
Red Hat CodeReady Workspaces 2.8

Installation Guide

Installing Red Hat CodeReady Workspaces 2.8

Last Updated: 2021-06-21

Red Hat CodeReady Workspaces 2.8 Installation Guide

Installing Red Hat CodeReady Workspaces 2.8

Robert Kratky
rkratky@redhat.com

Michal Maléř
mmaler@redhat.com

Fabrice Flore-Thébault
ffloreth@redhat.com

Yana Hontyk
yhontyk@redhat.com

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for administrators installing Red Hat CodeReady Workspaces.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. SUPPORTED PLATFORMS

CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES INSTALLATION
2.1. UNDERSTANDING THE CHECLUSTER CUSTOM RESOURCE
2.2. CHECLUSTER CUSTOM RESOURCE FIELDS REFERENCE

CHAPTER 3. INSTALLING CODEREADY WORKSPACES
3.1. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT 4 USING OPERATORHUB

3.1.1. Creating a project in OpenShift Web Console
3.1.2. Installing the Red Hat CodeReady Workspaces Operator
3.1.3. Creating an instance of the Red Hat CodeReady Workspaces Operator

3.2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT 4 USING THE CLI
3.3. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT CONTAINER PLATFORM 3.11

3.3.1. Installing the crwctl CLI management tool
3.3.2. Installing CodeReady Workspaces on OpenShift 3 using the Operator

3.4. INSTALLING CODEREADY WORKSPACES IN A RESTRICTED ENVIRONMENT
3.4.1. Installing CodeReady Workspaces in a restricted environment using OperatorHub
3.4.2. Installing CodeReady Workspaces in a restricted environment using CLI management tool

3.4.2.1. Preparing an private registry
3.4.2.2. Preparing CodeReady Workspaces Custom Resource for restricted environment

3.4.2.2.1. Downloading the default CheCluster Custom Resource
3.4.2.2.2. Customizing the CheCluster Custom Resource for restricted environment

3.4.2.3. Starting CodeReady Workspaces installation in a restricted environment using CodeReady
Workspaces CLI management tool

3.4.3. Preparing CodeReady Workspaces Custom Resource for installing behind a proxy

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES
4.1. ADVANCED CONFIGURATION OPTIONS FOR THE CODEREADY WORKSPACES SERVER COMPONENT

4.1.1. Understanding CodeReady Workspaces server advanced configuration using the Operator
4.1.2. CodeReady Workspaces server component system properties reference

4.1.2.1. Che server
4.1.2.2. Authentication parameters
4.1.2.3. Internal
4.1.2.4. OpenShift Infra parameters
4.1.2.5. OpenShift Infra parameters
4.1.2.6. Experimental properties
4.1.2.7. Configuration of major "/websocket" endpoint
4.1.2.8. CORS settings
4.1.2.9. Factory defaults
4.1.2.10. Devfile defaults
4.1.2.11. Che system
4.1.2.12. Workspace limits
4.1.2.13. Users workspace limits
4.1.2.14. Organizations workspace limits
4.1.2.15. Organizations notifications settings
4.1.2.16. Multi-user-specific OpenShift infrastructure configuration
4.1.2.17. Keycloak configuration

4.2. CONFIGURING PROJECT STRATEGIES
4.2.1. One project per user strategy

5

6

7
7
7

20
20
20
20
21
22
23
23
23
25
25
26
26
33
33
33

34
34

36

36
36
37
37
43
45
46
59
60
64
65
65
66
68
69
70
71
72
72
73
76
78

Table of Contents

1

4.2.2. One project per workspace strategy
4.2.3. One project for all workspaces strategy
4.2.4. Allowing user-defined workspace projects
4.2.5. Handling incompatible usernames or user IDs
4.2.6. Pre-creating projects for users
4.2.7. Labeling the namespaces

4.3. CONFIGURING STORAGE STRATEGIES
4.3.1. Storage strategies for codeready-workspaces workspaces

4.3.1.1. The common PVC strategy
4.3.1.2. The per-workspace PVC strategy
4.3.1.3. The unique PVC strategy
4.3.1.4. How subpaths are used in PVCs

4.3.2. Configuring a CodeReady Workspaces workspace with a persistent volume strategy
4.3.2.1. Configuring a PVC strategy using the Operator

4.4. CONFIGURING STORAGE TYPES
4.4.1. Persistent storage
4.4.2. Ephemeral storage
4.4.3. Asynchronous storage
4.4.4. Configuring storage type defaults for CodeReady Workspaces dashboard
4.4.5. Idling asynchronous storage Pods

4.5. RUNNING MORE THAN ONE WORKSPACE AT A TIME
4.6. CONFIGURING WORKSPACE EXPOSURE STRATEGIES

4.6.1. Configuring workspace exposure strategies using an Operator
4.6.2. Workspace exposure strategies

4.6.2.1. Multi-host strategy
4.6.2.2. Single-host strategy

4.6.2.2.1. devfile endpoints: single-host
4.6.2.2.2. devfile endpoints: multi-host

4.6.3. Security considerations
4.6.3.1. JSON web token (JWT) proxy
4.6.3.2. Secured plug-ins and editors
4.6.3.3. Secured container-image components
4.6.3.4. Cross-site request forgery attacks
4.6.3.5. Phishing attacks

4.7. CONFIGURING WORKSPACES NODESELECTOR
4.8. CONFIGURING RED HAT CODEREADY WORKSPACES SERVER HOSTNAME
4.9. CONFIGURING LABELS FOR OPENSHIFT ROUTE
4.10. CONFIGURING LABELS AND DOMAINS FOR OPENSHIFT ROUTE TO WORK WITH ROUTER SHARDING

4.11. DEPLOYING CODEREADY WORKSPACES WITH SUPPORT FOR GIT REPOSITORIES WITH SELF-SIGNED
CERTIFICATES
4.12. INSTALLING CODEREADY WORKSPACES USING STORAGE CLASSES
4.13. IMPORTING UNTRUSTED TLS CERTIFICATES TO CODEREADY WORKSPACES

4.13.1. Adding new CA certificates into CodeReady Workspaces
4.13.2. Verification at the CodeReady Workspaces installation level
4.13.3. Verification at the workspace level

4.14. SWITCHING BETWEEN EXTERNAL AND INTERNAL DNS NAMES IN INTER-COMPONENT
COMMUNICATION
4.15. SETTING UP THE RH-SSO CODEREADY-WORKSPACES-USERNAME-READONLY THEME FOR THE RED
HAT CODEREADY WORKSPACES LOGIN PAGE

4.15.1. Logging in to RH-SSO
4.15.2. Setting up the RH-SSO codeready-workspaces-username-readonly theme

4.16. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT VARIABLE INTO A RED HAT CODEREADY

78
78
79
79
79
80
81
81

82
83
83
83
84
84
85
85
86
86
87
87
88
88
89
90
90
90
91
91
91

92
92
92
92
92
93
93
94

95

97
98

102
103
104
105

106

107
107
107

Red Hat CodeReady Workspaces 2.8 Installation Guide

2

. .

. .

WORKSPACES CONTAINER
4.16.1. Mounting a secret as a file into a Red Hat CodeReady Workspaces container
4.16.2. Mounting a secret as an environment variable into a Red Hat CodeReady Workspaces container

4.17. ENABLING DEV WORKSPACE ENGINE

CHAPTER 5. UPGRADING CODEREADY WORKSPACES
5.1. UPGRADING CODEREADY WORKSPACES USING OPERATORHUB

5.1.1. Specifying the approval strategy of CodeReady Workspaces in OperatorHub
5.1.2. Manually upgrading CodeReady Workspaces in OperatorHub

5.2. UPGRADING CODEREADY WORKSPACES USING THE CLI MANAGEMENT TOOL
5.3. UPGRADING CODEREADY WORKSPACES USING THE CLI MANAGEMENT TOOL IN RESTRICTED
ENVIRONMENT

5.3.1. Understanding network connectivity in restricted environments
5.3.2. Building offline registry images

5.3.2.1. Building an offline devfile registry image
5.3.2.2. Building an offline plug-in registry image

5.3.3. Preparing an private registry
5.3.4. Upgrading CodeReady Workspaces using the CLI management tool in restricted environment

CHAPTER 6. UNINSTALLING CODEREADY WORKSPACES
6.1. UNINSTALLING CODEREADY WORKSPACES AFTER OPERATORHUB INSTALLATION USING THE
OPENSHIFT WEB CONSOLE
6.2. UNINSTALLING CODEREADY WORKSPACES AFTER OPERATORHUB INSTALLATION USING
OPENSHIFT CLI
6.3. UNINSTALLING CODEREADY WORKSPACES AFTER CRWCTL INSTALLATION

108
108
110
111

113
113
113
114
115

115
116
116
116
117
117

124

126

126

127
128

Table of Contents

3

Red Hat CodeReady Workspaces 2.8 Installation Guide

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. SUPPORTED PLATFORMS
This section describes the availability and the supported installation methods of CodeReady
Workspaces 2.8 on OpenShift Container Platform 4.6, 3.11, and OpenShift Dedicated.

Table 1.1. Supported deployment environments for CodeReady Workspaces 2.8 on OpenShift
Container Platform and OpenShift Dedicated

Platform Architecture Deployment method

OpenShift Container Platform
3.11

AMD64 and Intel 64 (x86_64) crwctl

OpenShift Container Platform
4.6

AMD64 and Intel 64 (x86_64) OperatorHub, crwctl

OpenShift Container Platform
4.6

IBM Z (s390x) OperatorHub, crwctl

OpenShift Container Platform
4.6

IBM Power Systems (ppc64le) OperatorHub, crwctl

OpenShift Container Platform
4.7

AMD64 and Intel 64 (x86_64) OperatorHub, crwctl

OpenShift Container Platform
4.7

IBM Z (s390x) OperatorHub, crwctl

OpenShift Container Platform
4.7

IBM Power Systems (ppc64le) OperatorHub, crwctl

OpenShift Dedicated 4.7 AMD64 and Intel 64 (x86_64) Add-On

NOTE

Support for deploying CodeReady Workspaces on OpenShift Container Platform on IBM
Z (s390x) and IBM Power Systems (ppc64le) is currently only available as a Technology
Preview feature. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process. For details about the level of support for
Technology Preview features, see Technology Preview Features Support Scope.

Red Hat CodeReady Workspaces 2.8 Installation Guide

6

CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES
INSTALLATION

The following section describes configuration options to install Red Hat CodeReady Workspaces using
the Operator.

2.1. UNDERSTANDING THE CHECLUSTER CUSTOM RESOURCE

A default deployment of CodeReady Workspaces consist in the application of a parametrized
CheCluster Custom Resource by the Red Hat CodeReady Workspaces Operator.

CheCluster Custom Resource

A YAML document describing the configuration of the overall CodeReady Workspaces
installation.

Contains sections to configure each component: auth, database, server, storage.

Role of the Red Hat CodeReady Workspaces Operator

To translate the CheCluster Custom Resource into configuration (ConfigMap) usable by
each component of the CodeReady Workspaces installation.

Role of the OpenShift platform

To apply the configuration (ConfigMap) for each component.

To create the necessary Pods.

When OpenShift detects a change in the configuration of a component, it restarts the Pods
accordingly.

Example 2.1. Configuring the main properties of the CodeReady Workspaces server component

1. The user applies a CheCluster Custom Resource containing some configuration related to
the server.

2. The Operator generates a necessary ConfigMap, called che.

3. OpenShift detects change in the ConfigMap and triggers a restart of the CodeReady
Workspaces Pod.

Additional resources

Understanding Operators.

Understanding Custom Resources .

To learn how to modify the CheCluster Custom Resource, see the chosen installation
procedure.

2.2. CHECLUSTER CUSTOM RESOURCE FIELDS REFERENCE

CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES INSTALLATION

7

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-what-operators-are.html
https://docs.openshift.com/container-platform/latest/operators/understanding/crds/crd-managing-resources-from-crds.html

This section describes all fields available to customize the CheCluster Custom Resource.

Example 2.2, “A minimal CheCluster Custom Resource example.”

Table 2.1, “CheCluster Custom Resource server settings, related to the CodeReady
Workspaces server component.”

Table 2.2, “CheCluster Custom Resource database configuration settings related to the
database used by CodeReady Workspaces.”

Table 2.3, “Custom Resource auth configuration settings related to authentication used by
CodeReady Workspaces.”

Table 2.4, “CheCluster Custom Resource storage configuration settings related to persistent
storage used by CodeReady Workspaces.”

Table 2.5, “CheCluster Custom Resource k8s configuration settings specific to CodeReady
Workspaces installations on OpenShift.”

Table 2.6, “CheCluster Custom Resource metrics settings, related to the CodeReady
Workspaces metrics collection used by CodeReady Workspaces.”

Table 2.7, “CheCluster Custom Resource status defines the observed state of CodeReady
Workspaces installation”

Example 2.2. A minimal CheCluster Custom Resource example.

Table 2.1. CheCluster Custom Resource server settings, related to the CodeReady Workspaces
server component.

Property Description

airGapContainerRegistryHos
tname

Optional host name, or URL, to an alternate container registry to pull images
from. This value overrides the container registry host name defined in all the
default container images involved in a Che deployment. This is particularly
useful to install Che in a restricted environment.

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 name: codeready-workspaces
spec:
 auth:
 externalIdentityProvider: false
 database:
 externalDb: false
 server:
 selfSignedCert: false
 gitSelfSignedCert: false
 tlsSupport: true
 storage:
 pvcStrategy: 'common'
 pvcClaimSize: '1Gi'

Red Hat CodeReady Workspaces 2.8 Installation Guide

8

airGapContainerRegistryOrg
anization

Optional repository name of an alternate container registry to pull images
from. This value overrides the container registry organization defined in all
the default container images involved in a Che deployment. This is
particularly useful to install CodeReady Workspaces in a restricted
environment.

allowUserDefinedWorkspace
Namespaces

Defines that a user is allowed to specify a OpenShift project, or an OpenShift
project, which differs from the default. It’s NOT RECOMMENDED to set to
true without OpenShift OAuth configured. The OpenShift infrastructure also
uses this property.

cheClusterRoles A comma-separated list of ClusterRoles that will be assigned to Che
ServiceAccount. Be aware that the Che Operator has to already have all
permissions in these ClusterRoles to grant them.

cheDebug Enables the debug mode for Che server. Defaults to false.

cheFlavor Specifies a variation of the installation. The options are che for upstream
Che installations, or codeready for CodeReady Workspaces installation.
Override the default value only on necessary occasions.

cheHost Public host name of the installed Che server. When value is omitted, the value
it will be automatically set by the Operator. See the cheHostTLSSecret
field.

cheHostTLSSecret Name of a secret containing certificates to secure ingress or route for the
custom host name of the installed Che server. See the cheHost field.

cheImage Overrides the container image used in Che deployment. This does NOT
include the container image tag. Omit it or leave it empty to use the default
container image provided by the Operator.

cheImagePullPolicy Overrides the image pull policy used in Che deployment. Default value is
Always for nightly or latest images, and IfNotPresent in other cases.

cheImageTag Overrides the tag of the container image used in Che deployment. Omit it or
leave it empty to use the default image tag provided by the Operator.

cheLogLevel Log level for the Che server: INFO or DEBUG. Defaults to INFO.

cheServerIngress The Che server ingress custom settings.

cheServerRoute The Che server route custom settings.

cheWorkspaceClusterRole Custom cluster role bound to the user for the Che workspaces. The default
roles are used when omitted or left blank.

Property Description

CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES INSTALLATION

9

https://developers.redhat.com/products/codeready-workspaces/overview

customCheProperties Map of additional environment variables that will be applied in the generated
che ConfigMap to be used by the Che server, in addition to the values
already generated from other fields of the CheCluster custom resource
(CR). When customCheProperties contains a property that would be
normally generated in che ConfigMap from other CR fields, the value
defined in the customCheProperties is used instead.

devfileRegistryCpuLimit Overrides the CPU limit used in the devfile registry deployment. In cores.
(500m = .5 cores). Default to 500m.

devfileRegistryCpuRequest Overrides the CPU request used in the devfile registry deployment. In cores.
(500m = .5 cores). Default to 100m.

devfileRegistryImage Overrides the container image used in the devfile registry deployment. This
includes the image tag. Omit it or leave it empty to use the default container
image provided by the Operator.

devfileRegistryIngress The devfile registry ingress custom settings.

devfileRegistryMemoryLimit Overrides the memory limit used in the devfile registry deployment. Defaults
to 256Mi.

devfileRegistryMemoryRequ
est

Overrides the memory request used in the devfile registry deployment.
Defaults to 16Mi.

devfileRegistryPullPolicy Overrides the image pull policy used in the devfile registry deployment.
Default value is Always for nightly or latest images, and IfNotPresent in
other cases.

devfileRegistryRoute The devfile registry route custom settings.

devfileRegistryUrl Public URL of the devfile registry, that serves sample, ready-to-use devfiles.
Set this ONLY when a use of an external devfile registry is needed. See the
externalDevfileRegistry field. By default, this will be automatically
calculated by the Operator.

externalDevfileRegistry Instructs the Operator on whether to deploy a dedicated devfile registry
server. By default, a dedicated devfile registry server is started. When
externalDevfileRegistry is true, no such dedicated server will be started
by the Operator and you will have to manually set the devfileRegistryUrl
field

externalPluginRegistry Instructs the Operator on whether to deploy a dedicated plugin registry
server. By default, a dedicated plugin registry server is started. When
externalPluginRegistry is true, no such dedicated server will be started
by the Operator and you will have to manually set the pluginRegistryUrl
field.

Property Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

10

gitSelfSignedCert When enabled, the certificate from che-git-self-signed-cert ConfigMap
will be propagated to the Che components and provide particular
configuration for Git.

nonProxyHosts List of hosts that will be reached directly, bypassing the proxy. Specify wild
card domain use the following form .<DOMAIN> and | as delimiter, for
example: localhost|.my.host.com|123.42.12.32 Only use when
configuring a proxy is required. Operator respects OpenShift cluster wide
proxy configuration and no additional configuration is required, but defining
nonProxyHosts in a custom resource leads to merging non proxy hosts
lists from the cluster proxy configuration and ones defined in the custom
resources. See the doc https://docs.openshift.com/container-
platform/4.4/networking/enable-cluster-wide-proxy.html). See also the
proxyURL fields.

pluginRegistryCpuLimit Overrides the CPU limit used in the plugin registry deployment. In cores.
(500m = .5 cores). Default to 500m.

pluginRegistryCpuRequest Overrides the CPU request used in the plugin registry deployment. In cores.
(500m = .5 cores). Default to 100m.

pluginRegistryImage Overrides the container image used in the plugin registry deployment. This
includes the image tag. Omit it or leave it empty to use the default container
image provided by the Operator.

pluginRegistryIngress Plugin registry ingress custom settings.

pluginRegistryMemoryLimit Overrides the memory limit used in the plugin registry deployment. Defaults
to 256Mi.

pluginRegistryMemoryReque
st

Overrides the memory request used in the plugin registry deployment.
Defaults to 16Mi.

pluginRegistryPullPolicy Overrides the image pull policy used in the plugin registry deployment.
Default value is Always for nightly or latest images, and IfNotPresent in
other cases.

pluginRegistryRoute Plugin registry route custom settings.

pluginRegistryUrl Public URL of the plugin registry that serves sample ready-to-use devfiles.
Set this ONLY when a use of an external devfile registry is needed. See the
externalPluginRegistry field. By default, this will be automatically
calculated by the Operator.

proxyPassword Password of the proxy server. Only use when proxy configuration is required.
See the proxyURL, proxyUser and proxySecret fields.

Property Description

CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES INSTALLATION

11

https://docs.openshift.com/container-platform/4.4/networking/enable-cluster-wide-proxy.html

proxyPort Port of the proxy server. Only use when configuring a proxy is required. See
also the proxyURL and nonProxyHosts fields.

proxySecret The secret that contains user and password for a proxy server. When the
secret is defined, the proxyUser and proxyPassword are ignored.

proxyURL URL (protocol+host name) of the proxy server. This drives the appropriate
changes in the JAVA_OPTS and https(s)_proxy variables in the Che
server and workspaces containers. Only use when configuring a proxy is
required. Operator respects OpenShift cluster wide proxy configuration and
no additional configuration is required, but defining proxyUrl in a custom
resource leads to overrides the cluster proxy configuration with fields
proxyUrl, proxyPort, proxyUser and proxyPassword from the custom
resource. See the doc https://docs.openshift.com/container-
platform/4.4/networking/enable-cluster-wide-proxy.html). See also the
proxyPort and nonProxyHosts fields.

proxyUser User name of the proxy server. Only use when configuring a proxy is required.
See also the proxyURL, proxyPassword and proxySecret fields.

selfSignedCert Deprecated. The value of this flag is ignored. The Che Operator will
automatically detect whether the router certificate is self-signed and
propagate it to other components, such as the Che server.

serverCpuLimit Overrides the CPU limit used in the Che server deployment In cores. (500m
= .5 cores). Default to 1.

serverCpuRequest Overrides the CPU request used in the Che server deployment In cores.
(500m = .5 cores). Default to 100m.

serverExposureStrategy Sets the server and workspaces exposure type. Possible values are multi-
host, single-host, default-host. Defaults to multi-host, which creates a
separate ingress, or OpenShift routes, for every required endpoint. single-
host makes Che exposed on a single host name with workspaces exposed on
subpaths. Read the docs to learn about the limitations of this approach. Also
consult the singleHostExposureType property to further configure how
the Operator and the Che server make that happen on Kubernetes. default-
host exposes the Che server on the host of the cluster. Read the docs to
learn about the limitations of this approach.

serverMemoryLimit Overrides the memory limit used in the Che server deployment. Defaults to
1Gi.

serverMemoryRequest Overrides the memory request used in the Che server deployment. Defaults
to 512Mi.

Property Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

12

https://docs.openshift.com/container-platform/4.4/networking/enable-cluster-wide-proxy.html

serverTrustStoreConfigMap
Name

Name of the ConfigMap with public certificates to add to Java trust store of
the Che server. This is often required when adding the OpenShift OAuth
provider, which has HTTPS endpoint signed with self-signed cert. The Che
server must be aware of its CA cert to be able to request it. This is disabled
by default.

singleHostGatewayConfigMa
pLabels

The labels that need to be present in the ConfigMaps representing the
gateway configuration.

singleHostGatewayConfigSi
decarImage

The image used for the gateway sidecar that provides configuration to the
gateway. Omit it or leave it empty to use the default container image
provided by the Operator.

singleHostGatewayImage The image used for the gateway in the single host mode. Omit it or leave it
empty to use the default container image provided by the Operator.

tlsSupport Deprecated. Instructs the Operator to deploy Che in TLS mode. This is
enabled by default. Disabling TLS sometimes cause malfunction of some Che
components.

useInternalClusterSVCName
s

Use internal cluster SVC names to communicate between components to
speed up the traffic and avoid proxy issues. The default value is true.

workspaceNamespaceDefaul
t

Defines default OpenShift project in which user’s workspaces are created for
a case when a user does not override it. It’s possible to use <username>,
<userid> and <workspaceid> placeholders, such as che-workspace-
<username>. In that case, a new namespace will be created for each user or
workspace.

Property Description

Table 2.2. CheCluster Custom Resource database configuration settings related to the database
used by CodeReady Workspaces.

Property Description

chePostgresContainerResou
rces

PostgreSQL container custom settings

chePostgresDb PostgreSQL database name that the Che server uses to connect to the DB.
Defaults to dbche.

chePostgresHostName PostgreSQL Database host name that the Che server uses to connect to.
Defaults is postgres. Override this value ONLY when using an external
database. See field externalDb. In the default case it will be automatically
set by the Operator.

chePostgresPassword PostgreSQL password that the Che server uses to connect to the DB. When
omitted or left blank, it will be set to an automatically generated value.

CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES INSTALLATION

13

chePostgresPort PostgreSQL Database port that the Che server uses to connect to. Defaults
to 5432. Override this value ONLY when using an external database. See
field externalDb. In the default case it will be automatically set by the
Operator.

chePostgresSecret The secret that contains PosgreSQL`user` and password that the Che
server uses to connect to the DB. When the secret is defined, the
chePostgresUser and chePostgresPassword are ignored. When the
value is omitted or left blank, the one of following scenarios applies: 1.
chePostgresUser and chePostgresPassword are defined, then they
will be used to connect to the DB. 2. chePostgresUser or
chePostgresPassword are not defined, then a new secret with the name
che-postgres-secret will be created with default value of pgche for user
and with an auto-generated value for password.

chePostgresUser PostgreSQL user that the Che server uses to connect to the DB. Defaults to
pgche.

externalDb Instructs the Operator on whether to deploy a dedicated database. By
default, a dedicated PostgreSQL database is deployed as part of the Che
installation. When externalDb is true, no dedicated database will be
deployed by the Operator and you will need to provide connection details to
the external DB you are about to use. See also all the fields starting with:
chePostgres.

postgresImage Overrides the container image used in the PosgreSQL database deployment.
This includes the image tag. Omit it or leave it empty to use the default
container image provided by the Operator.

postgresImagePullPolicy Overrides the image pull policy used in the PosgreSQL database
deployment. Default value is Always for nightly or latest images, and
IfNotPresent in other cases.

Property Description

Table 2.3. Custom Resource auth configuration settings related to authentication used by
CodeReady Workspaces.

Property Description

externalIdentityProvider Instructs the Operator on whether to deploy a dedicated Identity Provider
(Keycloak or RH-SSO instance). By default, a dedicated Identity Provider
server is deployed as part of the Che installation. When
externalIdentityProvider is true, no dedicated identity provider will be
deployed by the Operator and you will need to provide details about the
external identity provider you are about to use. See also all the other fields
starting with: identityProvider.

identityProviderAdminUserN
ame

Overrides the name of the Identity Provider administrator user. Defaults to
admin.

Red Hat CodeReady Workspaces 2.8 Installation Guide

14

identityProviderClientId Name of a Identity provider, Keycloak or RH-SSO, client-id that is used for
Che. Override this when an external Identity Provider is in use. See the
externalIdentityProvider field. When omitted or left blank, it is set to the
value of the flavour field suffixed with -public.

identityProviderContainerRe
sources

Identity provider container custom settings.

identityProviderImage Overrides the container image used in the Identity Provider, Keycloak or RH-
SSO, deployment. This includes the image tag. Omit it or leave it empty to
use the default container image provided by the Operator.

identityProviderImagePullPol
icy

Overrides the image pull policy used in the Identity Provider, Keycloak or RH-
SSO, deployment. Default value is Always for nightly or latest images, and
IfNotPresent in other cases.

identityProviderIngress Ingress custom settings.

identityProviderPassword Overrides the password of Keycloak administrator user. Override this when
an external Identity Provider is in use. See the externalIdentityProvider
field. When omitted or left blank, it is set to an auto-generated password.

identityProviderPostgresPas
sword

Password for a Identity Provider, Keycloak or RH-SSO, to connect to the
database. Override this when an external Identity Provider is in use. See the
externalIdentityProvider field. When omitted or left blank, it is set to an
auto-generated password.

identityProviderPostgresSec
ret

The secret that contains password for the Identity Provider, Keycloak or
RH-SSO, to connect to the database. When the secret is defined, the
identityProviderPostgresPassword is ignored. When the value is
omitted or left blank, the one of following scenarios applies: 1.
identityProviderPostgresPassword is defined, then it will be used to
connect to the database. 2. identityProviderPostgresPassword is not
defined, then a new secret with the name che-identity-postgres-secret
will be created with an auto-generated value for password.

identityProviderRealm Name of a Identity provider, Keycloak or RH-SSO, realm that is used for Che.
Override this when an external Identity Provider is in use. See the
externalIdentityProvider field. When omitted or left blank, it is set to the
value of the flavour field.

identityProviderRoute Route custom settings.

Property Description

CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES INSTALLATION

15

identityProviderSecret The secret that contains user and password for Identity Provider. When the
secret is defined, the identityProviderAdminUserName and
identityProviderPassword are ignored. When the value is omitted or left
blank, the one of following scenarios applies: 1.
identityProviderAdminUserName and identityProviderPassword
are defined, then they will be used. 2. identityProviderAdminUserName
or identityProviderPassword are not defined, then a new secret with the
name che-identity-secret will be created with default value admin for
user and with an auto-generated value for password.

identityProviderURL Public URL of the Identity Provider server (Keycloak / RH-SSO server). Set
this ONLY when a use of an external Identity Provider is needed. See the
externalIdentityProvider field. By default, this will be automatically
calculated and set by the Operator.

oAuthClientName Name of the OpenShift OAuthClient resource used to setup identity
federation on the OpenShift side. Auto-generated when left blank. See also
the OpenShiftoAuth field.

oAuthSecret Name of the secret set in the OpenShift OAuthClient resource used to
setup identity federation on the OpenShift side. Auto-generated when left
blank. See also the OAuthClientName field.

openShiftoAuth Enables the integration of the identity provider (Keycloak / RHSSO) with
OpenShift OAuth. Empty value on OpenShift by default. This will allow users
to directly login with their OpenShift user through the OpenShift login, and
have their workspaces created under personal OpenShift namespaces.
WARNING: the kubeadmin user is NOT supported, and logging through it
will NOT allow accessing the Che Dashboard.

updateAdminPassword Forces the default admin Che user to update password on first login.
Defaults to false.

Property Description

Table 2.4. CheCluster Custom Resource storage configuration settings related to persistent
storage used by CodeReady Workspaces.

Property Description

postgresPVCStorageClassN
ame

Storage class for the Persistent Volume Claim dedicated to the PosgreSQL
database. When omitted or left blank, a default storage class is used.

preCreateSubPaths Instructs the Che server to start a special Pod to pre-create a sub-path in
the Persistent Volumes. Defaults to false, however it will need to enable it
according to the configuration of your OpenShift cluster.

pvcClaimSize Size of the persistent volume claim for workspaces. Defaults to 1Gi.

Red Hat CodeReady Workspaces 2.8 Installation Guide

16

pvcJobsImage Overrides the container image used to create sub-paths in the Persistent
Volumes. This includes the image tag. Omit it or leave it empty to use the
default container image provided by the Operator. See also the
preCreateSubPaths field.

pvcStrategy Persistent volume claim strategy for the Che server. This Can be:`common`
(all workspaces PVCs in one volume), per-workspace (one PVC per
workspace for all declared volumes) and unique (one PVC per declared
volume). Defaults to common.

workspacePVCStorageClass
Name

Storage class for the Persistent Volume Claims dedicated to the Che
workspaces. When omitted or left blank, a default storage class is used.

Property Description

Table 2.5. CheCluster Custom Resource k8s configuration settings specific to CodeReady
Workspaces installations on OpenShift.

Property Description

ingressClass Ingress class that will define the which controller will manage ingresses.
Defaults to nginx. NB: This drives the kubernetes.io/ingress.class
annotation on Che-related ingresses.

ingressDomain Global ingress domain for an OpenShift cluster. This MUST be explicitly
specified: there are no defaults.

ingressStrategy Strategy for ingress creation. Options are: multi-host (host is explicitly
provided in ingress), single-host (host is provided, path-based rules) and
default-host (no host is provided, path-based rules). Defaults to multi-
host Deprecated in favor of serverExposureStrategy in the server
section, which defines this regardless of the cluster type. When both are
defined, the serverExposureStrategy option takes precedence.

securityContextFsGroup The FSGroup in which the Che Pod and workspace Pods containers runs in.
Default value is 1724.

securityContextRunAsUser ID of the user the Che Pod and workspace Pods containers run as. Default
value is 1724.

singleHostExposureType When the serverExposureStrategy is set to single-host, the way the server,
registries and workspaces are exposed is further configured by this property.
The possible values are native, which means that the server and workspaces
are exposed using ingresses on Kubernetes or gateway where the server
and workspaces are exposed using a custom gateway based on Traefik. All
the endpoints whether backed by the ingress or gateway route always point
to the subpaths on the same domain. Defaults to native.

CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES INSTALLATION

17

https://doc.traefik.io/traefik/

tlsSecretName Name of a secret that will be used to setup ingress TLS termination when
TLS is enabled. When the field is empty string, the default cluster certificate
will be used. See also the tlsSupport field.

Property Description

Table 2.6. CheCluster Custom Resource metrics settings, related to the CodeReady Workspaces
metrics collection used by CodeReady Workspaces.

Property Description

enable Enables metrics the Che server endpoint. Default to true.

Table 2.7. CheCluster Custom Resource status defines the observed state of CodeReady
Workspaces installation

Property Description

cheClusterRunning Status of a Che installation. Can be Available, Unavailable, or Available,
Rolling Update in Progress.

cheURL Public URL to the Che server.

cheVersion Current installed Che version.

dbProvisioned Indicates that a PosgreSQL instance has been correctly provisioned or not.

devfileRegistryURL Public URL to the devfile registry.

gitHubOAuthProvisioned Indicates whether an Identity Provider instance, Keycloak or RH-SSO, has
been configured to integrate with the GitHub OAuth.

helpLink A URL that points to some URL where to find help related to the current
Operator status.

keycloakProvisioned Indicates whether an Identity Provider instance, Keycloak or RH-SSO, has
been provisioned with realm, client and user.

keycloakURL Public URL to the Identity Provider server, Keycloak or RH-SSO,.

message A human readable message indicating details about why the Pod is in this
condition.

openShiftoAuthProvisioned Indicates whether an Identity Provider instance, Keycloak or RH-SSO, has
been configured to integrate with the OpenShift OAuth.

pluginRegistryURL Public URL to the plugin registry.

Red Hat CodeReady Workspaces 2.8 Installation Guide

18

reason A brief CamelCase message indicating details about why the Pod is in this
state.

Property Description

CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES INSTALLATION

19

CHAPTER 3. INSTALLING CODEREADY WORKSPACES
This section contains instructions to install Red Hat CodeReady Workspaces. The installation method
depends on the target platform and the environment restrictions.

3.1. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT 4 USING
OPERATORHUB

This section describes how to install CodeReady Workspaces using the CodeReady Workspaces
Operator available in OpenShift 4 web console.

Operators are a method of packaging, deploying, and managing an OpenShift application which also
provide the following:

Repeatability of installation and upgrade.

Constant health checks of every system component.

Over-the-air (OTA) updates for OpenShift components and independent software vendor
(ISV) content.

A place to encapsulate knowledge from field engineers and spread it to all users.

Prerequisites

An administrator account on a running instance of OpenShift 4.

3.1.1. Creating a project in OpenShift Web Console

A project allows to organize and manage different resources on the cluster in an isolated unit. Create a
project first to host the Red Hat CodeReady Workspaces Operator.

Procedure

1. Open the OpenShift web console, in the left panel navigate to the Home → Projects section.

2. Click Create Project.

3. Specify the project details:

Name: openshift-workspaces

Display Name: Red Hat CodeReady Workspaces

Description: Red Hat CodeReady Workspaces

3.1.2. Installing the Red Hat CodeReady Workspaces Operator

Red Hat CodeReady Workspaces Operator provides all the resources for running CodeReady
Workspaces, such as PostgreSQL, RH-SSO, image registries, and the CodeReady Workspaces server,
and also configures all these services.

Prerequisites

Red Hat CodeReady Workspaces 2.8 Installation Guide

20

Access to the Web Console on the cluster.

Procedure

1. To install the Red Hat CodeReady Workspaces Operator, in the left panel, navigate to the
Operators → OperatorHub section.

2. In the Filter by keyword field, type Red Hat CodeReady Workspaces and click the Red Hat
CodeReady Workspaces tile.

3. In the Red Hat CodeReady Workspaces pop-up window, click the Install button.

4. On the Install Operator screen, specify the following options:

Installation mode: A specific project on the cluster

Installed Namespace: *Pick an existing project → openshift-workspaces

Verification steps

1. To verify the Red Hat CodeReady Workspaces Operator has installed correctly, in the left panel
navigate to the Operators → Installed Operators section.

2. In the Installed Operators screen, click the Red Hat CodeReady Workspaces name and
navigate to the Details tab.

3. In the ClusterServiceVersion Details section at the bottom of the page, wait for these
messages:

Status: Succeeded

Status Reason: install strategy completed with no errors

4. Navigate to the Events tab and wait for this message: install strategy completed with no
errors.

3.1.3. Creating an instance of the Red Hat CodeReady Workspaces Operator

Follow this procedure to install Red Hat CodeReady Workspaces with the default configuration. To
modify the configuration, see Chapter 2, Configuring the CodeReady Workspaces installation .

Procedure

1. To create an instance of the Red Hat CodeReady Workspaces Operator, in the left panel,
navigate to the Operators → Installed Operators section.

2. In the Installed Operators screen, click the Red Hat CodeReady Workspaces name.

3. In the Operator Details screen, in the Details tab, inside of the Provided APIs section, click the
Create Instance link.

4. The Create CheCluster page contains the configuration of the overall CodeReady Workspaces
instance to create. It is the CheCluster Custom Resource. Keep the default values.

5. To create the codeready-workspaces cluster, click the Create button in the lower left corner of
the window.

CHAPTER 3. INSTALLING CODEREADY WORKSPACES

21

6. On the Operator Details screen, in the Red Hat CodeReady Workspaces Cluster tab, click on
the codeready-workspaces link.

7. To navigate to the codeready-workspaces instance, click the link under Red Hat CodeReady
Workspaces URL.

NOTE

The installation might take more than 5 minutes. The URL appears after the Red
Hat CodeReady Workspaces installation finishes.

Verification steps

1. To verify that the Red Hat CodeReady Workspaces instance has installed correctly, navigate to
the CodeReady Workspaces Cluster tab. The CheClusters screen displays the list of Red Hat
CodeReady Workspaces instances and their status.

2. Click codeready-workspaces CheCluster in the table and navigate to the Details tab.

3. See the content of following fields:

Message: the field contains error messages, if any. The expected content is None.

Red Hat CodeReady Workspaces URL: displays the URL of the Red Hat CodeReady
Workspaces instance, once the deployment is successful.

4. Navigate to the Resources tab. The screen displays the list of the resources assigned to the
CodeReady Workspaces deployment.

5. To see more details about the state of a resource, click its name and inspect the content of the
available tabs.

Additional resources

Navigating CodeReady Workspaces using the Dashboard .

Viewing the state of the CodeReady Workspaces cluster deployment using OpenShift 4 CLI
tools.

3.2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT 4
USING THE CLI

This section describes how to install CodeReady Workspaces on OpenShift 4 with the crwctl CLI
management tool.

Prerequisites

An OpenShift cluster with an administrator account.

oc is available. See Getting started with the OpenShift CLI. oc version must match the
OpenShift cluster version.

You have logged in to OpenShift. See Logging in to the CLI .

crwctl is available. See Section 3.3.1, “Installing the crwctl CLI management tool” .

Red Hat CodeReady Workspaces 2.8 Installation Guide

22

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.8/html-single/end-user_guide/index#navigating-codeready-workspaces-using-the-dashboard_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.8/html-single/administration_guide/index#viewing-the-state-of-the-codeready-workspaces-cluster-deployment-using-openshift-4-cli-tools_crw
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html#cli-logging-in_cli-developer-commands

Procedure

Run the server:deploy command to create the CodeReady Workspaces instance:

$ crwctl server:deploy -n openshift-workspaces

Verification steps

1. The output of the server:deploy command ends with:

Command server:deploy has completed successfully.

2. Navigate to the CodeReady Workspaces cluster instance: \https://codeready-
<openshift_deployment_name>.<domain_name>.

3.3. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT
CONTAINER PLATFORM 3.11

3.3.1. Installing the crwctl CLI management tool

This section describes how to install crwctl, the CodeReady Workspaces CLI management tool.

Procedure

1. Navigate to https://developers.redhat.com/products/codeready-workspaces/download.

2. Download the CodeReady Workspaces CLI management tool archive for version 2.8.

3. Extract the archive to a folder, such as ${HOME}/crwctl or /opt/crwctl.

4. Run the crwctl executable from the extracted folder. In this example,
${HOME}/crwctl/bin/crwctl version.

5. Optionally, add the bin folder to your $PATH, for example,
PATH=${PATH}:${HOME}/crwctl/bin to enable running crwctl without the full path
specification.

Verification step

Running crwctl version displays the current version of the tool.

3.3.2. Installing CodeReady Workspaces on OpenShift 3 using the Operator

This section describes how to install CodeReady Workspaces on OpenShift 3 with the crwctl CLI
management tool. The method of installation is using the Operator and enable TLS (HTTPS).

NOTE

Methods for updating from a previous CodeReady Workspaces installation and enabling
multiple instances in the same OpenShift Container Platform 3.11 cluster are provided
below the installation procedure.

Operators are a method of packaging, deploying, and managing a OpenShift application which also

CHAPTER 3. INSTALLING CODEREADY WORKSPACES

23

https://developers.redhat.com/products/codeready-workspaces/download

Operators are a method of packaging, deploying, and managing a OpenShift application which also
provide the following:

Repeatability of installation and upgrade.

Constant health checks of every system component.

Over-the-air (OTA) updates for OpenShift components and independent software vendor
(ISV) content.

A place to encapsulate knowledge from field engineers and spread it to all users.

NOTE

This approach is only supported for use with OpenShift Container Platform and
OpenShift Dedicated version 3.11, but also work for newer versions of OpenShift
Container Platform and OpenShift Dedicated, and serves as a backup installation method
for situations when the installation method using OperatorHub is not available.

Prerequisites

Administrator rights on a running instance of OpenShift 3.11.

An installation of the oc OpenShift 3.11 CLI management tool. See Installing the OpenShift 3.11
CLI.

An installation of the crwctl management tool. See Section 3.3.1, “Installing the crwctl CLI
management tool”.

To apply settings that the main crwctl command-line parameters cannot set, prepare a
configuration file operator-cr-patch.yaml that will override the default values in the
CheCluster Custom Resource used by the Operator. See Chapter 2, Configuring the
CodeReady Workspaces installation.

<namespace> represents the project of the target installation.

Procedure

1. Log in to OpenShift. See Basic Setup and Login .

$ oc login

2. Run the following command to verify that the version of the oc OpenShift CLI management
tool is 3.11:

$ oc version
oc v3.11.0+0cbc58b

3. Run the following command to create the CodeReady Workspaces instance

In the openshift-workspaces project:

$ crwctl server:deploy -n openshift-workspaces -p openshift

In the default project called openshift-workspaces:

Red Hat CodeReady Workspaces 2.8 Installation Guide

24

https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html#installing-the-cli
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html#basic-setup-and-login

$ crwctl server:deploy -p openshift

Verification steps

1. The output of the previous command ends with:

Command server:deploy has completed successfully.

2. Navigate to the CodeReady Workspaces cluster instance: \https://codeready-
<openshift_deployment_name>.<domain_name>.

3.4. INSTALLING CODEREADY WORKSPACES IN A RESTRICTED
ENVIRONMENT

By default, Red Hat CodeReady Workspaces uses various external resources, mainly container images
available in public registries.

To deploy CodeReady Workspaces in an environment where these external resources are not available
(for example, on a cluster that is not exposed to the public Internet):

1. Identify the image registry used by the OpenShift cluster, and ensure you can push to it.

2. Push all the images needed for running CodeReady Workspaces to this registry.

3. Configure CodeReady Workspaces to use the images that have been pushed to the registry.

4. Proceed to the CodeReady Workspaces installation.

The procedure for installing CodeReady Workspaces in restricted environments is different based on
the installation method you use:

Installation using OperatorHub on Openshift 4.3 and above

Installation using the crwctl management tool on both OpenShift 3.11 or 4.x

Notes on network connectivity in restricted environments

Restricted network environments range from a private subnet in a cloud provider to a separate network
owned by a company, disconnected from the public Internet. Regardless of the network configuration,
CodeReady Workspaces works provided that the Routes that are created for CodeReady
Workspaces components (codeready-workspaces-server, identity provider, devfile and plugin
registries) are accessible from inside the OpenShift cluster.

Take into account the network topology of the environment to determine how best to accomplish this.
For example, on a network owned by a company or an organization, the network administrators must
ensure that traffic bound from the cluster can be routed to Route hostnames. In other cases, for
example, on AWS, create a proxy configuration allowing the traffic to leave the node to reach an
external-facing Load Balancer.

When the restricted network involves a proxy, follow the instructions provided in Section 3.4.3,
“Preparing CodeReady Workspaces Custom Resource for installing behind a proxy”.

3.4.1. Installing CodeReady Workspaces in a restricted environment using
OperatorHub

Prerequisites

CHAPTER 3. INSTALLING CODEREADY WORKSPACES

25

Prerequisites

A running OpenShift cluster. See the OpenShift Container Platform 4.3 documentation for
instructions on how to install an OpenShift cluster on a restricted network.

Access to the mirror registry used to installed the OpenShift disconnected cluster in restricted
network. See the Related OpenShift Container Platform 4.3 documentation about creating a
mirror registry for installation in a restricted network.

On disconnected OpenShift 4 clusters running on restricted networks, an Operator can be successfully
installed from OperatorHub only if it meets the additional requirements defined in Enabling your
Operator for restricted network environments.

The CodeReady Workspaces operator meets these requirements and is therefore compatible with the
official documentation about OLM on a restricted network .

Procedure

To install CodeReady Workspaces from OperatorHub:

1. Build a redhat-operators catalog image. See Building an Operator catalog image .

2. Configure OperatorHub to use this catalog image for operator installations. See Configuring
OperatorHub for restricted networks.

3. Proceed to the CodeReady Workspaces installation as usual as described in Section 3.1,
“Installing CodeReady Workspaces on OpenShift 4 using OperatorHub”.

3.4.2. Installing CodeReady Workspaces in a restricted environment using CLI
management tool

NOTE

Use CodeReady Workspaces CLI management tool to install CodeReady Workspaces on
restricted networks if installation through OperatorHub is not available. This method is
supported for OpenShift Container Platform 3.11.

Prerequisites

A running OpenShift cluster. See the OpenShift Container Platform 3.11 documentation for
instructions on how to install an OpenShift cluster.

3.4.2.1. Preparing an private registry

Prerequisites

The oc tool is available.

The skopeo tool, version 0.1.40 or later, is available.

The podman tool is available.

An image registry accessible from the OpenShift cluster and supporting the format of the V2
image manifest, schema version 2. Ensure you can push to it from a location having, at least
temporarily, access to the internet.

Red Hat CodeReady Workspaces 2.8 Installation Guide

26

https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/installing/install_config/installing-restricted-networks-preparations.html#installing-restricted-networks-preparations
https://docs.openshift.com/container-platform/4.3/operators/operator_sdk/osdk-generating-csvs.html#olm-enabling-operator-for-restricted-network_osdk-generating-csvs
https://docs.openshift.com/container-platform/4.3/operators/olm-restricted-networks.html
https://docs.openshift.com/container-platform/4.3/operators/olm-restricted-networks.html#olm-building-operator-catalog-image_olm-restricted-networks
https://docs.openshift.com/container-platform/4.3/operators/olm-restricted-networks.html#olm-restricted-networks-operatorhub_olm-restricted-networks
https://docs.openshift.com/container-platform/3.11/welcome/index.html

Table 3.1. Placeholders used in examples

<source-image> Full coordinates of the source image, including registry, organization, and
digest.

<target-registry> Host name and port of the target container-image registry.

<target-organization> Organization in the target container-image registry

<target-image> Image name and digest in the target container-image registry.

<target-user> User name in the target container-image registry.

<target-password> User password in the target container-image registry.

Procedure

1. Log into the internal image registry:

$ podman login --username <user> --password <password> <target-registry>

NOTE

If you encounter an error, like x509: certificate signed by unknown authority,
when attempting to push to the internal registry, try one of these workarounds:

add the OpenShift cluster’s certificate to /etc/containers/certs.d/<target-
registry>

add the registry as an insecure registry by adding the following lines to the
Podman configuration file located at /etc/containers/registries.conf:

[registries.insecure]
registries = ['<target-registry>']

2. Copy images without changing their digest. Repeat this step for every image in the following
table:

$ skopeo copy --all docker://<source-image> docker://<target-registry>/<target-
organization>/<target-image>

NOTE

CHAPTER 3. INSTALLING CODEREADY WORKSPACES

27

NOTE

Table 3.2. Understanding the usage of the container-images from the prefix
or keyword they include in their name

Usage Prefix or keyword

Essential not stacks-, plugin-, or -openj9-

Workspaces stacks-, plugin-

IBM Z and IBM
Power Systems

-openj9-

Table 3.3. Images to copy in the private registry

<source-image> <target-image>

registry.redhat.io/codeready-
workspaces/configbump-
rhel8@sha256:db34b20374d99c20556126
63a669a06f6dd0fc1fc19603761e993fd0870
eddfe

configbump-
rhel8@sha256:db34b20374d99c20556126
63a669a06f6dd0fc1fc19603761e993fd0870
eddfe

registry.redhat.io/codeready-
workspaces/crw-2-rhel8-
operator@sha256:a24dc83d8cdd8af715f0
c4f235dcba0736bf395b7029ceaed0b8a68
3da5f74e0

crw-2-rhel8-
operator@sha256:a24dc83d8cdd8af715f0
c4f235dcba0736bf395b7029ceaed0b8a68
3da5f74e0

registry.redhat.io/codeready-
workspaces/crw-2-rhel8-
operator@sha256:a24dc83d8cdd8af715f0
c4f235dcba0736bf395b7029ceaed0b8a68
3da5f74e0

crw-2-rhel8-
operator@sha256:a24dc83d8cdd8af715f0
c4f235dcba0736bf395b7029ceaed0b8a68
3da5f74e0

registry.redhat.io/codeready-
workspaces/devfileregistry-
rhel8@sha256:e3c360c031d8e68b62d1a2
8a4d736f41c5bfbc17c23999b9e1f1e58208
58bf1d

devfileregistry-
rhel8@sha256:e3c360c031d8e68b62d1a2
8a4d736f41c5bfbc17c23999b9e1f1e58208
58bf1d

registry.redhat.io/codeready-
workspaces/jwtproxy-
rhel8@sha256:3f40bb8a2022545ac06a0b4
1cdb0239fdacfc34b37faffb21348a2041e96
d0f2

jwtproxy-
rhel8@sha256:3f40bb8a2022545ac06a0b4
1cdb0239fdacfc34b37faffb21348a2041e96
d0f2

Red Hat CodeReady Workspaces 2.8 Installation Guide

28

registry.redhat.io/codeready-
workspaces/machineexec-
rhel8@sha256:19a8daf7f9adde981dcd588
b0526fa7682111097849f60a9b0e81137bdd
e8f6c

machineexec-
rhel8@sha256:19a8daf7f9adde981dcd588
b0526fa7682111097849f60a9b0e81137bdd
e8f6c

registry.redhat.io/codeready-
workspaces/plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

registry.redhat.io/codeready-
workspaces/plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

registry.redhat.io/codeready-
workspaces/plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

registry.redhat.io/codeready-
workspaces/plugin-java11-
rhel8@sha256:d93195134cef6351b1f9e31
65fecc09f464dc99ab33d11b68fadd613d04
d1636

plugin-java11-
rhel8@sha256:d93195134cef6351b1f9e31
65fecc09f464dc99ab33d11b68fadd613d04
d1636

registry.redhat.io/codeready-
workspaces/plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

registry.redhat.io/codeready-
workspaces/plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

registry.redhat.io/codeready-
workspaces/plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

<source-image> <target-image>

CHAPTER 3. INSTALLING CODEREADY WORKSPACES

29

registry.redhat.io/codeready-
workspaces/plugin-java8-
rhel8@sha256:ecaa9ddef5ca8db9552f1b5
e66f7aacb19d72e488d718d8135b1e1d9f6
6a1a7a

plugin-java8-
rhel8@sha256:ecaa9ddef5ca8db9552f1b5
e66f7aacb19d72e488d718d8135b1e1d9f6
6a1a7a

registry.redhat.io/codeready-
workspaces/plugin-kubernetes-
rhel8@sha256:cf1d0e24f8bae0f87cae0b1
577dfd25e124437d78031d7076fabebb2dcf
48d7f

plugin-kubernetes-
rhel8@sha256:cf1d0e24f8bae0f87cae0b1
577dfd25e124437d78031d7076fabebb2dcf
48d7f

registry.redhat.io/codeready-
workspaces/plugin-openshift-
rhel8@sha256:13ce6d8fdeeea0cc5a220eb
e8abd2811c31bb2a424736759be9a6df15c
8f77fd

plugin-openshift-
rhel8@sha256:13ce6d8fdeeea0cc5a220eb
e8abd2811c31bb2a424736759be9a6df15c
8f77fd

registry.redhat.io/codeready-
workspaces/pluginbroker-artifacts-
rhel8@sha256:cda306cb7e5c42faa6ab432
18d39984d4955134b3ca9654968c28b05e0
796c3a

pluginbroker-artifacts-
rhel8@sha256:cda306cb7e5c42faa6ab432
18d39984d4955134b3ca9654968c28b05e0
796c3a

registry.redhat.io/codeready-
workspaces/pluginbroker-metadata-
rhel8@sha256:0143a80b869620af08a0d60
165dc9d13357a79e7243502832326cf053c1
7ee38

pluginbroker-metadata-
rhel8@sha256:0143a80b869620af08a0d60
165dc9d13357a79e7243502832326cf053c1
7ee38

registry.redhat.io/codeready-
workspaces/pluginregistry-
rhel8@sha256:3f5163a2303de7f538eca2c
c560403f38b920af1169821dfa06dbef695fb
10c6

pluginregistry-
rhel8@sha256:3f5163a2303de7f538eca2c
c560403f38b920af1169821dfa06dbef695fb
10c6

registry.redhat.io/codeready-
workspaces/server-
rhel8@sha256:6635e8c160c8c73c00c9b05
eccab08a4ff23d344f102ef0097a3798bf108
217a

server-
rhel8@sha256:6635e8c160c8c73c00c9b05
eccab08a4ff23d344f102ef0097a3798bf108
217a

registry.redhat.io/codeready-
workspaces/stacks-cpp-
rhel8@sha256:06cd3600c3b6c3dca0451b
10b46961fd0db4140c7dddc4f9637984022f
5cfc09

stacks-cpp-
rhel8@sha256:06cd3600c3b6c3dca0451b
10b46961fd0db4140c7dddc4f9637984022f
5cfc09

<source-image> <target-image>

Red Hat CodeReady Workspaces 2.8 Installation Guide

30

registry.redhat.io/codeready-
workspaces/stacks-dotnet-
rhel8@sha256:ea77974b206c7d7abcad5c
d32149f6bb669d3cf867135553af4d7dddd
24ba9cf

stacks-dotnet-
rhel8@sha256:ea77974b206c7d7abcad5c
d32149f6bb669d3cf867135553af4d7dddd
24ba9cf

registry.redhat.io/codeready-
workspaces/stacks-golang-
rhel8@sha256:e01d32e58a55a552f0d35b9
a6210b7a2cc8ed444f8ae54a24113dcc85f4
d80db

stacks-golang-
rhel8@sha256:e01d32e58a55a552f0d35b9
a6210b7a2cc8ed444f8ae54a24113dcc85f4
d80db

registry.redhat.io/codeready-
workspaces/stacks-php-
rhel8@sha256:95c324ed660924bf76e10b4
61d75aa5be2a323f26e5033239f7cbfe1ec1
0b26e

stacks-php-
rhel8@sha256:95c324ed660924bf76e10b4
61d75aa5be2a323f26e5033239f7cbfe1ec1
0b26e

registry.redhat.io/codeready-
workspaces/theia-endpoint-
rhel8@sha256:60c84fca55a997a6aab4ca0
7b8ff7d859948c1f525adeba2ae624c84fe0
59a56

theia-endpoint-
rhel8@sha256:60c84fca55a997a6aab4ca0
7b8ff7d859948c1f525adeba2ae624c84fe0
59a56

registry.redhat.io/codeready-
workspaces/theia-
rhel8@sha256:de36fdf140ba6367e6edf57
7d6dbaffa270e5e5ecf0890e498f5907f8287
858f

theia-
rhel8@sha256:de36fdf140ba6367e6edf57
7d6dbaffa270e5e5ecf0890e498f5907f8287
858f

registry.redhat.io/codeready-
workspaces/traefik-
rhel8@sha256:0698a776c6ae2f08238cf01
1d69ac2c67f934b1e25ec38701a9e360430f
d10f7

traefik-
rhel8@sha256:0698a776c6ae2f08238cf01
1d69ac2c67f934b1e25ec38701a9e360430f
d10f7

registry.redhat.io/jboss-eap-7/eap-xp2-
openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

eap-xp2-openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

registry.redhat.io/jboss-eap-7/eap-xp2-
openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

eap-xp2-openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

<source-image> <target-image>

CHAPTER 3. INSTALLING CODEREADY WORKSPACES

31

registry.redhat.io/jboss-eap-7/eap-xp2-
openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

eap-xp2-openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

registry.redhat.io/jboss-eap-7/eap-xp2-
openjdk11-openshift-
rhel8@sha256:647d092383a760edc083eaf
b2d7bc3208d6409097281bedbd5eaccde3
60e7e39

eap-xp2-openjdk11-openshift-
rhel8@sha256:647d092383a760edc083eaf
b2d7bc3208d6409097281bedbd5eaccde3
60e7e39

registry.redhat.io/jboss-eap-7/eap73-
openjdk8-openshift-
rhel7@sha256:d16cfe30eaf20a157cd5d59
80a6c34f3fcbcfd2fd225e670a0138d81007
dd919

eap73-openjdk8-openshift-
rhel7@sha256:d16cfe30eaf20a157cd5d59
80a6c34f3fcbcfd2fd225e670a0138d81007
dd919

registry.redhat.io/rh-sso-7/sso74-openj9-
openshift-
rhel8@sha256:ed11770a85ca95fc9cbb2ca
de539a67ff0e127cff73a89a017415800e032
bd5b

sso74-openj9-openshift-
rhel8@sha256:ed11770a85ca95fc9cbb2ca
de539a67ff0e127cff73a89a017415800e032
bd5b

registry.redhat.io/rh-sso-7/sso74-openj9-
openshift-
rhel8@sha256:ed11770a85ca95fc9cbb2ca
de539a67ff0e127cff73a89a017415800e032
bd5b

sso74-openj9-openshift-
rhel8@sha256:ed11770a85ca95fc9cbb2ca
de539a67ff0e127cff73a89a017415800e032
bd5b

registry.redhat.io/rh-sso-7/sso74-
openshift-
rhel8@sha256:3154fd4f6ce080260de9d2b
4c02930b67b57f1181f4e660f5ddfc9f60504
20b1

sso74-openshift-
rhel8@sha256:3154fd4f6ce080260de9d2b
4c02930b67b57f1181f4e660f5ddfc9f60504
20b1

registry.redhat.io/rhel8/postgresql-
96@sha256:32d73d737acec3daabc3f5c82
36588454c8f57f7a2656ac7a50cf3a04f520b
9b

postgresql-
96@sha256:32d73d737acec3daabc3f5c82
36588454c8f57f7a2656ac7a50cf3a04f520b
9b

registry.redhat.io/rhscl/mongodb-36-
rhel7@sha256:9f799d356d7d2e442bde9d
401b720600fd9059a3d8eefea6f3b2ffa721c
0dc73

mongodb-36-
rhel7@sha256:9f799d356d7d2e442bde9d
401b720600fd9059a3d8eefea6f3b2ffa721c
0dc73

<source-image> <target-image>

Red Hat CodeReady Workspaces 2.8 Installation Guide

32

registry.redhat.io/ubi8/ubi-
minimal@sha256:2f6b88c037c0503da770
4bccd3fc73cb76324101af39ad28f16460e7
bce98324

ubi8ubi-
minimal@sha256:2f6b88c037c0503da770
4bccd3fc73cb76324101af39ad28f16460e7
bce98324

<source-image> <target-image>

Verification steps

Verify the images have the same digests:

$ skopeo inspect docker://<source-image>
$ skopeo inspect docker://<target-registry>/<target-organization>/<target-image>

Additional resources

To find the sources of the images list, see the values of the relatedImages attribute in the
CodeReady Workspaces Operator ClusterServiceVersion sources.

3.4.2.2. Preparing CodeReady Workspaces Custom Resource for restricted environment

When installing CodeReady Workspaces in a restricted environment using crwctl or OperatorHub,
provide a CheCluster custom resource with additional information.

3.4.2.2.1. Downloading the default CheCluster Custom Resource

Procedure

1. Download the default custom resource YAML file.

2. Name the downloaded custom resource org_v1_che_cr.yaml. Keep it for further modification
and usage.

3.4.2.2.2. Customizing the CheCluster Custom Resource for restricted environment

Prerequisites

All required images available in an image registry that is visible to the OpenShift cluster where
CodeReady Workspaces is to be deployed. This is described in Section 3.4.2.1, “Preparing an
private registry”, where the placeholders used in the following examples are also defined.

Procedure

1. In the CheCluster Custom Resource, which is managed by the CodeReady Workspaces
Operator, add the fields used to facilitate deploying an instance of CodeReady Workspaces in a
restricted environment:

[...]
spec:
 server:

CHAPTER 3. INSTALLING CODEREADY WORKSPACES

33

https://github.com/redhat-developer/codeready-workspaces-operator/blob/crw-2.8-rhel-8/manifests/codeready-workspaces.csv.yaml
https://github.com/redhat-developer/codeready-workspaces-operator/blob/2.8.0/deploy/crds/org_v1_che_cr.yaml

3.4.2.3. Starting CodeReady Workspaces installation in a restricted environment using
CodeReady Workspaces CLI management tool

This sections describes how to start the CodeReady Workspaces installation in a restricted environment
using the CodeReady Workspaces CLI management tool.

Prerequisites

CodeReady Workspaces CLI management tool is installed. See Section 3.3.1, “Installing the
crwctl CLI management tool”.

The oc tool is installed.

Access to an OpenShift instance.

Procedure

1. Log in to OpenShift Container Platform:

$ oc login ${OPENSHIFT_API_URL} --username ${OPENSHIFT_USERNAME} \
 --password ${OPENSHIFT_PASSWORD}

2. Install CodeReady Workspaces with a customized Custom Resource to add fields related to the
restricted environment:

$ crwctl server:start \
 --che-operator-image=<target-registry>/<target-organization>/crw-2-rhel8-operator:2.8 \
 --che-operator-cr-yaml=org_v1_che_cr.yaml

NOTE

For slow systems or internet connections, add the --k8spodwaittimeout=1800000 flag
option to the crwctl server:start command to extend the Pod timeout period to
1800000 ms or longer.

3.4.3. Preparing CodeReady Workspaces Custom Resource for installing behind a
proxy

This procedure describes how to provide necessary additional information to the CheCluster custom
resource when installing CodeReady Workspaces behind a proxy.

Procedure

1. In the CheCluster Custom Resource, which is managed by the CodeReady Workspaces
Operator, add the fields used to facilitate deploying an instance of CodeReady Workspaces in a
restricted environment:

 airGapContainerRegistryHostname: '<target-registry>'
 airGapContainerRegistryOrganization: '<target-organization>'
[...]

[...]
spec:

Red Hat CodeReady Workspaces 2.8 Installation Guide

34

2. In addition to those basic settings, the proxy configuration usually requires adding the host of
the external OpenShift cluster API URL in the list of the hosts to be accessed from CodeReady
Workspaces without using the proxy.
To retrieve this cluster API host, run the following command against the OpenShift cluster:

$ oc whoami --show-server | sed 's#https://##' | sed 's#:.*$##'

The corresponding field of the CheCluster Custom Resource is nonProxyHosts. If a host
already exists in this field, use | as a delimiter to add the cluster API host:

 server:
 proxyURL: '<URL of the proxy, with the http protocol, and without the port>'
 proxyPort: '<Port of proxy, typically 3128>'
[...]

[...]
spec:
 server:
 nonProxyHosts: 'anotherExistingHost|<cluster api host>'
[...]

CHAPTER 3. INSTALLING CODEREADY WORKSPACES

35

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES
The following chapter describes configuration methods and options for Red Hat CodeReady
Workspaces, with some user stories as example.

Section 4.1, “Advanced configuration options for the CodeReady Workspaces server
component” describes advanced configuration methods to use when the previous method is not
applicable.

The next sections describe some specific user stories.

Section 4.2, “Configuring project strategies”

Section 4.5, “Running more than one workspace at a time”

Section 4.7, “Configuring workspaces nodeSelector”

Section 4.8, “Configuring Red Hat CodeReady Workspaces server hostname”

Section 4.9, “Configuring labels for OpenShift Route”

Section 4.10, “Configuring labels and domains for OpenShift Route to work with Router
Sharding”

Section 4.11, “Deploying CodeReady Workspaces with support for Git repositories with self-
signed certificates”

Section 4.12, “Installing CodeReady Workspaces using storage classes”

Section 4.4, “Configuring storage types”

Section 4.13, “Importing untrusted TLS certificates to CodeReady Workspaces”

Section 4.14, “Switching between external and internal DNS names in inter-component
communication”

Section 4.15, “Setting up the RH-SSO codeready-workspaces-username-readonly theme for
the Red Hat CodeReady Workspaces login page”

Section 4.16, “Mounting a secret as a file or an environment variable into a Red Hat CodeReady
Workspaces container”

Section 4.17, “Enabling Dev Workspace engine”

4.1. ADVANCED CONFIGURATION OPTIONS FOR THE CODEREADY
WORKSPACES SERVER COMPONENT

The following section describes advanced deployment and configuration methods for the CodeReady
Workspaces server component.

4.1.1. Understanding CodeReady Workspaces server advanced configuration using
the Operator

The following section describes the CodeReady Workspaces server component advanced configuration
method for a deployment using the Operator.

Red Hat CodeReady Workspaces 2.8 Installation Guide

36

Advanced configuration is necessary to:

Add environment variables not automatically generated by the Operator from the standard
CheCluster Custom Resource fields.

Override the properties automatically generated by the Operator from the standard
CheCluster Custom Resource fields.

The customCheProperties field, part of the CheCluster Custom Resource server settings, contains a
map of additional environment variables to apply to the CodeReady Workspaces server component.

Example 4.1. Override the default memory limit for workspaces

Add the CHE_WORKSPACE_DEFAULT__MEMORY__LIMIT__MB property to
customCheProperties:

NOTE

Previous versions of the CodeReady Workspaces Operator had a ConfigMap named
custom to fulfill this role. If the CodeReady Workspaces Operator finds a configMap with
the name custom, it adds the data it contains into the customCheProperties field,
redeploys CodeReady Workspaces, and deletes the custom configMap.

Additional resources

For the list of all parameters available in the CheCluster Custom Resource, see Chapter 2,
Configuring the CodeReady Workspaces installation .

For the list of all parameters available to configure customCheProperties, see Section 4.1.2,
“CodeReady Workspaces server component system properties reference”.

4.1.2. CodeReady Workspaces server component system properties reference

The following document describes all possible configuration properties of the CodeReady Workspaces
server component.

4.1.2.1. Che server

Table 4.1. Che server

apiVersion: org.eclipse.che/v1
kind: CheCluster
[...]
spec:
 server:
 # [...]
 customCheProperties:
 CHE_WORKSPACE_DEFAULT__MEMORY__LIMIT__MB: "2048"
[...]

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

37

Environment Variable Name Default value Description

CHE_DATABASE ${che.home}/storage Folder where CodeReady
Workspaces stores internal data
objects.

CHE_API http://${CHE_HOST}:${CHE_
PORT}/api

API service. Browsers initiate
REST communications to
CodeReady Workspaces server
with this URL.

CHE_API_INTERNAL http://${CHE_HOST}:${CHE_
PORT}/api

API service internal network url.
Back-end services should initiate
REST communications to
CodeReady Workspaces server
with this URL

CHE_WEBSOCKET_ENDPOI
NT

ws://${CHE_HOST}:${CHE_P
ORT}/api/websocket

CodeReady Workspaces
websocket major endpoint.
Provides basic communication
endpoint for major websocket
interactions and messaging.

CHE_WORKSPACE_PROJEC
TS_STORAGE

/projects Your projects are synchronized
from the CodeReady Workspaces
server into the machine running
each workspace. This is the
directory in the machine where
your projects are placed.

CHE_WORKSPACE_PROJEC
TS_STORAGE_DEFAULT_SI
ZE

1Gi Used when OpenShift-type
components in a devfile request
project PVC creation (Applied in
case of 'unique' and 'per
workspace' PVC strategy. In case
of the 'common' PVC strategy, it
is rewritten with the value of the
che.infra.kubernetes.pvc.qua
ntity property.)

CHE_WORKSPACE_LOGS_R
OOT__DIR

/workspace_logs Defines the directory inside the
machine where all the workspace
logs are placed. Provide this value
into the machine, for example, as
an environment variable. This is to
ensure that agent developers can
use this directory to back up
agent logs.

Red Hat CodeReady Workspaces 2.8 Installation Guide

38

CHE_WORKSPACE_HTTP__
PROXY

 Configures environment variable
HTTP_PROXY to a specified
value in containers powering
workspaces.

CHE_WORKSPACE_HTTPS_
_PROXY

 Configures environment variable
HTTPS_PROXY to a specified
value in containers powering
workspaces.

CHE_WORKSPACE_NO__PR
OXY

 Configures environment variable
NO_PROXY to a specified value
in containers powering
workspaces.

CHE_WORKSPACE_AUTO__
START

true By default, when users access a
workspace with its URL, the
workspace automatically starts (if
currently stopped). Set this to
false to disable this behavior.

CHE_WORKSPACE_POOL_T
YPE

fixed Workspace threads pool
configuration. This pool is used
for workspace-related operations
that require asynchronous
execution, for example, starting
and stopping. Possible values are
fixed and cached.

CHE_WORKSPACE_POOL_E
XACT__SIZE

30 This property is ignored when
pool type is different from fixed.
It configures the exact size of the
pool. When set, the multiplier
property is ignored. If this
property is not set (0, <0, NULL),
then the pool size equals the
number of cores. See also
che.workspace.pool.cores_
multiplier.

CHE_WORKSPACE_POOL_C
ORES__MULTIPLIER

2 This property is ignored when
pool type is not set to fixed,
che.workspace.pool.exact_si
ze is set. When set, the pool size is
N_CORES * multiplier.

CHE_WORKSPACE_PROBE_
_POOL__SIZE

10 This property specifies how many
threads to use for workspace
server liveness probes.

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

39

CHE_WORKSPACE_HTTP__
PROXY__JAVA__OPTIONS

NULL HTTP proxy setting for workspace
JVM.

CHE_WORKSPACE_JAVA__
OPTIONS

-XX:MaxRAM=150m-
XX:MaxRAMFraction=2 -
XX:+UseParallelGC -
XX:MinHeapFreeRatio=10 -
XX:MaxHeapFreeRatio=20 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90 -
Dsun.zip.disableMemoryMap
ping=true -Xms20m -
Djava.security.egd=file:/dev/.
/urandom

Java command-line options
added to JVMs running in
workspaces.

CHE_WORKSPACE_MAVEN_
_OPTIONS

-XX:MaxRAM=150m-
XX:MaxRAMFraction=2 -
XX:+UseParallelGC -
XX:MinHeapFreeRatio=10 -
XX:MaxHeapFreeRatio=20 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90 -
Dsun.zip.disableMemoryMap
ping=true -Xms20m -
Djava.security.egd=file:/dev/.
/urandom

Maven command-line options
added to JVMs running agents in
workspaces.

CHE_WORKSPACE_DEFAUL
T__MEMORY__LIMIT__MB

1024 RAM limit default for each
machine that has no RAM
settings in its environment. Value
less or equal to 0 is interpreted as
disabling the limit.

CHE_WORKSPACE_DEFAUL
T__MEMORY__REQUEST__
MB

200 RAM request for each container
that has no explicit RAM settings
in its environment. This amount is
allocated when the workspace
container is created. This property
may not be supported by all
infrastructure implementations.
Currently it is supported by
OpenShift. A memory request
exceeding the memory limit is
ignored, and only the limit size is
used. Value less or equal to 0 is
interpreted as disabling the limit.

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

40

CHE_WORKSPACE_DEFAUL
T__CPU__LIMIT__CORES

-1 CPU limit for each container that
has no CPU settings in its
environment. Specify either in
floating point cores number, for
example, 0.125, or using the
OpenShift format, integer
millicores, for example, 125m.
Value less or equal to 0 is
interpreted as disabling the limit.

CHE_WORKSPACE_DEFAUL
T__CPU__REQUEST__CORE
S

-1 CPU request for each container
that has no CPU settings in
environment. A CPU request
exceeding the CPU limit is
ignored, and only limit number is
used. Value less or equal to 0 is
interpreted as disabling the limit.

CHE_WORKSPACE_SIDECA
R_DEFAULT__MEMORY__LI
MIT__MB

128 RAM limit for each sidecar that
has no RAM settings in the
CodeReady Workspaces plug-in
configuration. Value less or equal
to 0 is interpreted as disabling the
limit.

CHE_WORKSPACE_SIDECA
R_DEFAULT__MEMORY__R
EQUEST__MB

64 RAM request for each sidecar
that has no RAM settings in the
CodeReady Workspaces plug-in
configuration.

CHE_WORKSPACE_SIDECA
R_DEFAULT__CPU__LIMIT_
_CORES

-1 CPU limit default for each sidecar
that has no CPU settings in the
CodeReady Workspaces plug-in
configuration. Specify either in
floating point cores number, for
example, 0.125, or using the
OpenShift format, integer
millicores, for example, 125m.
Value less or equal to 0 is
interpreted as disabling the limit.

CHE_WORKSPACE_SIDECA
R_DEFAULT__CPU__REQUE
ST__CORES

-1 CPU request default for each
sidecar that has no CPU settings
in the CodeReady Workspaces
plug-in configuration. Specify
either in floating point cores
number, for example, 0.125, or
using the OpenShift format,
integer millicores, for example,
125m.

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

41

CHE_WORKSPACE_SIDECA
R_IMAGE__PULL__POLICY

Always Defines image-pulling strategy for
sidecars. Possible values are:
Always, Never, IfNotPresent.
For any other value, Always is
assumed for images with the
:latest tag, or IfNotPresent for
all other cases.

CHE_WORKSPACE_ACTIVIT
Y__CHECK__SCHEDULER__
PERIOD__S

60 Period of inactive workspaces
suspend job execution.

CHE_WORKSPACE_ACTIVIT
Y__CLEANUP__SCHEDULER
__PERIOD__S

3600 The period of the cleanup of the
activity table. The activity table
can contain invalid or stale data if
some unforeseen errors happen,
like a server crash at a peculiar
point in time. The default is to run
the cleanup job every hour.

CHE_WORKSPACE_ACTIVIT
Y__CLEANUP__SCHEDULER
__INITIAL__DELAY__S

60 The delay after server startup to
start the first activity clean up job.

CHE_WORKSPACE_ACTIVIT
Y__CHECK__SCHEDULER__
DELAY__S

180 Delay before first workspace
idleness check job started to
avoid mass suspend if ws master
was unavailable for period close
to inactivity timeout.

CHE_WORKSPACE_CLEANU
P__TEMPORARY__INITIAL__
DELAY__MIN

5 Time period to delay the first
execution of temporary
workspaces cleanup job.

CHE_WORKSPACE_CLEANU
P__TEMPORARY__PERIOD_
_MIN

180 Time period delay between the
termination of one execution and
the commencement of the next
execution of temporary
workspaces cleanup job

CHE_WORKSPACE_SERVER
_PING__SUCCESS__THRES
HOLD

1 Number of sequential successful
pings to server after which it is
treated as available. Note: the
property is common for all servers
e.g. workspace agent, terminal,
exec etc.

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

42

CHE_WORKSPACE_SERVER
_PING__INTERVAL__MILLIS
ECONDS

3000 Interval, in milliseconds, between
successive pings to workspace
server.

CHE_WORKSPACE_SERVER
_LIVENESS__PROBES

wsagent/http,exec-
agent/http,terminal,theia,jup
yter,dirigible,cloud-
shell,intellij

List of servers names which
require liveness probes

CHE_WORKSPACE_STARTU
P__DEBUG__LOG__LIMIT__
BYTES

10485760 Limit size of the logs collected
from single container that can be
observed by che-server when
debugging workspace startup.
default 10MB=10485760

CHE_WORKSPACE_STOP_R
OLE_ENABLED

true If true, 'stop-workspace' role with
the edit privileges will be granted
to the 'che' ServiceAccount if
OpenShift OAuth is enabled. This
configuration is mainly required
for workspace idling when the
OpenShift OAuth is enabled.

CHE_DEVWORKSPACES_EN
ABLED

false Specifies whether che is deployed
with DevWorkspaces enabled.
This property is set by the
CodeReady Workspaces operator
if it also installed the support for
DevWorkspaces. This property is
used to advertise this fact to the
CodeReady Workspaces
dashboard. It does not make
sense to change the value of this
property manually.

Environment Variable Name Default value Description

4.1.2.2. Authentication parameters

Table 4.2. Authentication parameters

Environment Variable Name Default value Description

CHE_AUTH_USER__SELF__
CREATION

false CodeReady Workspaces has a
single identity implementation, so
this does not change the user
experience. If true, enables user
creation at API level

CHE_AUTH_ACCESS__DENI
ED__ERROR__PAGE

/error-oauth Authentication error page address

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

43

CHE_AUTH_RESERVED__US
ER__NAMES

 Reserved user names

CHE_OAUTH_GITHUB_CLIE
NTID

NULL Configuration of GitHub OAuth
client. You can setup GitHub
OAuth to automate
authentication to remote
repositories. You need to first
register this application with
GitHub OAuth. GitHub OAuth
client ID.

CHE_OAUTH_GITHUB_CLIE
NTSECRET

NULL GitHub OAuth client secret.

CHE_OAUTH_GITHUB_AUTH
URI

https://github.com/login/oaut
h/authorize

GitHub OAuth authorization URI.

CHE_OAUTH_GITHUB_TOKE
NURI

https://github.com/login/oaut
h/access_token

GitHub OAuth token URI.

CHE_OAUTH_GITHUB_REDI
RECTURIS

http://localhost:${CHE_POR
T}/api/oauth/callback

GitHub OAuth redirect URIs.
Separate multiple values with
comma, for example: URI,URI,URI

CHE_OAUTH_OPENSHIFT_C
LIENTID

NULL Configuration of OpenShift
OAuth client. Used to obtain
OpenShift OAuth token.
OpenShift OAuth client ID.

CHE_OAUTH_OPENSHIFT_C
LIENTSECRET

NULL Configurationof OpenShift OAuth
client. Used to obtain OpenShift
OAuth token. OpenShift OAuth
client ID. OpenShift OAuth client
secret.

CHE_OAUTH_OPENSHIFT_O
AUTH__ENDPOINT

NULL ConfigurationofOpenShift OAuth
client. Used to obtain OpenShift
OAuth token. OpenShift OAuth
client ID. OpenShift OAuth client
secret. OpenShift OAuth
endpoint.

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

44

CHE_OAUTH_OPENSHIFT_V
ERIFY__TOKEN__URL

NULL ConfigurationofOpenShiftOAuth
client. Used to obtain OpenShift
OAuth token. OpenShift OAuth
client ID. OpenShift OAuth client
secret. OpenShift OAuth
endpoint. OpenShift OAuth
verification token URL.

CHE_OAUTH1_BITBUCKET_
CONSUMERKEYPATH

NULL Configuration of Bitbucket Server
OAuth1 client. Used to obtain
Personal access tokens. Location
of the file with Bitbucket Server
application consumer key
(equivalent to a username).

CHE_OAUTH1_BITBUCKET_
PRIVATEKEYPATH

NULL Configurationof Bitbucket Server
OAuth1 client. Used to obtain
Personal access tokens. Location
of the file with Bitbucket Server
application consumer key
(equivalent to a username).
Location of the file with Bitbucket
Server application private key

CHE_OAUTH1_BITBUCKET_
ENDPOINT

NULL ConfigurationofBitbucket Server
OAuth1 client. Used to obtain
Personal access tokens. Location
of the file with Bitbucket Server
application consumer key
(equivalent to a username).
Location of the file with Bitbucket
Server application private key
Bitbucket Server URL. To work
correctly with factories the same
URL has to be part of
che.integration.bitbucket.ser
ver_endpoints too.

Environment Variable Name Default value Description

4.1.2.3. Internal

Table 4.3. Internal

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

45

SCHEDULE_CORE__POOL_
_SIZE

10 CodeReady Workspaces
extensions can be scheduled
executions on a time basis. This
configures the size of the thread
pool allocated to extensions that
are launched on a recurring
schedule.

DB_SCHEMA_FLYWAY_BAS
ELINE_ENABLED

true DB initialization and migration
configuration If true, ignore
scripts up to the version
configured by baseline.version.

DB_SCHEMA_FLYWAY_BAS
ELINE_VERSION

5.0.0.8.1 Scripts with version up to this are
ignored. Note that scripts with
version equal to baseline version
are also ignored.

DB_SCHEMA_FLYWAY_SCRI
PTS_PREFIX

 Prefix of migration scripts.

DB_SCHEMA_FLYWAY_SCRI
PTS_SUFFIX

.sql Suffix of migration scripts.

DB_SCHEMA_FLYWAY_SCRI
PTS_VERSION__SEPARATO
R

__ Separator of version from the
other part of script name.

DB_SCHEMA_FLYWAY_SCRI
PTS_LOCATIONS

classpath:che-schema Locations where to search
migration scripts.

Environment Variable Name Default value Description

4.1.2.4. OpenShift Infra parameters

Table 4.4. OpenShift Infra parameters

Environment Variable Name Default value Description

CHE_INFRA_KUBERNETES_
MASTER__URL

 Configuration of OpenShift client
master URL that Infra will use.

CHE_INFRA_KUBERNETES_
TRUST__CERTS

false Boolean to configure OpenShift
client in order to use trusted
certificates.

Red Hat CodeReady Workspaces 2.8 Installation Guide

46

CHE_INFRA_KUBERNETES_
SERVER__STRATEGY

multi-host Defines the way how servers are
exposed to the world in
OpenShift infra. List of strategies
implemented in CodeReady
Workspaces: default-host, multi-
host, single-host

CHE_INFRA_KUBERNETES_
SINGLEHOST_WORKSPACE
_EXPOSURE

native Defines the way in which the
workspace plugins and editors are
exposed in the single-host mode.
Supported exposures: - 'native':
Exposes servers using OpenShift
Ingresses. Works only on
Kubernetes. - 'gateway': Exposes
servers using reverse-proxy
gateway.

CHE_INFRA_KUBERNETES_
SINGLEHOST_WORKSPACE
_DEVFILE__ENDPOINT__EX
POSURE

multi-host Defines the way how to expose
devfile endpoints, thus end-user’s
applications, in single-host server
strategy. They can either follow
the single-host strategy and be
exposed on subpaths, or they can
be exposed on subdomains. -
'multi-host': expose on
subdomains - 'single-host':
expose on subpaths

CHE_INFRA_KUBERNETES_
SINGLEHOST_GATEWAY_C
ONFIGMAP__LABELS

app=che,component=che-
gateway-config

Defines labels which will be set to
ConfigMaps configuring single-
host gateway.

CHE_INFRA_KUBERNETES_I
NGRESS_DOMAIN

 Used to generate domain for a
server in a workspace in case
property
che.infra.kubernetes.server_
strategy is set to multi-host

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

47

CHE_INFRA_KUBERNETES_
NAMESPACE

 DEPRECATED - please do not
change the value of this property
otherwise the existing workspaces
will loose data. Do not set it on
new installations. Defines
OpenShift project in which all
workspaces will be created. If not
set, every workspace will be
created in a new namespace,
where namespace = workspace id
It’s possible to use <username>
and <userid> placeholders (e.g.:
che-workspace-<username>). In
that case, new namespace will be
created for each user. Service
account with permission to create
new namespace must be used.
Ignored for OpenShift infra. Use
che.infra.openshift.project
instead If the namespace pointed
to by this property exists, it will be
used for all workspaces. If it does
not exist, the namespace
specified by the
che.infra.kubernetes.namespace.d
efault will be created and used.

CHE_INFRA_KUBERNETES_
NAMESPACE_CREATION__A
LLOWED

true Indicates whether CodeReady
Workspaces server is allowed to
create namespaces/projects for
user workspaces, or they’re
intended to be created manually
by cluster administrator. This
property is also used by the
OpenShift infra.

CHE_INFRA_KUBERNETES_
NAMESPACE_DEFAULT

<username>-che Defines default OpenShift project
in which user’s workspaces are
created if user does not override
it. It’s possible to use <username>,
<userid> and <workspaceid>
placeholders (e.g.: che-
workspace-<username>). In that
case, new namespace will be
created for each user (or
workspace). Is used by OpenShift
infra as well to specify Project

CHE_INFRA_KUBERNETES_
NAMESPACE_LABEL

true Defines whether che-server
should try to label the workspace
namespaces.

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

48

CHE_INFRA_KUBERNETES_
NAMESPACE_LABELS

app.kubernetes.io/part-
of=che.eclipse.org,app.kuber
netes.io/component=worksp
aces-namespace

List of labels to find
Namespaces/Projects that are
used for CodeReady Workspaces
Workspaces. They are used to: -
find prepared
Namespaces/Projects for users in
combination with
che.infra.kubernetes.namesp
ace.annotations. - actively label
namespaces with any workspace.

CHE_INFRA_KUBERNETES_
NAMESPACE_ANNOTATION
S

che.eclipse.org/username=
<username>

List of annotations to find
Namespaces/Projects prepared
for CodeReady Workspaces users
workspaces. Only
Namespaces/Projects matching
the
che.infra.kubernetes.namesp
ace.labels will be matched
against these annotations.
Namespaces/Projects that
matches both
che.infra.kubernetes.namesp
ace.labels and
che.infra.kubernetes.namesp
ace.annotations will be
preferentially used for User’s
workspaces. It’s possible to use
<username> placeholder to
specify the Namespace/Project
to concrete user.

CHE_INFRA_KUBERNETES_
NAMESPACE_ALLOW__USE
R__DEFINED

false Defines if a user is able to specify
OpenShift project (or OpenShift
project) different from the
default. It’s NOT
RECOMMENDED to configured
true without OAuth configured.
This property is also used by the
OpenShift infra.

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

49

CHE_INFRA_KUBERNETES_
SERVICE__ACCOUNT__NAM
E

NULL Defines Kubernetes Service
Account name which should be
specified to be bound to all
workspaces pods. Note that
OpenShift Infrastructure won’t
create the service account and it
should exist. OpenShift
infrastructure will check if project
is predefined(if
che.infra.openshift.project is
not empty): - if it is predefined
then service account must exist
there - if it is 'NULL' or empty
string then infrastructure will
create new OpenShift project per
workspace and prepare
workspace service account with
needed roles there

CHE_INFRA_KUBERNETES_
WORKSPACE__SA__CLUST
ER__ROLES

NULL Specifies optional, additional
cluster roles to use with the
workspace service account. Note
that the cluster role names must
already exist, and the CodeReady
Workspaces service account
needs to be able to create a Role
Binding to associate these cluster
roles with the workspace service
account. The names are comma
separated. This property
deprecates
'che.infra.kubernetes.cluster_role_
name'.

CHE_INFRA_KUBERNETES_
WORKSPACE__START__TIM
EOUT__MIN

8 Defines time frame that limits the
Kubernetes workspace start time

CHE_INFRA_KUBERNETES_I
NGRESS__START__TIMEOU
T__MIN

5 Defines the timeout in minutes
that limits the period for which
OpenShift Route become ready

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

50

CHE_INFRA_KUBERNETES_
WORKSPACE__UNRECOVE
RABLE__EVENTS

FailedMount,FailedSchedulin
g,MountVolume.SetUpfailed,
Failed to pull
image,FailedCreate,ReplicaS
etCreateError

If during workspace startup an
unrecoverable event defined in
the property occurs, terminate
workspace immediately instead of
waiting until timeout Note that
this SHOULD NOT include a mere
'Failed' reason, because that
might catch events that are not
unrecoverable. A failed container
startup is handled explicitly by
CodeReady Workspaces server.

CHE_INFRA_KUBERNETES_
PVC_ENABLED

true Defines whether use the
Persistent Volume Claim for che
workspace needs e.g backup
projects, logs etc or disable it.

CHE_INFRA_KUBERNETES_
PVC_STRATEGY

common Defined which strategy will be
used while choosing PVC for
workspaces. Supported
strategies: - 'common' All
workspaces in the same
Kubernetes Namespace will reuse
the same PVC. Name of PVC may
be configured with
'che.infra.kubernetes.pvc.name'.
Existing PVC will be used or new
one will be created if it doesn’t
exist. - 'unique' Separate PVC for
each workspace’s volume will be
used. Name of PVC is evaluated
as
'{che.infra.kubernetes.pvc.name}
+ '-' + {generated_8_chars}'.
Existing PVC will be used or a new
one will be created if it doesn’t
exist. - 'per-workspace' Separate
PVC for each workspace will be
used. Name of PVC is evaluated
as
'{che.infra.kubernetes.pvc.name}
+ '-' + {WORKSPACE_ID}'. Existing
PVC will be used or a new one will
be created if it doesn’t exist.

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

51

CHE_INFRA_KUBERNETES_
PVC_PRECREATE__SUBPAT
HS

true Defines whether to run a job that
creates workspace’s subpath
directories in persistent volume
for the 'common' strategy before
launching a workspace. Necessary
in some versions of OpenShift as
workspace subpath volume
mounts are created with root
permissions, and thus cannot be
modified by workspaces running
as a user (presents an error
importing projects into a
workspace in CodeReady
Workspaces). The default is 'true',
but should be set to false if the
version of Openshift/Kubernetes
creates subdirectories with user
permissions. Relevant issue:
https://github.com/kubernetes/k
ubernetes/issues/41638 Note
that this property has effect only
if the 'common' PVC strategy
used.

CHE_INFRA_KUBERNETES_
PVC_NAME

claim-che-workspace Defines the settings of PVC name
for che workspaces. Each PVC
strategy supplies this value
differently. See doc for
che.infra.kubernetes.pvc.strategy
property

CHE_INFRA_KUBERNETES_
PVC_STORAGE__CLASS__N
AME

 Defines the storage class of
Persistent Volume Claim for the
workspaces. Empty strings means
'use default'.

CHE_INFRA_KUBERNETES_
PVC_QUANTITY

10Gi Defines the size of Persistent
Volume Claim of che workspace.
Format described here:
https://docs.openshift.com/conta
iner-
platform/4.4/storage/understand
ing-persistent-storage.html

CHE_INFRA_KUBERNETES_
PVC_JOBS_IMAGE

centos:centos7 Pod that is launched when
performing persistent volume
claim maintenance jobs on
OpenShift

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

52

CHE_INFRA_KUBERNETES_
PVC_JOBS_IMAGE_PULL__
POLICY

IfNotPresent Image pull policy of container that
used for the maintenance jobs on
Kubernetes/OpenShift cluster

CHE_INFRA_KUBERNETES_
PVC_JOBS_MEMORYLIMIT

250Mi Defines pod memory limit for
persistent volume claim
maintenance jobs

CHE_INFRA_KUBERNETES_
PVC_ACCESS__MODE

ReadWriteOnce Defines Persistent Volume Claim
access mode. Note that for
common PVC strategy changing
of access mode affects the
number of simultaneously running
workspaces. If OpenShift flavor
where che running is using PVs
with RWX access mode then a
limit of running workspaces at the
same time bounded only by che
limits configuration like(RAM,
CPU etc). Detailed information
about access mode is described
here:
https://docs.openshift.com/conta
iner-
platform/4.4/storage/understand
ing-persistent-storage.html

CHE_INFRA_KUBERNETES_
PVC_WAIT__BOUND

true Defines whether CodeReady
Workspaces Server should wait
workspaces PVCs to become
bound after creating. It’s used by
all PVC strategies. It should be
set to false in case if
volumeBindingMode is
configured to
WaitForFirstConsumer
otherwise workspace starts will
hangs up on phase of waiting
PVCs. Default value is true
(means that PVCs should be
waited to be bound)

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

53

CHE_INFRA_KUBERNETES_I
NSTALLER__SERVER__MIN_
_PORT

10000 Defined range of ports for
installers servers By default,
installer will use own port, but if it
conflicts with another installer
servers then OpenShift
infrastructure will reconfigure
installer to use first available from
this range Unused, will be
removed.

CHE_INFRA_KUBERNETES_I
NSTALLER__SERVER__MAX
__PORT

20000 Unused, will be removed.

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

54

CHE_INFRA_KUBERNETES_I
NGRESS_ANNOTATIONS__J
SON

NULL Defines annotations for ingresses
which are used for servers
exposing. Value depends on the
kind of ingress controller.
OpenShift infrastructure ignores
this property because it uses
Routes instead of ingresses. Note
that for a single-host deployment
strategy to work, a controller
supporting URL rewriting has to
be used (so that URLs can point
to different servers while the
servers don’t need to support
changing the app root). The
che.infra.kubernetes.ingress.path.
rewrite_transform property
defines how the path of the
ingress should be transformed to
support the URL rewriting and this
property defines the set of
annotations on the ingress itself
that instruct the chosen ingress
controller to actually do the URL
rewriting, potentially building on
the path transformation (if
required by the chosen ingress
controller). For example for nginx
ingress controller 0.22.0 and later
the following value is
recommended:
{'ingress.kubernetes.io/rewrite-
target':
'/$1','ingress.kubernetes.io/ssl-
redirect': 'false',\
'ingress.kubernetes.io/proxy-
connect-timeout':
'3600','ingress.kubernetes.io/pro
xy-read-timeout': '3600'} and the
che.infra.kubernetes.ingress.path.
rewrite_transform should be set
to '%s(.*)' For nginx ingress
controller older than 0.22.0, the
rewrite-target should be set to
merely '/' and the path transform
to '%s' (see the the
che.infra.kubernetes.ingress.path.
rewrite_transform property).
Please consult the nginx ingress
controller documentation for the
explanation of how the ingress
controller uses the regular

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

55

expression present in the ingress
path and how it achieves the URL
rewriting.

CHE_INFRA_KUBERNETES_I
NGRESS_PATH__TRANSFO
RM

NULL Defines a 'recipe' on how to
declare the path of the ingress
that should expose a server. The
'%s' represents the base public
URL of the server and is
guaranteed to end with a forward
slash. This property must be a
valid input to the String.format()
method and contain exactly one
reference to '%s'. Please see the
description of the
che.infra.kubernetes.ingress.anno
tations_json property to see how
these two properties interplay
when specifying the ingress
annotations and path. If not
defined, this property defaults to
'%s' (without the quotes) which
means that the path is not
transformed in any way for use
with the ingress controller.

CHE_INFRA_KUBERNETES_I
NGRESS_LABELS

NULL Additional labels to add into every
Ingress created by CodeReady
Workspaces server to allow clear
identification.

CHE_INFRA_KUBERNETES_
POD_SECURITY__CONTEXT
_RUN__AS__USER

NULL Defines security context for pods
that will be created by OpenShift
Infra. Specifies that for any
Containers in the Pod, all
processes run with given user ID.
This is ignored by OpenShift infra

CHE_INFRA_KUBERNETES_
POD_SECURITY__CONTEXT
_FS__GROUP

NULL Defines security context for pods
that will be created by OpenShift
Infra. A special supplemental
group that applies to all
containers in a pod. This is
ignored by OpenShift infra.

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

56

CHE_INFRA_KUBERNETES_
POD_TERMINATION__GRAC
E__PERIOD__SEC

0 Defines grace termination period
for pods that will be created by
Kubernetes / OpenShift
infrastructures Grace termination
period of Kubernetes / OpenShift
workspace’s pods defaults '0',
which allows to terminate pods
almost instantly and significantly
decrease the time required for
stopping a workspace. Note: if
terminationGracePeriodSeco
nds have been explicitly set in
Kubernetes / OpenShift recipe it
will not be overridden.

CHE_INFRA_KUBERNETES_
CLIENT_HTTP_ASYNC__RE
QUESTS_MAX

1000 Number of maximum concurrent
async web requests (http
requests or ongoing web socket
calls) supported in the underlying
shared http client of the
KubernetesClient instances.
Default values are 64, and 5 per-
host, which doesn’t seem correct
for multi-user scenarios, knowing
that CodeReady Workspaces
keeps a number of connections
opened (e.g. for command or ws-
agent logs)

CHE_INFRA_KUBERNETES_
CLIENT_HTTP_ASYNC__RE
QUESTS_MAX__PER__HOST

1000 Number of maximum concurrent
async web requests per host.

CHE_INFRA_KUBERNETES_
CLIENT_HTTP_CONNECTIO
N__POOL_MAX__IDLE

5 Max number of idle connections
in the connection pool of the
Kubernetes-client shared http
client

CHE_INFRA_KUBERNETES_
CLIENT_HTTP_CONNECTIO
N__POOL_KEEP__ALIVE__M
IN

5 Keep-alive timeout of the
connection pool of the
Kubernetes-client shared http
client in minutes

CHE_INFRA_KUBERNETES_
TLS__ENABLED

false Creates Ingresses with Transport
Layer Security (TLS) enabled In
OpenShift infrastructure, Routes
will be TLS-enabled

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

57

CHE_INFRA_KUBERNETES_
TLS__SECRET

 Name of a secret that should be
used when creating workspace
ingresses with TLS Ignored by
OpenShift infrastructure

CHE_INFRA_KUBERNETES_
TLS__KEY

NULL Key data for TLS Secret that
should be used for workspaces
Ingresses. Key should be encoded
with Base64 algorithm. This
property is ignored by OpenShift
infrastructure.

CHE_INFRA_KUBERNETES_
TLS__CERT

NULL Certificate data for TLS Secret
that should be used for
workspaces Ingresses. Certificate
should be encoded with Base64
algorithm. This property is
ignored by OpenShift
infrastructure.

CHE_INFRA_KUBERNETES_
RUNTIMES__CONSISTENCY
__CHECK__PERIOD__MIN

-1 Defines the period with which
runtimes consistency checks will
be performed. If runtime has
inconsistent state then runtime
will be stopped automatically.
Value must be more than 0 or -1,
where -1 means that checks won’t
be performed at all. It is disabled
by default because there is
possible CodeReady Workspaces
Server configuration when
CodeReady Workspaces Server
doesn’t have an ability to interact
with Kubernetes API when
operation is not invoked by user. It
DOES work on the following
configurations: - workspaces
objects are created in the same
namespace where CodeReady
Workspaces Server is located; -
cluster-admin service account
token is mount to CodeReady
Workspaces Server pod; It DOES
NOT work on the following
configurations: - CodeReady
Workspaces Server
communicates with Kubernetes
API using token from OAuth
provider;

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

58

CHE_INFRA_KUBERNETES_
TRUSTED__CA_SRC__CONF
IGMAP

NULL Name of cofig map in CodeReady
Workspaces server namespace
with additional CA TLS
certificates to be propagated into
all user’s workspaces. If the
property is set on OpenShift 4
infrastructure, and
che.infra.openshift.trusted_ca.des
t_configmap_labels includes
config.openshift.io/inject-
trusted-cabundle=true label, then
cluster CA bundle will be
propagated too.

CHE_INFRA_KUBERNETES_
TRUSTED__CA_DEST__CON
FIGMAP

ca-certs Name of configmap in a
workspace namespace with
additional CA TLS certificates.
Holds the copy of
che.infra.kubernetes.trusted_ca.sr
c_configmap but in a workspace
namespace. Content of this
config map is mounted into all
workspace containers including
plugin brokers. Do not change the
config map name unless it
conflicts with the already existing
config map. Note that the
resulting config map name can be
adjusted eventually to make it
unique in OpenShift namespace.
The original name would be
stored in che.original_name
label.

CHE_INFRA_KUBERNETES_
TRUSTED__CA_MOUNT__P
ATH

/public-certs Configures path on workspace
containers where the CA bundle
should be mount. Content of
config map specified by
che.infra.kubernetes.trusted_ca.d
est_configmap is mounted.

CHE_INFRA_KUBERNETES_
TRUSTED__CA_DEST__CON
FIGMAP__LABELS

 Comma separated list of labels to
add to the CA certificates config
map in user workspace. See
che.infra.kubernetes.trusted_ca.d
est_configmap property.

Environment Variable Name Default value Description

4.1.2.5. OpenShift Infra parameters

Table 4.5. OpenShift Infra parameters

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

59

Environment Variable Name Default value Description

CHE_INFRA_OPENSHIFT_PR
OJECT

 DEPRECATED - please do not
change the value of this property
otherwise the existing workspaces
will loose data. Do not set it on
new installations. Defines
OpenShift namespace in which all
workspaces will be created. If not
set, every workspace will be
created in a new project, where
project name = workspace id It’s
possible to use <username> and
<userid> placeholders (e.g.: che-
workspace-<username>). In that
case, new project will be created
for each user. OpenShift oauth or
service account with permission to
create new projects must be
used. If the project pointed to by
this property exists, it will be used
for all workspaces. If it does not
exist, the namespace specified by
the
che.infra.kubernetes.namespace.d
efault will be created and used.

CHE_INFRA_OPENSHIFT_TR
USTED__CA_DEST__CONFI
GMAP__LABELS

config.openshift.io/inject-
trusted-cabundle=true

Comma separated list of labels to
add to the CA certificates config
map in user workspace. See
che.infra.kubernetes.trusted_ca.d
est_configmap property. This
default value is used for
automatic cluster CA bundle
injection in Openshift 4.

CHE_INFRA_OPENSHIFT_R
OUTE_LABELS

NULL Additional labels to add into every
Route created by CodeReady
Workspaces server to allow clear
identification.

CHE_INFRA_OPENSHIFT_R
OUTE_HOST_DOMAIN__SUF
FIX

NULL The hostname that should be
used as a suffix for the workspace
routes. For example
host=open.che.org then the route
will look like
routed3qrtk.open.che.org It has
to be a valid DNS name.

4.1.2.6. Experimental properties

Table 4.6. Experimental properties

Red Hat CodeReady Workspaces 2.8 Installation Guide

60

Environment Variable Name Default value Description

CHE_WORKSPACE_PLUGIN
__BROKER_METADATA_IM
AGE

quay.io/eclipse/che-plugin-
metadata-broker:v3.4.0

Docker image of plugin metadata
broker. This broker must be run
prior to starting the workspaces
pod, as its job is to provision
required containers, volumes, and
environment variables for the
workspace to be able to start with
the installed plugins enabled.
Note this image is overridden by
the CodeReady Workspaces
Operator by default; changing the
image here will not have an effect
if CodeReady Workspaces is
installed via Operator.

CHE_WORKSPACE_PLUGIN
__BROKER_ARTIFACTS_IM
AGE

quay.io/eclipse/che-plugin-
artifacts-broker:v3.4.0

Docker image of CodeReady
Workspaces plugin artifacts
broker. This broker runs as an init
container on the workspace pod.
Its job is to take in a list of plugin
identifiers (either references to a
plugin in the registry or a link to a
plugin meta.yaml) and ensure that
the correct .vsix and .theia
extenions are downloaded into
the /plugins directory, for each
plugin requested for the
workspace.

CHE_WORKSPACE_PLUGIN
__BROKER_DEFAULT__ME
RGE__PLUGINS

false Configures the default behavior
of the plugin brokers when
provisioning plugins into a
workspace. If set to true, the
plugin brokers will attempt to
merge plugins when possible (i.e.
they run in the same sidecar
image and do not have conflicting
settings). This value is the default
setting used when the devfile
does not specify otherwise, via
the 'mergePlugins' attribute.

CHE_WORKSPACE_PLUGIN
__BROKER_PULL__POLICY

Always Docker image of CodeReady
Workspaces plugin broker app
that resolves workspace tooling
configuration and copies plugins
dependencies to a workspace

CHE_WORKSPACE_PLUGIN
__BROKER_WAIT__TIMEOU
T__MIN

3 Defines the timeout in minutes
that limits the max period of result
waiting for plugin broker.

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

61

CHE_WORKSPACE_PLUGIN
__REGISTRY__URL

https://che-plugin-
registry.prod-
preview.openshift.io/v3

Workspace tooling plugins registry
endpoint. Should be a valid HTTP
URL. Example: http://che-plugin-
registry-eclipse-
che.192.168.65.2.nip.io In case
CodeReady Workspaces plugins
tooling is not needed value 'NULL'
should be used

CHE_WORKSPACE_PLUGIN
__REGISTRY__INTERNAL__
URL

NULL Workspace tooling plugins registry
'internal' endpoint. Should be a
valid HTTP URL. Example:
http://devfile-
registry.che.svc.cluster.local:8080
In case CodeReady Workspaces
plugins tooling is not needed
value 'NULL' should be used

CHE_WORKSPACE_DEVFILE
__REGISTRY__URL

https://che-devfile-
registry.prod-
preview.openshift.io/

Devfile Registry endpoint. Should
be a valid HTTP URL. Example:
http://che-devfile-registry-
eclipse-che.192.168.65.2.nip.io In
case CodeReady Workspaces
plugins tooling is not needed
value 'NULL' should be used

CHE_WORKSPACE_DEVFILE
__REGISTRY__INTERNAL__
URL

NULL Devfile Registry 'internal'
endpoint. Should be a valid HTTP
URL. Example: http://plugin-
registry.che.svc.cluster.local:8080
In case CodeReady Workspaces
plugins tooling is not needed
value 'NULL' should be used

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

62

CHE_WORKSPACE_STORA
GE_AVAILABLE__TYPES

persistent,ephemeral,async The configuration property that
defines available values for
storage types that clients like
Dashboard should propose for
users during workspace
creation/update. Available values:
- 'persistent': Persistent Storage
slow I/O but persistent. -
'ephemeral': Ephemeral Storage
allows for faster I/O but may have
limited storage and is not
persistent. - 'async': Experimental
feature: Asynchronous storage is
combination of Ephemeral and
Persistent storage. Allows for
faster I/O and keep your changes,
will backup on stop and restore
on start workspace. Will work only
if: -
che.infra.kubernetes.pvc.strategy
='common' -
che.limits.user.workspaces.run.cou
nt=1 -
che.infra.kubernetes.namespace.a
llow_user_defined=false -
che.infra.kubernetes.namespace.d
efault contains <username> in
other cases remove 'async' from
the list.

CHE_WORKSPACE_STORA
GE_PREFERRED__TYPE

persistent The configuration property that
defines a default value for
storage type that clients like
Dashboard should propose for
users during workspace
creation/update. The 'async'
value not recommended as
default type since it’s
experimental

CHE_SERVER_SECURE__EX
POSER

jwtproxy Configures in which way secure
servers will be protected with
authentication. Suitable values: -
'default': jwtproxy is configured in
a pass-through mode. So, servers
should authenticate requests
themselves. - 'jwtproxy': jwtproxy
will authenticate requests. So,
servers will receive only
authenticated ones.

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

63

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_TOKEN
_ISSUER

wsmaster JWTProxy issuer string.

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_TOKEN
_TTL

8800h JWTProxy issuer token lifetime.

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_AUTH_
LOADER_PATH

/_app/loader.html Optional authentication page
path to route unsigned requests
to.

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_IMAGE

quay.io/eclipse/che-
jwtproxy:0.10.0

JWTProxy image.

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_MEMOR
Y__REQUEST

15mb JWTProxy memory request.

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_MEMOR
Y__LIMIT

128mb JWTProxy memory limit.

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_CPU__
REQUEST

0.03 JWTProxy CPU request.

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_CPU__L
IMIT

0.5 JWTProxy CPU limit.

Environment Variable Name Default value Description

4.1.2.7. Configuration of major "/websocket" endpoint

Table 4.7. Configuration of major "/websocket" endpoint

Environment Variable Name Default value Description

CHE_CORE_JSONRPC_PRO
CESSOR__MAX__POOL__SI
ZE

50 Maximum size of the JSON RPC
processing pool in case if pool size
would be exceeded message
execution will be rejected

CHE_CORE_JSONRPC_PRO
CESSOR__CORE__POOL__S
IZE

5 Initial json processing pool.
Minimum number of threads that
used to process major JSON RPC
messages.

Red Hat CodeReady Workspaces 2.8 Installation Guide

64

CHE_CORE_JSONRPC_PRO
CESSOR__QUEUE__CAPACI
TY

100000 Configuration of queue used to
process Json RPC messages.

CHE_METRICS_PORT 8087 Port the the http server endpoint
that would be exposed with
Prometheus metrics

Environment Variable Name Default value Description

4.1.2.8. CORS settings

Table 4.8. CORS settings

Environment Variable Name Default value Description

CHE_CORS_ALLOWED__OR
IGINS

* CORS filter on WS Master is
turned off by default. Use
environment variable
'CHE_CORS_ENABLED=true' to
turn it on 'cors.allowed.origins'
indicates which request origins
are allowed

CHE_CORS_ALLOW__CRED
ENTIALS

false 'cors.support.credentials'
indicates if it allows processing of
requests with credentials (in
cookies, headers, TLS client
certificates)

4.1.2.9. Factory defaults

Table 4.9. Factory defaults

Environment Variable Name Default value Description

CHE_FACTORY_DEFAULT__
EDITOR

eclipse/che-theia/latest Editor that will be used for
factories which are created from
remote git repository which
doesn’t contain any CodeReady
Workspaces-specific workspace
descriptor.

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

65

CHE_FACTORY_DEFAULT__
PLUGINS

NULL Plugins that will be used for
factories which are created from
remote git repository which
doesn’t contain any CodeReady
Workspaces-specific workspace
descriptor. Multiple plugins must
be comma-separated, for
example:
pluginFooPublisher/pluginFooNa
me/pluginFooVersion,pluginBarP
ublisher/pluginBarName/pluginBa
rVersion

CHE_FACTORY_DEFAULT__
DEVFILE__FILENAMES

devfile.yaml,.devfile.yaml Devfile filenames to look on
repository-based factories (like
GitHub etc). Factory will try to
locate those files in the order they
enumerated in the property.

Environment Variable Name Default value Description

4.1.2.10. Devfile defaults

Table 4.10. Devfile defaults

Environment Variable Name Default value Description

CHE_WORKSPACE_DEVFILE
_DEFAULT__EDITOR

eclipse/che-theia/latest Default Editor that should be
provisioned into Devfile if there is
no specified Editor Format is
editorPublisher/editorName/
editorVersion value. NULL or
absence of value means that
default editor should not be
provisioned.

Red Hat CodeReady Workspaces 2.8 Installation Guide

66

CHE_WORKSPACE_DEVFILE
_DEFAULT__EDITOR_PLUGI
NS

NULL Default Plugins which should be
provisioned for Default Editor. All
the plugins from this list that are
not explicitly mentioned in the
user-defined devfile will be
provisioned but only when the
default editor is used or if the
user-defined editor is the same as
the default one (even if in
different version). Format is
comma-separated
pluginPublisher/pluginName/
pluginVersion values, and
URLs. For example: eclipse/che-
theia-exec-
plugin/0.0.1,eclipse/che-theia-
terminal-
plugin/0.0.1,https://cdn.pluginregi
stry.com/vi-mode/meta.yaml If
the plugin is a URL, the plugin’s
meta.yaml is retrieved from that
URL.

CHE_WORKSPACE_PROVISI
ON_SECRET_LABELS

app.kubernetes.io/part-
of=che.eclipse.org,app.kuber
netes.io/component=worksp
ace-secret

Defines comma-separated list of
labels for selecting secrets from a
user namespace, which will be
mount into workspace containers
as a files or env variables. Only
secrets that match ALL given
labels will be selected.

CHE_WORKSPACE_DEVFILE
_ASYNC_STORAGE_PLUGIN

eclipse/che-async-pv-
plugin/latest

Plugin is added in case async
storage feature will be enabled in
workspace config and supported
by environment

CHE_INFRA_KUBERNETES_
ASYNC_STORAGE_IMAGE

quay.io/eclipse/che-
workspace-data-sync-
storage:0.0.1

Docker image for the CodeReady
Workspaces async storage

CHE_WORKSPACE_POD_N
ODE__SELECTOR

NULL Optionally configures node
selector for workspace pod.
Format is comma-separated
key=value pairs, e.g:
disktype=ssd,cpu=xlarge,foo=bar

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

67

CHE_WORKSPACE_POD_TO
LERATIONS__JSON

NULL Optionally configures tolerations
for workspace pod. Format is a
string representing a JSON Array
of taint tolerations, or NULL to
disable it. The objects contained
in the array have to follow this
spec. Example:
[{'effect':'NoExecute','key':'aNode
Taint','operator':'Equal','value':'aV
alue'}]

CHE_INFRA_KUBERNETES_
ASYNC_STORAGE_SHUTDO
WN__TIMEOUT__MIN

120 The timeout for the Asynchronous
Storage Pod shutdown after
stopping the last used workspace.
Value less or equal to 0
interpreted as disabling shutdown
ability.

CHE_INFRA_KUBERNETES_
ASYNC_STORAGE_SHUTDO
WN__CHECK__PERIOD__MI
N

30 Defines the period with which the
Asynchronous Storage Pod
stopping ability will be performed
(once in 30 minutes by default)

CHE_INTEGRATION_BITBUC
KET_SERVER__ENDPOINTS

NULL Bitbucket endpoints used for
factory integrations. Comma
separated list of bitbucket server
URLs or NULL if no integration
expected.

CHE_INTEGRATION_GITLAB
_SERVER__ENDPOINTS

NULL# Gitlab endpoints used for factory
integrations. Comma separated
list of Gitlab server URLs or NULL
if no integration expected.

Environment Variable Name Default value Description

4.1.2.11. Che system

Table 4.11. Che system

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

68

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.20/#toleration-v1-core

CHE_SYSTEM_SUPER__PRIV
ILEGED__MODE

false System Super Privileged Mode.
Grants users with the
manageSystem permission
additional permissions for
getByKey, getByNameSpace,
stopWorkspaces, and
getResourcesInformation. These
are not given to admins by default
and these permissions allow
admins gain visibility to any
workspace along with naming
themselves with admin privileges
to those workspaces.

CHE_SYSTEM_ADMIN__NAM
E

admin Grant system permission for
'che.admin.name' user. If the user
already exists it’ll happen on
component startup, if not - during
the first login when user is
persisted in the database.

Environment Variable Name Default value Description

4.1.2.12. Workspace limits

Table 4.12. Workspace limits

Environment Variable Name Default value Description

CHE_LIMITS_WORKSPACE_
ENV_RAM

16gb Workspaces are the fundamental
runtime for users when doing
development. You can set
parameters that limit how
workspaces are created and the
resources that are consumed.
The maximum amount of RAM
that a user can allocate to a
workspace when they create a
new workspace. The RAM slider is
adjusted to this maximum value.

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

69

CHE_LIMITS_WORKSPACE_I
DLE_TIMEOUT

1800000 The length of time that a user is
idle with their workspace when
the system will suspend the
workspace and then stopping it.
Idleness is the length of time that
the user has not interacted with
the workspace, meaning that one
of our agents has not received
interaction. Leaving a browser
window open counts toward
idleness.

CHE_LIMITS_WORKSPACE_
RUN_TIMEOUT

0 The length of time in milliseconds
that a workspace will run,
regardless of activity, before the
system will suspend it. Set this
property if you want to
automatically stop workspaces
after a period of time. The default
is zero, meaning that there is no
run timeout.

Environment Variable Name Default value Description

4.1.2.13. Users workspace limits

Table 4.13. Users workspace limits

Environment Variable Name Default value Description

CHE_LIMITS_USER_WORKS
PACES_RAM

-1 The total amount of RAM that a
single user is allowed to allocate
to running workspaces. A user can
allocate this RAM to a single
workspace or spread it across
multiple workspaces.

CHE_LIMITS_USER_WORKS
PACES_COUNT

-1 The maximum number of
workspaces that a user is allowed
to create. The user will be
presented with an error message
if they try to create additional
workspaces. This applies to the
total number of both running and
stopped workspaces.

Red Hat CodeReady Workspaces 2.8 Installation Guide

70

CHE_LIMITS_USER_WORKS
PACES_RUN_COUNT

1 The maximum number of running
workspaces that a single user is
allowed to have. If the user has
reached this threshold and they
try to start an additional
workspace, they will be prompted
with an error message. The user
will need to stop a running
workspace to activate another.

Environment Variable Name Default value Description

4.1.2.14. Organizations workspace limits

Table 4.14. Organizations workspace limits

Environment Variable Name Default value Description

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_RAM

-1 The total amount of RAM that a
single organization (team) is
allowed to allocate to running
workspaces. An organization
owner can allocate this RAM
however they see fit across the
team’s workspaces.

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_COUNT

-1 The maximum number of
workspaces that a organization is
allowed to own. The organization
will be presented an error
message if they try to create
additional workspaces. This
applies to the total number of
both running and stopped
workspaces.

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_RUN_CO
UNT

-1 The maximum number of running
workspaces that a single
organization is allowed. If the
organization has reached this
threshold and they try to start an
additional workspace, they will be
prompted with an error message.
The organization will need to stop
a running workspace to activate
another.

CHE_MAIL_FROM__EMAIL__
ADDRESS

che@noreply.com Address that will be used as from
email for email notifications

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

71

4.1.2.15. Organizations notifications settings

Table 4.15. Organizations notifications settings

Environment Variable Name Default value Description

CHE_ORGANIZATION_EMAI
L_MEMBER__ADDED__SUBJ
ECT

You'vebeen added to a Che
Organization

You’ve been added to a
CodeReady Workspaces
Organization organization
notification subject.

CHE_ORGANIZATION_EMAI
L_MEMBER__ADDED__TEM
PLATE

st-html-
templates/user_added_to_or
ganization

You’ve been added to a
CodeReady Workspaces
Organization organization
notification template.

CHE_ORGANIZATION_EMAI
L_MEMBER__REMOVED__S
UBJECT

You'vebeen removed from a
Che Organization

You’ve been removed from a
CodeReady Workspaces
Organization organization
notification subject.

CHE_ORGANIZATION_EMAI
L_MEMBER__REMOVED__T
EMPLATE

st-html-
templates/user_removed_fro
m_organization

You’ve been removed from a
CodeReady Workspaces
Organization organization
notification template.

CHE_ORGANIZATION_EMAI
L_ORG__REMOVED__SUBJ
ECT

CheOrganization deleted CodeReady Workspaces
Organization deleted
organization notification subject.

CHE_ORGANIZATION_EMAI
L_ORG__REMOVED__TEMP
LATE

st-html-
templates/organization_delet
ed

CodeReady Workspaces
Organization deleted
organization notification
template.

CHE_ORGANIZATION_EMAI
L_ORG__RENAMED__SUBJ
ECT

CheOrganization renamed CodeReady Workspaces
Organization renamed
organization notification subject.

CHE_ORGANIZATION_EMAI
L_ORG__RENAMED__TEMP
LATE

st-html-
templates/organization_rena
med

CodeReady Workspaces
Organization renamed
organization notification
template.

4.1.2.16. Multi-user-specific OpenShift infrastructure configuration

Table 4.16. Multi-user-specific OpenShift infrastructure configuration

Red Hat CodeReady Workspaces 2.8 Installation Guide

72

Environment Variable Name Default value Description

CHE_INFRA_OPENSHIFT_O
AUTH__IDENTITY__PROVID
ER

NULL Alias of the Openshift identity
provider registered in Keycloak,
that should be used to create
workspace OpenShift resources in
Openshift namespaces owned by
the current CodeReady
Workspaces user. Should be set
to NULL if
che.infra.openshift.project is
set to a non-empty value. For
more information see the
following documentation:
https://www.keycloak.org/docs/la
test/server_admin/index.html#op
enshift-4

4.1.2.17. Keycloak configuration

Table 4.17. Keycloak configuration

Environment Variable Name Default value Description

CHE_KEYCLOAK_AUTH__S
ERVER__URL

http://${CHE_HOST}:5050/au
th

Url to keycloak identity provider
server Can be set to NULL only if
che.keycloak.oidcProvider is
used

CHE_KEYCLOAK_AUTH__IN
TERNAL__SERVER__URL

NULL Internal network service Url to
keycloak identity provider server

CHE_KEYCLOAK_REALM che Keycloak realm is used to
authenticate users Can be set to
NULL only if
che.keycloak.oidcProvider is
used

CHE_KEYCLOAK_CLIENT__I
D

che-public Keycloak client id in
che.keycloak.realm that is used by
dashboard, ide and cli to
authenticate users

CHE_KEYCLOAK_OSO_END
POINT

NULL URL to access OSO oauth tokens

CHE_KEYCLOAK_GITHUB_E
NDPOINT

NULL URL to access Github oauth
tokens

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

73

CHE_KEYCLOAK_ALLOWED
__CLOCK__SKEW__SEC

3 The number of seconds to
tolerate for clock skew when
verifying exp or nbf claims.

CHE_KEYCLOAK_USE__NO
NCE

true Use the OIDC optional nonce
feature to increase security.

CHE_KEYCLOAK_JS__ADAP
TER__URL

NULL URL to the Keycloak Javascript
adapter we want to use. if set to
NULL, then the default used
value is
${che.keycloak.auth_server_
url}/js/keycloak.js, or <che-
server>/api/keycloak/OIDCKe
ycloak.js if an alternate
oidc_provider is used

CHE_KEYCLOAK_OIDC__PR
OVIDER

NULL Base URL of an alternate OIDC
provider that provides a discovery
endpoint as detailed in the
following specification
https://openid.net/specs/openid
-connect-discovery-
1_0.html#ProviderConfig

CHE_KEYCLOAK_USE__FIX
ED__REDIRECT__URLS

false Set to true when using an
alternate OIDC provider that only
supports fixed redirect Urls This
property is ignored when
che.keycloak.oidc_provider
is NULL

CHE_KEYCLOAK_USERNAM
E__CLAIM

NULL Username claim to be used as
user display name when parsing
JWT token if not defined the
fallback value is
'preferred_username'

Environment Variable Name Default value Description

Red Hat CodeReady Workspaces 2.8 Installation Guide

74

CHE_OAUTH_SERVICE__MO
DE

delegated Configuration of OAuth
Authentication Service that can
be used in 'embedded' or
'delegated' mode. If set to
'embedded', then the service work
as a wrapper to CodeReady
Workspaces’s
OAuthAuthenticator (as in Single
User mode). If set to 'delegated',
then the service will use Keycloak
IdentityProvider mechanism.
Runtime Exception wii be thrown,
in case if this property is not set
properly.

CHE_KEYCLOAK_CASCADE
__USER__REMOVAL__ENAB
LED

false Configuration for enabling
removing user from Keycloak
server on removing user from
CodeReady Workspaces
database. By default it’s disabled.
Can be enabled in some special
cases when deleting a user in
CodeReady Workspaces database
should execute removing related-
user from Keycloak. For correct
work need to set admin username
${che.keycloak.admin_username}
and password
${che.keycloak.admin_password}.

CHE_KEYCLOAK_ADMIN__U
SERNAME

NULL Keycloak admin username. Will be
used for deleting user from
Keycloak on removing user from
CodeReady Workspaces
database. Make sense only in case
${che.keycloak.cascade_user_rem
oval_enabled} set to 'true'

CHE_KEYCLOAK_ADMIN__P
ASSWORD

NULL Keycloak admin password. Will be
used for deleting user from
Keycloak on removing user from
CodeReady Workspaces
database. Make sense only in case
${che.keycloak.cascade_user_rem
oval_enabled} set to 'true'

Environment Variable Name Default value Description

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

75

CHE_KEYCLOAK_USERNAM
E_REPLACEMENT__PATTER
NS

NULL User name adjustment
configuration. CodeReady
Workspaces needs to use the
usernames as part of K8s object
names and labels and therefore
has stricter requirements on their
format than the identity providers
usually allow (it needs them to be
DNS-compliant). The adjustment
is represented by comma-
separated key-value pairs. These
are sequentially used as
arguments to the
String.replaceAll function on the
original username. The keys are
regular expressions, values are
replacement strings that replace
the characters in the username
that match the regular expression.
The modified username will only
be stored in the CodeReady
Workspaces database and will not
be advertised back to the identity
provider. It is recommended to
use DNS-compliant characters as
replacement strings (values in the
key-value pairs). Example: \\=-
,@=-at- changes \ to - and @ to -
at- so the username
org\user@com becomes org-
user-at-com.

Environment Variable Name Default value Description

Additional resources

Configuring Che to use an external Keycloak installation

4.2. CONFIGURING PROJECT STRATEGIES

The OpenShift project where a new workspace Pod is deployed depends on the CodeReady
Workspaces server configuration. By default, every workspace is deployed in a distinct OpenShift
project, but the user can configure the CodeReady Workspaces server to deploy all workspaces in one
specific OpenShift project. The name of a OpenShift project must be provided as a CodeReady
Workspaces server configuration property and cannot be changed at runtime.

With Operator installer, OpenShift project strategies are configured using
server.workspaceNamespaceDefault property.

Operator CheCluster CR patch

apiVersion: org.eclipse.che/v1
kind: CheCluster

Red Hat CodeReady Workspaces 2.8 Installation Guide

76

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.8/html-single/administration_guide/index#configuring-che-to-use-external-keycloak_crw

1

metadata:
 name: <che-cluster-name>
spec:
 server:
 workspaceNamespaceDefault: <workspace-namespace> 1

- CodeReady Workspaces workspace namespace configuration

NOTE

The underlying environment variable that CodeReady Workspaces server uses is
CHE_INFRA_KUBERNETES_NAMESPACE_DEFAULT.

WARNING

CHE_INFRA_KUBERNETES_NAMESPACE and
CHE_INFRA_OPENSHIFT_PROJECT are legacy variables. Keep these variables
unset for a new installations. Changing these variables during an update can lead to
data loss.

WARNING

By default, only one workspace in the same project can be running at one time. See
Section 4.5, “Running more than one workspace at a time” .

WARNING

Kubernetes limits the length of a namespace name to 63 characters (this includes
the evaluated placeholders). Additionally, the names (after placeholder evaluation)
must be valid DNS names.

On OpenShift with multi-host server exposure strategy, the length is further limited
to 49 characters.

Be aware that the <userid> placeholder is evaluated into a 36 character long UUID
string.







CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

77

WARNING

For strategies where creating new project is needed, make sure that che
ServiceAccount has enough permissions to do so. With OpenShift OAuth, the
authenticated User must have privileges to create new project.

4.2.1. One project per user strategy

The strategy isolates each user in their own project.

To use the strategy, set the CodeReady Workspaces workspace namespace configuration value to
contain one or more user identifiers. Currently supported identifiers are <username> and <userid>.

Example 4.2. One project per user

To assign project names composed of a `codeready-ws` prefix and individual usernames
(codeready-ws-user1, codeready-ws-user2), set:

Operator installer (CheCluster CustomResource)

...
spec:
 server:
 workspaceNamespaceDefault: codeready-ws-<username>
...

4.2.2. One project per workspace strategy

The strategy creates a new project for each new workspace.

To use the strategy, set the CodeReady Workspaces workspace namespace configuration value to
contain the <workspaceID> identifier. It can be used alone or combined with other identifiers or any
string.

Example 4.3. One project per workspace

To assign project names composed of a `codeready-ws` prefix and workspace id, set:

Operator installer (CheCluster CustomResource)

...
spec:
 server:
 workspaceNamespaceDefault: codeready-ws-<workspaceID>
...

4.2.3. One project for all workspaces strategy



Red Hat CodeReady Workspaces 2.8 Installation Guide

78

1

The strategy uses one predefined project for all workspaces.

To use the strategy, set the CodeReady Workspaces workspace namespace configuration value to the
name of the desired project to use.

Example 4.4. One project for all workspaces

To have all workspaces created in `codeready-ws` project, set:

Operator installer (CheCluster CustomResource)

...
spec:
 server:
 workspaceNamespaceDefault: codeready-ws
...

4.2.4. Allowing user-defined workspace projects

CodeReady Workspaces server can be configured to honor the user selection of a project when a
workspace is created. This feature is disabled by default. To allow user-defined workspace projects:

For Operator deployments, set the following field in the CheCluster Custom Resource:

...
server:
 allowUserDefinedWorkspaceNamespaces: true
...

4.2.5. Handling incompatible usernames or user IDs

CodeReady Workspaces server automatically checks usernames and IDs for compatibility with
Kubernetes objects naming convention before creating a project from a template. Incompatible
username or IDs are reduced to the nearest valid name by replacing groups of unsuitable symbols with
the - symbol. To avoid collisions, a random 6-symbol suffix is added and the result is stored in
preferences for reuse.

4.2.6. Pre-creating projects for users

To pre-create projects for users, use project labels and annotations. Such namespace is used in
preference to CHE_INFRA_KUBERNETES_NAMESPACE_DEFAULT variable.

metadata:
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspaces-namespace
 annotations:
 che.eclipse.org/username: <username> 1

target user’s username

To configure the labels, set the CHE_INFRA_KUBERNETES_NAMESPACE_LABELS to desired

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

79

1
2

To configure the labels, set the CHE_INFRA_KUBERNETES_NAMESPACE_LABELS to desired
labels. To configure the annotations, set the
CHE_INFRA_KUBERNETES_NAMESPACE_ANNOTATIONS to desired annotations. See the
CodeReady Workspaces server component system properties reference for more details.

WARNING

Avoid creating multiple namespaces for single user. It may lead to undefined
behavior.

IMPORTANT

On OpenShift with OAuth, target user must have admin role privileges in target
namespace:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: admin
 namespace: <namespace> 1
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: <username> 2

pre-created namespace
target user

On Kubernetes, che ServiceAccount must have a cluster-wide list and get namespaces
permissions as well as an admin role in target namespace.

4.2.7. Labeling the namespaces

CodeReady Workspaces updates the workspace’s namespace on workspace startup by adding the
labels defined in CHE_INFRA_KUBERNETES_NAMESPACE_LABELS. To do so, che ServiceAccout
has to have the following cluster-wide permissions to update and get namespaces:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: <cluster-role-name> 1
rules:
 - apiGroups:
 - ""
 resources:



Red Hat CodeReady Workspaces 2.8 Installation Guide

80

1

1

2

3

4

 - namespaces
 verbs:
 - update
 - get

name of the cluster role

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: <cluster-role-binding-name> 1
subjects:
 - kind: ServiceAccount
 name: <service-account-name> 2
 namespace: <service-accout-namespace> 3
roleRef:
 kind: ClusterRole
 name: <cluster-role-name> 4
 apiGroup: rbac.authorization.k8s.io

name of the cluster role binding

name of the che service account

CodeReady Workspaces installation namespace

name of the cluster role created in previous step

NOTE

CodeReady Workspaces does not fail to start a workspace for lack of permissions, it only
logs the warning. If you see the warnings in CodeReady Workspaces logs, consider
disabling the feature with setting
CHE_INFRA_KUBERNETES_NAMESPACE_LABEL=false.

4.3. CONFIGURING STORAGE STRATEGIES

This section describes how to configure storage strategies for CodeReady Workspaces workspaces.

4.3.1. Storage strategies for codeready-workspaces workspaces

Workspace Pods use Persistent Volume Claims (PVCs), which are bound to the physical Persistent
Volumes (PVs) with ReadWriteOnce access mode. It is possible to configure how the CodeReady
Workspaces server uses PVCs for workspaces. The individual methods for this configuration are called
PVC strategies:

strategy details pros cons

unique One PVC per workspace
volume or user-defined
PVC

Storage isolation An undefined number of
PVs is required

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

81

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

per-workspace
(default)

One PVC for one
workspace

Easier to manage and
control storage
compared to unique
strategy

PV count still is not
known and depends on
workspaces number

common One PVC for all
workspaces in one
OpenShift namespace

Easy to manage and
control storage

If PV does not support
ReadWriteMany (RWX)
access mode then
workspaces must be in a
separate OpenShift
namespaces

Or there must not be
more than 1 running
workspace per
namespace at the same
time

strategy details pros cons

Red Hat CodeReady Workspaces uses the common PVC strategy in combination with the "one project
per user" project strategy when all CodeReady Workspaces workspaces operate in the user’s project,
sharing one PVC.

4.3.1.1. The common PVC strategy

All workspaces inside a OpenShift project use the same Persistent Volume Claim (PVC) as the default
data storage when storing data such as the following in their declared volumes:

projects

workspace logs

additional Volumes defined by a use

When the common PVC strategy is in use, user-defined PVCs are ignored and volumes that relate to
these user-defined PVCs are replaced with a volume that refers to the common PVC. In this strategy, all
CodeReady Workspaces workspaces use the same PVC. When the user runs one workspace, it only
binds to one node in the cluster at a time.

The corresponding containers volume mounts link to a common volume, and sub-paths are prefixed with
<workspace-ID> or <original-PVC-name>. For more details, see Section 4.3.1.4, “How subpaths are
used in PVCs”.

The CodeReady Workspaces Volume name is identical to the name of the user-defined PVC. It means
that if a machine is configured to use a CodeReady Workspaces volume with the same name as the
user-defined PVC has, they will use the same shared folder in the common PVC.

When a workspace is deleted, a corresponding subdirectory (${ws-id}) is deleted in the PV directory.

Restrictions on using the common PVC strategy

When the common strategy is used and a workspace PVC access mode is ReadWriteOnce (RWO), only
one node can simultaneously use the PVC.

Red Hat CodeReady Workspaces 2.8 Installation Guide

82

If there are several nodes, you can use the common strategy, but:

The workspace PVC access mode must be reconfigured to ReadWriteMany (RWM), so multiple
nodes can use this PVC simultaneously.

Only one workspace in the same project may be running. See Section 4.5, “Running more than
one workspace at a time”.

The common PVC strategy is not suitable for large multi-node clusters. Therefore, it is best to use it in
single-node clusters. However, in combination with the per-workspace project strategy, the common
PVC strategy is usable for clusters with not more than 75 nodes. The PVC used with this strategy must
be large enough to accommodate all projects to prevent a situation in which one project depletes the
resources of others.

4.3.1.2. The per-workspace PVC strategy

The per-workspace strategy is similar to the common PVC strategy. The only difference is that all
workspace Volumes, but not all the workspaces, use the same PVC as the default data storage for:

projects

workspace logs

additional Volumes defined by a user

With this strategy, CodeReady Workspaces keeps its workspace data in assigned PVs that are allocated
by a single PVC.

The per-workspace PVC strategy is the most universal strategy out of the PVC strategies available and
acts as a proper option for large multi-node clusters with a higher amount of users. Using the per-
workspace PVC strategy, users can run multiple workspaces simultaneously, results in more PVCs
being created.

4.3.1.3. The unique PVC strategy

When using the `unique `PVC strategy, every CodeReady Workspaces Volume of a workspace has its
own PVC. This means that workspace PVCs are:

Created when a workspace starts for the first time. Deleted when a corresponding workspace is deleted.

User-defined PVCs are created with the following specifics:

They are provisioned with generated names to prevent naming conflicts with other PVCs in a
project.

Subpaths of the mounted Physical persistent volumes that reference user-defined PVCs are
prefixed with <workspace-ID> or <PVC-name>. This ensures that the same PV data structure
is configure with different PVC strategies. For details, see Section 4.3.1.4, “How subpaths are
used in PVCs”.

The unique PVC strategy is suitable for larger multi-node clusters with a lesser amount of users. Since
this strategy operates with separate PVCs for each volume in a workspace, vastly more PVCs are
created.

4.3.1.4. How subpaths are used in PVCs

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

83

Subpaths illustrate the folder hierarchy in the Persistent Volumes (PV).

/pv0001
 /workspaceID1
 /workspaceID2
 /workspaceIDn
 /che-logs
 /projects
 /<volume1>
 /<volume2>
 /<User-defined PVC name 1 | volume 3>
 ...

When a user defines volumes for components in the devfile, all components that define the volume of
the same name will be backed by the same directory in the PV as <PV-name>, <workspace-ID>, or
`<original-PVC-name>. Each component can have this location mounted on a different path in its
containers.

Example

Using the common PVC strategy, user-defined PVCs are replaced with subpaths on the common PVC.
When the user references a volume as my-volume, it is mounted in the common-pvc with the
/workspace-id/my-volume subpath.

4.3.2. Configuring a CodeReady Workspaces workspace with a persistent volume
strategy

A persistent volume (PV) acts as a virtual storage instance that adds a volume to a cluster.

A persistent volume claim (PVC) is a request to provision persistent storage of a specific type and
configuration, available in the following CodeReady Workspaces storage configuration strategies:

Common

Per-workspace

Unique

The mounted PVC is displayed as a folder in a container file system.

4.3.2.1. Configuring a PVC strategy using the Operator

The following section describes how to configure workspace persistent volume claim (PVC) strategies
of a CodeReady Workspaces server using the Operator.

WARNING

It is not recommended to reconfigure PVC strategies on an existing CodeReady
Workspaces cluster with existing workspaces. Doing so causes data loss.

Operators are software extensions to OpenShift that use Custom Resources to manage applications



Red Hat CodeReady Workspaces 2.8 Installation Guide

84

Operators are software extensions to OpenShift that use Custom Resources to manage applications
and their components.

When deploying CodeReady Workspaces using the Operator, configure the intended strategy by
modifying the spec.storage.pvcStrategy property of the CheCluster Custom Resource object YAML
file.

Prerequisites

The oc tool is available.

Procedure

The following procedure steps are available for OpenShift command-line tool, '`oc’.

To do changes to the CheCluster YAML file, choose one of the following:

Create a new cluster by executing the oc apply command. For example:

$ oc apply -f <my-cluster.yaml>

Update the YAML file properties of an already running cluster by executing the oc patch
command. For example:

$ oc patch checluster codeready-workspaces --type=json \
 -p '[{"op": "replace", "path": "/spec/storage/pvcStrategy", "value": "per-workspace"}]'

Depending on the strategy used, replace the per-workspace option in the above example with unique
or common.

4.4. CONFIGURING STORAGE TYPES

Red Hat CodeReady Workspaces supports three types of storage with different capabilities:

Persistent

Ephemeral

Asynchronous

4.4.1. Persistent storage

Persistent storage allows storing user changes directly in the mounted Persistent Volume. User changes
are kept safe by the OpenShift infrastructure (storage backend) at the cost of slow I/O, especially with
many small files. For example, Node.js projects tend to have many dependencies and the
node_modules/ directory is filled with thousands of small files.

NOTE

I/O speeds vary depending on the Storage Classes configured in the environment.

Persistent storage is the default mode for new workspaces. To make this setting visible in workspace
configuration, add the following to the devfile:

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

85

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-what-operators-are.html
https://docs.openshift.com/container-platform/latest/operators/understanding/crds/crd-managing-resources-from-crds.html
https://kubernetes.io/docs/concepts/storage/storage-classes/

4.4.2. Ephemeral storage

Ephemeral storage saves files to the emptyDir volume. This volume is initially empty. When a Pod is
removed from a node, the data in the emptyDir volume is deleted forever. This means that all changes
are lost on workspace stop or restart.

IMPORTANT

To save the changes, commit and push to the remote before stopping an ephemeral
workspace.

Ephemeral mode provides faster I/O than persistent storage. To enable this storage type, add the
following to workspace configuration:

Table 4.18. Comparison between I/O of ephemeral (emptyDir) and persistent modes on AWS EBS

Command Ephemeral Persistent

Clone Red Hat CodeReady
Workspaces

0 m 19 s 1 m 26 s

Generate 1000 random files 1 m 12 s 44 m 53 s

4.4.3. Asynchronous storage

NOTE

Asynchronous storage is an experimental feature.

Asynchronous storage is a combination of persistent and ephemeral modes. The initial workspace
container mounts the emptyDir volume. Then a backup is performed on workspace stop, and changes
are restored on workspace start. Asynchronous storage provides fast I/O (similar to ephemeral mode),
and workspace project changes are persisted.

Synchronization is performed by the rsync tool using the SSH protocol. When a workspace is configured
with asynchronous storage, the workspace-data-sync plug-in is automatically added to the workspace
configuration. The plug-in runs the rsync command on workspace start to restore changes. When a
workspace is stopped, it sends changes to the permanent storage.

For relatively small projects, the restore procedure is fast, and project source files are immediately
available after Che-Theia is initialized. In case rsync takes longer, the synchronization process is shown
in the Che-Theia status-bar area. (Extension in Che-Theia repository).

attributes:
 persistVolumes: 'true'

attributes:
 persistVolumes: 'false'

Red Hat CodeReady Workspaces 2.8 Installation Guide

86

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/storage-classes/#aws-ebs
https://rsync.samba.org/
https://www.openssh.com/
https://github.com/che-incubator/workspace-data-sync/
https://github.com/eclipse/che-theia/tree/master/extensions/eclipse-che-theia-file-sync-tracker

NOTE

Asynchronous mode has the following limitations:

Supports only the common PVC strategy

Supports only the per-user project strategy

Only one workspace can be running at a time

To configure asynchronous storage for a workspace, add the following to workspace configuration:

4.4.4. Configuring storage type defaults for CodeReady Workspaces dashboard

Use the following two che.properties to configure the default client values in CodeReady Workspaces
dashboard:

che.workspace.storage.available_types

Defines available values for storage types that clients like the dashboard propose for users during
workspace creation or update. Available values: persistent, ephemeral, and async. Separate
multiple values by commas. For example:

che.workspace.storage.available_types=persistent,ephemeral,async

che.workspace.storage.preferred_type

Defines the default value for storage type that clients like the dashboard propose for users during
workspace creation. The async value is not recommended as the default type because it is
experimental. For example:

che.workspace.storage.preferred_type=persistent

Then users are able to configure Storage Type on the Create Custom Workspace tab on CodeReady
Workspaces dashboard during workspace creation. Storage type for existing workspace can be
configured in on Overview tab of the workspace details.

4.4.5. Idling asynchronous storage Pods

CodeReady Workspaces can shut down the Asynchronous Storage Pod when not used for a configured
period of time.

attributes:
 asyncPersist: 'true'
 persistVolumes: 'false'

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

87

Use these configuration properties to adjust the behavior:

che.infra.kubernetes.async.storage.shutdown_timeout_min

Defines the idle time after which the asynchronous storage Pod is stopped following the stopping of
the last active workspace. The default value is 120 minutes.

che.infra.kubernetes.async.storage.shutdown_check_period_min

Defines the frequency with which the asynchronous storage Pod is checked for idleness. The default
value is 30 minutes.

4.5. RUNNING MORE THAN ONE WORKSPACE AT A TIME

This procedure describes how to run more than one workspace simultaneously. This makes it possible
for multiple workspace contexts per user to run in parallel.

Prerequisites

The '`oc’ tool is available.

An instance of CodeReady Workspaces running in OpenShift.

NOTE

The following commands use the default OpenShift project, openshift-
workspaces, as a user’s example for the -n option.

Procedure

1. Set the per-workspace or unique PVC strategy if the underlying storage backend does not
support or not configured to use the ReadWriteMany access mode. See Section 4.3,
“Configuring storage strategies”.

IMPORTANT

The default common PVC strategy, which uses a single PVC per user, supports
running multiple workspaces simultaneously only if the persistent volumes on the
cluster are configured to use the ReadWriteMany access mode. That way, any of
the user’s concurrent workspaces can read from and write to the common PVC.
In some cases, configuring ReadWriteMany is not possible due to the storage
limitations, for example, EBS only supports ReadWriteOnce access mode.

2. Change the default limit of 1 to -1 to allow an unlimited number of concurrent workspaces, or to
the precise value, for example, 10 to allow running 10 concurrent workspaces per user
simultaneously:

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type merge \
 -p '{ "spec": { "server": {"customCheProperties":
{"CHE_LIMITS_USER_WORKSPACES_RUN_COUNT": "-1"} } }}'

4.6. CONFIGURING WORKSPACE EXPOSURE STRATEGIES

The following section describes how to configure workspace exposure strategies of a CodeReady
Workspaces server and ensure that applications running inside are not vulnerable to outside attacks.

Red Hat CodeReady Workspaces 2.8 Installation Guide

88

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

1

4.6.1. Configuring workspace exposure strategies using an Operator

Operators are software extensions to OpenShift that use Custom Resources to manage applications
and their components.

Prerequisites

The oc tool is available.

Procedure

When deploying CodeReady Workspaces using the Operator, configure the intended strategy by
modifying the spec.server.serverExposureStrategy property of the CheCluster Custom Resource
object YAML file.

The supported values for spec.server.serverExposureStrategy are:

multi-host

single-host

See Section 4.6.2, “Workspace exposure strategies” for more detail about individual strategies.

To activate changes done to CheCluster YAML file, do one of the following:

Create a new cluster by executing the crwctl command with applying a patch. For example:

$ crwctl server:deploy --installer=operator --platform=<platform> \
 --che-operator-cr-patch-yaml=patch.yaml

NOTE

For a list of available OpenShift deployment platforms, use crwctl server:deploy
--platform --help.

Use the following patch.yaml file:

- used workspace exposure strategy

Update the YAML file properties of an already running cluster by executing the oc patch
command. For example:

$ oc patch checluster codeready-workspaces --type=json \
 -p '[{"op": "replace",
 "path": "/spec/server/serverExposureStrategy",

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 name: eclipse-che
spec:
 server:
 serverExposureStrategy: '<exposure-strategy>' 1

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

89

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-what-operators-are.html
https://docs.openshift.com/container-platform/latest/operators/understanding/crds/crd-managing-resources-from-crds.html

1

 "value": "<exposure-strategy>"}]' \ 1
 -n openshift-workspaces

- used workspace exposure strategy

4.6.2. Workspace exposure strategies

Specific components of workspaces need to be made accessible outside of the OpenShift cluster. This
is typically the user interface of the workspace’s IDE, but it can also be the web UI of the application
being developed. This enables developers to interact with the application during the development
process.

The supported way of making workspace components available to the users is referred to as a strategy.
This strategy defines whether new subdomains are created for the workspace components and what
hosts these components are available on.

CodeReady Workspaces supports:

multi-host strategy

single-host strategy

with the gateway subtype

4.6.2.1. Multi-host strategy

With multi-host strategy, each workspace component is assigned a new subdomain of the main domain
configured for the CodeReady Workspaces server. This is the default strategy.

This strategy is the easiest to understand from the perspective of component deployment because any
paths present in the URL to the component are received as they are by the component.

On a CodeReady Workspaces server secured using the Transport Layer Security (TLS) protocol,
creating new subdomains for each component of each workspace requires a wildcard certificate to be
available for all such subdomains for the CodeReady Workspaces deployment to be practical.

4.6.2.2. Single-host strategy

With single-host strategy, all workspaces are deployed to sub-paths of the main CodeReady
Workspaces server domain.

This is convenient for TLS-secured CodeReady Workspaces servers because it is sufficient to have a
single certificate for the CodeReady Workspaces server, which will cover all the workspace component
deployments as well.

Single-host strategy have two subtypes with different implementation methods. First subtype is named
native. This strategy is available and default on Kubernetes, but not on OpenShift, since it uses
Ingresses for servers exposing. The second subtype named gateway, works both on OpenShift, and
uses a special Pod with reverse-proxy running inside to route requests.

Red Hat CodeReady Workspaces 2.8 Installation Guide

90

WARNING

With gateway single-host strategy, cluster network policies has to be configured so
that workspace’s services are reachable from reverse-proxy Pod (typically in
CodeReady Workspaces project). These typically lives in different project.

To define how to expose the endpoints specified in the devfile, define the
CHE_INFRA_KUBERNETES_SINGLEHOST_WORKSPACE_DEVFILE__ENDPOINT__EXPOSURE
environment variable in the CodeReady Workspaces instance. This environment variable is only
effective with the single-host server strategy and is applicable to all workspaces of all users.

4.6.2.2.1. devfile endpoints: single-host

CHE_INFRA_KUBERNETES_SINGLEHOST_WORKSPACE_DEVFILE__ENDPOINT__EXPOSURE:
'single-host'

This single-host configuration exposes the endpoints on subpaths, for example: https://<che-
host>/serverihzmuqqc/go-cli-server-8080. This limits the exposed components and user applications.
Any absolute URL generated on the server side that points back to the server does not work. This is
because the server is hidden behind a path-rewriting reverse proxy that hides the unique URL path
prefix from the component or user application.

For example, when the user accesses the hypothetical \https://codeready-
<openshift_deployment_name>.<domain_name>/component-prefix-djh3d/app/index.php URL, the
application sees the request coming to https://internal-host/app/index.php. If the application used the
host in the URL that it generates in its UI, it would not work because the internal host is different from
the externally visible host. However, if the application used an absolute path as the URL (for the example
above, this would be /app/index.php), such URL would still not work. This is because on the outside,
such URL does not point to the application, because it is missing the component-specific prefix.

Therefore, only applications that use relative URLs in their UI work with the single-host workspace
exposure strategy.

4.6.2.2.2. devfile endpoints: multi-host

CHE_INFRA_KUBERNETES_SINGLEHOST_WORKSPACE_DEVFILE__ENDPOINT__EXPOSURE:
'multi-host'

This single-host configuration exposes the endpoints on subdomains, for example:
http://serverihzmuqqc-go-cli-server-8080.<che-host>. These endpoints are exposed on an unsecured
HTTP port. A dedicated Ingress or Route is used for such endpoints, even with gateway single-host
setup.

This configuration limits the usability of previews shown directly in the editor page when CodeReady
Workspaces is configured with TLS. Since https pages allow communication only with secured
endpoints, users must open their application previews in another browser tab.

4.6.3. Security considerations

This section explains the security impact of using different CodeReady Workspaces workspace exposure
strategies.



CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

91

All the security-related considerations in this section are only applicable to CodeReady Workspaces in
multiuser mode. The single user mode does not impose any security restrictions.

4.6.3.1. JSON web token (JWT) proxy

All CodeReady Workspaces plug-ins, editors, and components can require authentication of the user
accessing them. This authentication is performed using a JSON web token (JWT) proxy that functions
as a reverse proxy of the corresponding component, based on its configuration, and performs the
authentication on behalf of the component.

The authentication uses a redirect to a special page on the CodeReady Workspaces server that
propagates the workspace and user-specific authentication token (workspace access token) back to
the originally requested page.

The JWT proxy accepts the workspace access token from the following places in the incoming requests,
in the following order:

1. The token query parameter

2. The Authorization header in the bearer-token format

3. The access_token cookie

4.6.3.2. Secured plug-ins and editors

CodeReady Workspaces users do not need to secure workspace plug-ins and workspace editors (such
as Che-Theia). This is because the JWT proxy authentication is indiscernible to the user and is governed
by the plug-in or editor definition in their meta.yaml descriptors.

4.6.3.3. Secured container-image components

Container-image components can define custom endpoints for which the devfile author can require
CodeReady Workspaces-provided authentication, if needed. This authentication is configured using two
optional attributes of the endpoint:

secure - A boolean attribute that instructs the CodeReady Workspaces server to put the JWT
proxy in front of the endpoint. Such endpoints have to be provided with the workspace access
token in one of the several ways explained in Section 4.6.3.1, “JSON web token (JWT) proxy” .
The default value of the attribute is false.

cookiesAuthEnabled - A boolean attribute that instructs the CodeReady Workspaces server
to automatically redirect the unauthenticated requests for current user authentication as
described in Section 4.6.3.1, “JSON web token (JWT) proxy” . Setting this attribute to true has
security consequences because it makes Cross-site request forgery (CSRF) attacks possible.
The default value of the attribute is false.

4.6.3.4. Cross-site request forgery attacks

Cookie-based authentication can make an application secured by a JWT proxy prone to Cross-site
request forgery (CSRF) attacks. See the Cross-site request forgery Wikipedia page and other
resources to ensure your application is not vulnerable.

4.6.3.5. Phishing attacks

An attacker who is able to create an Ingress or route inside the cluster with the workspace that shares

Red Hat CodeReady Workspaces 2.8 Installation Guide

92

https://en.wikipedia.org/wiki/Cross-site_request_forgery

the host with some services behind a JWT proxy, the attacker may be able to create a service and a
specially forged Ingress object. When such a service or Ingress is accessed by a legitimate user that was
previously authenticated with a workspace, it can lead to the attacker stealing the workspace access
token from the cookies sent by the legitimate user’s browser to the forged URL. To eliminate this attack
vector, configure OpenShift to disallow setting the host of an Ingress.

4.7. CONFIGURING WORKSPACES NODESELECTOR

This section describes how to configure nodeSelector for Pods of CodeReady Workspaces workspaces.

Procedure

CodeReady Workspaces uses the CHE_WORKSPACE_POD_NODE__SELECTOR environment
variable to configure nodeSelector. This variable may contain a set of comma-separated key=value
pairs to form the nodeSelector rule, or NULL to disable it.

CHE_WORKSPACE_POD_NODE__SELECTOR=disktype=ssd,cpu=xlarge,[key=value]

IMPORTANT

nodeSelector must be configured during CodeReady Workspaces installation. This
prevents existing workspaces from failing to run due to volumes affinity conflict caused by
existing workspace PVC and Pod being scheduled in different zones.

To avoid Pods and PVCs to be scheduled in different zones on large, multi-zone clusters,
create an additional StorageClass object (pay attention to the allowedTopologies
field), which will coordinate the PVC creation process.

Pass the name of this newly created StorageClass to CodeReady Workspaces through
the CHE_INFRA_KUBERNETES_PVC_STORAGE__CLASS__NAME environment
variable. A default empty value of this variable instructs CodeReady Workspaces to use
the cluster’s default StorageClass.

4.8. CONFIGURING RED HAT CODEREADY WORKSPACES SERVER
HOSTNAME

This procedure describes how to configure Red Hat CodeReady Workspaces to use custom hostname.

Prerequisites

The oc tool is available.

The certificate and the private key files are generated.

IMPORTANT

To generate the pair of private key and certificate the same CA must be used as for other
Red Hat CodeReady Workspaces hosts.

IMPORTANT

Ask a DNS provider to point the custom hostname to the cluster ingress.

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

93

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/storage/storage-classes/

1

2

3

1

2

Procedure

1. Pre-create a project for CodeReady Workspaces:

$ oc create project openshift-workspaces

2. Create a TLS secret:

$ oc create secret TLS ${secret} \ 1
--key ${key_file} \ 2
--cert ${cert_file} \ 3
-n openshift-workspaces

The TLS secret name

A file with the private key

A file with the certificate

3. Set the following values in the Custom Resource:

spec:
 server:
 cheHost: <hostname> 1
 cheHostTLSSecret: <secret> 2

Custom Red Hat CodeReady Workspaces server hostname

The TLS secret name

1. If CodeReady Workspaces has been already deployed and CodeReady Workspaces
reconfiguring to use a new CodeReady Workspaces hostname is required, log in using RH-SSO
and select the codeready-public client in the CodeReady Workspaces realm and update
Validate Redirect URIs and Web Origins fields with the value of the CodeReady Workspaces
hostname.

For logging in to RH-SSO, follow the Logging in to RH-SSO procedure.

4.9. CONFIGURING LABELS FOR OPENSHIFT ROUTE

This procedure describes how to configure labels for OpenShift Route to organize and categorize
(scope and select) objects.

Prerequisites

Red Hat CodeReady Workspaces 2.8 Installation Guide

94

Prerequisites

The oc tool is available.

An instance of CodeReady Workspaces running in OpenShift.

IMPORTANT

Use comma to separate labels: key1=value1,key2=value2

Procedure

1. To configure labels for OpenShift Route, update the Custom Resource with the following
commands:

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/cheServerIngress/labels", '\
'"value": "<labels for a codeready-workspaces server ingress>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/auth/identityProviderIngress/labels", '\
'"value": "<labels for a RH-SSO ingress>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/pluginRegistryIngress/labels", '\
'"value": "<labels for a plugin registry ingress>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/devfileRegistryIngress/labels",'\
'"value": "<labels for a devfile registry ingress>"}]'

4.10. CONFIGURING LABELS AND DOMAINS FOR OPENSHIFT ROUTE
TO WORK WITH ROUTER SHARDING

This procedure describes how to configure labels and domains for OpenShift Route to work with Router
Sharding and mentions how to do so on existing instances or those about to be installed.

Prerequisites

The oc and crwctl tool is available.

Procedure

For a new OperatorHub installation:

1. Enter the Red Hat CodeReady Workspaces Cluster using OpenShift Container Platform and
create CheCluster Custom Resource (CR). See, Creating an instance of the Red Hat
CodeReady Workspaces Operator

2. Set the following values in codeready-workspaces Custom Resource (CR):

spec:
 server:
 devfileRegistryRoute:

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

95

https://docs.openshift.com/container-platform/4.7/networking/ingress-operator.html#nw-ingress-sharding_configuring-ingress

1 3 5 7 9

2 4 6 8 10

1 3 5 7 9

2 4 6 8 10

comma separated list of labels that are used by the target ingress controller
to filter the set of Routes to service

DNS name serviced by the target ingress controller

For a new crwctl installation:

1. Configure the the crwctl installation using:

$ crwctl server:deploy --che-operator-cr-patch-yaml=patch.yaml ...

patch.yaml must contain the following:

comma separated list of labels that are used by the target ingress controller
to filter the set of Routes to service

DNS name serviced by the target ingress controller

 labels: <labels> 1
 domain: <domain> 2
 pluginRegistryRoute:
 labels: <labels> 3
 domain: <domain> 4
 cheServerRoute:
 labels: <labels> 5
 domain: <domain> 6
 customCheProperties:
 CHE_INFRA_OPENSHIFT_ROUTE_LABELS: <labels> 7
 CHE_INFRA_OPENSHIFT_ROUTE_HOST_DOMAIN__SUFFIX: <domain> 8
 auth:
 identityProviderRoute:
 labels: <labels> 9
 domain: <domain> 10

spec:
 server:
 devfileRegistryRoute:
 labels: <labels> 1
 domain: <domain> 2
 pluginRegistryRoute:
 labels: <labels> 3
 domain: <domain> 4
 cheServerRoute:
 labels: <labels> 5
 domain: <domain> 6
 customCheProperties:
 CHE_INFRA_OPENSHIFT_ROUTE_LABELS: <labels> 7
 CHE_INFRA_OPENSHIFT_ROUTE_HOST_DOMAIN__SUFFIX: <domain> 8
 auth:
 identityProviderRoute:
 labels: <labels> 9
 domain: <domain> 10

Red Hat CodeReady Workspaces 2.8 Installation Guide

96

For already existing CodeReady Workspaces installation:

1. Update codeready-workspaces CR using the oc tool:

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/cheServerRoute/labels",'\
'"value": "<labels for a codeready-workspaces server route>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/cheServerRoute/domain",'\
'"value": "<ingress domain>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/pluginRegistryRoute/labels", '\
'"value": "<labels for a plugin registry route>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/auth/identityProviderRoute/domain", '\
'"value": "<ingress domain>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/pluginRegistryRoute/domain", '\
'"value": "<ingress domain>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/devfileRegistryRoute/labels", '\
'"value": "<labels for a devfile registry route>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/devfileRegistryRoute/domain", '\
'"value": "<ingress domain>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path":
"/spec/server/customCheProperties/CHE_INFRA_OPENSHIFT_ROUTE_LABELS", '\
'"value": "<labels for a workspace routes>"}]'

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path":
"/spec/server/customCheProperties/CHE_INFRA_OPENSHIFT_ROUTE_HOST_DOMAI
N__SUFFIX", '\
'"value": "<ingress domain>"}]'

4.11. DEPLOYING CODEREADY WORKSPACES WITH SUPPORT FOR
GIT REPOSITORIES WITH SELF-SIGNED CERTIFICATES

This procedure describes how to configure CodeReady Workspaces for deployment with support for Git
operations on repositories that use self-signed certificates.

Prerequisites

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

97

Git version 2 or later

Procedure

Configuring support for self-signed Git repositories.

1. Create a new ConfigMap with details about the Git server:

$ oc create configmap che-git-self-signed-cert --from-file=ca.crt \
 --from-literal=githost=<host:port> -n {prod-namespace}

In the command, substitute <host:port> for the host and port of the HTTPS connection on the
Git server (optional).

NOTE

When githost is not specified, the given certificate is used for all HTTPS
repositories.

The certificate file must be named ca.crt.

Certificate files are typically stored as Base64 ASCII files, such as. .pem, .crt,
.ca-bundle. Also, they can be encoded as binary data, for example, .cer. All
Secrets that hold certificate files should use the Base64 ASCII certificate
rather than the binary data certificate.

2. Configure the workspace exposure strategy:
Update the gitSelfSignedCert property. To do that, execute:

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json \
 -p '[{"op": "replace", "path": "/spec/server/gitSelfSignedCert", "value": true}]'

3. Create and start a new workspace. Every container used by the workspace mounts a special
volume that contains a file with the self-signed certificate. The repository’s .git/config file
contains information about the Git server host (its URL) and the path to the certificate in the
http section (see Git documentation about git-config). For example:

[http "https://10.33.177.118:3000"]
 sslCAInfo = /etc/che/git/cert/ca.crt

4.12. INSTALLING CODEREADY WORKSPACES USING STORAGE
CLASSES

To configure CodeReady Workspaces to use a configured infrastructure storage, install CodeReady
Workspaces using storage classes. This is especially useful when a user wants to bind a persistent volume
provided by a non-default provisioner. To do so, a user binds this storage for the CodeReady
Workspaces data saving and sets the parameters for that storage. These parameters can determine the
following:

A special host path

A storage capacity

A volume mod

Red Hat CodeReady Workspaces 2.8 Installation Guide

98

https://git-scm.com/docs/git-config#Documentation/git-config.txt-httpsslCAInfo

Mount options

A file system

An access mode

A storage type

And many others

CodeReady Workspaces has two components that require persistent volumes to store data:

A PostgreSQL database.

A CodeReady Workspaces workspaces. CodeReady Workspaces workspaces store source code
using volumes, for example /projects volume.

NOTE

CodeReady Workspaces workspaces source code is stored in the persistent volume only
if a workspace is not ephemeral.

Persistent volume claims facts:

CodeReady Workspaces does not create persistent volumes in the infrastructure.

CodeReady Workspaces uses persistent volume claims (PVC) to mount persistent volumes.

The CodeReady Workspaces server creates persistent volume claims.
A user defines a storage class name in the CodeReady Workspaces configuration to use the
storage classes feature in the CodeReady Workspaces PVC. With storage classes, a user
configures infrastructure storage in a flexible way with additional storage parameters. It is also
possible to bind a static provisioned persistent volumes to the CodeReady Workspaces PVC
using the class name.

Procedure

Use CheCluster Custom Resource definition to define storage classes:

1. Define storage class names
To do so, use one of the following methods:

Use arguments for the server:deploy command

i. Provide the storage class name for the PostgreSQL PVC
Use the crwctl server:deploy command with the --postgres-pvc-storage-class-name
flag:

$ crwctl server:deploy -m -p minikube -a operator --postgres-pvc-storage-class-
name=postgress-storage

ii. Provide the storage class name for the CodeReady Workspaces workspaces
Use the server:deploy command with the --workspace-pvc-storage-class-name flag:

$ crwctl server:deploy -m -p minikube -a operator --workspace-pvc-storage-class-
name=workspace-storage

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

99

For CodeReady Workspaces workspaces, the storage class name has different behavior
depending on the workspace PVC strategy.

NOTE

postgres-pvc-storage-class-name=postgress-storage and
workspace-pvc-storage-class-name work for the Operator installer
and the Helm installer.

Define storage class names using a Custom Resources YAML file:

i. Create a YAML file with Custom Resources defined for the CodeReady Workspaces
installation.

ii. Define fields: spec#storage#postgresPVCStorageClassName and
spec#storage#workspacePVCStorageClassName.

iii. Start the codeready-workspaces server with your Custom Resources:

$ crwctl server:deploy -m -p minikube -a operator --che-operator-cr-
yaml=/path/to/custom/che/resource/org_v1_che_cr.yaml

2. Configure CodeReady Workspaces to store workspaces in one persistent volume and a
PostreSQL database in the second one:

a. Modify your Custom Resources YAML file:

Set pvcStrategy as common.

Configure CodeReady Workspaces to start workspaces in a single project.

Define storage class names for postgresPVCStorageClassName and
workspacePVCStorageClassName.

Example of the YAML file:

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 name: codeready-workspaces
spec:
 # ...
 storage:
 # ...
 # keep blank unless you need to use a non default storage class for PostgreSQL
PVC
 postgresPVCStorageClassName: 'postgres-storage'
 # ...
 # keep blank unless you need to use a non default storage class for workspace
PVC(s)
 workspacePVCStorageClassName: 'workspace-storage'
 # ...

apiVersion: org.eclipse.che/v1
kind: CheCluster

Red Hat CodeReady Workspaces 2.8 Installation Guide

100

b. Start the codeready-workspaces server with your Custom Resources:

$ crwctl server:deploy -m -p minikube -a operator --che-operator-cr-
yaml=/path/to/custom/che/resource/org_v1_che_cr.yaml

3. Bind static provisioned volumes using class names:

a. Define the persistent volume for a PostgreSQL database:

b. Define the persistent volume for a CodeReady Workspaces workspace:

metadata:
 name: codeready-workspaces
spec:
 server:
 # ...
 workspaceNamespaceDefault: 'che'
 # ...
 storage:
 # ...
 # Defaults to common
 pvcStrategy: 'common'
 # ...
 # keep blank unless you need to use a non default storage class for PostgreSQL
PVC
 postgresPVCStorageClassName: 'postgres-storage'
 # ...
 # keep blank unless you need to use a non default storage class for workspace
PVC(s)
 workspacePVCStorageClassName: 'workspace-storage'
 # ...

che-postgres-pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 name: postgres-pv-volume
 labels:
 type: local
spec:
 storageClassName: postgres-storage
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/data/che/postgres"

che-workspace-pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 name: workspace-pv-volume
 labels:
 type: local

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

101

c. Bind the two persistent volumes:

$ oc apply -f che-workspace-pv.yaml -f che-postgres-pv.yaml

NOTE

You must provide valid file permissions for volumes. You can do it using storage class
configuration or manually. To manually define permissions, define
storageClass#mountOptions uid and gid. PostgreSQL volume requires uid=26 and
gid=26.

4.13. IMPORTING UNTRUSTED TLS CERTIFICATES TO CODEREADY
WORKSPACES

External communications between CodeReady Workspaces components are, by default, encrypted with
TLS. Communications of CodeReady Workspaces components with external services such as proxies,
source code repositories, identity providers may require using of TLS. Those communications require
the use of TLS certificates signed by trusted Certificate Authorities.

When the certificates used by CodeReady Workspaces components or by an external service are signed
by an untrusted CA it can be necessary to import the CA certificate in the CodeReady Workspaces
installation, so that every CodeReady Workspaces component will consider them as signed by a trusted
CA.

Typical cases that may require this addition are:

when the underlying OpenShift cluster uses TLS certificates signed by a CA that is not trusted,

when CodeReady Workspaces server or workspace components connect to external services
such as RH-SSO or a Git server that use TLS certificates signed by an untrusted CA.

CodeReady Workspaces uses labeled ConfigMaps in CodeReady Workspaces namespace as sources for
TLS certificates. The ConfigMaps can have arbitrary number of keys with arbitrary number of
certificates each.

NOTE

spec:
 storageClassName: workspace-storage
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/data/che/workspace"

Red Hat CodeReady Workspaces 2.8 Installation Guide

102

NOTE

When the cluster contains cluster-wide trusted CA certificates added through the
cluster-wide-proxy configuration, CodeReady Workspaces Operator detects them and
automatically injects them into this ConfigMap:

CodeReady Workspaces automatically labels the ConfigMap with the
config.openshift.io/inject-trusted-cabundle="true" label.

Based on this annotation, OpenShift automatically injects the cluster-wide
trusted CA certificates inside the ca-bundle.crt key of ConfigMap

IMPORTANT

Some CodeReady Workspaces components require to have full certificate chain to trust
the endpoint. If the cluster is configured with an intermediate certificate, then the whole
chain (including self-signed root) should be added to CodeReady Workspaces.

4.13.1. Adding new CA certificates into CodeReady Workspaces

This guide can be used before the installations of CodeReady Workspaces or when CodeReady
Workspaces is already installed and running.

NOTE

If you are using CodeReady Workspaces version lower than 2.5.1 see this guide on how to
apply additional TLS certificates.

Prerequisites

The oc tool is available.

Namespace for CodeReady Workspaces exists.

Procedure

1. Save the certificates you need to import, to a local file system.

CAUTION

Certificate files are typically stored as Base64 ASCII files, such as .pem, .crt, .ca-bundle.
But, they can also be binary-encoded, for example, as .cer files. All Secrets that hold
certificate files should use the Base64 ASCII certificate rather than the binary-encoded
certificate.

CodeReady Workspaces already uses some reserved file names to automatically inject
certificates into the ConfigMap, so you should avoid using the following reserved file names
to save your certificates:

ca-bundle.crt

ca.crt

2. Create a new ConfigMap with the required TLS certificates:

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

103

https://docs.openshift.com/container-platform/4.4/networking/configuring-a-custom-pki.html#nw-proxy-configure-object_configuring-a-custom-pki

$ oc create configmap custom-certs --from-file=<bundle-file-path> -n=openshift-workspaces

To apply more than one bundle, add another --from-file=<bundle-file-path> flag to the above
command. Or you may create another ConfigMap.

3. Label created ConfigMaps with both app.kubernetes.io/part-of=che.eclipse.org and
app.kubernetes.io/component=ca-bundle labels:

$ oc label configmap custom-certs app.kubernetes.io/part-of=che.eclipse.org
app.kubernetes.io/component=ca-bundle -n <crw-namespace-name>

4. Deploy CodeReady Workspaces if it has not been deployed before otherwise wait until rollout of
CodeReady Workspaces components finishes. If there are running workspaces, they should be
restarted in order the changes take effect.

4.13.2. Verification at the CodeReady Workspaces installation level

If after adding the certificates something does not work as expected, here is a list of things to verify:

In case of a CodeReady Workspaces Operator deployment, namespace where CheCluster
located contains labeled ConfigMaps with right content:

$ oc get cm --selector=app.kubernetes.io/component=ca-bundle,app.kubernetes.io/part-
of=che.eclipse.org -n openshift-workspaces

And to check content of ConfigMap:

$ {orch-cli} get cm __<name>__ -n {prod-namespace} -o yaml

CodeReady Workspaces Pod Volumes list contains a volume that uses ca-certs-merged
ConfigMap as data-source. To get the list of Volumes of the CodeReady Workspaces Pod:

$ oc get pod -o json <codeready-workspaces-pod-name> -n openshift-workspaces | jq
.spec.volumes

CodeReady Workspaces mounts certificates in folder /public-certs/ of the CodeReady
Workspaces server container. This command returns the list of files in that folder:

$ oc exec -t <codeready-workspaces-pod-name> -n openshift-workspaces -- ls /public-certs/

In the CodeReady Workspaces server logs there is a line for every certificate added to the Java
truststore, including configured CodeReady Workspaces certificates.

$ oc logs <codeready-workspaces-pod-name> -n openshift-workspaces

CodeReady Workspaces server Java truststore contains the certificates. The certificates SHA1
fingerprints are among the list of the SHA1 of the certificates included in the truststore returned
by the following command:

$ oc exec -t <codeready-workspaces-pod-name> -n openshift-workspaces -- keytool -list -
keystore /home/jboss/cacerts
Your keystore contains 141 entries

Red Hat CodeReady Workspaces 2.8 Installation Guide

104

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-what-operators-are.html

(...)

To get the SHA1 hash of a certificate on the local filesystem:

$ openssl x509 -in <certificate-file-path> -fingerprint -noout
SHA1 Fingerprint=3F:DA:BF:E7:A7:A7:90:62:CA:CF:C7:55:0E:1D:7D:05:16:7D:45:60

4.13.3. Verification at the workspace level

Start a workspace, get the OpenShift project in which it has been created, and wait for it to be
started

Get the name of the workspace Pod with the following command:

$ oc get pods -o=jsonpath='{.items[0].metadata.name}' -n <workspace namespace> | grep
'^workspace.*'

Get the name of the Theia IDE container in the workspace Pod with the following command:

$ oc get -o json pod <workspace pod name> -n <workspace namespace> | \
 jq -r '.spec.containers[] | select(.name | startswith("theia-ide")).name'

Look for a ca-certs ConfigMap that should have been created inside the workspace
namespace:

$ oc get cm ca-certs <workspace namespace>

Check that the entries in the ca-certs ConfigMap contain all the additional entries you added
before. In addition it may contain ca-bundl.crt entry which is a reserved one:

$ oc get cm ca-certs -n <workspace namespace> -o json | jq -r '.data | keys[]'
ca-bundle.crt
source-config-map-name.data-key.crt

Make sure that the ca-certs ConfigMap has been added as a volume in the workspace Pod:

$ oc get -o json pod <workspace pod name> -n <workspace namespace> | \
 jq '.spec.volumes[] | select(.configMap.name == "ca-certs")'
{
 "configMap": {
 "defaultMode": 420,
 "name": "ca-certs"
 },
 "name": "che-self-signed-certs"
}

Confirm that the volume has been mounted into containers, especially in the Theia IDE
container:

$ oc get -o json pod <workspace pod name> -n <workspace namespace> | \
 jq '.spec.containers[] | select(.name == "<theia ide container name>").volumeMounts[] |
select(.name == "che-self-signed-certs")'

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

105

{
 "mountPath": "/public-certs",
 "name": "che-self-signed-certs",
 "readOnly": true
}

Inspect /public-certs folder in the Theia IDE container and check that its contents match the list
of entries in the ca-certs ConfigMap:

$ oc exec <workspace pod name> -c <theia ide container name> -n <workspace
namespace> -- ls /public-certs
ca-bundle.crt
source-config-map-name.data-key.crt

4.14. SWITCHING BETWEEN EXTERNAL AND INTERNAL DNS NAMES
IN INTER-COMPONENT COMMUNICATION

By default, new CodeReady Workspaces deployments use OpenShift services DNS names for
communications between CodeReady Workspaces server, RH-SSO, registries, and helps with:

Bypassing proxy, certificates, and firewalls issues

Speeding up the traffic

This type of communication is an alternative to the external method of inter-component
communication, which uses OpenShift Route cluster host names. In the situations described below, using
OpenShift internal DNS names is not supported. By disabling the use of the internal cluster host name in
inter-component communication, the communication using external OpenShift Route will come into
effect.

Internal inter-component communication restrictions in OpenShift

The CodeReady Workspaces components are deployed across multi-cluster OpenShift
environments.

The OpenShift NetworkPolicies restricts communication between namespaces.

The following section describes how to enable and disable the external inter-component communication
for OpenShift Route.

Prerequisites

The oc tool is available.

An instance of CodeReady Workspaces running in OpenShift.

Procedure

Switching between external and internal inter-component communication method is reached through
the update against Custom Resource (CR).

1. To use external OpenShift Route in inter-component communication:

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/useInternalClusterSVCNames", "value": false}]'

Red Hat CodeReady Workspaces 2.8 Installation Guide

106

2. To use internal OpenShift DNS names in the inter-component communication:

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/useInternalClusterSVCNames", "value": true}]'

4.15. SETTING UP THE RH-SSO CODEREADY-WORKSPACES-
USERNAME-READONLY THEME FOR THE RED HAT CODEREADY
WORKSPACES LOGIN PAGE

The following procedure is relevant for all CodeReady Workspaces instances with the OpenShift OAuth
service enabled.

When a user with pre-created namespaces logs in to Red Hat CodeReady Workspaces Dashboard for
the first time, a page allowing the user to update account information is displayed. It is possible to
change the username, but choosing a username that doesn’t match the OpenShift username, prevents
the user’s workspaces from running. This is caused by CodeReady Workspaces attempts to use a non-
existing namespace, the name of which is derived from a user OpenShift username, to create a
workspace. To prevent this, log in to RH-SSO and modify the theme settings.

4.15.1. Logging in to RH-SSO

The following procedure describes how to log in to RH-SSO, which acts as a route for OpenShift
platforms. To log in to RH-SSO, a user has to obtain the RH-SSO URL and a user’s credentials first.

Prerequisites

The oc tool installed.

Logged in to OpenShift cluster using the oc tool.

Procedure

1. Obtain a user RH-SSO login:

oc get secret che-identity-secret -n openshift-workspaces -o json | jq -r '.data.user' | base64 -
d

2. Obtain a user RH-SSO password:

oc get secret che-identity-secret -n openshift-workspaces -o json | jq -r '.data.password' |
base64 -d

3. Obtain the RH-SSO URL:

oc get ingress -n openshift-workspaces -l app=che,component=keycloak -o 'custom-
columns=URL:.spec.rules[0].host' --no-headers

4. Open the URL in a browser and log in to RH-SSO using the obtained login and password.

4.15.2. Setting up the RH-SSO codeready-workspaces-username-readonly theme

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

107

Prerequisites

An instance of CodeReady Workspaces running in OpenShift.

A user is logged in to the RH-SSO service.

Procedure

After changing a username, set the Login Theme option to readonly.

1. In the main Configure menu on the left, select Realm Settings:

2. Navigate to the Themes tab.

3. In the Login Theme field, select the codeready-workspaces-username-readonly option and
click the Save button to apply the changes.

4.16. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT
VARIABLE INTO A RED HAT CODEREADY WORKSPACES CONTAINER

Secrets are OpenShift objects that store sensitive data such as user names, passwords, authentication
tokens, and configurations in an encrypted form.

Users can mount a OpenShift secret that contains sensitive data in a Red Hat CodeReady Workspaces
container as:

a file

an environment variable

The mounting process uses the standard OpenShift mounting mechanism, but it requires additional
annotations and labeling.

4.16.1. Mounting a secret as a file into a Red Hat CodeReady Workspaces container

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

Procedure

1. Create a new OpenShift secret in the OpenShift project where a CodeReady Workspaces is

Red Hat CodeReady Workspaces 2.8 Installation Guide

108

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.8/html-single/installation_guide/index#installing-codeready-workspaces_crw

1. Create a new OpenShift secret in the OpenShift project where a CodeReady Workspaces is
deployed. The labels of the secret that is about to be created must match the set of labels:

app.kubernetes.io/part-of: che.eclipse.org

app.kubernetes.io/component: <DEPLOYMENT_NAME>-secret

Where <DEPLOYMENT_NAME> is one of the following deployments: postgres, keycloak, devfile-
registry, plugin-registry or codeready

Example 4.5. Example:

Annotations must indicate that the given secret is mounted as a file. Configure the annotation
values:

che.eclipse.org/mount-as: file - to indicate that a secret is mounted as a file

che.eclipse.org/mount-path: <FOO_ENV> - to provide a required mount path

The OpenShift secret may contain several items whose names must match the desired file name
mounted into the container.

This results in a file named ca.crt being mounted at the /custom-certificates path of CodeReady

apiVersion: v1
kind: Secret
metadata:
 name: custom-certificate
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: codeready-secret
...

apiVersion: v1
kind: Secret
metadata:
 name: custom-certificate
 annotations:
 che.eclipse.org/mount-path: /custom-certificates
 che.eclipse.org/mount-as: file
 labels:
...

apiVersion: v1
kind: Secret
metadata:
 name: custom-certificate
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: codeready-secret
 annotations:
 che.eclipse.org/mount-path: /custom-certificates
 che.eclipse.org/mount-as: file
data:
 ca.crt: <base64 encoded data content here>

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

109

This results in a file named ca.crt being mounted at the /custom-certificates path of CodeReady
Workspaces container.

4.16.2. Mounting a secret as an environment variable into a Red Hat CodeReady
Workspaces container

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see Installing CodeReady Workspaces .

Procedure

1. Create a new OpenShift secret in the OpenShift project where a CodeReady Workspaces is
deployed. The labels of the secret that is about to be created must match the set of labels:

app.kubernetes.io/part-of: che.eclipse.org

app.kubernetes.io/component: <DEPLOYMENT_NAME>-secret

Where <DEPLOYMENT_NAME> is one of the following deployments: postgres, keycloak, devfile-
registry, plugin-registry or codeready

Example 4.6. Example:

Annotations must indicate that the given secret is mounted as a environment variable. Configure the
annotation values:

che.eclipse.org/mount-as: env - to indicate that a secret is mounted as an environment
variable

che.eclipse.org/env-name: <FOO_ENV> - to provide an environment variable name, which
is required to mount a secret key value

apiVersion: v1
kind: Secret
metadata:
 name: custom-settings
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: codeready-secret
...

apiVersion: v1
kind: Secret
metadata:
 name: custom-settings
 annotations:
 che.eclipse.org/env-name: FOO_ENV
 che.eclipse.org/mount-as: env
 labels:
 ...
data:
 mykey: myvalue

Red Hat CodeReady Workspaces 2.8 Installation Guide

110

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.8/html-single/installation_guide/index#installing-codeready-workspaces_crw

This results in the environment variable named FOO_ENV and the value myvalue being provisioned
into a CodeReady Workspaces container.

If the secret provides more than one data item, the environment variable name must be provided for
each of the data keys as follows:

This results in two environment variables with names FOO_ENV, OTHER_ENV, and values myvalue
and othervalue, being provisioned into a CodeReady Workspaces container.

NOTE

The maximum length of annotation names in a OpenShift secret is 63 characters,
where 9 characters are reserved for a prefix that ends with /. This acts as a restriction
for the maximum length of the key that can be used for the secret.

4.17. ENABLING DEV WORKSPACE ENGINE

This procedure describes how to enable the Dev Workspace engine to support the Devfile 2.0.0 file
format and mentions how to do so on existing instances or those about to be installed.

Prerequisites

The oc and crwctl tools are available.

Procedure

For a new OperatorHub installation:

1. Enter the Red Hat CodeReady Workspaces Cluster using OpenShift Container Platform and
create CheCluster Custom Resource (CR). See, Creating an instance of the Red Hat
CodeReady Workspaces Operator

2. Set the following values in codeready-workspaces Custom Resource (CR):

apiVersion: v1
kind: Secret
metadata:
 name: custom-settings
 annotations:
 che.eclipse.org/mount-as: env
 che.eclipse.org/mykey_env-name: FOO_ENV
 che.eclipse.org/otherkey_env-name: OTHER_ENV
 labels:
 ...
data:
 mykey: myvalue
 otherkey: othervalue

spec:
 devWorkspace:
 enable: true

CHAPTER 4. CONFIGURING CODEREADY WORKSPACES

111

For a new crwctl installation:

1. Configure the the crwctl installation using:

$ crwctl server:deploy --che-operator-cr-patch-yaml=patch.yaml ...

patch.yaml must contain the following:

For already existing CodeReady Workspaces installation:

1. Update codeready-workspaces CR using the oc tool:

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/devWorkspace/enable", "value": true}]'

Additional resources

For information about installation methods mentioned in this chapter, see Chapter 3, Installing
CodeReady Workspaces.

spec:
 devWorkspace:
 enable: true

Red Hat CodeReady Workspaces 2.8 Installation Guide

112

CHAPTER 5. UPGRADING CODEREADY WORKSPACES
This chapter describes how to upgrade a CodeReady Workspaces instance from version 2.7 to
CodeReady Workspaces 2.8.

The method used to install the CodeReady Workspaces instance determines the method to proceed
with for the upgrade:

Section 5.1, “Upgrading CodeReady Workspaces using OperatorHub”

Section 5.2, “Upgrading CodeReady Workspaces using the CLI management tool”

Section 5.3, “Upgrading CodeReady Workspaces using the CLI management tool in restricted
environment”

5.1. UPGRADING CODEREADY WORKSPACES USING OPERATORHUB

This section describes how to upgrade from an earlier minor version using the Operator from
OperatorHub in the OpenShift web console.

OperatorHub supports Automatic and Manual upgrade strategies: Automatic:: The upgrade process
starts when a new version of the Operator is published. Manual:: The update must be manually approved
every time the new version of the Operator is published.

5.1.1. Specifying the approval strategy of CodeReady Workspaces in OperatorHub

Prerequisites

An administrator account on an OpenShift instance.

An instance of an earlier minor version of CodeReady Workspaces, installed using the Operator
from OperatorHub on the same instance of OpenShift.

Procedure

1. Open the OpenShift web console.

2. Navigate to the Operators → Installed Operators section.

3. Click Red Hat CodeReady Workspaces in the list of the installed Operators.

4. Navigate to the Subscription tab and specify the approval strategy:

Approval: Automatic
or

Approval: Manual

CHAPTER 5. UPGRADING CODEREADY WORKSPACES

113

5.1.2. Manually upgrading CodeReady Workspaces in OperatorHub

Prerequisites

An administrator account on an OpenShift instance.

An instance of an earlier minor version of CodeReady Workspaces, installed using the Operator
from OperatorHub on the same instance of OpenShift.

The approval strategy in the subscription is set to Manual.

Procedure

1. Open the OpenShift web console.

2. Navigate to the Operators → Installed Operators section.

3. Click Red Hat CodeReady Workspaces in the list of the installed Operators.

4. Navigate to the Subscription tab. Upgrades requiring approval are displayed next to Upgrade
Status, for example 1 requires approval.

5. Click 1 requires approval, then click Preview Install Plan.

6. Review the resources that are listed as available for upgrade and click Approve.

Verification steps

1. Navigate to the Operators → Installed Operators page to monitor the progress of the
upgrade. When complete, the status changes to Succeeded and Up to date.

2. The 2.8 version number is visible at the bottom of the page.

Additional resources

Red Hat CodeReady Workspaces 2.8 Installation Guide

114

Upgrading installed Operators section in the OpenShift documentation.

5.2. UPGRADING CODEREADY WORKSPACES USING THE CLI
MANAGEMENT TOOL

This section describes how to upgrade from previous minor version using the CLI management tool.

Prerequisites

And administrative account on an OpenShift instance.

A running instance of a previous minor version of Red Hat CodeReady Workspaces, installed
using the CLI management tool on the same instance of OpenShift, in the <openshift-
workspaces> project.

An installation of the crwctl 2.8 version management tool. See Section 3.3.1, “Installing the
crwctl CLI management tool”.

Procedure

1. In all running workspaces in the CodeReady Workspaces 2.7 instance, save and push changes
back to the Git repositories.

2. Shut down all workspaces in the CodeReady Workspaces 2.7 instance.

3. Run the following command:

$ crwctl server:update -n <openshift-workspaces>

NOTE

For slow systems or internet connections, add the --k8spodwaittimeout=1800000 flag
option to the crwctl server:update command to extend the Pod timeout period to
1800000 ms or longer.

Verification steps

1. Navigate to the CodeReady Workspaces instance.

2. The 2.8 version number is visible at the bottom of the page.

5.3. UPGRADING CODEREADY WORKSPACES USING THE CLI
MANAGEMENT TOOL IN RESTRICTED ENVIRONMENT

This section describes how to upgrade Red Hat CodeReady Workspaces using the CLI management tool
in restricted environment. The upgrade path supports minor version update, from CodeReady
Workspaces version 2.7 to version 2.8.

Prerequisites

An administrative account on an instance of OpenShift.

A running instance version 2.7 of Red Hat CodeReady Workspaces, installed using the CLI

CHAPTER 5. UPGRADING CODEREADY WORKSPACES

115

https://docs.openshift.com/container-platform/latest/operators/admin/olm-upgrading-operators.html

management tool on the same instance of OpenShift, with the crwctl --installer operator
method, in the <openshift-workspaces> project. See Section 3.4, “Installing CodeReady
Workspaces in a restricted environment”.

The crwctl 2.8 management tool is available. See Section 3.3.1, “Installing the crwctl CLI
management tool”.

5.3.1. Understanding network connectivity in restricted environments

CodeReady Workspaces requires that each OpenShift Route created for CodeReady Workspaces is
accessible from inside the OpenShift cluster. These CodeReady Workspaces components have a
OpenShift Route: codeready-workspaces-server, keycloak, devfile-registry, plugin-registry.

Consider the network topology of the environment to determine how best to accomplish this.

Example 5.1. Network owned by a company or an organization, disconnected from the public
Internet

The network administrators must ensure that it is possible to route traffic bound from the cluster to
OpenShift Route host names.

Example 5.2. Private subnetwork in a cloud provider

Create a proxy configuration allowing the traffic to leave the node to reach an external-facing Load
Balancer.

5.3.2. Building offline registry images

5.3.2.1. Building an offline devfile registry image

This section describes how to build an offline devfile registry image. Starting workspaces without relying
on resources from the outside Internet requires building this image. The image contains all sample
projects referenced in devfiles as zip files.

Prerequisites:

A running installation of podman or docker.

Procedure

1. Clone the devfile registry repository and check out the version to deploy:

$ git clone git@github.com:redhat-developer/codeready-workspaces.git
$ cd codeready-workspaces
$ git checkout crw-2.8-rhel-8

2. Build an offline devfile registry image:

$ cd dependencies/che-devfile-registry
$./build.sh --organization <my-org> \
 --registry <my-registry> \

Red Hat CodeReady Workspaces 2.8 Installation Guide

116

http://podman.io
http://docker.io

 --tag <my-tag> \
 --offline

NOTE

To display full options for the build.sh script, use the --help parameter.

Additional resources

Customizing the registries.

5.3.2.2. Building an offline plug-in registry image

This section describes how to build an offline plug-in registry image. Starting workspaces without relying
on resources from the outside Internet requires building this image. The image contains plug-in
metadata and all plug-in or extension artifacts.

Prerequisites

NodeJS 12.x

A running version of yarn. See Installing Yarn .

./node_modules/.bin is in the PATH environment variable.

A running installation of podman or docker.

Procedure

1. Clone the plug-in registry repository and check out the version to deploy:

$ git clone git@github.com:redhat-developer/codeready-workspaces.git
$ cd codeready-workspaces
$ git checkout crw-2.8-rhel-8

2. Build offline plug-in registry image:

$ cd dependencies/che-plugin-registry
$./build.sh --organization <my-org> \
 --registry <my-registry> \
 --tag <my-tag> \
 --offline

NOTE

To display full options for the build.sh script, use the --help parameter.

Additional resources

Customizing the registries.

5.3.3. Preparing an private registry

CHAPTER 5. UPGRADING CODEREADY WORKSPACES

117

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.8/html-single/administration_guide/index#customizing-the-registries_crw
https://yarnpkg.com/getting-started/install
http://podman.io
http://docker.io
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.8/html-single/administration_guide/index#customizing-the-registries_crw

Prerequisites

The oc tool is available.

The skopeo tool, version 0.1.40 or later, is available.

The podman tool is available.

An image registry accessible from the OpenShift cluster and supporting the format of the V2
image manifest, schema version 2. Ensure you can push to it from a location having, at least
temporarily, access to the internet.

Table 5.1. Placeholders used in examples

<source-image> Full coordinates of the source image, including registry, organization, and
digest.

<target-registry> Host name and port of the target container-image registry.

<target-organization> Organization in the target container-image registry

<target-image> Image name and digest in the target container-image registry.

<target-user> User name in the target container-image registry.

<target-password> User password in the target container-image registry.

Procedure

1. Log into the internal image registry:

$ podman login --username <user> --password <password> <target-registry>

NOTE

If you encounter an error, like x509: certificate signed by unknown authority,
when attempting to push to the internal registry, try one of these workarounds:

add the OpenShift cluster’s certificate to /etc/containers/certs.d/<target-
registry>

add the registry as an insecure registry by adding the following lines to the
Podman configuration file located at /etc/containers/registries.conf:

[registries.insecure]
registries = ['<target-registry>']

2. Copy images without changing their digest. Repeat this step for every image in the following
table:

$ skopeo copy --all docker://<source-image> docker://<target-registry>/<target-
organization>/<target-image>

Red Hat CodeReady Workspaces 2.8 Installation Guide

118

NOTE

Table 5.2. Understanding the usage of the container-images from the prefix
or keyword they include in their name

Usage Prefix or keyword

Essential not stacks-, plugin-, or -openj9-

Workspaces stacks-, plugin-

IBM Z and IBM
Power Systems

-openj9-

Table 5.3. Images to copy in the private registry

<source-image> <target-image>

registry.redhat.io/codeready-
workspaces/configbump-
rhel8@sha256:db34b20374d99c20556126
63a669a06f6dd0fc1fc19603761e993fd0870
eddfe

configbump-
rhel8@sha256:db34b20374d99c20556126
63a669a06f6dd0fc1fc19603761e993fd0870
eddfe

registry.redhat.io/codeready-
workspaces/crw-2-rhel8-
operator@sha256:a24dc83d8cdd8af715f0
c4f235dcba0736bf395b7029ceaed0b8a68
3da5f74e0

crw-2-rhel8-
operator@sha256:a24dc83d8cdd8af715f0
c4f235dcba0736bf395b7029ceaed0b8a68
3da5f74e0

registry.redhat.io/codeready-
workspaces/crw-2-rhel8-
operator@sha256:a24dc83d8cdd8af715f0
c4f235dcba0736bf395b7029ceaed0b8a68
3da5f74e0

crw-2-rhel8-
operator@sha256:a24dc83d8cdd8af715f0
c4f235dcba0736bf395b7029ceaed0b8a68
3da5f74e0

registry.redhat.io/codeready-
workspaces/devfileregistry-
rhel8@sha256:e3c360c031d8e68b62d1a2
8a4d736f41c5bfbc17c23999b9e1f1e58208
58bf1d

devfileregistry-
rhel8@sha256:e3c360c031d8e68b62d1a2
8a4d736f41c5bfbc17c23999b9e1f1e58208
58bf1d

registry.redhat.io/codeready-
workspaces/jwtproxy-
rhel8@sha256:3f40bb8a2022545ac06a0b4
1cdb0239fdacfc34b37faffb21348a2041e96
d0f2

jwtproxy-
rhel8@sha256:3f40bb8a2022545ac06a0b4
1cdb0239fdacfc34b37faffb21348a2041e96
d0f2

CHAPTER 5. UPGRADING CODEREADY WORKSPACES

119

registry.redhat.io/codeready-
workspaces/machineexec-
rhel8@sha256:19a8daf7f9adde981dcd588
b0526fa7682111097849f60a9b0e81137bdd
e8f6c

machineexec-
rhel8@sha256:19a8daf7f9adde981dcd588
b0526fa7682111097849f60a9b0e81137bdd
e8f6c

registry.redhat.io/codeready-
workspaces/plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

registry.redhat.io/codeready-
workspaces/plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

registry.redhat.io/codeready-
workspaces/plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

plugin-java11-openj9-
rhel8@sha256:ee7c41053b4c86158867455
66fc306dbf5bd1b1d367e525266477ae17a
26673e

registry.redhat.io/codeready-
workspaces/plugin-java11-
rhel8@sha256:d93195134cef6351b1f9e31
65fecc09f464dc99ab33d11b68fadd613d04
d1636

plugin-java11-
rhel8@sha256:d93195134cef6351b1f9e31
65fecc09f464dc99ab33d11b68fadd613d04
d1636

registry.redhat.io/codeready-
workspaces/plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

registry.redhat.io/codeready-
workspaces/plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

registry.redhat.io/codeready-
workspaces/plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

plugin-java8-openj9-
rhel8@sha256:8d8948134405e45bdd8959
32afa85b6cf0fbfe4e9bb58ae9753d233ddf
74672b

<source-image> <target-image>

Red Hat CodeReady Workspaces 2.8 Installation Guide

120

registry.redhat.io/codeready-
workspaces/plugin-java8-
rhel8@sha256:ecaa9ddef5ca8db9552f1b5
e66f7aacb19d72e488d718d8135b1e1d9f6
6a1a7a

plugin-java8-
rhel8@sha256:ecaa9ddef5ca8db9552f1b5
e66f7aacb19d72e488d718d8135b1e1d9f6
6a1a7a

registry.redhat.io/codeready-
workspaces/plugin-kubernetes-
rhel8@sha256:cf1d0e24f8bae0f87cae0b1
577dfd25e124437d78031d7076fabebb2dcf
48d7f

plugin-kubernetes-
rhel8@sha256:cf1d0e24f8bae0f87cae0b1
577dfd25e124437d78031d7076fabebb2dcf
48d7f

registry.redhat.io/codeready-
workspaces/plugin-openshift-
rhel8@sha256:13ce6d8fdeeea0cc5a220eb
e8abd2811c31bb2a424736759be9a6df15c
8f77fd

plugin-openshift-
rhel8@sha256:13ce6d8fdeeea0cc5a220eb
e8abd2811c31bb2a424736759be9a6df15c
8f77fd

registry.redhat.io/codeready-
workspaces/pluginbroker-artifacts-
rhel8@sha256:cda306cb7e5c42faa6ab432
18d39984d4955134b3ca9654968c28b05e0
796c3a

pluginbroker-artifacts-
rhel8@sha256:cda306cb7e5c42faa6ab432
18d39984d4955134b3ca9654968c28b05e0
796c3a

registry.redhat.io/codeready-
workspaces/pluginbroker-metadata-
rhel8@sha256:0143a80b869620af08a0d60
165dc9d13357a79e7243502832326cf053c1
7ee38

pluginbroker-metadata-
rhel8@sha256:0143a80b869620af08a0d60
165dc9d13357a79e7243502832326cf053c1
7ee38

registry.redhat.io/codeready-
workspaces/pluginregistry-
rhel8@sha256:3f5163a2303de7f538eca2c
c560403f38b920af1169821dfa06dbef695fb
10c6

pluginregistry-
rhel8@sha256:3f5163a2303de7f538eca2c
c560403f38b920af1169821dfa06dbef695fb
10c6

registry.redhat.io/codeready-
workspaces/server-
rhel8@sha256:6635e8c160c8c73c00c9b05
eccab08a4ff23d344f102ef0097a3798bf108
217a

server-
rhel8@sha256:6635e8c160c8c73c00c9b05
eccab08a4ff23d344f102ef0097a3798bf108
217a

registry.redhat.io/codeready-
workspaces/stacks-cpp-
rhel8@sha256:06cd3600c3b6c3dca0451b
10b46961fd0db4140c7dddc4f9637984022f
5cfc09

stacks-cpp-
rhel8@sha256:06cd3600c3b6c3dca0451b
10b46961fd0db4140c7dddc4f9637984022f
5cfc09

<source-image> <target-image>

CHAPTER 5. UPGRADING CODEREADY WORKSPACES

121

registry.redhat.io/codeready-
workspaces/stacks-dotnet-
rhel8@sha256:ea77974b206c7d7abcad5c
d32149f6bb669d3cf867135553af4d7dddd
24ba9cf

stacks-dotnet-
rhel8@sha256:ea77974b206c7d7abcad5c
d32149f6bb669d3cf867135553af4d7dddd
24ba9cf

registry.redhat.io/codeready-
workspaces/stacks-golang-
rhel8@sha256:e01d32e58a55a552f0d35b9
a6210b7a2cc8ed444f8ae54a24113dcc85f4
d80db

stacks-golang-
rhel8@sha256:e01d32e58a55a552f0d35b9
a6210b7a2cc8ed444f8ae54a24113dcc85f4
d80db

registry.redhat.io/codeready-
workspaces/stacks-php-
rhel8@sha256:95c324ed660924bf76e10b4
61d75aa5be2a323f26e5033239f7cbfe1ec1
0b26e

stacks-php-
rhel8@sha256:95c324ed660924bf76e10b4
61d75aa5be2a323f26e5033239f7cbfe1ec1
0b26e

registry.redhat.io/codeready-
workspaces/theia-endpoint-
rhel8@sha256:60c84fca55a997a6aab4ca0
7b8ff7d859948c1f525adeba2ae624c84fe0
59a56

theia-endpoint-
rhel8@sha256:60c84fca55a997a6aab4ca0
7b8ff7d859948c1f525adeba2ae624c84fe0
59a56

registry.redhat.io/codeready-
workspaces/theia-
rhel8@sha256:de36fdf140ba6367e6edf57
7d6dbaffa270e5e5ecf0890e498f5907f8287
858f

theia-
rhel8@sha256:de36fdf140ba6367e6edf57
7d6dbaffa270e5e5ecf0890e498f5907f8287
858f

registry.redhat.io/codeready-
workspaces/traefik-
rhel8@sha256:0698a776c6ae2f08238cf01
1d69ac2c67f934b1e25ec38701a9e360430f
d10f7

traefik-
rhel8@sha256:0698a776c6ae2f08238cf01
1d69ac2c67f934b1e25ec38701a9e360430f
d10f7

registry.redhat.io/jboss-eap-7/eap-xp2-
openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

eap-xp2-openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

registry.redhat.io/jboss-eap-7/eap-xp2-
openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

eap-xp2-openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

<source-image> <target-image>

Red Hat CodeReady Workspaces 2.8 Installation Guide

122

registry.redhat.io/jboss-eap-7/eap-xp2-
openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

eap-xp2-openj9-11-openshift-
rhel8@sha256:95d2ce73a0759de5befdbe
c115514a555752e2f20070fbfe356801da6d
0a2bd6

registry.redhat.io/jboss-eap-7/eap-xp2-
openjdk11-openshift-
rhel8@sha256:647d092383a760edc083eaf
b2d7bc3208d6409097281bedbd5eaccde3
60e7e39

eap-xp2-openjdk11-openshift-
rhel8@sha256:647d092383a760edc083eaf
b2d7bc3208d6409097281bedbd5eaccde3
60e7e39

registry.redhat.io/jboss-eap-7/eap73-
openjdk8-openshift-
rhel7@sha256:d16cfe30eaf20a157cd5d59
80a6c34f3fcbcfd2fd225e670a0138d81007
dd919

eap73-openjdk8-openshift-
rhel7@sha256:d16cfe30eaf20a157cd5d59
80a6c34f3fcbcfd2fd225e670a0138d81007
dd919

registry.redhat.io/rh-sso-7/sso74-openj9-
openshift-
rhel8@sha256:ed11770a85ca95fc9cbb2ca
de539a67ff0e127cff73a89a017415800e032
bd5b

sso74-openj9-openshift-
rhel8@sha256:ed11770a85ca95fc9cbb2ca
de539a67ff0e127cff73a89a017415800e032
bd5b

registry.redhat.io/rh-sso-7/sso74-openj9-
openshift-
rhel8@sha256:ed11770a85ca95fc9cbb2ca
de539a67ff0e127cff73a89a017415800e032
bd5b

sso74-openj9-openshift-
rhel8@sha256:ed11770a85ca95fc9cbb2ca
de539a67ff0e127cff73a89a017415800e032
bd5b

registry.redhat.io/rh-sso-7/sso74-
openshift-
rhel8@sha256:3154fd4f6ce080260de9d2b
4c02930b67b57f1181f4e660f5ddfc9f60504
20b1

sso74-openshift-
rhel8@sha256:3154fd4f6ce080260de9d2b
4c02930b67b57f1181f4e660f5ddfc9f60504
20b1

registry.redhat.io/rhel8/postgresql-
96@sha256:32d73d737acec3daabc3f5c82
36588454c8f57f7a2656ac7a50cf3a04f520b
9b

postgresql-
96@sha256:32d73d737acec3daabc3f5c82
36588454c8f57f7a2656ac7a50cf3a04f520b
9b

registry.redhat.io/rhscl/mongodb-36-
rhel7@sha256:9f799d356d7d2e442bde9d
401b720600fd9059a3d8eefea6f3b2ffa721c
0dc73

mongodb-36-
rhel7@sha256:9f799d356d7d2e442bde9d
401b720600fd9059a3d8eefea6f3b2ffa721c
0dc73

<source-image> <target-image>

CHAPTER 5. UPGRADING CODEREADY WORKSPACES

123

registry.redhat.io/ubi8/ubi-
minimal@sha256:2f6b88c037c0503da770
4bccd3fc73cb76324101af39ad28f16460e7
bce98324

ubi8ubi-
minimal@sha256:2f6b88c037c0503da770
4bccd3fc73cb76324101af39ad28f16460e7
bce98324

<source-image> <target-image>

Verification steps

Verify the images have the same digests:

$ skopeo inspect docker://<source-image>
$ skopeo inspect docker://<target-registry>/<target-organization>/<target-image>

Additional resources

To find the sources of the images list, see the values of the relatedImages attribute in the
CodeReady Workspaces Operator ClusterServiceVersion sources.

5.3.4. Upgrading CodeReady Workspaces using the CLI management tool in
restricted environment

This section describes how to upgrade Red Hat CodeReady Workspaces using the CLI management tool
in restricted environment.

Prerequisites

An administrative account on an OpenShift instance.

A running instance version 2.7 of Red Hat CodeReady Workspaces, installed using the CLI
management tool on the same instance of OpenShift, with the crwctl --installer operator
method, in the <openshift-workspaces> project. See Section 3.4, “Installing CodeReady
Workspaces in a restricted environment”.

Essential container images are available to the CodeReady Workspaces server running in the
cluster. See Section 5.3.3, “Preparing an private registry” .

The crwctl 2.8 management tool is available. See Section 3.3.1, “Installing the crwctl CLI
management tool”.

Procedure

1. In all running workspaces in the CodeReady Workspaces 2.7 instance, save and push changes
back to the Git repositories.

2. Stop all workspaces in the CodeReady Workspaces 2.7 instance.

3. Run the following command:

$ crwctl server:update --che-operator-image=<image-registry>/<organization>/crw-2-rhel8-
operator:2.8 -n openshift-workspaces

<image-registry>: A host name and a port of the container-image registry accessible in the

Red Hat CodeReady Workspaces 2.8 Installation Guide

124

https://github.com/redhat-developer/codeready-workspaces-operator/blob/crw-2.8-rhel-8/manifests/codeready-workspaces.csv.yaml

<image-registry>: A host name and a port of the container-image registry accessible in the
restricted environment.

<organization>: An organization of the container-image registry. See: Section 5.3.3,
“Preparing an private registry”.

Verification steps

1. Navigate to the CodeReady Workspaces instance.

2. The 2.8 version number is visible at the bottom of the page.

NOTE

For slow systems or internet connections, add the --k8spodwaittimeout=1800000 flag
option to the crwctl server:update command to extend the Pod timeout period to
1800000 ms or longer.

CHAPTER 5. UPGRADING CODEREADY WORKSPACES

125

CHAPTER 6. UNINSTALLING CODEREADY WORKSPACES
This section describes uninstallation procedures for Red Hat CodeReady Workspaces. The uninstallation
process leads to a complete removal of CodeReady Workspaces-related user data. The method
previously used to install the CodeReady Workspaces instance determines the uninstallation method.

For CodeReady Workspaces installed using OperatorHub, for the OpenShift Web Console
method see Section 6.1, “Uninstalling CodeReady Workspaces after OperatorHub installation
using the OpenShift web console”.

For CodeReady Workspaces installed using OperatorHub, for the CLI method see Section 6.2,
“Uninstalling CodeReady Workspaces after OperatorHub installation using OpenShift CLI”.

For CodeReady Workspaces installed using crwctl, see Section 6.3, “Uninstalling CodeReady
Workspaces after crwctl installation”

6.1. UNINSTALLING CODEREADY WORKSPACES AFTER
OPERATORHUB INSTALLATION USING THE OPENSHIFT WEB
CONSOLE

This section describes how to uninstall CodeReady Workspaces from a cluster using the OpenShift
Administrator Perspective main menu.

Prerequisites

CodeReady Workspaces was installed on an OpenShift cluster using OperatorHub.

Procedure

1. Navigate to the OpenShift web console and select the Administrator Perspective.

2. In the Home > Projects section, navigate to the project containing the CodeReady Workspaces
instance.

NOTE

The default project name is <openshift-workspaces>.

3. In the Operators > Installed Operators section, click Red Hat CodeReady Workspaces in the
list of installed operators.

4. In the Red Hat CodeReady Workspaces Cluster tab, click the displayed Red Hat CodeReady
Workspaces Cluster, and select the Delete cluster option in the Actions drop-down menu on
the top right.

NOTE

The default Red Hat CodeReady Workspaces Cluster name is <red-hat-
codeready-workspaces>.

5. In the Operators > Installed Operators section, click Red Hat CodeReady Workspaces in the
list of installed operators and select the Uninstall Operator option in the Actions drop-down
menu on the top right.

Red Hat CodeReady Workspaces 2.8 Installation Guide

126

6. In the Home > Projects section, navigate to the project containing the CodeReady Workspaces
instance, and select the Delete Project option in the Actions drop-down menu on the top right.

6.2. UNINSTALLING CODEREADY WORKSPACES AFTER
OPERATORHUB INSTALLATION USING OPENSHIFT CLI

This section provides instructions on how to uninstall a CodeReady Workspaces instance using oc
commands.

Prerequisites

CodeReady Workspaces was installed on an OpenShift cluster using OperatorHub.

The oc tool is available.

Procedure

The following procedure provides command-line outputs as examples. Note that output in the user
terminal may differ.

To uninstall a CodeReady Workspaces instance from a cluster:

1. Sign in to the cluster:

$ oc login -u <username> -p <password> <cluster_URL>

2. Switch to the project where the CodeReady Workspaces instance is deployed:

$ oc project <codeready-workspaces_project>

3. Obtain the CodeReady Workspaces cluster name. The following shows a cluster named red-hat-
codeready-workspaces:

$ oc get checluster
NAME AGE
red-hat-codeready-workspaces 27m

4. Delete the CodeReady Workspaces cluster:

$ oc delete checluster red-hat-codeready-workspaces
checluster.org.eclipse.che "red-hat-codeready-workspaces" deleted

5. Obtain the name of the CodeReady Workspaces cluster service version (CSV) module. The
following detects a CSV module named red-hat-codeready-workspaces.v2.8:

$ oc get csv
NAME DISPLAY VERSION REPLACES PHASE
red-hat-codeready-workspaces.v2.8 Red Hat CodeReady Workspaces 2.8 red-hat-
codeready-workspaces.v2.7 Succeeded

6. Delete the CodeReady Workspaces CSV:

CHAPTER 6. UNINSTALLING CODEREADY WORKSPACES

127

$ oc delete csv red-hat-codeready-workspaces.v2.8
clusterserviceversion.operators.coreos.com "red-hat-codeready-workspaces.v2.8" deleted

6.3. UNINSTALLING CODEREADY WORKSPACES AFTER CRWCTL
INSTALLATION

This section describes how to uninstall an instance of Red Hat CodeReady Workspaces that was installed
using the crwctl tool.

Prerequisites

The crwctl tool is available.

The oc tool is available.

The crwctl tool installed the CodeReady Workspaces instance on OpenShift.

Procedure

1. Sign in to the OpenShift cluster:

$ oc login -u <username> -p <password> <cluster_URL>

2. Export the name of the CodeReady Workspaces namespace you want to remove:

$ export codereadyNamespace=<codeready-namespace-to-remove>

3. Export your user access token and Keycloak URLs:

$ export KEYCLOAK_BASE_URL="http://${KEYCLOAK_URL}/auth"

$ export USER_ACCESS_TOKEN=$(curl -X POST
$KEYCLOAK_BASE_URL/realms/codeready/protocol/openid-connect/token \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "username=admin" \
 -d "password=admin" \
 -d "grant_type=password" \
 -d "client_id=codeready-public" | jq -r .access_token)

4. Stop the server using the UAT:

$ crwctl/bin/crwctl server:stop -n ${codereadyNamespace} --access-
token=$USER_ACCESS_TOKEN

5. Delete your project and your CodeReady Workspaces deployment:

$ oc project ${codereadyNamespace}

$ oc delete deployment codeready-operator

$ oc delete checluster codeready-workspaces

Red Hat CodeReady Workspaces 2.8 Installation Guide

128

$ oc delete project ${codereadyNamespace}

6. Verify that the removal was successful by listing the information about the project:

$ oc describe project ${codereadyNamespace}

7. Remove a specified ClusterRoleBinding:

$ oc delete clusterrolebinding codeready-operator

CHAPTER 6. UNINSTALLING CODEREADY WORKSPACES

129

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. SUPPORTED PLATFORMS
	CHAPTER 2. CONFIGURING THE CODEREADY WORKSPACES INSTALLATION
	2.1. UNDERSTANDING THE CHECLUSTER CUSTOM RESOURCE
	2.2. CHECLUSTER CUSTOM RESOURCE FIELDS REFERENCE

	CHAPTER 3. INSTALLING CODEREADY WORKSPACES
	3.1. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT 4 USING OPERATORHUB
	3.1.1. Creating a project in OpenShift Web Console
	3.1.2. Installing the Red Hat CodeReady Workspaces Operator
	3.1.3. Creating an instance of the Red Hat CodeReady Workspaces Operator

	3.2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT 4 USING THE CLI
	3.3. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT CONTAINER PLATFORM 3.11
	3.3.1. Installing the crwctl CLI management tool
	3.3.2. Installing CodeReady Workspaces on OpenShift 3 using the Operator

	3.4. INSTALLING CODEREADY WORKSPACES IN A RESTRICTED ENVIRONMENT
	3.4.1. Installing CodeReady Workspaces in a restricted environment using OperatorHub
	3.4.2. Installing CodeReady Workspaces in a restricted environment using CLI management tool
	3.4.2.1. Preparing an private registry
	3.4.2.2. Preparing CodeReady Workspaces Custom Resource for restricted environment
	3.4.2.3. Starting CodeReady Workspaces installation in a restricted environment using CodeReady Workspaces CLI management tool

	3.4.3. Preparing CodeReady Workspaces Custom Resource for installing behind a proxy

	CHAPTER 4. CONFIGURING CODEREADY WORKSPACES
	4.1. ADVANCED CONFIGURATION OPTIONS FOR THE CODEREADY WORKSPACES SERVER COMPONENT
	4.1.1. Understanding CodeReady Workspaces server advanced configuration using the Operator
	4.1.2. CodeReady Workspaces server component system properties reference
	4.1.2.1. Che server
	4.1.2.2. Authentication parameters
	4.1.2.3. Internal
	4.1.2.4. OpenShift Infra parameters
	4.1.2.5. OpenShift Infra parameters
	4.1.2.6. Experimental properties
	4.1.2.7. Configuration of major "/websocket" endpoint
	4.1.2.8. CORS settings
	4.1.2.9. Factory defaults
	4.1.2.10. Devfile defaults
	4.1.2.11. Che system
	4.1.2.12. Workspace limits
	4.1.2.13. Users workspace limits
	4.1.2.14. Organizations workspace limits
	4.1.2.15. Organizations notifications settings
	4.1.2.16. Multi-user-specific OpenShift infrastructure configuration
	4.1.2.17. Keycloak configuration

	4.2. CONFIGURING PROJECT STRATEGIES
	4.2.1. One project per user strategy
	4.2.2. One project per workspace strategy
	4.2.3. One project for all workspaces strategy
	4.2.4. Allowing user-defined workspace projects
	4.2.5. Handling incompatible usernames or user IDs
	4.2.6. Pre-creating projects for users
	4.2.7. Labeling the namespaces

	4.3. CONFIGURING STORAGE STRATEGIES
	4.3.1. Storage strategies for codeready-workspaces workspaces
	4.3.1.1. The common PVC strategy
	4.3.1.2. The per-workspace PVC strategy
	4.3.1.3. The unique PVC strategy
	4.3.1.4. How subpaths are used in PVCs

	4.3.2. Configuring a CodeReady Workspaces workspace with a persistent volume strategy
	4.3.2.1. Configuring a PVC strategy using the Operator

	4.4. CONFIGURING STORAGE TYPES
	4.4.1. Persistent storage
	4.4.2. Ephemeral storage
	4.4.3. Asynchronous storage
	4.4.4. Configuring storage type defaults for CodeReady Workspaces dashboard
	4.4.5. Idling asynchronous storage Pods

	4.5. RUNNING MORE THAN ONE WORKSPACE AT A TIME
	4.6. CONFIGURING WORKSPACE EXPOSURE STRATEGIES
	4.6.1. Configuring workspace exposure strategies using an Operator
	4.6.2. Workspace exposure strategies
	4.6.2.1. Multi-host strategy
	4.6.2.2. Single-host strategy

	4.6.3. Security considerations
	4.6.3.1. JSON web token (JWT) proxy
	4.6.3.2. Secured plug-ins and editors
	4.6.3.3. Secured container-image components
	4.6.3.4. Cross-site request forgery attacks
	4.6.3.5. Phishing attacks

	4.7. CONFIGURING WORKSPACES NODESELECTOR
	4.8. CONFIGURING RED HAT CODEREADY WORKSPACES SERVER HOSTNAME
	4.9. CONFIGURING LABELS FOR OPENSHIFT ROUTE
	4.10. CONFIGURING LABELS AND DOMAINS FOR OPENSHIFT ROUTE TO WORK WITH ROUTER SHARDING
	4.11. DEPLOYING CODEREADY WORKSPACES WITH SUPPORT FOR GIT REPOSITORIES WITH SELF-SIGNED CERTIFICATES
	4.12. INSTALLING CODEREADY WORKSPACES USING STORAGE CLASSES
	4.13. IMPORTING UNTRUSTED TLS CERTIFICATES TO CODEREADY WORKSPACES
	4.13.1. Adding new CA certificates into CodeReady Workspaces
	4.13.2. Verification at the CodeReady Workspaces installation level
	4.13.3. Verification at the workspace level

	4.14. SWITCHING BETWEEN EXTERNAL AND INTERNAL DNS NAMES IN INTER-COMPONENT COMMUNICATION
	4.15. SETTING UP THE RH-SSO CODEREADY-WORKSPACES-USERNAME-READONLY THEME FOR THE RED HAT CODEREADY WORKSPACES LOGIN PAGE
	4.15.1. Logging in to RH-SSO
	4.15.2. Setting up the RH-SSO codeready-workspaces-username-readonly theme

	4.16. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT VARIABLE INTO A RED HAT CODEREADY WORKSPACES CONTAINER
	4.16.1. Mounting a secret as a file into a Red Hat CodeReady Workspaces container
	4.16.2. Mounting a secret as an environment variable into a Red Hat CodeReady Workspaces container

	4.17. ENABLING DEV WORKSPACE ENGINE

	CHAPTER 5. UPGRADING CODEREADY WORKSPACES
	5.1. UPGRADING CODEREADY WORKSPACES USING OPERATORHUB
	5.1.1. Specifying the approval strategy of CodeReady Workspaces in OperatorHub
	5.1.2. Manually upgrading CodeReady Workspaces in OperatorHub

	5.2. UPGRADING CODEREADY WORKSPACES USING THE CLI MANAGEMENT TOOL
	5.3. UPGRADING CODEREADY WORKSPACES USING THE CLI MANAGEMENT TOOL IN RESTRICTED ENVIRONMENT
	5.3.1. Understanding network connectivity in restricted environments
	5.3.2. Building offline registry images
	5.3.2.1. Building an offline devfile registry image
	5.3.2.2. Building an offline plug-in registry image

	5.3.3. Preparing an private registry
	5.3.4. Upgrading CodeReady Workspaces using the CLI management tool in restricted environment

	CHAPTER 6. UNINSTALLING CODEREADY WORKSPACES
	6.1. UNINSTALLING CODEREADY WORKSPACES AFTER OPERATORHUB INSTALLATION USING THE OPENSHIFT WEB CONSOLE
	6.2. UNINSTALLING CODEREADY WORKSPACES AFTER OPERATORHUB INSTALLATION USING OPENSHIFT CLI
	6.3. UNINSTALLING CODEREADY WORKSPACES AFTER CRWCTL INSTALLATION

