
Red Hat build of Quarkus 3.8

Migrating applications to Red Hat build of
Quarkus 3.8

Last Updated: 2024-05-09

Red Hat build of Quarkus 3.8 Migrating applications to Red Hat build of
Quarkus 3.8

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to migrate applications from earlier versions of Red Hat build of Quarkus
to the current version.

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS DOCUMENTATION

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.8
1.1. UPDATING PROJECTS TO THE LATEST RED HAT BUILD OF QUARKUS VERSION

1.1.1. Prerequisites
1.1.2. Procedure

1.2. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER VERSIONS
1.2.1. Core

1.2.1.1. Changes in Stork load-balancer configuration
1.2.1.2. Dependency management update for OkHttp and Okio
1.2.1.3. Java version requirement update
1.2.1.4. JAXB limitations with collections in RESTEasy Reactive
1.2.1.5. Mandatory specification of @StaticInitSafe at build time
1.2.1.6. Qute: Isolated execution of tag templates by default
1.2.1.7. Qute: Resolving type pollution issues
1.2.1.8. quarkus-rest-client extensions renamed to quarkus-resteasy-client
1.2.1.9. Removing URI validation when @TestHTTPResource is injected
1.2.1.10. Updates to GraalVM SDK 23.1.2 with dependency adjustments
1.2.1.11. Various adjustments to QuarkusComponentTest

1.2.2. Data
1.2.2.1. Hibernate ORM upgraded to 6.4
1.2.2.2. Hibernate ORM database version verification at startup
1.2.2.3. Hibernate Search upgraded to 7.0
1.2.2.4. SQL Server Dev Services upgraded to 2022-latest
1.2.2.5. Upgrade to Flyway adds additional dependency for Oracle users

1.2.3. Native
1.2.3.1. Strimzi OAuth support issue in the Kafka extension

1.2.4. Observability
1.2.4.1. @AddingSpanAttributes annotation added
1.2.4.2. quarkus-smallrye-metrics extension no longer supported
1.2.4.3. quarkus-smallrye-opentracing extension no longer supported
1.2.4.4. Refactoring of Scheduler and OpenTelemetry Tracing extensions

1.2.5. Security
1.2.5.1. Enhanced Security with mTLS and HTTP Restrictions
1.2.5.2. JWT extension removes unnecessary Reactive Routes dependency
1.2.5.3. Keycloak Authorization dropped the keycloak-adapter-core dependency
1.2.5.4. Using CDI interceptors to resolve OIDC tenants in RESTEasy Classic no longer supported
1.2.5.5. Using OIDC @Tenant annotation to bind OIDC features to tenants no longer possible
1.2.5.6. Security profile flexibility enhancement

1.2.6. Standards
1.2.6.1. Correction in GraphQL directive application

1.2.7. OpenAPI standardizes content type defaults for POJOs and primitives
1.2.8. Web

1.2.8.1. Improved SSE handling in REST Client
1.2.8.2. Manual addition of the Reactive Routes dependency

1.3. ADDITIONAL RESOURCES

3

4

5
5
5
5
7
7
7
7
7
7
7
8
8
8
8
8
9
9
9
9
9

10
10
10
10
11
11
11
11
11

12
12
12
12
12
12
12
13
13
13
13
13
13
13

Table of Contents

1

Red Hat build of Quarkus 3.8 Migrating applications to Red Hat build of Quarkus 3.8

2

PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS
DOCUMENTATION

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS DOCUMENTATION

3

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332926&summary=(userfeedback)&issuetype=1&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12368558&customfield_10010

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat build of Quarkus 3.8 Migrating applications to Red Hat build of Quarkus 3.8

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD
OF QUARKUS 3.8

As an application developer, you can migrate applications that are based on earlier versions of Red Hat
build of Quarkus to version 3.8 by using the Quarkus CLI’s update command.

IMPORTANT

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

1.1. UPDATING PROJECTS TO THE LATEST RED HAT BUILD OF
QUARKUS VERSION

You can update or upgrade your Red Hat build of Quarkus projects to the latest version by using an
update command.

The update command primarily employs OpenRewrite recipes to automate updates for most project
dependencies, source code, and documentation. Although these recipes perform many migration tasks,
they do not cover all the tasks detailed in the migration guide.

Post-update, if expected updates are missing, consider the following reasons:

The recipe applied by the update command might not include a migration task that your project
requires.

Your project might use an extension that is incompatible with the latest Red Hat build of
Quarkus version.

IMPORTANT

For projects that use Hibernate ORM or Hibernate Reactive, review the Hibernate ORM
5 to 6 migration quick reference. The following update command covers only a subset of
this guide.

1.1.1. Prerequisites

Roughly 30 minutes

An IDE

JDK 11+ installed with JAVA_HOME configured appropriately

Apache Maven 3.8.6 or later

Optionally, the Red Hat build of Quarkus CLI if you want to use it

Optionally Mandrel or GraalVM installed and configured appropriately if you want to build a
native executable (or Docker if you use a native container build)

A project based on Red Hat build of Quarkus version 2.13 or later.

1.1.2. Procedure

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.8

5

https://quarkus.io/version/3.8/guides/cli-tooling
https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.0:-Hibernate-ORM-5-to-6-migration

1. Create a working branch for your project by using your version control system.

2. To use the Red Hat build of Quarkus CLI in the next step, install the latest version of the
Red Hat build of Quarkus CLI. Confirm the version number using quarkus -v.

3. Configure your extension registry client as described in the Configuring Red Hat build of
Quarkus extension registry client section of the Quarkus "Getting Started" guide.

4. To update using the Red Hat build of Quarkus CLI, go to the project directory and update the
project to the latest stream:

Optional: By default, this command updates to the latest current version. To update to a specific
stream instead of latest current version, add the stream option to this command followed by the
version; for example: --stream=3.2

5. To update using Maven instead of the Red Hat build of Quarkus CLI, go to the project directory
and update the project to the latest stream:

a. Ensure that the Red Hat build of Quarkus Maven plugin version aligns with the latest
supported Red Hat build of Quarkus version.

b. Configure your project according to the guidelines provided in the Getting started with
Quarkus guide.

Optional: By default, this command updates to the latest current version. To update to a
specific stream instead of latest current version, add the stream option to this command
followed by the version; for example: -Dstream=3.2

6. Analyze the update command output for potential instructions and perform the suggested
tasks if necessary.

7. Use a diff tool to inspect all changes.

8. Review the migration guide for items that were not updated by the update command. If your
project has such items, implement the additional steps advised in these topics.

9. Ensure the project builds without errors, all tests pass, and the application functions as required
before deploying to production.

10. Before deploying your updated Red Hat build of Quarkus application to production, ensure the
following:

The project builds without errors.

All tests pass.

The application functions as required.

1.2. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER

quarkus update

mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.8.4.redhat-00002:update

Red Hat build of Quarkus 3.8 Migrating applications to Red Hat build of Quarkus 3.8

6

https://quarkus.io/version/3.8/guides/cli-tooling#installing-the-cli
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.8/html-single/getting_started_with_red_hat_build_of_quarkus/index#proc_configuring-quarkus-extension-registry-client_quarkus-getting-started
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.8/html-single/getting_started_with_red_hat_build_of_quarkus/index#con-apache-maven-plug-ins-and-quarkus_quarkus-getting-started

1.2. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER
VERSIONS

This section describes changes in Red Hat build of Quarkus 3.8 that affect the compatibility of
applications built with earlier product versions.

Review these breaking changes and take the steps required to ensure that your applications continue
functioning after you update them to Red Hat build of Quarkus 3.8.

To automate many of these changes, use the quarkus update command to update your projects to the
latest Red Hat build of Quarkus version.

1.2.1. Core

1.2.1.1. Changes in Stork load-balancer configuration

You can no longer use the previous configuration names stork."service-name".load-balancer and
quarkus.stork."service-name".load-balancer for configuring the Stork load balancer. Instead, use
quarkus.stork."service-name".load-balancer.type for configuration settings.

1.2.1.2. Dependency management update for OkHttp and Okio

OkHttp and Okio have been removed from the Quarkus Platform BOM, and their versions are no longer
enforced, addressing issues related to outdated dependencies. This change affects test framework
dependencies and streamlines runtime dependencies. Developers using these dependencies must now
specify their versions in build files. Additionally, the quarkus-test-infinispan-client artifact has been
removed due to the availability of robust Dev Services support for Infinispan.

1.2.1.3. Java version requirement update

Beginning with this version of Red Hat build of Quarkus, support for Java 11, deprecated in the previous
version, has been removed. Java 21 is now the recommended version, although Java 17 is also supported.

1.2.1.4. JAXB limitations with collections in RESTEasy Reactive

In Red Hat build of Quarkus, using RESTEasy Reactive with Java Architecture for XML Binding (JAXB)
does not support using collections, arrays, and maps as parameters or return types in REST methods. To
overcome this limitation of JAXB, encapsulate these types within a class annotated with
@XmlRootElement.

1.2.1.5. Mandatory specification of @StaticInitSafe at build time

During the static initialization phase, Red Hat build of Quarkus collects the configuration to inject in CDI
beans. The collected values are then compared with their runtime initialization counterparts, and if a
mismatch is detected, the application startup fails. With Red Hat build of Quarkus 3.8, you can now
annotate configuration objects with the @io.quarkus.runtime.annotations.StaticInitSafe annotation
to inform users that the injected configuration:

is set at build time

cannot be changed

is safe to be used at runtime, instructing Red Hat build of Quarkus to not fail the startup on
configuration mismatch

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.8

7

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.8/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.8/index#proc_updating-quarkus_migrating-to-quarkus-3

1.2.1.6. Qute: Isolated execution of tag templates by default

User tags in templates are now executed in isolation by default, restricting access to the calling
template’s context. This update can alter data handling within tag templates, potentially impacting their
current functionality. To bypass this isolation and maintain access to the parent context, include
_isolated=false or _unisolated in the tag call, for example, # itemDetail item showImage=true
_isolated=false. This approach allows tags to access data from the parent context as before. This
change minimizes unintended data exposure from the parent context to the tag, enhancing template
data integrity. However, it might necessitate updates to existing templates reliant on shared context
access, representing a notable change that could affect users unfamiliar with this isolation mechanism.

1.2.1.7. Qute: Resolving type pollution issues

ResultNode class is updated to be an abstract class, not an interface, and should not be user-
implemented despite being in the public API. The Qute API now limits CompletionStage
implementations to java.util.concurrent.CompletableFuture and io.quarkus.qute.CompletedStage
by default, a restriction alterable with -Dquarkus.qute.unrestricted-completion-stage-support=true.

1.2.1.8. quarkus-rest-client extensions renamed to quarkus-resteasy-client

With Red Hat build of Quarkus 3.8, the following quarkus-rest-client extensions are renamed:

Old name New name

quarkus-rest-client quarkus-resteasy-client

quarkus-rest-client-mutiny quarkus-resteasy-client-mutiny

quarkus-rest-client-jackson quarkus-resteasy-client-jackson

quarkus-rest-client-jaxb quarkus-resteasy-client-jaxb

quarkus-rest-client-jsonb quarkus-resteasy-client-jsonb

1.2.1.9. Removing URI validation when @TestHTTPResource is injected

The @TestHTTPResource annotation now supports path parameters. Validation as a URI string is no
longer applied due to non-compliance with the URI format.

1.2.1.10. Updates to GraalVM SDK 23.1.2 with dependency adjustments

The GraalVM SDK version has been updated to 23.1.2 in Red Hat build of Quarkus 3.8. Developers using
extensions requiring GraalVM substitutions should switch from org.graalvm.sdk:graal-sdk to
org.graalvm.sdk:nativeimage to access necessary classes. For those that use org.graalvm.js:js,
replace this dependency with org.graalvm.polyglot:js-community for the community version. For the
enterprise version, replace this dependency with org.graalvm.polyglot:js. The adjustment for the
graal-sdk is automated with quarkus update. However, changes to the js dependency must be made
manually. Even though it is highly unlikely, this change could affect users who depend on:

org.graalvm.sdk:collections

org.graalvm.sdk:word

Red Hat build of Quarkus 3.8 Migrating applications to Red Hat build of Quarkus 3.8

8

1.2.1.11. Various adjustments to QuarkusComponentTest

In this release, QuarkusComponentTest has undergone several adjustments. It remains experimental
and is not supported by Red Hat build of Quarkus. This experimental status indicates that the API might
change at any time, reflecting feedback received.

The QuarkusComponentTestExtension is now immutable, requiring programmatic registration
through the simplified constructor QuarkusComponentTestExtension(Class…) or the
QuarkusComponentTestExtension.builder() method. The test instance lifecycle, either
Lifecycle#PER_METHOD (default) or Lifecycle#PER_CLASS, dictates when the CDI container starts
and stops; PER_METHOD starts the container before each test and stops it afterward, whereas
PER_CLASS starts it before all tests and stops it after all tests. This represents a change from previous
versions, where the container always started before and stopped after all tests.

1.2.2. Data

1.2.2.1. Hibernate ORM upgraded to 6.4

In Red Hat build of Quarkus 3.8, Hibernate Object-Relational Mapping (ORM) was upgraded to version
6.4 and introduced the following breaking changes:

Compatibility with some older database versions is dropped. For more information about
supported versions, see Supported dialects.

Numeric literals are now interpreted as defined in Jakarta Persistence 3.2.

For more information, see the Hibernate ORM 6.4 migration guide.

1.2.2.2. Hibernate ORM database version verification at startup

When using Hibernate ORM on Red Hat build of Quarkus 3.8, you can verify the specified database
version on application startup.

For Hibernate ORM to generate more efficient SQL and take advantage of more database features, you
can set a specific database version for the Hibernate database in the applications.properties file.

For example: quarkus.datasource.db-version = 14.0

With this 3.8 release, on application startup, Red Hat build of Quarkus verifies the specified database
version against the actual database version your application is connecting to, and throws an exception
on startup in case of a mismatch.

For more information, see the Supported databases section of the Quarkus "Using Hibernate ORM and
Jakarta persistence" guide.

1.2.2.3. Hibernate Search upgraded to 7.0

In Red Hat build of Quarkus 3.8, Hibernate Search was upgraded to version 7.0 and introduced the
following breaking changes:

The values accepted by the quarkus.hibernate-search-orm.coordination.entity-
mapping.outbox-event.uuid-type and quarkus.hibernate-search-orm.coordination.entity-
mapping.agent.uuid-type configuration properties changed:

uuid-binary is deprecated in favor of binary

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.8

9

https://docs.jboss.org/hibernate/orm/6.4/dialect/dialect.html
https://github.com/hibernate/hibernate-orm/blob/6.4.0/migration-guide.adoc
https://quarkus.io/version/3.8/guides/hibernate-orm#hibernate-dialect-supported-databases

uuid-char is deprecated in favor of char

The default value for the quarkus.hibernate-search-orm.elasticsearch.query.shard-
failure.ignore property changed from true to false, meaning that Hibernate Search now throws
an exception if at least one shard fails during a search operation. To get the previous behavior,
set this configuration property to true.

NOTE

If you define multiple backends, you must set this configuration property for each
Elasticsearch backend.

The complement operator (~) in the regular expression predicate was removed with no
alternative to replace it.

Hibernate Search dependencies no longer have an -orm6 suffix in their artifact ID; for example,
applications now depend on the hibernate-search-mapper-orm module instead of hibernate-
search-mapper-orm-orm6.

For more information, see the following resources:

Hibernate Search documentation

Hibernate Search 7.0.0.Final: Migration guide from 6.2

1.2.2.4. SQL Server Dev Services upgraded to 2022-latest

Dev Services for SQL Server updated its default image from mcr.microsoft.com/mssql/server:2019-
latest to mcr.microsoft.com/mssql/server:2022-latest.

Users preferring the previous version can specify an alternative by using the config property detailed in
the References section in the Red Hat build of Quarkus "Configure data sources" guide.

1.2.2.5. Upgrade to Flyway adds additional dependency for Oracle users

In Red Hat build of Quarkus 3.8, the Flyway extension is upgraded to Flyway 9.20.0, which delivers an
additional dependency, flyway-database-oracle, for Oracle users.

Oracle users must update the pom.xml file to include the flyway-database-oracle dependency. To do
so, do the following:

For more information, see the Quarkus Using Flyway guide.

1.2.3. Native

1.2.3.1. Strimzi OAuth support issue in the Kafka extension

The Kafka extension’s Strimzi OAuth support in quarkus-bom now uses io.strimzi:strimzi-kafka-oauth
version 0.14.0, introducing a known issue that leads to native build failures. The error, Substitution

<dependency>
 <groupId>org.flywaydb</groupId>
 <artifactId>flyway-database-oracle</artifactId>
</dependency>

Red Hat build of Quarkus 3.8 Migrating applications to Red Hat build of Quarkus 3.8

10

https://docs.jboss.org/hibernate/search/7.0/reference/en-US/html_single/#search-dsl-predicate-regexp
https://docs.jboss.org/hibernate/search/7.0/reference/en-US/html_single/#search-dsl-predicate-regexp
https://docs.jboss.org/hibernate/search/7.0/migration/html_single/
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.8/html-single/configure_data_sources/index#datasource-reference
https://quarkus.io/version/3.8/guides/flyway

target for `io.smallrye.reactive.kafka.graal.Target_com_jayway_jsonpath_internal_DefaultsImpl is
not loaded can be bypassed by adding io.strimzi:kafka-oauth-common to your project’s classpath.

1.2.4. Observability

1.2.4.1. @AddingSpanAttributes annotation added

When using Opentelemetry (oTel) instrumentation with Red Hat build of Quarkus 3.8, you can now
annotate a method in any Context Dependency Injection (CDI)-aware bean by using the
io.opentelemetry.instrumentation.annotations.AddingSpanAttributes annotation, which does not
create a new span but adds annotated method parameters to attributes in the current span.

NOTE

If you mistakenly annotate a method with both @AddingSpanAttributes and
@WithSpan annotations, the @WithSpan annotation takes precedence.

For more information, see the CDI section of the Quarkus "Using OpenTelemetry" guide.

1.2.4.2. quarkus-smallrye-metrics extension no longer supported

With Red Hat build of Quarkus 3.8, the quarkus-smallrye-metrics extension is no longer supported.
Now, it is available as a community extension only. Its use in production environments is discouraged.

From Red Hat build of Quarkus 3.8, quarkus-smallrye-metrics is replaced by the fully supported
quarkus-micrometer extension.

1.2.4.3. quarkus-smallrye-opentracing extension no longer supported

With Red Hat build of Quarkus 3.8, SmallRye OpenTracing is no longer supported. To continue using
distributed tracing, migrate your applications to SmallRye OpenTelemetry, which is now fully supported
with this release and no longer a Technology Preview feature. If you still need to use quarkus-smallrye-
opentracing, adjust your application to use the extensions from Quarkiverse by updating the groupId
and specifying the version manually.

1.2.4.4. Refactoring of Scheduler and OpenTelemetry Tracing extensions

In Red Hat build of Quarkus 3.8, integration of OpenTelemetry Tracing and the quarkus-scheduler
extension has been refactored.

Before this update, only @Scheduled methods had a new io.opentelemetry.api.trace.Span class,
which is associated automatically when you enable tracing. That is, when the
quarkus.scheduler.tracing.enabled configuration property is set to true, and the quarkus-
opentelemetry extension is available.

With this 3.8 release, all scheduled jobs, including those that are scheduled programmatically, have a
Span associated automatically when tracing is enabled. The unique job identifier for each scheduled
method is either generated, is specified by setting the io.quarkus.scheduler.Scheduled#identity
attribute or with the JobDefinition method. Before this update, span names followed the
<simpleclassname>.<methodName> format.

For more information, see the following Quarkus resources:

Scheduler reference

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.8

11

https://quarkus.io/version/3.8/guides/opentelemetry#cdi
https://quarkus.io/version/3.8/guides/scheduler-reference

Using OpenTelemetry

1.2.5. Security

1.2.5.1. Enhanced Security with mTLS and HTTP Restrictions

When mTLS client authentication (quarkus.http.ssl.client-auth) is set to required, Red Hat build of
Quarkus automatically disables plain HTTP ports to ensure that only secure HTTPS requests are
accepted. To enable plain HTTP, configure quarkus.http.ssl.client-auth to request or set both
quarkus.http.ssl.client-auth=required and quarkus.http.insecure-requests=enabled.

1.2.5.2. JWT extension removes unnecessary Reactive Routes dependency

The JWT extension no longer transitively depends on the Reactive Routes extension. If your application
uses both JWT and Reactive Routes features but does not declare an explicit dependency on Reactive
Routes, you must add this dependency.

1.2.5.3. Keycloak Authorization dropped the keycloak-adapter-core dependency

The quarkus-keycloak-authorization extension no longer includes the org.keycloak:keycloak-
adapter-core dependency due to its update to Keycloak 22.0.0 and its irrelevance to the extension’s
functionality. In future Keycloak versions, it is planned to remove the Keycloak Java adapters code. If
your application requires this dependency, manually add it to your project’s pom.xml.

1.2.5.4. Using CDI interceptors to resolve OIDC tenants in RESTEasy Classic no longer
supported

You can no longer use Context and Dependency Injection (CDI) annotations and interceptors to resolve
tenant OIDC configuration for RESTEasy Classic applications.

Due to security checks that are enforced before CDI interceptors and checks requiring authentication
are triggered, using CDI interceptors to resolve multiple OIDC provider configuration identifiers no
longer works.

Use @Tenant annotation or custom io.quarkus.oidc.TenantResolver instead.

For more information, see the Resolve with annotations section of the Quarkus "Using OIDC
multitenancy guide".

1.2.5.5. Using OIDC @Tenant annotation to bind OIDC features to tenants no longer possible

In Red Hat build of Quarkus 3.8, you must now use the quarkus.oidc.TenantFeature annotation instead
of quarkus.oidc.Tenant to bind OpenID Connect (OIDC) features to OIDC tenants.

The quarkus.oidc.Tenant annotation is now used for resolving tenant configuration.

1.2.5.6. Security profile flexibility enhancement

Red Hat build of Quarkus 3.8 allows runtime configuration of HTTP permissions and roles, enabling
flexible security settings across profiles. This resolves the issue of native executables locking to build-
time security configurations. Security can now be dynamically adjusted per profile, applicable in both
JVM and native modes.

Red Hat build of Quarkus 3.8 Migrating applications to Red Hat build of Quarkus 3.8

12

https://quarkus.io/version/3.8/guides/opentelemetry
https://quarkus.io/version/3.8/guides/security-openid-connect-multitenancy#annotations-tenant-resolver

1.2.6. Standards

1.2.6.1. Correction in GraphQL directive application

The application of annotation-based GraphQL directives has been corrected to ensure they are only
applied to the schema element types for which they are declared.

For example, if a directive was declared to apply to the GraphQL element type FIELD but was
erroneously applied to a different element type, it was still visible in the schema on the element where it
should not be applicable, leading to an invalid schema. This was now corrected, and directives have their
usage checked against their applicability declaration.

If you had directives applied incorrectly in this way, they will no longer appear in the schema, and
Red Hat build of Quarkus 3.8 will log a warning during the build.

1.2.7. OpenAPI standardizes content type defaults for POJOs and primitives

This change has standardized the default content type for generating OpenAPI documentation when a
@ContentType annotation is not provided. Previously, the default content type varied across different
extensions, such as RestEasy Reactive, RestEasy Classic, Spring Web, and OpenAPI. For instance,
OpenAPI always used JSON as the default, whereas RestEasy used JSON for object types and text for
primitive types. Now, all extensions have adopted uniform default settings, ensuring consistency:

Primitive types are now uniformly set to text/plain.

Complex POJO (Plain Old Java Object) types default to application/json.

This unification ensures that while the behavior across extensions is consistent, it differentiates
appropriately based on the type of data, with primitives using text/plain and POJOs using
application/json. This approach does not imply that the same content type is used for all Java types
but rather that all extensions now handle content types in the same manner, tailored to the nature of the
data.

1.2.8. Web

1.2.8.1. Improved SSE handling in REST Client

Red Hat build of Quarkus 3.8 has enhanced its REST Client’s Server-Sent Events (SSE) capabilities,
enabling complete event returns and filtering. These updates and new descriptions in REST Client
provide developers with increased control and flexibility in managing real-time data streams.

1.2.8.2. Manual addition of the Reactive Routes dependency

Until version 3.8, the Red Hat build of Quarkus SmallRye JWT automatically incorporated quarkus-
reactive-routes, a feature discontinued from version 3.8 onwards. To ensure continued functionality,
manually add quarkus-reactive-routes as a dependency in your build configuration.

1.3. ADDITIONAL RESOURCES

Release notes for Red Hat build of Quarkus version 3.2

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.8

13

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.8/html-single/release_notes_for_red_hat_build_of_quarkus_3.8/index

Red Hat build of Quarkus 3.8 Migrating applications to Red Hat build of Quarkus 3.8

14

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.8
	1.1. UPDATING PROJECTS TO THE LATEST RED HAT BUILD OF QUARKUS VERSION
	1.1.1. Prerequisites
	1.1.2. Procedure

	1.2. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER VERSIONS
	1.2.1. Core
	1.2.1.1. Changes in Stork load-balancer configuration
	1.2.1.2. Dependency management update for OkHttp and Okio
	1.2.1.3. Java version requirement update
	1.2.1.4. JAXB limitations with collections in RESTEasy Reactive
	1.2.1.5. Mandatory specification of @StaticInitSafe at build time
	1.2.1.6. Qute: Isolated execution of tag templates by default
	1.2.1.7. Qute: Resolving type pollution issues
	1.2.1.8. quarkus-rest-client extensions renamed to quarkus-resteasy-client
	1.2.1.9. Removing URI validation when @TestHTTPResource is injected
	1.2.1.10. Updates to GraalVM SDK 23.1.2 with dependency adjustments
	1.2.1.11. Various adjustments to QuarkusComponentTest

	1.2.2. Data
	1.2.2.1. Hibernate ORM upgraded to 6.4
	1.2.2.2. Hibernate ORM database version verification at startup
	1.2.2.3. Hibernate Search upgraded to 7.0
	1.2.2.4. SQL Server Dev Services upgraded to 2022-latest
	1.2.2.5. Upgrade to Flyway adds additional dependency for Oracle users

	1.2.3. Native
	1.2.3.1. Strimzi OAuth support issue in the Kafka extension

	1.2.4. Observability
	1.2.4.1. @AddingSpanAttributes annotation added
	1.2.4.2. quarkus-smallrye-metrics extension no longer supported
	1.2.4.3. quarkus-smallrye-opentracing extension no longer supported
	1.2.4.4. Refactoring of Scheduler and OpenTelemetry Tracing extensions

	1.2.5. Security
	1.2.5.1. Enhanced Security with mTLS and HTTP Restrictions
	1.2.5.2. JWT extension removes unnecessary Reactive Routes dependency
	1.2.5.3. Keycloak Authorization dropped the keycloak-adapter-core dependency
	1.2.5.4. Using CDI interceptors to resolve OIDC tenants in RESTEasy Classic no longer supported
	1.2.5.5. Using OIDC @Tenant annotation to bind OIDC features to tenants no longer possible
	1.2.5.6. Security profile flexibility enhancement

	1.2.6. Standards
	1.2.6.1. Correction in GraphQL directive application

	1.2.7. OpenAPI standardizes content type defaults for POJOs and primitives
	1.2.8. Web
	1.2.8.1. Improved SSE handling in REST Client
	1.2.8.2. Manual addition of the Reactive Routes dependency

	1.3. ADDITIONAL RESOURCES

