
Red Hat Ceph Storage 3

Ceph Object Gateway for Production

Planning, designing and deploying Ceph Storage clusters and Ceph Object Gateway
clusters for production.

Last Updated: 2021-05-05

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

Planning, designing and deploying Ceph Storage clusters and Ceph Object Gateway clusters for
production.

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide covers planning a cluster, considering hardware, developing storage strategies,
configuring gateways and load balancers and using the Ceph Object Gateway.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. AUDIENCE
1.2. ASSUMPTIONS
1.3. SCOPE

CHAPTER 2. PLANNING A CLUSTER
2.1. IDENTIFYING USE CASES
2.2. SELECTING DATA DURABILITY METHODS
2.3. CONSIDERING MULTI-SITE DEPLOYMENT

CHAPTER 3. CONSIDERING HARDWARE
3.1. CONSIDERING STORAGE SIZING
3.2. CONSIDERING STORAGE DENSITY
3.3. CONSIDERING NETWORK HARDWARE
3.4. CONSIDERING UNINTERRUPTED POWER SUPPLIES
3.5. SELECTING HARDWARE FOR USE CASES
3.6. SELECTING MEDIA FOR INDEXES
3.7. SELECTING MEDIA FOR MONITOR NODES

CHAPTER 4. CONFIGURING A CLUSTER
4.1. NAMING HOSTS
4.2. TUNING THE KERNEL

4.2.1. Reserving Free Memory for OSDs
4.2.2. Increasing File Descriptors
4.2.3. Adjusting ulimit on Large Clusters

4.3. CONFIGURING ANSIBLE GROUPS
4.4. CONFIGURING CEPH

4.4.1. Setting the Journal Size
4.4.2. Adjusting Backfill & Recovery Settings
4.4.3. Adjusting the Cluster Map Size
4.4.4. Adjusting Scrubbing
4.4.5. Increase objecter_inflight_ops
4.4.6. Increase rgw_thread_pool_size
4.4.7. Set the filestore_merge_threshold
4.4.8. Adjusting Garbage Collection Settings

CHAPTER 5. DEPLOYING CEPH

CHAPTER 6. EXPANDING THE CLUSTER

CHAPTER 7. DEVELOPING STORAGE STRATEGIES
7.1. CONSIDERING EXPECTED OBJECT COUNT
7.2. DEVELOPING CRUSH HIERARCHIES

7.2.1. Creating CRUSH Roots
7.2.2. Using Logical Host Names in a CRUSH Map
7.2.3. Creating CRUSH Rules

7.3. CREATING THE ROOT POOL
7.4. CREATING A REALM
7.5. CREATING SERVICE POOLS
7.6. CREATING DATA PLACEMENT STRATEGIES

7.6.1. Creating an Index Pool
7.6.2. Creating a Data Pool
7.6.3. Creating a Data Extra Pool

4
4
4
4

5
5
5
6

7
7
7
8
8
8
9
9

10
10
10
10
11
11
11

12
13
13
13
14
14
14
15
15

17

18

19
19

20
21
22
24
25
26
27
29
29
30
31

Table of Contents

1

. .

. .

. .

7.6.4. Configuring Placement Targets in a Zone Group
7.6.5. Configuring Placement Pools in a Zone
7.6.6. Data Placement Summary

CHAPTER 8. CONFIGURING GATEWAYS
8.1. CONFIGURING CIVETWEB
8.2. CONFIGURING FIREWALL PORTS
8.3. CONFIGURING DNS WILDCARDS
8.4. CONFIGURING LOAD BALANCERS

CHAPTER 9. ADDITIONAL USE CASES
9.1. EXPANDING THE CLUSTER WITH MULTISITE
9.2. MIGRATING DATA WITH NFS GANESHA
9.3. CONFIGURING THE CLUSTER FOR STATIC WEBHOSTING
9.4. CONFIGURING THE CLUSTER FOR LDAP/AD
9.5. CONFIGURING THE CLUSTER TO USE OPENSTACK KEYSTONE

CHAPTER 10. USING NVME WITH LVM OPTIMALLY
10.1. USING ONE NVME DEVICE

10.1.1. Purge Any Existing Ceph cluster
10.1.2. Configure The Cluster for Normal Installation
10.1.3. Identify The NVMe and HDD Devices
10.1.4. Add The Devices to lv_vars.yaml
10.1.5. Run The lv-create.yml Ansible Playbook
10.1.6. Verify LVM Configuration
10.1.7. Edit The osds.yml and all.yml Ansible Playbooks
10.1.8. Install Ceph for NVMe and Verify Success

10.2. USING TWO NVME DEVICES
10.2.1. Purge Any Existing Ceph Cluster
10.2.2. Configure The Cluster for Normal Installation
10.2.3. Identify The NVMe and HDD Devices
10.2.4. Add The Devices to lv_vars.yaml
10.2.5. Run The lv-create.yml Ansible Playbook
10.2.6. Copy First NVMe LVM Configuration
10.2.7. Run The lv-create.yml Playbook on NVMe device two
10.2.8. Copy Second NVMe LVM Configuration
10.2.9. Verify LVM Configuration
10.2.10. Edit The osds.yml and all.yml Ansible Playbooks
10.2.11. Install Ceph for NVMe and Verify Success

31
33
34

35
35
35
35
35

37
37
38
38
38
38

39
39
39
40
40
42
42
43
46
46
48
48
48
49
50
51
52
52
53
53
55
56

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
Welcome to the Ceph Object Gateway for Production guide. This guide covers topics for building
Ceph Storage clusters and Ceph Object Gateway clusters for production use.

1.1. AUDIENCE

This guide is for those who intend to deploy a Ceph Object Gateway environment for production. It
provides a sequential series of topics for planning, designing and deploying a production Ceph Storage
cluster and Ceph Object Gateway cluster with links to general Ceph documentation where appropriate.

1.2. ASSUMPTIONS

This guide assumes the reader has a basic understanding of the Ceph Storage Cluster and the Ceph
Object Gateway. Readers with no Ceph experience should consider setting up a small Ceph test
environment or using the Ceph Sandbox Environment to get familiar with Ceph concepts before
proceeding with this guide.

This guide assumes a single-site cluster consisting of a single Ceph Storage cluster and multiple Ceph
Object Gateway instances in the same zone. This guide assumes the single-site cluster will expand to a
multi-zone and multi-site cluster by repeating the procedures in this guide for each zone group and
zone with the naming modifications required for secondary zone groups and zones.

1.3. SCOPE

This guide covers the following topics when setting up a Ceph Storage Cluster and a Ceph Object
Gateway for production:

Planning a Cluster

Considering Hardware

Configuring a Cluster

Deploying Ceph

Developing Storage Strategies

Configuring Gateways

Additional Use Cases

NOTE

This document is intended to complement the hardware, installation, administration and
Ceph Object Gateway guides. This guide does not replace the other guides.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

4

CHAPTER 2. PLANNING A CLUSTER
Planning a cluster for use with the Ceph Object Gateway involves several important considerations:

Identifying use cases

Selecting data durability methods

Considering multi-site deployment

These factors will have a significant influence when considering hardware . Consider these factors
carefully before selecting hardware.

2.1. IDENTIFYING USE CASES

Ceph Storage is capable of serving many different types of storage use cases. For Ceph Object
Storage, the typical use cases are:

Throughput-optimized: A throughput-optimized cluster seeks to ensure fast data access. Host
bus adapters (HBAs), storage media with fast sequential read/write characteristics and high
network bandwidth provide capability for applications such as graphics, streaming audio and
streaming video. Throughput-optimized optimized clusters also consider whether write
performance is a consideration. Throughput-optimized clusters that use SSDs for journaling
realize substantially better write performance, which can be important for applications like
storing CCTV streams. Throughput-optimized clusters should consider the throughput
characteristics of a Host Bus Adapter (HBA) controller and network throughput for intensive
applications such as streaming 4K video. HBA-based hardware controllers offer significant
performance improvements over on-board controllers.

Capacity-optimized: A capacity-optimized cluster seeks to ensure the lowest cost per terabyte
of storage. Capacity-optimized clusters often use the least expensive storage media and often
avoid the added expense of separate SSD journals for applications such as archiving
infrequently accessed legacy financial records, old emails, etc.

IOPS-optimized: An IOPS-optimized cluster seeks to provide high performance for read- and
write-intensive workloads. While IOPS-optimized workloads are not as common for Ceph Object
Gateways, they can be supported with SSD, Flash memory or NVMe CRUSH hierarchies.

Carefully consider the storage use case(s) BEFORE considering hardware, because it can significantly
impact the price and performance of the cluster. For example, if the use case is capacity-optimized and
the hardware is better suited to a throughput-optimized use case, the hardware will be more expensive
than necessary. Conversely, if the use case is throughput-optimized and the hardware is better suited to
a capacity-optimized use case, the cluster may suffer from poor performance.

Also, note that since Ceph Object Gateway supports storage policies, it is possible to create CRUSH
hierarchies for ALL of the foregoing scenarios and invoke them with storage policies supported in the
APIs. See Creating Data Placement Strategies for details.

2.2. SELECTING DATA DURABILITY METHODS

Cluster design should also consider the data durability strategy. Ceph Storage uses either replication or
erasure coding to ensure data durability.

Replication stores one or more redundant copies of the data across failure domains in case of a
hardware failure. However, redundant copies of data can become expensive at scale. For example, to

CHAPTER 2. PLANNING A CLUSTER

5

store 1 petabyte of data with triple replication would require a cluster with at least 3 petabytes of
storage capacity.

The Erasure coding section of the Storage Strategies Guide for Red Hat Ceph Storage 3 describes how
erasure coding stores data as data chunks and coding chunks. In the event of a lost data chunk, erasure
coding can recover the lost data chunk with the remaining data chunks and coding chunks. Erasure
coding is substantially more economical than replication. For example, using erasure coding with 8 data
chunks and 3 coding chunks provides the same redundancy as 3 copies of the data. However, such an
encoding scheme uses approximately 1.5x of the initial data stored compared to 3x with replication.

NOTE

ONLY the data storage pool can use erasure coding. Pools storing service data and
bucket indexes use replication.

2.3. CONSIDERING MULTI-SITE DEPLOYMENT

Another important aspect of designing a cluster is to determine if the cluster will be in one data center
site or span multiple data center sites. Multi-site clusters benefit from geographically distributed
failover and disaster recovery, such as long-term power outages, earthquakes, hurricanes, floods or
other disasters. Additionally, multi-site clusters in an active-active configuration can direct client
applications to the closest available cluster in the manner of content delivery networks. Placing data as
close to the client as possible is increasingly important for throughput intensive workloads such as
streaming 4k video.

For details of multi-site clusters, see the Multi-site chapter in the Object Gateway for Red Hat
Enterprise Linux guide for Red Hat Ceph Storage 3.

NOTE

Red Hat recommends identifying realm, zone group and zone names BEFORE creating
Ceph Storage pools. Some pool names should be pre-pended with the zone name by
convention.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

6

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#erasure_code_pools
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#multi_site

CHAPTER 3. CONSIDERING HARDWARE
Considering hardware is an important part of building Ceph Storage clusters and Ceph Object Gateway
clusters for production environments. High-level considerations include:

Considering Storage Sizing

Considering Storage Density

Considering Uninterrupted Power Supplies

Considering Network Hardware

Selecting Hardware for Use Cases

Selecting Media for Indexes

Selecting Media for Monitor Nodes

IMPORTANT

Consider these factors BEFORE identifying and purchasing computing and networking
hardware for the cluster.

3.1. CONSIDERING STORAGE SIZING

One of the most important factors in designing a cluster is to determine the storage requirements
(sizing). Ceph Storage is designed to scale into petabytes and beyond. The following examples are
common sizes for Ceph storage clusters.

Small: 250 terabytes

Medium: 1 petabyte

Large: 2 petabytes or more.

Sizing should include current needs and the needs of the near future. Consider the rate at which the
gateway client will add new data to the cluster. That may differ from use-case to use-case. For example,
recording CCTV video, 4k video or medical imaging may add significant amounts of data far more
quickly then less storage intensive information such as financial market data. Additionally, consider that
data durability methods such as replication versus erasure coding will have a significant impact on the
storage media required.

For additional information on sizing, see the Red Hat Ceph Storage Hardware Selection Guide and its
associated links for selecting OSD hardware.

3.2. CONSIDERING STORAGE DENSITY

Another important aspect of cluster design includes storage density. Generally, a cluster should store
data across at least 10 nodes to ensure reasonable performance when replicating, backfilling and
recovery. If a node fails, with at least 10 nodes in the cluster, only 10% of the data has to move to the
surviving nodes. If the number of nodes is substantially less, a higher percentage of the data must move
to the surviving nodes. Additionally, the full_ratio and near_full_ratio need to be set to accommodate a
node failure to ensure that the cluster can write data. For this reason, it is is important to consider
storage density. Higher storage density isn’t necessarily a good idea.

CHAPTER 3. CONSIDERING HARDWARE

7

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/red_hat_ceph_storage_hardware_selection_guide/

Another factor that favors more nodes over higher storage density is erasure coding. When writing an
object using erasure coding and using node as the minimum CRUSH failure domain, the cluster will need
as many nodes as data and coding chunks. For example, a cluster using k=8, m=3 should have at least 11
nodes so that each data or coding chunk is stored on a separate node.

Hot-swapping is also an important consideration. Most modern servers support drive hot-swapping.
However, some hardware configurations require removing more than one drive to replace a drive. Red
Hat recommends avoiding such configurations, because they can bring down more OSDs than required
when swapping out failed disks.

3.3. CONSIDERING NETWORK HARDWARE

A major advantage of Ceph Storage is that it allows scaling capacity, IOPS and throughput
independently. An important aspect of a cloud storage solution is that clusters can run out of IOPS due
to network latency and other factors or run out of throughput due to bandwidth constraints long before
the clusters run out of storage capacity. This means that the network hardware configuration must
support the use case(s) in order to meet price/performance targets. Network performance is
increasingly important when considering the use of SSDs, flash, NVMe, and other high performance
storage methods.

Another important consideration of Ceph Storage is that it supports a front side or public network for
client and monitor data, and a back side or cluster network for heart beating, data replication and
recovery. This means that the back side or cluster network will always require more network resources
than the front side or public network. Depending upon whether the data pool uses replication or erasure
coding for data durability, the network requirements for the back side or cluster network should be
quantified appropriately.

Finally, verify network throughput before installing and testing Ceph. Most performance-related
problems in Ceph usually begin with a networking issue. Simple network issues like a kinked or bent Cat-
6 cable could result in degraded bandwidth. Use a minimum of 10 GB ethernet for the front side network.
For large clusters, consider using 40 GB ethernet for the backend or cluster network. Alternatively, use
LACP mode 4 to bond networks. Additionally, use jumbo frames, maximum transmission unit (MTU) of
9000, especially on the backend or cluster network. If using jumbo frames, then validate all
interconnecting network equipment and nodes are using jumbo frames. If jumbo frames are not
configured throughout the full network path, then a mismatch in MTU size will result in packet loss and
the possibility of Ceph OSD issues.

Additional Resources

See the Verifying and configuring the MTU value in the {storage-product} Configuration Guide
for more details.

3.4. CONSIDERING UNINTERRUPTED POWER SUPPLIES

Since Ceph writes are atomic—​all or nothing—​it isn’t a requirement to invest in uninterruptable power
supplies (UPS) for Ceph OSD nodes. However, Red Hat recommends investing in UPSs for Ceph
Monitor nodes. Monitors use leveldb, which is sensitive to synchronous write latency. A power outage
could cause corruption, requiring technical support to restore the state of the cluster.

Ceph OSDs may benefit from the use of a UPS if a storage controller uses a writeback cache. In this
scenario, a UPS may help prevent filesystem corruption during a power outage if the controller doesn’t
flush the writeback cache in time.

3.5. SELECTING HARDWARE FOR USE CASES

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

8

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/configuration_guide/#verifying-and-configuring-the-mtu-value_conf

A major advantage of Ceph Storage is that it can be configured to support many use cases. Generally,
Red Hat recommends configuring OSD hosts identically for a particular use case. The three primary use
cases for a Ceph Storage cluster are:

IOPS optimized

Throughput optimized

Capacity optimized

Since these use cases typically have different drive, HBA controller and networking requirements among
other factors, configuring a series of identical hosts to facilitate all of these use cases with a single node
configuration is possible, but is not necessarily recommended.

Using the same hosts to facilitate multiple CRUSH hierarchies will involve the use of logical, rather than
actual host names in the CRUSH map. Additionally, deployment tools such as Ansible would need to
consider a group for each use case, rather than deploying all OSDs in the default [osds] group.

NOTE

Generally, it is easier to configure and manage hosts that serve a single use case, such as
high IOPS, high throughput, or high capacity.

3.6. SELECTING MEDIA FOR INDEXES

When selecting OSD hardware for use with a Ceph Object Gateway—​irrespective of the use case—​Red
Hat recommends considering an OSD node that has at least one high performance drive for storing the
index pool. This is particularly important when buckets will contain a large number of objects.

The host should have at least one SSD or NVMe drive. In Red Hat lab testing, NVMe drives have shown
enough performance to support both OSD journals and index pools on the same drive, but in different
partitions of the NVMe drive.

An index entry is approximately 200 bytes of data, stored as an object map (omap) in leveldb. While this
is a trivial amount of data, some uses of Ceph Object Gateway can result in tens or hundreds of millions
of objects in a single bucket. By mapping the index pool to a CRUSH hierarchy of high performance
storage media, the reduced latency provides a dramatic performance improvement when buckets
contain very large numbers of objects.

IMPORTANT

In a production cluster, a typical OSD node will have at least one SSD or NVMe drive for
storing the OSD journal and the index pool, which will use separate partitions or logical
volumes when using the same physical drive.

3.7. SELECTING MEDIA FOR MONITOR NODES

Ceph monitors use leveldb, which is sensitive to synchronous write latency. Red Hat strongly
recommends using SSDs to store monitor data. Ensure that the selected SSDs have sufficient sequential
write and throughput characteristics.

CHAPTER 3. CONSIDERING HARDWARE

9

CHAPTER 4. CONFIGURING A CLUSTER
The initial configuring of a production cluster is identical to configuring a proof-of-concept system. The
only material difference is that the initial deployment will use production-grade hardware. First, follow
the Requirements for Installing Red Hat Ceph Storage chapter of the Red Hat Ceph Storage 3
Installation Guide for Red Hat Enterprise Linux and execute the appropriate steps for each node. The
following sections provide additional guidance relevant to production clusters.

4.1. NAMING HOSTS

When naming hosts, consider their use case and performance profile. For example, if the hosts will store
client data, consider naming them according to their hardware configuration and performance profile.
For example:

data-ssd-1, data-ssd-2

hot-storage-1, hot-storage-2

sata-1, sata-2

sas-ssd-1, sas-ssd-2

The naming convention may make it easier to manage the cluster and troubleshoot hardware issues as
they arise.

If the host contains hardware for multiple use cases—​for example, the host contains SSDs for data, SAS
drives with SSDs for journals, and SATA drives with co-located journals for cold storage—​choose a
generic name for the host. For example:

osd-node-1 osd-node-2

Generic host names can be extended when using logical host names in the CRUSH hierarchy as needed.
For example:

osd-node-1-ssd osd-node-1-sata osd-node-1-sas-ssd osd-node-1-bucket-index

osd-node-2-ssd osd-node-2-sata osd-node-2-sas-ssd osd-node-2-bucket-index

See Using Logical Host Names in a CRUSH Map for additional details.

4.2. TUNING THE KERNEL

Production clusters benefit from tuning the operating system, specifically limits and memory allocation.
Ensure that adjustments are set for all nodes within the cluster. Consult Red Hat support for additional
guidance.

4.2.1. Reserving Free Memory for OSDs

To help prevent insufficient memory-related errors during OSD memory allocation requests, set the
vm.min_free_kbytes option in the sysctl.conf file on OSD nodes. This option specifies the amount of
physical memory to keep in reserve. The recommended settings are based on the amount of system
RAM. For example:

For 64GB RAM, reserve 1GB.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

10

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#requirements-for-installing-rhcs

vm.min_free_kbytes = 1048576

For 128GB RAM, reserve 2GB.

vm.min_free_kbytes = 2097152

For 256GB RAM, reserve 3GB.

vm.min_free_kbytes = 3145728

4.2.2. Increasing File Descriptors

The Ceph Object Gateway may hang if it runs out of file descriptors. Modify /etc/security/limits.conf on
Ceph Object Gateway nodes to increase the file descriptors for the Ceph Object Gateway. For
example:

ceph soft nproc unlimited

4.2.3. Adjusting ulimit on Large Clusters

For system administrators that will run Ceph administrator commands on large clusters—​for example,
1024 OSDs or more—​create an /etc/security/limits.d/50-ceph.conf file on each node that will run
administrator commands with the following contents:

<username> soft nproc unlimited

Replace <username> with the name of the non-root account that will run Ceph administrator
commands.

NOTE

The root user’s ulimit is already set to "unlimited" by default on RHEL.

4.3. CONFIGURING ANSIBLE GROUPS

This procedure is only pertinent for deploying Ceph using Ansible. The ceph-ansible package is already
configured with a default osds group. If the cluster will only have one use case and storage policy,
proceed with the procedure documented in the Installing a Red Hat Ceph Storage Cluster section of the
Red Hat Ceph Storage 3 Installation Guide for Red Hat Enterprise Linux. If the cluster will support
multiple use cases and storage policies, create a group for each one. Each use case should copy
/usr/share/ceph-ansible/group_vars/osd.sample to a file named for the group name. For example, if
the cluster has IOPS-optimized, throughput-optimized and capacity-optimized use cases, create
separate files representing the groups for each use case. For example:

cd /usr/share/ceph-ansible/group_vars/
cp osds.sample osds-iops
cp osds.sample osds-throughput
cp osds.sample osds-capacity

Then, configure each file according to the use case.

CHAPTER 4. CONFIGURING A CLUSTER

11

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#installing-a-red-hat-ceph-storage-cluster

Once the group variable files are configured, edit the site.yml file to ensure that it includes each new
group. For example:

- hosts: osds-iops
 gather_facts: false
 become: True
 roles:
 - ceph-osd

- hosts: osds-throughput
 gather_facts: false
 become: True
 roles:
 - ceph-osd

- hosts: osds-capacity
 gather_facts: false
 become: True
 roles:
 - ceph-osd

Finally, in the /etc/ansible/hosts file, place the OSD nodes associated to a group under the
corresponding group name. For example:

[osds-iops]
<ceph-host-name> devices="['<device_1>', '<device_2>']"

[osds-throughput]
<ceph-host-name> devices="['<device_1>', '<device_2>']"

[osds-capacity]
<ceph-host-name> devices="['<device_1>', '<device_2>']"

4.4. CONFIGURING CEPH

Generally, administrators should configure the Red Hat Ceph Storage cluster before the initial
deployment using the Ceph Ansible configuration files found in the /usr/share/ceph-
ansible/group_vars directory.

As indicated in the Installing a Red Hat Ceph Storage Cluster section of the Red Hat Ceph Storage
installation guide:

For Monitors, create a mons.yml file from the sample.mons.yml file.

For OSDs, create an osds.yml file from the sample.osds.yml file.

For the cluster, create an all.yml file from the sample.all.yml file.

Modify the settings as directed in the Installation Guide.

Also refer to Installing the Ceph Object Gateway , and create an rgws.yml file from sample.rgws.yml.

NOTE

The settings in the foregoing files may take precedence over settings in ceph_conf_overrides.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

12

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#installing-a-red-hat-ceph-storage-cluster
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#installing-the-ceph-object-gateway

To configure settings with no corresponding values in the mons.yml, osds.yml, or rgws.yml file, add
configuration settings to the ceph_conf_overrides section of the all.yml file. For example:

ceph_conf_overrides:
 global:
 osd_pool_default_pg_num: <number>

See the Configuration File Structure for details on configuration file sections.

IMPORTANT

There are syntactic differences between specifying a Ceph configuration setting in an
Ansible configuration file and how it renders in the Ceph configuration file.

In RHCS version 3.1 and earlier, the Ceph configuration file uses ini style notion. Sections like [global] in
the Ceph configuration file should be specified as global:, indented on their own lines. It is also possible
to specify configuration sections for specific daemon instances. For example, placing osd.1: in the
ceph_conf_overrides section of the all.yml file will render as [osd.1] in the Ceph configuration file and
the settings under that section will apply to osd.1 only.

Ceph configuration settings SHOULD contain dashes (-) or underscores (_) rather than spaces, and
should terminate with a colon (:), not an equal sign (=).

Before deploying the Ceph cluster, consider the following configuration settings. When setting Ceph
configuration settings, Red Hat recommends setting the values in the ceph-ansible configuration files,
which will generate a Ceph configuration file automatically.

4.4.1. Setting the Journal Size

Set the journal size for the Ceph cluster. Configuration tools such as Ansible may have a default value.
Generally, the journal size should find the product of the synchronization interval and the slower of the
disk and network throughput, and multiply the product by two (2).

For details, see the Journal Settings section in the Configuration Guide for Red Hat Ceph Storage 3.

4.4.2. Adjusting Backfill & Recovery Settings

I/O is negatively impacted by both backfilling and recovery operations, leading to poor performance and
unhappy end users. To help accommodate I/O demand during a cluster expansion or recovery, set the
following options and values in the Ceph Configuration file:

[osd]
osd_max_backfills = 1
osd_recovery_max_active = 1
osd_recovery_op_priority = 1

4.4.3. Adjusting the Cluster Map Size

For Red Hat Ceph Storage version 2 and earlier, when the cluster has thousands of OSDs, download the
cluster map and check its file size. By default, the ceph-osd daemon caches 500 previous osdmaps.
Even with deduplication, the map may consume a lot of memory per daemon. Tuning the cache size in
the Ceph configuration file may help reduce memory consumption significantly. For example:

CHAPTER 4. CONFIGURING A CLUSTER

13

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/configuration_guide/#configuration_file_structure
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/configuration_guide/#journal_settings

[global]
osd_map_message_max=10

[osd]
osd_map_cache_size=20
osd_map_max_advance=10
osd_map_share_max_epochs=10
osd_pg_epoch_persisted_max_stale=10

For Red Hat Ceph Storage version 3 and later, the ceph-manager daemon handles PG queries, so the
cluster map should not impact performance.

4.4.4. Adjusting Scrubbing

By default, Ceph performs light scrubbing daily and deep scrubbing weekly. Light scrubbing checks
object sizes and checksums to ensure that PGs are storing the same object data. Over time, disk
sectors can go bad irrespective of object sizes and checksums. Deep scrubbing checks an object’s
content with that of its replicas to ensure that the actual contents are the same. In this respect, deep
scrubbing ensures data integrity in the manner of fsck, but the procedure imposes an I/O penalty on the
cluster. Even light scrubbing can impact I/O.

The default settings may allow Ceph OSDs to initiate scrubbing at inopportune times such as peak
operating times or periods with heavy loads. End users may experience latency and poor performance
when scrubbing operations conflict with end user operations.

To prevent end users from experiencing poor performance, Ceph provides a number of scrubbing
settings that can limit scrubbing to periods with lower loads or during off-peak hours. For details, see
the Scrubbing section in the Configuration Guide for Red Hat Ceph Storage 3.

If the cluster experiences high loads during the day and low loads late at night, consider restricting
scrubbing to night time hours. For example:

[osd]
osd_scrub_begin_hour = 23 #23:01H, or 10:01PM.
osd_scrub_end_hour = 6 #06:01H or 6:01AM.

If time constraints aren’t an effective method of determining a scrubbing schedule, consider using the
osd_scrub_load_threshold. The default value is 0.5, but it could be modified for low load conditions.
For example:

[osd]
osd_scrub_load_threshold = 0.25

4.4.5. Increase objecter_inflight_ops

In RHCS 3.0 and earlier releases, consider increasing objecter_inflight_ops to the default size for
version 3.1 and later releases to improve scalability.

objecter_inflight_ops = 24576

4.4.6. Increase rgw_thread_pool_size

In RHCS 3.0 and earlier releases, consider increasing rgw_thread_pool_size to the default size for

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

14

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/configuration_guide/#scrubbing

In RHCS 3.0 and earlier releases, consider increasing rgw_thread_pool_size to the default size for
version 3.1 and later releases to improve scalability. For example:

rgw_thread_pool_size = 512

4.4.7. Set the filestore_merge_threshold

In RHCS 3.0 and earlier releases, consider increasing filestore_merge_threshold to the default size for
version 3.1 and later releases to improve scalability. For example:

filestore_merge_threshold = -10

4.4.8. Adjusting Garbage Collection Settings

The Ceph Object Gateway allocates storage for new and overwritten objects immediately. Additionally,
the parts of a multi-part upload also consume storage.

The Ceph Object Gateway purges the storage space used for deleted objects in the Ceph Storage
cluster some time after the gateway deletes the objects from the bucket index. Similarly, the gateway
will delete data associated with a multi-part upload after the multi-part upload completes or when the
upload has gone inactive or failed to complete for a configurable time frame. The process of purging the
deleted object data from the Ceph Storage cluster is known as Garbage Collection or GC.

To view the queue of objects awaiting garbage collection, execute the following:

radosgw-admin gc list

Garbage collection is a background activity that may execute continuously or during times of low loads,
depending upon how the administrator configures the Ceph Object Gateway. By default, the Ceph
Object Gateway conducts GC operations continuously. Since GC operations are a normal part of Ceph
Object Gateway operations, especially with object delete operations, objects eligible for garbage
collection exist most of the time.

Some workloads may temporarily or permanently outpace the rate of garbage collection activity. This is
especially true of delete-heavy workloads, where many objects get stored for a short period of time and
then deleted. For these types of workloads, administrators can increase the priority of garbage
collection operations relative to other operations with the following configuration parameters.

The rgw_gc_obj_min_wait configuration setting waits a minimum length of time (in seconds) before
purging a deleted object’s data. By default, it is set to two hours. Under delete heavy workloads, this
setting may consume too much storage or leave a large number of deleted objects to purge. To address
such a situation, consider decreasing this setting to a shorter time interval.

The rgw_gc_processor_period configuration setting is the GC cycle run time. That is, the amount of
time between the start of consecutive runs of GC threads. If GC runs takes more than this period, the
Ceph Object Gateway will not wait before running a GC cycle again.

The rgw_gc_max_concurrent_io configuration setting specifies the maximum number of concurrent
IO operations that the gateway garbage collection thread will use when purging deleted data. Under
delete heavy workloads, consider increasing this setting to a larger number of concurrent IO operations.

The rgw_gc_max_trim_chunk configuration setting specifies the maximum number of keys to remove
from the garbage collector log in a single operation. Under delete heavy operations, consider increasing
the maximum number of keys so that more objects are purged during each GC operation.

CHAPTER 4. CONFIGURING A CLUSTER

15

NOTE

These garbage collection configuration parameters are for Red Hat Ceph Storage 3.3
and higher.

NOTE

In testing, during an evenly balanced delete-write workload, such as 50% delete and 50%
write operations, the cluster fills completely in eleven hours. This is because Ceph Object
Gateway garbage collection fails to keep pace with the delete operations. The cluster
status switches to the HEALTH_ERR state if this happens. Aggressive settings for
parallel garbage collection tunables significantly delayed the onset of cluster fill in testing
and can be helpful for many workloads. Typical real-world cluster workloads are not likely
to cause a cluster fill primarily due to garbage collection.

Administrators may also modify Ceph configuration settings at runtime after deployment. See Setting a
Specific Configuration Setting at Runtime for details.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

16

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/configuration_guide/#setting_a_specific_configuration_setting_at_runtime

CHAPTER 5. DEPLOYING CEPH
Once the pre-requisites and initial tuning are complete, consider deploying a Ceph cluster. When
deploying a production cluster, Red Hat recommends setting up the initial monitor cluster and enough
OSD nodes to reach an active + clean state. For details, see the Installing a Red Hat Ceph Storage
Cluster section in the Red Hat Ceph Storage 3 Installation Guide for Red Hat Enterprise Linux.

Then, install the Ceph CLI client on an administration node. For details, see the Installing the Ceph
Command Line Interface section in the Red Hat Ceph Storage 3 Installation Guide for Red Hat
Enterprise Linux.

Once the initial cluster is running, consider adding the settings in the following sections to the Ceph
configuration file.

CHAPTER 5. DEPLOYING CEPH

17

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#installing-a-red-hat-ceph-storage-cluster
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#installing-the-ceph-command-line-interface

CHAPTER 6. EXPANDING THE CLUSTER
Once the initial cluster is running and in an active+clean state, add additional OSD nodes and Ceph
Object Gateway nodes to the cluster. Apply the steps detailed in Tuning the Kernel to each node. See
the Adding and Removing OSD Nodes section in the Red Hat Ceph Storage 3 Administration Guide for
details on adding nodes.

For each OSD node added to the cluster, add OSDs to the cluster for each drive in the node that will
store client data. See the Adding an OSD section in the Red Hat Ceph Storage 3 Administration Guide
for additional details. When using Ansible to add OSD nodes, see Configuring Ansible Groups, and add
the OSD nodes to the appropriate group if the cluster will support multiple use cases.

For each Ceph Object Gateway node, install a gateway instance. For details, see the Installing the Ceph
Object Gateway section in the Red Hat Ceph Storage 3 Installation Guide for Red Hat Enterprise Linux.

Once the cluster returns to an active+clean state, remove any overrides and proceed with Developing
Storage Strategies.

NOTE

Step 3 of Adding a Node and Step 10 of Adding an OSD With the Command Line
Interface will be revisited in topics beginning with Developing CRUSH Hierarchies.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

18

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/administration_guide/#adding_and_removing_osd_nodes
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/administration_guide/#adding_an_osd
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#installing-the-ceph-object-gateway
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/administration_guide/#overrides

CHAPTER 7. DEVELOPING STORAGE STRATEGIES
One of the more challenging aspects of setting up Ceph Storage clusters and Ceph Object Gateways
for production use is defining effective storage strategies. Storage strategies involve the following
factors:

Considering Object Count

Developing CRUSH Hierarchies

Creating CRUSH Roots

Using Logical Host Names in a CRUSH Map

Creating CRUSH Rules

Creating the Root Pool

Creating a Realm

Creating Service Pools

Creating Data Placement Strategies

See the Red Hat Ceph Storage 3 Storage Strategies guide for general guidance on storage strategies
and command-line usage.

7.1. CONSIDERING EXPECTED OBJECT COUNT

Starting with Red Hat Ceph Storage 3.1 and later, an additional argument was added to the ceph osd
pool create command. The new argument sets the expected number of objects for the storage pool,
and this argument only works when creating a storage pool using FileStore. Setting the expected
number of objects applies only to storage pools where you anticipate large object counts. By setting the
expected number of objects during pool creation, the placement group folder splitting happens
immediately and not at runtime.

NOTE

While this behavior can affect all Ceph use cases, the impact to the Object Gateway use
case will be more significant, because Object Gateway is likely going to have storage
pools containing many objects, that is the default.rgw.buckets.data storage pool.

Setting the [expected-num-objects] value will improve runtime performance. Here’s why:

The FileStore stores objects as files in an xfs filesystem. FileStore stores these object files in
directories. As object counts increase or decrease, FileStore may split or merge directories to
keep object count in a directory within a reasonable range. The advanced
filestore_merge_threshold, filestore_split_multiple and filestore_split_rand_factor
configuration settings govern this behavior.

The splitting and merging behavior in FileStore has performance implications, because
FileStore has to move objects from one directory to another during splitting or merging
operations. To avoid this performance penalty in Red Hat Ceph Storage 3.1 and later releases
when using FileStore, it is important for storage administrators to estimate the expected object
count for a pool BEFORE creating the pool.

CHAPTER 7. DEVELOPING STORAGE STRATEGIES

19

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/

Gateway clients store and retrieve gateway objects, which will be stored as one or more Ceph
storage cluster objects. That is, a client object may invoke the storage of one or more Ceph
storage cluster objects due to object striping. For example, if a client stores a 40 MB video
object, the Ceph Object Gateway will stripe the video object into a series of 10 4 MB objects
and store them on different OSDs across the cluster. Striping provides some performance
improvement via parallelism. The advanced rgw_obj_stripe_size configuration setting governs
the stripe size, and CANNOT be changed after creating the pool.

To estimate what the expected object count might be, you will base it on the storage capacity of the
Red Hat Ceph Storage cluster. There are three approximate sizes based on storage capacity:

Small = 250 TB

Medium = 1 PB

Large = 2 PB+

See the Red Hat Ceph Storage Hardware Selection Guide for more information.

Assuming an OSD disk size of 4 TB, these sizes provide the number of OSDs, as follows:

Small = 250 TB = 63 OSDs

Medium = 1 PB = 256 OSDs

Large = 2 PB+ = 512 OSDs

Red Hat recommends using the following formula to determine the expected number of objects per
storage pool:

1 M x Number of OSDs

For the three approximate sizes, the expected object count must be set to 63M, 256M, and 512M
respectively.

Another consideration, is that a bucket index entry is approximately 200 bytes of data, stored as an
object map (omap) in leveldb. Since this is smaller than rgw_obj_stripe_size, the expected object
count for the bucket index should be the same as the number of gateway objects the client stores and
retrieves.

When creating pools, specify the expected number of objects and ensure filestore_merge_threshold is
set to a negative number to ensure that placement group folder splitting occurs at pool creation time
rather than at runtime.

IMPORTANT

While the storage pools are being created, the directory structures are being put into
place. This will take some time and will consume the storage cluster’s resources. If the
expected object count is set too high, for example, 1 trillion, then OSD sucidie timeouts
can occur.

7.2. DEVELOPING CRUSH HIERARCHIES

When deploying a Ceph cluster and an Object Gateway, typically the object gateway will have a default
zone group and zone. The Ceph storage cluster will have default pools, which in turn will use a CRUSH
map with a default CRUSH hierarchy and a default CRUSH rule.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

20

https://www.redhat.com/cms/managed-files/st-RHCS-selection-guide-technology-detail-INC0232826-201607-en_0.pdf

IMPORTANT

The default rbd pool may use the default CRUSH rule. DO NOT delete the default rule or
hierarchy if Ceph clients have used them to store client data.

For general details on CRUSH hierarchies, see the CRUSH Administration section of the Storage
Strategies guide.

Production gateways typically use a custom realm, zone group and zone named according to the use
and geographic location of the gateways. Additionally, the Ceph cluster will have a CRUSH map that has
multiple CRUSH hierarchies.

Service Pools: At least one CRUSH hierarchy will be for service pools and potentially for data.
The service pools include .rgw.root and the service pools associated with the zone. Service
pools typically fall under a single CRUSH hierarchy, and use replication for data durability. A data
pool may also use the CRUSH hierarchy, but the pool will usually be configured with erasure
coding for data durability.

Index: At least one CRUSH hierarchy SHOULD be for the index pool, where the CRUSH
hierarchy maps to high performance media such as SSD or NVMe drives. Bucket indices can be
a performance bottleneck. It is strongly recommended to use SSD or NVMe drives in this
CRUSH hierarchy. To economize, create partitions for indices on SSDs or NVMe drives used for
OSD journals. Additionally, an index should be configured with bucket sharding. See Creating an
Index Pool and supporting links for details.

Placement Pools: The placement pools for each placement target include the bucket index, the
data bucket and the bucket extras. These pools may fall under separate CRUSH hierarchies.
Since Ceph Object Gateway can support multiple storage policies, the bucket pools of the
storage policies may be associated with different CRUSH hierarchies, reflecting different use
cases such as IOPS-optimized, throughput-optimized, and capacity-optimized respectively. The
bucket index pool SHOULD use its own CRUSH hierarchy to map the bucket index pool to
higher performance storage media such as SSD or NVMe drives.

7.2.1. Creating CRUSH Roots

From the command line on the administration node, create CRUSH roots in the CRUSH map for each
CRUSH hierarchy. There MUST be at least one CRUSH hierarchy for service pools that may also
potentially serve data storage pools. There SHOULD be at least one CRUSH hierarchy for the bucket
index pool, mapped to high performance storage media such as SSDs or NVMe drives.

For details on CRUSH hierarchies, see {storage-strategies-guid}#crush_hierarchies[CRUSH
Hierarchies] section in the Storage Strategies Guide for Red Hat Ceph Storage 3.

To manually edit a CRUSH map, see Editing a CRUSH Map section in the Storage Strategies Guide for
Red Hat Ceph Storage 3.

In the following examples, the hosts named data0, data1 and data2 use extended logical names such as
data0-sas-ssd, data0-index and so forth in the CRUSH map, because there are multiple CRUSH
hierarchies pointing to the same physical hosts.

A typical CRUSH root might represent nodes with SAS drives and SSDs for journals. For example:

##
SAS-SSD ROOT DECLARATION
##

CHAPTER 7. DEVELOPING STORAGE STRATEGIES

21

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#crush_administration
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#editing_a_crush_map

root sas-ssd {
 id -1 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item data2-sas-ssd weight 4.000
 item data1-sas-ssd weight 4.000
 item data0-sas-ssd weight 4.000
}

A CRUSH root for bucket indexes SHOULD represent high performance media such as SSD or NVMe
drives. Consider creating partitions on SSD or NVMe media that store OSD journals. For example:

##
INDEX ROOT DECLARATION
##

root index {
 id -2 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item data2-index weight 1.000
 item data1-index weight 1.000
 item data0-index weight 1.000
}

7.2.2. Using Logical Host Names in a CRUSH Map

In RHCS 3 and later releases, CRUSH supports the notion of a storage device "class," which is not
supported in RHCS 2 and earlier releases. In RHCS 3 clusters with hosts or nodes that contain multiple
classes of storage device, such as NVMe, SSD or HDD, use a single CRUSH hierarchy with device classes
to distinguish different classes of storage device. This eliminates the need to use logical host names. In
RHCS 2 and earlier releases, use multiple CRUSH hierarchies, one for each class of device, and logical
host names to distinguish the hosts or nodes in the CRUSH hierarchy.

In the CRUSH map, host names must be unique and used only once. When the host serves multiple
CRUSH hierarchies and use cases, a CRUSH map may use logical host names instead of the actual host
name in order to ensure the host name is only used once. For example, a node may have multiple classes
of drives such as SSDs, SAS drives with SSD journals, and SATA drives with co-located journals. To
create multiple CRUSH hierarchies for the same host in RHCS 2 and earlier releases, the hierarchies will
need to use logical host names in lieu of the actual host names so the bucket names are unique within
the CRUSH hierarchy. For example, if the host name is data2, the CRUSH hierarchy might use logical
names such as data2-sas-ssd and data2-index. For example:

host data2-sas-ssd {
 id -11 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item osd.0 weight 1.000
 item osd.1 weight 1.000
 item osd.2 weight 1.000
 item osd.3 weight 1.000
}

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

22

In the foregoing example, the host data2 uses the logical name data2-sas-ssd to map the SAS drives
with journals on SSDs into one hierarchy. The OSD IDs osd.0 through osd.3 in the forgoing example
represent SAS drives using SSD journals in a high throughput hardware configuration. These OSD IDs
differ from the OSD ID in the following example.

In the following example, the host data2 uses the logical name data2-index to map the SSD drive for a
bucket index into a second hierarchy. The OSD ID osd.4 in the following example represents an SSD
drive or other high speed storage media used exclusively for a bucket index pool.

host data2-index {
 id -21 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item osd.4 weight 1.000
}

IMPORTANT

When using logical host names, ensure that one of the following settings is present in the
Ceph configuration file to prevent the OSD startup scripts from using the actual host
names upon startup and thereby failing to locate data in CRUSH map.

When the CRUSH map uses logical host names, as in the foregoing examples, prevent the OSD startup
scripts from identifying the hosts according to their actual host names at initialization. In the [global]
section of the Ceph configuration file, add the following setting:

osd_crush_update_on_start = false

An alternative method of defining a logical host name is to define the location of the CRUSH map for
each OSD in the [osd.<ID>] sections of the Ceph configuration file. This will override any locations the
OSD startup script defines. From the foregoing examples, the entries might look like the following:

[osd.0]
osd crush location = "host=data2-sas-ssd"

[osd.1]
osd crush location = "host=data2-sas-ssd"

[osd.2]
osd crush location = "host=data2-sas-ssd"

[osd.3]
osd crush location = "host=data2-sas-ssd"

[osd.4]
osd crush location = "host=data2-index"

IMPORTANT

CHAPTER 7. DEVELOPING STORAGE STRATEGIES

23

IMPORTANT

If one of the foregoing approaches isn’t used when a CRUSH map uses logical host
names rather than actual host names, on restart, the Ceph Storage Cluster will assume
that the OSDs map to the actual host names, and the actual host names will not be found
in the CRUSH map, and Ceph Storage Cluster clients will not find the OSDs and their
data.

7.2.3. Creating CRUSH Rules

Like the default CRUSH hierarchy, the CRUSH map also contains a default CRUSH rule.

NOTE

The default rbd pool may use this rule. DO NOT delete the default rule if other pools
have used it to store customer data.

For general details on CRUSH rules, see the CRUSH Rules section in the Storage Strategies guide for
Red Hat Ceph Storage 3. To manually edit a CRUSH map, see the Editing a CRUSH Map section in the
Storage Strategies guide for Red Hat Ceph Storage 3.

For each CRUSH hierarchy, create a CRUSH rule. The following example illustrates a rule for the CRUSH
hierarchy that will store the service pools, including .rgw.root. In this example, the root sas-ssd serves
as the main CRUSH hierarchy. It uses the name rgw-service to distinguish itself from the default rule.
The step take sas-ssd line tells the pool to use the sas-ssd root created in Creating CRUSH Roots ,
whose child buckets contain OSDs with SAS drives and high performance storage media such as SSD or
NVMe drives for journals in a high throughput hardware configuration. The type rack portion of step
chooseleaf is the failure domain. In the following example, it is a rack.

##
SERVICE RULE DECLARATION
##

rule rgw-service {
 type replicated
 min_size 1
 max_size 10
 step take sas-ssd
 step chooseleaf firstn 0 type rack
 step emit
}

NOTE

In the foregoing example, if data gets replicated three times, there should be at least
three racks in the cluster containing a similar number of OSD nodes.

TIP

The type replicated setting has NOTHING to do with data durability, the number of replicas or the
erasure coding. Only replicated is supported.

The following example illustrates a rule for the CRUSH hierarchy that will store the data pool. In this

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

24

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#crush_rules
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#editing_a_crush_map

example, the root sas-ssd serves as the main CRUSH hierarchy—​the same CRUSH hierarchy as the
service rule. It uses rgw-throughput to distinguish itself from the default rule and rgw-service. The
step take sas-ssd line tells the pool to use the sas-ssd root created in Creating CRUSH Roots , whose
child buckets contain OSDs with SAS drives and high performance storage media such as SSD or NVMe
drives in a high throughput hardware configuration. The type host portion of step chooseleaf is the
failure domain. In the following example, it is a host. Notice that the rule uses the same CRUSH
hierarchy, but a different failure domain.

##
THROUGHPUT RULE DECLARATION
##

rule rgw-throughput {
 type replicated
 min_size 1
 max_size 10
 step take sas-ssd
 step chooseleaf firstn 0 type host
 step emit
}

NOTE

In the foregoing example, if the pool uses erasure coding with a larger number of data
and encoding chunks than the default, there should be at least as many racks in the
cluster containing a similar number of OSD nodes to facilitate the erasure coding chunks.
For smaller clusters, this may not be practical, so the foregoing example uses host as the
CRUSH failure domain.

The following example illustrates a rule for the CRUSH hierarchy that will store the index pool. In this
example, the root index serves as the main CRUSH hierarchy. It uses rgw-index to distinguish itself
from rgw-service and rgw-throughput. The step take index line tells the pool to use the index root
created in Creating CRUSH Roots , whose child buckets contain high performance storage media such as
SSD or NVMe drives or partitions on SSD or NVMe drives that also store OSD journals. The type rack
portion of step chooseleaf is the failure domain. In the following example, it is a rack.

##
INDEX RULE DECLARATION
##

rule rgw-index {
 type replicated
 min_size 1
 max_size 10
 step take index
 step chooseleaf firstn 0 type rack
 step emit
}

7.3. CREATING THE ROOT POOL

The Ceph Object Gateway configuration gets stored in a pool named .rgw.root, including realms, zone
groups and zones. By convention, its name is not prepended with the zone name.

CHAPTER 7. DEVELOPING STORAGE STRATEGIES

25

.rgw.root

If the Ceph Storage Cluster is running, create an .rgw.root pool using the new rule. See the Ceph
Placement Groups (PGs) per Pool Calculator and the Placement Groups chapter in the Storage
Strategies Guide for details on the number of PGs. See the Create a Pool section in the Storage
Strategies Guide for details on creating a pool.

In this instance, the pool will use replicated and NOT erasure for data durability. For example:

ceph osd pool create .rgw.root 32 32 replicated sas-ssd

NOTE

For service pools, including .rgw.root, the suggested PG count from the Ceph Placement
Groups (PGs) per Pool Calculator is substantially less than the target PGs per OSD. Also,
ensure the number of OSDs is set in step 3 of the calculator.

Once this pool gets created, the Ceph Object Gateway can store its configuration data in the pool.

7.4. CREATING A REALM

The Ceph Storage pools supporting the Ceph Object Gateway apply to a zone within a zone group. By
default, Ceph Object Gateway will define a default zone group and zone.

For the master zone group and zone, Red Hat recommends creating a new realm, zone group and zone.
Then, delete the default zone and its pools if they were already generated. Use Configuring a Master
Zone as a best practice, because this configures the cluster for Multi Site operation.

1. Create a realm. See Realms for additional details.

2. Create a master zone group . See Zone Groups for additional details on zone groups.

3. Create a master zone . See Zones for additional details on zones.

4. Delete the default zone group and zone . You MAY delete default pools if they were created,
and are not storing client data. DO NOT delete the .rgw.root pool.

5. Create a System User .

6. Update the period .

7. Update the Ceph Configuration file .

NOTE

This procedure omits the step of starting the gateway, since the gateway may create the
pools manually. To specify specific CRUSH rules and data durability methods, create the
pools manually.

By setting up a new realm, zone group and zone, the cluster is now prepared for expansion to a multi site
cluster where there are multiple zones within the zone group. This means that the cluster can be
expanded and configured for failover, and disaster recovery. See Expanding the Cluster with Multi Site
for additional details.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

26

https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#placement-groups-pgs
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#create_a_pool
https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#configuring_a_master_zone
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#multi_site
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#create_a_realm_2
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#realms
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#create_a_master_zone_group
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#zone_groups
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#create_a_master_zone
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#zones
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#delete_default_zone_group_and_zone
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#create_a_system_user
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#update_the_period
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#update_the_ceph_configuration_file
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#expanding_the_cluster_with_multi_site

In Red Hat Ceph Storage 2, multi site configurations are active-active by default. When deploying a
multi site cluster, the zones and their underlying Ceph storage clusters may be in different geographic
regions. Since each zone has a deep copy of each object in the same namespace, users can access the
copy from the zone that is physically the closest to them, reducing latency. However, the cluster may be
configured in active-passive mode if the secondary zones are intended only for failover and disaster
recovery.

NOTE

Using a zone group with multiple zones is supported. Using multiple zone groups is a
technology preview only, and is not supported in production.

7.5. CREATING SERVICE POOLS

The Ceph Object Gateway uses many pools for various service functions, and a separate set of
placement pools for storing bucket indexes, data and other information.

Since it is computationally expensive to peer a pool’s placement groups, Red Hat generally recommends
that the Ceph Object Gateway’s service pools use substantially fewer placement groups than data
storage pools.

The service pools store objects related to service control, garbage collection, logging, user information,
usage, etc. By convention, these pool names have the zone name prepended to the pool name.

.<zone-name>.rgw.control: The control pool.

.<zone-name>.rgw.gc: The garbage collection pool, which contains hash buckets of objects to

CHAPTER 7. DEVELOPING STORAGE STRATEGIES

27

.<zone-name>.rgw.gc: The garbage collection pool, which contains hash buckets of objects to
be deleted.

.<zone-name>.log: The log pool contains logs of all bucket/container and object actions such
as create, read, update and delete.

.<zone-name>.intent-log: The intent log pool contains a copy of an object update request to
facilitate undo/redo if a request fails.

.<zone-name>.users.uid: The user ID pool contains a map of unique user IDs.

.<zone-name>.users.keys: The keys pool contains access keys and secret keys for each user
ID.

.<zone-name>.users.email: The email pool contains email addresses associated to a user ID.

.<zone-name>.users.swift: The Swift pool contains the Swift subuser information for a user ID.

.<zone-name>.usage: The usage pool contains a usage log on a per user basis.

Execute the Get a Zone procedure to see the pool names.

radosgw-admin zone get [--rgw-zone=<zone>]

When radosgw-admin creates a zone, the pool names SHOULD be prepended with the zone name. For
example, a zone named us-west SHOULD have pool names that look something like this:

{ "domain_root": ".rgw.root",
 "control_pool": ".us-west.rgw.control",
 "gc_pool": ".us-west.rgw.gc",
 "log_pool": ".us-west.log",
 "intent_log_pool": ".us-west.intent-log",
 "usage_log_pool": ".us-west.usage",
 "user_keys_pool": ".us-west.users.keys",
 "user_email_pool": ".us-west.users.email",
 "user_swift_pool": ".us-west.users.swift",
 "user_uid_pool": ".us-west.users.uid",
 "system_key": { "access_key": "", "secret_key": ""},
 "placement_pools": [
 { "key": "default-placement",
 "val": { "index_pool": ".us-west.rgw.buckets.index",
 "data_pool": ".us-west.rgw.buckets",
 "data_extra_pool": ".us-west.rgw.buckets.non-ec"
 "index_type": 0
 }
 }
]
}

Beginning with control_pool and ending with user_uid_pool, create the pools using the pool names in
the zone, provided the zone name is prepended to the pool name. Following the previous examples, pool
creation might look something like this:

ceph osd pool create .us-west.rgw.control 32 32 replicated rgw-service
...
ceph osd pool create .us-west.users.uid 32 32 replicated rgw-service

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

28

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#get_a_zone

From previous examples, the rgw-service rule represents a CRUSH hierarchy of SAS drives with SSD
journals and rack as the CRUSH failure domain. See Creating CRUSH Roots , and Creating CRUSH Rules
for preceding examples.

See the Ceph Placement Groups (PGs) per Pool Calculator and the Placement Groups chapter in the
Storage Strategies guide for details on the number of PGs. See the Create a Pool section in the Storage
Strategies guide for details on creating a pool.

NOTE

For service pools the suggested PG count from the calculator is substantially less than
the target PGs per OSD. Ensure that step 3 of the calculator specifies the correct
number of OSDs.

Generally, the .rgw.root pool and the service pools should use the same CRUSH hierarchy and use at
least node as the failure domain in the CRUSH rule. Like the .rgw.root pool, the service pools should use
replicated for data durability, NOT erasure.

7.6. CREATING DATA PLACEMENT STRATEGIES

The Ceph Object Gateway has a default storage policy called default-placement. If the cluster has only
one storage policy, the default-placement policy will suffice. This default placement policy is
referenced from the zone group configuration and defined in the zone configuration.

See Storage Policies section in the Red Hat Ceph Storage 3 Ceph Object Gateway Guide for Red Hat
Enterprise Linux for additional details.

For clusters that support multiple use cases, such as IOPS-optimized, throughput-optimized or
capacity-optimized, a set of placement targets in the zone group configuration and a set of placement
pools in the zone configuration represent each storage policy.

The examples in the following sections illustrate how to create a storage policy and make it the default
policy. This example also assumes the default policy will use a throughput-optimized hardware profile.
Topics include:

Creating an Index Pool

Creating a Data Pool

Creating a Data Extra Pool

Configuring Placement Targets in a Zone Group

Configuring Placement Pools in a Zone

Data Placement Summary

7.6.1. Creating an Index Pool

By default, Ceph Object Gateway maps a bucket’s objects to an index, which enables a gateway client to
request a list of objects in a bucket among other things. While common use cases may involve quotas
where users have a bucket and a limited number of objects per bucket, buckets can store innumerable

CHAPTER 7. DEVELOPING STORAGE STRATEGIES

29

https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#placement-groups-pgs
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#create_a_pool
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#storage_policies

objects. When buckets store millions of objects or more, index performance benefits substantially from
using high performance storage media such as SSD or NVMe drives to store its data. Additionally,
bucket sharding also dramatically improves performance.

See the Ceph Placement Groups (PGs) per Pool Calculator and the Placement Groups chapter in the
Storage Strategies guide for details on the number of PGs. See the Create a Pool section in the Storage
Strategies guide for details on creating a pool.

NOTE

The PG per Pool Calculator recommends a smaller number of PGs per pool for the index
pool; however, the PG count is approximately twice the number of PGs as the service
pools.

To create an index pool, execute ceph osd pool create with the pool name, the number of PGs and
PGPs, the replicated data durability method, and the name of the rule. For RHCS 3.1 and later releases
using FileStore, refer to Considering Expected Object Count and consider specifying an expected
number of objects for the pool. For example:

ceph osd pool create .us-west.rgw.buckets.index 64 64 replicated rgw-index [expected-num-
objects]

For Red Hat Ceph Storage 3.1 and later releases using FileStore, replace [expected-num-objects] with
the expected number of objects. The rgw-index rule represents a CRUSH hierarchy of high
performance SSD or NVMe drives or partitions and rack as the CRUSH failure domain. See Selecting
Media for Indexes, Creating CRUSH Roots , and Creating CRUSH Rules for additional examples.

IMPORTANT

If buckets will store more than 100k objects, configure bucket sharding to ensure that
index performance doesn’t degrade as the number of objects in the bucket increases.
See the Configuring Bucket Sharding section in the Ceph Object Gateway Guide for Red
Hat Enterprise Linux. Also see the Bucket Index Resharding section in the Ceph Object
Gateway Guide for Red Hat Enterprise Linux for details on resharding a bucket if the
original configuration is no longer suitable.

7.6.2. Creating a Data Pool

The data pool is where Ceph Object Gateway stores the object data for a particular storage policy. The
data pool should have a full complement of PGs, not the reduced number of PGs for service pools. The
data pool SHOULD consider using erasure coding, as it is substantially more efficient than replication
and can significantly reduce the capacity requirements while maintaining data durability.

To use erasure coding, create an erasure code profile. See the Erasure Code Profiles section in the
Storage Strategies Guide for more details.

IMPORTANT

Choosing the correct profile is important because you cannot change the profile after
you create the pool. To modify a profile, you must create a new pool with a different
profile and migrate the objects from the old pool to the new pool.

The default configuration is two data chunks and one encoding chunk, which means only one OSD can
be lost. For higher resiliency, consider a larger number of data and encoding chunks. For example, some

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

30

https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#placement-groups-pgs
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#create_a_pool
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#configuring-bucket-index-sharding
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#resharding-bucket-index
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/#erasure-code-profiles

large very scale systems use 8 data chunks and 3 encoding chunks, which allows three OSDs to fail
without losing data.

IMPORTANT

Each data and encoding chunk SHOULD get stored on a different node or host at a
minimum. For smaller clusters, this makes using rack impractical as the minimum CRUSH
failure domain when using a larger number of data and encoding chunks. Consequently, it
is common for the data pool to use a separate CRUSH hierarchy with host as the
minimum CRUSH failure domain. Red Hat recommends host as the minimum failure
domain. If erasure code chunks get stored on OSDs within the same host, a host failure
such as a failed journal or network card could lead to data loss.

To create a data pool, execute ceph osd pool create with the pool name, the number of PGs and
PGPs, the erasure data durability method, the erasure code profile and the name of the rule. For RHCS
3.1 and later releases using FileStore, refer to Considering Expected Object Count and consider
specifying an expected number of objects for the pool. For example:

ceph osd pool create .us-west.rgw.buckets.throughput 8192 8192 erasure 8k3m rgw-throughput
[expected-num-objects]

For RHCS 3.1 and later releases using FileStore, replace [expected-num-objects] with the expected
number of objects. The rgw-throughput rule represents a CRUSH hierarchy of SAS drives with SSD
journals and host as the CRUSH failure domain. See Creating CRUSH Roots , and Creating CRUSH Rules
for preceding examples.

7.6.3. Creating a Data Extra Pool

The data_extra_pool is for data that cannot use erasure coding. For example, multi-part uploads allow
uploading a large object such as a movie in multiple parts. These parts must first be stored without
erasure coding. Erasure coding will apply to the whole object, not the partial uploads.

NOTE

The PG per Pool Calculator recommends a smaller number of PGs per pool for the
data_extra_pool; however, the PG count is approximately twice the number of PGs as
the service pools and the same as the bucket index pool.

To create a data extra pool, execute ceph osd pool create with the pool name, the number of PGs and
PGPs, the replicated data durability method, and the name of the rule. For example:

ceph osd pool create .us-west.rgw.buckets.non-ec 64 64 replicated rgw-service

7.6.4. Configuring Placement Targets in a Zone Group

Once the pools are created, create the placement target in the zone group. To retrieve the zone group,
execute the following to output the zone group configuration to a file called zonegroup.json:

radosgw-admin zonegroup get [--rgw-zonegroup=<zonegroup>] > zonegroup.json

The file contents will look something like this:

CHAPTER 7. DEVELOPING STORAGE STRATEGIES

31

{
 "id": "90b28698-e7c3-462c-a42d-4aa780d24eda",
 "name": "us",
 "api_name": "us",
 "is_master": "true",
 "endpoints": [
 "http:\/\/rgw1:80"
],
 "hostnames": [],
 "hostnames_s3website": [],
 "master_zone": "9248cab2-afe7-43d8-a661-a40bf316665e",
 "zones": [
 {
 "id": "9248cab2-afe7-43d8-a661-a40bf316665e",
 "name": "us-east",
 "endpoints": [
 "http:\/\/rgw1"
],
 "log_meta": "true",
 "log_data": "true",
 "bucket_index_max_shards": 0,
 "read_only": "false"
 },
 {
 "id": "d1024e59-7d28-49d1-8222-af101965a939",
 "name": "us-west",
 "endpoints": [
 "http:\/\/rgw2:80"
],
 "log_meta": "false",
 "log_data": "true",
 "bucket_index_max_shards": 0,
 "read_only": "false"
 }
],
 "placement_targets": [
 {
 "name": "default-placement",
 "tags": []
 }
],
 "default_placement": "default-placement",
 "realm_id": "ae031368-8715-4e27-9a99-0c9468852cfe"
}

The placement_targets section will list each storage policy. By default, it will contain a placement target
called default-placement. The default placement target is identified immediately after the
placement_targets section.

Assuming a placement target called throughput-optimized, with throughput-optimized as the default
target, the placement_targets section and the default_placement setting of the zone group
configuration should be modified to something like this:

{
 ...

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

32

 "placement_targets": [
 {
 "name": "throughput-optimized",
 "tags": []
 }
],
 "default_placement": "throughput-optimized",
 ...
}

Finally, set the zone group configuration with the settings from the modified zonegroup.json file; then,
update the period. For example:

radosgw-admin zonegroup set [--rgw-zonegroup=<zonegroup>] --infile zonegroup.json
radosgw-admin period update --commit

7.6.5. Configuring Placement Pools in a Zone

Once the zone group has the new throughput-optimized placement target, map the placement pools
for throughput-optimized in the zone configuration. This step will replace the mapping for default-
placement to its associated pools with a throughput-optimized set of placement pools.

Execute the Get a Zone procedure to see the pool names.

radosgw-admin zone get [--rgw-zone=<zone>] > zone.json

Assuming a zone named us-west, the file contents will look something like this:

{ "domain_root": ".rgw.root",
 "control_pool": ".us-west.rgw.control",
 "gc_pool": ".us-west.rgw.gc",
 "log_pool": ".us-west.log",
 "intent_log_pool": ".us-west.intent-log",
 "usage_log_pool": ".us-west.usage",
 "user_keys_pool": ".us-west.users.keys",
 "user_email_pool": ".us-west.users.email",
 "user_swift_pool": ".us-west.users.swift",
 "user_uid_pool": ".us-west.users.uid",
 "system_key": { "access_key": "", "secret_key": ""},
 "placement_pools": [
 { "key": "default-placement",
 "val": { "index_pool": ".us-west.rgw.buckets.index",
 "data_pool": ".us-west.rgw.buckets",
 "data_extra_pool": ".us-west.rgw.buckets.non-ec"
 "index_type": 0
 }
 }
]
}

The placement_pools section of the zone configuration defines sets of placement pools. Each set of
placement pools defines a storage policy. Modify the file to remove the default-placement entry, and
replace it with a throughput-optimized entry with the pools created in the preceding steps. For
example:

CHAPTER 7. DEVELOPING STORAGE STRATEGIES

33

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#get_a_zone

{
...
"placement_pools": [
 { "key": "throughput-optimized",
 "val": { "index_pool": ".us-west.rgw.buckets.index",
 "data_pool": ".us-west.rgw.buckets.throughput"}
 "data_extra_pool": ".us-west.rgw.buckets.non-ec",
 "index_type": 0
 }
]
}

Finally, set the zone configuration with the settings from the modified zone.json file; then, update the
period. For example:

radosgw-admin zone set --rgw-zone={zone-name} --infile zone.json
radosgw-admin period update --commit

NOTE

The index_pool points to the index pool and CRUSH hierarchy with SSDs or other high-
performance storage, the data_pool points to a pool with a full complement of PGs, and
a CRUSH hierarchy of high-throughput host bus adapters, SAS drives and SSDs for
journals.

7.6.6. Data Placement Summary

When processing client requests, the Ceph Object Gateway will use the new throughput-optimized
target as the default storage policy. Use this procedure to establish the same target in different zones
and zone groups in a multi-site configuration, replacing the zone name for the pools as appropriate.

Use this procedure to establish additional storage policies. The naming for each target and set of
placement pools is arbitrary. It could be fast, streaming, cold-storage or any other suitable name.
However, each set must have a corresponding entry under placement_targets in the zone group, and
one of the targets MUST be referenced in the default_placement setting; and, the zone must have a
corresponding set of pools configured for each policy.

Client requests will always use the default target, unless the client request specifies X-Storage-Policy
and a different target. See Create a Container for an object gateway client usage example.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

34

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/developer_guide/#create_a_container

CHAPTER 8. CONFIGURING GATEWAYS
The final steps in preparing the Ceph Object Gateway for production involve configuring Civetweb,
firewall ports, the DNS and load balancers. Topics include:

Configuring Civetweb

Configuring Firewall Ports

Configuring DNS Wildcards

Configuring Load Balancers

8.1. CONFIGURING CIVETWEB

Depending on the choices made during installation of the Ceph Object Gateway, the Ceph
configuration file will already have entries for each instance of the Ceph Object Gateway with additional
modifications from the steps involved in Creating a Realm .

The most common configuration change from the default configuration is changing the default Ansible
configured port of 8080 to another port such as 80. See Changing the CivetWeb port .

There are additional settings particular to Civetweb. See Civetweb Configuration Options for details.

There are additional settings which may be overridden. See Object Gateway Configuration Reference
for details.

NOTE

The section on Additional Use Cases will provide detailed configuration examples for
using Ceph Object Gateway with third party components.

8.2. CONFIGURING FIREWALL PORTS

When changing the default port for Civetweb, ensure that the corresponding ports are open for client
access. For details, see the Configuring the Firewall for Red Hat Ceph Storage section in the Red Hat
Ceph Storage 3 Installation Guide for Red Hat Enterprise Linux.

8.3. CONFIGURING DNS WILDCARDS

S3-style subdomains incorporate the bucket name as a CNAME extension. Add a wildcard to the DNS to
facilitate S3-style subdomains. For details, see the Adding a Wildcard to DNS section in the Red Hat
Ceph Storage 3 Ceph Object Gateway Guide for Red Hat Enterprise Linux.

8.4. CONFIGURING LOAD BALANCERS

A zone will typically have multiple instances of a Ceph Object Gateway to handle production loads and
to maintain high availability. Production clusters typically use a load balancer to allocate requests among
gateway instances.

Additionally, earlier versions of Civetweb do not support HTTPS. A load balancer can be configured to
accept SSL requests, terminate the SSL connection and pass the request over HTTP to the gateway
instances.

CHAPTER 8. CONFIGURING GATEWAYS

35

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux//#installing-the-ceph-object-gateway
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#changing-the-civetweb-port-rgw
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#civetweb_configuration_options
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#object_gateway_configuration_reference
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_ubuntu/#configuring-a-firewall-for-red-hat-ceph-storag
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#adding_a_wildcard_to_dns

Ceph Storage aims to maintain high availability. For this reason, Red Hat recommends using HAProxy or
keepalived. For details, see the HAProxy/keepalived Configuration section in the Ceph Object Gateway
Guide for Red Hat Enterprise Linux.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

36

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#haproxy_keepalived_configuration

CHAPTER 9. ADDITIONAL USE CASES
Once the cluster is up and running, there are additional use cases to consider.

Expanding the Cluster with Multi-Site

Migrating Data with NFS-Ganesha

Configuring the Cluster for Static Webhosting

Configuring the Cluster with LDAP/AD

Configuring the Cluster to use Keystone

9.1. EXPANDING THE CLUSTER WITH MULTISITE

When developing storage strategies, the procedure for Creating a Realm ensured that the cluster is
already configured to use multi-site with its own realm, master zone group and master zone.

A typical production cluster will have a secondary zone with its own Ceph Storage Cluster in a separate
physical location to act as a backup in the event of a disaster. To set up a secondary zone, repeat the
procedures in this guide. Generally, the secondary zone should have the same hardware configuration
and sizing as the master zone. See Configuring a Secondary Zone for additional details.

Adding a secondary zone adds Failover and Disaster Recovery capabilities to the cluster.

CHAPTER 9. ADDITIONAL USE CASES

37

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#configure_a_secondary_zone
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#failover_and_disaster_recovery

9.2. MIGRATING DATA WITH NFS GANESHA

If the Ceph Object Gateway and Ceph Storage Cluster replaces a filesystem-based storage solution,
consider using Ceph’s NFS-Ganesha solution to migrate data from the file system into Ceph Object
Gateway.

See Exporting the Namespace to NFS-Ganesha chapter in the Ceph Object Gateway Guide for Red
Hat Enterprise Linux.

9.3. CONFIGURING THE CLUSTER FOR STATIC WEBHOSTING

Traditional web hosting sometimes involves setting up a web server for each website, which can use
resources inefficiently when content doesn’t change dynamically.

Ceph Object Gateway can host static web sites in S3 buckets—​that is, sites that do not use server-side
services like PHP, servlets, databases, nodejs and the like. This approach is substantially more
economical than setting up VMs with web servers for each site.

See Configuring Gateways for Static Web Hosting for additional details.

9.4. CONFIGURING THE CLUSTER FOR LDAP/AD

Organizations deploying Ceph Object Gateway for their users and applications may choose to use
Light-weight Directory Access Protocol (LDAP) or Microsoft Active Directory (AD) to authenticate with
the Ceph Object Gateway in lieu of creating Ceph Object Gateway users.

Using LDAP/AD means that Ceph Object Gateway can integrate with an organizations LDAP/AD single
sign-on initiatives.

For details, see the Ceph Object Gateway with LDAP/AD Guide for Red Hat Ceph Storage 3.

9.5. CONFIGURING THE CLUSTER TO USE OPENSTACK KEYSTONE

When deploying the Ceph Object Gateway in lieu of OpenStack Swift, it is possible to configure the
gateway to use OpenStack Keystone to authenticate users in lieu of creating Ceph Object Gateway
users.

For details, see the Using Keystone to Authenticate Ceph Object Gateway Users guide for Red Hat
Ceph Storage 3.

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

38

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#exporting_the_namespace_to_nfs_ganesha
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#configuring_gateways_for_static_web_hosting
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/ceph_object_gateway_with_ldapad_guide/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/using_keystone_to_authenticate_ceph_object_gateway_users/

CHAPTER 10. USING NVME WITH LVM OPTIMALLY
1. Summary

The procedures below demonstrate how to deploy Ceph for Object Gateway usage optimally
when using high speed NVMe based SSDs (this applies to SATA SSDs too). Journals and bucket
indexes will be placed together on high speed storage devices, which can increase performance
compared to having all journals on one device. This configuration requires setting osd_scenario
to lvm.

Procedures for two example configurations are provided:

One NVMe device and at least four HDDs using one bucket index: One NVMe device

Two NVMe devices and at least four HDDs using two bucket indexes: Two NVMe devices

2. Details
The most basic Ceph setup uses the osd_scenario setting of collocated. This stores the OSD
data and its journal on one storage device together (they are "co-located"). Typical server
configurations include both HDDs and SSDs. Since HDDs are usually larger than SSDs, in a
collocated configuration to utitlize the most storage space an HDD would be chosen, putting
both the OSD data and journal on it alone. However, the journal should ideally be on a faster
SSD. Another option is using the osd_scenario setting of non-collocated. This allows
configuration of dedicated devices for journals, so you can put the OSD data on HDDs and the
journals on SSDs.

In addition to OSD data and journals, when using Object Gateway a bucket index needs to be
stored on a device. In this case Ceph is often configured so that HDDs hold the OSD data, one
SSD holds the journals, and another SSD holds the bucket indexes. This can create highly
imbalanced situations where the SSD with all the journals becomes saturated while the SSD with
bucket indexes is underutilized.

The solution is to set osd_scenario to lvm and use Logical Volume Manager (LVM) to divide
up single SSD devices for more than one purpose. This allows journals and bucket indexes to
exist side by side on a single device. Most importantly, it allows journals to exist on more than
one SSD, spreading the intense IO data transfer of the journals across more than one device.

The normal Ansible playbooks provided by the ceph-ansible RPM used to install Ceph (site.yml,
osds.yml, etc.) don’t support using one device for more than one purpose.

In the future the normal Ansible playbooks will support using one device for more than one
purpose. In the meantime the playbooks lv-create.yml and lv-vars.yaml are being provided to
facilitate creating the required Logicial Volumes (LVs) for optimal SSD usage. After lv-
create.yml is run site.yml can be run normally and it will use the newly created LVs.

IMPORTANT

These procedures only apply to the FileStore storage backend, not the newer
BlueStore storage backend.

10.1. USING ONE NVME DEVICE

Follow this procedure to deploy Ceph for Object Gateway usage with one NVMe device.

10.1.1. Purge Any Existing Ceph cluster

CHAPTER 10. USING NVME WITH LVM OPTIMALLY

39

If Ceph is already configured, purge it in order to start over. An ansible playbook file named purge-
cluster.yml is provided for this purpose.

$ ansible-playbook purge-cluster.yml

For more information on how to use purge-cluster.yml see Purging a Ceph Cluster by Using Ansible in
the Installation Guide for Red Hat Enterprise Linux or Installation Guide for Ubuntu depending on your
chosen Linux distribution.

IMPORTANT

Purging the cluster may not be enough to prepare the servers for redeploying Ceph using
the following procedures. Any file system, GPT, RAID, or other signatures on storage
devices used by Ceph may cause problems. Instructions to remove any signatures using
wipefs are provided under Run The lv-create.yml Ansible Playbook .

10.1.2. Configure The Cluster for Normal Installation

Setting aside any NVMe and/or LVM considerations, configure the cluster as you would normally but
stop before running ansible-playbook site.yml. Afterwards, the cluster installation configuration will be
adjusted specifically for optimal NVMe/LVM usage to support the Object Gateway. Only at that time
should ansible-playbook site.yml be run.

To configure the cluster for normal installation consult the Installation Guide for Red Hat Enterprise
Linux or Installation Guide for Ubuntu depending on your chosen Linux distribution. In particular,
complete the steps in Installing a Red Hat Ceph Storage Cluster through Step 9 creating an Ansible log
directory. Stop before Step 10 when ansible-playbook site.yml is run.

IMPORTANT

Do not run ansible-playbook site.yml until all the steps after this and before Install
Ceph for NVMe and Verify Success have been completed.

10.1.3. Identify The NVMe and HDD Devices

Use lsblk to identify the NVMe and HDD devices connected to the server. Example output from lsblk is
listed below:

[root@c04-h05-6048r ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
├─sda1 8:1 0 4G 0 part
│ └─md1 9:1 0 4G 0 raid1 [SWAP]
├─sda2 8:2 0 512M 0 part
│ └─md0 9:0 0 512M 0 raid1 /boot
└─sda3 8:3 0 461.3G 0 part
 └─md2 9:2 0 461.1G 0 raid1 /
sdb 8:16 0 465.8G 0 disk
├─sdb1 8:17 0 4G 0 part
│ └─md1 9:1 0 4G 0 raid1 [SWAP]
├─sdb2 8:18 0 512M 0 part
│ └─md0 9:0 0 512M 0 raid1 /boot
└─sdb3 8:19 0 461.3G 0 part
 └─md2 9:2 0 461.1G 0 raid1 /

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

40

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#purging-a-ceph-cluster-by-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_ubuntu/#purging-a-ceph-cluster-by-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_ubuntu/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#installing-a-red-hat-ceph-storage-cluster

sdc 8:32 0 1.8T 0 disk
sdd 8:48 0 1.8T 0 disk
sde 8:64 0 1.8T 0 disk
sdf 8:80 0 1.8T 0 disk
sdg 8:96 0 1.8T 0 disk
sdh 8:112 0 1.8T 0 disk
sdi 8:128 0 1.8T 0 disk
sdj 8:144 0 1.8T 0 disk
sdk 8:160 0 1.8T 0 disk
sdl 8:176 0 1.8T 0 disk
sdm 8:192 0 1.8T 0 disk
sdn 8:208 0 1.8T 0 disk
sdo 8:224 0 1.8T 0 disk
sdp 8:240 0 1.8T 0 disk
sdq 65:0 0 1.8T 0 disk
sdr 65:16 0 1.8T 0 disk
sds 65:32 0 1.8T 0 disk
sdt 65:48 0 1.8T 0 disk
sdu 65:64 0 1.8T 0 disk
sdv 65:80 0 1.8T 0 disk
sdw 65:96 0 1.8T 0 disk
sdx 65:112 0 1.8T 0 disk
sdy 65:128 0 1.8T 0 disk
sdz 65:144 0 1.8T 0 disk
sdaa 65:160 0 1.8T 0 disk
sdab 65:176 0 1.8T 0 disk
sdac 65:192 0 1.8T 0 disk
sdad 65:208 0 1.8T 0 disk
sdae 65:224 0 1.8T 0 disk
sdaf 65:240 0 1.8T 0 disk
sdag 66:0 0 1.8T 0 disk
sdah 66:16 0 1.8T 0 disk
sdai 66:32 0 1.8T 0 disk
sdaj 66:48 0 1.8T 0 disk
sdak 66:64 0 1.8T 0 disk
sdal 66:80 0 1.8T 0 disk
nvme0n1 259:0 0 745.2G 0 disk
nvme1n1 259:1 0 745.2G 0 disk

In this example the following raw block devices will be used:

NVMe devices

1. /dev/nvme0n1

HDD devices

1. /dev/sdc

2. /dev/sdd

3. /dev/sde

4. /dev/sdf

The file lv_vars.yaml configures logical volume creation on the chosen devices. It creates journals on

CHAPTER 10. USING NVME WITH LVM OPTIMALLY

41

The file lv_vars.yaml configures logical volume creation on the chosen devices. It creates journals on
NVMe, an NVMe based bucket index, and HDD based OSDs. The actual creation of logical volumes is
initiated by lv-create.yml, which reads lv_vars.yaml.

That file should only have one NVMe device referenced in it at a time. For information on using Ceph
with two NVMe devices optimally see Using Two NVMe Devices .

10.1.4. Add The Devices to lv_vars.yaml

1. As root, navigate to the /usr/share/ceph-ansible/ directory:

cd /usr/share/ceph-ansible

2. As root, copy the lv_vars.yaml Ansible playbook to the current directory:

cp infrastructure-playbooks/vars/lv_vars.yaml .

3. Edit the file so it includes the following lines:

nvme_device: /dev/nvme0n1
hdd_devices:
 - /dev/sdc
 - /dev/sdd
 - /dev/sde
 - /dev/sdf

10.1.5. Run The lv-create.yml Ansible Playbook

The purpose of the lv-create.yml playbook is to create logical volumes for the object gateway bucket
index, and journals, on a single NVMe. It does this by using osd_scenario=lvm as opposed to using
osd_scenario=non-collocated. The lv-create.yml Ansible playbook makes it easier to configure Ceph
in this way by automating some of the complex LVM creation and configuration.

1. As root, copy the lv-create.yml Ansible playbook to the current directory:

cp infrastructure-playbooks/lv-create.yml .

2. Ensure the storage devices are raw
Before running lv-create.yml to create the logical volumes on the NVMe devices and HDD
devices, ensure there are no file system, GPT, RAID, or other signatures on them.

If they are not raw, when you run lv-create.yml it may fail with the following error:

device /dev/sdc excluded by a filter

3. Wipe storage device signatures (optional)
If the devices have signatures you can use wipefs to erase them.

An example of using wipefs to erase the devices is shown below:

[root@c04-h01-6048r ~]# wipefs -a /dev/sdc
/dev/sdc: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/sdc: 8 bytes were erased at offset 0x1d19ffffe00 (gpt): 45 46 49 20 50 41 52 54

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

42

/dev/sdc: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sdc: calling ioclt to re-read partition table: Success
[root@c04-h01-6048r ~]# wipefs -a /dev/sdd
/dev/sdd: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/sdd: 8 bytes were erased at offset 0x1d19ffffe00 (gpt): 45 46 49 20 50 41 52 54
/dev/sdd: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sdd: calling ioclt to re-read partition table: Success
[root@c04-h01-6048r ~]# wipefs -a /dev/sde
/dev/sde: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/sde: 8 bytes were erased at offset 0x1d19ffffe00 (gpt): 45 46 49 20 50 41 52 54
/dev/sde: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sde: calling ioclt to re-read partition table: Success
[root@c04-h01-6048r ~]# wipefs -a /dev/sdf
/dev/sdf: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/sdf: 8 bytes were erased at offset 0x1d19ffffe00 (gpt): 45 46 49 20 50 41 52 54
/dev/sdf: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sdf: calling ioclt to re-read partition table: Success

4. Run the lv-teardown.yml Ansible playbook:
Always run lv-teardown.yml before running lv-create.yml:

As root, copy the lv-teardown.yml Ansible playbook to the current directory:

cp infrastructure-playbooks/lv-teardown.yml .

Run the lv-teardown.yml Ansible playbook:

$ ansible-playbook lv-teardown.yml

WARNING

Proceed with caution when running the lv-teardown.yml Ansible script. It
destroys data. Ensure you have backups of any important data.

5. Run the lv-create.yml Ansible playbook:

$ ansible-playbook lv-create.yml

6. Once lv-create.yml completes without error continue to the next section to verify it worked
properly.

10.1.6. Verify LVM Configuration

1. Review lv-created.log
Once the lv-create.yml Ansible playbook completes successfully, configuration information will
be written to lv-created.log. Later this information will be copied into group_vars/osds.yml.
Open lv-created.log and look for information similar to the below example:



CHAPTER 10. USING NVME WITH LVM OPTIMALLY

43

 - data: ceph-bucket-index-1
 data_vg: ceph-nvme-vg-nvme0n1
 journal: ceph-journal-bucket-index-1-nvme0n1
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sdc
 data_vg: ceph-hdd-vg-sdc
 journal: ceph-journal-sdc
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sdd
 data_vg: ceph-hdd-vg-sdd
 journal: ceph-journal-sdd
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sde
 data_vg: ceph-hdd-vg-sde
 journal: ceph-journal-sde
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sdf
 data_vg: ceph-hdd-vg-sdf
 journal: ceph-journal-sdf
 journal_vg: ceph-nvme-vg-nvme0n1

2. Review LVM configuration

Based on the example of one NVMe device and four HDDs the following Logical
Volumes (LVs) should be created:

One journal LV per HDD placed on NVMe (four LVs on /dev/nvme0n1)

One data LV per HDD placed on each HDD (one LV per HDD)

One journal LV for bucket index placed on NVMe (one LV on /dev/nvme0n1)

One data LV for bucket index placed on NVMe (one LV on /dev/nvme0n1)

The LVs can be seen in lsblk and lvscan output. In the example explained above, there should
be ten LVs for Ceph. As a rough sanity check you could count the Ceph LVs to make sure there
are at least ten, but ideally you would make sure the appropriate LVs were created on the right
storage devices (NVMe vs HDD).

Example output from lsblk is shown below:

[root@c04-h01-6048r ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
├─sda1 8:1 0 4G 0 part
│ └─md1 9:1 0 4G 0 raid1 [SWAP]
├─sda2 8:2 0 512M 0 part
│ └─md0 9:0 0 512M 0 raid1 /boot
└─sda3 8:3 0 461.3G 0 part
 └─md2 9:2 0 461.1G 0 raid1 /
sdb 8:16 0 465.8G 0 disk
├─sdb1 8:17 0 4G 0 part
│ └─md1 9:1 0 4G 0 raid1 [SWAP]
├─sdb2 8:18 0 512M 0 part
│ └─md0 9:0 0 512M 0 raid1 /boot
└─sdb3 8:19 0 461.3G 0 part

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

44

 └─md2 9:2 0 461.1G 0 raid1 /
sdc 8:32 0 1.8T 0 disk
└─ceph--hdd--vg--sdc-ceph--hdd--lv--sdc 253:6 0 1.8T 0 lvm
sdd 8:48 0 1.8T 0 disk
└─ceph--hdd--vg--sdd-ceph--hdd--lv--sdd 253:7 0 1.8T 0 lvm
sde 8:64 0 1.8T 0 disk
└─ceph--hdd--vg--sde-ceph--hdd--lv--sde 253:8 0 1.8T 0 lvm
sdf 8:80 0 1.8T 0 disk
└─ceph--hdd--vg--sdf-ceph--hdd--lv--sdf 253:9 0 1.8T 0 lvm
sdg 8:96 0 1.8T 0 disk
sdh 8:112 0 1.8T 0 disk
sdi 8:128 0 1.8T 0 disk
sdj 8:144 0 1.8T 0 disk
sdk 8:160 0 1.8T 0 disk
sdl 8:176 0 1.8T 0 disk
sdm 8:192 0 1.8T 0 disk
sdn 8:208 0 1.8T 0 disk
sdo 8:224 0 1.8T 0 disk
sdp 8:240 0 1.8T 0 disk
sdq 65:0 0 1.8T 0 disk
sdr 65:16 0 1.8T 0 disk
sds 65:32 0 1.8T 0 disk
sdt 65:48 0 1.8T 0 disk
sdu 65:64 0 1.8T 0 disk
sdv 65:80 0 1.8T 0 disk
sdw 65:96 0 1.8T 0 disk
sdx 65:112 0 1.8T 0 disk
sdy 65:128 0 1.8T 0 disk
sdz 65:144 0 1.8T 0 disk
sdaa 65:160 0 1.8T 0 disk
sdab 65:176 0 1.8T 0 disk
sdac 65:192 0 1.8T 0 disk
sdad 65:208 0 1.8T 0 disk
sdae 65:224 0 1.8T 0 disk
sdaf 65:240 0 1.8T 0 disk
sdag 66:0 0 1.8T 0 disk
sdah 66:16 0 1.8T 0 disk
sdai 66:32 0 1.8T 0 disk
sdaj 66:48 0 1.8T 0 disk
sdak 66:64 0 1.8T 0 disk
sdal 66:80 0 1.8T 0 disk
nvme0n1 259:0 0 745.2G 0 disk
├─ceph--nvme--vg--nvme0n1-ceph--journal--bucket--index--1--nvme0n1 253:0 0 5.4G 0
lvm
├─ceph--nvme--vg--nvme0n1-ceph--journal--sdc 253:1 0 5.4G 0 lvm
├─ceph--nvme--vg--nvme0n1-ceph--journal--sdd 253:2 0 5.4G 0 lvm
├─ceph--nvme--vg--nvme0n1-ceph--journal--sde 253:3 0 5.4G 0 lvm
├─ceph--nvme--vg--nvme0n1-ceph--journal--sdf 253:4 0 5.4G 0 lvm
└─ceph--nvme--vg--nvme0n1-ceph--bucket--index--1 253:5 0 718.4G 0 lvm
nvme1n1 259:1 0 745.2G 0 disk

Example lvscan output is below:

[root@c04-h01-6048r ~]# lvscan
 ACTIVE '/dev/ceph-hdd-vg-sdf/ceph-hdd-lv-sdf' [<1.82 TiB] inherit
 ACTIVE '/dev/ceph-hdd-vg-sde/ceph-hdd-lv-sde' [<1.82 TiB] inherit

CHAPTER 10. USING NVME WITH LVM OPTIMALLY

45

 ACTIVE '/dev/ceph-hdd-vg-sdd/ceph-hdd-lv-sdd' [<1.82 TiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-journal-bucket-index-1-nvme0n1' [5.37
GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-journal-sdc' [5.37 GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-journal-sdd' [5.37 GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-journal-sde' [5.37 GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-journal-sdf' [5.37 GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-bucket-index-1' [<718.36 GiB] inherit
 ACTIVE '/dev/ceph-hdd-vg-sdc/ceph-hdd-lv-sdc' [<1.82 TiB] inherit

10.1.7. Edit The osds.yml and all.yml Ansible Playbooks

1. Copy the previously mentioned configuration information from lv-created.log into
group_vars/osds.yml under the lvm_volumes: line.

2. Set osd_scenario: to lvm:

osd_scenario: lvm

3. Set osd_objectstore: filestore in all.yml and osds.yml.
The osds.yml file should look similar to this:

Variables here are applicable to all host groups NOT roles

osd_objectstore: filestore
osd_scenario: lvm
lvm_volumes:
 - data: ceph-bucket-index-1
 data_vg: ceph-nvme-vg-nvme0n1
 journal: ceph-journal-bucket-index-1-nvme0n1
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sdc
 data_vg: ceph-hdd-vg-sdc
 journal: ceph-journal-sdc
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sdd
 data_vg: ceph-hdd-vg-sdd
 journal: ceph-journal-sdd
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sde
 data_vg: ceph-hdd-vg-sde
 journal: ceph-journal-sde
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sdf
 data_vg: ceph-hdd-vg-sdf
 journal: ceph-journal-sdf
 journal_vg: ceph-nvme-vg-nvme0n1

10.1.8. Install Ceph for NVMe and Verify Success

After configuring Ceph for installation to use NVMe with LVM optimally, install it.

1. Run the site.yml Ansible playbook to install Ceph

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

46

$ ansible-playbook -v -i hosts site.yml

2. Verify Ceph is running properly after install completes

ceph -s

ceph osd tree

Example ceph -s output showing Ceph is running properly:

 # ceph -s
 cluster:
 id: 15d31a8c-3152-4fa2-8c4e-809b750924cd
 health: HEALTH_WARN
 Reduced data availability: 32 pgs inactive

 services:
 mon: 3 daemons, quorum b08-h03-r620,b08-h05-r620,b08-h06-r620
 mgr: b08-h03-r620(active), standbys: b08-h05-r620, b08-h06-r620
 osd: 35 osds: 35 up, 35 in

 data:
 pools: 4 pools, 32 pgs
 objects: 0 objects, 0 bytes
 usage: 0 kB used, 0 kB / 0 kB avail
 pgs: 100.000% pgs unknown
 32 unknown

Example ceph osd tree output showing Ceph is running properly:

[root@c04-h01-6048r ~]# ceph osd tree
ID CLASS WEIGHT TYPE NAME STATUS REWEIGHT PRI-AFF
 -1 55.81212 root default
-15 7.97316 host c04-h01-6048r
 13 hdd 1.81799 osd.13 up 1.00000 1.00000
 20 hdd 1.81799 osd.20 up 1.00000 1.00000
 26 hdd 1.81799 osd.26 up 1.00000 1.00000
 32 hdd 1.81799 osd.32 up 1.00000 1.00000
 6 ssd 0.70119 osd.6 up 1.00000 1.00000
 -3 7.97316 host c04-h05-6048r
 12 hdd 1.81799 osd.12 up 1.00000 1.00000
 17 hdd 1.81799 osd.17 up 1.00000 1.00000
 23 hdd 1.81799 osd.23 up 1.00000 1.00000
 29 hdd 1.81799 osd.29 up 1.00000 1.00000
 2 ssd 0.70119 osd.2 up 1.00000 1.00000
-13 7.97316 host c04-h09-6048r
 11 hdd 1.81799 osd.11 up 1.00000 1.00000
 16 hdd 1.81799 osd.16 up 1.00000 1.00000
 22 hdd 1.81799 osd.22 up 1.00000 1.00000
 27 hdd 1.81799 osd.27 up 1.00000 1.00000
 4 ssd 0.70119 osd.4 up 1.00000 1.00000
 -5 7.97316 host c04-h13-6048r
 10 hdd 1.81799 osd.10 up 1.00000 1.00000
 15 hdd 1.81799 osd.15 up 1.00000 1.00000

CHAPTER 10. USING NVME WITH LVM OPTIMALLY

47

 21 hdd 1.81799 osd.21 up 1.00000 1.00000
 28 hdd 1.81799 osd.28 up 1.00000 1.00000
 1 ssd 0.70119 osd.1 up 1.00000 1.00000
 -9 7.97316 host c04-h21-6048r
 8 hdd 1.81799 osd.8 up 1.00000 1.00000
 18 hdd 1.81799 osd.18 up 1.00000 1.00000
 25 hdd 1.81799 osd.25 up 1.00000 1.00000
 30 hdd 1.81799 osd.30 up 1.00000 1.00000
 5 ssd 0.70119 osd.5 up 1.00000 1.00000
-11 7.97316 host c04-h25-6048r
 9 hdd 1.81799 osd.9 up 1.00000 1.00000
 14 hdd 1.81799 osd.14 up 1.00000 1.00000
 33 hdd 1.81799 osd.33 up 1.00000 1.00000
 34 hdd 1.81799 osd.34 up 1.00000 1.00000
 0 ssd 0.70119 osd.0 up 1.00000 1.00000
 -7 7.97316 host c04-h29-6048r
 7 hdd 1.81799 osd.7 up 1.00000 1.00000
 19 hdd 1.81799 osd.19 up 1.00000 1.00000
 24 hdd 1.81799 osd.24 up 1.00000 1.00000
 31 hdd 1.81799 osd.31 up 1.00000 1.00000
 3 ssd 0.70119 osd.3 up 1.00000 1.00000

Ceph is now set up to use one NVMe device and LVM optimally for Object Storage Gateway.

10.2. USING TWO NVME DEVICES

Follow this procedure to deploy Ceph for Object Gateway usage with two NVMe devices.

10.2.1. Purge Any Existing Ceph Cluster

If Ceph is already configured, purge it in order to start over. An ansible playbook file named purge-
cluster.yml is provided for this purpose.

$ ansible-playbook purge-cluster.yml

For more information on how to use purge-cluster.yml see Purging a Ceph Cluster by Using Ansible in
the Installation Guide for Red Hat Enterprise Linux or Installation Guide for Ubuntu depending on your
chosen Linux distribution.

IMPORTANT

Purging the cluster may not be enough to prepare the servers for redeploying Ceph using
the following procedures. Any file system, GPT, RAID, or other signatures on storage
devices used by Ceph may cause problems. Instructions to remove any signatures using
wipefs are provided under Run The lv-create.yml Ansible Playbook .

10.2.2. Configure The Cluster for Normal Installation

Setting aside any NVMe and/or LVM considerations, configure the cluster as you would normally but
stop before running ansible-playbook site.yml. Afterwards, the cluster installation configuration will be
adjusted specifically for optimal NVMe/LVM usage to support the Object Gateway. Only at that time
should ansible-playbook site.yml be run.

To configure the cluster for normal installation consult the Installation Guide for Red Hat Enterprise

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

48

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#purging-a-ceph-cluster-by-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_ubuntu/#purging-a-ceph-cluster-by-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/

Linux or Installation Guide for Ubuntu depending on your chosen Linux distribution. In particular,
complete the steps in Installing a Red Hat Ceph Storage Cluster through Step 9 creating an Ansible log
directory. Stop before Step 10 when ansible-playbook site.yml is run.

IMPORTANT

Do not run ansible-playbook site.yml until all the steps after this and before Install
Ceph for NVMe and Verify Success have been completed.

10.2.3. Identify The NVMe and HDD Devices

Use lsblk to identify the NVMe and HDD devices connected to the server. Example output from lsblk is
listed below:

[root@c04-h09-6048r ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
├─sda1 8:1 0 512M 0 part /boot
└─sda2 8:2 0 465.3G 0 part
 ├─vg_c04--h09--6048r-lv_root 253:0 0 464.8G 0 lvm /
 └─vg_c04--h09--6048r-lv_swap 253:1 0 512M 0 lvm [SWAP]
sdb 8:16 0 465.8G 0 disk
sdc 8:32 0 1.8T 0 disk
sdd 8:48 0 1.8T 0 disk
sde 8:64 0 1.8T 0 disk
sdf 8:80 0 1.8T 0 disk
sdg 8:96 0 1.8T 0 disk
sdh 8:112 0 1.8T 0 disk
sdi 8:128 0 1.8T 0 disk
sdj 8:144 0 1.8T 0 disk
sdk 8:160 0 1.8T 0 disk
sdl 8:176 0 1.8T 0 disk
sdm 8:192 0 1.8T 0 disk
sdn 8:208 0 1.8T 0 disk
sdo 8:224 0 1.8T 0 disk
sdp 8:240 0 1.8T 0 disk
sdq 65:0 0 1.8T 0 disk
sdr 65:16 0 1.8T 0 disk
sds 65:32 0 1.8T 0 disk
sdt 65:48 0 1.8T 0 disk
sdu 65:64 0 1.8T 0 disk
sdv 65:80 0 1.8T 0 disk
sdw 65:96 0 1.8T 0 disk
sdx 65:112 0 1.8T 0 disk
sdy 65:128 0 1.8T 0 disk
sdz 65:144 0 1.8T 0 disk
sdaa 65:160 0 1.8T 0 disk
sdab 65:176 0 1.8T 0 disk
sdac 65:192 0 1.8T 0 disk
sdad 65:208 0 1.8T 0 disk
sdae 65:224 0 1.8T 0 disk
sdaf 65:240 0 1.8T 0 disk
sdag 66:0 0 1.8T 0 disk
sdah 66:16 0 1.8T 0 disk
sdai 66:32 0 1.8T 0 disk

CHAPTER 10. USING NVME WITH LVM OPTIMALLY

49

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_ubuntu/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#installing-a-red-hat-ceph-storage-cluster

sdaj 66:48 0 1.8T 0 disk
sdak 66:64 0 1.8T 0 disk
sdal 66:80 0 1.8T 0 disk
nvme0n1 259:1 0 745.2G 0 disk
nvme1n1 259:0 0 745.2G 0 disk

In this example the following raw block devices will be used:

NVMe devices

1. /dev/nvme0n1

2. /dev/nvme1n1

HDD devices

1. /dev/sdc

2. /dev/sdd

3. /dev/sde

4. /dev/sdf

The file lv_vars.yaml configures logical volume creation on the chosen devices. It creates journals on
NVMe, an NVMe based bucket index, and HDD based OSDs. The actual creation of logical volumes is
initiated by lv-create.yml, which reads lv_vars.yaml.

That file should only have one NVMe device referenced in it at a time. It should also only reference the
HDD devices to be associated with that particular NVMe device. For OSDs that contain more than one
NVMe device edit lv_vars.yaml for each NVMe and run lv-create.yml repeatedly for each NVMe. This
is explained below.

In the example this means lv-create.yml will first be run on /dev/nvme0n1 and then again on
/dev/nvme1n1.

10.2.4. Add The Devices to lv_vars.yaml

1. As root, navigate to the /usr/share/ceph-ansible/ directory:

cd /usr/share/ceph-ansible

2. As root, copy the lv_vars.yaml Ansible playbook to the current directory:

cp infrastructure-playbooks/vars/lv_vars.yaml .

3. For the first run edit the file so it includes the following lines:

nvme_device: /dev/nvme0n1
hdd_devices:
 - /dev/sdc
 - /dev/sdd

The journal size, number of bucket indexes, their sizes and names, and the bucket indexes' journal names

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

50

The journal size, number of bucket indexes, their sizes and names, and the bucket indexes' journal names
can all be adjusted in lv_vars.yaml. See the comments within the file for more information.

10.2.5. Run The lv-create.yml Ansible Playbook

The purpose of the lv-create.yml playbook is to create logical volumes for the object gateway bucket
index, and journals, on a single NVMe. It does this by using osd_scenario=lvm as opposed to using
osd_scenario=non-collocated. The lv-create.yml Ansible playbook makes it easier to configure Ceph
in this way by automating some of the complex LVM creation and configuration.

1. As root, copy the lv-create.yml Ansible playbook to the current directory:

cp infrastructure-playbooks/lv-create.yml .

2. Ensure the storage devices are raw
Before running lv-create.yml to create the logical volumes on the NVMe devices and HDD
devices, ensure there are no file system, GPT, RAID, or other signatures on them.

If they are not raw, when you run lv-create.yml it may fail with the following error:

device /dev/sdc excluded by a filter

3. Wipe storage device signatures (optional)
If the devices have signatures you can use wipefs to erase them.

An example of using wipefs to erase the devices is shown below:

[root@c04-h01-6048r ~]# wipefs -a /dev/sdc
/dev/sdc: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/sdc: 8 bytes were erased at offset 0x1d19ffffe00 (gpt): 45 46 49 20 50 41 52 54
/dev/sdc: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sdc: calling ioclt to re-read partition table: Success
[root@c04-h01-6048r ~]# wipefs -a /dev/sdd
/dev/sdd: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/sdd: 8 bytes were erased at offset 0x1d19ffffe00 (gpt): 45 46 49 20 50 41 52 54
/dev/sdd: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sdd: calling ioclt to re-read partition table: Success
[root@c04-h01-6048r ~]# wipefs -a /dev/sde
/dev/sde: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/sde: 8 bytes were erased at offset 0x1d19ffffe00 (gpt): 45 46 49 20 50 41 52 54
/dev/sde: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sde: calling ioclt to re-read partition table: Success
[root@c04-h01-6048r ~]# wipefs -a /dev/sdf
/dev/sdf: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/sdf: 8 bytes were erased at offset 0x1d19ffffe00 (gpt): 45 46 49 20 50 41 52 54
/dev/sdf: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa
/dev/sdf: calling ioclt to re-read partition table: Success

4. Run the lv-teardown.yml Ansible playbook:
Always run lv-teardown.yml before running lv-create.yml:

As root, copy the lv-teardown.yml Ansible playbook to the current directory:

cp infrastructure-playbooks/lv-teardown.yml .

CHAPTER 10. USING NVME WITH LVM OPTIMALLY

51

Run the lv-teardown.yml Ansible playbook:

$ ansible-playbook lv-teardown.yml

WARNING

Proceed with caution when running the lv-teardown.yml Ansible script. It
destroys data. Ensure you have backups of any important data.

5. Run the lv-create.yml Ansible playbook:

$ ansible-playbook lv-create.yml

10.2.6. Copy First NVMe LVM Configuration

1. Review lv-created.log
Once the lv-create.yml Ansible playbook completes successfully, configuration information will
be written to lv-created.log. Open lv-created.log and look for information similar to the below
example:

 - data: ceph-bucket-index-1
 data_vg: ceph-nvme-vg-nvme0n1
 journal: ceph-journal-bucket-index-1-nvme0n1
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sdc
 data_vg: ceph-hdd-vg-sdc
 journal: ceph-journal-sdc
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sdd
 data_vg: ceph-hdd-vg-sdd
 journal: ceph-journal-sdd
 journal_vg: ceph-nvme-vg-nvme0n1

2. Copy this information into group_vars/osds.yml under lvm_volumes:.

10.2.7. Run The lv-create.yml Playbook on NVMe device two

The following instructions are abbreviated steps to set up a second NVMe device. Consult the related
steps above for further context if needed.

1. Modify lv-vars.yaml to use the second NVMe and associated HDDs.
Following the previous example, lv-vars.yaml will now have the following devices set:

nvme_device: /dev/nvme1n1
hdd_devices:
 - /dev/sde
 - /dev/sdf



Red Hat Ceph Storage 3 Ceph Object Gateway for Production

52

2. Run lv-teardown.yml:

$ ansible-playbook lv-teardown.yml

3. Run lv-create.yml again

$ ansible-playbook lv-create.yml

10.2.8. Copy Second NVMe LVM Configuration

1. Review lv-created.log
Once the lv-create.yml Ansible playbook completes successfully, configuration information will
be written to lv-created.log. Open lv-created.log and look for information similar to the below
example:

 - data: ceph-bucket-index-1
 data_vg: ceph-nvme-vg-nvme1n1
 journal: ceph-journal-bucket-index-1-nvme1n1
 journal_vg: ceph-nvme-vg-nvme1n1
 - data: ceph-hdd-lv-sde
 data_vg: ceph-hdd-vg-sde
 journal: ceph-journal-sde
 journal_vg: ceph-nvme-vg-nvme1n1
 - data: ceph-hdd-lv-sdf
 data_vg: ceph-hdd-vg-sdf
 journal: ceph-journal-sdf
 journal_vg: ceph-nvme-vg-nvme1n1

2. Copy this information into group_vars/osds.yml under the already entered information under
lvm_volumes:.

10.2.9. Verify LVM Configuration

1. Review LVM Configuration
Based on the example of two NVMe device and four HDDs the following Logical Volumes (LVs)
should be created:

One journal LV per HDD placed on both NVMe devices (two LVs on /dev/nvme0n1, two on
/dev/nvme1n1)

One data LV per HDD placed on each HDD (one LV per HDD)

One journal LV per bucket index placed on NVMe (one LV on /dev/nvme0n1, one LV on
/dev/nvme1n1)

One data LV per bucket index placed on both NVMe devices (one LV on /dev/nvme0n1, one LV
on /dev/nvme1n1)

The LVs can be seen in lsblk and lvscan output. In the example explained above, there should
be twelve LVs for Ceph. As a rough sanity check you could count the Ceph LVs to make sure
there are at least twelve, but ideally you would make sure the appropriate LVs were created on
the right storage devices (NVMe vs HDD).

Example output from lsblk is shown below:

CHAPTER 10. USING NVME WITH LVM OPTIMALLY

53

[root@c04-h01-6048r ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
├─sda1 8:1 0 4G 0 part
│ └─md1 9:1 0 4G 0 raid1 [SWAP]
├─sda2 8:2 0 512M 0 part
│ └─md0 9:0 0 512M 0 raid1 /boot
└─sda3 8:3 0 461.3G 0 part
 └─md2 9:2 0 461.1G 0 raid1 /
sdb 8:16 0 465.8G 0 disk
├─sdb1 8:17 0 4G 0 part
│ └─md1 9:1 0 4G 0 raid1 [SWAP]
├─sdb2 8:18 0 512M 0 part
│ └─md0 9:0 0 512M 0 raid1 /boot
└─sdb3 8:19 0 461.3G 0 part
 └─md2 9:2 0 461.1G 0 raid1 /
sdc 8:32 0 1.8T 0 disk
└─ceph--hdd--vg--sdc-ceph--hdd--lv--sdc 253:4 0 1.8T 0 lvm
sdd 8:48 0 1.8T 0 disk
└─ceph--hdd--vg--sdd-ceph--hdd--lv--sdd 253:5 0 1.8T 0 lvm
sde 8:64 0 1.8T 0 disk
└─ceph--hdd--vg--sde-ceph--hdd--lv--sde 253:10 0 1.8T 0 lvm
sdf 8:80 0 1.8T 0 disk
└─ceph--hdd--vg--sdf-ceph--hdd--lv--sdf 253:11 0 1.8T 0 lvm
sdg 8:96 0 1.8T 0 disk
sdh 8:112 0 1.8T 0 disk
sdi 8:128 0 1.8T 0 disk
sdj 8:144 0 1.8T 0 disk
sdk 8:160 0 1.8T 0 disk
sdl 8:176 0 1.8T 0 disk
sdm 8:192 0 1.8T 0 disk
sdn 8:208 0 1.8T 0 disk
sdo 8:224 0 1.8T 0 disk
sdp 8:240 0 1.8T 0 disk
sdq 65:0 0 1.8T 0 disk
sdr 65:16 0 1.8T 0 disk
sds 65:32 0 1.8T 0 disk
sdt 65:48 0 1.8T 0 disk
sdu 65:64 0 1.8T 0 disk
sdv 65:80 0 1.8T 0 disk
sdw 65:96 0 1.8T 0 disk
sdx 65:112 0 1.8T 0 disk
sdy 65:128 0 1.8T 0 disk
sdz 65:144 0 1.8T 0 disk
sdaa 65:160 0 1.8T 0 disk
sdab 65:176 0 1.8T 0 disk
sdac 65:192 0 1.8T 0 disk
sdad 65:208 0 1.8T 0 disk
sdae 65:224 0 1.8T 0 disk
sdaf 65:240 0 1.8T 0 disk
sdag 66:0 0 1.8T 0 disk
sdah 66:16 0 1.8T 0 disk
sdai 66:32 0 1.8T 0 disk
sdaj 66:48 0 1.8T 0 disk
sdak 66:64 0 1.8T 0 disk
sdal 66:80 0 1.8T 0 disk

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

54

nvme0n1 259:0 0 745.2G 0 disk
├─ceph--nvme--vg--nvme0n1-ceph--journal--bucket--index--1--nvme0n1 253:0 0 5.4G 0
lvm
├─ceph--nvme--vg--nvme0n1-ceph--journal--sdc 253:1 0 5.4G 0 lvm
├─ceph--nvme--vg--nvme0n1-ceph--journal--sdd 253:2 0 5.4G 0 lvm
└─ceph--nvme--vg--nvme0n1-ceph--bucket--index--1 253:3 0 729.1G 0 lvm
nvme1n1 259:1 0 745.2G 0 disk
├─ceph--nvme--vg--nvme1n1-ceph--journal--bucket--index--1--nvme1n1 253:6 0 5.4G 0
lvm
├─ceph--nvme--vg--nvme1n1-ceph--journal--sde 253:7 0 5.4G 0 lvm
├─ceph--nvme--vg--nvme1n1-ceph--journal--sdf 253:8 0 5.4G 0 lvm
└─ceph--nvme--vg--nvme1n1-ceph--bucket--index--1 253:9 0 729.1G 0 lvm

Example output from lvscan is shown below:

[root@c04-h01-6048r ~]# lvscan
 ACTIVE '/dev/ceph-hdd-vg-sde/ceph-hdd-lv-sde' [<1.82 TiB] inherit
 ACTIVE '/dev/ceph-hdd-vg-sdc/ceph-hdd-lv-sdc' [<1.82 TiB] inherit
 ACTIVE '/dev/ceph-hdd-vg-sdf/ceph-hdd-lv-sdf' [<1.82 TiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme1n1/ceph-journal-bucket-index-1-nvme1n1' [5.37
GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme1n1/ceph-journal-sde' [5.37 GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme1n1/ceph-journal-sdf' [5.37 GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme1n1/ceph-bucket-index-1' [<729.10 GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-journal-bucket-index-1-nvme0n1' [5.37
GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-journal-sdc' [5.37 GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-journal-sdd' [5.37 GiB] inherit
 ACTIVE '/dev/ceph-nvme-vg-nvme0n1/ceph-bucket-index-1' [<729.10 GiB] inherit
 ACTIVE '/dev/ceph-hdd-vg-sdd/ceph-hdd-lv-sdd' [<1.82 TiB] inherit

10.2.10. Edit The osds.yml and all.yml Ansible Playbooks

1. Set osd_objectstore to filestore
In addition to adding the second set of information from lv-create.log into osds.yml,
osd_objectstore also needs to be set to filestore in both the osds.yml and all.yml files.

The line should look like this in both osds.yml and all.yml:

osd_objectstore: filestore

2. Set osd_scenario to lvm in osds.yml

The osds.yml file should look similar to the following example:

Variables here are applicable to all host groups NOT roles

osd_objectstore: filestore
osd_scenario: lvm
lvm_volumes:
 - data: ceph-bucket-index-1
 data_vg: ceph-nvme-vg-nvme0n1
 journal: ceph-journal-bucket-index-1-nvme0n1
 journal_vg: ceph-nvme-vg-nvme0n1

CHAPTER 10. USING NVME WITH LVM OPTIMALLY

55

 - data: ceph-hdd-lv-sdc
 data_vg: ceph-hdd-vg-sdc
 journal: ceph-journal-sdc
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-hdd-lv-sdd
 data_vg: ceph-hdd-vg-sdd
 journal: ceph-journal-sdd
 journal_vg: ceph-nvme-vg-nvme0n1
 - data: ceph-bucket-index-1
 data_vg: ceph-nvme-vg-nvme1n1
 journal: ceph-journal-bucket-index-1-nvme1n1
 journal_vg: ceph-nvme-vg-nvme1n1
 - data: ceph-hdd-lv-sde
 data_vg: ceph-hdd-vg-sde
 journal: ceph-journal-sde
 journal_vg: ceph-nvme-vg-nvme1n1
 - data: ceph-hdd-lv-sdf
 data_vg: ceph-hdd-vg-sdf
 journal: ceph-journal-sdf
 journal_vg: ceph-nvme-vg-nvme1n1

10.2.11. Install Ceph for NVMe and Verify Success

1. Run the site.yml Ansible playbook to install Ceph

$ ansible-playbook -v -i hosts site.yml

2. Verify Ceph is running properly after install completes

ceph -s

ceph osd tree

Example ceph -s output showing Ceph is running properly:

ceph -s
 cluster:
 id: 9ba22f4c-b53f-4c49-8c72-220aaf567c2b
 health: HEALTH_WARN
 Reduced data availability: 32 pgs inactive

 services:
 mon: 3 daemons, quorum b08-h03-r620,b08-h05-r620,b08-h06-r620
 mgr: b08-h03-r620(active), standbys: b08-h05-r620, b08-h06-r620
 osd: 42 osds: 42 up, 42 in

 data:
 pools: 4 pools, 32 pgs
 objects: 0 objects, 0 bytes
 usage: 0 kB used, 0 kB / 0 kB avail
 pgs: 100.000% pgs unknown
 32 unknown

Example ceph osd tree output showing Ceph is running properly:

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

56

[root@c04-h01-6048r ~]# ceph osd tree
ID CLASS WEIGHT TYPE NAME STATUS REWEIGHT PRI-AFF
 -1 60.86740 root default
 -7 8.69534 host c04-h01-6048r
 10 hdd 1.81799 osd.10 up 1.00000 1.00000
 13 hdd 1.81799 osd.13 up 1.00000 1.00000
 21 hdd 1.81799 osd.21 up 1.00000 1.00000
 27 hdd 1.81799 osd.27 up 1.00000 1.00000
 6 ssd 0.71169 osd.6 up 1.00000 1.00000
 15 ssd 0.71169 osd.15 up 1.00000 1.00000
 -3 8.69534 host c04-h05-6048r
 7 hdd 1.81799 osd.7 up 1.00000 1.00000
 20 hdd 1.81799 osd.20 up 1.00000 1.00000
 29 hdd 1.81799 osd.29 up 1.00000 1.00000
 38 hdd 1.81799 osd.38 up 1.00000 1.00000
 4 ssd 0.71169 osd.4 up 1.00000 1.00000
 25 ssd 0.71169 osd.25 up 1.00000 1.00000
-22 8.69534 host c04-h09-6048r
 17 hdd 1.81799 osd.17 up 1.00000 1.00000
 31 hdd 1.81799 osd.31 up 1.00000 1.00000
 35 hdd 1.81799 osd.35 up 1.00000 1.00000
 39 hdd 1.81799 osd.39 up 1.00000 1.00000
 5 ssd 0.71169 osd.5 up 1.00000 1.00000
 34 ssd 0.71169 osd.34 up 1.00000 1.00000
 -9 8.69534 host c04-h13-6048r
 8 hdd 1.81799 osd.8 up 1.00000 1.00000
 11 hdd 1.81799 osd.11 up 1.00000 1.00000
 30 hdd 1.81799 osd.30 up 1.00000 1.00000
 32 hdd 1.81799 osd.32 up 1.00000 1.00000
 0 ssd 0.71169 osd.0 up 1.00000 1.00000
 26 ssd 0.71169 osd.26 up 1.00000 1.00000
-19 8.69534 host c04-h21-6048r
 18 hdd 1.81799 osd.18 up 1.00000 1.00000
 23 hdd 1.81799 osd.23 up 1.00000 1.00000
 36 hdd 1.81799 osd.36 up 1.00000 1.00000
 40 hdd 1.81799 osd.40 up 1.00000 1.00000
 3 ssd 0.71169 osd.3 up 1.00000 1.00000
 33 ssd 0.71169 osd.33 up 1.00000 1.00000
-16 8.69534 host c04-h25-6048r
 16 hdd 1.81799 osd.16 up 1.00000 1.00000
 22 hdd 1.81799 osd.22 up 1.00000 1.00000
 37 hdd 1.81799 osd.37 up 1.00000 1.00000
 41 hdd 1.81799 osd.41 up 1.00000 1.00000
 1 ssd 0.71169 osd.1 up 1.00000 1.00000
 28 ssd 0.71169 osd.28 up 1.00000 1.00000
 -5 8.69534 host c04-h29-6048r
 9 hdd 1.81799 osd.9 up 1.00000 1.00000
 12 hdd 1.81799 osd.12 up 1.00000 1.00000
 19 hdd 1.81799 osd.19 up 1.00000 1.00000
 24 hdd 1.81799 osd.24 up 1.00000 1.00000
 2 ssd 0.71169 osd.2 up 1.00000 1.00000
 14 ssd 0.71169 osd.14 up 1.00000 1.00000

Ceph is now set up to use two NVMe devices and LVM optimally for Object Storage Gateway.

CHAPTER 10. USING NVME WITH LVM OPTIMALLY

57

Red Hat Ceph Storage 3 Ceph Object Gateway for Production

58

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. AUDIENCE
	1.2. ASSUMPTIONS
	1.3. SCOPE

	CHAPTER 2. PLANNING A CLUSTER
	2.1. IDENTIFYING USE CASES
	2.2. SELECTING DATA DURABILITY METHODS
	2.3. CONSIDERING MULTI-SITE DEPLOYMENT

	CHAPTER 3. CONSIDERING HARDWARE
	3.1. CONSIDERING STORAGE SIZING
	3.2. CONSIDERING STORAGE DENSITY
	3.3. CONSIDERING NETWORK HARDWARE
	3.4. CONSIDERING UNINTERRUPTED POWER SUPPLIES
	3.5. SELECTING HARDWARE FOR USE CASES
	3.6. SELECTING MEDIA FOR INDEXES
	3.7. SELECTING MEDIA FOR MONITOR NODES

	CHAPTER 4. CONFIGURING A CLUSTER
	4.1. NAMING HOSTS
	4.2. TUNING THE KERNEL
	4.2.1. Reserving Free Memory for OSDs
	4.2.2. Increasing File Descriptors
	4.2.3. Adjusting ulimit on Large Clusters

	4.3. CONFIGURING ANSIBLE GROUPS
	4.4. CONFIGURING CEPH
	4.4.1. Setting the Journal Size
	4.4.2. Adjusting Backfill & Recovery Settings
	4.4.3. Adjusting the Cluster Map Size
	4.4.4. Adjusting Scrubbing
	4.4.5. Increase objecter_inflight_ops
	4.4.6. Increase rgw_thread_pool_size
	4.4.7. Set the filestore_merge_threshold
	4.4.8. Adjusting Garbage Collection Settings

	CHAPTER 5. DEPLOYING CEPH
	CHAPTER 6. EXPANDING THE CLUSTER
	CHAPTER 7. DEVELOPING STORAGE STRATEGIES
	7.1. CONSIDERING EXPECTED OBJECT COUNT
	7.2. DEVELOPING CRUSH HIERARCHIES
	7.2.1. Creating CRUSH Roots
	7.2.2. Using Logical Host Names in a CRUSH Map
	7.2.3. Creating CRUSH Rules

	7.3. CREATING THE ROOT POOL
	7.4. CREATING A REALM
	7.5. CREATING SERVICE POOLS
	7.6. CREATING DATA PLACEMENT STRATEGIES
	7.6.1. Creating an Index Pool
	7.6.2. Creating a Data Pool
	7.6.3. Creating a Data Extra Pool
	7.6.4. Configuring Placement Targets in a Zone Group
	7.6.5. Configuring Placement Pools in a Zone
	7.6.6. Data Placement Summary

	CHAPTER 8. CONFIGURING GATEWAYS
	8.1. CONFIGURING CIVETWEB
	8.2. CONFIGURING FIREWALL PORTS
	8.3. CONFIGURING DNS WILDCARDS
	8.4. CONFIGURING LOAD BALANCERS

	CHAPTER 9. ADDITIONAL USE CASES
	9.1. EXPANDING THE CLUSTER WITH MULTISITE
	9.2. MIGRATING DATA WITH NFS GANESHA
	9.3. CONFIGURING THE CLUSTER FOR STATIC WEBHOSTING
	9.4. CONFIGURING THE CLUSTER FOR LDAP/AD
	9.5. CONFIGURING THE CLUSTER TO USE OPENSTACK KEYSTONE

	CHAPTER 10. USING NVME WITH LVM OPTIMALLY
	10.1. USING ONE NVME DEVICE
	10.1.1. Purge Any Existing Ceph cluster
	10.1.2. Configure The Cluster for Normal Installation
	10.1.3. Identify The NVMe and HDD Devices
	10.1.4. Add The Devices to lv_vars.yaml
	10.1.5. Run The lv-create.yml Ansible Playbook
	10.1.6. Verify LVM Configuration
	10.1.7. Edit The osds.yml and all.yml Ansible Playbooks
	10.1.8. Install Ceph for NVMe and Verify Success

	10.2. USING TWO NVME DEVICES
	10.2.1. Purge Any Existing Ceph Cluster
	10.2.2. Configure The Cluster for Normal Installation
	10.2.3. Identify The NVMe and HDD Devices
	10.2.4. Add The Devices to lv_vars.yaml
	10.2.5. Run The lv-create.yml Ansible Playbook
	10.2.6. Copy First NVMe LVM Configuration
	10.2.7. Run The lv-create.yml Playbook on NVMe device two
	10.2.8. Copy Second NVMe LVM Configuration
	10.2.9. Verify LVM Configuration
	10.2.10. Edit The osds.yml and all.yml Ansible Playbooks
	10.2.11. Install Ceph for NVMe and Verify Success

