-ostreed.service.d/00-proxy.conf file:

2. Next, reload the configuration settings and restart the service to apply your changes.

a. Reload the configuration settings by running the following command:

b. Restart the rpm-ostreed service by running the following command:

2.5. USING A PROXY IN THE CRI-O CONTAINER RUNTIME

To use an HTTP or HTTPS proxy in CRI-O, you must add a Service section to the configuration file and
set the HTTP_PROXY and HTTPS_PROXY environment variables. You can also set the NO_PROXY
variable to exclude a list of hosts from being proxied.

Procedure

1. Create the directory for the configuration file if it does not exist:

2. Add the following settings to the /etc/systemd/system/crio.service.d/00-proxy.conf file:

IMPORTANT

You must define the Service section of the configuration file for the
environment variables or the proxy settings fail to apply.

3. Reload the configuration settings:

[Service]
Environment="http_proxy=http://$PROXY_USER:$PROXY_PASSWORD@$PROXY_SERVE
R:$PROXY_PORT/"

$ sudo systemctl daemon-reload

$ sudo systemctl restart rpm-ostreed.service

$ sudo mkdir /etc/systemd/system/crio.service.d/

[Service]
Environment=NO_PROXY="localhost,127.0.0.1"
Environment=HTTP_PROXY="http://$PROXY_USER:$PROXY_PASSWORD@$PROXY_SE
RVER:$PROXY_PORT/"
Environment=HTTPS_PROXY="http://$PROXY_USER:$PROXY_PASSWORD@$PROXY_S
ERVER:$PROXY_PORT/"

$ sudo systemctl daemon-reload

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

15

4. Restart the CRI-O service:

5. Restart the MicroShift service to apply the settings:

Verification

1. Verify that pods are started by running the following command and examining the output:

2. Verify that MicroShift is able to pull container images by running the following command and
examining the output:

2.6. GETTING A SNAPSHOT OF OVS INTERFACES FROM A RUNNING
CLUSTER

A snapshot represents the state and data of OVS interfaces at a specific point in time.

Procedure

To see a snapshot of OVS interfaces from a running MicroShift cluster, use the following
command:

Example OVS interfaces in a running cluster

$ sudo systemctl restart crio

$ sudo systemctl restart microshift

$ oc get all -A

$ sudo crictl images

$ sudo ovs-vsctl show

9d9f5ea2-9d9d-4e34-bbd2-dbac154fdc93
 Bridge br-ex
 Port br-ex
 Interface br-ex
 type: internal
 Port patch-br-ex_localhost.localdomain-to-br-int 1
 Interface patch-br-ex_localhost.localdomain-to-br-int
 type: patch
 options: {peer=patch-br-int-to-br-ex_localhost.localdomain} 2
 Bridge br-int
 fail_mode: secure
 datapath_type: system
 Port patch-br-int-to-br-ex_localhost.localdomain
 Interface patch-br-int-to-br-ex_localhost.localdomain
 type: patch
 options: {peer=patch-br-ex_localhost.localdomain-to-br-int}
 Port eebee1ce5568761
 Interface eebee1ce5568761 3
 Port b47b1995ada84f4

Red Hat build of MicroShift 4.16 Networking

16

1

2

3

4

5

6

The patch-br-ex_localhost.localdomain-to-br-int and patch-br-int-to-br-
ex_localhost.localdomain are OVS patch ports that connect br-ex and br-int.

The patch-br-ex_localhost.localdomain-to-br-int and patch-br-int-to-br-
ex_localhost.localdomain are OVS patch ports that connect br-ex and br-int.

The pod interface eebee1ce5568761 is named with the first 15 bits of the pod sandbox ID
and is plugged into the br-int bridge.

The pod interface b47b1995ada84f4 is named with the first 15 bits of the pod sandbox ID
and is plugged into the br-int bridge.

The pod interface 3031f43d67c167f is named with the first 15 bits of the pod sandbox ID
and is plugged into the br-int bridge.

The OVS internal port for hairpin traffic,ovn-k8s-mp0 is created by the ovnkube-master
container.

2.7. THE MICROSHIFT LOADBALANCER SERVICE FOR WORKLOADS

MicroShift has a built-in implementation of network load balancers that you can use for your workloads
and applications within the cluster. You can create a LoadBalancer service by configuring a pod to
interpret ingress rules and serve as an ingress controller. The following procedure gives an example of a
deployment-based LoadBalancer service.

2.8. DEPLOYING A LOAD BALANCER FOR AN APPLICATION

The following example procedure uses the node IP address as the external IP address for the
LoadBalancer service configuration file. Use this example as guidance for how to deploy load balancers.

Prerequisites

The OpenShift CLI (oc) is installed.

You installed a cluster on an infrastructure configured with the OVN-Kubernetes network
plugin.

The KUBECONFIG environment variable is set.

Procedure

1. Verify that your pods are running by entering the following command:

 Interface b47b1995ada84f4 4
 Port "3031f43d67c167f"
 Interface "3031f43d67c167f" 5
 Port br-int
 Interface br-int
 type: internal
 Port ovn-k8s-mp0 6
 Interface ovn-k8s-mp0
 type: internal
 ovs_version: "2.17.3"

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

17

1

Example output

2. Create a namespace by running the following commands:

Replace _<nginx-lb-test> with the application namespace that you want to create.

Example namespace

The following example deploys three replicas of the test nginx application in the created
namespace:

$ oc get pods -A

NAMESPACE NAME READY STATUS
RESTARTS AGE
default i-06166fbb376f14a8bus-west-2computeinternal-debug-qtwcr 1/1
Running 0 46m
kube-system csi-snapshot-controller-5c6586d546-lprv4 1/1
Running 0 51m
kube-system csi-snapshot-webhook-6bf8ddc7f5-kz6k9 1/1
Running 0 51m
openshift-dns dns-default-45jl7 2/2 Running 0
50m
openshift-dns node-resolver-7wmzf 1/1 Running 0
51m
openshift-ingress router-default-78b86fbf9d-qvj9s 1/1 Running
0 51m
openshift-multus dhcp-daemon-j7qnf 1/1 Running 0
51m
openshift-multus multus-r758z 1/1 Running 0
51m
openshift-operator-lifecycle-manager catalog-operator-85fb86fcb9-t6zm7 1/1
Running 0 51m
openshift-operator-lifecycle-manager olm-operator-87656d995-fvz84 1/1
Running 0 51m
openshift-ovn-kubernetes ovnkube-master-5rfhh 4/4 Running
0 51m
openshift-ovn-kubernetes ovnkube-node-gcnt6 1/1 Running
0 51m
openshift-service-ca service-ca-bf5b7c9f8-pn6rk 1/1 Running
0 51m
openshift-storage topolvm-controller-549f7fbdd5-7vrmv 5/5
Running 0 51m
openshift-storage topolvm-node-rht2m 3/3 Running 0
50m

$ NAMESPACE=<nginx-lb-test> 1

$ oc create ns $NAMESPACE

oc apply -n $NAMESPACE -f - <<EOF
apiVersion: v1
kind: ConfigMap

Red Hat build of MicroShift 4.16 Networking

18

3. You can verify that the three sample replicas started successfully by running the following
command:

4. Create a LoadBalancer service for the nginx test application by running the following
command:

metadata:
 name: nginx
data:
 headers.conf: |
 add_header X-Server-IP \$server_addr always;

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: quay.io/packit/nginx-unprivileged
 imagePullPolicy: Always
 name: nginx
 ports:
 - containerPort: 8080
 volumeMounts:
 - name: nginx-configs
 subPath: headers.conf
 mountPath: /etc/nginx/conf.d/headers.conf
 securityContext:
 allowPrivilegeEscalation: false
 seccompProfile:
 type: RuntimeDefault
 capabilities:
 drop: ["ALL"]
 runAsNonRoot: true
 volumes:
 - name: nginx-configs
 configMap:
 name: nginx
 items:
 - key: headers.conf
 path: headers.conf
EOF

$ oc get pods -n $NAMESPACE

oc create -n $NAMESPACE -f - <<EOF

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

19

NOTE

You must ensure that the port parameter is a host port that is not occupied by
other LoadBalancer services or MicroShift components.

5. Verify that the service file exists, that the external IP address is properly assigned, and that the
external IP is identical to the node IP by running the following command:

Example output

Verification

The following command forms five connections to the example nginx application using the external IP
address of the LoadBalancer service configuration. The result of the command is a list of those server
IP addresses.

Verify that the load balancer sends requests to all the running applications by running the
following command:

The output of the previous command contains different IP addresses if the LoadBalancer
service is successfully distributing the traffic to the applications, for example:

Example output

2.9. BLOCKING EXTERNAL ACCESS TO THE NODEPORT SERVICE ON

apiVersion: v1
kind: Service
metadata:
 name: nginx
spec:
 ports:
 - port: 81
 targetPort: 8080
 selector:
 app: nginx
 type: LoadBalancer
EOF

$ oc get svc -n $NAMESPACE

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx LoadBalancer 10.43.183.104 192.168.1.241 81:32434/TCP 2m

EXTERNAL_IP=192.168.1.241
seq 5 | xargs -Iz curl -s -I http://$EXTERNAL_IP:81 | grep X-Server-IP

X-Server-IP: 10.42.0.41
X-Server-IP: 10.42.0.41
X-Server-IP: 10.42.0.43
X-Server-IP: 10.42.0.41
X-Server-IP: 10.42.0.43

Red Hat build of MicroShift 4.16 Networking

20

2.9. BLOCKING EXTERNAL ACCESS TO THE NODEPORT SERVICE ON
A SPECIFIC HOST INTERFACE

OVN-Kubernetes does not restrict the host interface where a NodePort service can be accessed from
outside a Red Hat build of MicroShift node. The following procedure explains how to block the
NodePort service on a specific host interface and restrict external access.

Prerequisites

You must have an account with root privileges.

Procedure

1. Change the NODEPORT variable to the host port number assigned to your Kubernetes
NodePort service by running the following command:

2. Change the INTERFACE_IP value to the IP address from the host interface that you want to
block. For example:

3. Insert a new rule in the nat table PREROUTING chain to drop all packets that match the
destination port and IP address. For example:

4. List the new rule by running the following command:

NOTE

Note the handle number of the newly added rule. You need to remove the
handle number in the following step.

5. Remove the custom rule with the following sample command:

export NODEPORT=30700

export INTERFACE_IP=192.168.150.33

$ sudo nft -a insert rule ip nat PREROUTING tcp dport $NODEPORT ip daddr
$INTERFACE_IP drop

$ sudo nft -a list chain ip nat PREROUTING
table ip nat {
 chain PREROUTING { # handle 1
 type nat hook prerouting priority dstnat; policy accept;
 tcp dport 30700 ip daddr 192.168.150.33 drop # handle 134
 counter packets 108 bytes 18074 jump OVN-KUBE-ETP # handle 116
 counter packets 108 bytes 18074 jump OVN-KUBE-EXTERNALIP # handle 114
 counter packets 108 bytes 18074 jump OVN-KUBE-NODEPORT # handle 112
 }
}

$ sudo nft -a delete rule ip nat PREROUTING handle 134

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

21

2.10. THE MULTICAST DNS PROTOCOL

You can use the multicast DNS protocol (mDNS) to allow name resolution and service discovery within a
Local Area Network (LAN) using multicast exposed on the 5353/UDP port.

MicroShift includes an embedded mDNS server for deployment scenarios in which the authoritative
DNS server cannot be reconfigured to point clients to services on MicroShift. The embedded DNS
server allows .local domains exposed by MicroShift to be discovered by other elements on the LAN.

2.11. AUDITING EXPOSED NETWORK PORTS

On MicroShift, the host port can be opened by a workload in the following cases. You can check logs to
view the network services.

2.11.1. hostNetwork

When a pod is configured with the hostNetwork:true setting, the pod is running in the host network
namespace. This configuration can independently open host ports. MicroShift component logs cannot
be used to track this case, the ports are subject to firewalld rules. If the port opens in firewalld, you can
view the port opening in the firewalld debug log.

Prerequisites

You have root user access to your build host.

Procedure

1. Optional: You can check that the hostNetwork:true parameter is set in your ovnkube-node pod
by using the following example command:

2. Enable debug in the firewalld log by running the following command:

3. Restart the firewalld service:

4. To verify that the debug option was added properly, run the following command:

The firewalld debug log is stored in the /var/log/firewalld path.

Example logs for when the port open rule is added:

$ sudo oc get pod -n openshift-ovn-kubernetes <ovnkube-node-pod-name> -o json | jq -r
'.spec.hostNetwork' true

$ sudo vi /etc/sysconfig/firewalld
FIREWALLD_ARGS=--debug=10

$ sudo systemctl restart firewalld.service

$ sudo systemd-cgls -u firewalld.service

2023-06-28 10:46:37 DEBUG1: config.getZoneByName('public')
2023-06-28 10:46:37 DEBUG1: config.zone.7.addPort('8080', 'tcp')
2023-06-28 10:46:37 DEBUG1: config.zone.7.getSettings()

Red Hat build of MicroShift 4.16 Networking

22

Example logs for when the port open rule is removed:

2.11.2. hostPort

You can access the hostPort setting logs in MicroShift. The following logs are examples for the hostPort
setting:

Procedure

You can access the logs by running the following command:

Example CRI-O logs when the host port is opened:

Example CRI-O logs when the host port is closed:

2.11.3. NodePort and LoadBalancer services

OVN-Kubernetes opens host ports for NodePort and LoadBalancer service types. These services add
iptables rules that take the ingress traffic from the host port and forwards it to the clusterIP. Logs for
the NodePort and LoadBalancer services are presented in the following examples:

Procedure

1. To access the name of your ovnkube-master pods, run the following command:

Example ovnkube-master pod name

2. You can access the NodePort and LoadBalancer services logs using your ovnkube-master
pod and running the following example command:

2023-06-28 10:46:37 DEBUG1: config.zone.7.update('...')
2023-06-28 10:46:37 DEBUG1: config.zone.7.Updated('public')

2023-06-28 10:47:57 DEBUG1: config.getZoneByName('public')
2023-06-28 10:47:57 DEBUG2: config.zone.7.Introspect()
2023-06-28 10:47:57 DEBUG1: config.zone.7.removePort('8080', 'tcp')
2023-06-28 10:47:57 DEBUG1: config.zone.7.getSettings()
2023-06-28 10:47:57 DEBUG1: config.zone.7.update('...')
2023-06-28 10:47:57 DEBUG1: config.zone.7.Updated('public')

$ journalctl -u crio | grep "local port"

$ Jun 25 16:27:37 rhel92 crio[77216]: time="2023-06-25 16:27:37.033003098+08:00"
level=info msg="Opened local port tcp:443"

$ Jun 25 16:24:11 rhel92 crio[77216]: time="2023-06-25 16:24:11.342088450+08:00"
level=info msg="Closing host port tcp:443"

$ oc get pods -n openshift-ovn-kubernetes | awk '/ovnkube-master/{print $1}'

ovnkube-master-n2shv

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

23

NodePort service:

Example logs in the ovnkube-master container of the ovnkube-master pod when a
host port is open:

Example logs in the ovnkube-master container of the ovnkube-master pod when a
host port is closed:

LoadBalancer service:

Example logs in the ovnkube-master container of the ovnkube-master pod when a
host port is open:

Example logs in the ovnkube-master container of the ovnkube-master pod when a
host port is closed:

$ oc logs -n openshift-ovn-kubernetes <ovnkube-master-pod-name> ovnkube-master | grep -
E "OVN-KUBE-NODEPORT|OVN-KUBE-EXTERNALIP"

$ I0625 09:07:00.992980 2118395 iptables.go:27] Adding rule in table: nat, chain: OVN-
KUBE-NODEPORT with args: "-p TCP -m addrtype --dst-type LOCAL --dport 32718 -j DNAT
--to-destination 10.96.178.142:8081" for protocol: 0

$ Deleting rule in table: nat, chain: OVN-KUBE-NODEPORT with args: "-p TCP -m addrtype -
-dst-type LOCAL --dport 32718 -j DNAT --to-destination 10.96.178.142:8081" for protocol: 0

$ I0625 09:34:10.406067 128902 iptables.go:27] Adding rule in table: nat, chain: OVN-
KUBE-EXTERNALIP with args: "-p TCP -d 172.16.47.129 --dport 8081 -j DNAT --to-
destination 10.43.114.94:8081" for protocol: 0

$ I0625 09:37:00.976953 128902 iptables.go:63] Deleting rule in table: nat, chain: OVN-
KUBE-EXTERNALIP with args: "-p TCP -d 172.16.47.129 --dport 8081 -j DNAT --to-
destination 10.43.114.94:8081" for protocol: 0

Red Hat build of MicroShift 4.16 Networking

24

1

2

CHAPTER 3. UNDERSTANDING AND CONFIGURING THE
ROUTER

Learn about default and custom settings for configuring the router and route admission policy with
MicroShift.

3.1. ABOUT CONFIGURING THE ROUTER

To make ingress optional, you can configure MicroShift ingress router settings to manage which ports, if
any, are exposed to network traffic. Specified routing is an example of ingress load balancing.

The default ingress router is always on, running on all IP addresses on the http: 80 and https:
443 ports.

Default router settings allow access to any namespace.

Some applications running on top of MicroShift might not require the default router and instead create
their own. You can configure the router to control both ingress and namespace access.

TIP

You can check for the presence of the default router in your MicroShift installation before you begin
configurations by using the oc get deployment -n openshift-ingress command, which returns the
following output:

3.1.1. Router settings and valid values

The ingress router settings consist of the following parameters and valid values:

Example config.yaml router settings

The ingress.listenAddress value defaults to the entire network of the host. Valid customizable
values can be a single IP address or host name or a list of IP addresses or host names.

Valid values for both port entries are a single, unique port in the 1-65535 range. The values of the
ports.http and ports.https fields cannot be the same.

NAME READY UP-TO-DATE AVAILABLE AGE
router-default 1/1 1 1 2d23h

...
ingress:
 listenAddress:
 - "" 1
 ports: 2
 http: 80
 https: 443
 routeAdmissionPolicy:
 namespaceOwnership: InterNamespaceAllowed 3
 status: Managed 4
...

CHAPTER 3. UNDERSTANDING AND CONFIGURING THE ROUTER

25

3

4

1

Default value. Allows routes to claim different paths of the same host name across namespaces.

Default value. Managed is required for the ingress ports to remain open.

IMPORTANT

The firewalld service is bypassed by the default MicroShift router and by configurations
that enable the router. Ingress and egress must be controlled by setting network policies
when the router is active.

3.2. DISABLING THE ROUTER

In use cases such as industrial IoT spaces where MicroShift pods only need to connect to southbound
operational systems and northbound cloud-data systems, inbound services are not needed. Use this
procedure to disable the router in such egress-only use cases.

Prerequisites

You installed MicroShift.

You created a MicroShift config.yaml file.

The OpenShift CLI (oc) is installed.

TIP

If you complete all the configurations that you need to make in the MicroShift config.yaml file at the
same time, you can minimize system restarts.

Procedure

1. Update the value of ingress.status field to Removed in the MicroShift config.yaml file as
shown in the following example:

Example config.yaml ingress stanza

When the value is set to Removed, the ports listed in ingress.ports are automatically
closed. Any other settings in the ingress stanza are ignored, for example, any values in the
routeAdmissionPolicy.namespaceOwnership field.

2. Restart the MicroShift service by running the following command:

...
ingress:
 ports:
 http: 80
 https: 443
 routeAdmissionPolicy:
 namespaceOwnership: InterNamespaceAllowed
 status: Removed 1
...

Red Hat build of MicroShift 4.16 Networking

26

NOTE

The MicroShift service outputs current configurations during restarts.

Verification

After the system restarts, verify that the router has been removed and that ingress is stopped
by running the following command:

Expected output

3.3. CONFIGURING ROUTER INGRESS

If your MicroShift applications need to listen only for data traffic, you can configure the listenAddress
setting to isolate your devices. You can also configure specific ports and IP addresses for network
connections. Use the combination required to customize the endpoint configuration for your use case.

3.3.1. Configuring router ports

You can control which ports your devices use by configuring the router ingress fields.

Prerequisites

You installed MicroShift.

You created a MicroShift config.yaml file.

The OpenShift CLI (oc) is installed.

TIP

If you complete all the configurations that you need to make in the MicroShift config.yaml file at the
same time, you can minimize system restarts.

Procedure

1. Update the MicroShift config.yaml port values in the ingress.ports.http and
ingress.ports.https fields to the ports you want to use:

Example config.yaml router settings

$ sudo systemctl restart microshift

$ oc -n openshift-ingress get svc

No resources found in openshift-ingress namespace.

...
ingress:
 ports: 1
 http: 80
 https: 443

CHAPTER 3. UNDERSTANDING AND CONFIGURING THE ROUTER

27

1

2

Default ports shown. Customizable. Valid values for both port entries are a single, unique
port in the 1-65535 range. The values of the ports.http and ports.https fields cannot be
the same.

The default value. Managed is required for the ingress ports to remain open.

2. Restart the MicroShift service by running the following command:

3.3.2. Configuring router IP addresses

You can restrict the network traffic to the router by configuring specific IP addresses. For example:

Use cases where the router is reachable only on internal networks, but not on northbound public
networks

Use cases where the router is reachable only by northbound public networks, but not on internal
networks

Use cases where the router is reachable by both internal networks and northbound public
networks, but on separate IP addresses

Prerequisites

You installed MicroShift.

You created a MicroShift config.yaml file.

The OpenShift CLI (oc) is installed.

TIP

If you complete all the configurations that you need to make in the MicroShift config.yaml file at the
same time, you can minimize system restarts.

Procedure

1. Update the list in the ingress.listenAddress field in the MicroShift config.yaml according to
your requirements and as shown in the following examples:

Default router IP address list

 routeAdmissionPolicy:
 namespaceOwnership: InterNamespaceAllowed
 status: Managed 2
...

$ sudo systemctl restart microshift

...
ingress:
 listenAddress:
 - "<host_network>" 1
...

Red Hat build of MicroShift 4.16 Networking

28

1 The ingress.listenAddress value defaults to the entire network of the host. To continue
to use the default list, remove the listen.Address field from the MicroShift config.yaml
file. To customize this parameter, use a list. The list can contain either a single IP address or
NIC name or multiple IP addresses and NIC names.

IMPORTANT

You must either remove the listenAddress parameter or add values to it in the
form of a list when using the config.yaml file. Do not leave the field empty or
MicroShift crashes on restart.

Example router setting with a single host IP address

Example router setting with a combination of IP addresses and NIC names

2. Restart the MicroShift service by running the following command:

Verification

To verify that your settings are applied, make sure that the ingress.listenAddress IP addresses
are reachable, then you can curl the route with the destination to one of these load balancer IP
address.

3.4. ADDITIONAL RESOURCES

Default settings (MicroShift)

About network policies

3.5. CONFIGURING THE ROUTE ADMISSION POLICY

By default, MicroShift allows routes in multiple namespaces to use the same hostname. You can prevent
routes from claiming the same hostname in different namespaces by configuring the route admission
policy.

Prerequisites

...
ingress:
 listenAddress:
 - 10.2.1.100
...

...
ingress:
 listenAddress:
 - 10.2.1.100
 - 10.2.2.10
 - ens3
...

$ sudo systemctl restart microshift

CHAPTER 3. UNDERSTANDING AND CONFIGURING THE ROUTER

29

https://docs.redhat.com/en/documentation/red_hat_build_of_microshift/4.16/html-single/configuring/#microshift-yaml-default_microshift-using-config-tools

1

Prerequisites

You installed MicroShift.

You created a MicroShift config.yaml file.

You installed the OpenShift CLI (oc).

TIP

If you complete all the configurations that you need to make in the MicroShift config.yaml file
at the same time, you can minimize system restarts.

Procedure

1. To prevent routes in different namespaces from claiming the same hostname, update the
namespaceOwnership field value to Strict in the MicroShift config.yaml file. See the following
example:

Example config.yaml route admission policy

Prevents routes in different namespaces from claiming the same host. Valid values are
Strict and InterNamespaceAllowed. If you delete the value in a customized config.yaml,
the InterNamespaceAllowed value is set automatically.

2. To apply the configuration, restart the MicroShift service by running the following command:

...
ingress:
 routeAdmissionPolicy:
 namespaceOwnership: Strict 1
...

$ sudo systemctl restart microshift

Red Hat build of MicroShift 4.16 Networking

30

CHAPTER 4. NETWORK POLICIES

4.1. ABOUT NETWORK POLICIES

Learn how network policies work for MicroShift to restrict or allow network traffic to pods in your cluster.

4.1.1. How network policy works in MicroShift

In a cluster using the default OVN-Kubernetes Container Network Interface (CNI) plugin for MicroShift,
network isolation is controlled by both firewalld, which is configured on the host, and by NetworkPolicy
objects created within MicroShift. Simultaneous use of firewalld and NetworkPolicy is supported.

Network policies work only within boundaries of OVN-Kubernetes-controlled traffic, so they can
apply to every situation except for hostPort/hostNetwork enabled pods.

Firewalld settings also do not apply to hostPort/hostNetwork enabled pods.

NOTE

Firewalld rules run before any NetworkPolicy is enforced.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by network policy rules. However, pods
connecting to the host-networked pods might be affected by the network policy
rules.

Network policies cannot block traffic from localhost.

By default, all pods in a MicroShift node are accessible from other pods and network endpoints. To
isolate one or more pods in a cluster, you can create NetworkPolicy objects to indicate allowed
incoming connections. You can create and delete NetworkPolicy objects.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod accepts only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

A network policy applies to only the TCP, UDP, ICMP, and SCTP protocols. Other protocols are not
affected.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1

CHAPTER 4. NETWORK POLICIES

31

Allow connections from the default router, which is the ingress in MicroShift:
To allow connections from the MicroShift default router, add the following NetworkPolicy
object:

Only accept connections from pods within the same namespace:
To make pods accept connections from other pods in the same namespace, but reject all other
connections from pods in other namespaces, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

metadata:
 name: deny-by-default
spec:
 podSelector: {}
 ingress: []

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 podSelector: {}
 policyTypes:
 - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:
 - ports:
 - protocol: TCP

Red Hat build of MicroShift 4.16 Networking

32

Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a
NetworkPolicy object similar to the following:

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous examples, you can define both allow-
same-namespace and allow-http-and-https policies. That configuration allows the pods with the label
role=frontend to accept any connection allowed by each policy. That is, connections on any port from
pods in the same namespace, and connections on ports 80 and 443 from pods in any namespace.

4.1.2. Optimizations for network policy with OVN-Kubernetes network plugin

When designing your network policy, refer to the following guidelines:

For network policies with the same spec.podSelector spec, it is more efficient to use one
network policy with multiple ingress or egress rules, than multiple network policies with subsets
of ingress or egress rules.

Every ingress or egress rule based on the podSelector or namespaceSelector spec
generates the number of OVS flows proportional to number of pods selected by network
policy + number of pods selected by ingress or egress rule. Therefore, it is preferable to use
the podSelector or namespaceSelector spec that can select as many pods as you need in one
rule, instead of creating individual rules for every pod.
For example, the following policy contains two rules:

 port: 80
 - protocol: TCP
 port: 443

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-pod-and-namespace-both
spec:
 podSelector:
 matchLabels:
 name: test-pods
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: project_name
 podSelector:
 matchLabels:
 name: test-pods

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
spec:
 podSelector: {}
 ingress:

CHAPTER 4. NETWORK POLICIES

33

The following policy expresses those same two rules as one:

The same guideline applies to the spec.podSelector spec. If you have the same ingress or
egress rules for different network policies, it might be more efficient to create one network
policy with a common spec.podSelector spec. For example, the following two policies have
different rules:

 - from:
 - podSelector:
 matchLabels:
 role: frontend
 - from:
 - podSelector:
 matchLabels:
 role: backend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector:
 matchExpressions:
 - {key: role, operator: In, values: [frontend, backend]}

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy1
spec:
 podSelector:
 matchLabels:
 role: db
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy2
spec:
 podSelector:
 matchLabels:
 role: client
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

Red Hat build of MicroShift 4.16 Networking

34

1

2

3

4

The following network policy expresses those same two rules as one:

You can apply this optimization when only multiple selectors are expressed as one. In cases
where selectors are based on different labels, it may not be possible to apply this optimization. In
those cases, consider applying some new labels for network policy optimization specifically.

4.2. CREATING NETWORK POLICIES

You can create a network policy for a namespace.

4.2.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy3
spec:
 podSelector:
 matchExpressions:
 - {key: role, operator: In, values: [db, client]}
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

CHAPTER 4. NETWORK POLICIES

35

4.2.2. Creating a network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic
allowed by the configuration of other Network Policies.

Allow ingress from all pods in the same namespace

$ touch <policy_name>.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

Red Hat build of MicroShift 4.16 Networking

36

Allow ingress traffic to one pod from a particular namespace

This policy allows traffic to pods labelled pod-a from pods running in namespace-y.

2. To create the network policy object, enter the following command:

where:

<policy_name>

Specifies the network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

4.2.3. Creating a default deny all network policy

This is a fundamental policy, blocking all cross-pod networking other than network traffic allowed by the
configuration of other deployed network policies. This procedure enforces a default deny-by-default
policy.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods
in all namespaces. Save the YAML in the deny-by-default.yaml file:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-traffic-pod
spec:
 podSelector:
 matchLabels:
 pod: pod-a
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: namespace-y

$ oc apply -f <policy_name>.yaml -n <namespace>

networkpolicy.networking.k8s.io/deny-by-default created

CHAPTER 4. NETWORK POLICIES

37

1

2

3

namespace: default deploys this policy to the default namespace.

podSelector: is empty, this means it matches all the pods. Therefore, the policy applies to
all pods in the default namespace.

There are no ingress rules specified. This causes incoming traffic to be dropped to all
pods.

2. Apply the policy by entering the following command:

Example output

4.2.4. Creating a network policy to allow traffic from external clients

With the deny-by-default policy in place you can proceed to configure a policy that allows traffic from
external clients to a pod with the label app=web.

NOTE

Firewalld rules run before any NetworkPolicy is enforced.

Follow this procedure to configure a policy that allows external service from the public Internet directly
or by using a Load Balancer to access the pod. Traffic is only allowed to a pod with the label app=web.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from the public Internet directly or by using a load balancer to
access the pod. Save the YAML in the web-allow-external.yaml file:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
 namespace: default 1
spec:
 podSelector: {} 2
 ingress: [] 3

$ oc apply -f deny-by-default.yaml

networkpolicy.networking.k8s.io/deny-by-default created

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

Red Hat build of MicroShift 4.16 Networking

38

1

2. Apply the policy by entering the following command:

Example output

4.2.5. Creating a network policy allowing traffic to an application from all
namespaces

Follow this procedure to configure a policy that allows traffic from all pods in all namespaces to a
particular application.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in all namespaces to a particular application.
Save the YAML in the web-allow-all-namespaces.yaml file:

Applies the policy only to app:web pods in default namespace.

 name: web-allow-external
 namespace: default
spec:
 policyTypes:
 - Ingress
 podSelector:
 matchLabels:
 app: web
 ingress:
 - {}

$ oc apply -f web-allow-external.yaml

networkpolicy.networking.k8s.io/web-allow-external created

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-all-namespaces
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector: {} 2

CHAPTER 4. NETWORK POLICIES

39

2 Selects all pods in all namespaces.

NOTE

By default, if you omit specifying a namespaceSelector it does not select any
namespaces, which means the policy allows traffic only from the namespace the
network policy is deployed to.

2. Apply the policy by entering the following command:

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to deploy an alpine image in the secondary namespace and to
start a shell:

3. Run the following command in the shell and observe that the request is allowed:

Expected output

$ oc apply -f web-allow-all-namespaces.yaml

networkpolicy.networking.k8s.io/web-allow-all-namespaces created

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc run test-$RANDOM --namespace=secondary --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

Red Hat build of MicroShift 4.16 Networking

40

1

2

4.2.6. Creating a network policy allowing traffic to an application from a namespace

Follow this procedure to configure a policy that allows traffic to a pod with the label app=web from a
particular namespace. You might want to do this to:

Restrict traffic to a production database only to namespaces where production workloads are
deployed.

Enable monitoring tools deployed to a particular namespace to scrape metrics from the current
namespace.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in a particular namespaces with a label
purpose=production. Save the YAML in the web-allow-prod.yaml file:

Applies the policy only to app:web pods in the default namespace.

Restricts traffic to only pods in namespaces that have the label purpose=production.

2. Apply the policy by entering the following command:

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-prod
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 purpose: production 2

$ oc apply -f web-allow-prod.yaml

CHAPTER 4. NETWORK POLICIES

41

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to create the prod namespace:

3. Run the following command to label the prod namespace:

4. Run the following command to create the dev namespace:

5. Run the following command to label the dev namespace:

6. Run the following command to deploy an alpine image in the dev namespace and to start a
shell:

7. Run the following command in the shell and observe that the request is blocked:

Expected output

8. Run the following command to deploy an alpine image in the prod namespace and start a shell:

9. Run the following command in the shell and observe that the request is allowed:

Expected output

networkpolicy.networking.k8s.io/web-allow-prod created

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc create namespace prod

$ oc label namespace/prod purpose=production

$ oc create namespace dev

$ oc label namespace/dev purpose=testing

$ oc run test-$RANDOM --namespace=dev --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

wget: download timed out

$ oc run test-$RANDOM --namespace=prod --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>

Red Hat build of MicroShift 4.16 Networking

42

4.3. EDITING A NETWORK POLICY

You can edit an existing network policy for a namespace. Typical edits might include changes to the
pods to which the policy applies, allowed ingress traffic, and the destination ports on which to accept
traffic. The apiVersion, kind, and name fields must not be changed when editing NetworkPolicy
objects, as these define the resource itself.

4.3.1. Editing a network policy

You can edit a network policy in a namespace.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace where the network policy exists.

Procedure

1. Optional: To list the network policy objects in a namespace, enter the following command:

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the network policy object.

If you saved the network policy definition in a file, edit the file and make any necessary

<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

$ oc get networkpolicy

CHAPTER 4. NETWORK POLICIES

43

If you saved the network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the network policy object directly, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the network policy object is updated.

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

4.3.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy <policy_name> -n <namespace>

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3

Red Hat build of MicroShift 4.16 Networking

44

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

4.4. DELETING A NETWORK POLICY

You can delete a network policy from a namespace.

4.4.1. Deleting a network policy using the CLI

You can delete a network policy in a namespace.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace where the network policy exists.

Procedure

To delete a network policy object, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

4.5. VIEWING A NETWORK POLICY

Use the following procedure to view a network policy for a namespace.

 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

$ oc delete networkpolicy <policy_name> -n <namespace>

networkpolicy.networking.k8s.io/default-deny deleted

CHAPTER 4. NETWORK POLICIES

45

4.5.1. Viewing network policies using the CLI

You can examine the network policies in a namespace.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace where the network policy exists.

Procedure

List network policies in a namespace:

To view network policy objects defined in a namespace, enter the following command:

Optional: To examine a specific network policy, enter the following command:

where:

<policy_name>

Specifies the name of the network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

For example:

Output for oc describe command

$ oc get networkpolicy

$ oc describe networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy allow-same-namespace

Name: allow-same-namespace
Namespace: ns1
Created on: 2021-05-24 22:28:56 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 PodSelector: <none>
 Not affecting egress traffic
 Policy Types: Ingress

Red Hat build of MicroShift 4.16 Networking

46

CHAPTER 5. MULTIPLE NETWORKS

5.1. ABOUT USING MULTIPLE NETWORKS

In addition to the default OVN-Kubernetes Container Network Interface (CNI) plugin, the MicroShift
Multus CNI is available to chain other CNI plugins. Installing and using MicroShift Multus is optional.

5.1.1. Additional networks in MicroShift

During cluster installation, the default pod network is configured with default values unless you
customize the configuration. The default network handles all ordinary network traffic for the cluster.
Using the MicroShift Multus CNI plugin, you can add additional interfaces to pods from other networks.
This gives you flexibility when you configure pods that deliver network functionality, such as switching or
routing.

5.1.1.1. Supported additional networks for network isolation

The following additional networks are supported in MicroShift 4.16:

Bridge: Allows pods on the same host to communicate with each other and the host.

IPVLAN: Allows pods on a host to communicate with other hosts.

This is similar to a MACVLAN-based additional network.

Each pod shares the same MAC address as the parent physical network interface, unlike a
MACVLAN-based additional network.

MACVLAN: Allows pods on a host to communicate with other hosts and the pods on those other
hosts by using a physical network interface. Each pod that is attached to a MACVLAN-based
additional network is provided with a unique MAC address.

NOTE

Setting network policies for additional networks is not supported.

5.1.1.2. Use case: Additional networks for network isolation

You can use an additional network in situations where network isolation is needed, including control
plane and data plane separation. For example, you can configure an additional interface if you want pods
to access a network on the host and also communicate with devices deployed to the edge. These edge
devices might be on an isolated operator network or are periodically disconnected.

Isolating network traffic is useful for the following performance and security reasons:

Performance

You can send traffic on two different planes to manage the amount of traffic on each plane.

Security

You can send sensitive traffic onto a network plane that is managed specifically for security
considerations, and you can separate private data that must not be shared between tenants or
customers.

IMPORTANT

CHAPTER 5. MULTIPLE NETWORKS

47

IMPORTANT

The Multus CNI plugin is deployed when the MicroShift service starts up. Therefore, a host
restart is required if the microshift-multus RPM package is added after MicroShift has
started. Restarting ensures that all containers are re-created with Multus annotations.

5.1.1.3. How additional networks are implemented

All of the pods in the cluster still use the cluster-wide default network to maintain connectivity across
the cluster. Every pod has an eth0 interface that is attached to the cluster-wide pod network.

You can view the interfaces for a pod by using the oc get pod <pod_name> -o=jsonpath='{
.metadata.annotations.k8s\.v1\.cni\.cncf\.io/network-status }' command.

If you add additional network interfaces that use the MicroShift Multus CNI, they are named
net1, net2, …, netN.

The CNI configuration is created when the MicroShift Multus DaemonSet starts. This
configuration is autogenerated and includes the primary CNI that is the default delegate. For
MicroShift, the default CNI is OVN-Kubernetes.

5.1.1.4. How to attached additional networks to pods

To attach additional network interfaces to a pod, you must create and apply configurations that define
how the interfaces are attached.

You must configure any additional networks you want to use. Because of individual differences
in networks, no default configuration is provided.

You must apply YAML manifest to specify each interface by using a
NetworkAttachmentDefinition custom resource (CR). A configuration inside each of these CRs
defines how that interface is created.

CRI-O must be configured to use Multus. A default configuration is included in the microshift-
multus RPM.

If the Multus CNI is installed on an existing MicroShift instance, the host must be restarted.

If the Multus CNI is installed alongside MicroShift, you can add CRs and pods and then start
the MicroShift service. Restarting the host in this scenario is not needed.

5.1.1.5. Configurations for additional network types

The specific configuration fields for additional networks is described in the following sections.

5.1.2. Installing the Multus CNI plugin on a running cluster

If you want to attach additional networks to a pod for high-performance network configurations, you can
install the MicroShift Multus RPM package. After installation, a host restart is required to recreate all the
pods with the Multus annotation.

IMPORTANT

Uninstalling the Multus CNI plugin is not supported.

Red Hat build of MicroShift 4.16 Networking

48

Prerequisites

1. You have root access to the host.

Procedure

1. Install the Multus RPM package by running the following command:

TIP

If you create your custom resources (CRs) for additional networks now, you can complete your
installation and apply configurations with one restart.

2. To apply the package manifest to an active cluster, restart the host by running the following
command:

Verification

1. After restarting, ensure that the Multus CNI plugin components are created by running the
following command:

Example output

Next steps

1. If you have not done so, configure and apply the additional networks you want to use.

2. Deploy your applications that use the created CRs.

5.1.3. Configuration for a bridge additional network

The following object describes the configuration parameters for the Bridge CNI plugin:

Table 5.1. Bridge CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.4.0 value is required.

type string The name of the CNI plugin to configure: bridge.

$ sudo dnf install microshift-multus

$ sudo systemctl restart

$ oc get pod -A | grep multus

openshift-multus dhcp-daemon-ktzqf 1/1 Running 0 45h
openshift-multus multus-4frf4 1/1 Running 0 45h

CHAPTER 5. MULTIPLE NETWORKS

49

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.

bridge string Optional: Specify the name of the virtual bridge to use. If the
bridge interface does not exist on the host, it is created. The
default value is cni0.

ipMasq boolean Optional: Set to true to enable IP masquerading for traffic that
leaves the virtual network. The source IP address for all traffic is
rewritten to the bridge’s IP address. If the bridge does not have
an IP address, this setting has no effect. The default value is
false.

isGateway boolean Optional: Set to true to assign an IP address to the bridge. The
default value is false.

isDefaultGatewa
y

boolean Optional: Set to true to configure the bridge as the default
gateway for the virtual network. The default value is false. If
isDefaultGateway is set to true, then isGateway is also set
to true automatically.

forceAddress boolean Optional: Set to true to allow assignment of a previously
assigned IP address to the virtual bridge. When set to false, if an
IPv4 address or an IPv6 address from overlapping subsets is
assigned to the virtual bridge, an error occurs. The default value
is false.

hairpinMode boolean Optional: Set to true to allow the virtual bridge to send an
Ethernet frame back through the virtual port it was received on.
This mode is also known as reflective relay. The default value is
false.

promiscMode boolean Optional: Set to true to enable promiscuous mode on the
bridge. The default value is false.

mtu string Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

enabledad boolean Optional: Enables duplicate address detection for the container
side veth. The default value is false.

macspoofchk boolean Optional: Enables mac spoof check, limiting the traffic
originating from the container to the mac address of the
interface. The default value is false.

Field Type Description

5.1.3.1. Bridge CNI plugin configuration example

The following example configures an additional network named bridge-conf for use with the MicroShift

Red Hat build of MicroShift 4.16 Networking

50

The following example configures an additional network named bridge-conf for use with the MicroShift
Multus CNI:

5.1.4. Configuration for an ipvlan additional network

The following object describes the configuration parameters for the IPVLAN CNI plugin:

Table 5.2. IPVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: ipvlan.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.
This is required unless the plugin is chained.

mode string Optional: The operating mode for the virtual network. The value
must be l2, l3, or l3s. The default value is l2.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: bridge-conf
spec:
 config: '{
 "cniVersion": "0.4.0",
 "type": "bridge",
 "bridge": "test-bridge",
 "mode": "bridge",
 "ipam": {
 "type": "host-local",
 "ranges": [
 [
 {
 "subnet": "10.10.0.0/16",
 "rangeStart": "10.10.1.20",
 "rangeEnd": "10.10.3.50",
 "gateway": "10.10.0.254"
 }
]
],
 "dataDir": "/var/lib/cni/test-bridge"
 }
 }'

CHAPTER 5. MULTIPLE NETWORKS

51

master string Optional: The Ethernet interface to associate with the network
attachment. If a master is not specified, the interface for the
default network route is used.

mtu integer Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

linkInContainer boolean Optional: Specifies whether the master interface is in the
container network namespace or the main network namespace.
Set the value to true to request the use of a container
namespace master interface.

Field Type Description

IMPORTANT

The ipvlan object does not allow virtual interfaces to communicate with the
master interface. Therefore the container is not able to reach the host by using
the ipvlan interface. Be sure that the container joins a network that provides
connectivity to the host, such as a network supporting the Precision Time
Protocol (PTP).

A single master interface cannot simultaneously be configured to use both
macvlan and ipvlan.

For IP allocation schemes that cannot be interface agnostic, the ipvlan plugin
can be chained with an earlier plugin that handles this logic. If the master is
omitted, then the previous result must contain a single interface name for the
ipvlan plugin to enslave. If ipam is omitted, then the previous result is used to
configure the ipvlan interface.

5.1.4.1. IPVLAN CNI plugin configuration example

The following example configures an additional network named ipvlan-net:

{
 "cniVersion": "0.3.1",
 "name": "ipvlan-net",
 "type": "ipvlan",
 "master": "eth1",
 "linkInContainer": false,
 "mode": "l3",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "192.168.10.10/24"
 }
]
 }
}

Red Hat build of MicroShift 4.16 Networking

52

5.1.5. Configuration for a macvlan additional network

The following object describes the configuration parameters for the MACVLAN CNI plugin:

Table 5.3. MACVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: macvlan.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.

mode string Optional: Configures traffic visibility on the virtual network.
Must be either bridge, passthru, private, or vepa. If a value is
not provided, the default value is bridge.

master string Optional: The host network interface to associate with the newly
created macvlan interface. If a value is not specified, then the
default route interface is used.

mtu string Optional: The maximum transmission unit (MTU) to the specified
value. The default value is automatically set by the kernel.

linkInContainer boolean Optional: Specifies whether the master interface is in the
container network namespace or the main network namespace.
Set the value to true to request the use of a container
namespace master interface.

NOTE

If you specify the master key for the plugin configuration, use a different physical
network interface than the one that is associated with your primary network plugin to
avoid possible conflicts.

5.1.5.1. MACVLAN CNI plugin configuration example

The following example configures an additional network named macvlan-net:

{
 "cniVersion": "0.3.1",
 "name": "macvlan-net",
 "type": "macvlan",
 "master": "eth1",
 "linkInContainer": false,
 "mode": "bridge",
 "ipam": {

CHAPTER 5. MULTIPLE NETWORKS

53

5.1.6. Additional resources

Configuring and using multiple networks

5.2. CONFIGURING AND USING MULTIPLE NETWORKS

After you have installed the MicroShift Multus Container Network Interface (CNI), you can use other
networking plugins by using configurations.

5.2.1. IP address management types and additional networks

IP addresses are provisioned for an additional network through an IP Address Management (IPAM) CNI
plugin that you configure. Supported IP address provisioning types in MicroShift are host-local, static,
and dhcp.

5.2.1.1. bridge interface specifics

When using the bridge type interface and the dhcp IPAM, a DHCP server listening on the bridged
network is required. If you are using a firewall, configuring the firewalld service by running the firewall-
cmd --remove-service=dhcp command to allow DHCP traffic on the network zone is also required.

5.2.1.2. macvlan interface specifics

The macvlan type interface accesses the network that the host is connected to. This means that the
interface can receive an IP address from the DHCP server on the host network if the dhcp IPAM plugin
is used.

5.2.1.3. ipvlan interface specifics

The ipvlan interface also has direct access to the host network, but shares a MAC address with the host
interface. The ipvlan type interface cannot be used with the dhcp plugin because of the shared MAC
address. The IPAM plugin does not support the DHCP protocol with ClientID.

5.2.2. Creating a NetworkAttachmentDefinition for an additional network

Use the following procedure to create a NetworkAttachmentDefinition configuration file for an
additional network. In this example, a bridge-type interface is used. You can also use the example
workflow here that uses host-local IP address management (IPAM) to configure other supported
additional network types.

IMPORTANT

If you use bridge and the dhcp IPAM, a DHCP server listening on the bridged network is
required. If you are also using a firewall, configuring the firewalld service to allow DHCP
traffic on the network zone is also required. You can run the firewall-cmd --remove-
service=dhcp command in this case.

Prerequisites

 "type": "dhcp"
 }
}

Red Hat build of MicroShift 4.16 Networking

54

The MicroShift Multus CNI is installed.

The OpenShift CLI (oc) is installed.

The cluster is running.

Procedure

1. Optional: Verify that the MicroShift cluster is running with the Multus CNI by running the
following command:

Example output

2. Create a NetworkAttachmentDefinition configuration file by running the following command
and using the following example file for reference:

Example NetworkAttachmentDefinition file

$ oc get pods -n openshift-multus

NAME READY STATUS RESTARTS AGE
dhcp-daemon-dfbzw 1/1 Running 0 5h
multus-rz8xc 1/1 Running 0 5h

$ oc apply -f network-attachment-definition.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: bridge-conf
spec:
 config: '{
 "cniVersion": "0.4.0",
 "type": "bridge", 1
 "bridge": "br-test", 2
 "mode": "bridge",
 "ipam": {
 "type": "host-local", 3
 "ranges": [
 [
 {
 "subnet": "10.10.0.0/24",
 "rangeStart": "10.10.0.20",
 "rangeEnd": "10.10.0.50",
 "gateway": "10.10.0.254"
 }
],
 [
 {
 "subnet": "fd00:IJKL:MNOP:10::0/64", 4
 "rangeStart": "fd00:IJKL:MNOP:10::1",
 "rangeEnd": "fd00:IJKL:MNOP:10::9"

CHAPTER 5. MULTIPLE NETWORKS

55

1

2

3

4

The type value specifies a name of the CNI plugin. This example uses the bridge type.

The bridge value is name of the bridge on the MicroShift host that is used. The additional
interface of the pod is connected to that bridge. If the interface does not exist on the host,
the Bridge CNI creates it. If the interface already exists, it is reused. In this example, the
name of the interface is br-test.

The IPAM type.

IPv6 addresses can be added to the secondary interface.

NOTE

Using the name of the bridge is specific to the bridge type of plugin. Other
plugins use different fields in their NetworkAttachmentDefinitions. For
example, the macvlan and ipvlan configurations use master to specify the host
interface to attach.

5.2.3. Adding a pod to an additional network

You can add a pod to an additional network. At the time a pod is created, additional networks are
attached to it. The pod continues to send normal cluster-related network traffic over the default
network.

If you want to attach additional networks to a pod that is already running, you must restart the pod.

Prerequisites

The OpenShift CLI (oc) is installed.

The cluster is running.

A network defined by a NetworkAttachmentDefinition object that you want to attach the pod
to exists.

Procedure

1. Add an annotation to a Pod YAML file. Only one of the following annotation formats can be
used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

 "dataDir": "/var/lib/cni/br-test"
 }
 }'

apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1
...

Red Hat build of MicroShift 4.16 Networking

56

1

1

2

3

1

Replace <network> with the name of the additional network to associate with the pod.
To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

Example annotation for a bridge-type additional network

b. To attach an additional network with customizations, add an annotation with the following
format:

Specify the name of the additional network defined by a
NetworkAttachmentDefinition object.

Specify the namespace where the NetworkAttachmentDefinition object is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create a Pod YAML file and add the NetworkAttachmentDefinition annotation for an
additional network, run the following command and use the example YAML:

Replace <test-bridge> with the pod name that you want to use.

Example output

Example test-bridge pod YAML

apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: bridge-conf
...

apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]
...

$ oc apply -f ./<test-bridge>.yaml 1

pod/test-bridge created

CHAPTER 5. MULTIPLE NETWORKS

57

1

3. Make sure that the NetworkAttachmentDefinition annotation is correct:

Example NetworkAttachmentDefinition annotation

4. Optional: To confirm that the NetworkAttachmentDefinition annotation exists in a Pod YAML,
run the following command, replacing <name> with the name of the pod.

Replace <name> with the pod name you want to use. In the following example, test-bridge
is used.

In the following example, the test-bridge is attached to the net1 additional network:

apiVersion: v1
kind: Pod
metadata:
 name: test-bridge
 annotations:
 k8s.v1.cni.cncf.io/networks: bridge-conf
 labels:
 app: test-bridge
spec:
 terminationGracePeriodSeconds: 0
 containers:
 - name: hello-microshift
 image: quay.io/microshift/busybox:1.36
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo -ne \"HTTP/1.0 200 OK\r\nContent-Length: 16\r\n\r\nHello
MicroShift\" | nc -l -p 8080 ; done"]
 ports:
 - containerPort: 8080
 protocol: TCP
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
 runAsNonRoot: true
 runAsUser: 1001
 runAsGroup: 1001
 seccompProfile:
 type: RuntimeDefault

apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: bridge-conf
...

$ oc get pod <name> -o yaml 1

$ oc get pod test-bridge -o yaml

Red Hat build of MicroShift 4.16 Networking

58

1

Example output

The k8s.v1.cni.cncf.io/network-status parameter is a JSON array of objects. Each object
describes the status of an additional network attached to the pod. The annotation value is
stored as a plain text value.

5. Verify that the pod is running by running the following command:

Example output

5.2.4. Configuring an additional network

After you have created the NetworkAttachmentDefinition object and applied it, use the following
example procedure to configure an additional network. In this example, the bridge type additional
network is used. You can also use this workflow for other additional network types.

Prerequisite

apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: bridge-conf
 k8s.v1.cni.cncf.io/network-status: |- 1
 [{
 "name": "ovn-kubernetes",
 "interface": "eth0",
 "ips": [
 "10.42.0.18"
],
 "default": true,
 "dns": {}
 },{
 "name": "bridge-conf",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",
 "dns": {}
 }]
 name: pod
 namespace: default
spec:
...
status:
...

$ oc get pod

NAME READY STATUS RESTARTS AGE
test-bridge 1/1 Running 0 81s

CHAPTER 5. MULTIPLE NETWORKS

59

1

1. You created and applied the NetworkAttachmentDefinition object configuration.

Procedure

1. Verify that the bridge was created on the host by running the following command:

Example output

2. Configure an IP address for the bridge by running the following command:

3. Verify that the IP address configuration is added to the bridge by running the following
command:

Example output

The IP address is configured as expected.

4. Verify the IP address of the pod by running the following command:

Example output

$ ip a show br-test

22: br-test: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
group default qlen 1000
 link/ether 96:bf:ca:be:1d:15 brd ff:ff:ff:ff:ff:ff
 inet6 fe80::34e2:bbff:fed2:31f2/64 scope link
 valid_lft forever preferred_lft forever

$ sudo ip addr add 10.10.0.10/24 dev br-test

$ ip a show br-test

22: br-test: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
group default qlen 1000
 link/ether 96:bf:ca:be:1d:15 brd ff:ff:ff:ff:ff:ff
 inet 10.10.0.10/24 scope global br-test 1
 valid_lft forever preferred_lft forever
 inet6 fe80::34e2:bbff:fed2:31f2/64 scope link
 valid_lft forever preferred_lft forever

$ oc get pod test-bridge --
output=jsonpath='{.metadata.annotations.k8s\.v1\.cni\.cncf\.io/network-status}'

[{
 "name": "ovn-kubernetes",
 "interface": "eth0",
 "ips": [
 "10.42.0.17"
],
 "mac": "0a:58:0a:2a:00:11",
 "default": true,

Red Hat build of MicroShift 4.16 Networking

60

1

1

The bridge additional network is attached as expected.

5. Optional: You can use oc exec to access the pod and confirm its interfaces by using the ip
command:

Example output

Pod is attached to the 10.10.0.20 IP address on the net1 interface as expected.

6. Confirm that the connection is working as expected by accessing the HTTP server in the pod
from the MicroShift host. Use the following command:

Example output

 "dns": {}
},{
 "name": "default/bridge-conf", 1
 "interface": "net1",
 "ips": [
 "10.10.0.20"
],
 "mac": "82:01:98:e5:0c:b7",
 "dns": {}

$ oc exec -ti test-bridge -- ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0@if21: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc
noqueue
 link/ether 0a:58:0a:2a:00:11 brd ff:ff:ff:ff:ff:ff
 inet 10.42.0.17/24 brd 10.42.0.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::858:aff:fe2a:11/64 scope link
 valid_lft forever preferred_lft forever
3: net1@if23: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc
noqueue
 link/ether 82:01:98:e5:0c:b7 brd ff:ff:ff:ff:ff:ff
 inet 10.10.0.20/24 brd 10.10.0.255 scope global net1 1
 valid_lft forever preferred_lft forever
 inet6 fe80::8001:98ff:fee5:cb7/64 scope link
 valid_lft forever preferred_lft forever

$ curl 10.10.0.20:8080

Hello MicroShift

CHAPTER 5. MULTIPLE NETWORKS

61

5.2.5. Removing a pod from an additional network

You can remove a pod from an additional network only by deleting the pod.

Prerequisites

An additional network is attached to the pod.

Install the OpenShift CLI (oc).

Log in to the cluster.

Procedure

To delete the pod, enter the following command:

<name> is the name of the pod.

<namespace> is the namespace that contains the pod.

5.2.6. Troubleshooting Multus networking

If the settings for multiple networks are not configured properly, pods can fail to start. The following
steps can help you solve for a couple common scenarios.

5.2.6.1. Pod networking cannot be configured

If the Multus CNI plugin cannot apply networking annotations to a pod, the pod does not start. Pods can
also fail to start if any of the additional network CNIs fail.

Example error

In this case, you can take the following steps to trouble CNI failures:

Verify the values in both the NetworkAttachmentDefinitions and the annotations.

Remove the annotation to verify whether the pod is created successfully with just the default
network. If not, this might indicate a networking problem other than the Multus configuration.

If you are a device administrator, you can inspect the crio.service or microshift.service logs,
paying special attention to those that are generated by the kubelet.
For example, the following error from the kubelet shows that the primary CNI is not running.
This situation can be caused by pods not starting or because of a CRI-O misconfiguration such
as an incorrect cni_default_network setting.

Example kubelet-generated error

$ oc delete pod <name> -n <namespace>

Warning NoNetworkFound 0s multus cannot find a network-attachment-definitio (asdasd) in
namespace (default): network-attachment-definitions.k8s.cni.cncf.io "bad-ref-doesnt-exist" not found

Feb 06 13:47:31 dev microshift[1494]: kubelet E0206 13:47:31.163290 1494
pod_workers.go:1298] "Error syncing pod, skipping" err="network is not ready: container

Red Hat build of MicroShift 4.16 Networking

62

5.2.6.2. Missing configuration file

Sometimes a pod cannot be created because the annotations reference a
NetworkAttachmentDefinition configuration YAML that does not exist. In this case an error such as the
following is usually produced:

Example log

Example error output

To fix this error, create and apply the NetworkAttachmentDefinitions YAML.

5.2.7. Additional resources

About using multiple networks

Configuration of IP address assignment for an additional network

runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady
message:Network plugin returns error: No CNI configuration file in /etc/cni/net.d/. Has your
network provider started?" pod="default/samplepod" podUID="fe0f7f7a-8c47-4488-952b-
8abc0d8e2602"

cannot find a network-attachment-definition (bad-conf) in namespace (default): network-attachment-
definitions.k8s.cni.cncf.io "bad-conf" not found" pod="default/samplepod"`

"CreatePodSandbox for pod failed" err="rpc error: code = Unknown desc = failed to create pod
network sandbox k8s_samplepod_default_5fa13105-1bfb-4c6b-aee7-
3437cfb50e25_0(7517818bd8e85f07b551f749c7529be88b4e7daef0dd572d049aa636950c76c6):
error adding pod default_samplepod to CNI network \"multus-cni-network\": plugin type=\"multus\"
name=\"multus-cni-network\" failed (add): Multus: [default/samplepod/5fa13105-1bfb-4c6b-aee7-
3437cfb50e25]: error loading k8s delegates k8s args: TryLoadPodDelegates: error in getting k8s
network for pod: GetNetworkDelegates: failed getting the delegate: getKubernetesDelegate: cannot
find a network-attachment-definition (bad-conf) in namespace (default): network-attachment-
definitions.k8s.cni.cncf.io \"bad-conf\" not found" pod="default/samplepod"

CHAPTER 5. MULTIPLE NETWORKS

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/multiple-networks#nw-multus-ipam-object_configuring-additional-network

1

CHAPTER 6. CONFIGURING ROUTES
You can configure routes for MicroShift for clusters.

6.1. CREATING AN HTTP-BASED ROUTE

A route allows you to host your application at a public URL. It can either be secure or unsecured,
depending on the network security configuration of your application. An HTTP-based route is an
unsecured route that uses the basic HTTP routing protocol and exposes a service on an unsecured
application port.

The following procedure describes how to create a simple HTTP-based route to a web application, using
the hello-openshift application as an example.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as an administrator.

You have a web application that exposes a port and a TCP endpoint listening for traffic on the
port.

Procedure

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create an unsecured route to the hello-openshift application by running the following
command:

Verification

To verify that the route resource that you created, run the following command:

In this example, the route is named hello-openshift.

Sample YAML definition of the created unsecured route:

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

$ oc expose svc hello-openshift

$ oc get routes -o yaml <name of resource> 1

Red Hat build of MicroShift 4.16 Networking

64

1

2

<Ingress_Domain> is the default ingress domain name. The ingresses.config/cluster object is
created during the installation and cannot be changed. If you want to specify a different domain,
you can specify an alternative cluster domain using the appsDomain option.

targetPort is the target port on pods that is selected by the service that this route points to.

NOTE

To display your default ingress domain, run the following command:

6.1.1. HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which signals to the browser
client that only HTTPS traffic is allowed on the route host. HSTS also optimizes web traffic by signaling
HTTPS transport is required, without using HTTP redirects. HSTS is useful for speeding up interactions
with websites.

When HSTS policy is enforced, HSTS adds a Strict Transport Security header to HTTP and HTTPS
responses from the site. You can use the insecureEdgeTerminationPolicy value in a route to redirect
HTTP to HTTPS. When HSTS is enforced, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect.

Cluster administrators can configure HSTS to do the following:

Enable HSTS per-route

Disable HSTS per-route

Enforce HSTS per-domain, for a set of domains, or use namespace labels in combination with
domains

IMPORTANT

HSTS works only with secure routes, either edge-terminated or re-encrypt. The
configuration is ineffective on HTTP or passthrough routes.

6.1.2. Enabling HTTP Strict Transport Security per-route

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: hello-openshift
spec:
 host: hello-openshift-hello-openshift.<Ingress_Domain> 1
 port:
 targetPort: 8080 2
 to:
 kind: Service
 name: hello-openshift

$ oc get ingresses.config/cluster -o jsonpath={.spec.domain}

CHAPTER 6. CONFIGURING ROUTES

65

1

1

2

3

HTTP strict transport security (HSTS) is implemented in the HAProxy template and applied to edge and
re-encrypt routes that have the haproxy.router.openshift.io/hsts_header annotation.

Prerequisites

You have root access to the cluster.

You installed the OpenShift CLI (oc).

Procedure

To enable HSTS on a route, add the haproxy.router.openshift.io/hsts_header value to the
edge-terminated or re-encrypt route. You can use the oc annotate tool to do this by running
the following command:

In this example, the maximum age is set to 31536000 ms, which is approximately 8.5 hours.

NOTE

In this example, the equal sign (=) is in quotes. This is required to properly
execute the annotate command.

Example route configured with an annotation

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. If set to 0, it negates the policy.

Optional. When included, includeSubDomains tells the client that all subdomains of the
host must have the same HSTS policy as the host.

Optional. When max-age is greater than 0, you can add preload in
haproxy.router.openshift.io/hsts_header to allow external services to include this site in
their HSTS preload lists. For example, sites such as Google can construct a list of sites that
have preload set. Browsers can then use these lists to determine which sites they can
communicate with over HTTPS, even before they have interacted with the site. Without

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000;\ 1
includeSubDomains;preload"

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload
1 2 3

...
spec:
 host: def.abc.com
 tls:
 termination: "reencrypt"
 ...
 wildcardPolicy: "Subdomain"

Red Hat build of MicroShift 4.16 Networking

66

preload set, browsers must have interacted with the site over HTTPS, at least once, to get
the header.

6.1.3. Disabling HTTP Strict Transport Security per-route

To disable HTTP strict transport security (HSTS) per-route, you can set the max-age value in the route
annotation to 0.

Prerequisites

You have root access to the cluster.

You installed the OpenShift CLI (oc).

Procedure

To disable HSTS, set the max-age value in the route annotation to 0, by entering the following
command:

TIP

You can alternatively apply the following YAML to create the config map:

Example of disabling HSTS per-route

To disable HSTS for every route in a namespace, enter the following command:

Verification

1. To query the annotation for all routes, enter the following command:

Example output

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=0

$ oc annotate route --all -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

$ oc get route --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n :=
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: routename HSTS: max-age=0

CHAPTER 6. CONFIGURING ROUTES

67

1

6.1.4. Enforcing HTTP Strict Transport Security per-domain

You can configure a route with a compliant HSTS policy annotation. To handle upgraded clusters with
non-compliant HSTS routes, you can update the manifests at the source and apply the updates.

You cannot use oc expose route or oc create route commands to add a route in a domain that
enforces HSTS because the API for these commands does not accept annotations.

IMPORTANT

HSTS cannot be applied to insecure, or non-TLS, routes.

Prerequisites

You have root access to the cluster.

You installed the OpenShift CLI (oc).

Procedure

Apply HSTS to all routes in the cluster by running the following oc annotate command:

Apply HSTS to all routes in a particular namespace by running the following oc annotate
command:

Replace _<my_namespace> with the namespace you want to use.

Verification

Review the HSTS annotations on all routes by running the following command:

Example output

6.2. THROUGHPUT ISSUE TROUBLESHOOTING METHODS

Sometimes applications deployed by using Red Hat build of MicroShift can cause network throughput
issues, such as unusually high latency between specific services.

$ oc annotate route --all --all-namespaces --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-
age=31536000;preload;includeSubDomains"

$ oc annotate route --all -n <my_namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-
age=31536000;preload;includeSubDomains" 1

$ oc get route --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n :=
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: <_routename_> HSTS: max-age=31536000;preload;includeSubDomains

Red Hat build of MicroShift 4.16 Networking

68

1

If pod logs do not reveal any cause of the problem, use the following methods to analyze performance
issues:

Use a packet analyzer, such as ping or tcpdump to analyze traffic between a pod and its node.
For example, run the tcpdump tool on each pod while reproducing the behavior that led to the
issue. Review the captures on both sides to compare send and receive timestamps to analyze
the latency of traffic to and from a pod. Latency can occur in Red Hat build of MicroShift if a
node interface is overloaded with traffic from other pods, storage devices, or the data plane.

podip is the IP address for the pod. Run the oc get pod <pod_name> -o wide command
to get the IP address of a pod.

The tcpdump command generates a file at /tmp/dump.pcap containing all traffic between
these two pods. You can run the analyzer shortly before the issue is reproduced and stop the
analyzer shortly after the issue is finished reproducing to minimize the size of the file. You can
also run a packet analyzer between the nodes (eliminating the SDN from the equation) with:

Use a bandwidth measuring tool, such as iperf, to measure streaming throughput and UDP
throughput. Locate any bottlenecks by running the tool from the pods first, and then running it
from the nodes.

6.3. USING COOKIES TO KEEP ROUTE STATEFULNESS

Red Hat build of MicroShift provides sticky sessions, which enables stateful application traffic by
ensuring all traffic hits the same endpoint. However, if the endpoint pod terminates, whether through
restart, scaling, or a change in configuration, this statefulness can disappear.

Red Hat build of MicroShift can use cookies to configure session persistence. The ingress controller
selects an endpoint to handle any user requests, and creates a cookie for the session. The cookie is
passed back in the response to the request and the user sends the cookie back with the next request in
the session. The cookie tells the ingress controller which endpoint is handling the session, ensuring that
client requests use the cookie so that they are routed to the same pod.

NOTE

Cookies cannot be set on passthrough routes, because the HTTP traffic cannot be seen.
Instead, a number is calculated based on the source IP address, which determines the
backend.

If backends change, the traffic can be directed to the wrong server, making it less sticky.
If you are using a load balancer, which hides source IP, the same number is set for all
connections and traffic is sent to the same pod.

6.3.1. Annotating a route with a cookie

You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the
application receiving route traffic to know the cookie name. Deleting the cookie can force the next
request to re-choose an endpoint. The result is that if a server is overloaded, that server tries to remove
the requests from the client and redistribute them.

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

$ tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

CHAPTER 6. CONFIGURING ROUTES

69

https://access.redhat.com/solutions/4569211
https://access.redhat.com/solutions/5074041
https://access.redhat.com/solutions/6129701

Procedure

1. Annotate the route with the specified cookie name:

where:

<route_name>

Specifies the name of the route.

<cookie_name>

Specifies the name for the cookie.

For example, to annotate the route my_route with the cookie name my_cookie:

2. Capture the route hostname in a variable:

where:

<route_name>

Specifies the name of the route.

3. Save the cookie, and then access the route:

Use the cookie saved by the previous command when connecting to the route:

6.4. PATH-BASED ROUTES

Path-based routes specify a path component that can be compared against a URL, which requires that
the traffic for the route be HTTP based. Thus, multiple routes can be served using the same hostname,
each with a different path. Routers should match routes based on the most specific path to the least.

The following table shows example routes and their accessibility:

Table 6.1. Route availability

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

www.example.com No

$ oc annotate route <route_name> router.openshift.io/cookie_name="<cookie_name>"

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

$ ROUTE_NAME=$(oc get route <route_name> -o jsonpath='{.spec.host}')

$ curl $ROUTE_NAME -k -c /tmp/cookie_jar

$ curl $ROUTE_NAME -k -b /tmp/cookie_jar

Red Hat build of MicroShift 4.16 Networking

70

1

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/text Yes (Matched by the host, not the
route)

www.example.com Yes

Route When Compared to Accessible

An unsecured route with a path

The path is the only added attribute for a path-based route.

NOTE

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

6.5. HTTP HEADER CONFIGURATION

When setting or deleting headers, you can use an individual route to modify request and response
headers. You can also set certain headers by using route annotations. The various ways of configuring
headers can present challenges when working together.

NOTE

You can only set or delete headers within a Route CR. You cannot append headers. If an
HTTP header is set with a value, that value must be complete and not require appending
in the future. In situations where it makes sense to append a header, such as the X-
Forwarded-For header, use the spec.httpHeaders.forwardedHeaderPolicy field,
instead of spec.httpHeaders.actions.

Example Route spec

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com
 path: "/test" 1
 to:
 kind: Service
 name: service-name

apiVersion: route.openshift.io/v1
kind: Route

CHAPTER 6. CONFIGURING ROUTES

71

Any actions defined in a route override values set using route annotations.

6.5.1. Special case headers

The following headers are either prevented entirely from being set or deleted, or allowed under specific
circumstances:

Header name Configurable using
Route spec

Reason for
disallowment

Configurable using
another method

proxy No The proxy HTTP
request header can be
used to exploit
vulnerable CGI
applications by injecting
the header value into
the HTTP_PROXY
environment variable.
The proxy HTTP
request header is also
non-standard and prone
to error during
configuration.

No

host Yes When the host HTTP
request header is set
using the
IngressController CR,
HAProxy can fail when
looking up the correct
route.

No

strict-transport-
security

No The strict-transport-
security HTTP
response header is
already handled using
route annotations and
does not need a
separate
implementation.

Yes: the
haproxy.router.open
shift.io/hsts_header
route annotation

...
spec:
 httpHeaders:
 actions:
 response:
 - name: X-Frame-Options
 action:
 type: Set
 set:
 value: SAMEORIGIN

Red Hat build of MicroShift 4.16 Networking

72

cookie and set-
cookie

No The cookies that
HAProxy sets are used
for session tracking to
map client connections
to particular back-end
servers. Allowing these
headers to be set could
interfere with HAProxy’s
session affinity and
restrict HAProxy’s
ownership of a cookie.

Yes:

* the
haproxy.router.open
shift.io/disable_cook
ie route annotation * the
haproxy.router.open
shift.io/cookie_name
route annotation

Header name Configurable using
Route spec

Reason for
disallowment

Configurable using
another method

6.6. SETTING OR DELETING HTTP REQUEST AND RESPONSE
HEADERS IN A ROUTE

You can set or delete certain HTTP request and response headers for compliance purposes or other
reasons. You can set or delete these headers either for all routes served by an Ingress Controller or for
specific routes.

For example, you might want to enable a web application to serve content in alternate locations for
specific routes if that content is written in multiple languages, even if there is a default global location
specified by the Ingress Controller serving the routes.

The following procedure creates a route that sets the Content-Location HTTP request header so that
the URL associated with the application, https://app.example.com, directs to the location
https://app.example.com/lang/en-us. Directing application traffic to this location means that anyone
using that specific route is accessing web content written in American English.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged into an Red Hat build of MicroShift cluster as a project administrator.

You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

Procedure

1. Create a route definition and save it in a file called app-example-route.yaml:

YAML definition of the created route with HTTP header directives

apiVersion: route.openshift.io/v1
kind: Route
...
spec:
 host: app.example.com
 tls:
 termination: edge

CHAPTER 6. CONFIGURING ROUTES

73

1

2

3

4

5

The list of actions you want to perform on the HTTP headers.

The type of header you want to change. In this case, a response header.

The name of the header you want to change. For a list of available headers you can set or
delete, see HTTP header configuration .

The type of action being taken on the header. This field can have the value Set or Delete.

When setting HTTP headers, you must provide a value. The value can be a string from a list
of available directives for that header, for example DENY, or it can be a dynamic value that
will be interpreted using HAProxy’s dynamic value syntax. In this case, the value is set to the
relative location of the content.

2. Create a route to your existing web application using the newly created route definition:

For HTTP request headers, the actions specified in the route definitions are executed after any actions
performed on HTTP request headers in the Ingress Controller. This means that any values set for those
request headers in a route will take precedence over the ones set in the Ingress Controller. For more
information on the processing order of HTTP headers, see HTTP header configuration .

6.7. CREATING A ROUTE THROUGH AN INGRESS OBJECT

Some ecosystem components have an integration with Ingress resources but not with route resources.
To cover this case, Red Hat build of MicroShift automatically creates managed route objects when an
Ingress object is created. These route objects are deleted when the corresponding Ingress objects are
deleted.

Procedure

1. Define an Ingress object in the Red Hat build of MicroShift console or by entering the oc create
command:

YAML Definition of an Ingress

 to:
 kind: Service
 name: app-example
 httpHeaders:
 actions: 1
 response: 2
 - name: Content-Location 3
 action:
 type: Set 4
 set:
 value: /lang/en-us 5

$ oc -n app-example create -f app-example-route.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend

Red Hat build of MicroShift 4.16 Networking

74

1

3

2

The route.openshift.io/termination annotation can be used to configure the
spec.tls.termination field of the Route as Ingress has no field for this. The accepted
values are edge, passthrough and reencrypt. All other values are silently ignored. When
the annotation value is unset, edge is the default route. The TLS certificate details must
be defined in the template file to implement the default edge route.

When working with an Ingress object, you must specify an explicit hostname, unlike when
working with routes. You can use the <host_name>.<cluster_ingress_domain> syntax,
for example apps.openshiftdemos.com, to take advantage of the *.
<cluster_ingress_domain> wildcard DNS record and serving certificate for the cluster.
Otherwise, you must ensure that there is a DNS record for the chosen hostname.

a. If you specify the passthrough value in the route.openshift.io/termination
annotation, set path to '' and pathType to ImplementationSpecific in the spec:

The route.openshift.io/destination-ca-certificate-secret can be used on an Ingress
object to define a route with a custom destination certificate (CA). The annotation
references a kubernetes secret, secret-ca-cert that will be inserted into the generated
route.

a. To specify a route object with a destination CA from an ingress object, you must create

 annotations:
 route.openshift.io/termination: "reencrypt" 1
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert 2
spec:
 rules:
 - host: www.example.com 3
 http:
 paths:
 - backend:
 service:
 name: frontend
 port:
 number: 443
 path: /
 pathType: Prefix
 tls:
 - hosts:
 - www.example.com
 secretName: example-com-tls-certificate

 spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: ''
 pathType: ImplementationSpecific
 backend:
 service:
 name: frontend
 port:
 number: 443

$ oc apply -f ingress.yaml

CHAPTER 6. CONFIGURING ROUTES

75

a. To specify a route object with a destination CA from an ingress object, you must create
a kubernetes.io/tls or Opaque type secret with a certificate in PEM-encoded format
in the data.tls.crt specifier of the secret.

2. List your routes:

The result includes an autogenerated route whose name starts with frontend-:

If you inspect this route, it looks this:

YAML Definition of an autogenerated route

6.8. CREATING A ROUTE USING THE DEFAULT CERTIFICATE

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
frontend-gnztq www.example.com frontend 443 reencrypt/Redirect None

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend-gnztq
 ownerReferences:
 - apiVersion: networking.k8s.io/v1
 controller: true
 kind: Ingress
 name: frontend
 uid: 4e6c59cc-704d-4f44-b390-617d879033b6
spec:
 host: www.example.com
 path: /
 port:
 targetPort: https
 tls:
 certificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 insecureEdgeTerminationPolicy: Redirect
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 [...]
 -----END RSA PRIVATE KEY-----
 termination: reencrypt
 destinationCACertificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 to:
 kind: Service
 name: frontend

Red Hat build of MicroShift 4.16 Networking

76

1

6.8. CREATING A ROUTE USING THE DEFAULT CERTIFICATE
THROUGH AN INGRESS OBJECT

If you create an Ingress object without specifying any TLS configuration, Red Hat build of MicroShift
generates an insecure route. To create an Ingress object that generates a secure, edge-terminated
route using the default ingress certificate, you can specify an empty TLS configuration as follows.

Prerequisites

You have a service that you want to expose.

You have access to the OpenShift CLI (oc).

Procedure

1. Create a YAML file for the Ingress object. In this example, the file is called example-
ingress.yaml:

YAML definition of an Ingress object

Use this exact syntax to specify TLS without specifying a custom certificate.

2. Create the Ingress object by running the following command:

Verification

Verify that Red Hat build of MicroShift has created the expected route for the Ingress object by
running the following command:

Example output

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 ...
spec:
 rules:
 ...
 tls:
 - {} 1

$ oc create -f example-ingress.yaml

$ oc get routes -o yaml

apiVersion: v1
items:
- apiVersion: route.openshift.io/v1
 kind: Route
 metadata:
 name: frontend-j9sdd 1

CHAPTER 6. CONFIGURING ROUTES

77

1

2

3

1

The name of the route includes the name of the Ingress object followed by a random suffix.

In order to use the default certificate, the route should not specify spec.certificate.

The route should specify the edge termination policy.

6.9. CREATING A ROUTE USING THE DESTINATION CA CERTIFICATE
IN THE INGRESS ANNOTATION

The route.openshift.io/destination-ca-certificate-secret annotation can be used on an Ingress object
to define a route with a custom destination CA certificate.

Prerequisites

You may have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

Procedure

1. Add the route.openshift.io/destination-ca-certificate-secret to the Ingress annotations:

The annotation references a kubernetes secret.

2. The secret referenced in this annotation will be inserted into the generated route.

Example output

 ...
 spec:
 ...
 tls: 2
 insecureEdgeTerminationPolicy: Redirect
 termination: edge 3
 ...

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: "reencrypt"
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert 1
...

apiVersion: route.openshift.io/v1

Red Hat build of MicroShift 4.16 Networking

78

6.10. SECURED ROUTES

Secure routes provide the ability to use several types of TLS termination to serve certificates to the
client. The following links to the OpenShift Container Platform documentation describe how to create
re-encrypt, edge, and passthrough routes with custom certificates.

Creating a re-encrypt route with a custom certificate

Creating an edge route with a custom certificate

Creating a passthrough route

kind: Route
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: reencrypt
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert
spec:
...
 tls:
 insecureEdgeTerminationPolicy: Redirect
 termination: reencrypt
 destinationCACertificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
...

CHAPTER 6. CONFIGURING ROUTES

79

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/networking/configuring-routes#nw-ingress-creating-a-reencrypt-route-with-a-custom-certificate_secured-routes
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html/networking/configuring-routes#nw-ingress-creating-an-edge-route-with-a-custom-certificate_secured-routes
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html/networking/configuring-routes#nw-ingress-creating-a-passthrough-route_secured-routes

CHAPTER 7. USING A FIREWALL
Firewalls are not required in MicroShift, but using a firewall can prevent undesired access to the
MicroShift API.

7.1. ABOUT NETWORK TRAFFIC THROUGH THE FIREWALL

Firewalld is a networking service that runs in the background and responds to connection requests,
creating a dynamic customizable host-based firewall. If you are using Red Hat Enterprise Linux for Edge
(RHEL for Edge) with MicroShift, firewalld should already be installed and you just need to configure it.
Details are provided in procedures that follow. Overall, you must explicitly allow the following OVN-
Kubernetes traffic when the firewalld service is running:

CNI pod to CNI pod

CNI pod to Host-Network pod Host-Network pod to Host-Network pod

CNI pod

The Kubernetes pod that uses the CNI network

Host-Network pod

The Kubernetes pod that uses host network You can configure the firewalld service by using the
following procedures. In most cases, firewalld is part of RHEL for Edge installations. If you do not have
firewalld, you can install it with the simple procedure in this section.

IMPORTANT

MicroShift pods must have access to the internal CoreDNS component and API servers.

Additional resources

Required firewall settings

Allowing network traffic through the firewall

7.2. INSTALLING THE FIREWALLD SERVICE

If you are using RHEL for Edge, firewalld should be installed. To use the service, you can simply
configure it. The following procedure can be used if you do not have firewalld, but want to use it.

Install and run the firewalld service for MicroShift by using the following steps.

Procedure

1. Optional: Check for firewalld on your system by running the following command:

2. If the firewalld service is not installed, run the following command:

3. To start the firewall, run the following command:

$ rpm -q firewalld

$ sudo dnf install -y firewalld

Red Hat build of MicroShift 4.16 Networking

80

7.3. REQUIRED FIREWALL SETTINGS

An IP address range for the cluster network must be enabled during firewall configuration. You can use
the default values or customize the IP address range. If you choose to customize the cluster network IP
address range from the default 10.42.0.0/16 setting, you must also use the same custom range in the
firewall configuration.

Table 7.1. Firewall IP address settings

IP Range Firewall rule required Description

10.42.0.0/16 No Host network pod access to other
pods

169.254.169.1 Yes Host network pod access to Red
Hat build of MicroShift API server

The following are examples of commands for settings that are mandatory for firewall configuration:

Example commands

Configure host network pod access to other pods:

Configure host network pod access to services backed by Host endpoints, such as the Red Hat
build of MicroShift API:

7.4. USING OPTIONAL PORT SETTINGS

The MicroShift firewall service allows optional port settings.

Procedure

To add customized ports to your firewall configuration, use the following command syntax:

Table 7.2. Optional ports

Port(s) Protocol(s) Description

80 TCP HTTP port used to serve
applications through the
OpenShift Container Platform
router.

$ sudo systemctl enable firewalld --now

$ sudo firewall-cmd --permanent --zone=trusted --add-source=10.42.0.0/16

$ sudo firewall-cmd --permanent --zone=trusted --add-source=169.254.169.1

$ sudo firewall-cmd --permanent --zone=public --add-port=<port number>/<port protocol>

CHAPTER 7. USING A FIREWALL

81

443 TCP HTTPS port used to serve
applications through the
OpenShift Container Platform
router.

5353 UDP mDNS service to respond for
OpenShift Container Platform
route mDNS hosts.

30000-32767 TCP Port range reserved for
NodePort services; can be
used to expose applications on
the LAN.

30000-32767 UDP Port range reserved for
NodePort services; can be
used to expose applications on
the LAN.

6443 TCP HTTPS API port for the Red
Hat build of MicroShift API.

Port(s) Protocol(s) Description

The following are examples of commands used when requiring external access through the firewall to
services running on MicroShift, such as port 6443 for the API server, for example, ports 80 and 443 for
applications exposed through the router.

Example command

Configuring a port for the MicroShift API server:

To close unnecessary ports in your MicroShift instance, follow the procedure in "Closing unused or
unnecessary ports to enhance network security".

Additional resources

Closing unused or unnecessary ports to enhance network security

7.5. ADDING SERVICES TO OPEN PORTS

On a MicroShift instance, you can open services on ports by using the firewall-cmd command.

Procedure

1. Optional: You can view all predefined services in firewalld by running the following command

$ sudo firewall-cmd --permanent --zone=public --add-port=6443/tcp

$ sudo firewall-cmd --get-services

Red Hat build of MicroShift 4.16 Networking

82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_networking/using-and-configuring-firewalld_configuring-and-managing-networking#closing-unused-or-unnecessary-ports-to-enhance-network-security_controlling-network-traffic-using-firewalld

2. To open a service that you want on a default port, run the following example command:

7.6. ALLOWING NETWORK TRAFFIC THROUGH THE FIREWALL

You can allow network traffic through the firewall by configuring the IP address range and inserting the
DNS server to allow internal traffic from pods through the network gateway.

Procedure

1. Use one of the following commands to set the IP address range:

a. Configure the IP address range with default values by running the following command:

b. Configure the IP address range with custom values by running the following command:

2. To allow internal traffic from pods through the network gateway, run the following command:

7.6.1. Applying firewall settings

To apply firewall settings, use the following one-step procedure:

Procedure

After you have finished configuring network access through the firewall, run the following
command to restart the firewall and apply the settings:

7.7. VERIFYING FIREWALL SETTINGS

After you have restarted the firewall, you can verify your settings by listing them.

Procedure

To verify rules added in the default public zone, such as ports-related rules, run the following
command:

To verify rules added in the trusted zone, such as IP-range related rules, run the following
command:

$ sudo firewall-cmd --add-service=mdns

$ sudo firewall-offline-cmd --permanent --zone=trusted --add-source=10.42.0.0/16

$ sudo firewall-offline-cmd --permanent --zone=trusted --add-source=<custom IP range>

$ sudo firewall-offline-cmd --permanent --zone=trusted --add-source=169.254.169.1

$ sudo firewall-cmd --reload

$ sudo firewall-cmd --list-all

$ sudo firewall-cmd --zone=trusted --list-all

CHAPTER 7. USING A FIREWALL

83

7.8. OVERVIEW OF FIREWALL PORTS WHEN A SERVICE IS EXPOSED

Firewalld is often active when you run services on MicroShift. This can disrupt certain services on
MicroShift because traffic to the ports might be blocked by the firewall. You must ensure that the
necessary firewall ports are open if you want certain services to be accessible from outside the host.
There are several options for opening your ports:

Services of the NodePort and LoadBalancer type are automatically available with OVN-
Kubernetes.
In these cases, OVN-Kubernetes adds iptables rules so the traffic to the node IP address is
delivered to the relevant ports. This is done using the PREROUTING rule chain and is then
forwarded to the OVN-K to bypass the firewalld rules for local host ports and services. Iptables
and firewalld are backed by nftables in RHEL 9. The nftables rules, which the iptables generates,
always have priority over the rules that the firewalld generates.

Pods with the HostPort parameter settings are automatically available. This also includes the
router-default pod, which uses ports 80 and 443.
For HostPort pods, the CRI-O config sets up iptables DNAT (Destination Network Address
Translation) to the pod’s IP address and port.

These methods function for clients whether they are on the same host or on a remote host. The iptables
rules, which are added by OVN-Kubernetes and CRI-O, attach to the PREROUTING and OUTPUT
chains. The local traffic goes through the OUTPUT chain with the interface set to the lo type. The
DNAT runs before it hits filler rules in the INPUT chain.

Because the MicroShift API server does not run in CRI-O, it is subject to the firewall configurations. You
can open port 6443 in the firewall to access the API server in your MicroShift cluster.

7.9. ADDITIONAL RESOURCES

RHEL: Using and configuring firewalld

RHEL: Viewing the current status of firewalld

7.10. KNOWN FIREWALL ISSUE

To avoid breaking traffic flows with a firewall reload or restart, execute firewall commands
before starting RHEL. The CNI driver in MicroShift makes use of iptable rules for some traffic
flows, such as those using the NodePort service. The iptable rules are generated and inserted by
the CNI driver, but are deleted when the firewall reloads or restarts. The absence of the iptable
rules breaks traffic flows. If firewall commands have to be executed after MicroShift is running,
manually restart ovnkube-master pod in the openshift-ovn-kubernetes namespace to reset
the rules controlled by the CNI driver.

Red Hat build of MicroShift 4.16 Networking

84

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_firewalls_and_packet_filters/using-and-configuring-firewalld_firewall-packet-filters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_firewalls_and_packet_filters/using-and-configuring-firewalld_firewall-packet-filters#viewing-the-current-status-and-settings-of-firewalld_using-and-configuring-firewalld

CHAPTER 8. CONFIGURING NETWORK SETTINGS FOR FULLY
DISCONNECTED HOSTS

Learn how to apply networking customization and settings to run MicroShift on fully disconnected
hosts. A disconnected host should be the Red Hat Enterprise Linux (RHEL) operating system, versions
9.0+, whether real or virtual, that runs without network connectivity.

8.1. PREPARING NETWORKING FOR FULLY DISCONNECTED HOSTS

Use the procedure that follows to start and run MicroShift clusters on devices running fully
disconnected operating systems. A MicroShift host is considered fully disconnected if it has no external
network connectivity.

Typically this means that the device does not have an attached network interface controller (NIC) to
provide a subnet. These steps can also be completed on a host with a NIC that is removed after setup.
You can also automate these steps on a host that does not have a NIC by using the %post phase of a
Kickstart file.

IMPORTANT

Configuring networking settings for disconnected environments is necessary because
MicroShift requires a network device to support cluster communication. To meet this
requirement, you must configure MicroShift networking settings to use the "fake" IP
address you assign to the system loopback device during setup.

8.1.1. Procedure summary

To run MicroShift on a disconnected host, the following steps are required:

Prepare the host

Stop MicroShift if it is currently running and clean up changes the service has made to the
network.

Set a persistent hostname.

Add a “fake” IP address on the loopback interface.

Configure DNS to use the fake IP as local name server.

Add an entry for the hostname to /etc/hosts.

Update the MicroShift configuration

Define the nodeIP parameter as the new loopback IP address.

Set the .node.hostnameOverride parameter to the persistent hostname.

For the changes to take effect

Disable the default NIC if attached.

Restart the host or device.

CHAPTER 8. CONFIGURING NETWORK SETTINGS FOR FULLY DISCONNECTED HOSTS

85

After starting, MicroShift runs using the loopback device for within-cluster communication.

8.2. RESTORING MICROSHIFT NETWORKING SETTINGS TO DEFAULT

You can remove networking customizations and return the network to default settings by stopping
MicroShift and running a clean-up script.

Prerequisites

RHEL 9 or newer.

MicroShift 4.14 or newer.

Access to the host CLI.

Procedure

1. Stop the MicroShift service by running the following command:

2. Stop the kubepods.slice systemd unit by running the following command:

3. MicroShift installs a helper script to undo network changes made by OVN-K. Run the cleanup
script by entering the following command:

8.3. CONFIGURING THE NETWORKING SETTINGS FOR FULLY
DISCONNECTED HOSTS

To configure the networking settings for running MicroShift on a fully disconnected host, you must
prepare the host, update the networking configuration, then restart to apply the new settings. All
commands are executed from the host CLI.

Prerequisites

RHEL 9 or newer.

MicroShift 4.14 or newer.

Access to the host CLI.

A valid IP address chosen to avoid both internal and potential future external IP conflicts when
running MicroShift.

MicroShift networking settings are set to defaults.

IMPORTANT

$ sudo systemctl stop microshift

$ sudo systemctl stop kubepods.slice

$ sudo /usr/bin/microshift-cleanup-data --ovn

Red Hat build of MicroShift 4.16 Networking

86

1

IMPORTANT

The following procedure is for use cases in which access to the MicroShift cluster is not
required after devices are deployed in the field. There is no remote cluster access after
the network connection is removed.

Procedure

1. Add a fake IP address to the loopback interface by running the following command:

The fake IP address used in this example is “10.44.0.1”.

NOTE

Any valid IP works if it avoids both internal MicroShift and potential future
external IP conflicts. This can be any subnet that does not collide with the
MicroShift node subnet or is be accessed by other services on the device.

2. Configure the DNS interface to use the local name server by setting modifying the settings to
ignore automatic DNS and reset it to the local name server:

a. Bypass the automatic DNS by running the following command:

b. Point the DNS interface to use the local name server:

3. Get the hostname of the device by running the following command:

4. Add an entry for the hostname of the node in the /etc/hosts file by running the following
command:

5. Update the MicroShift configuration file by adding the following YAML snippet to
/etc/microshift/config.yaml:

6. MicroShift is now ready to use the loopback device for cluster communications. Finish preparing
the device for offline use.

$ IP="10.44.0.1" 1
$ sudo nmcli con add type loopback con-name stable-microshift ifname lo ip4 ${IP}/32

$ sudo nmcli conn modify stable-microshift ipv4.ignore-auto-dns yes

$ sudo nmcli conn modify stable-microshift ipv4.dns "10.44.1.1"

$ NAME="$(hostnamectl hostname)"

$ echo "$IP $NAME" | sudo tee -a /etc/hosts >/dev/null

sudo tee /etc/microshift/config.yaml > /dev/null <<EOF
node:
 hostnameOverride: hostnameOverride: $(echo $NAME)
 nodeIP: $(echo $IP)
EOF

CHAPTER 8. CONFIGURING NETWORK SETTINGS FOR FULLY DISCONNECTED HOSTS

87

1

a. If the device currently has a NIC attached, disconnect the device from the network.

b. Shut down the device and disconnect the NIC.

c. Restart the device for the offline configuration to take effect.

7. Restart the MicroShift host to apply the configuration changes by running the following
command:

This step restarts the cluster. Wait for the greenboot health check to report the system
healthy before implementing verification.

Verification

At this point, network access to the MicroShift host has been severed. If you have access to the host
terminal, you can use the host CLI to verify that the cluster has started in a stable state.

1. Verify that the MicroShift cluster is running by entering the following command:

Example output

$ sudo systemctl reboot 1

$ export KUBECONFIG=/var/lib/microshift/resources/kubeadmin/kubeconfig
$ sudo -E oc get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE
kube-system csi-snapshot-controller-74d566564f-66n2f 1/1 Running 0
1m
kube-system csi-snapshot-webhook-69bdff8879-xs6mb 1/1 Running 0
1m
openshift-dns dns-default-dxglm 2/2 Running 0 1m
openshift-dns node-resolver-dbf5v 1/1 Running 0 1m
openshift-ingress router-default-8575d888d8-xmq9p 1/1 Running 0
1m
openshift-ovn-kubernetes ovnkube-master-gcsx8 4/4 Running 1 1m
openshift-ovn-kubernetes ovnkube-node-757mf 1/1 Running 1 1m
openshift-service-ca service-ca-7d7c579f54-68jt4 1/1 Running 0 1m
openshift-storage topolvm-controller-6d777f795b-bx22r 5/5 Running 0
1m
openshift-storage topolvm-node-fcf8l 4/4 Running 0 1m

Red Hat build of MicroShift 4.16 Networking

88

	Table of Contents
	CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN
	1.1. MICROSHIFT NETWORKING CONFIGURATION MATRIX
	1.1.1. Default settings

	1.2. NETWORK FEATURES
	1.3. IP FORWARD
	1.4. NETWORK PERFORMANCE OPTIMIZATIONS
	1.5. MICROSHIFT NETWORKING COMPONENTS AND SERVICES
	1.6. BRIDGE MAPPINGS
	1.7. NETWORK TOPOLOGY
	1.7.1. Description of the OVN logical components of the virtualized network
	1.7.2. Description of the connections in the network topology figure

	1.8. ADDITIONAL RESOURCES

	CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS
	2.1. CREATING AN OVN-KUBERNETES CONFIGURATION FILE
	2.2. RESTARTING THE OVNKUBE-MASTER POD
	2.3. DEPLOYING MICROSHIFT BEHIND AN HTTP OR HTTPS PROXY
	2.4. USING THE RPM-OSTREE HTTP OR HTTPS PROXY
	2.5. USING A PROXY IN THE CRI-O CONTAINER RUNTIME
	2.6. GETTING A SNAPSHOT OF OVS INTERFACES FROM A RUNNING CLUSTER
	2.7. THE MICROSHIFT LOADBALANCER SERVICE FOR WORKLOADS
	2.8. DEPLOYING A LOAD BALANCER FOR AN APPLICATION
	2.9. BLOCKING EXTERNAL ACCESS TO THE NODEPORT SERVICE ON A SPECIFIC HOST INTERFACE
	2.10. THE MULTICAST DNS PROTOCOL
	2.11. AUDITING EXPOSED NETWORK PORTS
	2.11.1. hostNetwork
	2.11.2. hostPort
	2.11.3. NodePort and LoadBalancer services

	CHAPTER 3. UNDERSTANDING AND CONFIGURING THE ROUTER
	3.1. ABOUT CONFIGURING THE ROUTER
	3.1.1. Router settings and valid values

	3.2. DISABLING THE ROUTER
	3.3. CONFIGURING ROUTER INGRESS
	3.3.1. Configuring router ports
	3.3.2. Configuring router IP addresses

	3.4. ADDITIONAL RESOURCES
	3.5. CONFIGURING THE ROUTE ADMISSION POLICY

	CHAPTER 4. NETWORK POLICIES
	4.1. ABOUT NETWORK POLICIES
	4.1.1. How network policy works in MicroShift
	4.1.2. Optimizations for network policy with OVN-Kubernetes network plugin

	4.2. CREATING NETWORK POLICIES
	4.2.1. Example NetworkPolicy object
	4.2.2. Creating a network policy using the CLI
	4.2.3. Creating a default deny all network policy
	4.2.4. Creating a network policy to allow traffic from external clients
	4.2.5. Creating a network policy allowing traffic to an application from all namespaces
	4.2.6. Creating a network policy allowing traffic to an application from a namespace

	4.3. EDITING A NETWORK POLICY
	4.3.1. Editing a network policy
	4.3.2. Example NetworkPolicy object

	4.4. DELETING A NETWORK POLICY
	4.4.1. Deleting a network policy using the CLI

	4.5. VIEWING A NETWORK POLICY
	4.5.1. Viewing network policies using the CLI

	CHAPTER 5. MULTIPLE NETWORKS
	5.1. ABOUT USING MULTIPLE NETWORKS
	5.1.1. Additional networks in MicroShift
	5.1.1.1. Supported additional networks for network isolation
	5.1.1.2. Use case: Additional networks for network isolation
	5.1.1.3. How additional networks are implemented
	5.1.1.4. How to attached additional networks to pods
	5.1.1.5. Configurations for additional network types

	5.1.2. Installing the Multus CNI plugin on a running cluster
	5.1.3. Configuration for a bridge additional network
	5.1.3.1. Bridge CNI plugin configuration example

	5.1.4. Configuration for an ipvlan additional network
	5.1.4.1. IPVLAN CNI plugin configuration example

	5.1.5. Configuration for a macvlan additional network
	5.1.5.1. MACVLAN CNI plugin configuration example

	5.1.6. Additional resources

	5.2. CONFIGURING AND USING MULTIPLE NETWORKS
	5.2.1. IP address management types and additional networks
	5.2.1.1. bridge interface specifics
	5.2.1.2. macvlan interface specifics
	5.2.1.3. ipvlan interface specifics

	5.2.2. Creating a NetworkAttachmentDefinition for an additional network
	5.2.3. Adding a pod to an additional network
	5.2.4. Configuring an additional network
	5.2.5. Removing a pod from an additional network
	5.2.6. Troubleshooting Multus networking
	5.2.6.1. Pod networking cannot be configured
	5.2.6.2. Missing configuration file

	5.2.7. Additional resources

	CHAPTER 6. CONFIGURING ROUTES
	6.1. CREATING AN HTTP-BASED ROUTE
	6.1.1. HTTP Strict Transport Security
	6.1.2. Enabling HTTP Strict Transport Security per-route
	6.1.3. Disabling HTTP Strict Transport Security per-route
	6.1.4. Enforcing HTTP Strict Transport Security per-domain

	6.2. THROUGHPUT ISSUE TROUBLESHOOTING METHODS
	6.3. USING COOKIES TO KEEP ROUTE STATEFULNESS
	6.3.1. Annotating a route with a cookie

	6.4. PATH-BASED ROUTES
	6.5. HTTP HEADER CONFIGURATION
	6.5.1. Special case headers

	6.6. SETTING OR DELETING HTTP REQUEST AND RESPONSE HEADERS IN A ROUTE
	6.7. CREATING A ROUTE THROUGH AN INGRESS OBJECT
	6.8. CREATING A ROUTE USING THE DEFAULT CERTIFICATE THROUGH AN INGRESS OBJECT
	6.9. CREATING A ROUTE USING THE DESTINATION CA CERTIFICATE IN THE INGRESS ANNOTATION
	6.10. SECURED ROUTES

	CHAPTER 7. USING A FIREWALL
	7.1. ABOUT NETWORK TRAFFIC THROUGH THE FIREWALL
	7.2. INSTALLING THE FIREWALLD SERVICE
	7.3. REQUIRED FIREWALL SETTINGS
	7.4. USING OPTIONAL PORT SETTINGS
	7.5. ADDING SERVICES TO OPEN PORTS
	7.6. ALLOWING NETWORK TRAFFIC THROUGH THE FIREWALL
	7.6.1. Applying firewall settings

	7.7. VERIFYING FIREWALL SETTINGS
	7.8. OVERVIEW OF FIREWALL PORTS WHEN A SERVICE IS EXPOSED
	7.9. ADDITIONAL RESOURCES
	7.10. KNOWN FIREWALL ISSUE

	CHAPTER 8. CONFIGURING NETWORK SETTINGS FOR FULLY DISCONNECTED HOSTS
	8.1. PREPARING NETWORKING FOR FULLY DISCONNECTED HOSTS
	8.1.1. Procedure summary

	8.2. RESTORING MICROSHIFT NETWORKING SETTINGS TO DEFAULT
	8.3. CONFIGURING THE NETWORKING SETTINGS FOR FULLY DISCONNECTED HOSTS

