
Red Hat CodeReady Studio 12.15

Getting Started with Container and Cloud-
based Development

Starting Development of Container and Cloud-based Applications Using Red Hat
CodeReady Studio

Last Updated: 2020-04-27

Red Hat CodeReady Studio 12.15 Getting Started with Container and
Cloud-based Development

Starting Development of Container and Cloud-based Applications Using Red Hat CodeReady
Studio

Supriya Takkhi
sbharadw@redhat.com

Yana Hontyk
yhontyk@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This compilation of topics contains information on how to start developing containerized
applications and applications for cloud deployment.

. .

. .

. .

Table of Contents

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD
1.1. USING RED HAT CODEREADY CONTAINERS TOOLING IN CODEREADY STUDIO

1.1.1. Downloading and installing Red Hat CodeReady Containers in CodeReady Studio
1.1.2. Using the OpenShift Container Platform tooling

1.2. USING RED HAT CONTAINER DEVELOPMENT KIT TOOLING IN CODEREADY STUDIO
1.2.1. Installing Container Development Kit in CodeReady Studio

1.2.1.1. Downloading and installing CDK in the IDE
1.2.2. Using the Docker tooling

1.2.2.1. Using Docker for Container-based development
1.2.2.2. Building the Docker image Using the Container Development Environment
1.2.2.3. Next steps for the Docker tooling

1.2.3. Using the OpenShift Container Platform tooling
1.2.3.1. Next steps for the OpenShift tooling

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT
2.1. CREATING AN OPENSHIFT CONTAINER PLATFORM APPLICATION IN CODEREADY STUDIO

2.1.1. Creating a new OpenShift Container Platform connection
2.1.2. Creating a new OpenShift Container Platform project
2.1.3. Creating a new OpenShift Container Platform application
2.1.4. Importing an existing OpenShift Container Platform application into the IDE
2.1.5. Deploying an application using the server adapter
2.1.6. Deleting an OpenShift Container Platform project

2.2. SETTING UP AND REMOTELY MONITORING AN OPENSHIFT CONTAINER PLATFORM APPLICATION

2.2.1. Setting up OpenShift Client Binaries
2.2.2. Setting up Port Forwarding
2.2.3. Streaming Pod Logs
2.2.4. Streaming Build Logs

2.3. BUILDING AND DEPLOYING DOCKER-FORMATTED CONTAINER IMAGE TO CONTAINER
DEVELOPMENT KIT OPENSHIFT REGISTRY

2.3.1. Installing the javascript modules
2.3.2. Building the frontend microservice

2.3.2.1. Deploying the frontend microservice
2.3.3. Connecting the frontend and bonjour microservices

2.3.3.1. Deploying the bonjour microservice
2.3.3.2. Scaling the pod

2.3.4. Editing the bonjour microservice
2.3.4.1. Viewing the edited bonjour microservice on the frontend microservice

2.4. DEPLOYING THE OPENSHIFT CONTAINER PLATFORM 3 RESOURCE
2.4.1. Deploying the s2i-spring-boot-cfx-jaxrs template
2.4.2. Viewing the s2i-spring-boot-cfx-jaxrs application in the Web Console
2.4.3. Defining services and routes using a JSON file

ADDITIONAL RESOURCES

CHAPTER 3. DEVELOPING WITH DOCKER
3.1. USING DOCKER TOOLING IN CODEREADY STUDIO

3.1.1. Connecting to Docker Daemon
Installing Docker
Setting up an account in the Docker tooling
3.1.1.1. Testing an existing Docker connection
3.1.1.2. Editing a Docker connection

3.1.2. Managing Docker images

4
4
4
6
7
7
7
11
11

13
13
13
14

15
15
15
17
18
21
22
22

23
23
23
25
26

26
27
28
28
29
29
30
30
31
31
32
33
34
36

37
37
37
37
37
39
40
41

Table of Contents

1

3.1.2.1. Pulling the jboss/wildfly:11.0.0.Final image
3.1.2.2. Pushing images
3.1.2.3. Running Image Launch Configuration
3.1.2.4. Building images with Dockerfile
3.1.2.5. Working with image tags

3.1.2.5.1. Adding tags to images
3.1.2.5.2. Removing tags for images

3.1.3. Managing Docker Containers
3.1.4. Working with docker-compose.yml files

3.1.4.1. Creating the docker-compose project
3.1.4.2. Creating the required files in the docker-compose project

3.1.5. Troubleshooting

41
42
43
45
46
46
46
47
47
47
48
50

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

2

Table of Contents

3

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE
CLOUD

1.1. USING RED HAT CODEREADY CONTAINERS TOOLING IN
CODEREADY STUDIO

Red Hat CodeReady Containers brings a minimal OpenShift 4 cluster to your local computer. This
cluster provides a minimal environment for development and testing purposes. It is mainly targetted at
running on developers' desktops. For other use cases, such as headless, multi-developer/team-based
setups, use of the full-fledged OpenShift installer is recommended.

Refer to the OpenShift documentation for a more in-depth introduction to OpenShift.

CodeReady Containers includes the crc command-line interface (CLI) to interact with the
CodeReady Containers virtual machine running the OpenShift cluster.

Prerequisites

The minimum hardware and operating system requirements

1.1.1. Downloading and installing Red Hat CodeReady Containers in
CodeReady Studio

Procedure

To download and install CodeReady Containers:

1. Start the IDE.

2. To open the Servers view, click Windows > Show View > Servers.

3. Click the No servers are available. Click this link to create a new server link (or right-click an
existing server and click New > Server.)

4. In the New Server window:

a. Expand Red Hat JBoss Middleware and click Red Hat CodeReady Containers 1.0.

b. Let the Server’s host name field be as is.

c. In the Server Name field, if desired, type a different server name (CodeReady Containers
1.0 is the default server name).

d. Click Next.

Figure 1.1. Selecting Red Hat CodeReady Containers 1.0

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

4

https://cloud.redhat.com/openshift/install/
https://docs.openshift.com/container-platform/latest/welcome/index.html#developer-activities
https://access.redhat.com/documentation/en-us/red_hat_codeready_containers/1.6/html/getting_started_guide/index#minimum-system-requirements_gsg

Figure 1.1. Selecting Red Hat CodeReady Containers 1.0

5. In the New Server - Red Hat CodeReady Containers window:

a. Click the Browse button next to the CRC Binary field.

b. Locate and select the CRC binary that you had downloaded earlier.

c. Click the Browse button next to the CRC Pull Secret File field and locate and select the
pull-secret.txt file that you downloaded from the Downloads section at Install OpenShift
Container Platform 4.

d. Click the Finish button.

Figure 1.2. Selecting the pull-secret.txt file

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD

5

https://cloud.redhat.com/openshift/install/crc/installer-provisioned

Figure 1.2. Selecting the pull-secret.txt file

The Servers tab displays CodeReady Containers 1.0 listed in Stopper, Synchronized mode.

1.1.2. Using the OpenShift Container Platform tooling

Procedure

Use OpenShift Container Platform for Container-based development as follows:

1. Create a new OpenShift Container Platform project. These projects are like namespaces for
OpenShift applications. They are different from how Eclipse projects relate to Eclipse
applications. Additionally, Eclipse projects can be mapped to OpenShift applications.

a. In the OpenShift Explorer view, right-click the connection and click New > Project to
create a new OpenShift Container Platform project.

NOTE

The CDK server adapter creates the OpenShift Container Platform
connection when you start the CDK server adapter in the preceding sections.

b. Add the name and other relevant details for the new project and click Finish.

2. Create an application in your OpenShift Container Platform project using the templates:

a. Right-click your new project name and click New > Application.

b. In the New OpenShift Application window, search box, type the application type required.
For example, for a node.js application, type nodejs and from the displayed list, select the
relevant nodejs template and click Finish.

c. Click OK to accept the results of the application creation process.

d. In the Import OpenShift Application window, select a Git Clone Location and click Finish.

For additional tasks that you can do with the OpenShift Container Platform projects and application,
rfer to Creating an OpenShift Container Platform Application in CodeReady Studio .

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

6

https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.0/html/getting_started_with_container_and_cloud-based_development/developing_for_the_cloud_with_openshift_3#creating_an_openshift_container_platform_application_in_red_hat_jboss_developer_studio

1.2. USING RED HAT CONTAINER DEVELOPMENT KIT TOOLING IN
CODEREADY STUDIO

Red Hat Container Development Kit (CDK) is a pre-built container development environment based on
Red Hat Enterprise Linux (RHEL). CDK helps you get started with developing container-based
applications quickly. You can easily set up CDK and then use toolings, such as, OpenShift Container
Platform and Docker, through CodeReady Studio, without spending additional time in setting up and
configuring the supplementary tooling.

After it is installed, you can use the installed components with the Docker tooling.

1.2.1. Installing Container Development Kit in CodeReady Studio

You can download and install Container Development Kit from within CodeReady Studio. This option
requires some additional configuration steps before the two products can be used together.

Prerequisites

Ensure that hardware virtualization is enabled on your system.

Ensure that the following are installed on your system:

Hypervisor such as VirtualBox, Linux KVM/libvirt, xhyve (macOS) or Hyper-V (Windows) is
installed and configured

Red Hat CodeReady Studio 12.15

Ensure that you have a Red Hat Developer account. For a new account, visit
https://developers.redhat.com/.

For details about installing these prerequisites, see the Red Hat Container Development Kit Getting
Started Guide.

1.2.1.1. Downloading and installing CDK in the IDE

Procedure

To download and install CDK in the IDE, take the following steps:

1. Start the IDE.

2. To open the Servers view, click Windows > Show View > Servers.

3. Click the No servers are available. Click this link to create a new server link (or right-click an
existing server and click New > Server.)

4. In the New Server window:

a. Expand Red Hat JBoss Middleware and click Red Hat Container Development Kit 3.2+.

b. Let the Server’s host name field be as is because it is not applicable to CDK.

c. In the Server Name field, if desired, type a different server name (Container Development
Environment 3.2+ is the default server name).

d. Click Next.

Figure 1.3. Selecting Red Hat Container Development Kit 3.2+

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD

7

https://developers.redhat.com/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.8/html/getting_started_guide/

Figure 1.3. Selecting Red Hat Container Development Kit 3.2+

5. In the New Server - Red Hat Container Development Environment window:

a. Click the Download and install runtime link.

b. In the Download Runtimes window, from the list, locate and click CDK v3.11.0 and click
Next.

Figure 1.4. Selecting CDK 3.11.0

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

8

Figure 1.4. Selecting CDK 3.11.0

c. In the Credentials window, in the Username list, click your username. If you do not have the
credentials set up, add the credentials for the access.redhat.com domain. If you do not have
your credentials, sign up on developers.redhat.com.

d. In the Password field, type the relevant password.

e. Click Next.

f. In the next window, click I accept the terms of the license agreement and click Next.

i. In the Download Runtime window, ensure that the Install folder and the Download
folder fields, show the location where you want to download and install CDK. (or,
change the locations).

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD

9

ii. Click Finish.

Figure 1.5. Downloading the CDK Runtime

The New Server window appears showing the progress of the download. The download
takes a few minutes to complete.

IMPORTANT

Do not close the New Server window because if you do so the runtime
will be downloaded but will not be configured. Once the download is
complete, the Minishift Binary field shows the path to the downloaded
binary.

Figure 1.6. The Minishift Binary Field showing the Path to the Downloaded Binary

g. The Minishift Home field contains path to the folder with the CDK configuration files;
default is .minishift in the user’s home directory; you can change this to the desired
location.

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

10

h. The Minishift Profile field is set to minishift by default; you can change this to the desired
value.

i. Click Finish.

6. The Servers view will include a new server adapter: Container Development Environment 3.2+.
Right-click it and click Start. The Console view shows the progress of starting CDK.

NOTE

In case you did not set up CDK prior to starting the server adapter, you will see a
warning dialog: Warning: CDK has not been properly initialized!. Confirm the
dialog and continue with starting CDK. Note that the Setup CDK command is
called in the background. This command will set up files in your Minishift Home
directory. If there is any content in this directory you may need to confirm
overwriting it. Check the directory content before confirming to avoid losing
important data.

Figure 1.7. CDK has not been properly initialized Message

7. When the server adapter is starting, you may be asked to enter your credentials for
developers.redhat.com (associated with access.redhat.com). If so, enter the credentials and
continue.

8. At the end of starting CDK, if it appears, in the Untrusted SSL Certificate dialog box, click Yes.
The OpenShift Explorer view opens showing the IP address and the port of the OpenShift
Container Platform that you have connected to: developer {connection_IP} (example,
developer https://10.1.2.2:8443). Expand the connection to see the sample projects.

9. You can also open the Docker Explorer view to view the Container Development Environment
3.2+ connection and expand the connection to see the Containers and Images.

1.2.2. Using the Docker tooling

After starting the CDK server in the IDE, you can follow one of the two container development workflows
to use the Docker tooling.

1.2.2.1. Using Docker for Container-based development

Procedure

Use Docker for Container-based Development as follows:

1. Create a new project with your Dockerfile.

a. Click File > New > Project.

b. Type java in the search field and from the results, select Java Project and click Next to

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD

11

https://10.1.2.2:8443

b. Type java in the search field and from the results, select Java Project and click Next to
continue.

c. In the Project name field, type a name for the new project and click Finish. The Project
Explorer view shows the project that you just created.

d. Click File > New > File.

e. In the New File window:

i. In the Enter or select the parent folder field, click the project that you created.

ii. In the File name field, type Dockerfile and click Finish.

f. Edit the Dockerfile as desired and then save it. For example, copy and paste the following
content in the dockerfile and then save the file:

 # Use latest jboss/base-jdk:8 image as the base
FROM jboss/base-jdk:8

Set the WILDFLY_VERSION env variable
ENV WILDFLY_VERSION 10.1.0.Final
ENV WILDFLY_SHA1 9ee3c0255e2e6007d502223916cefad2a1a5e333
ENV JBOSS_HOME /opt/jboss/wildfly

USER root

Add the WildFly distribution to /opt, and make wildfly the owner of the extracted tar
content
Make sure the distribution is available from a well-known place
RUN cd $HOME \
 && curl -O https://download.jboss.org/wildfly/$WILDFLY_VERSION/wildfly-
$WILDFLY_VERSION.tar.gz \
 && sha1sum wildfly-$WILDFLY_VERSION.tar.gz | grep $WILDFLY_SHA1 \
 && tar xf wildfly-$WILDFLY_VERSION.tar.gz \
 && mv $HOME/wildfly-$WILDFLY_VERSION $JBOSS_HOME \
 && rm wildfly-$WILDFLY_VERSION.tar.gz \
 && chown -R jboss:0 ${JBOSS_HOME} \
 && chmod -R g+rw ${JBOSS_HOME}

 # Ensure signals are forwarded to the JVM process correctly for graceful shutdown
 ENV LAUNCH_JBOSS_IN_BACKGROUND true

 USER jboss

 # Expose the ports we're interested in
 EXPOSE 8080

 # Set the default command to run on boot
 # This will boot WildFly in the standalone mode and bind to all interface
 CMD ["/opt/jboss/wildfly/bin/standalone.sh", "-b", "0.0.0.0"]
).

For additional information about the Dockerfile, see
https://docs.docker.com/engine/reference/builder.

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

12

https://docs.docker.com/engine/reference/builder

1.2.2.2. Building the Docker image Using the Container Development Environment

Procedure

To do a Docker image build using the Container Development Environment, take the following steps:

1. In the Project Explorer view, expand the project and right-click the Dockerfile and select Run
As > Docker Image Build.

2. In the Docker Image Build Configuration dialog box:

a. In the Connection field, select your Container Development Environment server adapter.

b. In the Image Name field, enter the desired name for the docker image and click OK. After
the build is done, a new image with the given name is listed in the Docker Explorer view
under CDK Docker connection under images and in the Docker Images view. Also, the
Console view shows Successfully built <Docker_image_ID> message.

3. Run a Docker image using the Container Development Environment:

a. Open the Docker Explorer view by typing Ctrl+3 in the quick access menu or using the
Window > Perspective > Open Perspective > Docker Tooling menu option.

b. Navigate to the Images node under the Docker connection.

c. Right-click your image and click Run.

d. In the Run a Docker Image window, fill in the necessary details and click Finish to run your
image. The Console view shows the progress of execution of the Docker image. Optionally,
give the container a name. This name helps locate the specific container in a list of
containers in the future.

e. In the Docker Explorer view, select the container that you named in the preceding step and
expand its node and select the 8080 port and click Show In > Web Browser to access the
application deployed in the Docker container. The application opens in the default web
browser.

1.2.2.3. Next steps for the Docker tooling

For further information about the basics of Docker Tooling, see Using Docker Tooling in
CodeReady Studio.

1.2.3. Using the OpenShift Container Platform tooling

Procedure

Use OpenShift Container Platform for Container-based development as follows:

1. Create a new OpenShift Container Platform project. These projects are like namespaces for
OpenShift applications. They are different from how Eclipse projects relate to Eclipse
applications. Additionally, Eclipse projects can be mapped to OpenShift applications.

a. In the OpenShift Explorer view, right-click the connection and click New > Project to
create a new OpenShift Container Platform project.

NOTE

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD

13

https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.2/html/getting_started_with_container_and_cloud-based_development/developing_with_docker#assembly_using-docker-tooling-in-devstudio

NOTE

The CDK server adapter creates the OpenShift Container Platform
connection when you start the CDK server adapter in the preceding sections.

b. Add the name and other relevant details for the new project and click Finish.

2. Create an application in your OpenShift Container Platform project using the templates:

a. Right-click your new project name and click New > Application.

b. In the New OpenShift Application window, search box, type the application type required.
For example, for a node.js application, type nodejs and from the displayed list, select the
relevant nodejs template and click Finish.

c. Click OK to accept the results of the application creation process.

d. In the Import OpenShift Application window, select a Git Clone Location and click Finish.

For additional tasks that you can do with the OpenShift Container Platform projects and application,
rfer to Creating an OpenShift Container Platform Application in CodeReady Studio .

1.2.3.1. Next steps for the OpenShift tooling

For additional tasks to be performed using the OpenShift Container Platform tooling, see Developing
for the Cloud with OpenShift 3.

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.0/html/getting_started_with_container_and_cloud-based_development/developing_for_the_cloud_with_openshift_3#creating_an_openshift_container_platform_application_in_red_hat_jboss_developer_studio
https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.2/html/getting_started_with_container_and_cloud-based_development/developing_for_the_cloud_with_openshift_3

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH
OPENSHIFT

2.1. CREATING AN OPENSHIFT CONTAINER PLATFORM APPLICATION
IN CODEREADY STUDIO

Using the OpenShift Container Platform tooling you can create, import, and modify OpenShift
Container Platform applications.

2.1.1. Creating a new OpenShift Container Platform connection

You must create an OpenShift connection in the OpenShift Explorer view in CodeReady Studio to use
the OpenShift tooling in the IDE. An OpenShift connection connects your IDE to an OpenShift instance
(based on CDK, OpenShift Online, Kubernetes, minishift). The connection is listed in the OpenShift
Explorer view of the IDE and is in the format: username@example.com {OpenShift_console_URL}. You
can have more than one OpenShift connection configured in the IDE.

Procedure

1. In the IDE, click Window → Show View → Other

2. Search for OpenShift Explorer, select it, and click OK

3. In the OpenShift Explorer view, click the New Connection link.

4. In the New OpenShift Connection wizard, click <New Connection>.
Or:

Open the OpenShift Container Platform web UI, click your username, and click Copy Login
Command.

Figure 2.1. Clicking Copy Login Command

In the new window, click Display Token to view the oc login command. (example: oc login -
-token=3-yAU3wLWqrlJb4prHlmeSpKNw8VlmCWOY87KMcXUkk --server=https://api.ci-
ln-q9wd572-d5d6b.origin-ci-int-aws.dev.rhcloud.com:6443)

Copy this command.

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

15

mailto:username@example.com

In the IDE, click the Paste Login Command button.

Figure 2.2. Pasting the Login Command

5. In the Server field, type the URL for an OpenShift Container Platform server.

6. In the Authentication section, in the Protocol list, click OAuth to authenticate using the token
or click Basic to authenticate using login credentials.

7. Click Finish.

Figure 2.3. Set up a new OpenShift Container Platform connection

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

16

Figure 2.3. Set up a new OpenShift Container Platform connection

2.1.2. Creating a new OpenShift Container Platform project

You must create a project, which essentially is a namespace with additional annotations, to centrally
manage the access to resources for regular users.

Prerequisites

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

17

An OpenShift Container Platform connection exists.

Procedure

1. In the OpenShift Explorer view, right-click the connection and click New > Project. The Create
OpenShift Project window appears.

2. In the Project Name field, type a name for the project. Project names must be alphanumeric
and can contain the character “-” but must not begin or end with this character.

3. In the Display Name field, type a display name for the project. This name is used as the display
name for your project in the OpenShift Explorer view and on the OpenShift Container Platform
web console after the project is created.

4. In the Description field, type a description of the project.

5. Click Finish. The project is listed in the OpenShift Explorer view, under the relevant
connection.

2.1.3. Creating a new OpenShift Container Platform application

Use the New OpenShift Application wizard in the IDE to create OpenShift Container Platform
applications from default or custom templates. Using a template to create an application is helpful
because you can use the same template to create multiple similar applications with different or identical
configurations for each of them.

Prerequisites

An OpenShift Container Platform project exists.

Procedure

1. In the OpenShift Explorer view of the IDE, right-click the connection and click New →
Application.

2. If required, in the New OpenShift Application wizard, sign in to your OpenShift Container
Platform server using the Basic protocol (username and password) or the OAuth protocol
(token) and click Next.

3. In the Select Template window, click the Server application source tab.

NOTE

To create an application from a local template, click the Local template tab and
then click Browse File System or Browse Workspace to locate the template
that you want to base the project on.

4. From the list, click the template that you want to base your project on. You can also use the
type filter text field to search for specific templates.

5. Click Next.

Figure 2.4. Select a template for project creation

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

18

Figure 2.4. Select a template for project creation

6. In the Template Parameters window, confirm the parameter values and click Next.

7. In the Resource Labels window, confirm the labels that you want to add to each resource. You
can also click Add or Edit to add labels or edit the existing ones.

8. Click Finish.

9. In the Results of creating the resources from the {template_name} window, review the details

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

19

9. In the Results of creating the resources from the {template_name} window, review the details
and click OK.

10. In the Import Application window, click Use default clone destination to clone the application
at the default location or in the Git Clone Location field, type or browse for the location where
you want to clone the application, and click Finish.

Figure 2.5. Selecting a Git clone location

NOTE

If the Git location chosen to clone the application already contains a folder with
the application name that you are trying to import, you must select a new location
for the Git clone. If you do not select a new location, the existing repository will be
reused with the changes you made being retained but not reflected on the
OpenShift Container Platform console.

Figure 2.6. Git clone location reuse

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

20

Figure 2.6. Git clone location reuse

Result: The application appears in the Project Explorer view.

Additional Resources

To learn more about using and creating templates with OpenShift Container Platform, see
Templates.

2.1.4. Importing an existing OpenShift Container Platform application into the IDE

The OpenShift Explorer view in the IDE lists applications associated with your OpenShift Container
Platform accounts. You can import the source code for these applications individually into the IDE using
the Import OpenShift Application wizard. After the application is imported, you can easily modify the
application source code, as required, build the application, and view it in a web browser.

Prerequisites

The application that you are importing in the IDE has its source specified in the build config file.

Procedure

1. If required, sign in to your OpenShift Container Platform server using the Basic protocol or the
OAuth protocol.

2. In the OpenShift Explorer view of the IDE, expand the connection to locate the application to
import.

3. Depending on the type of application you want to import, take the following steps:

a. If a project has a single application under it and you want to import this application, right-
click the {project name} and click Import Application.

b. If a project has multiple applications under it and you want to import a specific application,

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

21

https://docs.openshift.org/latest/dev_guide/templates.html

b. If a project has multiple applications under it and you want to import a specific application,
right-click the service and then click Import Application.

4. In the Import OpenShift Application wizard, Existing Build Configs list, click the application
that you want to import and click Next.

5. Ensure the location in the Git Clone Destination field corresponds to where you want to make a
local copy of the application Git repository. Click Finish. The application is listed in the Project
Explorer view.

2.1.5. Deploying an application using the server adapter

The server adapter enables you to publish the changes that you made in your workspace project to the
running OpenShift application on the OpenShift instance. It enables incremental deployment of
applications directly into the deployed pods on OpenShift. You can use the server adapter to push
changes in your application directly to the running OpenShift application without committing the source
code to the Git repository.

Procedure

1. In the OpenShift Explorer view of the IDE, expand the connection, the project, and then the
application.

2. Right-click the {application name} and click Server Adapter.

3. In the Server Settings window Resources section, select the service.

NOTE

The OpenShift service has a build configuration with a Git URL matching the Git
remote URL of one of the workspace projects. A workspace project is selected
automatically.

4. Click Finish. The Servers view is the view in focus with the server showing [Started,
Publishing…​] followed by the Console view showing the progress of application publishing.

5. To view the application, in the OpenShift Explorer view of the IDE, right-click the application,
and click Show In → Web browser. The application displays in the built-in web browser.

2.1.6. Deleting an OpenShift Container Platform project

You may choose to delete a project from the workspace to make a fresh start in project development or
after you have concluded development in a project. When you delete a project, all the resources
associated with the project are deleted.

Prerequisites

An OpenShift Container Platform project exists.

Procedure

1. In the OpenShift Explorer view of the IDE, expand the connection to locate the project you
want to delete.

2. Right-click the {project name} and click Delete Project.

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

22

3. In the OpenShift resource deletion window, click OK.

NOTE

To delete more than one project (and the containing applications), in the OpenShift
Explorer view, click the project to select it and while holding the Control key select
another project that you want to delete and then press Delete.

2.2. SETTING UP AND REMOTELY MONITORING AN OPENSHIFT
CONTAINER PLATFORM APPLICATION

In some scenarios, the user already has a remote instance of OpenShift Container Platform running with
various applications on it and may want to monitor it. The IDE allows users to set up a connection to a
remote instance of OpenShift Container Platform and then use logs (application logs and build logs) to
troubleshoot and monitor running applications.

2.2.1. Setting up OpenShift Client Binaries

Prerequisites

Before setting up port forwarding or streaming application and build logs, it is mandatory to set up
OpenShift Client Binaries.

Procedure

To set up the OpenShift Client Binaries, take the following steps:

1. In the IDE, navigate to Window → Preferences → JBoss Tools → OpenShift 3.

2. Click the here link.

3. In the Download from GitHub section, click the Release page link.

4. Scroll to the Assets section for the relevant version of OpenShift Origin. Click the appropriate
link to begin the client tools download for the binary for your operating system.

5. After the download is complete, extract the contents of the file.

6. Navigate to Window → Preferences → JBoss Tools → OpenShift 3

7. Click Browse and select the location of the OpenShift Client executable file.

8. Click Apply and Close. OpenShift Client Binaries are now set up for your IDE.

2.2.2. Setting up Port Forwarding

Using the Application Port Forwarding window, you can connect the local ports to their remote
counterparts to access data or debug the application. Port forwarding automatically stops due to any
one of the following reasons:

The OpenShift Container Platform connection terminates

The IDE shuts down

The workspace is changed

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

23

Port forwarding must be enabled each time to connect to OpenShift Container Platform from the IDE.

Procedure

To set up port forwarding, take the following steps:

1. In the OpenShift Explorer view, expand the connection, the project, the services, and then the
Pods.

2. Right-click the relevant pod and then click Port Forwarding.

Figure 2.7. Setting up Port Forwarding

3. In the Application Port Forwarding window, click the Find free local ports for remote ports
check box and then click Start All. The Status column shows Started, indicating that port
forwarding is now active. Additionally, the Console view shows the status of port forwarding for
the particular service.

Figure 2.8. Start Port Forwarding

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

24

Figure 2.8. Start Port Forwarding

2.2.3. Streaming Pod Logs

Pod logs are general logs for an application running on a remote OpenShift Container Platform instance.
The streaming application logs feature in the IDE is used to monitor applications and use the previous
pod log to troubleshoot if the application fails or returns errors.

Procedure

To stream the application logs, take the following steps:

1. In the OpenShift Explorer view, expand the project, the services, and then the Pods.

2. Right-click the relevant Pod and then click Pod Log.

Figure 2.9. Streaming Pod Log

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

25

Figure 2.9. Streaming Pod Log

The Console view displays the Pod log.

2.2.4. Streaming Build Logs

Build logs are logs that document changes to applications running on a remote OpenShift Container
Platform instance. The streaming build logs feature in the IDE is used to view the progress of the
application build process and to debug the application.

Procedure

To stream build logs, take the following steps:

1. In the OpenShift Explorer view, expand the project, the services, and then the build.

2. Right-click the relevant build instance and click Build Log.

Figure 2.10. Streaming Build Log

The Console view is now the view in focus showing the build log.

2.3. BUILDING AND DEPLOYING DOCKER-FORMATTED CONTAINER
IMAGE TO CONTAINER DEVELOPMENT KIT OPENSHIFT REGISTRY

NOTE

This section is only applicable to OpenShift Container Platform 3. Since OpenShift
Container Platform 4 does not expose the Docker connection, there is no equivalent
section for OpenShift Container Platform 4.

In this article we deploy the Docker based microservices, frontend and bonjour, into an OpenShift
Container Platform instance running on Red Hat Container Development Kit, in CodeReady Studio. We
use the Helloworld-MSA tutorial available in GitHub at: https://github.com/redhat-helloworld-
msa/helloworld-msa.

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

26

https://github.com/redhat-helloworld-msa/helloworld-msa

The article shows how you can easily build a local Docker image, not present on Docker Hub, to
Container Development Environment and then deploy that image to an OpenShift Container Platform
instance, using CodeReady Studio. frontend and bonjour microservices, used here, are examples of
such private images that are not present in Docker Hub.

Prerequisites

1. Install npm: Before running CodeReady Studio, install npm on your system. See the npm
documentation for instructions for various platforms: https://docs.npmjs.com/getting-
started/what-is-npm.

2. Download and install JDK 8.

3. Install CodeReady Studio and Red Hat Container Development Kit. To install
CodeReady Studio, see: https://access.redhat.com/documentation/en-
us/red_hat_jboss_developer_studio/12.0/html/installation_guide/ and to install Red Hat
Container Development Kit, see https://access.redhat.com/documentation/en-
us/red_hat_container_development_kit/3.4/html/getting_started_guide/.

4. Clone the following projects and then import them into CodeReady Studio using the Import
wizard (from File > Open Projects from File System).

a. bonjour project from: https://github.com/redhat-helloworld-msa/bonjour

b. frontend project from: https://github.com/redhat-helloworld-msa/frontend

5. Set up the oc client binaries in the IDE from Window > Preferences, expand JBoss Tools, and
then click OpenShift 3.

2.3.1. Installing the javascript modules

After you complete this section, a new node_modules folder is listed under the project in the Project
Explorer view. This new folder indicates the download and installation of the required javascript
modules.

Prerequisites

Install npm: Before running CodeReady Studio, install npm on your system. See the npm
documentation for instructions for various platforms: https://docs.npmjs.com/getting-
started/what-is-npm.

Download and install JDK 8.

Install CodeReady Studio and Red Hat Container Development Kit. To install
CodeReady Studio, see: Red Hat CodeReady Studio 12.15 Installation Guide and to install Red
Hat Container Development Kit, see Container Development Kit Getting Started Guide

Set up the oc client binaries in the IDE from Window → Preferences, expand JBoss Tools, and
then click OpenShift 3.

Procedure

1. In the Project Explorer view of the IDE, expand frontend and right-click package.json.

2. Click Run As → npm Install to download and install the required javascript modules in the
project.

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

27

https://docs.npmjs.com/getting-started/what-is-npm
https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/12.0/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.4/html/getting_started_guide/
https://github.com/redhat-helloworld-msa/bonjour
https://github.com/redhat-helloworld-msa/frontend
https://docs.npmjs.com/getting-started/what-is-npm
https://access.redhat.com/documentation/en-us/red_hat_codeready_studio/12.15/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.8/html/getting_started_guide/

2.3.2. Building the frontend microservice

frontend is a Docker based microservice that is not present on Docker Hub. It is the landing page for the
application that you are building. The frontend microservice then calls other microservices (bonjour, in
this case) and displays the results from these calls. This section walks you through steps to build the
bonjour private image.

Prerequisites

A cloned and imported copy of the bonjour project from https://github.com/redhat-helloworld-
msa/bonjour is available.

Procedure

1. In the Project Explorer view, expand frontend, right-click Dockerfile, and then click Run As →
Docker Image Build.

2. Set the configuration in the Docker Image Build Configuration window:

a. In the Connection list, select Container Development Environment.

b. In the Repository Name field, type demo/frontend.

3. Click OK. The Docker-formatted Container image starts building against the Docker Daemon
running in the Container Development Environment.

2.3.2.1. Deploying the frontend microservice

You can deploy the frontend microservice into an OpenShift Container Platform instance running on
Red Hat Container Development Kit, in CodeReady Studio. After you build the frontend microservice,
the Docker-formatted container image demo/frontend is available in the Docker Explorer view under
the Container Development Environment option.

Prerequisites

A cloned and imported copy of the frontend project from https://github.com/redhat-
helloworld-msa/frontend is available.

Procedure

1. In the Docker Explorer view of the IDE, select Container Development Environment →
Images, right-click demo/frontend, and click Deploy to OpenShift.

2. In the Deploy an Image window, click New.

3. Create a new OpenShift project using the Create OpenShift Project window:

a. In the Project Name field, type the name of the new project, demo.

b. Optionally, complete the Display Name and Description fields.

c. Click OK.

4. In the Deploy an Image window, select the Push Image to Registry check box and click Next.

5. In the Deployment Configuration & Scalability window, change the OS_PROJECT. Click

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

28

https://github.com/redhat-helloworld-msa/bonjour
https://github.com/redhat-helloworld-msa/frontend

5. In the Deployment Configuration & Scalability window, change the OS_PROJECT. Click
OS_PROJECT to open the Environment Variable window and in the Value field, type demo
(from step 5) and click OK.

6. In the Deployment Configuration & Scalability window, click byn:[Next] and then click Finish.
After the Docker-formatted Container image is pushed to the Docker Registry on OpenShift
Container Platform, the Eclipse plugin generates all the required OpenShift Container Platform
resources for the application to run.

7. In the Deploy Image to OpenShift window, review the details of deploying the image and click
OK.

8. In the OpenShift Explorer view, expand the connection → {project name} → Service → Pod to
see the Pod running. Right-click the pod and click Pod Log. The Console view shows the
frontend service running. In the OpenShift Explorer view, expand the application, right-click
the service, and click Show In → Web Browser. The frontend microservice in the Bonjour
Service shows: Error getting value from service <microservice> This message confirms that
the bonjour microservice is connected.

2.3.3. Connecting the frontend and bonjour microservices

The bonjour microservice is a node.js application that returns the string bonjour-de-<pod_ID>. You can
build the bonjour microservice and then view it on the frontend microservice to validate it.

Prerequisites

A built and deployed frontend microservice is available.

A cloned and imported copy of the bonjour project from https://github.com/redhat-helloworld-
msa/bonjour is available.

Procedure

1. In the Project Explorer view, expand bonjour and right-click package.json.

2. Click Run As > npm Install.

3. In the Project Explorer view, expand bonjour and right-click Dockerfile.

4. Click Run As > Docker Image Build.

5. Set the configuration in the Docker Image Build Configuration window:

a. In the Connection list, select Container Development Environment.

b. In the Repository Name field, type demo/bonjour.

6. Click OK.

2.3.3.1. Deploying the bonjour microservice

You can deploy the Docker-formatted Container image either from the Docker Explorer view (as done
in step 3 of the Building a Docker-formatted Container Image section) or, as done in this section,
from the OpenShift Explorer view of the IDE.

Prerequisites

A cloned and imported copy of the bonjour project from https://github.com/redhat-helloworld-

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

29

https://github.com/redhat-helloworld-msa/bonjour

A cloned and imported copy of the bonjour project from https://github.com/redhat-helloworld-
msa/bonjour is available.

Procedure

1. In the OpenShift Explorer view of the IDE, right-click the project (demo), and click Deploy
Docker Image.

2. To deploy the image using the Deploy an Image window:

a. In the Docker Connection list, click the Docker connection.

b. In the Image Name field, type demo/bonjour.

c. Click the Push Image to Registry check box.

3. Click Next.

4. In the Deployment Configuration & Scalability window, click Next.

5. In the Services and Routing Settings window, click Finish.

6. In the Deploy Image to OpenShift window, click OK.

2.3.3.2. Scaling the pod

Scaling pods in OpenShift enables you to use resources effectively. This section walks you through
steps to increase the number of pods by scaling them up.

Prerequisites

A pod that is up and running.

Procedure

1. In the OpenShift Explorer view of the IDE, expand the application name (demo).

2. Right-click the pod and click Pod Log to check if the pod is running.

3. Navigate to the browser where you have the OpenShift application running and click Refresh
Results. You will see a greeting from the bonjour service with a hostname that matches the pod
name in the OpenShift Explorer view.

4. In the OpenShift Explorer view, right-click the service and click Scale → Up. You now have two
Pods running on OpenShift Container Platform.

5. Navigate to the browser and click Refresh Results to see the service balancing between the
two Pods.

2.3.4. Editing the bonjour microservice

The bonjour microservice is a node.js application that returns the string bonjour-de-<pod_ID>. This
section walks you through editing this microservice.

Prerequisites

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

30

https://github.com/redhat-helloworld-msa/bonjour

The bonjour microservice is available.

Procedure

1. In the Project Explorer view, expand bonjour, and double-click bonjour.js to open it in the
default editor.

2. Find the following function:

function say_bonjour(){
 Return “Bonjour de “ + os.hostname();

3. Change the function as shown in the following example:

 function say_bonjour(){
 Return “Salut de “ + os.hostname();

4. Save the file.

2.3.4.1. Viewing the edited bonjour microservice on the frontend microservice

You can use private images to build a local Docker image, not present on Docker Hub, on the Container
Development Environment. The frontend and bonjour microservices are examples of such private
images that are not present in Docker Hub. Then, you can deploy the private image to an OpenShift
Container Platform instance, using CodeReady Studio.

Prerequisites

The bonjour microservice is available.

Procedure

1. In the Project Explorer view, expand bonjour and right-click Dockerfile.

2. Click Run As → Docker Image Build.

3. Optional:, To edit the configuration, open the Run Configuration window.

4. Wait for the Console view to show that the Docker-formatted container image is successfully
pushed to the Docker daemon.

5. In the Docker Explorer view, expand Container Development Environment > Images.

6. Right-click the image and click Deploy to OpenShift.

7. In the Deploy an Image window, click Push Image to Registry and then click Next.

8. In the Deployment Configuration & Scalability window, click Finish. In the OpenShift Explorer
view under bonjour, you can see that the pods are added running.

9. Navigate to the browser and click Refresh Results. The new greeting displays.

2.4. DEPLOYING THE OPENSHIFT CONTAINER PLATFORM 3
RESOURCE

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

31

In this article, you use the s2i-spring-boot-cfx-jaxrs template in OpenShift Container Platform as an
example to define resources for your OpenShift Container Platform application. Use similar steps to
define resources for any other OpenShift Container Platform application.

Prerequisites

1. Install Red Hat Container Development Kit (CDK) 3. For detailed instructions to install CDK 3,
see https://access.redhat.com/documentation/en-
us/red_hat_container_development_kit/3.0/html/installation_guide/.

2.4.1. Deploying the s2i-spring-boot-cfx-jaxrs template

Set up the IDE to work with CDK 3 as described in Using Container Development Kit Tooling in Red Hat
CodeReady Studio. The new connection for OpenShift Container Platform is listed in the OpenShift
Explorer view, making the s2i-spring-boot-cfx-jaxrs template available for use.

Procedure

To deploy the template, take the following steps:

1. In the OpenShift Explorer view, expand the connection and right-click the {project name} and
click New > Application.

2. In the New OpenShift Application window:

a. In the OpenShift project field, click the project that you want to create the new application
in.

b. In the Server application source tab, scroll through the list and locate and click s2i-spring-
boot-cfx-jaxrs (quickstart, java, springboot, fis) - openshift.

3. Click Finish.

4. In the Create Application Summary window, click OK.

5. In the Import OpenShift Application window in the Git Clone Location field, enter the location
where you want to clone the template and click Finish.

Figure 2.11. Selecting the s2i-spring-boot-cfx-jaxrs Template

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

32

https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.0/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_developer_studio/12.0/html/getting_started_with_container_and_cloud-based_development/developing_using_containers_and_the_cloud#assembly_using-cdk-tooling-in-devstudio

Figure 2.11. Selecting the s2i-spring-boot-cfx-jaxrs Template

6. In the OpenShift Explorer view, expand the project, expand the s2i-spring-boot-cfx-jaxrs
application and then right-click the s2i-spring-boot-cfx-jaxrs-1 build and click Build Log. The
Console view shows the progress of the build. The Console view shows the latest: digest:
sha256:{checksum} size: 9033 Push successful message.

2.4.2. Viewing the s2i-spring-boot-cfx-jaxrs application in the Web Console

This section is required optionally if you want to see the application running on the terminal. In absence
of a service or route, you can view the application through the Pod tab in the web console.

Procedure

To view the application in the Pod:

1. In the web console, click Applications > Pod and then click the s2i-spring-boot-cfx-jaxrs-1
pod.

2. Click the Logs tab.

3. In the logs, locate Jolokia: Agent started with URL https://172.17.0.6:8778/jolokia/ and copy
the IP address (172.17.0.6, in this example).

4. Click the Terminal tab.

5. In the terminal, type the following command: curl
http://{IP_address}:8080/services/helloservice/sayHello.
Example: curl http://172.17.0.6:8080/services/helloservice/sayHello

6. Press Enter.

7. Append the next line with: curl

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

33

https://172.17.0.6:8778/jolokia/
http://172.17.0.6:8080/services/helloservice/sayHello

7. Append the next line with: curl
http://172.17.0.6:8080/services/helloservice/sayHello/{your_name} and press Enter.
Example: curl http://172.17.0.6:8080/services/helloservice/sayHello/John

The Hello John, Welcome to CXF RS Spring Boot World!!! message appears, showing that
application is up and running.

Figure 2.12. s2i-spring-boot-cfx-jaxrs Application in the Web Console

2.4.3. Defining services and routes using a JSON file

Use the services-route.json file to create the service for the s2i-spring-boot-cfx-jaxrs application and
then create a route for the service. In this case the target port is 8080 where the route sends the
request to the application.

Procedure

To define the resources, take the following steps:

1. Copy the following content and paste it in a file, name the file services-routes.json, and save it.

{
 "apiVersion": "v1",
 "kind": "List",
 "metadata": {},
 "items": [
 {
 "apiVersion": "v1",
 "kind": "Service",
 "metadata": {
 "name": "s2i-spring-boot-cxf-jaxrs"
 },
 "spec": {
 "ports": [
 {
 "name": "8080-tcp",
 "protocol": "TCP",
 "port": 8080,
 "targetPort": 8080
 },
 {
 "name": "8778-tcp",
 "protocol": "TCP",
 "port": 8778,
 "targetPort": 8778
 }

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

34

http://172.17.0.6:8080/services/helloservice/sayHello/
http://172.17.0.6:8080/services/helloservice/sayHello/John

2. In the OpenShift Explorer view, right-click the project and click New > Resource.

3. In the New OpenShift Resource window:

a. In the OpenShift project list, click the project that you deployed the application to.

b. In the Source pane, click Browse File System and locate and select the services-
routes.json file.

c. Click Finish.

Figure 2.13. Selecting the service-routes.json File

],
 "selector": {
 "deploymentconfig": "s2i-spring-boot-cxf-jaxrs"
 }
 }
 },
 {
 "apiVersion": "v1",
 "kind": "Route",
 "metadata": {
 "name": "s2i-spring-boot-cxf-jaxrs"
 },
 "spec": {
 "to": {
 "kind": "Service",
 "name": "s2i-spring-boot-cxf-jaxrs",
 "weight": 100
 },
 "port": {
 "targetPort": "8080-tcp"
 },
 "wildcardPolicy": "None"
 }
 }
]
}

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT

35

Figure 2.13. Selecting the service-routes.json File

4. The Create Resource Summary window shows the details of the created service and route.
Click OK.

5. In the OpenShift Explorer view, right-click the project and click Show in > Web browser. The
Whitelabel Error Page shows that the application has no explicit mapping.

6. In the address bar, append the URL with services/helloservice/sayHello/. The URL should now
look like: *http://s2i-spring-boot-cxf-jaxrs-
_{project_name}_._{IP_address}_.nip.io/services/helloservice/sayHello/.*

7. Press Enter. The web browser shows the Welcome to the CXF RS Spring Boot application,
append /{name} to call the hello service message.

8. At the end of the URL, append a name, for example: http://s2i-spring-boot-cxf-jaxrs-.
{IP_address}.nip.io/services/helloservice/sayHello/John. The page displays the message:
Hello John, Welcome to CXF RS Spring Boot World!!!

Figure 2.14. Viewing the s2i-spring-boot-cxf-jaxrs Application in the Web Browser

ADDITIONAL RESOURCES

For more information on OpenShift Application Explorer, see Getting started with CodeReady
Studio Tools.

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

36

http:/services/helloservice/sayHello/John
https://access.redhat.com/documentation/en-us/red_hat_codeready_studio/12.15/html-single/getting_started_with_codeready_studio_tools/index#openshift-basics-in-devstudio_getting-started-with-crs-tools

CHAPTER 3. DEVELOPING WITH DOCKER

3.1. USING DOCKER TOOLING IN CODEREADY STUDIO

The CodeReady Studio Docker tooling allows you to manage Docker Images and Containers. The
Docker tooling functionality is the same as running the docker commands on the CLI. Docker tooling is
the GUI-based interface of the Docker commands on the CLI.

3.1.1. Connecting to Docker Daemon

You must have a connection to a Docker daemon before you can work with Docker Images or
Containers.

Installing Docker

1. Install Docker on your system. To install it on different platforms:

On RHEL, use: https://docs.docker.com/install/linux/docker-ee/rhel/

NOTE

Only Docker Enterprise Edition (Docker EE) is supported on Red Hat Enterprise Linux.
For more information, go to https://success.docker.com/article/compatibility-matrix

On Fedora, use: https://fedoraproject.org/wiki/Docker or
https://docs.docker.com/engine/installation/

On Windows, use: https://docs.docker.com/docker-for-windows/install/

On MacOS, use: https://docs.docker.com/docker-for-mac/install/

For other platforms, go to https://docs.docker.com/

1. After you have installed Docker, grant the user permission to work with Docker by running
the following commands as the root user:

groupadd docker && sudo gpasswd -a ${USER} docker && sudo systemctl restart
docker
usermod -aG docker ${USER}

Where, {USER} is your username.

2. Either restart the system or log out and log into the system again for the changes to take
effect.

Setting up an account in the Docker tooling

NOTE

You must set up the account in Docker tooling only if you want to push the images to the
remote registry. If not, you may skip this section.

You must have an account set up in Docker Tooling. To do that:

CHAPTER 3. DEVELOPING WITH DOCKER

37

https://docs.docker.com/install/linux/docker-ee/rhel/
https://success.docker.com/article/compatibility-matrix
https://fedoraproject.org/wiki/Docker
https://docs.docker.com/engine/installation/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/

1. In the IDE, click Window > Preferences > Docker > Registry Accounts.

Figure 3.1. Creating a New Registry Account

2. Click Add to display the New Registry Account window.

3. In New Registry Account window:

a. In the Server Address field, type https://hub.docker.com/ (in this example, we are using
https://hub.docker.com/ as the Docker Registry).

b. In the Username field, type the username that you use on hub.docker.com (if you don’t
already have a Docker ID as yet, navigate to https://hub.docker.com/ and create one).

c. In the Email field, type the email address that you used on https://hub.docker.com/.

d. In the Password field, type the password for https://hub.docker.com/.

e. Click OK.

Figure 3.2. Entering Details for the New Registry Account

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

38

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Figure 3.2. Entering Details for the New Registry Account

f. The Preferences window shows the details that you just entered. Click Apply and Close.

3.1.1.1. Testing an existing Docker connection

You must be connected to a Docker daemon before you can manage Docker images or containers.

Procedure

To display the Docker Explorer view, take the following steps:

1. Click Window > Show View > Other (or click Window > Perspective > Open Perspective >
Other and then click Docker Tooling).

2. In the type filter text field, type Docker and from the results click Docker Explorer. If you
already have Docker installed on your system, the Unix socket location displays in the Docker
Explorer view.

IMPORTANT

In case the Unix socket does not appear, refer to the note in the Installing
Docker section to grant user the permissions required to work with Docker.

Figure 3.3. Unix Socket Location Displayed in the Docker Explorer View

CHAPTER 3. DEVELOPING WITH DOCKER

39

Figure 3.3. Unix Socket Location Displayed in the Docker Explorer View

To test the connection:

3. In the Docker Explorer view, right-click unix:///var/run/docker.sock and click Edit to open the
Edit Docker Connection window.

4. Click Test Connection. The Ping succeeded! message confirms the connection.

Figure 3.4. The Ping succeeded! Message Confirming the Connection

NOTE

In case your connection to the Docker daemon is lost, use the following two
commands to restart the Docker daemon:

sudo systemctl start docker
sudo systemctl enable docker

3.1.1.2. Editing a Docker connection

Procedure

To edit a Docker connection, atke teh following steps:

1. In the Docker Explorer view, right-click the connection and click Edit. The Edit Docker
Connection window opens.

2. Click Browse next to the Unix socket Location field to locate a new location of the Unix socket
(or, check the TCP connection and add the URI).

3. After you have selected the new location, click OK and then click Finish.
To filter the Docker Explorer view:

4. In the Docker Explorer view, click the View Menu arrow and then click Filters and

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

40

4. In the Docker Explorer view, click the View Menu arrow and then click Filters and
Customization.

5. Select the appropriate options to filter out the required images:

a. Click the Dangling (untagged) images checkbox, to filter out images that are no longer
referred to.

b. Click the Intermediate images checkbox, to filter out the images that have no repo tags
that are parents of named images.

c. Click the Stopped containers checkbox, to filter out containers that are stopped but not
paused.

d. Click the Top-level images checkbox, to show the first repo tag for an Image with multiple
tags. You have performed various management operations on your Docker container.

3.1.2. Managing Docker images

In this section you will work with the jboss/wildfly:11.0.0.Final image.

3.1.2.1. Pulling the jboss/wildfly:11.0.0.Final image

Procedure

To pull the jboss/wildfly:11.0.0.Final image, take the following steps:

1. In the Docker Explorer view, expand the docker URL > Images.

2. Right-click the Images folder and click Pull. The Pull Image window opens.

3. In the Pull Image window, the Docker Hub registry is used by default. To specify an additional
private registry, click the Add a registry account link.

4. Click Search to display the Search and pull a Docker Image window.

5. In the Image field, type jboss/wildfly and press Enter

Figure 3.5. Searching for the jboss/wildfly Image

CHAPTER 3. DEVELOPING WITH DOCKER

41

Figure 3.5. Searching for the jboss/wildfly Image

6. Select the jboss/wildfly image and click Next.

7. In the Choose a tag for the selected image window, locate and click 11.0.0.Final.

8. Click Finish. The Pull Image window, Image name field shows jboss/wildfly:11.0.0.Final.

9. Click Finish. The notification area in the IDE shows the progress of the image being pulled. Wait
for the pull task to complete. This may take time because an Image may use several
intermediate Images each of which may be several bytes.

In the Docker Explorer view, expand the docker URL > Images. The
docker.io/jboss/wildfly:11.0.0.Final image is listed.

3.1.2.2. Pushing images

After you push an image to the Docker Registry or to your private registry, the image becomes available
in the Docker Cloud. This image is then available for use by other developers.

Prerequisites

Before you try to push, an Image it is important that you tag your Image.

To tag the Image, take the follwoing steps:

1. In the Docker Explorer view, expand the docker URL > Images.

2. Right-click the image name that you want to add a tag to. Click Add Tag.

3. In the Tag Image window:

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

42

a. In the New Tag field, type docker_hub/<your_username_on_docker_hub>/<image tag>:
<version> (here: docker.io/<your_username_on_docker_hub>/wildfly:11.0.0.Final).

4. Click Finish. The new image with the tag appears in the Images folder:
docker.io/<your_username_on_docker_hub>/wildfly:11.0.0.Final.

Procedure

To push an Image, atke teh following steps:

1. In the Docker Explorer view, expand the docker URL > Images.

2. Right-click the image name that you want to Push. Click Push. The Push Image window opens.

3. In the Registry account list, by default, the docker.io account appears. Change this to select the
account that shows <your_dockerhub_username>@<dockerhub URL>.

4. Ensure that the Image name list displays the name of the image that you want to push. If not,
select the image name from the list.

5. Click Finish. The notification area in the IDE shows the progress of the image being pushed.
Wait for the push task to complete. After it is complete, the pushed Image is available in your
public repository at https://hub.docker.com/.

Figure 3.6. Pushed Image in the Public Repository

3.1.2.3. Running Image Launch Configuration

In this section you will use the Run Image wizard to create a Container based on an Image.

Procedure

To run an Image, take the following steps:

1. In the Docker Explorer view, expand the docker URL > Images.

2. Right-click the image name that you want to run
(docker.io/<your_username_on_docker_hub>/wildfly:11.0.0.Final, in this case). Click Run.

3. In the Run a Docker Image window:

a. The Image field, by default, shows the name of the image you are running. To run an Image
that is not currently loaded, type the Image name in this field.

b. In the Container Name field, type a name for the container.

c. Clear the Publish all exposed ports to random ports on the host interfaces check box.

CHAPTER 3. DEVELOPING WITH DOCKER

43

https://hub.docker.com/

d. Click Finish.

Figure 3.7. Running the Image Launch Configuration

The Console view is the view in focus showing the progress of the task. The WildFly Full
11.0.0.Final (WildFly Core 3.0.8.Final) started in 3188ms - Started 292 of 553 services

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

44

(347 services are lazy, passive or on-demand) message indicates that the image is
started.

4. In the web browser navigate to http://localhost:8080/ to see the Image running.

Figure 3.8. Image Running on Localhost

3.1.2.4. Building images with Dockerfile

You can build an Image or create an Image by modifying an existing image. Typically, this involves
installing new packages. The specification of the new Docker Image is done via a special file which must
be named Dockerfile

Prerequisites

You must have a Dockerfile created on your local machine.

Following is an example of a Dockerfile. You may use this sample file or have your own Dockerfile.

Use latest jboss/base-jdk:8 image as the base
FROM jboss/base-jdk:8
Set the WILDFLY_VERSION env variable
ENV WILDFLY_VERSION 11.0.0.Final
ENV WILDFLY_SHA1 0e89fe0860a87bfd6b09379ee38d743642edfcfb
ENV JBOSS_HOME /opt/jboss/wildfly
USER root
Add the WildFly distribution to /opt, and make wildfly the owner of the extracted tar content
Make sure the distribution is available from a well-known place
RUN cd $HOME \
 && curl -O https://download.jboss.org/wildfly/$WILDFLY_VERSION/wildfly-
$WILDFLY_VERSION.tar.gz \
 && sha1sum wildfly-$WILDFLY_VERSION.tar.gz | grep $WILDFLY_SHA1 \
 && tar xf wildfly-$WILDFLY_VERSION.tar.gz \
 && mv $HOME/wildfly-$WILDFLY_VERSION $JBOSS_HOME \
 && rm wildfly-$WILDFLY_VERSION.tar.gz \
 && chown -R jboss:0 ${JBOSS_HOME} \
 && chmod -R g+rw ${JBOSS_HOME}
Ensure signals are forwarded to the JVM process correctly for graceful shutdown
ENV LAUNCH_JBOSS_IN_BACKGROUND true
USER jboss

CHAPTER 3. DEVELOPING WITH DOCKER

45

http://localhost:8080/

Expose the ports we're interested in
EXPOSE 8080
Set the default command to run on boot
This will boot WildFly in the standalone mode and bind to all interface
CMD ["/opt/jboss/wildfly/bin/standalone.sh", "-b", "0.0.0.0"]

Procedure

To build an image, take the following steps:

1. Open the Docker Images view by clicking Window → Show View → Docker → Docker Images.

2. Click the Build Image icon (image::docker_build_image_icon.png[width=25px]).

3. In the Build a Docker Image window:

a. In the Image Name field, type a new name for the Image in the repo/name:version format
(mydockerrepo/wildfly:11.0.0.Final, in this case).

4. Click Browse next to the Directory field to locate and select the Dockerfile.

5. Click Finish. The Console view is the view in focus showing the progress of the image being
built. The Successfully built <image_ID> message shows that the image has been built
successfully.

3.1.2.5. Working with image tags

Tags are additional names for images. They are usually in the following format:
docker_hub/<your_username_on_docker_hub>/<image tag>:<version>.

3.1.2.5.1. Adding tags to images

Procedure

To add a tag to an image, take the following steps:

1. In the Docker Explorer view, right-click the image name that you want to add a tag to and, from
the context menu, click Add Tag.

2. In the Tag Image window:

a. In the New Tag field, type docker_hub/<your_username_on_docker_hub>/<image tag>:
<version> (in this case, docker.io/<your_username_on_docker_hub>/wildfly:11.0.0.Final).

b. Click Finish.

3.1.2.5.2. Removing tags for images

Procedure

To remove a tag, take the following steps:

1. In the Docker Explorer view, right-click the image name that you want to remove the tag for.

2. From the context menu, click Remove Tag.

3. In the Remove Image Tag window:

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

46

a. Ensure that the Tag field, shows the name of the image that you want to remove the tag
for. If not, select the appropriate image from the list.

b. Click Finish. The image is no longer listed in the Docker Explorer view.

3.1.3. Managing Docker Containers

Docker containers are isolated processes that are based on Docker Images. Once created, users can
stop, start, pause, unpause, kill, or remove the containers, or read their logs. To manage the Docker
Containers:

Procedure

1. Click Window → Show View → Other.

2. In the filter text field, type Docker to view Docker-related options in the list.

3. Expand Docker and double-click Docker Containers. The Docker Containers view appears
displaying a list of all containers running on the Docker host.

4. Click the desired container to select it. You can now manage your containers using the buttons
in the Docker Container view header:

a. To pause the container, click Pause.

b. To start the container, click Start.

c. To view the container logs, right-click the container name and click Display Log.

d. To view a list of all containers, click on the right-most icon in the list of icons in the view,
which displays a drop-down option to view all containers. Click this option to view all
available containers.

3.1.4. Working with docker-compose.yml files

You can use a docker-compose.yml file and start Docker Compose from the context menu of a project
in the Project Explorer view. The docker-compose.yml file contains the configuration that is applied
to each container started for a service. Docker Compose is a tool for running applications composed
from containers.

Prerequisites

1. Install Docker Compose: For instruction, see https://docs.docker.com/compose/install/.

2. Set up Docker Compose in CodeReady Studio: Navigate to Window → Preferences → Docker
→ Docker Compose. In the Docker Compose field, select the location where Docker Compose
is installed (usually, /usr/local/bin). Click Apply and Close.

3.1.4.1. Creating the docker-compose project

Procedure

To create the docker-compose project, take the follwoing steps:

1. In the IDE, click File → New → Project.

CHAPTER 3. DEVELOPING WITH DOCKER

47

https://docs.docker.com/compose/install/

2. In the New Project wizard, click General > Project. Click Next.

3. In the Project name field, type docker-compose and click Finish. The new docker-compose
project is listed in the Project Explorer view.

3.1.4.2. Creating the required files in the docker-compose project

In this section you will create the files required to run the docker-compose build.

Procedure

To create the files in the docker-compose project, take the following steps:

1. In the Project Explorer view, right-click docker-compose and click New > File.

2. In the New File window, File name field, type Dockerfile and click Finish. The Dockerfile opens
in the default editor.

3. In the Dockerfile, copy and paste the following content and save the file.

1FROM python:3.4-alpine
2ADD . /code
3WORKDIR /code
4RUN pip install -r requirements.txt
5CMD ["python", "app.py"]

4. In the Project Explorer view, right-click docker-compose and click New > File.

5. In the New File window, File name field, type app.py and click Finish. The app.py file opens in
the default editor.

6. In the app.py file, copy and paste the following content and save the file.

from flask import Flask
from redis import Redis

app = Flask(__name__)
redis = Redis(host='redis', port=6379)

@app.route('/')
def hello():
 count = redis.incr('hits')
 return 'Hello World! I have been seen {} times.\n'.format(count)

if __name__ == "__main__":
 app.run(host="0.0.0.0", debug=True)

7. In the Project Explorer view, right-click docker-compose and click New > File.

8. In the New File window, File name field, type d_ocker-compose.yml_ and click Finish. The
docker-compose.yml file opens in the default editor.

9. In the docker-compose.yml file, copy and paste the following content and save the file.

IMPORTANT

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

48

IMPORTANT

The indentation for the following file must be retained as shown here. If not
retained, the docker-compose.yml file will have errors and will not build.

version: '3'
services:
 web:
 build: .
 ports:
 - "5000:5000"
 redis:
 image: "redis:alpine"

10. In the Project Explorer view, right-click docker-compose and click New > File.

11. In the New File window, File name field, type requirements.txt and click Finish. The
requirements.txt file opens in the default editor.

12. In the requirements.txt file, copy and paste the following content and save the file.

1 | flask
2 | redis

= Building the docker-compose project

Procedure

To build the docker-compose project:

1. In the Project Explorer view, expand the docker-compose project.

2. Right-click the docker-compose.yml file, click Run As > Docker Compose. The Console view is
the view in focus showing the progress of the of the image being pulled.

Figure 3.9. Console View Showing Progress of the Image Being Pulled

The Docker Explorer view shows the containers running. Navigate to localhost:5000 to see
the application running.

Figure 3.10. Application Running on Localhost

CHAPTER 3. DEVELOPING WITH DOCKER

49

Figure 3.10. Application Running on Localhost

3.1.5. Troubleshooting

Procedure

Attempting to connect to a running local Docker instance as a non-root user results in errors being
logged, but not displayed in the User Interface, which results in the error being non-obvious. The
following workarounds are available for this problem:

Connect to the Docker instance manually. Define a custom configuration file and specify the
TCP URL displayed by the systemctl status docker service. As an example, you can use a TCP
URL such as tcp://0.0.0.0:2375 to connect to the running Docker instance instead of the
default unix:///var/run/docker.sock configuration file.

Figure 3.11. Error while Connection to Docker Daemon

Red Hat CodeReady Studio 12.15 Getting Started with Container and Cloud-based Development

50

Figure 3.11. Error while Connection to Docker Daemon

Run Eclipse as root. This solution avoids the problem but is not the recommended solution.

CHAPTER 3. DEVELOPING WITH DOCKER

51

	Table of Contents
	CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD
	1.1. USING RED HAT CODEREADY CONTAINERS TOOLING IN CODEREADY STUDIO
	1.1.1. Downloading and installing Red Hat CodeReady Containers in CodeReady Studio
	1.1.2. Using the OpenShift Container Platform tooling

	1.2. USING RED HAT CONTAINER DEVELOPMENT KIT TOOLING IN CODEREADY STUDIO
	1.2.1. Installing Container Development Kit in CodeReady Studio
	1.2.1.1. Downloading and installing CDK in the IDE

	1.2.2. Using the Docker tooling
	1.2.2.1. Using Docker for Container-based development
	1.2.2.2. Building the Docker image Using the Container Development Environment
	1.2.2.3. Next steps for the Docker tooling

	1.2.3. Using the OpenShift Container Platform tooling
	1.2.3.1. Next steps for the OpenShift tooling

	CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT
	2.1. CREATING AN OPENSHIFT CONTAINER PLATFORM APPLICATION IN CODEREADY STUDIO
	2.1.1. Creating a new OpenShift Container Platform connection
	2.1.2. Creating a new OpenShift Container Platform project
	2.1.3. Creating a new OpenShift Container Platform application
	2.1.4. Importing an existing OpenShift Container Platform application into the IDE
	2.1.5. Deploying an application using the server adapter
	2.1.6. Deleting an OpenShift Container Platform project

	2.2. SETTING UP AND REMOTELY MONITORING AN OPENSHIFT CONTAINER PLATFORM APPLICATION
	2.2.1. Setting up OpenShift Client Binaries
	2.2.2. Setting up Port Forwarding
	2.2.3. Streaming Pod Logs
	2.2.4. Streaming Build Logs

	2.3. BUILDING AND DEPLOYING DOCKER-FORMATTED CONTAINER IMAGE TO CONTAINER DEVELOPMENT KIT OPENSHIFT REGISTRY
	2.3.1. Installing the javascript modules
	2.3.2. Building the frontend microservice
	2.3.2.1. Deploying the frontend microservice

	2.3.3. Connecting the frontend and bonjour microservices
	2.3.3.1. Deploying the bonjour microservice
	2.3.3.2. Scaling the pod

	2.3.4. Editing the bonjour microservice
	2.3.4.1. Viewing the edited bonjour microservice on the frontend microservice

	2.4. DEPLOYING THE OPENSHIFT CONTAINER PLATFORM 3 RESOURCE
	2.4.1. Deploying the s2i-spring-boot-cfx-jaxrs template
	2.4.2. Viewing the s2i-spring-boot-cfx-jaxrs application in the Web Console
	2.4.3. Defining services and routes using a JSON file

	ADDITIONAL RESOURCES

	CHAPTER 3. DEVELOPING WITH DOCKER
	3.1. USING DOCKER TOOLING IN CODEREADY STUDIO
	3.1.1. Connecting to Docker Daemon
	Installing Docker
	Setting up an account in the Docker tooling
	3.1.1.1. Testing an existing Docker connection
	3.1.1.2. Editing a Docker connection

	3.1.2. Managing Docker images
	3.1.2.1. Pulling the jboss/wildfly:11.0.0.Final image
	3.1.2.2. Pushing images
	3.1.2.3. Running Image Launch Configuration
	3.1.2.4. Building images with Dockerfile
	3.1.2.5. Working with image tags

	3.1.3. Managing Docker Containers
	3.1.4. Working with docker-compose.yml files
	3.1.4.1. Creating the docker-compose project
	3.1.4.2. Creating the required files in the docker-compose project

	3.1.5. Troubleshooting

