
Red Hat Ceph Storage 7

Edge Guide

Guide on Edge Clusters for Red Hat Ceph Storage

Last Updated: 2024-06-10

Red Hat Ceph Storage 7 Edge Guide

Guide on Edge Clusters for Red Hat Ceph Storage

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on Edge clusters that is a solution for cost-efficient object
storage configuration. Red Hat is committed to replacing problematic language in our code,
documentation, and web properties. We are beginning with these four terms: master, slave,
blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be
implemented gradually over several upcoming releases. For more details, see our CTO Chris
Wright's message.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. EDGE CLUSTERS

CHAPTER 2. POOLS OVERVIEW

CHAPTER 3. RESILIENT AND NON-RESILIENT DATA POOLS

CHAPTER 4. CEPH ERASURE CODING

CHAPTER 5. ERASURE CODE POOLS OVERVIEW
5.1. CREATING A SAMPLE ERASURE-CODED POOL

CHAPTER 6. BACK-END COMPRESSION

CHAPTER 7. CLUSTER TOPOLOGY AND COLOCATION

3

4

6

7

9
10

12

13

Table of Contents

1

Red Hat Ceph Storage 7 Edge Guide

2

CHAPTER 1. EDGE CLUSTERS
Edge clusters are a solution for cost-efficient object storage configurations.

Red Hat supports the following minimum configuration of an Red Hat Ceph Storage cluster:

A three node cluster with two replicas for SSDs.

A four-node cluster with three replicas for HDDs.

A four-node cluster with EC pool with 2+2 configuration.

With smaller clusters, the utilization goes down because of the amount of usage and the loss of
resiliency.

CHAPTER 1. EDGE CLUSTERS

3

CHAPTER 2. POOLS OVERVIEW
Ceph clients store data in pools. When you create pools, you are creating an I/O interface for clients to
store data.

From the perspective of a Ceph client, that is, block device, gateway, and the rest, interacting with the
Ceph storage cluster is remarkably simple:

Create a cluster handle.

Connect the cluster handle to the cluster.

Create an I/O context for reading and writing objects and their extended attributes.

Creating a cluster handle and connecting to the cluster

To connect to the Ceph storage cluster, the Ceph client needs the following details:

The cluster name (which Ceph by default) - not using usually because it sounds ambiguous.

An initial monitor address.

Ceph clients usually retrieve these parameters using the default path for the Ceph configuration file and
then read it from the file, but a user might also specify the parameters on the command line too. The
Ceph client also provides a user name and secret key, authentication is on by default. Then, the client
contacts the Ceph monitor cluster and retrieves a recent copy of the cluster map, including its monitors,
OSDs and pools.

Creating a pool I/O context

To read and write data, the Ceph client creates an I/O context to a specific pool in the Ceph storage
cluster. If the specified user has permissions for the pool, the Ceph client can read from and write to the
specified pool.

Red Hat Ceph Storage 7 Edge Guide

4

Ceph’s architecture enables the storage cluster to provide this remarkably simple interface to Ceph
clients so that clients might select one of the sophisticated storage strategies you define simply by
specifying a pool name and creating an I/O context. Storage strategies are invisible to the Ceph client in
all but capacity and performance. Similarly, the complexities of Ceph clients, such as mapping objects
into a block device representation or providing an S3/Swift RESTful service, are invisible to the Ceph
storage cluster.

A pool provides you with resilience, placement groups, CRUSH rules, and quotas.

Resilience: You can set how many OSD are allowed to fail without losing data. For replicated
pools, it is the desired number of copies or replicas of an object. A typical configuration stores an
object and one additional copy, that is, size = 2, but you can determine the number of copies or
replicas. For erasure coded pools, it is the number of coding chunks, that is m=2 in the erasure
code profile.

Placement Groups: You can set the number of placement groups for the pool. A typical
configuration uses approximately 50-100 placement groups per OSD to provide optimal
balancing without using up too many computing resources. When setting up multiple pools, be
careful to ensure you set a reasonable number of placement groups for both the pool and the
cluster as a whole.

CRUSH Rules: When you store data in a pool, a CRUSH rule mapped to the pool enables
CRUSH to identify the rule for the placement of each object and its replicas, or chunks for
erasure coded pools, in your cluster. You can create a custom CRUSH rule for your pool.

Quotas: When you set quotas on a pool with ceph osd pool set-quota command, you might
limit the maximum number of objects or the maximum number of bytes stored in the specified
pool.

CHAPTER 2. POOLS OVERVIEW

5

CHAPTER 3. RESILIENT AND NON-RESILIENT DATA POOLS
What are resilient pools and a non-resilient pools?

A resilient data pool enables data to replicate or encode its data.

The non-resilient data pool does not enable to replicate or encode its data.

A non-resilient pool is also called replica1, and is not protected from data loss. A small cluster with non-
resilient data pools does its own replication and does not need replication from Red Hat Ceph Storage
as it does its own replication.

Cluster utilization with data pools

With smaller configurations, the cluster utilization reduces because of the loss of resiliency. The
recovery is limited by host utilization and might potentially impact production input/output operations
per second (IOPS). When there is a single node of failure, you can add a third node to limit the host
utilization and for Red Hat Ceph Storage to recover to full replication.

Red Hat Ceph Storage 7 Edge Guide

6

CHAPTER 4. CEPH ERASURE CODING
Ceph can load one of many erasure code algorithms. The earliest and most commonly used is the Reed-
Solomon algorithm. An erasure code is actually a forward error correction (FEC) code. FEC code
transforms a message of K chunks into a longer message called a 'code word' of N chunks, such that
Ceph can recover the original message from a subset of the N chunks.

More specifically, N = K+M where the variable K is the original amount of data chunks. The variable M
stands for the extra or redundant chunks that the erasure code algorithm adds to provide protection
from failures. The variable N is the total number of chunks created after the erasure coding process.
The value of M is simply N-K which means that the algorithm computes N-K redundant chunks from K
original data chunks. This approach guarantees that Ceph can access all the original data. The system is
resilient to arbitrary N-K failures. For instance, in a 10 K of 16 N configuration, or erasure coding 10/16,
the erasure code algorithm adds six extra chunks to the 10 base chunks K. For example, in a M = K-N or
16-10 = 6 configuration, Ceph will spread the 16 chunks N across 16 OSDs. The original file could be
reconstructed from the 10 verified N chunks even if 6 OSDs fail—​ensuring that the Red Hat
Ceph Storage cluster will not lose data, and thereby ensures a very high level of fault tolerance.

Like replicated pools, in an erasure-coded pool the primary OSD in the up set receives all write
operations. In replicated pools, Ceph makes a deep copy of each object in the placement group on the
secondary OSDs in the set. For erasure coding, the process is a bit different. An erasure coded pool
stores each object as K+M chunks. It is divided into K data chunks and M coding chunks. The pool is
configured to have a size of K+M so that Ceph stores each chunk in an OSD in the acting set. Ceph
stores the rank of the chunk as an attribute of the object. The primary OSD is responsible for encoding
the payload into K+M chunks and sends them to the other OSDs. The primary OSD is also responsible
for maintaining an authoritative version of the placement group logs.

For example, in a typical configuration a system administrator creates an erasure coded pool to use six
OSDs and sustain the loss of two of them. That is, (K+M = 6) such that (M = 2).

When Ceph writes the object NYAN containing ABCDEFGHIJKL to the pool, the erasure encoding
algorithm splits the content into four data chunks by simply dividing the content into four parts: ABC,
DEF, GHI, and JKL. The algorithm will pad the content if the content length is not a multiple of K. The
function also creates two coding chunks: the fifth with YXY and the sixth with QGC. Ceph stores each
chunk on an OSD in the acting set, where it stores the chunks in objects that have the same name,
NYAN, but reside on different OSDs. The algorithm must preserve the order in which it created the
chunks as an attribute of the object shard_t, in addition to its name. For example, Chunk 1 contains ABC
and Ceph stores it on OSD5 while chunk 5 contains YXY and Ceph stores it on OSD4.

CHAPTER 4. CEPH ERASURE CODING

7

In a recovery scenario, the client attempts to read the object NYAN from the erasure-coded pool by
reading chunks 1 through 6. The OSD informs the algorithm that chunks 2 and 6 are missing. These
missing chunks are called 'erasures'. For example, the primary OSD could not read chunk 6 because the
OSD6 is out, and could not read chunk 2, because OSD2 was the slowest and its chunk was not taken
into account. However, as soon as the algorithm has four chunks, it reads the four chunks: chunk 1
containing ABC, chunk 3 containing GHI, chunk 4 containing JKL, and chunk 5 containing YXY. Then, it
rebuilds the original content of the object ABCDEFGHIJKL, and original content of chunk 6, which
contained QGC.

Splitting data into chunks is independent from object placement. The CRUSH ruleset along with the
erasure-coded pool profile determines the placement of chunks on the OSDs. For instance, using the
Locally Repairable Code (lrc) plugin in the erasure code profile creates additional chunks and requires
fewer OSDs to recover from. For example, in an lrc profile configuration K=4 M=2 L=3, the algorithm
creates six chunks (K+M), just as the jerasure plugin would, but the locality value (L=3) requires that the
algorithm create 2 more chunks locally. The algorithm creates the additional chunks as such, (K+M)/L. If
the OSD containing chunk 0 fails, this chunk can be recovered by using chunks 1, 2 and the first local
chunk. In this case, the algorithm only requires 3 chunks for recovery instead of 5.

NOTE

Using erasure-coded pools disables Object Map.

IMPORTANT

For an erasure-coded pool with 2+2 configuration, replace the input string from
ABCDEFGHIJKL to ABCDEF and replace the coding chunks from 4 to 2.

Additional Resources

For more information about CRUSH, the erasure-coding profiles, and plugins, see the Storage
Strategies Guide for Red Hat Ceph Storage 7.

For more details on Object Map, see the Ceph client object map section.

Red Hat Ceph Storage 7 Edge Guide

8

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/storage_strategies_guide/
{architecture-guide}#ceph-client-object-map_arch

CHAPTER 5. ERASURE CODE POOLS OVERVIEW
Ceph uses replicated pools by default, meaning that Ceph copies every object from a primary OSD
node to one or more secondary OSDs. The erasure-coded pools reduce the amount of disk space
required to ensure data durability but it is computationally a bit more expensive than replication.

Ceph storage strategies involve defining data durability requirements. Data durability means the ability
to sustain the loss of one or more OSDs without losing data.

Ceph stores data in pools and there are two types of the pools:

replicated

erasure-coded

Erasure coding is a method of storing an object in the Ceph storage cluster durably where the erasure
code algorithm breaks the object into data chunks (k) and coding chunks (m), and stores those chunks
in different OSDs.

In the event of the failure of an OSD, Ceph retrieves the remaining data (k) and coding (m) chunks from
the other OSDs and the erasure code algorithm restores the object from those chunks.

NOTE

Red Hat recommends min_size for erasure-coded pools to be K+1 or more to prevent
loss of writes and data.

Erasure coding uses storage capacity more efficiently than replication. The n-replication approach
maintains n copies of an object (3x by default in Ceph), whereas erasure coding maintains only k + m
chunks. For example, 3 data and 2 coding chunks use 1.5x the storage space of the original object.

While erasure coding uses less storage overhead than replication, the erasure code algorithm uses more
RAM and CPU than replication when it accesses or recovers objects. Erasure coding is advantageous
when data storage must be durable and fault tolerant, but do not require fast read performance (for
example, cold storage, historical records, and so on).

For the mathematical and detailed explanation on how erasure code works in Ceph, see the Ceph
Erasure Coding section in the Architecture Guide for Red Hat Ceph Storage 7.

Ceph creates a default erasure code profile when initializing a cluster with k=2 and m=2, This mean that
Ceph will spread the object data over three OSDs (k+m == 4) and Ceph can lose one of those OSDs
without losing data. To know more about erasure code profiling see the Erasure Code Profiles section.

IMPORTANT

Configure only the .rgw.buckets pool as erasure-coded and all other Ceph Object
Gateway pools as replicated, otherwise an attempt to create a new bucket fails with the
following error:

set_req_state_err err_no=95 resorting to 500

The reason for this is that erasure-coded pools do not support the omap operations and
certain Ceph Object Gateway metadata pools require the omap support.

CHAPTER 5. ERASURE CODE POOLS OVERVIEW

9

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/architecture_guide/#ceph-erasure-coding_arch
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/storage_strategies_guide/#erasure-code-profiles

5.1. CREATING A SAMPLE ERASURE-CODED POOL

Create an erasure-coded pool and specify the placement groups. The ceph osd pool create command
creates an erasure-coded pool with the default profile, unless another profile is specified. Profiles define
the redundancy of data by setting two parameters, k, and m. These parameters define the number of
chunks a piece of data is split and the number of coding chunks are created.

The simplest erasure coded pool is equivalent to RAID5 and requires at least four hosts. You can create
an erasure-coded pool with 2+2 profile.

Procedure

1. Set the following configuration for an erasure-coded pool on four nodes with 2+2 configuration.

Syntax

ceph config set mon mon_osd_down_out_subtree_limit host
ceph config set osd osd_async_recovery_min_cost 1099511627776

IMPORTANT

This is not needed for an erasure-coded pool in general.

IMPORTANT

The async recovery cost is the number of PG log entries behind on the replica
and the number of missing objects. The osd_target_pg_log_entries_per_osd is
30000. Hence, an OSD with a single PG could have 30000 entries. Since the
osd_async_recovery_min_cost is a 64-bit integer, set the value of
osd_async_recovery_min_cost to 1099511627776 for an EC pool with 2+2
configuration.

NOTE

For an EC cluster with four nodes, the value of K+M is 2+2. If a node fails
completely, it does not recover as four chunks and only three nodes are available.
When you set the value of mon_osd_down_out_subtree_limit to host, during a
host down scenario, it prevents the OSDs from marked out, so as to prevent the
data from re balancing and the waits until the node is up again.

2. For an erasure-coded pool with a 2+2 configuration, set the profile.

Syntax

ceph osd erasure-code-profile set ec22 k=2 m=2 crush-failure-domain=host

Example

[ceph: root@host01 /]# ceph osd erasure-code-profile set ec22 k=2 m=2 crush-failure-
domain=host

Pool : ceph osd pool create test-ec-22 erasure ec22

Red Hat Ceph Storage 7 Edge Guide

10

3. Create an erasure-coded pool.

Example

[ceph: root@host01 /]# ceph osd pool create ecpool 32 32 erasure

pool 'ecpool' created
$ echo ABCDEFGHI | rados --pool ecpool put NYAN -
$ rados --pool ecpool get NYAN -
ABCDEFGHI

32 is the number of placement groups.

CHAPTER 5. ERASURE CODE POOLS OVERVIEW

11

CHAPTER 6. BACK-END COMPRESSION
Compress an edge cluster of a smaller capacity with the compression options.

BlueStore allows two types of compression:

BlueStore level of compression for general workload.

Ceph Object Gateway level of compression for S3 workload.

For more information on compression algorithms, see Pool values.

You need to enable compression and ensure that no crashes occur on the cluster upon enabling
compression on pools.

You can enable compression on the pools of the edge cluster in the following ways:

Enable supported compression algorithms such as snappy, zlib, and zstd and enable supported
compression modes such as None, passive, aggressive, and force with the following
commands:

Syntax

ceph osd pool set POOL_NAME compression_algorithm ALGORITHM
ceph osd pool set POOL_NAME compression_mode MODE

Enable various compression ratios with the following commands:

Syntax

ceph osd pool set POOL_NAME compression_required_ratio RATIO
ceph osd pool set POOL_NAME compression_min_blob_size SIZE
ceph osd pool set POOL_NAME compression_max_blob_size SIZE

Create three pools and enable different compressions on those pools to ensure that no IO
stoppage occurs on the pools.

Create a fourth pool without any compression created on the pools. Write the same amount of
data as pools with compression. The pool with compression uses less RAW space that the pool
without compression.

To verify these algorithms are set, use ceph osd pool get POOL_NAME OPTION_NAME command.

To unset these algorithms, use ceph osd pool unset POOL_NAME OPTION_NAME command with
the appropriate options.

Red Hat Ceph Storage 7 Edge Guide

12

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/storage_strategies_guide/#pool-values_strategy

CHAPTER 7. CLUSTER TOPOLOGY AND COLOCATION
Understand the topology needed and the factors to be considers for collocation for an edge cluster.

For information on cluster topology, hyper convergence with OpenStack, collocating nodes On
OpenStack, and limitations of OpenStack minimum configuration, see Ceph configuration overrides for
HCI.

For more information on colocation, see Colocation.

CHAPTER 7. CLUSTER TOPOLOGY AND COLOCATION

13

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/deploying_a_hyperconverged_infrastructure/index#con_ceph-hci-config-overrides_assembly_deployed_hci_ceph_storage_cluster
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/#how-colocation-works-and-its-advantages-install

	Table of Contents
	CHAPTER 1. EDGE CLUSTERS
	CHAPTER 2. POOLS OVERVIEW
	CHAPTER 3. RESILIENT AND NON-RESILIENT DATA POOLS
	CHAPTER 4. CEPH ERASURE CODING
	CHAPTER 5. ERASURE CODE POOLS OVERVIEW
	5.1. CREATING A SAMPLE ERASURE-CODED POOL

	CHAPTER 6. BACK-END COMPRESSION
	CHAPTER 7. CLUSTER TOPOLOGY AND COLOCATION

