& RedHat

Red Hat build of OpenJDK 11

Using source-to-image for OpenShift with Red
Hat build of OpenJDK 11

Last Updated: 2024-05-09

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with
Red Hat build of OpenJDK 11

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat build of OpenJDK 11is a Red Hat offering on the Red Hat Enterprise Linux platform. The
Using source-to-image for OpenShift with Red Hat build of OpenJDK 11 guide provides an overview
of S2I for OpenShift and explains how to use S2I for OpenShift in Red Hat build of OpenJDK11.

Table of Contents

Table of Contents

PROVIDING FEEDBACK ON RED HAT BUILD OF OPENJDK DOCUMENTATIONcvviiiinnnnnn.. 3
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it e ettt et eaeeeneeeaneenaneennnes, 4
CHAPTER 1. INTRODUCTION TO SOURCE-TO-IMAGE FOROPENSHIFTiiiiiiiiiiiiiiiennnnnnn 5
1.1. IMAGE STREAM DEFINITIONS 5
CHAPTER 2. BEFORE YOU BEGIN ...t ittiittiitteitteteie et eaeeeaneennneeaneenannennneenns 7
Initial setup 7
Version compatibility and support 7
CHAPTER 3. USING SOURCE-TO-IMAGE FOR OPENSHIFT ...ttt it inieeneeenneennneanns 8
3.1. BUILDING AND DEPLOYING JAVA APPLICATIONS WITH SOURCE-TO-IMAGE FOR OPENSHIFT 8
3.2. BUILDING AND DEPLOYING JAVA APPLICATIONS FROM BINARY ARTIFACTS 9
CHAPTER 4. EXAMPLE WORKFLOWS FORS2ION OPENSHIFT ..ottt iiinieennnenns 12
4.1. REMOTE DEBUGGING JAVA APPLICATION FOR OPENSHIFT IMAGE 12
Prepare for deployment 12
Deployment 12
Enabling remote debugging for a new application 12
Enabling remote debugging for an existing application 12
Post-deployment 13
Connect local debugging port to a port on the pod 13
Attach debugger to an application 14

4.2. RUNNING FLAT CLASSPATH JAR ON SOURCE-TO-IMAGE FOR OPENSHIFT 15
Prepare for Deployment 15
Deployment 15
Post-deployment 15
CHAPTER 5. REFERENCE ...ttt ittt ettt et e et e et e et eeaneeaneeeanaenaneeennesnneenns 16
5.1. VERSION DETAILS 16
5.2. INFORMATION ENVIRONMENT VARIABLES 16
5.3. CONFIGURATION ENVIRONMENT VARIABLES 16
5.3.1. Configuration environment variables with default values 28

5.4. EXPOSED PORTS 29
5.5. MAVEN SETTINGS 29
Default Maven settings with Maven arguments 29
Provide custom Maven settings 30

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

PROVIDING FEEDBACK ON RED HAT BUILD OF OPENJDK DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT BUILD OF OPENJDK
DOCUMENTATION

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket
2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12322020&summary=(issue+created via+link)&issuetype=1&priority=3&labels=customer-feedback&components=12332873

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO SOURCE-TO-IMAGE FOR OPENSHIFT

CHAPTER 1. INTRODUCTION TO SOURCE-TO-IMAGE FOR
OPENSHIFT

OpenShift Container Platform provides an source-to-image (S2I) process to build and run applications.
You can attach the application’s source code on top of a builder image (a technology image such as
JBoss EAP). S2I process builds your application and layers it on top of the builder image to create an
application image. After your application image is built, you can push it to an integrated registry inside
OpenShift or to a standalone registry.

With S2I for OpenShift you can build and run basic Java applications, for example, fat-jar or flat
classpath within a containerized image on OpenShift.

1.1. IMAGE STREAM DEFINITIONS

By default, the Red Hat OpenShift Container Platform includes image streams that contain the Red Hat
build of OpenJDK container images.

You can import image stream definitions into a new namespace or recreate them. You can access these
image stream templates on the openjdk GitHub page.

Red Hat OpenShift Container Platform includes java as an image stream, which follows the latest
version of the container image. This image stream contains the following tags:

e :latest, which provides the latest supported Red Hat build of OpenJDK version. A tag tracks any
updates for this image stream.

® :11, which provides latest JDK 11images.
® :8, which provides the latest JDK 8 images.

The previous image stream and its tags are based on the latest version of the RHEL Universal Base
Image (UBI).

NOTE

If you want to select a specific RHEL or Red Hat build of OpenJDK version, select a tag
with the openjdk-X-ubiY format, where X refers to the Red Hat build of OpendDK
version and Y refers to the RHEL version.

The following examples demonstrate tags that follow this format:

® openjdk-8-ubi8

o openjdk-11-ubi8

e openjdk-17-ubi8

Specific image streams exist to accurately track the latest container image versions. These image
streams follow the ubiX-openjdk-Y format, where X specifies the RHEL UBI version and Y specifies the
Red Hat build of OpenJDK version. The following examples demonstrate image streams that follow this
format:

® ubi8-openjdk-8

e ubi8-openjdk-11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.4/html/architecture/infrastructure-components#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.4/html/installation_and_configuration/installing-a-cluster#install-config-installing-stand-alone-registry

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

e ubi8-openjdk-17

The tags for these image streams map directly to the image versions, such as 1.11, 1.12, and so on.

Additional resources

® Managing image streams (OpenShift Container Platform)

® templates (GitHub)

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html/images/managing-image-streams
https://github.com/jboss-container-images/openjdk/tree/release/templates

CHAPTER 2. BEFORE YOU BEGIN

CHAPTER 2. BEFORE YOU BEGIN

Initial setup
Create an OpenShift instance. For more details on how to create an OpenShift instance, see OpenShift
container platform installation overview.

Version compatibility and support
OpenShift Container Platform versions 3.11, 4.7, and above 4.7 support the S2I for OpenShift image.

For details about the current support levels for OpenShift Container Platform, see Red Hat OpenShift
Container Platform Life Cycle Policy and Red Hat OpenShift Container Platform Life Cycle Policy (non-
current versions).

https://docs.openshift.com/container-platform/4.8/installing/index.html
https://access.redhat.com/support/policy/updates/openshift/
https://access.redhat.com/support/policy/updates/openshift_noncurrent

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

CHAPTER 3. USING SOURCE-TO-IMAGE FOR OPENSHIFT

You can use the source-to-image (S2I) for OpenShift image to run your custom Java applications on
OpenShift.

3.1. BUILDING AND DEPLOYING JAVA APPLICATIONS WITH SOURCE-
TO-IMAGE FOR OPENSHIFT

To build and deploy a Java application from source on OpenShift by using the source-to-image (S2I) for
OpenShift image, use the OpenShift S2I process.

Procedure

1. Login to the OpenShift instance by running the following command and by providing your
credentials:

I $ oc login
2. Create a new project:
I $ oc new-project <project-name>

3. Create a new application using the S2I for OpenShift image:
The <source-location> is the URL of GitHub repository or path to a local folder.

I $ oc new-app <source-location>
For example:

$ oc new-app --context-dir=getting-started --name=quarkus-quickstart \
'registry.access.redhat.com/ubi8/openjdk-11~https://github.com/quarkusio/quarkus-
quickstarts.git#2.12.1.Final’

4. Get the service name:
I $ oc get svc

5. Expose the service as a route, so that you can use the server from your browser:
I $ oc expose svc/ --port=8080

6. Get the route:
I $ oc get route

7. Access the application in your browser by using the URL. Use the value of HOST/PORT field
from the previous command'’s output.

Additional resources

CHAPTER 3. USING SOURCE-TO-IMAGE FOR OPENSHIFT

® For more detailed example, see the Running flat classpath JAR on source-to-image for
OpenShift.

3.2. BUILDING AND DEPLOYING JAVA APPLICATIONS FROM BINARY
ARTIFACTS

You can deploy your existing Java applications on OpenShift by using the binary source capability.

The procedure uses undertow-servlet quickstart to build a Java application on your local machine. The
quickstart copies the resulting binary Artifacts into OpenShift by using the S2I binary source capability.

Prerequisites
® [Enable Red Hat JBoss Enterprise Maven Repository on your local machine.
® Get the JAR application archive and build the application locally.

o Clone the undertow-servlet source code:

I $ git clone https:/github.com/jboss-openshift/openshift-quickstarts.git

o Build the application:

I $ cd openshift-quickstarts/undertow-servlet/

$ mvn clean package
[INFO] Scanning for projects...

[INFQO]
[INFQO]
[INFO] Building Undertow Servlet Example 1.0.0.Final
[INFQO]

[INFO]
[INFO] BUILD SUCCESS
[INFO]
[INFO] Total time: 1.986 s

[INFO] Finished at: 2017-06-27T16:43:07+02:00
[INFO] Final Memory: 19M/281M

[INFO]

® Prepare the directory structure on the local file system.
Copy the application archives in the deployments/ sub-directory (where the main binary build
directory) to the standard deployments folder (where the image is build on OpenShift).
Structure the directory hierarchy containing the web application data for the application to
deploy.

Create a main directory for the binary build on the local file system and deployments/
subdirectory within it. Copy the built JAR archive to the deployments/ subdirectory:

undertow-servlet]$ Is
dependency-reduced-pom.xml pom.xml README src target

https://github.com/jboss-openshift/openshift-quickstarts/tree/master/undertow-servlet
https://access.redhat.com/maven-repository

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

I $ mkdir -p ocp/deployments

I $ cp target/undertow-servlet.jar ocp/deployments/

Procedure

10

1. Login to the OpenShift instance by running the following command and by providing your
credentials:

I $ oc login
2. Create a new project:
I $ oc new-project jdk-bin-demo
3. Create a new binary build, and specify the image stream and the application’s name:

$ oc new-build --binary=true \

--name=jdk-us-app \

--image-stream=java:11

--> Found image ¢1f5b31 (2 months old) in image stream "openshift/java:11" under tag
"latest" for "java:11"

Java Applications

Platform for building and running plain Java applications (fat-jar and flat classpath)

--> Creating resources with label build=jdk-us-app ...
imagestream "jdk-us-app" created
buildconfig "jdk-us-app" created
--> Success
Application is not exposed. You can expose services to the outside world by executing one or
more of the commands below:
'oc expose svc/jdk-us-app'

4. Start the binary build.
Instruct the oc executable to use main directory of the binary build you have created in previous
step as the directory containing binary input for the OpenShift build:

$ oc start-build jdk-us-app --from-dir=./ocp --follow
Uploading directory "ocp" as binary input for the build ...
build "jdk-us-app-1" started

Receiving source from STDIN as archive ...

Starting S2I Java Build

S2| source build with plain binaries detected

Copying binaries from /tmp/src/deployments to /deployments ...

... done

Pushing image 172.30.197.203:5000/jdk-bin-demo/jdk-us-app:latest ...
Pushed 0/6 layers, 2% complete

Pushed 1/6 layers, 24% complete

Pushed 2/6 layers, 36% complete

Pushed 3/6 layers, 54% complete

CHAPTER 3. USING SOURCE-TO-IMAGE FOR OPENSHIFT

Pushed 4/6 layers, 71% complete
Pushed 5/6 layers, 95% complete
Pushed 6/6 layers, 100% complete
Push successful

5. Create a new OpenShift application based on the build:

$ oc new-app jdk-us-app
--> Found image 66f4e0b (About a minute old) in image stream "jdk-bin-demo/jdk-us-app"
under tag "latest" for "jdk-us-app"

jdk-bin-demo/jdk-us-app-1:c1dbfb7a

Platform for building and running plain Java applications (fat-jar and flat classpath)

Tags: builder, java

* This image will be deployed in deployment config "jdk-us-app"

* Ports 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by service "jdk-us-app"

* Other containers can access this service through the hostname "jdk-us-app"

--> Creating resources ...

deploymentconfig "jdk-us-app" created

service "jdk-us-app" created

--> Success
Run 'oc status' to view your app.

6. Expose the service as route.

$ oc expose svc/jdk-us-app
route "jdk-us-app" exposed

7. Get the route:

I $ oc get route

8. Access the application in your browser by using the URL (value of HOST/PORT field from the
previous command output).

Additional resources
® Use the binary source capability to deploy existing Java applications on OpenShift.

® For more information on how to configure maven repository, see Use the Maven Repository.

1

https://docs.openshift.com/container-platform/4.7/dev_guide/builds/build_inputs.html#binary-source
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/development_guide/index#use_the_maven_repository

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

CHAPTER 4. EXAMPLE WORKFLOWS FOR S2I ON OPENSHIFT

4.1. REMOTE DEBUGGING JAVA APPLICATION FOR OPENSHIFT
IMAGE
The example in the procedure shows the remote debugging of a Java application deployed on

OpenShift by using the S2I for OpenShift image. You can enable the capability by setting the value of
the environment variables JAVA_DEBUG to true and JAVA_DEBUG_PORT to 9009, respectively.

NOTE

If the JAVA_DEBUG variable is set to true and no value is provided for the
JAVA_DEBUG_PORT variable, JAVA_DEBUG_PORT is set to 5005 by default.

Prepare for deployment

Procedure

1. Login to the OpenShift instance by running following command and by providing your
credentials:

I $ oc login
2. Create a new project:

I $ oc new-project js2i-remote-debug-demo

Deployment
You can enable remote debugging for your new and existing applications.

Enabling remote debugging for a new application

Procedure

e Create a new application by using the S2I for OpenShift image and example Java source code.
Ensure that you set the JAVA_DEBUG and the JAVA_DEBUG_PORT environment variables
before creating your application:

$ oc new-app --context-dir=getting-started --name=quarkus-quickstart \
'registry.access.redhat.com/ubi8/openjdk-11~https://github.com/quarkusio/quarkus-
quickstarts.git#2.12.1.Final’

-e JAVA DEBUG=true \

-e JAVA_DEBUG_PORT=9009

Proceed to Connect local debugging port to a port on the pod .

Enabling remote debugging for an existing application

Procedure

1. Switch to the appropriate OpenShift project:

12

CHAPTER 4. EXAMPLE WORKFLOWS FOR S2I ON OPENSHIFT

I $ oc project js2i-remote-debug-demo

2. Retrieve the name of the deploymentconfig:

$ oc get dc -0 name
deploymentconfig/openshift-quickstarts

3. Edit the deploymentconfig and add the JAVA_DEBUG=true and JAVA_DEBUG_PORT=9009
environment variables.

4. Specify object to edit at the path .spec.template.spec.containers and type of Container:

I $ oc edit dc/openshift-quickstarts

NOTE

Launch an editor to run oc edit command in your terminal. You can change the
editor that is launched by defining your environment’'s EDITOR variable.

-

Proceed to Connect local debugging port to a port on the pod .

Post-deployment
Connect local debugging port to a port on the pod

Procedure

1. Get the name of the pod running the application (Status Running):
Example showing openshift-quickstarts-1-1uymm as the pod name.

$ oc get pods

NAME READY STATUS RESTARTS AGE
openshift-quickstarts-1-tuymm 1/1 Running 0 3m
openshift-quickstarts-1-build 0/1 Completed 0 6m

2. Use the OpenShift or Kubernetes port forwarding feature to listen on a local port and forward to
a port on the OpenShift pod. <running-pod> is the value of the NAME field for the pod with
Status "running" from the previous command output:

$ oc port-forward <running-pod> 5005:9009
Forwarding from 127.0.0.1:5005 -> 9009
Forwarding from [::1]:5005 -> 9009

NOTE

In the previous example, 5005 is the port number on the local system, while 9009
is the remote port number of the OpenShift pod running the S2I for OpenShift
image. Therefore, future debugging connections made to local port 5005 are
forwarded to port 9009 of the OpenShift pod, running the Java Virtual Machine
(JVM).

13

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

IMPORTANT

The command might prevent you from typing further in the terminal. In this case, launch a
new terminal for performing the next steps.

Attach debugger to an application

Procedure

1. Attach the debugger on the local system to the remote JVM running on the S2I for OpenShift
image:

$ jdb -attach 5005

Set uncaught java.lang.Throwable

Set deferred uncaught java.lang.Throwable
Initializing jdb ...

>

NOTE

Once the local debugger to the remote OpenShift pod debugging connection is
initiated, an entry similar to handling connection for 5005 is shown in the console
where the previous oc port-forward command was issued.

2. Debug the application:

$ jdb -attach 5005
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable

Initializing jdb ...

> threads

Group system:
(java.lang.ref.Reference$ReferenceHandler)0x79e Reference Handler cond. waiting
(java.lang.ref.Finalizer$FinalizerThread)0x79f Finalizer cond. waiting
(java.lang.Thread)0x7a0 Signal Dispatcher running

Group main:
(java.util. TimerThread)0x7a2 server-timer cond. waiting
(org.jolokia.jvmagent.CleanupThread)0x7a3 Jolokia Agent Cleanup Thread cond.

waiting

(org.xnio.nio.WorkerThread
org.xnio.nio.WorkerThread
org.xnio.nio.WorkerThread

O0x7a4 XNIO-1 I/O-1 running
0x7a5 XNIO-1 I/0-2 running
0x7a6 XNIO-1 I/0O-3 running

~— — — —

(
(
(
(

org.xnio.nio.WorkerThread)0x7a7 XNIO-1 Accept running

java.lang.Thread)0x7a8 DestroyJavaVM running
Group jolokia:

(java.lang.Thread)0x7aa Thread-3 running

>
Additional resources

® For more information on Openshift common object reference, see the OpenShift Common
Object Reference, section Container.

14

https://docs.openshift.com/container-platform/4.7/rest_api/objects/index.html#container-core-v1

CHAPTER 4. EXAMPLE WORKFLOWS FOR S2I ON OPENSHIFT

® For more information on connecting the IDE debugger of the Red Hat JBoss Developer Studio
to the OpenShift pod running the S2I for OpenShift image, see Configuring and Connecting
the IDE Debugger.

4.2. RUNNING FLAT CLASSPATH JAR ON SOURCE-TO-IMAGE FOR
OPENSHIFT

The example in the procedure describes the process of running flat classpath java applications on S2I for
OpenShift.

Prepare for Deployment

Procedure

1. Login to the OpenShift instance by providing your credentials:
I $ oc login

2. Create a new project:
I $ oc new-project js2i-flatclasspath-demo

Deployment

Procedure

1. Create a new application using the S2I for OpenShift image and Java source code:

$ oc new-app --context-dir=getting-started --name=quarkus-quickstart \
'registry.access.redhat.com/ubi8/openjdk-11~https://github.com/quarkusio/quarkus-
quickstarts.git#2.12.1.Final’

Post-deployment

Procedure

1. Get the service name:
I $ oc get svc

2. Expose the service as a route to be able to use it from the browser:
I $ oc expose svc/openshift-quickstarts --port=8080

3. Get the route:
I $ oc get route

4. Access the application in your browser by using the URL (value of HOST/PORT field from
previous command output).

15

https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/10.2/html-single/getting_started_with_container_and_cloud-based_development/index#idedebugger

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

CHAPTER 5. REFERENCE

5.1. VERSION DETAILS
The following table lists versions of technologies used in this image.

Table 5.1. Technology versions used in this image

Technology Version

Red Hat build of OpenJDK 11
Jolokia 16.2
Maven 3.6

5.2. INFORMATION ENVIRONMENT VARIABLES

The following information environment variables are designed to convey information about the image.
Do not modify these variables.

Table 5.2. Information environment variables

Variable Name Value

HOME /home/jboss
JAVA_HOME /usr/lib/jvm/java-11
JAVA_VENDOR openjdk
JAVA_VERSION 1
JOLOKIA_VERSION 1.6.2

LD_PRELOAD libnss_wrapper.so
MAVEN_VERSION 3.6
NSS_WRAPPER_GROUP /etc/group
NSS_WRAPPER_PASSWD /home/jboss/passwd

5.3. CONFIGURATION ENVIRONMENT VARIABLES

Configuration environment variables are designed to conveniently adjust the image without requiring a
rebuild, and should be set by the user as desired.

16

Table 5.3. Configuration environment variables

Variable name

Description

Default value

CHAPTER 5. REFERENCE

Example value

AB_JOLOKIA_CONFIG

AB_JOLOKIA_DISCOVE
RY_ENABLED

AB_JOLOKIA_HOST

AB_JOLOKIA_ID

AB_JOLOKIA_OFF

AB_JOLOKIA_OPTS

AB_JOLOKIA_PASSWO
RD

AB_JOLOKIA_PORT

AB_JOLOKIA_USER

AB_PROMETHEUS_EN
ABLE

If set uses this file
(including path) as
Jolokia JVM agent
properties (as described
in the Jolokia reference
manual). If not set, the
/opt/jolokia/etc/joloki
a.properties will be
created using the
settings as defined in
the manual. Otherwise
the rest of the settings
in this document are
ignored.

Enable Jolokia
discovery.

Host address to bind to.

Agent ID to use, which is
the containerid.

If set disables activation
of Joloka (thatis, echos
an empty value).

Additional options to be
appended to the agent
configuration. They
should be specified in
the format
key=value,key=value,

Password for basic
authentication. By
default authentication is
switched off.

Port to listen to.

User for basic
authentication.

Enable the use of the
Prometheus agent.

false

0.0.0.0

$HOSTNAME

Jolokia is enabled

8778

jolokia

/opt/jolokia/custom.pro
perties

true

127.0.0.1

openjdk-app-1-xqlsj

true

backlog=20

mypassword

5432

myusername

True

17

https://www.jolokia.org/reference/html/agents.html#agents-jvm

Variable name

AB_PROMETHEUS_JM
X_EXPORTER_PORT

CONTAINER_CORE_LI
MIT

CONTAINER_MAX_ME
MORY

GC_ADAPTIVE_SIZE_P
OLICY_WEIGHT

GC_CONTAINER_OPTI
ONS

GC_MAX_HEAP_FREE_
RATIO

GC_MAX_METASPACE

_SIZE

GC_METASPACE_SIZE

GC_MIN_HEAP_FREE_R
ATIO

GC_TIME_RATIO

Description

Port to use for the
Prometheus JMX
Exporter.

A calculated core limit as
described in the CFS
Bandwidth Control.

Memory limit assigned
to the container.

The weighting given to
the current garbage
collector time versus
previous garbage
collector times.

Specify Java GC to use.
The value of this variable
should contain the
necessary JRE
command-line options
to specify the required
GC, which will override
the default value.

Maximum percentage of
heap free after GC to
avoid shrinkage.

The maximum
metaspace size.

The initial metaspace
size.

Minimum percentage of
heap free after GC to
avoid expansion.

Specifies the ratio of the
time spent outside the
garbage collection (for
example, the time spent
for application
execution) to the time
spent in the garbage
collection.

Default value

-XX:+UseParallelOIdGC

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

Example value

9799

1024

90

-XX:+UseGIGC

40

100

20

20

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

Variable name

HTTPS_PROXY

HTTP_PROXY

JAVA_APP_DIR

JAVA_ARGS

JAVA_CLASSPATH

JAVA_DEBUG

JAVA_DEBUG_PORT

JAVA_DIAGNOSTICS

Description

The location of the
HTTPS proxy. This takes
precedence over
http_proxy and
HTTP_PROXY, and will
be used for both Maven
builds and Java runtime.

The location of the
HTTP proxy. This will be
used for both Maven
builds and Java runtime.

The directory where the
application resides. All
paths in your application
are relative to this
directory.

Arguments passed to
the java application.

The classpath to use. If
not given, the startup
script checks for a file
JAVA_APP_DIR/clas
spath and uses its
content literally as
classpath. If this file
does not exists all jars in
the app dir are added
(classes:JAVA_APP_
DIR/).

If set remote debugging
will be switched on.

Port used for remote
debugging.

Set this to print some
diagnostics information
to standard output
during the command is
running.

Default value

false

5005

false

CHAPTER 5. REFERENCE

Example value

myuser@127.0.0.1:8080

127.0.0.1:8080

myapplication/

true

8787

true

19

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

Variable name Description Default value Example value
JAVA_INITIAL_MEM_RA Itis used when no -Xms 25 25
TIO option s givenin

JAVA_OPTS. Thisis
used to calculate a
default initial heap
memory based on the
maximum heap memory.
If used in a container
without any memory
constraints for the
container then this
option has no effect. If
there is a memory
constraint then -Xms is
set to a ratio of the -
Xmx memory as set
here. The default is 25
which means 25% of the
-Xmx is used as the
initial heap size. You can
skip this mechanism by
setting this value to 0 in
which case no -Xms
option is added.

JAVA_LIB_DIR Directory holding the JAVA_APP_DIR -
Java jar files as well as
an optional classpath
file which holds the
classpath. Either as a
single-line classpath
(colon separated) or
with jar files listed line by
line. If not set
JAVA_LIB_DIRis set
to the value of
JAVA_APP_DIR.

JAVA_MAIN_CLASS A main class to use as - com.example.MainClass
argument for java.
When this environment
variable is given, all jar
files in
JAVA_APP_DIR are
added to the classpath
as well as

JAVA LIB_DIR.

20

CHAPTER 5. REFERENCE

Variable name Description Default value Example value
JAVA_MAX_INITIAL_ME Itis used when no -Xms 4096 4096
M option s givenin

JAVA_OPTS. Thisis
used to calculate the
maximum value of the
initial heap memory. If
used in a container
without any memory
constraints for the
container then this
option has no effect. If
there is a memory
constraint then -Xms is
limited to the value set
here. The default is
4096 which means the
calculated value of -
Xms will never be
greater than 4096. The
value of this variable is
expressed in MB.

JAVA_MAX_MEM_RATI It is used when no -XmXx 50 -

(@) option is givenin
JAVA_OPTS. Thisis
used to calculate a
default maximum heap
memory based on a
containers restriction. If
used in a container
without any memory
constraints for the
container then this
option has no effect. If
there is a memory
constraint then -XmX is
set to aratio of the
container available
memory as set here. The
default is 50 which
means 50% of the
available memory is
used as an upper
boundary. You can skip
this mechanism by
setting this value to 0in
which case no -Xmx
option is added.

21

Variable name

JAVA_OPTS

JAVA_OPTS_APPEND

LOGGING_SCRIPT_DE
BUG

MAVEN_ARGS

MAVEN_ARGS_APPEN
D

MAVEN_CLEAR_REPO

MAVEN_LOCAL_REPO

Description

JVM options passed to
the java command.

User-specified Java
options to be appended
to generated options in
JAVA_OPTS.

Set to true to enable
script debugging.
Deprecates
SCRIPT_DEBUG.

Arguments to use when
calling Maven, replacing
the default package
hawt-app:build -
DskipTests -e. Ensure
that you run the hawt-
app:build goal (when

not already bound to the

package execution
phase), otherwise the
startup scripts will not
work.

Additional Maven
arguments.

If set then the Maven
repository is removed
after the artifact is built.
This is useful for for
reducing the size of the
created application
image small, but
prevents incremental
builds. Will be
overridden by

S2I_ENABLE_INCRE

MENTAL_BUILDS.

Directory to use as the
local Maven repository.

Default value

true

package hawt-app:build
-DskipTests -e

false

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

Example value

-verbose:class

-Dsome.property=foo

True

-e -Popenshift -
DskipTests -
Dcom.redhat.xpaas.repo
redhatga package

-X -am -pl

/home/jboss/.m2/reposi
tory

CHAPTER 5. REFERENCE

Variable name Description Default value Example value
MAVEN_MIRRORS If set, multi-mirror - dev-one,ge-two
support is enabled, and
other

MAVEN_MIRROR_*
variables will be
prefixed. For example,
DEV_ONE_MAVEN _
MIRROR_URL and
QE_TWO_MAVEN_M

IRROR_URL.
MAVEN_MIRROR_URL The base URL of a - http://10.0.0.1:8080/rep
mirror used for ository/internal/

retrieving artifacts.

MAVEN_REPOS If set, multi-repo - dev-one,ge-two
support is enabled, and
other

MAVEN_REPO *
variables will be
prefixed. For example,
DEV_ONE_MAVEN _
REPO_URL and
QE_TWO_MAVEN_R
EPO_URL.

MAVEN_S2I_ARTIFACT Relative paths of source target target
_DIRS directories to scan for
build output, which will

be copied to
$DEPLOY_DIR.

MAVEN_S2I_GOALS Space-separated list of package package install
goals to be executed
with Maven build. For

example, mvn
$MAVEN_S2I_GOAL

S.
MAVEN_SETTINGS_XM Location of custom - /home/jboss/.m2/settin
L Maven settings.xml gs.xml
file to use.
NO_PROXY A comma-separated - foo.example.com,bar.ex
lists of hosts, IP ample.com

addresses or domains
that can be accessed
directly. This will be used
for both Maven builds
and Java runtime.

23

http://10.0.0.1:8080/repository/internal/

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

24

Variable name

S2I_ARTIFACTS_DIR

S2I_DESTINATION_DIR

S2I_ENABLE_INCREME
NTAL_BUILDS

S2I_IMAGE_SOURCE_M
OUNTS

Description

Location mount for
artifacts persisted with
save-artifacts script,
which are used with
incremental builds. This
should not be
overridden by end users.

Root directory for S2I
mount, as specified by
the
io.openshift.s2i.desti
nation label. This
should not be
overridden by end users.

Do not remove source
and intermediate build
files so they can be
saved for use with future
builds.

Comma-separated list
of relative paths in
source directory that
should be included in the
image. List may include
wildcards, which are
expanded using find. By
default, the contents of
mounted directories are
processed similarly to
source folders, where
the contents of
$S2I_SOURCE_CON
FIGURATION_DIR,
$S21_SOURCE_DAT
A_DIR, and

$S21 SOURCE_DEPL
OYMENTS_DIR are
copied to their
respective target
directories.
Alternatively, if an
install.sh file is located
in the root of the mount
point, it is executed
instead. Deprecates
CUSTOM_INSTALL _
DIRECTORIES.

Default value

true

Example value

${S2]_DESTINATION
_DIRY/artifacts}

tmp

true

extras/*

CHAPTER 5. REFERENCE

Variable name Description Default value Example value
S2I_SOURCE_CONFIGU Relative path to configuration configuration
RATION_DIR directory containing

application

configuration files to be
copied over to the
product configuration
directory, see

S2I TARGET_CONFI
GURATION_DIR.

S2I_SOURCE_DATA_DI Relative path to data data
R directory containing

application data files to

be copied over to the

product data directory,

see
S2I TARGET_DATA
_DIR.
S2I_SOURCE_DEPLOY Relative path to deployments deployments
MENTS_DIR directory containing

binary files to be copied
over to the product
deployment directory,

see
S2| TARGET_DEPL
OYMENTS_DIR.

S21_SOURCE_DIR Location of mount for - ${S2I_DESTINATION_DI
source code to be built. R}/srct

This should not be
overridden by end users.

S2I_TARGET_CONFIGU Absolute path to which - /opt/eap/standalone/c
RATION_DIR files located in onfiguration
$S21_SOURCE_DIR
$S2I_SOURCE_CON
FIGURATION_DIR are

copied.
S2I_TARGET_DATA_DIR Absolute path to which - /opt/eap/standalone/d
files located in ata

$S21_SOURCE_DIR/$
S2| SOURCE_DATA
_DIR are copied.

25

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

26

Variable name

S2|_TARGET_DEPLOY
MENTS_DIR

http_proxy

https_proxy

No_proxy

prefix MAVEN_MIRROR

_ID

prefix MAVEN_MIRROR

_OF

prefix MAVEN_MIRROR

_URL

prefix MAVEN_REPO_D
IRECTORY_PERMISSIO
NS

Description

Absolute path to which
files located in
$S2I_SOURCE_DIR/$
S2|_SOURCE_DEPL
OYMENTS_DIR are
copied. Additionally, this
is the directory to which
build output is copied.

The location of the
HTTP proxy. This takes
precedence over
HTTP_PROXY and is use
for both Maven builds
and Java runtime.

The location of the
HTTPS proxy. This takes
precedence over
HTTPS_PROXY,
http_proxy, and
HTTP_PROXY, is use for
both Maven builds and
Java runtime.

A comma-separated
lists of hosts, IP
addresses or domains
that can be accessed
directly. This takes
precedence over
NO_PROXY and is use
for both Maven builds
and Java runtime.

ID to be used for the
specified mirror. If
omitted, a unique ID is
generated.

Repository IDs mirrored
by this entry.

The URL of the mirror.

Maven repository
directory permissions.

Default value Example value

- /deployments

- http://127.0.0.:8080

- myuser:mypass@127.0.0.
1:8080

- *.example.com

- internal-mirror

external:* -

- http://10.0.0.1:8080/rep
ository/internal

- 775

http://127.0.0.1:8080
http://10.0.0.1:8080/repository/internal

Variable name

prefix MAVEN_REPO_F
ILE_PERMISSIONS

prefix MAVEN_REPO_H
OST

prefix MAVEN_REPO_|
D

prefix MAVEN_REPO_L
AYOUT

prefix MAVEN_REPO_N
AME

prefix MAVEN_REPO_P
ASSPHRASE

prefix MAVEN_REPO_P
ASSWORD

prefix MAVEN_REPO_P
ATH

prefix MAVEN_REPO_P
ORT

prefix MAVEN_REPO_P
RIVATE_KEY

prefix MAVEN_REPO_P
ROTOCOL

prefix MAVEN_REPO_R
ELEASES_CHECKSUM
POLICY

prefix MAVEN_REPO_R
ELEASES_ENABLED

Description

Maven repository file
permissions.

Maven repository host
(if not using fully
defined URL, it will fall
back to service).

Maven repository id.

Maven repository layout.

Maven repository name.

Maven repository
passphrase.

Maven repository
password.

Maven repository path
(if not using fully
defined URL, it will fall
back to service).

Maven repository port
(if not using fully
defined URL, it will fall
back to service).

Maven repository
private key.

Maven repository
protocol (if not using
fully defined URL, it will
fall back to service).

Maven repository
releases checksum

policy.

Maven repository
releases enabled.

Default value

CHAPTER 5. REFERENCE

Example value

664

repo.example.com

my-repo-id

default

my-repo-name

mavenl!

mavenl!

/maven2/

8080

${user.homel/.ssh/id_ds
a

http

warn

true

27

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

Variable name Description Default value Example value
prefix MAVEN_REPO_R Maven repository - always
ELEASES_UPDATE_PO releases update policy.

LICY

prefix MAVEN_REPO_S Maven repository - buscentr-myapp
ERVICE service to look up if

prefix MAVEN_REPO_U
RL not specified.

prefix MAVEN_REPO_S Maven repository - warn
NAPSHOTS_CHECKSU snapshots checksum

M_POLICY policy.

prefix MAVEN_REPO_S Maven repository - true

NAPSHOTS_ENABLED snapshots enabled.

prefix MAVEN_REPO_S Maven repository - always
NAPSHOTS_UPDATE_P snapshots update policy.

OLICY

prefix MAVEN_REPO_U Maven repository URL - http://repo.example.co
RL (fully defined). m:8080/maven2/
prefix MAVEN_REPO_U Maven repository - mavenUser

SERNAME username.

5.3.1. Configuration environment variables with default values

The following configuration Environment variables have default values specified that can be overridden.

Table 5.4. Configuration environment variables with default values

Variable name Description Defaul value
AB_JOLOKIA_AUTH_OPENSHIF Switch on client authentication true
T for OpenShift TLS

communication. The value of this
parameter can be a relative
distinguished name which must
be contained in a presented
client’s certificate. Enabling this
parameter will automatically
switch Jolokia into HTTPS
communication mode. The
default CA certis set to
/var/run/secrets/kubernetes.i
o/serviceaccount/ca.crt.

28

http://repo.example.com:8080/maven2/

CHAPTER 5. REFERENCE

Variable name Description Defaul value

AB_JOLOKIA_HTTPS Switch on secure communication true
with HTTPS. By default self-
signed server certificates are
generated if no serverCert
configuration is given in
AB_JOLOKIA_OPTS.

AB_JOLOKIA_PASSWORD_RAN Determines if a random true
DOM AB_JOLOKIA_PASSWORD
should be generated. Set to true
to generate random password.
Generated value will be written to
/opt/jolokia/etc/jolokia.pw.

AB_PROMETHEUS_JMX_EXPOR Path to configuration to use for /opt/jboss/container/prometheu
TER_CONFIG the Prometheus JMX exporter. s/etc/jmx-exporter-config.yaml

S2|_SOURCE_DEPLOYMENTS_FI Space-separated list of filters to *
LTER be applied when copying
deployments. Defaults to *.

5.4. EXPOSED PORTS

The following table lists the exposed ports.

Port Number Description

8080 HTTP
8443 HTTPS
8778 Jolokia Monitoring

5.5. MAVEN SETTINGS

Default Maven settings with Maven arguments

The default value of MAVEN_ARGS environment variable contains the -
Dcom.redhat.xpaas.repo.redhatga property. This property activates a profile with the
https://maven.repository.redhat.com/ga/ repository within the default jboss-settings.xml file, which
resides in the S2I for OpenShift image.

When specifying a custom value for the MAVEN_ARGS environment variable, if a custom

source_dir/configuration/settings.xml file is not specified, the default jboss-settings.xmlin the
image is used.

29

https://maven.repository.redhat.com/ga/

Red Hat build of OpenJDK 11 Using source-to-image for OpenShift with Red Hat build of OpenJDK 11

To specify which Maven repository will be used within the default jposs-settings.xml, there are two
properties:

® The -Dcom.redhat.xpaas.repo.redhatga property, to use the
https://maven.repository.redhat.com/ga/ repository.

® The -Dcom.redhat.xpaas.repo.jbossorg property to use the
https://repository.jboss.org/nexus/content/groups/public/ repository.

Provide custom Maven settings
To specify a custom settings.xml file along with Maven arguments, create the
source_dir/configuration directory and place the settings™.xml" file inside.

Sample path should be similar to: source_dir/configuration/settings.xml.

Revised on 2024-05-09 16:48:40 UTC

30

https://maven.repository.redhat.com/ga/
https://repository.jboss.org/nexus/content/groups/public/

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT BUILD OF OPENJDK DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO SOURCE-TO-IMAGE FOR OPENSHIFT
	1.1. IMAGE STREAM DEFINITIONS

	CHAPTER 2. BEFORE YOU BEGIN
	Initial setup
	Version compatibility and support

	CHAPTER 3. USING SOURCE-TO-IMAGE FOR OPENSHIFT
	3.1. BUILDING AND DEPLOYING JAVA APPLICATIONS WITH SOURCE-TO-IMAGE FOR OPENSHIFT
	3.2. BUILDING AND DEPLOYING JAVA APPLICATIONS FROM BINARY ARTIFACTS

	CHAPTER 4. EXAMPLE WORKFLOWS FOR S2I ON OPENSHIFT
	4.1. REMOTE DEBUGGING JAVA APPLICATION FOR OPENSHIFT IMAGE
	Prepare for deployment
	Deployment
	Enabling remote debugging for a new application
	Enabling remote debugging for an existing application

	Post-deployment
	Connect local debugging port to a port on the pod
	Attach debugger to an application

	4.2. RUNNING FLAT CLASSPATH JAR ON SOURCE-TO-IMAGE FOR OPENSHIFT
	Prepare for Deployment
	Deployment
	Post-deployment

	CHAPTER 5. REFERENCE
	5.1. VERSION DETAILS
	5.2. INFORMATION ENVIRONMENT VARIABLES
	5.3. CONFIGURATION ENVIRONMENT VARIABLES
	5.3.1. Configuration environment variables with default values

	5.4. EXPOSED PORTS
	5.5. MAVEN SETTINGS
	Default Maven settings with Maven arguments
	Provide custom Maven settings

