& RedHat

Red Hat Data Grid 7.2

Developer Guide

For use with Red Hat JBoss Data Grid 7.2

Last Updated: 2020-05-06

Red Hat Data Grid 7.2 Developer Guide

For use with Red Hat JBoss Data Grid 7.2

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

An advanced guide intended for developers using Red Hat JBoss Data Grid 7.2

Table of Contents

Table of Contents

PART I. PROGRAMM ABLE APIS .ttt et ettt ettt e e et raneenneeeaneenaness 16
CHAPTER 1. PROGRAMM ABLE APIS ottt et ettt et et raneennneennnenns 17
CHAPTER 2. THE CACHE APl ittt ettt ettt e et et et eaneeeeneenaneenaneenneenns 18
2.1. THE CACHE API 18
2.2. USING THE CONFIGURATIONBUILDER API TO CONFIGURE THE CACHE API 18
2.3. PER-INVOCATION FLAGS 19
2.3.1. Per-Invocation Flags 19
2.3.2. Per-Invocation Flag Functions 19
2.3.3. Configure Per-Invocation Flags 19
2.3.4. Per-Invocation Flags Example 20

2.4. THE ADVANCEDCACHE INTERFACE 20
2.4.1. The AdvancedCache Interface 20
2.4.2. Flag Usage with the AdvancedCache Interface 20
2.4.3. GET and PUT Usage in Distribution Mode 21
2.4.3.1. GET and PUT Usage in Distribution Mode 21
2.4.3.2. Distributed GET and PUT Operation Resource Usage 21

2.4.4. Limitations of Map Methods 21
CHAPTER 3. THE MULTIMAPR CACHE . ittt ittt et e ettt et et eeaneeanneenneenn, 23
3.1. THE MULTIMAP CACHE 23
3.2. INSTALLING MULTIMAPCACHE USING MAVEN 23
3.3. CREATING A MULTIMAP CACHE 23
3.4. EXAMPLE MULTIMAPCACHE USAGE 23
CHAPTER 4. THE ASYNCHRONOUS APl ..ottt ittt et et et eieeeaeeanneenneenn, 25
4.1. THE ASYNCHRONOUS API 25
4.2. ASYNCHRONOUS API BENEFITS 25
4.3. ABOUT ASYNCHRONOUS PROCESSES 25
4.4, RETURN VALUES AND THE ASYNCHRONOUS API 26
CHAPTER 5. THE BAT CHING APl Lottt ittt ittt et ettt et et eeaeennneennnennneenn 27
5.1. THE BATCHING API 27
5.2. ABOUT JAVA TRANSACTION API 27
5.3. BATCHING AND THE JAVA TRANSACTION API (JTA) 27
5.4. USING THE BATCHING API 27
5.4.1. Configure the Batching API 27
5.4.2. Use the Batching API 28
CHAPTER 6. THE GROUPING AP ..ttt ettt et ettt et et eeaeeanneennnenaneenn 29
6.1. THE GROUPING API 29
6.2. GROUPING API OPERATIONS 29
6.3. GROUPING API USE CASE 29
6.4. CONFIGURE THE GROUPING API 30
6.4.1. Configure the Grouping API 30
6.4.2. Enable Groups 30
6.4.3. Specify an Intrinsic Group 30
6.4.4. Specify an Extrinsic Group 31
6.4.5. Register Groupers 31
CHAPTER 7. THE PERSISTENCE SPI ..ottt et ettt et e eaneeannennneenn, 32
7.1. THE PERSISTENCE SPI 32

Red Hat Data Grid 7.2 Developer Guide

7.2. PERSISTENCE SPI BENEFITS
7.3. PROGRAMMATICALLY CONFIGURE THE PERSISTENCE SPI
7.4. PERSISTENCE EXAMPLES
7.4.1. Persistence Examples
7.4.2. Configure the Cache Store Programmatically
7.4.3. LevelDB Cache Store Programmatic Configuration
7.4.4. JdbcBinaryStore Programmatic Configuration
7.4.5. JdbcStringBasedStore Programmatic Configuration
7.4.6. JdbcMixedStore Programmatic Configuration
7.4.7. JPA Cache Store Sample Programmatic Configuration
7.4.8. Cassandra Cache Store Sample Programmatic Configuration

CHAPTER 8. THE CONFIGURATIONBUILDER APl .. i ittt et tttieeenneenaannnns
8.1. THE CONFIGURATIONBUILDER API
8.2. USING THE CONFIGURATIONBUILDER API
8.2.1. Programmatically Create a CacheManager and Replicated Cache
8.2.2. Cluster-Wide Dynamic Cache Creation
8.2.3. Create a Customized Cache Using the Default Named Cache
8.2.4. Create a Customized Cache Using a Non-Default Named Cache
8.2.5. Using the Configuration Builder to Create Caches Programmatically
8.2.6. Global Configuration Examples
8.2.6.1. Globally Configure the Transport Layer
8.2.6.2. Globally Configure the Cache Manager Name
8.2.6.3. Globally Configure JGroups
8.2.7. Cache Level Configuration Examples
8.2.7.1. Cache Level Configuration for the Cluster Mode
8.2.7.2. Cache Level Eviction and Expiration Configuration
8.2.7.3. Cache Level Configuration for JTA Transactions
8.2.7.4. Cache Level Configuration Using Chained Persistent Stores
8.2.7.5. Cache Level Configuration for Advanced Externalizers
8.2.7.6. Cache Level Configuration for Partition Handling (Library Mode)

CHAPTER O. THE EXTERNALIZABLE APl L.ttt ittt et ettt et eaeeeaneeannenaneenn
9.1. THE EXTERNALIZABLE API
9.2. CUSTOMIZE EXTERNALIZERS
9.3. ANNOTATING OBJECTS FOR MARSHALLING USING @SERIALIZEWITH
9.4. USING AN ADVANCED EXTERNALIZER
9.4.1. Using an Advanced Externalizer
9.4.2. Implement the Methods
9.4.3. Link Externalizers with Marshaller Classes
9.4.4. Register the Advanced Externalizer (Programmatically)
9.4.5. Register Multiple Externalizers
9.5. CUSTOM EXTERNALIZER ID VALUES
9.5.1. Custom Externalizer ID Values
9.5.2. Customize the Externalizer ID (Programmatically)

CHAPTER 10. THE NOTIFICATION/LISTENER APl .. i i it ittt inneeeeannnn,
10.1. THE NOTIFICATION/LISTENER API
10.2. LISTENER EXAMPLE
10.3. LISTENER NOTIFICATIONS
10.3.1. Listener Notifications
10.3.2. About Cache-level Notifications
10.3.3. Cache Manager-level Notifications
10.3.4. About Synchronous and Asynchronous Notifications

32
32
33
33
33
34
35
36
38
39
39

41
41
41
41

42

42

43

43

43

44

44

44

44

44

45

45

45

46

46

47
47
47
47
48
48
48
49
50
50
50

51

51

52
52
52
52
52
52
52
54

Table of Contents

10.4. MODIFYING CACHE ENTRIES 54
10.4.1. Modifying Cache Entries 54
10.4.2. Cache Entry Modified Listener Configuration 54
10.4.3. Cache Entry Modified Listener Example 54

10.5. CLUSTERED LISTENERS 55
10.5.1. Clustered Listeners 55
10.5.2. Configuring Clustered Listeners 55
10.5.3. The Cache Listener API 56
10.5.4. Clustered Listener Example 57
10.5.5. Optimized Cache Filter Converter 58

10.6. REMOTE EVENT LISTENERS (HOT ROD) 59
10.6.1. Remote Event Listeners (Hot Rod) 59
10.6.2. Adding and Removing Event Listeners 60
10.6.3. Remote Event Client Listener Example 61
10.6.4. Filtering Remote Events 62

10.6.4.1. Filtering Remote Events 62
10.6.4.2. Custom Filters for Remote Events 63
10.6.4.3. Enhanced Filter Factories 65
10.6.5. Customizing Remote Events 67
10.6.5.1. Customizing Remote Events 67
10.6.5.2. Adding a Converter 68
10.6.5.3. Lightweight Events 69
10.6.5.4. Dynamic Converter Instances 69
10.6.5.5. Adding a Remote Client Listener for Custom Events 70
10.6.6. Event Marshalling 71
10.6.7. Remote Event Clustering and Failover 72
CHAPTER 1. JSR-107 (JCACHE) AP ottt et et et ettt et et aieenaneeanneenneenn, 74

11.1. JSR-107 (JCACHE) API 74

11.2. DEPENDENCIES 74
11.2.1. Option 1: Maven 74
11.2.2. Option 2: Adding the necessary files to the classpath 74

11.3. CREATE A LOCAL CACHE 75
11.3.1. Library Mode 76
11.3.2. Client-Server Mode 76

11.4. STORE AND RETRIEVE DATA 76

11.5. COMPARING JAVA.UTIL.CONCURRENT.CONCURRENTMAP AND JAVAX.CACHE.CACHE APIS 77

11.6. CLUSTERING JCACHE INSTANCES 79

11.7. MULTIPLE CACHING PROVIDERS 79

CHAPTER 12. THE HEALTH CHECK AP it i et et ettt et et raieennneenneenns 81
12.1. THE HEALTH CHECK API 81
12.2. ACCESSING THE HEALTH CHECK API PROGRAMMATICALLY 81

CHAPTER 13, THE REST AP ottt ettt ettt ettt et eaneeeeseannneeeenannnneenennn, 83

13.1. THE REST INTERFACE 83

13.2. RUBY CLIENT CODE 83

13.3. USING JSON WITH RUBY EXAMPLE 83

13.4. PYTHON CLIENT CODE 84

13.5. JAVA CLIENT CODE 84

13.6. USING THE REST INTERFACE 86
13.6.1. REST Interface Operations 86

13.6.1.1. Data Formats 87
13.6.1.2. Headers 87

Red Hat Data Grid 7.2 Developer Guide

13.6.1.3. Accept Header 87
13.6.1.4. Key-Content-Type Header 87
13.6.2. Adding Data Through the REST API 88
13.6.2.1. Adding Data to the Cache 88
13.6.2.2. PUT /{cacheName}/{cacheKey} 88
13.6.2.3. POST /{cacheName}l/{cacheKey} 89
13.6.2.4. Headers for the PUT and POST Methods 89
13.6.3. Retrieving Data Through the REST API 90
13.6.3.1. Retrieving Data from the Cache 90
13.6.3.2. GET /{cacheName}/{cacheKey} 90
13.6.3.3. HEAD /{cacheName}/{cacheKey} 90
13.6.3.4. GET /{cacheName} 91
13.6.3.5. Headers for the GET and HEAD Methods 91
13.6.4. Removing Data Through the REST API 91
13.6.4.1. Removing Data from the Cache 91
13.6.4.2. DELETE /{cacheName}/{cacheKey} 91
13.6.4.3. DELETE /{cacheName} 91
13.6.4.4. Background Delete Operations 92
13.6.5. ETag Based Headers 92
13.6.6. Querying Data via the REST Interface 93
13.6.6.1. JSON to Protostream Conversion 93
13.6.6.2. Registering Protobuf Schemas 94
13.6.6.3. Mapping JSON Documents to Protobuf Messages 94
13.6.6.4. Populating the Cache 94
13.6.6.5. Querying REST Endpoints 95
13.6.6.5.1. Optional Request Parameters 95
13.6.6.5.2. Query Results 96
CHAPTER 14. CLUSTERED COUNTERS ...\ttt ettt ettt tateeieeeaneeeaneennneennnesaneenn 97
14.1. THE COUNTER API 97
14.2. ADDING MAVEN DEPENDENCIES 97
14.3. RETRIEVING THE COUNTERMANAGER INTERFACE 98
14.4. USING CLUSTERED COUNTERS 98
14.4.1. XML Configuration for Clustered Counters 98
14.4.1.1. XML Definition 98
14.4.2. Run-time Configuration of Clustered Counters 99
14.4.3. Programmatic Configuration of Clustered Counters 100
14.4.3.1. Using Clustered Counters 100
CHAPTER 15. CLUSTERED LOCKS ..ttt ittt ettt e et et eeeennneeanneeaneennneennnens 103
15.1. THE LOCK API 103
15.2. SUPPORTED CONFIGURATION 103
15.3. ADDING MAVEN DEPENDENCIES 103
15.4. USING CLUSTERED LOCKS 103
CHAPTER16. THE HOT ROD INTERF ACE ...ttt ittt ee ettt eeteeneeeannenaneennneennnens 106
16.1. ABOUT HOT ROD 106
16.2. HOT ROD HEADERS 106
16.2.1. Hot Rod Header Data Types 106
16.2.2. Request Header 106
16.2.3. Response Header 108
16.2.4. Topology Change Headers 108
16.2.4.1. Topology Change Headers 108
16.2.4.2. Topology Change Marker Values 109

Table of Contents

16.2.4.3. Topology Change Headers for Topology-Aware Clients 109
16.2.4.4. Topology Change Headers for Hash Distribution-Aware Clients 110
16.3. HOT ROD OPERATIONS 12
16.3.1. Hot Rod Operations 12
16.3.2. Hot Rod Authenticate Operation 13
16.3.3. Hot Rod AuthMechList Operation n4
16.3.4. Hot Rod BulkGet Operation 14
16.3.5. Hot Rod BulkKeysGet Operation 15
16.3.6. Hot Rod Clear Operation n7
16.3.7. Hot Rod ContainsKey Operation nz
16.3.8. Hot Rod Exec Operation 18
16.3.9. Hot Rod Get Operation 19
16.3.10. Hot Rod GetAll Operation 120
16.3.11. Hot Rod GetWithMetadata Operation 121
16.3.12. Hot Rod GetWithVersion Operation 123
16.3.13. Hot Rod IterationEnd Operation 124
16.3.14. Hot Rod IterationNext Operation 124
16.3.15. Hot Rod IterationStart Operation 126
16.3.16. Hot Rod Ping Operation 128
16.3.17. Hot Rod Put Operation 128
16.3.18. Hot Rod PutAll Operation 129
16.3.19. Hot Rod PutlfAbsent Operation 131
16.3.20. Hot Rod Query Operation 132
16.3.21. Hot Rod Remove Operation 133
16.3.22. Hot Rod RemovelfUnmodified Operation 134
16.3.23. Hot Rod Replace Operation 135
16.3.24. Hot Rod ReplacelfUnmodified Operation 136
16.3.25. Hot Rod ReplaceWithVersion Operation 138
16.3.26. Hot Rod Stats Operation 140
16.3.27. Hot Rod Size Operation 141
16.4. HOT ROD OPERATION VALUES 142
16.4.1. Hot Rod Operation Values 142
16.4.2. Magic Values 143
16.4.3. Status Values 143
16.4.4. Client Intelligence Values 144
16.4.5. Flag Values 144
16.4.6. Hot Rod Error Handling 145
16.5. HOT ROD REMOTE EVENTS 145
16.5.1. Hot Rod Remote Events 145
16.5.2. Hot Rod Add Client Listener for Remote Events 145
16.5.3. Hot Rod Remote Client Listener for Remote Events 147
16.5.4. Hot Rod Event Header 148
16.5.5. Hot Rod Cache Entry Created Event 149
16.5.6. Hot Rod Cache Entry Modified Event 149
16.5.7. Hot Rod Cache Entry Removed Event 150
16.5.8. Hot Rod Custom Event 150
16.6. PUT REQUEST EXAMPLE 151
16.7. HOT ROD JAVA CLIENT 153
16.7.1. Hot Rod Java Client 153
16.7.2. Hot Rod Java Client Download 153
16.7.3. Hot Rod Java Client Configuration 153
16.7.4. Hot Rod Java Client Basic API 155
16.7.5. Hot Rod Java Client Versioned API 156

Red Hat Data Grid 7.2 Developer Guide

16.7.6. Cluster-Wide Dynamic Cache Creation with Hot Rod Java Client 156
16.8. HOT ROD C++ CLIENT 157
16.8.1. Hot Rod C++ Client 157
16.8.2. Hot Rod C++ Client Formats 157
16.8.3. Hot Rod C++ Client Prerequisites 157
16.8.4. Installing the Hot Rod C++ Client 158
16.8.4.1. Hot Rod C++ Client Download and Installation 158
16.8.4.2. Hot Rod C++ Client RHEL Download and Installation 158
16.8.4.3. Hot Rod C++ Client Windows Download and Installation 159
16.8.5. Utilizing the Protobuf Compiler with the Hot Rod C++ Client 159
16.8.5.1. Using the Protobuf Compiler in RHEL 7 159
16.8.5.2. Using the Protobuf Compiler in Windows 159
16.8.6. Hot Rod C++ Client Configuration 160
16.8.7. Hot Rod C++ Client API 161
16.8.8. Hot Rod C++ Client Asynchronous API 161
16.8.9. Hot Rod C++ Client Remote Event Listeners 163
16.8.10. Hot Rod C++ Client Working with Sites 164
16.8.10.1. Manual Cluster Switch 165
16.8.11. Performing Remote Queries via the Hot Rod C++ Client 165
16.8.12. Using the Near Cache with the Hot Rod C++ Client 168
16.8.13. Script Execution Using the Hot Rod C++ Client 169
16.9. HOT ROD C# CLIENT 171
16.9.1. Hot Rod C# Client 171
16.9.2. Hot Rod C# Client Download and Installation 171
16.9.3. Creating a Hot Rod C# .NET Project 176
16.9.4. Hot Rod C# Client Configuration 177
16.9.5. Hot Rod C# Client API 177
16.9.6. Hot Rod C# Client Asynchronous API 178
16.9.7. Hot Rod C# Client Remote Event Listeners 179
16.9.8. Hot Rod C# Client Working with Sites 180
16.9.8.1. Manual Cluster Switch 180
16.9.9. Performing Remote Queries via the Hot Rod C# Client 181
16.9.10. Using the Near Cache with the Hot Rod C# Client 183
16.9.11. Script Execution Using the Hot Rod C# Client 183
16.9.12. String Marshaller for Interoperability 185
16.10. HOT ROD NODE.JS CLIENT 185
16.10.1. Hot Rod Node.js Client 186
16.10.2. Installing the Hot Rod Node.js Client 186
16.10.3. Hot Rod Node.js Requirements 186
16.10.4. Hot Rod Node.js Basic Functionality 186
16.10.5. Hot Rod Node.js Conditional Operations 188
16.10.6. Hot Rod Node.js Data Sets 190
16.10.7. Hot Rod Node.js Remote Events 190
16.10.8. Hot Rod Node.js Working with Clusters 191
16.10.9. Hot Rod Node.js Working with Sites 192
16.10.9.1. Manual Cluster Switch 193
16.10.10. Memory Profiling 193
16.10.10.1. Avoiding Memory Issues with Promises 194
16.11. INTEROPERABILITY BETWEEN HOT ROD C++ AND HOT ROD JAVA CLIENT 197
16.12. COMPATIBILITY BETWEEN SERVER AND HOT ROD CLIENT VERSIONS 197
PART Il. CREATING AND USING INFINISPAN QUERIES IN RED HAT JBOSS DATAGRID 199

CHAPTER17. GETTING STARTED WITH INFINISPAN QUERY

17.1. INTRODUCTION
17.2. INSTALLING QUERYING FOR RED HAT JBOSS DATA GRID
17.3. ABOUT QUERYING IN RED HAT JBOSS DATA GRID
17.3.1. Hibernate Search and the Query Module
17.3.2. Apache Lucene and the Query Module
17.4. INDEXING
17.4.1. Indexing
17.4.2. Indexing with Transactional and Non-transactional Caches
17.4.3. Configure Indexing Programmatically
17.4.4. Rebuilding the Index
17.5. SEARCHING

CHAPTER 18. ANNOTATING OBJECTS AND QUERYING

18.1. ANNOTATING OBJECTS AND QUERYING
18.2. REGISTERING A TRANSFORMER VIA ANNOTATIONS
18.3. QUERYING EXAMPLE

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

19.1. BASIC MAPPING
19.1.1. Basic Mapping
19.1.2. @Indexed
19.1.3. @Field
19.1.4. @NumericField
19.2. MAPPING PROPERTIES MULTIPLE TIMES
19.3. EMBEDDED AND ASSOCIATED OBJECTS
19.3.1. Embedded and Associated Objects
19.3.2. Indexing Associated Objects
19.3.3. @IndexedEmbedded
19.3.4. The targetElement Property
19.4. BOOSTING
19.4.1. Boosting
19.4.2. Static Index Time Boosting
19.4.3. Dynamic Index Time Boosting
19.5. ANALYSIS
19.5.1. Default Analyzer and Analyzer by Class
19.5.2. Named Analyzers
19.5.3. Referencing Analyzer Definitions
19.5.4. @AnalyzerDef for Solr
19.5.5. Loading Analyzer Resources
19.5.6. Dynamic Analyzer Selection
19.5.7. Retrieving an Analyzer
19.6. BRIDGE
19.6.1. Bridges
19.6.2. Built-in Bridges
19.6.3. Custom Bridges
19.6.3.1. Custom Bridges
19.6.3.2. FieldBridge
19.6.3.3. StringBridge
19.6.3.4. Two-Way Bridge
19.6.3.5. Parameterized Bridge
19.6.3.6. Type Aware Bridge
19.6.3.7. ClassBridge

Table of Contents

200
200
200
201
201
201
201
201
202
202
203

........................ 204

204
204
205

............................. 207

207
207
207
207
209
210
210
210
21
21
213
213
213
213
214
215
215
216
217
217
219
219
221
222
222
222
223
223
223
224
225
226
226
227

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 20. QUERYING ...ttt ittt eete e eeenneeeseanneeeessannnneessennnneesnnns 228
20.1. QUERYING 228
20.2. BUILDING QUERIES 228

20.2.1. Building Queries 228
20.2.2. Building a Lucene Query Using the Lucene-based Query API 228
20.2.3. Building a Lucene Query 228
20.2.3.1. Building a Lucene Query 228
20.2.3.2. Keyword Queries 229
20.2.3.3. Fuzzy Queries 231
20.2.3.4. Wildcard Queries 232
20.2.3.5. Phrase Queries 232
20.2.3.6. Range Queries 233
20.2.3.7. Combining Queries 233
20.2.3.8. Query Options 234
20.2.4. Build a Query with Infinispan Query 234
20.2.4.1. Generality 235
20.2.4.2. Pagination 235
20.2.4.3. Sorting 235
20.2.4.4. Projection 236
20.2.4.5. Limiting the Time of a Query 237
20.2.4.6. Raise an Exception on Time Limit 237
20.3. RETRIEVING THE RESULTS 238
20.3.1. Retrieving the Results 238
20.3.2. Performance Considerations 238
20.3.3. Result Size 238
20.3.4. Understanding Results 239
20.4.FILTERS 239
20.4.1. Filters 239
20.4.2. Defining and Implementing a Filter 239
20.4.3. The @Factory Filter 240
20.4.4. Key Objects 241
20.4.5. Full Text Filter 242
20.4.6. Using Filters in a Sharded Environment 243
20.5. CONTINUOUS QUERIES 244
20.5.1. Continuous Query 244
20.5.2. Continuous Query Evaluation 245
20.5.3. Using Continuous Queries 245
20.5.4. C++ and C# Continuous Queries 247
20.5.4.1. C++ Continous Queries 247
20.5.4.2. C# Continuous Queries 247
20.5.5. Performance Considerations with Continuous Queries 248
20.6. BROADCAST QUERIES 248
20.6.1. Broadcast Queries 248
20.6.1.1. Using Broadcast Queries 248

CHAPTER 21. THE INFINISPAN QUERY DS ...ttt ettt i it eniieeenannnneeennns 249
21.1. THE INFINISPAN QUERY DSL 249
21.2. CREATING QUERIES WITH INFINISPAN QUERY DSL 249
21.3. ENABLING INFINISPAN QUERY DSL-BASED QUERIES 249
21.4. RUNNING INFINISPAN QUERY DSL-BASED QUERIES 250
21.5. PROJECTION QUERIES 251
21.6. GROUPING AND AGGREGATION OPERATIONS 251
21.7. USING NAMED PARAMETERS 253

Table of Contents

CHAPTER 22. BUILDING A QUERY USING THE ICKLE QUERY LANGUAGEciviiiiiiiiennnn.. 255
22.1. BUILDING A QUERY USING THE ICKLE QUERY LANGUAGE 255
22.2. ICKLE QUERY LANGUAGE PARSER SYNTAX 255
22.3. FUZZY QUERIES 256
22.4. RANGE QUERIES 256
22.5. PHRASE QUERIES 256
22.6. PROXIMITY QUERIES 256
22.7. WILDCARD QUERIES 256
22.8. REGULAR EXPRESSION QUERIES 257
22.9. BOOSTING QUERIES 257

CHAPTER 23. REMOTE QUERYING ...ttt it tit et enteeatennneeaneeraneennneennens 258
23.1. REMOTE QUERYING 258
23.2. QUERYING COMPARISON 258
23.3. PERFORMING REMOTE QUERIES VIA THE HOT ROD JAVA CLIENT 259
23.4. REMOTE QUERYING IN THE HOT ROD C++ CLIENT 262
23.5.REMOTE QUERYING IN THE HOT ROD C# CLIENT 262
23.6. PROTOBUF ENCODING 262

23.6.1. Protobuf Encoding 262
23.6.2. Storing Protobuf Encoded Entities 262
23.6.3. About Protobuf Messages 263
23.6.4. Using Protobuf with Hot Rod 263
23.6.5. Registering Per Entity Marshallers 264
23.6.6. Indexing Protobuf Encoded Entities 265
23.6.7. Controlling Field Indexing 266

23.6.7.1. Example of an Annotated Message Type 267

23.6.7.2. Disabling Indexing for All Protobuf Message Types 267
23.6.8. Defining Protocol Buffers Schemas With Java Annotations 268

PART lll. SECURING DATAIN RED HAT JBOSS DATAGRID ...\ttt iii e iiiieeiennnennns 273

CHAPTER 24. SECURING DATAIN RED HAT JBOSSDATAGRID ..ottt i ennneennnes 274

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION 275
25.1. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION 275
25.2. PERMISSIONS 275
25.3. ROLE MAPPING 277
25.4. CONFIGURING AUTHENTICATION AND ROLE MAPPING USING LOGIN MODULES 278
25.5. CONFIGURING RED HAT JBOSS DATA GRID FOR AUTHORIZATION 279
25.6. DATA SECURITY FOR LIBRARY MODE 280

25.6.1. Subject and Principal Classes 280
25.6.2. Obtaining a Subject 280
25.6.3. Subject Authentication 281
25.7. SECURING INTERFACES 284
25.7.1. Securing Interfaces 284
25.7.2. Hot Rod Interface Security 284
25.7.2.1. Encryption of communication between Hot Rod Server and Hot Rod client 284
25.7.2.2. Securing Hot Rod to LDAP Server using SSL 286
25.7.2.3. User Authentication over Hot Rod Using SASL 287
25.7.2.3.1. User Authentication over Hot Rod Using SASL 287
25.7.2.3.2. Configure Hot Rod Authentication (GSSAPI/Kerberos) 288
25.7.2.3.3. Configure Hot Rod Authentication (MD5) 289
25.7.2.3.4. Configure Hot Rod C++ Authentication (GSSAPI/Kerberos) 290
25.7.2.3.5. Configure Hot Rod C++ Authentication (MD5) 292

Red Hat Data Grid 7.2 Developer Guide

25.7.2.3.6. Configure Hot Rod C++ Authentication (PLAIN) 294
25.7.2.3.7. Configure Hot Rod C# Authentication (EXTERNAL) 296
25.7.2.3.8. Configure Hot Rod C# Authentication (MD5) 297

25.7.3. Hot Rod C++ Client Encryption 298
25.7.4. Hot Rod C# Client Encryption 299
25.7.5. Hot Rod Node.js Encryption 300
25.8. THE SECURITY AUDIT LOGGER 302
25.8.1. The Security Audit Logger 302
25.8.2. Configure the Security Audit Logger (Library Mode) 302
25.8.3. Custom Audit Loggers 302
CHAPTER 26. SECURITY FOR CLUSTER TRAFFIC .. ittt ittt iie et e eneennens 303
26.1. CONFIGURE NODE SECURITY IN LIBRARY MODE 303
26.2. NODE AUTHORIZATION IN LIBRARY MODE 304
PART IV. ADVANCED FEATURES IN RED HAT JBOSS DATAGRID ...ciutiiiiiiiiiinieennnennns 305
CHAPTER 27. ADVANCED FEATURES IN RED HAT JBOSSDATAGRIDiiiiiiiiiiiiiinnneennnn, 306
CHAPTER 28. MONITORING ..ttt ittt ettt et e et et eaneeeaneennneeaneesaneesnneennnns 307
28.1. MONITORING 307
28.2. ABOUT JAVA MANAGEMENT EXTENSIONS (JMX) 307
28.2.1. About Java Management Extensions (JMX) 307
28.2.2. Using JMX with Red Hat JBoss Data Grid 307
28.2.3. Enabling JMX for Cache Instances 307
28.2.4. Enabling JMX for CacheManagers 307
28.2.5. Multiple JMX Domains 308
28.2.6. Registering MBeans in Non-Default MBean Servers 308
28.3. STATISTICSINFOMBEAN 308
CHAPTER 29. RED HAT JBOSS DATA GRID AS LUCENE DIRECTORY ...iiiitiiiiiitiiieennnennnnns 309
29.1. RED HAT JBOSS DATA GRID AS LUCENE DIRECTORY 309
29.2. CONFIGURATION 309
29.3. RED HAT JBOSS DATA GRID MODULES 310
29.4. LUCENE DIRECTORY CONFIGURATION FOR REPLICATED INDEXING 310
29.5. JMS MASTER AND SLAVE BACK END CONFIGURATION 3N
CHAPTER 30. TRANS A CTIONS oottt ittt et ettt et e e eaeeeaneennneeaneesaneennneenn 312
30.1. ABOUT JAVA TRANSACTION API 312
30.2. CONFIGURE TRANSACTIONS (LIBRARY MODE) 312
30.3. TRANSACTIONS SPANNING MULTIPLE CACHE INSTANCES 314
30.4. THE TRANSACTION MANAGER 314
CHAPTER 3. MARSHALLING ottt ettt ettt et e e ettt ettt e et eanaeeaneeenneennnens 316
31.1. MARSHALLING 316
31.2. ABOUT THE JBOSS MARSHALLING FRAMEWORK 316
31.3. SUPPORT FOR NON-SERIALIZABLE OBJECTS 316
31.4. HOT ROD AND MARSHALLING 316
31.5. CONFIGURING THE MARSHALLER USING THE REMOTECACHEMANAGER 317
31.6. RESTRICTING DESERIALIZATION TO SPECIFIC JAVA CLASSES 318
31.7. TROUBLESHOOTING 318
31.7.1. Marshalling Troubleshooting 318
31.7.2. Other Marshalling Related Issues 320
CHAPTER 32. THE INFINISPAN CDIMODULE .. ittt ettt e i eite et eenneennnns 323

10

Table of Contents

32.1. THE INFINISPAN CDI MODULE 323
32.2. USING INFINISPAN CDI 323
32.2.1. Infinispan CDI Prerequisites 323
32.2.2. Set the CDI Maven Dependency 323
32.3. USING THE INFINISPAN CDI MODULE 323
32.3.1. Using the Infinispan CDI Module 324
32.3.2. Configure and Inject Infinispan Caches 324
32.3.2.1. Inject an Infinispan Cache 324
32.3.2.2. Inject a Remote Infinispan Cache 324
32.3.2.3. Set the Injection’s Target Cache 324
32.3.2.3.1. Set the Injection’s Target Cache 324
32.3.2.3.2. Create a Qualifier Annotation 324
32.3.2.3.3. Add a Producer Class 325
32.3.2.3.4. Inject the Desired Class 325
32.3.3. Configure Cache Managers with CDI 325
32.3.3.1. Configure Cache Managers with CDI 325
32.3.3.2. Specify the Default Configuration 326
32.3.3.3. Override the Creation of the Embedded Cache Manager 326
32.3.3.4. Configure a Remote Cache Manager 327
32.3.3.5. Configure Multiple Cache Managers with a Single Class 327
32.4. STORAGE AND RETRIEVAL USING CDI ANNOTATIONS 329
32.4.1. Configure Cache Annotations 329
32.4.2. Enable Cache Annotations 329
32.4.3. Caching the Result of a Method Invocation 330
32.4.3.1. Caching the Result of a Method Invocation 330
32.4.3.2. Specify the Cache Used 331
32.4.3.3. Cache Keys for Cached Results 331
32.4.3.4. Generate a Custom Key 331
32.4.4. Cache Operations 332
32.4.4.1. Update a Cache Entry 332
32.4.4.2. Remove an Entry from the Cache 332
32.4.4.3. Clear the Cache 333
CHAPTER 33. INTEGRATION WITH THE SPRING FRAMEWORK ittt iiienneennnns 334
33.1. ENABLING SPRING CACHE SUPPORT 334
33.1.1. Declaratively Enabling Spring Cache Support 334
33.1.2. Programmatically Enabling Spring Cache Support 334
33.2. ADDING THE SPRING INTEGRATION MODULE 334
33.3. CONFIGURING RED HAT JBOSS DATA GRID AS THE SPRING CACHING PROVIDER 335
33.3.1. Declaratively Configuring JBoss Data Grid as the Spring Caching Provider 335
33.3.2. Programmatically Configuring JBoss Data Grid as the Spring Caching Provider 335
33.4. ADDING CACHING TO YOUR APPLICATION CODE 336
33.5. CONFIGURING TIMEOUTS FOR CACHE OPERATIONS 337
33.6. EXTERNALIZING SESSIONS TO RED HAT JBOSS DATA GRID CLUSTERS 338
CHAPTER 34. INTEGRATION WITH APACHE SPARK ...\ttt ettt ei e eaneennnes 340
34.1. THE JBOSS DATA GRID APACHE SPARK CONNECTOR 340
34.2. SPARK DEPENDENCIES 340
34.3. CONFIGURING THE SPARK CONNECTOR 341
34.3.1. Properties to Configure the Version 1.6 Connector 341
34.3.2. Methods to Configure the Version 2 Connector 341
34.3.3. Connecting to a Secured JDG Cluster 342
34.4. CODE EXAMPLES FOR SPARK 1.6 343

1

Red Hat Data Grid 7.2 Developer Guide

34.4.1. Code Examples for Spark 1.6
34.4.2. Creating and Using RDDs
34.4.3. Creating an RDD
34.4.4. Querying an RDD
34.4.5. Writing an RDD to the Cache
34.45.1. Creating and Using DStreams

34.4.6. Using the Infinispan Query DSL with Spark
34.4.7. Filtering by a Query
34.4.8. Filtering with a Projection
34.4.9. Filtering with a Deployed Filter

34.5. CODE EXAMPLES FOR SPARK 2
34.5.1. Code Examples for Spark 2
34.5.2. Creating and Using RDDs
34.5.3. Creating an RDD
34.5.4. Querying an RDD

34.5.4.1. SparkSQL Queries

34.5.5. Writing an RDD to the Cache
34.5.6. Creating DStreams
34.5.7. Using The Apache Spark Dataset API
34.5.8. Using the Infinispan Query DSL with Spark
34.5.9. Filtering with a pre-built Query Object
34.5.10. Filtering with an Ickle Query
34.5.11. Filtering on the Server

34.6. SPARK PERFORMANCE CONSIDERATIONS

CHAPTER 35. INTEGRATION WITH APACHE HADOOP
35.1. INTEGRATION WITH APACHE HADOOP
35.2. HADOOP DEPENDENCIES
35.3. SUPPORTED HADOOP CONFIGURATION PARAMETERS
35.4. USING THE HADOOP CONNECTOR

CHAPTER 36.INTEGRATIONWITHEAPcccvvnnn...
36.1. INTEGRATION WITH EAP
36.2. INSTALLATION OF EAP MODULES
36.3. EAP DEPENDENCIES
36.4. DEPENDENCIES FOR SPECIFIC JDG COMPONENTS
36.4.1. Core Dependencies
36.4.2. Remote/Hot Rod Dependencies
36.4.3. Embedded Querying Dependencies
36.4.4. Lucene Directory Dependencies
36.4.5. Hibernate Search Directory Provider Dependencies
36.4.6. Using EAP’s Internal Hibernate Search Modules
36.4.7. Usage with Other Hibernate Search Modules
36.5. USAGE OF EAP MODULES
36.5.1. Library Mode
36.5.2. EAP Subsystem Mode
36.6. CONFIGURATION FOR EAP SUBSYSTEM MODE
36.7. ACCESSING CONTAINERS AND CACHES REMOTELY

36.8. TROUBLESHOOTING EAP AND JDG IN EAP SUBSYSTEM MODE

36.8.1. Enable logging
36.8.2. Print Dependency Tree

CHAPTER 37. HIGH AVAILABILITY USING SERVER HINTING
37.1. SERVER HINTING

12

343
343
343
344
345
346
347
347
347
348
348
348
348
348
349
349
350

351
352
353
353
354
355
355

356
356
356
356
357

359
359
359
359
360
360
360
360
360
361
361
361
361
361
361
361
364
365
365
365

366
366

Table of Contents

37.2. CONSISTENTHASHFACTORIES 366
37.2.1. ConsistentHashFactories 366
37.2.2. Implementing a ConsistentHashFactory 367

37.3.KEY AFFINITY SERVICE 367
37.3.1. Key Affinity Service 367
37.3.2. Lifecycle 368
37.3.3. Topology Changes 369

CHAPTER 38. DISTRIBUTED EXECUTION ...ttt et teiteeaeennneeaneeraneennneennnns 370

38.1. DISTRIBUTED EXECUTION 370

38.2. DISTRIBUTED EXECUTOR SERVICE 370

38.3. DISTRIBUTEDCALLABLE API 371

38.4. CALLABLE AND CDI 371

38.5. DISTRIBUTED TASK FAILOVER 372

38.6. DISTRIBUTED TASK EXECUTION POLICY 373

38.7. DISTRIBUTED EXECUTION AND LOCALITY 373
38.7.1. Distributed Execution Example 374

CHAPTER 30, STREAMS ittt ittt ettt ettt et e aeeaneeeaneennneeaneeraneesaneennnns 377

39.1. STREAMS 377

39.2. USING STREAMS ON A LOCAL/INVALIDATION/REPLICATION CACHE 377

39.3. USING STREAMS WITH A DISTRIBUTION CACHE 377

39.4. SETTING TIMEOUTS 377

39.5. DISTRIBUTED STREAMS 378
39.5.1. Distributed Streams 378
39.5.2. Marshallability 378
39.5.3. Parallelism 379
39.5.4. Distributed Operators 379

39.5.4.1. Terminal Operator Distributed Result Reductions 379
39.5.4.2. Key Based Rehash Aware Operators 380
39.5.4.3. Intermediate Operation Exceptions 380
39.5.5. Distributed Stream Examples 381
CHAPTER 40. SCRIPTING ..ttt ittt ettt ettt et eanneeaneeeaneennneeanseeaneesaneennnns 383

40.1. SCRIPTING 383

40.2. ACCESSING THE SCRIPT CACHE 383

40.3. INSTALLING SCRIPTS 384

40.4. SCRIPTING METADATA 385

40.5. SCRIPT BINDINGS 386

40.6. SCRIPT PARAMETERS 386

40.7. SCRIPT EXECUTION USING THE HOT ROD JAVA CLIENT 386

40.8. SCRIPT EXAMPLES 386

40.9. LIMITATIONS WHEN EXECUTING STORED SCRIPTS 387

CHAPTER 41. REMOTE TASK EXECUTION ...ttt ittt e eaeennneeaneeraneennneennens 388

41.1. REMOTE TASK EXECUTION 388

41.2. CREATING REMOTE TASKS 388

41.3. REMOTE TASK EXAMPLE 388

41.4. INSTALLING REMOTE TASKS 389

41.5. REMOVING REMOTE TASKS 389

41.6. RUNNING REMOTE TASKS 390

CHAPTER 42. CONFIGURING MEDIA TYPES ...ttt et te i eetteeaeeanneeaneeenneennnens 391

42.1. DEFAULT MEDIA TYPE 391

Red Hat Data Grid 7.2 Developer Guide

42.2. SUPPORTED MEDIA TYPES

42.3. DECLARATIVELY CONFIGURING MEDIA TYPES

42.4. PROGRAMMATICALLY CONFIGURING MEDIA TYPES
42.5. OVERRIDING MEDIA TYPES

CHAPTER 43. CONFIGURING COMPATIBILITYMODEot

43.1. ENABLING COMPATIBILITY MODE
43.2. MARSHALLERS IN COMPATIBILITY MODE
43.3. SPECIFYING THE MARSHALLER

43.3.1. Memcached Marshaller

CHAPTER 44. ENDPOINT INTEROPERABILITY .. i

44.1. CONSIDERATIONS WITH MEDIA TYPES AND ENDPOINT INTEROPERABILITY
441.1. REST and Hot Rod Interoperability with Text-Based Storage
44.1.2. Java and Non-Java Client Interoperability with Protobuf

CHAPTER 45. SET UP CROSS-DATACENTER REPLICATIONot

45.1. CROSS-DATACENTER REPLICATION

45.2. CROSS-DATACENTER REPLICATION OPERATIONS

45.3. CONFIGURE CROSS-DATACENTER REPLICATION PROGRAMMATICALLY
45.4. TAKING A SITE OFFLINE

45.5.HOT ROD CROSS SITE CLUSTER FAILOVER

CHAPTER46. NEAR CACHING ... i e i et

46.1. NEAR CACHING
46.2. CONFIGURING NEAR CACHES
46.3. NEAR CACHES IN A CLUSTERED ENVIRONMENT

CHAPTER 47. CONFLICT MANAGERUSAGE i

47.1. FIND AND RESOLVE CACHE CONFLICTS

APPENDIX A.REFERENCES i i et

Al . THE EXTERNALIZER

A.l1. About Externalizer

A.1.2. Internal Externalizer Implementation Access
A.2. HASH SPACE ALLOCATION

A.2.1. About Hash Space Allocation

A.2.2. Locating a Key in the Hash Space

14

391
391
392
392

393
393
393
393
394

395
395
395
396

398
398
398
400
402
402

404
405
405

406

407
407
407
407
408
408
408

Table of Contents

15

Red Hat Data Grid 7.2 Developer Guide

PART I. PROGRAMMABLE APIS

16

CHAPTER 1. PROGRAMMABLE APIS

CHAPTER 1. PROGRAMMABLE APIS

Red Hat JBoss Data Grid provides the following programmable APIs:
® Cache
® AdvancedCache
® MultimapCache
® Asynchronous
® Batching
® Grouping
® Persistence (formerly CacheStore)
e ConfigurationBuilder
® Externalizable
® Notification (also known as the Listener APl because it deals with Notifications and Listeners)
® JSR-107 (JCache)
® Health Check

e REST

17

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 2. THE CACHE API

2.1. THE CACHE API

The Cache interface provides simple methods for the addition, retrieval and removal of entries, which
includes atomic mechanisms exposed by the JDK's ConcurrentMap interface.

How entries are stored depends on the cache mode in use. For example, an entry may be replicated to a
remote node or an entry may be looked up in a cache store.

The Cache APl is used in the same manner as the JDK Map API for basic tasks. This simplifies the
process of migrating from Map-based, simple in-memory caches to the Red Hat JBoss Data Grid cache.

JBoss Data Grid in Library, or Embedded, Mode
Use the org.infinispan.Cache API.
JBoss Data Grid in Remote Client-Server Mode

Use the org.infinispan.client.hotrod.RemoteCache API.
The RemoteCache interface implements the Cache APl but does not support some operations
given the difference between remote and local operations.

2.2. USING THE CONFIGURATIONBUILDER API TO CONFIGURE THE
CACHE API

Red Hat JBoss Data Grid uses a ConfigurationBuilder API to configure caches.
Caches are configured programmatically using the ConfigurationBuilder helper object.

The following is an example of a synchronously replicated cache configured programmatically using the
ConfigurationBuilder API:

Programmatic Cache Configuration

Configuration ¢ = new
ConfigurationBuilder().clustering().cacheMode(CacheMode.REPL_SYNC).build();

String newCacheName = "repl”;
manager.defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

1. In the first line of the configuration, a new cache configuration object (named ¢) is created
using the ConfigurationBuilder . Configuration ¢ is assigned the default values for all cache
configuration options except the cache mode, which is overridden and set to synchronous
replication (REPL_SYNC).

2. In the second line of the configuration, a new variable (of type String) is created and assigned
the value repl.

3. Inthe third line of the configuration, the cache manager is used to define a named cache

configuration for itself. This named cache configuration is called repl and its configuration is
based on the configuration provided for cache configuration ¢ in the first line.

18

CHAPTER 2. THE CACHE API

4. In the fourth line of the configuration, the cache manager is used to obtain a reference to the
unique instance of the repl that is held by the cache manager. This cache instance is now ready
to be used to perform operations to store and retrieve data.

NOTE

JBoss EAP includes its own underlying JMX. This can cause a collision when using the
sample code with JBoss EAP and display an error such as
org.infinispan.jmx.dmxDomainConflictException: Domain already registered
org.infinispan.

To avoid this, configure global configuration as follows:

GlobalConfiguration glob = new GlobalConfigurationBuilder()
.ClusteredDefault()
.globaldmxStatistics()
.allowDuplicateDomains(true)
.enable()
build();

2.3. PER-INVOCATION FLAGS

2.3.1. Per-Invocation Flags

Per-invocation flags can be used with caches in Red Hat JBoss Data Grid to specify behavior for each
cache call. Per-invocation flags facilitate the implementation of potentially time saving optimizations.
2.3.2. Per-Invocation Flag Functions

The putForExternalRead() method in Red Hat JBoss Data Grid's Cache APl uses flags internally. This
method can load a JBoss Data Grid cache with data loaded from an external resource. To improve the
efficiency of this call, JBoss Data Grid calls a normal put operation passing the following flags:

e The ZERO_LOCK_ACQUISITION_TIMEOUT flag: JBoss Data Grid uses an almost zero lock
acquisition time when loading data from an external source into a cache.

e The FAIL_SILENTLY flag: If the locks cannot be acquired, JBoss Data Grid fails silently without
throwing any lock acquisition exceptions.

e The FORCE_ASYNCHRONOUS flag: If clustered, the cache replicates asynchronously,
irrespective of the cache mode set. As a result, a response from other nodes is not required.

Combining the flags above significantly increases the efficiency of the operation. The basis for this
efficiency is that putForExternalRead calls of this type are used because the client can retrieve the
required data from a persistent store if the data cannot be found in memory. If the client encounters a
cache miss, it retries the operation.

A detailed list of all flags available for JBoss Data Grid is in the JBoss Data Grid APl Documentation’s
Flag class.

2.3.3. Configure Per-Invocation Flags

To use per-invocation flags in Red Hat JBoss Data Grid, add the required flags to the advanced cache
via the withFlags() method call.

19

https://access.redhat.com/webassets/avalon/d/red-hat-jboss-data-grid/7.2/api/org/infinispan/client/hotrod/Flag.html

Red Hat Data Grid 7.2 Developer Guide

Configuring Per-Invocation Flags

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.SKIP_CACHE_STORE, Flag.CACHE_MODE_LOCAL)
put("local”, "only");

NOTE

The called flags only remain active for the duration of the cache operation. To use the
same flags in multiple invocations within the same transaction, use the withFlags()
method for each invocation. If the cache operation must be replicated onto another
node, the flags are also carried over to the remote nodes.

2.3.4. Per-Invocation Flags Example

In a use case for Red Hat JBoss Data Grid, where a write operation, such as put(), must not return the
previous value, the IGNORE_RETURN_VALUES flag is used. This flag prevents a remote lookup (to
get the previous value) in a distributed environment, which in turn prevents the retrieval of the
undesired, potential, previous value. Additionally, if the cache is configured with a cache loader, this flag
prevents the previous value from being loaded from its cache store.

Using the IGNORE_RETURN_VALUES Flag

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.IGNORE_RETURN_VALUES)
.put("local”, "only")

2.4. THE ADVANCEDCACHE INTERFACE

2.4.1. The AdvancedCache Interface

Red Hat JBoss Data Grid offers an AdvancedCache interface, geared towards extending JBoss Data
Grid, in addition to its simple Cache Interface. The AdvancedCache Interface can:

® [nject custom interceptors
® Access certain internal components
® Apply flags to alter the behavior of certain cache methods

The following code snippet presents an example of how to obtain an AdvancedCache:

I AdvancedCache advancedCache = cache.getAdvancedCache();

2.4.2. Flag Usage with the AdvancedCache Interface

Flags, when applied to certain cache methods in Red Hat JBoss Data Grid, alter the behavior of the
target method. Use AdvancedCache.withFlags() to apply any number of flags to a cache invocation.

Applying Flags to a Cache Invocation

20

CHAPTER 2. THE CACHE API

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
withFlags(Flag.FORCE_SYNCHRONOUS)

Jput("hello”, "world");

2.4.3. GET and PUT Usage in Distribution Mode

2.4.3.1. GET and PUT Usage in Distribution Mode

In distribution mode, the cache performs a remote GET command before a write command. This occurs
because certain methods (for example, Cache.put()) return the previous value associated with the
specified key according to the java.util.Map contract. When this is performed on an instance that does
not own the key and the entry is not found in the L1 cache, the only reliable way to elicit this return value
is to perform a remote GET before the PUT.

The GET operation that occurs before the PUT operation is always synchronous, whether the cache is
synchronous or asynchronous, because Red Hat JBoss Data Grid must wait for the return value.

2.4.3.2. Distributed GET and PUT Operation Resource Usage

In distribution mode, the cache may execute a GET operation before executing the desired PUT
operation.

This operation is very expensive in terms of resources. Despite operating in an synchronous manner, a
remote GET operation does not wait for all responses, which would result in wasted resources. The GET
process accepts the first valid response received, which allows its performance to be unrelated to cluster
size.

Use the Flag.SKIP_REMOTE_LOOKUP flag for a per-invocation setting if return values are not
required for your implementation.

Such actions do not impair cache operations and the accurate functioning of all public methods, but do
break the java.util.Map interface contract. The contract breaks because unreliable and inaccurate
return values are provided to certain methods. As a result, ensure that these return values are not used
for any important purpose on your configuration.

2.4.4. Limitations of Map Methods

Specific Map methods, such as size(), values(), keySet() and entrySet(), can be used with certain
limitations with Red Hat JBoss Data Grid as they are unreliable. These methods do not acquire locks
(global or local) and concurrent modification, additions and removals are excluded from consideration in
these calls.

The listed methods have a significant impact on performance. As a result, it is recommended that these
methods are used for informational and debugging purposes only.

Performance Concerns

In JBoss Data Grid 7.2 the map methods size(), values(), keySet(), and entrySet() include entries in the
cache loader by default. The cache loader in use will determine the performance of these commands;
for instance, when using a database these methods will run a complete scan of the table where data is
stored, which may result in slower processing. To not load entries from the cache loader, and avoid any
potential performance hit, use Cache.getAdvancedCache().withFlags(Flag.SKIP_CACHE_LOAD)
before executing the desired method.

Understanding the size() Method (Embedded Caches)

21

Red Hat Data Grid 7.2 Developer Guide

In JBoss Data Grid 7.2 the Cache.size() method provides a count of all elements in both this cache and
cache loader across the entire cluster. When using a loader or remote entries, only a subset of entries is
held in memory at any given time to prevent possible memory issues, and the loading of all entries may
be slow.

In this mode of operation, the result returned by the size() method is affected by the flags
org.infinispan.context.Flag#CACHE_MODE_LOCAL, to force it to return the number of entries
present on the local node, and org.infinispan.context.Flag#SKIP_CACHE_LOAD, to ignore any
passivated entries. Either of these flags may be used to increase performance of this method, at the
cost of not returning a count of all elements across the entire cluster.

Understanding the size() Method (Remote Caches)

In JBoss Data Grid 7.2 the Hot Rod protocol contain a dedicated SIZE operation, and the clients use this
operation to calculate the size of all entries.

22

CHAPTER 3. THE MULTIMAP CACHE

CHAPTER 3. THE MULTIMAP CACHE

3.1. THE MULTIMAP CACHE

The MultimapCache is a cache that maps keys to values in which each key can contain multiple values. It
currently only functions in Library Mode.

3.2. INSTALLING MULTIMAPCACHE USING MAVEN

To make the MultimapCache available in the Maven project configure the pom.xml as follows:

pom.xml

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-multimap</artifactld>
<version>...</version> </-- 7.2.0 or later -->
</dependency>

3.3. CREATING A MULTIMAP CACHE

Create a MultimapCache using code like the following:

// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager cm = ... ;

// create or obtain a MultimapCacheManager passing the EmbeddedCacheManager
MultimapCacheManager multimapCacheManager =
EmbeddedMultimapCacheManagerFactory.from(cm);

// define the configuration for the multimap cache
multimapCacheManager.defineConfiguration(multimapCacheName, c.build());

// get the multimap cache
multimapCache = multimapCacheManager.get(multimapCacheName);

3.4. EXAMPLE MULTIMAPCACHE USAGE

Below is code demonstrating how to use MultimapCache:

MultimapCache<String, String> multimapCache = ...;
multimapCache.put("giriNames", "marie")
thenCompose(r1 -> multimapCache.put("girlNames", "oihana"))
.thenCompose(r3 -> multimapCache.get("girlNames"))
.thenAccept(names -> {
if(names.contains("marie"))
System.out.printin("Marie is a girl name");

if(names.contains("oihana"))
System.out.printin("Oihana is a girl name");

D;

23

Red Hat Data Grid 7.2 Developer Guide

24

CHAPTER 4. THE ASYNCHRONOUS API

CHAPTER 4. THE ASYNCHRONOUS API

4.1. THE ASYNCHRONOUS API

In addition to synchronous APl methods, Red Hat JBoss Data Grid also offers an asynchronous API that
provides the same functionality in a non-blocking fashion.

The asynchronous method naming convention is similar to their synchronous counterparts, with Async
appended to each method name. Asynchronous methods return a Future that contains the result of the

operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String value)
returns a String, while Cache.putAsync(String key, String value) returns a FutureString.

4.2. ASYNCHRONOUS API BENEFITS
The asynchronous APl does not block, which provides multiple benefits, such as:

® The guarantee of synchronous communication, with the added ability to handle failures and
exceptions.

® Not being required to block a thread’s operations until the call completes.
These benefits allow you to better harness the parallelism in your system, for example:

Using the Asynchronous API

Set<Future<?>> futures = new HashSet<Future<?>>();
futures.add(cache.putAsync("key1", "valuei"));
futures.add(cache.putAsync("key2", "value2"));
futures.add(cache.putAsync("key3", "value3"));

In the example, The following lines do not block the thread as they execute:
e futures.add(cache.putAsync(key1, valuel));
e futures.add(cache.putAsync(key2, value2));
e futures.add(cache.putAsync(key3, value3));

The remote calls from the three put operations are executed in parallel. This is particularly useful when
executed in distributed mode.

4.3. ABOUT ASYNCHRONOUS PROCESSES

For a typical write operation in Red Hat JBoss Data Grid, the following processes fall on the critical path,
ordered from most resource-intensive to the least:

® Network calls
® Marshalling

® Writing to a cache store (optional)

25

Red Hat Data Grid 7.2 Developer Guide

® | ocking

In Red Hat JBoss Data Grid, using asynchronous methods removes network calls and marshalling from
the critical path.

4.4. RETURN VALUES AND THE ASYNCHRONOUS API

When the asynchronous APl is used in Red Hat JBoss Data Grid, the client code requires the
asynchronous operation to return either the Future or the CompletableFuture in order to query the
previous value.

Call the following operation to obtain the result of an asynchronous operation. This operation blocks
threads when called.

I Future.get()

26

CHAPTER 5. THE BATCHING API

CHAPTER 5. THE BATCHING API

5.1. THE BATCHING API

The Batching APl is used when the Red Hat JBoss Data Grid cluster is the sole participant in a
transaction. However, Java Transaction API (JTA) transactions (which use the Transaction Manager)
are used when multiple systems are participants in the transaction.

NOTE

The Batching APl may only be used in Red Hat JBoss Data Grid’s Library Mode.

5.2. ABOUT JAVA TRANSACTION API

Red Hat JBoss Data Grid supports configuring, use of, and participation in Java Transaction APl (JTA)
compliant transactions.

JBoss Data Grid does the following for each cache operation:
1. First, it retrieves the transactions currently associated with the thread.

2. If not already done, it registers an XAResource with the transaction manager to receive
notifications when a transaction is committed or rolled back.

5.3. BATCHING AND THE JAVA TRANSACTION API (JTA)

In Red Hat JBoss Data Grid, the batching functionality initiates a JTA transaction in the back end,
causing all invocations within the scope to be associated with it. For this purpose, the batching
functionality uses a simple Transaction Manager implementation at the back end. As a result, the
following behavior is observed:

1. Locks acquired during an invocation are retained until the transaction commits or rolls back.
2. All changes are replicated in a batch on all nodes in the cluster as part of the transaction commit
process. Ensuring that multiple changes occur within the single transaction, the replication

traffic remains lower and improves performance.

3. When using synchronous replication or invalidation, a replication or invalidation failure causes the
transaction to roll back.

4. When a cache is transactional and a cache loader is present, the cache loader is not enlisted in
the cache’s transaction. This results in potential inconsistencies at the cache loader level when
the transaction applies the in-memory state but (partially) fails to apply the changes to the
store.

5. All configurations related to a transaction apply for batching as well.

5.4. USING THE BATCHING API

5.4.1. Configure the Batching API

To use the Batching API, enable invocation batching in the cache configuration, as seen in the following
example:

27

Red Hat Data Grid 7.2 Developer Guide

Configuration ¢ = new
ConfigurationBuilder().transaction().transactionMode(TransactionMode. TRANSACTIONAL).invocationB
atching().enable().build();

In Red Hat JBoss Data Grid, invocation batching is disabled by default and batching can be used without
a defined Transaction Manager.

5.4.2. Use the Batching API

After the cache is configured to use batching, call startBatch() and endBatch() on the cache as follows
to use batching:

I Cache cache = cacheManager.getCache();
Without Using Batch
I cache.put("key", "value");

When the cache.put(key, value); line executes, the values are replaced immediately.

Using Batch

cache.startBatch();
cache.put("k1", "value");
cache.put("k2", "value");
cache.put("k3", "value");
cache.endBatch(true);
cache.startBatch();
cache.put("k1", "value");
cache.put("k2", "value");
cache.put("k3", "value");
cache.endBatch(false);

When the line cache.endBatch(true); executes, all modifications made since the batch started are
applied.

When the line cache.endBatch(false); executes, changes made in the batch are discarded.

28

CHAPTER 6. THE GROUPING API

CHAPTER 6. THE GROUPING API

6.1. THE GROUPING API

The Grouping API can relocate groups of entries to a specified node or to a node selected using the
hash of the group.

6.2. GROUPING API OPERATIONS

Normally, Red Hat JBoss Data Grid uses the hash of a specific key to determine an entry’s destination
node. However, when the Grouping APl is used, a hash of the group associated with the key is used
instead of the hash of the key to determine the destination node.

Each node can use an algorithm to determine the owner of each key. This removes the need to pass
metadata (and metadata updates) about the location of entries between nodes. This approach is
beneficial because:

® FEvery node can determine which node owns a particular key without expensive metadata
updates across nodes.

® Redundancy is improved because ownership information does not need to be replicated if a
node fails.

When using the Grouping API, each node must be able to calculate the owner of an entry. As a result,
the group cannot be specified manually and must be either:

® |Intrinsic to the entry, which means it was generated by the key class.

® Extrinsic to the entry, which means it was generated by an external function.

6.3. GROUPING API USE CASE

This feature allows logically related data to be stored on a single node. For example, if the cache
contains user information, the information for all users in a single location can be stored on a single node.

The benefit of this approach is that when seeking specific (logically related) data, the Distributed
Executor task is directed to run only on the relevant node rather than across all nodes in the cluster.
Such directed operations result in optimized performance.

Grouping APl Example

Acme, Inc. is a home appliance company with over one hundred offices worldwide. Some offices house
employees from various departments, while certain locations are occupied exclusively by the employees
of one or two departments. The Human Resources (HR) department has employees in Bangkok,
London, Chicago, Nice and Venice.

Acme, Inc. uses Red Hat JBoss Data Grid's Grouping API to ensure that all the employee records for the
HR department are moved to a single node (Node AB) in the cache. As a result, when attempting to
retrieve a record for a HR employee, the DistributedExecutor only checks node AB and quickly and
easily retrieves the required employee records.

Storing related entries on a single node as illustrated optimizes the data access and prevents time and

resource wastage by seeking information on a single node (or a small subset of nodes) instead of all the
nodes in the cluster.

29

Red Hat Data Grid 7.2 Developer Guide

6.4. CONFIGURE THE GROUPING API

6.4.1. Configure the Grouping API
Use the following steps to configure the Grouping API:
1. Enable groups using either the declarative or programmatic method.

2. Specify either an intrinsic or extrinsic group. For more information about these group types, see
Specify an Intrinsic Group and Specify an Extrinsic Group .

3. Register all specified groupers.

6.4.2. Enable Groups

The first step to set up the Grouping APl is to enable groups. The following example demonstrates how
to enable Groups:

I Configuration ¢ = new ConfigurationBuilder().clustering().hash().groups().enabled().build();

6.4.3. Specify an Intrinsic Group

Use an intrinsic group with the Grouping API if:
® the key class definition can be altered, that is if it is not part of an unmodifiable library.
e if the key class is not concerned with the determination of a key/value pair group.

Use the @Group annotation in the relevant method to specify an intrinsic group. The group must
always be a String, as illustrated in the example:

Specifying an Intrinsic Group Example

class User {

<!-- Additional configuration information here -->
String office;
<!-- Additional configuration information here -->

public int hashCode() {
// Defines the hash for the key, normally used to determine location
<!-- Additional configuration information here -->

}

// Override the location by specifying a group, all keys in the same
// group end up with the same owner

@Group
String getOffice() {
return office;

}

30

CHAPTER 6. THE GROUPING API

6.4.4. Specify an Extrinsic Group

Specify an extrinsic group for the Grouping API if:
® the key class definition cannot be altered, that is if it is part of an unmodifiable library.
e if the key class is concerned with the determination of a key/value pair group.

An extrinsic group is specified using an implementation of the Grouper interface. This interface uses the
computeGroup method to return the group.

In the process of specifying an extrinsic group, the Grouper interface acts as an interceptor by passing
the computed value to computeGroup. If the @Group annotation is used, the group using it is passed
to the first Grouper. As a result, using an intrinsic group provides even greater control.

Specifying an Extrinsic Group Example

The following is an example that consists of a simple Grouper that uses the key class to extract the
group from a key using a pattern. Any group information specified on the key class is ignored in such a
situation.

public class KXGrouper implements Grouper<String> {

// A pattern that can extract from a "kX" (e.g. k1, k2) style key

// The pattern requires a String key, of length 2, where the first character is
// "k" and the second character is a digit. We take that digit, and perform

// modular arithmetic on it to assign it to group "1" or group "2".

private static Pattern kPattern = Pattern.compile("(*k)(\d)$");

public String computeGroup(String key, String group) {
Matcher matcher = kPattern.matcher(key);
if (matcher.matches()) {
String g = Integer.parselnt(matcher.group(2)) % 2 + "";
return g;
} else
return null;

}

public Class<String> getKeyType() {
return String.class;

}

6.4.5. Register Groupers

After creation, each grouper must be registered to be used.

Programmatically Register a Grouper

Configuration ¢ = new ConfigurationBuilder().clustering().hash().groups().addGrouper(new
KXGrouper()).enabled().build();

31

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 7. THE PERSISTENCE SPI

7.1. THE PERSISTENCE SPI

In Red Hat JBoss Data Grid, persistence can configure external (persistent) storage engines. These
storage engines complement Red Hat JBoss Data Grid's default in-memory storage.

Persistent external storage provides several benefits:

® Memory is volatile and a cache store can increase the life span of the information in the cache,
which results in improved durability.

® Using persistent external stores as a caching layer between an application and a custom storage
engine provides improved Write-Through functionality.

e Using a combination of eviction and passivation, only the frequently required information is
stored in-memory and other data is stored in the external storage.

NOTE

Programmatically configuring persistence can only be accomplished in Red Hat JBoss
Data Grid’s Library Mode.

7.2. PERSISTENCE SPI BENEFITS

The Red Hat JBoss Data Grid implementation of the Persistence SPI offers the following benefits:

® Alignment with JSR-107 (http://jcp.org/en/jsr/detail?id=107). JBoss Data Grid's CacheWriter
and CachelLoader interfaces are similar to the JSR-107 writer and reader. As a result, alignment
with JSR-107 provides improved portability for stores across JCache-compliant vendors.

e Simplified transaction integration. JBoss Data Grid handles locking automatically and so
implementations do not have to coordinate concurrent access to the store. Depending on the
locking mode, concurrent writes on the same key may not occur. However, implementors expect
operations on the store to originate from multiple threads and add the implementation code
accordingly.

® Reduced serialization, resulting in reduced CPU usage. The new SPI exposes stored entries in a
serialized format. If an entry is fetched from persistent storage to be sent remotely, it does not
need to be deserialized (when reading from the store) and then serialized again (when writing to
the wire). Instead, the entry is written to the wire in the serialized format as fetched from the
storage.

7.3. PROGRAMMATICALLY CONFIGURE THE PERSISTENCE SPI

The following is a sample programmatic configuration for a Single File Store using the Persistence SPI:

Configure the Single File Store via the Persistence SPI

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
.passivation(false)
.addSingleFileStore()
.preload(true)

32

http://jcp.org/en/jsr/detail?id=107

CHAPTER 7. THE PERSISTENCE SPI

.shared(false)
fetchPersistentState(true)
.ignoreModifications(false)
.purgeOnStartup(false)
location(System.getProperty("java.io.tmpdir"))
.async()

.enabled(true)

.threadPoolSize(5)
.singleton()

.enabled(true)

.pushStateWhenCoordinator(true)

.pushStateTimeout(20000);

7.4. PERSISTENCE EXAMPLES

7.4.1. Persistence Examples

The following examples demonstrate how to configure various cache stores implementations
programmatically. For a comparison of these stores, along with additional information on each, refer to
the Administration and Configuration Guide.

7.4.2. Configure the Cache Store Programmatically

The following example demonstrates how to configure the cache store programmatically:

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
.passivation(false)
.addSingleFileStore()
.shared(false)
.preload(true)
fetchPersistentState(true)
.purgeOnStartup(false)
Jocation(System.getProperty("java.io.tmpdir"))
.async()
.enabled(true)
.threadPoolSize(5)
.singleton()
.enabled(true)
.pushStateWhenCoordinator(true)
.pushStateTimeout(20000);

NOTE

This configuration is for a single-file cache store. Some attributes, such as location are
specific to the single-file cache store and are not used for other types of cache stores.

Configure the Cache store Programatically

1. Use the ConfigurationBuilder to create a new configuration object.

2. The passivation elements affects the way Red Hat JBoss Data Grid interacts with stores.
Passivation removes an object from an in-memory cache and writes it to a secondary data store,

33

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/

Red Hat Data Grid 7.2 Developer Guide

1.

such as a system or database. If no secondary data store exists, then the object will only be
removed from the in-memory cache. Passivation is false by default.

The addSingleFileStore() elements adds the SingleFileStore as the cache store for this
configuration. It is possible to create other stores, such as a JDBC Cache Store, which can be
added using the addStore method.

The shared parameter indicates that the cache store is shared by different cache instances.
For example, where all instances in a cluster use the same JDBC settings to talk to the same
remote, shared database. shared is false by default. When set to true, it prevents duplicate
data being written to the cache store by different cache instances.

The preload element is set to false by default. When set to true the data stored in the cache
store is preloaded into the memory when the cache starts. This allows data in the cache store to
be available immediately after startup and avoids cache operations delays as a result of loading
data lazily. Preloaded data is only stored locally on the node, and there is no replication or
distribution of the preloaded data. JBoss Data Grid will only preload up to the maximum
configured number of entries in eviction.

. The fetchPersistentState element determines whether or not to fetch the persistent state of a

cache and apply it to the local cache store when joining the cluster. If the cache store is shared
the fetch persistent state is ignored, as caches access the same cache store. A configuration
exception will be thrown when starting the cache service if more than one cache store has this
property set to true. The fetchPersistentState property is false by default.

The purgeOnStartup element controls whether cache store is purged when it starts up and is
false by default.

The location element configuration element sets a location on disk where the store can write.
These attributes configure aspects specific to each cache store. For example, the location

attribute points to where the SingleFileStore will keep files containing data. Other stores may
require more complex configuration.

. The singleton element enables modifications to be stored by only one node in the cluster. This

node is called the coordinator. The coordinator pushes the caches in-memory states to disk.
This function is activated by setting the enabled attribute to true in all nodes. The shared
parameter cannot be defined with singleton enabled at the same time. The enabled attribute
is false by default.

The pushStateWhenCoordinator element is set to true by default. If true, this property will
cause a node that has become the coordinator to transfer in-memory state to the underlying
cache store. This parameter is useful where the coordinator has crashed and a new coordinator
is elected.

7.4.3. LevelDB Cache Store Programmatic Configuration

The following is a sample programmatic configuration of LevelDB Cache Store:

Configuration cacheConfig = new ConfigurationBuilder().persistence()

.addStore(LevelDBStoreConfigurationBuilder.class)
Jocation("/tmp/leveldb/data")
.expiredLocation("/tmp/leveldb/expired").build();

LevelDB Cache Store programmatic configuration

34

CHAPTER 7. THE PERSISTENCE SPI

1. Use the ConfigurationBuilder to create a new configuration object.
2. Add the store using LevelDBCacheStoreConfigurationBuilder class to build its configuration.

3. Set the LevelDB Cache Store location path. The specified path stores the primary cache store
data. The directory is automatically created if it does not exist.

4. Specify the location for expired data using the expiredLocation parameter for the LevelDB
Store. The specified path stores expired data before it is purged. The directory is automatically
created if it does not exist.

7.4.4. JdbcBinaryStore Programmatic Configuration

The JdbcBinaryStore supports all key types by storeing all keys with the same hash value (hashCode
method on the key) in the same table row/blob.

IMPORTANT

Binary JDBC stores are deprecated in JBoss Data Grid 7.2, and are not recommended for
production use. It is recommended to utilize a String Based store instead.

The following is a sample configuration for the JdbcBinaryStore :

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
.addStore(JdbcBinaryStoreConfigurationBuilder.class)
fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.table()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN_BUCKET_TABLE")
.idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN").dataColumnType("BINARY")
timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.connectionPool()
.connectionUrl("jdbc:h2:mem:infinispan_binary_based;DB_CLOSE_DELAY=-1")
.username("sa")
.driverClass("org.h2.Driver");

JdbcBinaryStore Programmatic Configuration (Library Mode)

1. Use the ConfigurationBuilder to create a new configuration object.

2. Add the JdbeBinaryStore configuration builder to build a specific configuration related to this
store.

3. The fetchPersistentState element determines whether or not to fetch the persistent state of a
cache and apply it to the local cache store when joining the cluster. If the cache store is shared
the fetch persistent state is ignored, as caches access the same cache store. A configuration
exception will be thrown when starting the cache service if more than one cache loader has this
property set to true. The fetchPersistentState property is false by default.

4. The ignoreModifications element determines whether write methods are pushed to the

35

Red Hat Data Grid 7.2 Developer Guide

specific cache loader by allowing write operations to the local file cache loader, but not the
shared cache loader. In some cases, transient application data should only reside in a file-based
cache loader on the same server as the in-memory cache. For example, this would apply with a
further JDBC based cache loader used by all servers in the network. ignoreModifications is
false by default.

5. The purgeOnStartup element specifies whether the cache is purged when initially started.

6. Configure the table as follows:

a. dropOnEXxit determines if the table will be dropped when the cache store is stopped. This is
set to false by default.

b. createOnStart creates the table when starting the cache store if no table currently exists.
This method is true by default.

c. tableNamePrefix sets the prefix for the name of the table in which the data will be stored.

d. The idColumnName property defines the column where the cache key or bucket ID is
stored.

e. The dataColumnName property specifies the column where the cache entry or bucket is
stored.

f. The timestampColumnName element specifies the column where the time stamp of the
cache entry or bucket is stored.

7. The connectionPool element specifies a connection pool for the JDBC driver using the
following parameters:

a. The connectionUrl parameter specifies the JDBC driver-specific connection URL.
b. The username parameter contains the user name used to connect via the connectionUrl.

c. The driverClass parameter specifies the class name of the driver used to connect to the
database.

7.4.5. JdbcStringBasedStore Programmatic Configuration

The JdbcStringBasedStore stores each entry in its own row in the table, instead of grouping multiple
entries into each row, resulting in increased throughput under a concurrent load.

The following is a sample configuration for the JdbcStringBasedStore :

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)

fetchPersistentState(false)

.ignoreModifications(false)

.purgeOnStartup(false)

.table()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN_STRING_TABLE")
.idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN").dataColumnType("BINARY")

36

CHAPTER 7. THE PERSISTENCE SPI

timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.dataSource()
JjndiUrl("java:jboss/datasources/JdbcDS");

Configure the JdbcStringBasedStore Programmatically

1.

2.

Use the ConfigurationBuilder to create a new configuration object.

Add the JdbcStringBasedStore configuration builder to build a specific configuration related to
this store.

The fetchPersistentState parameter determines whether or not to fetch the persistent state of
a cache and apply it to the local cache store when joining the cluster. If the cache store is shared
the fetch persistent state is ignored, as caches access the same cache store. A configuration
exception will be thrown when starting the cache service if more than one cache loader has this
property set to true. The fetchPersistentState property is false by default.

The ignoreModifications parameter determines whether write methods are pushed to the
specific cache loader by allowing write operations to the local file cache loader, but not the
shared cache loader. In some cases, transient application data should only reside in a file-based
cache loader on the same server as the in-memory cache. For example, this would apply with a
further JDBC based cache loader used by all servers in the network. ignoreModifications is
false by default.

The purgeOnStartup parameter specifies whether the cache is purged when initially started.

Configure the Table

a. dropOnEXxit determines if the table will be dropped when the cache store is stopped. This is
set to false by default.

b. createOnStart creates the table when starting the cache store if no table currently exists.
This method is true by default.

c. tableNamePrefix sets the prefix for the name of the table in which the data will be stored.

d. The idColumnName property defines the column where the cache key or bucket ID is
stored.

e. The dataColumnName property specifies the column where the cache entry or bucket is
stored.

f. The timestampColumnName element specifies the column where the time stamp of the
cache entry or bucket is stored.

7. The dataSource element specifies a data source using the following parameters:

® The jndiUrl specifies the JNDI URL to the existing JDBC.

NOTE

An IOException Unsupported protocol version 48 error when using
JdbcStringBasedStore indicates that your data column type is set to VARCHAR, CLOB
or something similar instead of the correct type, BLOB or VARBINARY. Despite its name,
JdbcStringBasedStore only requires that the keys are strings while the values can be any
data type, so that they can be stored in a binary column.

37

Red Hat Data Grid 7.2 Developer Guide

7.4.6. JdbcMixedStore Programmatic Configuration

The JdbcMixedStore is a hybrid implementation that delegates keys based on their type to either the
JdbcBinaryStore or JdbcStringBasedStore.

IMPORTANT

Mixed JDBC stores are deprecated in JBoss Data Grid 7.2, and are not recommended for
production use. It is recommended to utilize a String Based store instead.

The following is a sample configuration for the JdbcMixedStore :

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcMixedStoreConfigurationBuilder.class)
fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.stringTable()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN_MIXED_STR_TABLE")
.idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN?").dataColumnType("BINARY")
timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.binaryTable()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN_MIXED_BINARY_TABLE")
.idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN").dataColumnType("BINARY")
timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.connectionPool()
.connectionUrl("jdbc:h2:mem:infinispan_binary_based;DB_CLOSE_DELAY=-1")
.username("sa")
.driverClass("org.h2.Driver");

Configure JdbcMixedStore Programmatically

1. Use the ConfigurationBuilder to create a new configuration object.

2. Add the JdbcMixedStore configuration builder to build a specific configuration related to this
store.

3. The fetchPersistentState parameter determines whether or not to fetch the persistent state of
a cache and apply it to the local cache store when joining the cluster. If the cache store is shared
the fetch persistent state is ignored, as caches access the same cache store. A configuration
exception will be thrown when starting the cache service if more than one cache loader has this
property set to true. The fetchPersistentState property is false by default.

4. The ignoreModifications parameter determines whether write methods are pushed to the
specific cache loader by allowing write operations to the local file cache loader, but not the
shared cache loader. In some cases, transient application data should only reside in a file-based
cache loader on the same server as the in-memory cache. For example, this would apply with a
further JDBC based cache loader used by all servers in the network. ignoreModifications is
false by default.

38

CHAPTER 7. THE PERSISTENCE SPI

5. The purgeOnStartup parameter specifies whether the cache is purged when initially started.

6. Configure the table as follows:

a. dropOnEXxit determines if the table will be dropped when the cache store is stopped. This is
set to false by default.

b. createOnStart creates the table when starting the cache store if no table currently exists.
This method is true by default.

c. tableNamePrefix sets the prefix for the name of the table in which the data will be stored.

d. The idColumnName property defines the column where the cache key or bucket ID is
stored.

e. The dataColumnName property specifies the column where the cache entry or bucket is
stored.

f. The timestampColumnName element specifies the column where the time stamp of the
cache entry or bucket is stored.

7. The connectionPool element specifies a connection pool for the JDBC driver using the
following parameters:

a. The connectionUrl parameter specifies the JDBC driver-specific connection URL.
b. The username parameter contains the username used to connect via the connectionUrl.

c. The driverClass parameter specifies the class name of the driver used to connect to the
database.
7.4.7. JPA Cache Store Sample Programmatic Configuration

To configure JPA Cache Stores programatically in Red Hat JBoss Data Grid, use the following:

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(JpaStoreConfigurationBuilder.class)
.persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
.entityClass(User.class)

build();

The parameters used in this code sample are as follows:

® The persistenceUnitName parameter specifies the name of the JPA cache store in the
configuration file (persistence.xml) that contains the JPA entity class.

® The entityClass parameter specifies the JPA entity class that is stored in this cache. Only one
class can be specified for each configuration.

7.4.8. Cassandra Cache Store Sample Programmatic Configuration

The Cassandra cache store is not part of the Red Hat JBoss Data Grid's core libraries, and must be
added to the classpath. For Maven projects this may be added with the following addition to your
pom.xml:

I <dependency>

39

Red Hat Data Grid 7.2 Developer Guide

<groupld>org.infinispan</groupld>

<artifactld>infinispan-cachestore-cassandra</artifactld>

<versions>...</version> </-- 7.2.0 or later -->
</dependency>

The following configuration snippet provides an example on how to define a Cassandra Cache Store
programmatically:

Configuration cacheConfig = new ConfigurationBuilder()
.persistence()
.addStore(CassandraStoreConfigurationBuilder.class)
.addServer()

.host("127.0.0.1")

.port(9042)
.addServer()

.host("127.0.0.1")

.port(9041)
.autoCreateKeyspace(true)
.keyspace("TestKeyspace")
.entryTable("TestEntryTable")
.consistencylLevel(ConsistencyLevel.LOCAL_ONE)
.serialConsistencylLevel(ConsistencyLevel. SERIAL)
.connectionPool()

.heartbeatIntervalSeconds(30)

.idleTimeoutSeconds(120)

.poolTimeoutMillis(5)
build();

40

CHAPTER 8. THE CONFIGURATIONBUILDER API

CHAPTER 8. THE CONFIGURATIONBUILDER API

8.1. THE CONFIGURATIONBUILDER API
The ConfigurationBuilder APl is a programmatic configuration APl in Red Hat JBoss Data Grid.
The ConfigurationBuilder APl is designed to assist with:
® Chain coding of configuration options in order to make the coding process more efficient
® |mprove the readability of the configuration

In Red Hat JBoss Data Grid, the ConfigurationBuilder APl is also used to enable Cacheloaders and
configure both global and cache level operations.

NOTE

Programmatic configuration can only be accomplished in Red Hat JBoss Data Grid's
Library Mode.

8.2. USING THE CONFIGURATIONBUILDER API

8.2.1. Programmatically Create a CacheManager and Replicated Cache

Programmatic configuration in Red Hat JBoss Data Grid almost exclusively involves the
ConfigurationBuilder APl and the CacheManager. The following is an example of a programmatic
CacheManager configuration:

Configure the CacheManager Programmatically

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");

Cache defaultCache = manager.getCache();

Configuration ¢ = new ConfigurationBuilder().clustering().cacheMode(CacheMode.REPL_SYNC)
.build();

String newCacheName = "repl”;
manager.defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

1. Create a CacheManager as a starting point in an XML file. If required, this CacheManager can be
programmed in runtime to the specification that meets the requirements of the use case.

2. Create a new synchronously replicated cache programmatically.

e Create a new configuration object instance using the ConfigurationBuilder helper object:
In the first line of the configuration, a new cache configuration object (named ¢) is created
using the ConfigurationBuilder . Configuration ¢ is assigned the default values for all cache
configuration options except the cache mode, which is overridden and set to synchronous
replication (REPL_SYNC).

e Define or register the configuration with a manager:

41

Red Hat Data Grid 7.2 Developer Guide

In the third line of the configuration, the cache manager is used to define a named cache
configuration for itself. This named cache configuration is called repl and its configuration is
based on the configuration provided for cache configuration ¢ in the first line.

® |n the fourth line of the configuration, the cache manager is used to obtain a reference to
the unique instance of the repl that is held by the cache manager. This cache instance is
now ready to be used to perform operations to store and retrieve data.

8.2.2. Cluster-Wide Dynamic Cache Creation

When using the getCache() method, like in the above example, a cache will be created only on a single
node. If the cache needs to be created dynamically on any new nodes that join the cluster, use the
createCache() method instead:

Cache<String, String> cache = manager.administration().createCache("newCacheName",
"newTemplate");

While a cache created this way will be available on all nodes in the cluster, it will also be ephemeral:

shutting down the entire cluster and restarting it will not automatically recreate the caches. To make the

caches persistent, use the PERMANENT flag as follows:

Cache<String, String> cache =
manager.administration().withFlags(AdminFlag.PERMANENT).createCache("newCacheName",
"newTemplate");

In order for the above to work, global state must be enabled and a suitable configuration storage
selected. The available configuration stores are:

® VOLATILE: as the name implies, this configuration storage does not support PERMANENT
caches.

e OVERLAY: this stores configurations in the global shared state persistent path in a file named
caches.xml.

® MANAGED: this is only supported in server deployments, and will ssore PERMANENT caches in
the server model.

e CUSTOM: a custom configuration store.

8.2.3. Create a Customized Cache Using the Default Named Cache

The default cache configuration (or any customized configuration) can serve as a starting point to
create a new cache.

As an example, if the infinispan-config-file.xml specifies the configuration for a replicated cache as a
default and a distributed cache with a customized lifespan value is required. The required distributed
cache must retain all aspects of the default cache specified in the infinispan-config-file.xml file except
the mentioned aspects.

Customize the Default Cache

String newCacheName = "newCache";

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration dcc = manager.getDefaultCacheConfiguration();

Configuration ¢ = new ConfigurationBuilder().read(dcc).clustering()

42

CHAPTER 8. THE CONFIGURATIONBUILDER API

.cacheMode(CacheMode.DIST_SYNC).I1().lifespan(60000L).enable()
.build();

manager.defineConfiguration(newCacheName, c);

Cache<String, String> cache = manager.getCache(newCacheName);

1. Read aninstance of a default Configuration object to get the default configuration.

2. Use the ConfigurationBuilder to construct and modify the cache mode and L1 cache lifespan
on a new configuration object.

3. Register/define your cache configuration with a cache manager.

4. Obtain a reference to newCache, containing the specified configuration.

8.2.4. Create a Customized Cache Using a Non-Default Named Cache

A situation can arise where a new customized cache must be created using a named cache that is not the
default. The steps to accomplish this are similar to those used when using the default named cache for
this purpose.

The difference in approach is due to taking a named cache called replicatedCache as the base instead
of the default cache.

Creating a Customized Cache Using a Non-Default Named Cache

String newCacheName = "newCache";

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration rc = manager.getCacheConfiguration("replicatedCache");

Configuration ¢ = new ConfigurationBuilder().read(rc).clustering()
.cacheMode(CacheMode.DIST_SYNC).I1().lifespan(60000L).enable()

.build();

manager.defineConfiguration(newCacheName, c);

Cache<String, String> cache = manager.getCache(newCacheName);

1. Read the replicatedCache to get the default configuration.

2. Use the ConfigurationBuilder to construct and modify the desired configuration on a new
configuration object.

3. Register/define your cache configuration with a cache manager.

4. Obtain a reference to newCache, containing the specified configuration.

8.2.5. Using the Configuration Builder to Create Caches Programmatically

As an alternative to using an xml file with default cache values to create a new cache, use the
ConfigurationBuilder API to create a new cache without any XML files. The ConfigurationBuilder APl is
intended to provide ease of use when creating chained code for configuration options.

The following new configuration is valid for global and cache level configuration. GlobalConfiguration
objects are constructed using GlobalConfigurationBuilder while Configuration objects are built using
ConfigurationBuilder.

8.2.6. Global Configuration Examples

43

Red Hat Data Grid 7.2 Developer Guide

8.2.6.1. Globally Configure the Transport Layer

A commonly used configuration option is to configure the transport layer. This informs Red Hat JBoss
Data Grid how a node will discover other nodes:

Configuring the Transport Layer

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
transport().defaultTransport()
.build();

8.2.6.2. Globally Configure the Cache Manager Name

The following sample configuration allows you to use options from the global JMX statistics level to
configure the name for a cache manager. This name distinguishes a particular cache manager from
other cache managers on the same system.

Configuring the Cache Manager Name

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.globaldmxStatistics()
.cacheManagerName("SalesCacheManager")
.mBeanServerLookup(new JBossMBeanServerLookup())
.enable()
.build();

8.2.6.3. Globally Configure JGroups

Red Hat JBoss Data Grid must have an appropriate JGroups configuration in order to operate in
clustered mode; the following sample configuration demonstrates how to pass a predefined JGroups
configuration file into the configuration:

JGroups Programmatic Configuration

GlobalConfiguration gc = new GlobalConfigurationBuilder()
.transport()
.defaultTransport()
.addProperty("configurationFile","jgroups.xml")
build();

Red Hat JBoss Data Grid will first search for jgroups.xml in the classpath; if no instances are found in the
classpath it will then search for an absolute path name.

8.2.7. Cache Level Configuration Examples

8.2.7.1. Cache Level Configuration for the Cluster Mode

The following configuration allows the use of options such as the cluster mode for the cache at the
cache level rather than globally:

Configure Cluster Mode at Cache Level

I Configuration config = new ConfigurationBuilder()

44

CHAPTER 8. THE CONFIGURATIONBUILDER API

.Clustering()
.cacheMode(CacheMode.DIST_SYNC)
.sync()
1().lifespan(25000L).enable()
.hash().numOwners(3)

.build();

8.2.7.2. Cache Level Eviction and Expiration Configuration

Use the following configuration to configure expiration or eviction options for a cache at the cache
level:

Configuring Expiration and Eviction at the Cache Level

Configuration config = new ConfigurationBuilder()
.memory()
.size(20000)
.expiration()
.wakeUplnterval(5000L)
.max|dle(120000L)
.build();

8.2.7.3. Cache Level Configuration for JTA Transactions

To interact with a cache for JTA transaction configuration, configure the transaction layer and
optionally customize the locking settings. For transactional caches, it is recommended to enable
transaction recovery to deal with unfinished transactions. Additionally, it is recommended that JMX
management and statistics gathering is also enabled.

Configuring JTA Transactions at Cache Level

Configuration config = new ConfigurationBuilder()
Jocking()
.concurrencylLevel(10000).isolationLevel(lsolationLevel. REPEATABLE_READ)
JockAcquisitionTimeout(12000L).useLockStriping(false).writeSkewCheck(true)
.fransaction()
.fransactionManagerLookup(new GenericTransactionManagerLookup())
.recovery().enable()
.jmxStatistics().enable()
.build();

8.2.7.4. Cache Level Configuration Using Chained Persistent Stores

The following configuration can be used to configure one or more chained persistent stores at the
cache level:

Configuring Chained Persistent Stores at Cache Level

Configuration conf = new ConfigurationBuilder()
.persistence()
.passivation(false)
.addSingleFileStore()
Jocation("/timp/firstDir")

45

Red Hat Data Grid 7.2 Developer Guide

.persistence()
.passivation(false)
.addSingleFileStore()

Jocation("/tmp/secondDir")

.build();

8.2.7.5. Cache Level Configuration for Advanced Externalizers

An advanced option such as a cache level configuration for advanced externalizers can also be
configured programmatically as follows:

Configuring Advanced Externalizers at Cache Level

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.serialization()
.addAdvancedExternalizer(new PersonExternalizer())
.addAdvancedExternalizer(999, new AddressExternalizer())
.build();

8.2.7.6. Cache Level Configuration for Partition Handling (Library Mode)

In the event of a split brain scenario a partition handling strategy can be selected to provide either
consistency or availability of data. If availability is chosen and data becomes inconsistent a merge policy
can also be selected to define how data is merged upon node rejoins. An example configuration is shown
below.

ConfigurationBuilder dcc = new ConfigurationBuilder();

dcc.clustering().partitionHandling()
.whenSplit(PartitionHandling.DENY_READ_WRITES)
.mergePolicy(MergePolicies. REMOVE_ALL);

Additional information regarding partition handling is found in the Administration and Configuration
Guide.

NOTE

To configure Partition Handling in Client-Server Mode it must be enabled declaratively as
described in the Administration and Configuration Guide.

46

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#handling_network_partitions_split_brain
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#configure_partition_handling

CHAPTER 9. THE EXTERNALIZABLE API

CHAPTER 9. THE EXTERNALIZABLE API

9.1. THE EXTERNALIZABLE API
An Externalizer is a class that can:
® Marshall a given object type to a byte array.
e Unmarshall the contents of a byte array into an instance of the object type.

Externalizers are used by Red Hat JBoss Data Grid and allow users to specify how their object types are
serialized. The marshalling infrastructure used in Red Hat JBoss Data Grid builds upon JBoss
Marshalling and provides efficient payload delivery and allows the stream to be cached. The stream
caching allows data to be accessed multiple times, whereas normally a stream can only be read once.

The Externalizable interface uses and extends serialization. This interface is used to control serialization
and deserialization in Red Hat JBoss Data Grid.

9.2. CUSTOMIZE EXTERNALIZERS

As a default in Red Hat JBoss Data Grid, all objects used in a distributed or replicated cache must be
serializable. The default Java serialization mechanism can result in network and performance
inefficiency. Additional concerns include serialization versioning and backwards compatibility.

For enhanced throughput, performance or to enforce specific object compatibility, use a customized
externalizer. Customized externalizers for Red Hat JBoss Data Grid can be used in one of two ways:

® Use an Externalizable Interface.

® Use an advanced externalizer.

9.3. ANNOTATING OBJECTS FOR MARSHALLING USING
@SERIALIZEWITH

Objects can be marshalled by providing an Externalizer implementation for the type that needs to be
marshalled or unmarshalled, then annotating the marshalled type class with @SerializeWith indicating
the Externalizer class to use.

Using the @SerializeWith Annotation

import org.infinispan.commons.marshall.Externalizer;
import org.infinispan.commons.marshall.SerializeWith;

@SerializeWith(Person.PersonExternalizer.class)
public class Person {

final String name;
final int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

47

Red Hat Data Grid 7.2 Developer Guide

public static class PersonExternalizer implements Externalizer<Person> {
@Override
public void writeObject(ObjectOutput output, Person person)
throws IOException {
output.writeObject(person.name);
output.writelnt(person.age);

}
@Override
public Person readObject(Objectinput input)

throws IOException, ClassNotFoundException {
return new Person((String) input.readObject(), input.readint());

}
}
}

In the provided example, the object has been defined as marshallable due to the @SerializeWith
annotation. JBoss Marshalling will therefore marshall the object using the Externalizer class passed.

This method of defining externalizers is user friendly, however it has the following disadvantages:
® The payload sizes generated using this method are not the most efficient. This is due to some
constraints in the model, such as support for different versions of the same class, or the need to
marshall the Externalizer class.
® This model requires the marshalled class to be annotated with @SerializeWith, however an
Externalizer may need to be provided for a class for which source code is not available, or for

any other constraints, it cannot be modified.

® Annotations used in this model may be limiting for framework developers or service providers
that attempt to abstract lower level details, such as the marshalling layer, away from the user.

Advanced Externalizers are available for users affected by these disadvantages.

NOTE

To make Externalizer implementations easier to code and more typesafe, define type <t>
as the type of object that is being marshalled or unmarshalled.

9.4. USING AN ADVANCED EXTERNALIZER

9.4.1. Using an Advanced Externalizer

Using a customized advanced externalizer helps optimize performance in Red Hat JBoss Data Grid.
1. Define and implement the readObject() and writeObject() methods.
2. Link externalizers with marshaller classes.

3. Register the advanced externalizer.

9.4.2. Implement the Methods

To use advanced externalizers, define and implement the readObject() and writeObject() methods. The
following is a sample definition:

48

CHAPTER 9. THE EXTERNALIZABLE API

Define and Implement the Methods

import org.infinispan.commons.marshall. AdvancedExternalizer;
public class Person {

final String name;
final int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public static class PersonExternalizer implements AdvancedExternalizer<Person> {
@Override
public void writeObject(ObjectOutput output, Person person)
throws IOException {
output.writeObject(person.name);
output.writelnt(person.age);

}

@Override
public Person readObject(Objectinput input)
throws IOException, ClassNotFoundException {
return new Person((String) input.readObject(), input.readint());

}

@Override
public Set<Class<? extends Person>> getTypeClasses() {
return Util.<Class<? extends Person>>asSet(Person.class);

}

@Override
public Integer getld() {
return 2345;

}
}
}

NOTE

This method does not require annotated user classes. As a result, this method is valid for
classes where the source code is not available or cannot be modified.

9.4.3. Link Externalizers with Marshaller Classes

Use an implementation of getTypeClasses() to discover the classes that this externalizer can marshall
and to link the readObject() and writeObject() classes.

The following is a sample implementation:

import org.infinispan.util. Util;
<!-- Additional configuration information here -->

49

Red Hat Data Grid 7.2 Developer Guide

@Override
public Set<Class<? extends ReplicableCommand>> getTypeClasses() {
return Util.asSet(LockControlCommand.class, GetKeyValueCommand.class,

ClusteredGetCommand.class, MultipleRpcCommand.class,
SingleRpcCommand.class, CommitCommand.class,
PrepareCommand.class, RollbackCommand.class,
ClearCommand.class, EvictCommand.class,
InvalidateCommand.class, InvalidateL1Command.class,
PutKeyValueCommand.class, PutMapCommand.class,
RemoveCommand.class, ReplaceCommand.class);

}

In the provided sample, the ReplicableCommandExternalizer indicates that it can externalize several
command types. This sample marshalls all commands that extend the ReplicableCommand interface
but the framework only supports class equality comparison so it is not possible to indicate that the
classes marshalled are all children of a particular class or interface.

In some cases, the class to be externalized is private and therefore the class instance is not accessible. In
such a situation, look up the class with the provided fully qualified class name and pass it back. An
example of this is as follows:

@Override

public Set<Class<? extends List>> getTypeClasses() {

return Util.<Class<? extends List>>asSet(
Util.<List>loadClass("java.util.Collections$SingletonList", null));

}

9.4.4. Register the Advanced Externalizer (Programmatically)

After the advanced externalizer is set up, register it for use with Red Hat JBoss Data Grid. This
registration is done programmatically as follows:

Registering the Advanced Externalizer Programmatically

GlobalConfigurationBuilder builder = ...
builder.serialization()
.addAdvancedExternalizer(new Person.PersonExternalizer());

Enter the desired information for the GlobalConfigurationBuilder in the first line.

9.4.5. Register Multiple Externalizers

Alternatively, register multiple advanced externalizers because GlobalConfiguration.addExternalizer()
accepts varargs. Before registering the new externalizers, ensure that their IDs are already defined using
the @Marshalls annotation.

Registering Multiple Externalizers

builder.serialization()
.addAdvancedExternalizer(new Person.PersonExternalizer(),
new Address.AddressExternalizer());

9.5. CUSTOM EXTERNALIZER ID VALUES

50

CHAPTER 9. THE EXTERNALIZABLE API

9.5.1. Custom Externalizer ID Values

Advanced externalizers can be assigned custom IDs if desired. Some ID ranges are reserved for other
modules or frameworks and must be avoided:

Table 9.1. Reserved Externalizer ID Ranges

ID Range Reserved For

1000-1099 The Infinispan Tree Module

1100-1199 Red Hat JBoss Data Grid Server modules
1200-1299 Hibernate Infinispan Second Level Cache
1300-1399 JBoss Data Grid Lucene Directory
1400-1499 Hibernate OGM

1500-1599 Hibernate Search

1600-1699 Infinispan Query Module

1700-1799 Infinispan Remote Query Module
1800-1849 JBoss Data Grid Scripting Module
1850-1899 JBoss Data Grid Server Event Logger Module
1900-1999 JBoss Data Grid Remote Store

9.5.2. Customize the Externalizer ID (Programmatically)

Use the following configuration to programmatically assign a specific ID to the externalizer:

Assign an ID to the Externalizer

GlobalConfiguration globalConfiguration = new GlobalConfigurationBuilder()
.serialization()
.addAdvancedExternalizer($ID, new Person.PersonExternalizer())
.build();

Replace the $ID with the desired ID.

51

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 10. THE NOTIFICATION/LISTENER API

10.1. THE NOTIFICATION/LISTENER API

Red Hat JBoss Data Grid provides a listener API that provides notifications for events as they occur.
Clients can choose to register with the listener API for relevant notifications. This annotation-driven API
operates on cache-level events and cache manager-level events.

10.2. LISTENER EXAMPLE

The following example defines a listener in Red Hat JBoss Data Grid that prints some information each
time a new entry is added to the cache:

Configuring a Listener

@Listener
public class PrintWhenAdded {
@CacheEntryCreated
public void print(CacheEntryCreatedEvent event) {
System.out.printin("New entry " + event.getKey() + " created in the cache");

}
}

10.3. LISTENER NOTIFICATIONS

10.3.1. Listener Notifications

Each cache event triggers a notification that is dispatched to listeners. A listener is a simple POJO
annotated with @Listener. A Listenable is an interface that denotes that the implementation can have
listeners attached to it. Each listener is registered using methods defined in the Listenable.

A listener can be attached to both the cache and Cache Manager to allow them to receive cache-level
or cache manager-level notifications.

10.3.2. About Cache-level Notifications

In Red Hat JBoss Data Grid, cache-level events occur on a per-cache basis. Examples of cache-level
events include the addition, removal and modification of entries, which trigger notifications to listeners
registered on the relevant cache.

10.3.3. Cache Manager-level Notifications

Examples of events that occur in Red Hat JBoss Data Grid at the cache manager-level are:
® The starting and stopping of caches
® Nodes joining or leaving a cluster;

Cache manager-level events are located globally and used cluster-wide, but are restricted to events
within caches created by a single cache manager.

52

CHAPTER 10. THE NOTIFICATION/LISTENER API

The first two types of events, CacheStarted and CacheStopped are highly similar, and the following
example demonstrates printing out the name of the cache that has started or stopped:

@CacheStarted

public void cacheStarted(CacheStartedEvent event){
// Print the name of the Cache that started
log.info("Cache Started: " + event.getCacheName());

}

@CacheStopped

public void cacheStopped(CacheStoppedEvent event){
// Print the name of the Cache that stopped
log.info("Cache Stopped: " + event.getCacheName());

}

When receiving a ViewChangedEvent or MergeEvent note that the list of old and new members is from
the node that generated the event. For instance, consider the following scenario:

® A JDG Cluster currently consists of nodes A, B, and C.
® Node D joins the cluster.

® Nodes A, B, and C will receive a ViewChangedEvent with [A,B,C] as the list of old members,
and [A,B,C,D] as the list of new members.

® Node D will receive a ViewChangedEvent with [D] as the list of old members, and [A,B,C,D] as
the list of new members.

Therefore, a set intersection may be used to determine if a node has recently joined or left a cluster. By
using getOldMembers() in conjunction with getNewMembers(), we may determine the set of nodes
that have joined or left the cluster, as seen below:

@ViewChanged

public void viewChanged(ViewChangedEvent event){
HashSet<Address> oldMembers = new HashSet(event.getOldMembers());
HashSet<Address> newMembers = new HashSet(event.getNewMembers());
HashSet<Address> oldCopy = (HashSet<Address>)oldMembers.clone();

// Remove all new nodes from the old view.
// The resulting set indicates nodes that have left the cluster.
oldCopy.removeAll(newMembers);
if(oldCopy.size() > 0){
for (Address oldAdd : oldCopy){
log.info("Node left:" + oldAdd.toString());

}
}

// Remove all old nodes from the new view.
// The resulting set indicates nodes that have joined the cluster.
newMembers.removeAll(oldMembers);
if(lnewMembers.size() > 0){
for(Address newAdd : newMembers){
log.info("Node joined: " + newAdd.toString());

}
}
}

53

Red Hat Data Grid 7.2 Developer Guide
Similar logic may be used during a MergeEvent to determine the new set of members in the cluster.

10.3.4. About Synchronous and Asynchronous Notifications

By default, notifications in Red Hat JBoss Data Grid are dispatched in the same thread that generates
the event. Therefore the listener must be written in a way that does not block or prevent the thread'’s
progression.

Alternatively, the listener can be annotated as asynchronous, which dispatches notifications in a
separate thread and prevents blocking the operations of the original thread.

Annotate listeners using the following:

@Listener (sync = false)
public class MyAsyncListener { }

Use the asyncListenerExecutor element in the XML configuration file to tune the thread pool that is
used to dispatch asynchronous notifications.

IMPORTANT

When using a synchronous, non-clustered listener that handles the
CacheEntryExpiredEvent ensure that this listener does not block execution, as the
expiration reaper is also synchronous in a non-clustered environment.

10.4. MODIFYING CACHE ENTRIES

10.4.1. Modifying Cache Entries

After the cache entry has been created, the cache entry can be modified programmatically.

10.4.2. Cache Entry Modified Listener Configuration

In a cache entry modified listener event, The getValue() method’s behavior is specific to whether the
callback is triggered before or after the actual operation has been performed. For example, if
event.isPre() is true, then event.getValue() would return the old value, prior to modification. If
event.isPre() is false, then event.getValue() would return new value. If the event is creating and inserting
a new entry, the old value would be null. For more information about isPre(), see the Red Hat JBoss
Data Grid APl Documentation's listing for the org.infinispan.notifications.cachelistener.event
package.

Listeners can only be configured programmatically by using the methods exposed by the Listenable and
FilteringListenable interfaces (which the Cache object implements).

10.4.3. Cache Entry Modified Listener Example

The following example defines a listener in Red Hat JBoss Data Grid that prints some information each
time a cache entry is modified:

Modified Listener

@Listener
public class PrintWhenModified {

54

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/api_documentation/

CHAPTER 10. THE NOTIFICATION/LISTENER API

@CacheEntryModified
public void print(CacheEntryModifiedEvent event) {
System.out.printin("Cache entry modified. Details =" + event);

}

10.5. CLUSTERED LISTENERS

10.5.1. Clustered Listeners

Clustered listeners allow listeners to be used in a distributed cache configuration. In a distributed cache
environment, registered local listeners are only notified of events that are local to the node where the
event has occurred. Clustered listeners resolve this issue by allowing a single listener to receive any write
notification that occurs in the cluster, regardless of where the event occurred. As a result, clustered
listeners perform slower than non-clustered listeners, which only provide event notifications for the
node on which the event occurs.

When using clustered listeners, client applications are notified when an entry is added, updated, expired,
or deleted in a particular cache. The event is cluster-wide so that client applications can access the
event regardless of the node on which the application resides or connects with.

The event will always be triggered on the node where the listener was registered, while disregarding
where the cache update originated.

10.5.2. Configuring Clustered Listeners

In the following use case, listener stores events as it receives them.

Procedure: Clustered Listener Configuration

@Listener(clustered = true)
protected static class ClusterListener {
List<CacheEntryEvent> events = Collections.synchronizedList(new ArrayList<CacheEntryEvent>

0);

@CacheEntryCreated

@CacheEntryModified

@CacheEntryExpired

@CacheEntryRemoved

public void onCacheEvent(CacheEntryEvent event) {
log.debugf("Adding new cluster event %s", event);
events.add(event);

}

}

public void addClusterListener(Cache<?, ?> cache) {
ClusterListener clusterListener = new ClusterListener();
cache.addListener(clusterListener);

}

1. Clustered listeners are enabled by annotating the @Listener class with clustered=true.

55

Red Hat Data Grid 7.2 Developer Guide

2. The following methods are annotated to allow client applications to be notified when entries are
added, modified, expired, or removed.

e @CacheEntryCreated
e @CacheEntryModified
e @CacheEntryExpired
e @CacheEntryRemoved
3. The listener is registered with a cache, with the option of passing on a filter or converter.

The following limitations occur when using clustered listeners, that do not apply to non-clustered
listeners:

® A cluster listener can only listen to entries that are created, modified, expired, or removed. No
other events are listened to by a clustered listener.

® Only post events are sent to a clustered listener, pre events are ignored.

10.5.3. The Cache Listener API

Clustered listeners can be added on top of the existing @CacheListener API via the addListener
method.

The Cache Listener API

I cache.addListener(Object listener, Filter filter, Converter converter);

public @interface Listener {
boolean clustered() default false;
boolean includeCurrentState() default false;
boolean sync() default true;

}

interface CacheEventFilter<K,V> {
public boolean accept(K key, V oldValue, Metadata oldMetadata, V newValue, Metadata
newMetadata, EventType eventType);

}

interface CacheEventConverter<K,V,C> {
public C convert(K key, V oldValue, Metadata oldMetadata, V newValue, Metadata newMetadata,
EventType eventType);

}

The Cache API

The local or clustered listener can be registered with the cache.addListener method, and is active
until one of the following events occur.

® The listener is explicitly unregistered by invoking cache.removeListener.

® The node on which the listener was registered crashes.

56

CHAPTER 10. THE NOTIFICATION/LISTENER API

Listener Annotation

The listener annotation is enhanced with three attributes:

e clustered():This attribute defines whether the annotated listener is clustered or not. Note
that clustered listeners can only be notified for @CacheEntryRemoved,
@CacheEntryCreated, @CacheEntryExpired, and @CacheEntryModified events. This
attribute is false by default.

e includeCurrentState(): This attribute applies to clustered listeners only, and is false by
default. When set to true, the entire existing state within the cluster is evaluated. When being
registered, a listener will immediately be sent a CacheCreatedEvent for every entry in the
cache.

e Refer to About Synchronous and Asynchronous Notifications for information regarding
sync().

oldValue and oldMetadata

The oldValue and oldMetadata values are extra methods on the accept method of
CacheEventFilter and CacheEventConverter classes. They values are provided to any listener,
including local listeners. For more information about these values, see the JBoss Data Grid API
Documentation .

EventType

The EventType includes the type of event, whether it was a retry, and if it was a pre or post event.

When using clustered listeners, the order in which the cache is updated is reflected in the sequence of
notifications received.

The clustered listener does not guarantee that an event is sent only once. The listener implementation
must be idempotent in order to prevent situations where the same event is sent more than once.
Implementors can expect singularity to be honored for stable clusters and outside of the time span in
which synthetic events are generated as a result of includeCurrentState.

10.5.4. Clustered Listener Example

The following use case demonstrates a listener that wants to know when orders are generated that have
a destination of New York, NY. The listener requires a Filter that filters all orders that come in and out of
New York. The listener also requires a Converter as it does not require the entire order, only the date it is
to be delivered.

Use Case: Filtering and Converting the New York orders

class CityStateFilter implements CacheEventFilter<String, Order> {
private String state;
private String city;

public boolean accept(String orderld, Order oldOrder,
Metadata oldMetadata, Order newOrder,
Metadata newMetadata, EventType eventType) {
switch (eventType.getType()) {
// Only send update if the order is going to our city
case CACHE_ENTRY_CREATED:
return city.equals(newQrder.getCity()) &&
state.equals(newOrder.getState());
// Only send update if our order has changed from our city to elsewhere or if is now going to

57

Red Hat Data Grid 7.2 Developer Guide

our city
case CACHE_ENTRY_MODIFIED:
if (city.equals(oldOrder.getCity()) &&
state.equals(oldOrder.getState())) {
// If old city matches then we have to compare if new order is no longer going to our city
return Icity.equals(newQOrder.getCity()) ||
Istate.equals(newOrder.getState());

}else {
// If the old city doesn't match ours then only send update if new update does match ours
return city.equals(newOrder.getCity()) &&

state.equals(newOrder.getState());
}
// On remove we have to send update if our order was originally going to city
case CACHE_ENTRY_REMOVED:
return city.equals(oldOrder.getCity()) &&
state.equals(oldOrder.getState());
}
return false;
}
}

class OrderDateConverter implements CacheEventConverter<String, Order, Date> {
private String state;
private String city;

public Date convert(String orderld, Order oldValue,
Metadata oldMetadata, Order newValue,
Metadata newMetadata, EventType eventType) {
// If remove we do not care about date - this tells listener to remove its data
if (eventType.isRemove()) {
return null;
} else if (eventType.isModified()) {
if (state.equals(newValue.getState()) &&
city.equals(newValue.getCity())) {
// If it is a modification meaning the destination has changed to ours then we allow it
return newValue.getDate();
} else {
// If destination is no longer our city it means it was changed from us so send null
return null;
}
} else {
// This was a create so we always send date
return newValue.getDate();

}
}
}

10.5.5. Optimized Cache Filter Converter

The example provided in Clustered Listener Example could use the optimized
CacheEventFilterConverter, in order to perform the filtering and converting of results into one step.

The CacheEventFilterConverter is an optimization that allows the event filter and conversion to be

performed in one step. This can be used when an event filter and converter are most efficiently used as
the same object, composing the filtering and conversion in the same method. This can only be used in

58

CHAPTER 10. THE NOTIFICATION/LISTENER API

situations where your conversion will not return a null value, as a returned value of null indicates that the
value did not pass the filter. To convert a null value, use the CacheEventFilter and the
CacheEventConverter interfaces independently.

The following is an example of the New York orders use case using the CacheEventFilterConverter:

CacheEventFilterConverter

class OrderDateFilterConverter extends AbstractCacheEventFilterConverter<String, Order, Date> {
private final String state;
private final String city;

public Date filterAndConvert(String orderld, Order oldValue,
Metadata oldMetadata, Order newValue,
Metadata newMetadata, EventType eventType) {
// Remove if the date is not required - this tells listener to remove its data
if (eventType.isRemove()) {
return null;
} else if (eventType.isModified()) {
if (state.equals(newValue.getState()) &&
city.equals(newValue.getCity())) {
// If it is a modification meaning the destination has changed to ours then we allow it
return newValue.getDate();
} else {
// If destination is no longer our city it means it was changed from us so send null
return null;
}
} else {
// This was a create so we always send date
return newValue.getDate();

}
}

When registering the listener, provide the FilterConverter as both arguments to the filter and
converter:

OrderDateFilterConverter filterConverter = new OrderDateFilterConverter("NY", "New York");
cache.addListener(listener, filterConveter, filterConverter);

10.6. REMOTE EVENT LISTENERS (HOT ROD)

10.6.1. Remote Event Listeners (Hot Rod)

Event listeners allow Red Hat JBoss Data Grid Hot Rod servers to be able to notify remote clients of
events such as CacheEntryCreated, CacheEntryModified, CacheEntryExpired and
CacheEntryRemoved. Clients can choose whether or not to listen to these events to avoid flooding
connected clients. This assumes that clients maintain persistent connections to the servers.

Client listeners for remote events can be added similarly to clustered listeners in library mode. The
following example demonstrates a remote client listener that prints out each event it receives.

Event Print Listener

59

Red Hat Data Grid 7.2 Developer Guide

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.”;

@ClientListener
public class EventLogListener {

@ClientCacheEntryCreated
public void handleCreatedEvent(ClientCacheEntryCreatedEvent e) {
System.out.printin(e);

}

@ClientCacheEntryModified
public void handleModifiedEvent(ClientCacheEntryModifiedEvent e) {
System.out.printin(e);

}

@ClientCacheEntryExpired
public void handleExpiredEvent(ClientCacheEntryExpiredEvent e) {
System.out.printin(e);

}

@ClientCacheEntryRemoved
public void handleRemovedEvent(ClientCacheEntryRemovedEvent e) {
System.out.printin(e);

}

e C(ClientCacheEntryCreatedEvent and ClientCacheEntryModifiedEvent instances provide
information on the key and version of the entry. This version can be used to invoke conditional
operations on the server, such a replaceWithVersion or removeWithVersion.

e ClientCacheEntryExpiredEvent events are sent when either a get() is called on an expired
entry, or when the expiration reaper detects that an entry has expired. Once the entry has
expired the cache will nullify the entry, and adjust its size appropriately; however, the event will
only be generated in the two scenarios listed.

e ClientCacheEntryRemovedEvent events are only sent when the remove operation succeeds. If
a remove operation is invoked and no entry is found or there are no entries to remove, no event
is generated. If users require remove events regardless of whether or not they are successful, a
customized event logic can be created.

e All client cache entry created, modified, and removed events provide a boolean
isCommandRetried() method that will return true if the write command that caused it has to be
retried due to a topology change. This indicates that the event has been duplicated or that
another event was dropped and replaced, such as where a Modified event replaced a Created
event.

IMPORTANT

If the expected workload favors writes over reads it will be necessary to filter the events
sent to prevent a large amount of excessive traffic being generated which may cause
issues on either the client or the network. For more details on filtering events refer to .

10.6.2. Adding and Removing Event Listeners

60

CHAPTER 10. THE NOTIFICATION/LISTENER API

Registering an Event Listener with the Server

The following example registers the Event Print Listener with the server. See Event Print Listener .

Adding an Event Listener

RemoteCache<Integer, String> cache = rcm.getCache();
cache.addClientListener(new EventLogListener());

Removing a Client Event Listener

A client event listener can be removed as follows

EventLogListener listener = ...
cache.removeClientListener(listener);

10.6.3. Remote Event Client Listener Example

The following procedure demonstrates the steps required to configure a remote client listener to
interact with the remote cache via Hot Rod.

Configuring Remote Event Listeners

1. Download the Red Hat JBoss Data Grid distribution from the Red Hat Customer Portal
The latest JBoss Data Grid distribution includes the Hot Rod server with which the client will
communicate.

2. Start the server
Start the JBoss Data Grid server by using the following command from the root of the server.

I $./bin/standalone.sh

3. Write the application to interact with the Hot Rod server

a. Maven Users

Create an application with the following dependency and change the version to 8.5.3.Final-
redhat-00002 or later:

<properties>
<infinispan.version>8.5.3.Final-redhat-00002</infinispan.version>

</properties>

[...]

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-remote</artifactld>
<version>${infinispan.version}</version>

</dependency>

b. Non-Maven users, adjust according to your chosen build tool or download the distribution
containing all JBoss Data Grid jars.

4. Write the client application
The following demonstrates a simple remote event listener that logs all events received.

61

Red Hat Data Grid 7.2 Developer Guide

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.”;

@ClientListener
public class EventLogListener {

@ClientCacheEntryCreated

@ClientCacheEntryModified

@ClientCacheEntryRemoved

public void handleRemoteEvent(ClientEvent event) {
System.out.printin(event);

}

5. Use the remote event listener to execute operations against the remote cache
The following example demonstrates a simple main java class, which adds the remote event
listener and executes some operations against the remote cache.

RemoteCacheManager rcm = new RemoteCacheManager();
RemoteCache<Integer, String> cache = rcm.getCache();
EventLogListener listener = new EventLogListener();

try {

cache.addClientListener(listener);

cache.put(1, "one");

cache.put(1, "new-one");

cache.remove(1);

} finally {

cache.removeClientListener(listener);

}

Result

Once executed, the console output should appear similar to the following:

ClientCacheEntryCreatedEvent(key=1,dataVersion=1)
ClientCacheEntryModifiedEvent(key=1,dataVersion=2)
ClientCacheEntryRemovedEvent(key=1)

The output indicates that by default, events come with the key and the internal data version associated
with current value. The actual value is not sent back to the client for performance reasons. Receiving
remote events has a performance impact, which is increased with cache size, as more operations are
executed. To avoid inundating Hot Rod clients, filter remote events on the server side, or customize the
event contents.

10.6.4. Filtering Remote Events

10.6.4.1. Filtering Remote Events

To prevent clients being inundated with events, Red Hat JBoss Data Grid Hot Rod remote events can
be filtered by providing key/value filter factories that create instances that filter which events are sent
to clients, and how these filters can act on client provided information.

62

CHAPTER 10. THE NOTIFICATION/LISTENER API

Sending events to remote clients has a pertormance cost, which increases with the number ot clients
with registered remote listeners. The performance impact also increases with the number of
modifications that are executed against the cache.

The performance cost can be reduced by filtering the events being sent on the server side. Custom
code can be used to exclude certain events from being broadcast to the remote clients to improve
performance.

Filtering can be based on either key or value information, or based on cache entry metadata. To enable
filtering, a cache event filter factory that produces filter instances must be created. The following is a
sample implementation that filters key “2” out of the events sent to clients.

KeyValueFilter

package sample;

import java.io.Serializable;
import org.infinispan.notifications.cachelistener filter.*;
import org.infinispan.metadata.”;

@NamedFactory(name = "basic-filter-factory™)
public class BasicKeyValueFilterFactory implements CacheEventFilterFactory {
@0Override public CacheEventFilter<Integer, String> getFilter(final Object[] params) {
return new BasicKeyValueFilter();

}

static class BasicKeyValueFilter implements CacheEventFilter<Integer, String>, Serializable {
@0Override public boolean accept(Integer key, String oldValue, Metadata oldMetadata, String
newValue, Metadata newMetadata, EventType eventType) {
return "2".equals(key);

}
}
}

In order to register a listener with this key value filter factory, the factory must be given a unique name,
and the Hot Rod server must be plugged with the name and the cache event filter factory instance.

10.6.4.2. Custom Filters for Remote Events

Custom filters can improve performance by excluding certain event information from being broadcast
to the remote clients.

To plug the JBoss Data Grid Server with a custom filter use the following procedure:

Using a Custom Filter

1. Create a JAR file with the filter implementation within it. Each factory must have a name
assigned to it via the org.infinispan.filter.NamedFactory annotation. The example uses a
KeyValueFilterFactory.

2. Create a META-INF/services/org.infinispan.notifications.cachelistener.filter.
CacheEventFilterFactory file within the JAR file, and within it write the fully qualified class name

of the filter class implementation.

3. Deploy the JAR file in the JBoss Data Grid Server by performing any of the following options:

63

Red Hat Data Grid 7.2 Developer Guide

® Option 1: Deploy the JAR through the deployment scanner

o Copy the JAR to the $JDG_HOME/standalone/deployments/ directory. The
deployment scanner actively monitors this directory and will deploy the newly placed
file.

® Option 2: Deploy the JAR through the CLI

o Connect to the desired instance with the CLI:

I [$JDG_HOME] $ bin/cli.sh --connect=$IP:$PORT

o Once connected execute the deploy command:
I deploy /path/to/artifact.jar

® Option 3: Deploy the JAR as a custom module

o Connect to the JDG server by running the below command:
I [$JDG_HOME] $ bin/cli.sh --connect=$IP:$PORT

© The jar containing the Custom Filter must be defined as a module for the Server; to add
this substitute the desired name of the module and the .jar name in the below
command, adding additional dependencies as necessary for the Custom Filter:
module add --name=$MODULE-NAME --resources=$JAR-NAME jar --
dependencies=org.infinispan
o In a different window add the newly added module as a dependency to the
org.infinispan module by editing

$JDG_HOME/modules/system/layers/base/org/infinispan/main/module.xml. In this
file add the following entry:

<dependencies>

[...]
<module name="$MODULE-NAME">

</dependencies>

o Restart the JDG server.
Once the server is plugged with the filter, add a remote client listener that will use the filter. The
following example extends the EventLogListener implementation provided in Remote Event Client

Listener Example (See Remote Event Client Listener Example), and overrides the @ClientListener
annotation to indicate the filter factory to use with the listener.

Add Filter Factory to the Listener

@org.infinispan.client.hotrod.annotation.ClientListener(filterFactoryName = "basic-filter-factory")
public class BasicFilteredEventLogListener extends EventLogListener {}

The listener can now be added via the RemoteCacheAPI. The following example demonstrates this, and
executes some operations against the remote cache.

64

CHAPTER 10. THE NOTIFICATION/LISTENER API

Register the Listener with the Server

import org.infinispan.client.hotrod.*;

RemoteCacheManager rcm = new RemoteCacheManager();
RemoteCache<Integer, String> cache = rcm.getCache();
BasicFilteredEventLogListener listener = new BasicFilteredEventLogListener();
try {

cache.addClientListener(listener);

cache.putlfAbsent(1, "one");

cache.replace(1, "new-one");

cache.putlfAbsent(2, "two");

cache.replace(2, "new-two");

cache.putlfAbsent(3, "three");

cache.replace(3, "new-three");

cache.remove(1);

cache.remove(2);

cache.remove(3);
} finally {

cache.removeClientListener(listener);

}

The system output shows that the client receives events for all keys except those that have been
filtered.

Result

The following demonstrates the resulting system output from the provided example.

ClientCacheEntryCreatedEvent(key=1,dataVersion=1)
ClientCacheEntryModifiedEvent(key=1,dataVersion=2)
ClientCacheEntryCreatedEvent(key=3,dataVersion=5)
ClientCacheEntryModifiedEvent(key=3,dataVersion=6)
ClientCacheEntryRemovedEvent(key=1)
ClientCacheEntryRemovedEvent(key=3)

IMPORTANT

Filter instances must be marshallable when they are deployed in a cluster in order for
filtering to occur where the event is generated, even if the event is generated in a
different node to where the listener is registered. To make them marshallable, either
make them extend Serializable, Externalizable, or provide a custom Externalizer.

10.6.4.3. Enhanced Filter Factories

When adding client listeners, users can provide parameters to the filter factory in order to generate
different filter instances with different behaviors from a single filter factory based on client-side
information.

The following configuration demonstrates how to enhance the filter factory so that it can filter
dynamically based on the key provided when adding the listener, rather than filtering on a statically given

key.

Configuring an Enhanced Filter Factory

65

Red Hat Data Grid 7.2 Developer Guide

package sample;

import java.io.Serializable;
import org.infinispan.notifications.cachelistener filter.*;
import org.infinispan.metadata.”;

@NamedFactory(name = "basic-filter-factory™)
public class BasicKeyValueFilterFactory implements CacheEventFilterFactory {
@0Override public CacheEventFilter<Integer, String> getFilter(final Object[] params) {
return new BasicKeyValueFilter(params);

}

static class BasicKeyValueFilter implements CacheEventFilter<Integer, String>, Serializable {
private final Object[] params;
public BasicKeyValueFilter(Object[] params) { this.params = params; }
@0Override public boolean accept(Integer key, String oldValue, Metadata oldMetadata, String
newValue, Metadata newMetadata, EventType eventType) {
return Iparams[0].equals(key);
}
}
}

The filter can now filter by “3" instead of “2":

Running an Enhanced Filter Factory

import org.infinispan.client.hotrod.*;

RemoteCacheManager rcm = new RemoteCacheManager();
RemoteCache<Integer, String> cache = rcm.getCache();
BasicFilteredEventLogListener listener = new BasicFilteredEventLogListener();
try {
cache.addClientListener(listener, new Object[[{3}, null); // <- Filter parameter passed
cache.putlfAbsent(1, "one");
cache.replace(1, "new-one");
cache.putlfAbsent(2, "two");
cache.replace(2, "new-two");
cache.putlfAbsent(3, "three");
cache.replace(3, "new-three");
cache.remove(1);
cache.remove(2);
cache.remove(3);
} finally {
cache.removeClientListener(listener);

}

Result

The provided example results in the following output:

66

ClientCacheEntryCreatedEvent(key=1,dataVersion=1)
ClientCacheEntryModifiedEvent(key=1,dataVersion=2)
ClientCacheEntryCreatedEvent(key=2,dataVersion=3)

CHAPTER 10. THE NOTIFICATION/LISTENER API

ClientCacheEntryModifiedEvent(key=2,dataVersion=4)
ClientCacheEntryRemovedEvent(key=1)
ClientCacheEntryRemovedEvent(key=2)

The amount of information sent to clients can be further reduced or increased by customizing remote
events.

10.6.5. Customizing Remote Events

10.6.5.1. Customizing Remote Events

In Red Hat JBoss Data Grid, Hot Rod remote events can be customized to contain the information
required to be sent to a client. By default, events contain only a basic set of information, such as a key
and type of event, in order to avoid overloading the client, and to reduce the cost of sending them.

The information included in these events can be customized to contain more information, such as values,
or contain even less information. Customization is done via CacheEventConverter instances, which are
created by implementing a CacheEventConverterFactory class. Each factory must have a name
associated to it via the @NamedFactory annotation.

To plug the Red Hat JBoss Data Grid Server with an event converter use the following procedure:

Using a Converter

1. Create a JAR file with the converter implementation within it. Each factory must have a name
assigned to it via the org.infinispan.filter.NamedFactory annotation.

2. Create a META-
INF/services/org.infinispan.notifications.cachelistener.filter. CacheEventConverterFactory file
within the JAR file and within it, write the fully qualified class name of the converter class
implementation.

3. Deploy the JAR file in the Red Hat JBoss Data Grid Server by performing any of the following
options:

® Option 1: Deploy the JAR through the deployment scanner

o Copy the JAR to the $JDG_HOME/standalone/deployments/ directory. The
deployment scanner actively monitors this directory and will deploy the newly placed
file.

® Option 2: Deploy the JAR through the CLI

o Connect to the desired instance with the CLI:

I [$JDG_HOME] $ bin/cli.sh --connect=$IP:$PORT
o Once connected execute the deploy command:

I deploy /path/to/artifact.jar

® Option 3: Deploy the JAR as a custom module

o Connect to the JDG server by running the below command:

67

Red Hat Data Grid 7.2 Developer Guide

I [$JDG_HOME] $ bin/cli.sh --connect=$IP:$PORT

© The jar containing the Custom Converter must be defined as a module for the Server; to
add this substitute the desired name of the module and the .jar name in the below
command, adding additional dependencies as necessary for the Custom Converter:
module add --name=$MODULE-NAME --resources=$JAR-NAME jar --
dependencies=org.infinispan
o In a different window add the newly added module as a dependency to the
org.infinispan module by editing

$JDG_HOME/modules/system/layers/base/org/infinispan/main/module.xml. In this
file add the following entry:

<dependencies>

[...]

<module name="$MODULE-NAME">
</dependencies>

o Restart the JDG server.

Converters can also act on client provided information, allowing converter instances to customize
events based on the information provided when the listener was added. The API allows converter
parameters to be passed in when the listener is added.

10.6.5.2. Adding a Converter

When a listener is added, the name of a converter factory can be provided to use with the listener. When
the listener is added, the server looks up the factory and invokes the getConverter method to get a
org.infinispan.filter.Converter class instance to customize events server side.

The following example demonstrates sending custom events containing value information to remote
clients for a cache of Integers and Strings. The converter generates a new custom event, which includes
the value as well as the key in the event. The custom event has a bigger event payload compared with
default events, however if combined with filtering, it can reduce bandwidth cost.

Sending Custom Events

import org.infinispan.notifications.cachelistener filter.*;

@NamedFactory(name = "value-added-converter-factory")
class ValueAddedConverterFactory implements CacheEventConverterFactory {
// The following types correspond to the Key, Value, and the returned Event, respectively.
public CacheEventConverter<Integer, String, ValueAddedEvent> getConverter(final Object[]
params) {
return new ValueAddedConverter();

}

static class ValueAddedConverter implements CacheEventConverter<Integer, String,
ValueAddedEvent> {
public ValueAddedEvent convert(Integer key, String oldValue,
Metadata oldMetadata, String newValue,
Metadata newMetadata, EventType eventType) {
return new ValueAddedEvent(key, newValue);

68

CHAPTER 10. THE NOTIFICATION/LISTENER API

}
}
}

// Must be Serializable or Externalizable.
class ValueAddedEvent implements Serializable {
final Integer key;
final String value;
ValueAddedEvent(Integer key, String value) {
this.key = key;
this.value = value;
}
}

10.6.5.3. Lightweight Events

Other converter implementations are able to send back events that contain no key or event type
information, resulting in extremely lightweight events at the expense of having rich information provided
by the event.

In order to plug the server with this converter, deploy the converter factory and associated converter
class within a JAR file including a service definition inside the META-
INF/services/org.infinispan.notifications.cachelistener.filter. CacheEventConverterFactory file as follows:

I sample.ValueAddedConverterFactor

The client listener must then be linked with the converter factory by adding the factory name to the
@ClientListener annotation.

@ClientListener(converterFactoryName = "value-added-converter-factory")
public class CustomEventLogListener{ ... }

10.6.5.4. Dynamic Converter Instances

Dynamic converter instances convert based on parameters provided when the listener is registered.
Converters use the parameters received by the converter factories to enable this option. For example:

Dynamic Converter

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

class DynamicCacheEventConverterFactory implements CacheEventConverterFactory {
// The following types correspond to the Key, Value, and the returned Event, respectively.
public CacheEventConverter<Integer, String, CustomEvent> getConverter(final Object[] params) {
return new DynamicCacheEventConverter(params);

}
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed when running in a
cluster
class DynamicCacheEventConverter implements CacheEventConverter<Integer, String,
CustomEvent>, Serializable {

final Object[] params;

69

Red Hat Data Grid 7.2 Developer Guide

DynamicCacheEventConverter(Object[] params) {
this.params = params;

}

public CustomEvent convert(Integer key, String oldValue, Metadata metadata, String newValue,
Metadata prevMetadata, EventType eventType) {
// If the key matches a key given via parameter, only send the key information
if (params[0].equals(key))
return new ValueAddedEvent(key, null);

return new ValueAddedEvent(key, newValue);

}
}

The dynamic parameters required to do the conversion are provided when the listener is registered:

RemoteCache<Integer, String> cache = rcm.getCache();
cache.addClientListener(new EventLogListener(), null, new Object[]{1});

10.6.5.5. Adding a Remote Client Listener for Custom Events

Implementing a listener for custom events is slightly different to other remote events, as they involve
non-default events. The same annotations are used as in other remote client listener implementations,
but the callbacks receive instances of ClientCacheEntryCustomEvent<T>, where T is the type of
custom event we are sending from the server. For example:

Custom Event Listener Implementation

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.”;

@ClientListener(converterFactoryName = "value-added-converter-factory")
public class CustomEventLogListener {

@ClientCacheEntryCreated

@ClientCacheEntryModified

@ClientCacheEntryRemoved

public void handleRemoteEvent(ClientCacheEntryCustomEvent<ValueAddedEvent> event)

{

}
}

System.out.printin(event);

To use the remote event listener to execute operations against the remote cache, write a simple main
Java class, which adds the remote event listener and executes some operations against the remote
cache. For example:

Execute Operations against the Remote Cache

import org.infinispan.client.hotrod.*;

RemoteCacheManager rcm = new RemoteCacheManager();
RemoteCache<Integer, String> cache = rcm.getCache();

70

CHAPTER 10. THE NOTIFICATION/LISTENER API

CustomEventLogListener listener = new CustomEventLogListener();
try {

cache.addClientListener(listener);

cache.put(1, "one");

cache.put(1, "new-one");

cache.remove(1);
} finally {

cache.removeClientListener(listener);

}

Result

Once executed, the console output should appear similar to the following:

ClientCacheEntryCustomEvent(eventData=ValueAddedEvent{key=1, value='one'},
eventType=CLIENT_CACHE_ENTRY_CREATED)
ClientCacheEntryCustomEvent(eventData=ValueAddedEvent{key=1, value='new-one'},
eventType=CLIENT_CACHE_ENTRY_MODIFIED)
ClientCacheEntryCustomEvent(eventData=ValueAddedEvent{key=1, value="null},
eventType=CLIENT_CACHE_ENTRY_REMOVED

IMPORTANT

Converter instances must be marshallable when they are deployed in a cluster in order for
conversion to occur where the event is generated, even if the event is generated in a
different node to where the listener is registered. To make them marshallable, either
make them extend Serializable, Externalizable, or provide a custom Externalizer for them.
Both client and server need to be aware of any custom event type and be able to marshall
it in order to facilitate both server and client writing against type safe APIs. On the client
side, this is done by an optional marshaller configurable via the RemoteCacheManager.
On the server side, this is done by a marshaller added to the Hot Rod server
configuration.

10.6.6. Event Marshalling

When filtering or customizing events, the KeyValueFilter and Converter instances must be
marshallable. As the client listener is installed in a cluster, the filter and/or converter instances are sent
to other nodes in the cluster in order for filtering and conversion to occur where the event originates,
improving efficiency. These classes can be made marshallable by having them extend Serializable or by
providing and registering a custom Externalizer.

To deploy a Marshaller instance server-side, use a similar method to that used for filtering and
customized events.

Deploying a Marshaller

1. Create a JAR file with the converter implementation within it. Each factory must have a name
assigned to it via the org.infinispan.filter.NamedFactory annotation.

2. Create a META-INF/services/org.infinispan.commons.marshall.Marshaller file within the JAR file
and within it, write the fully qualified class name of the marshaller class implementation

3. Deploy the JAR file in the Red Hat JBoss Data Grid by performing any of the following options:

® Option 1: Deploy the JAR through the deployment scanner

71

Red Hat Data Grid 7.2 Developer Guide

o Copy the JAR to the $JDG_HOME/standalone/deployments/ directory. The
deployment scanner actively monitors this directory and will deploy the newly placed
file.

® Option 2: Deploy the JAR through the CLI

o Connect to the desired instance with the CLI:

I [$JDG_HOME] $ bin/cli.sh --connect=$IP:$PORT

o Once connected execute the deploy command:
I deploy /path/to/artifact.jar

® Option 3: Deploy the JAR as a custom module

o Connect to the JDG server by running the below command:

I [$JDG_HOME] $ bin/cli.sh --connect=$IP:$PORT

© The jar containing the Custom Marshaller must be defined as a module for the Server; to
add this substitute the desired name of the module and the .jar name in the below
command, adding additional dependencies as necessary for the Custom Marshaller:

module add --name=$MODULE-NAME --resources=$JAR-NAME jar --
dependencies=org.infinispan

o In a different window add the newly added module as a dependency to the
org.infinispan module by editing
$JDG_HOME/modules/system/layers/base/org/infinispan/main/module.xml. In this
file add the following entry:

<dependencies>

[...]
<module name="$MODULE-NAME">
</dependencies>

o Restart the JDG server.

The Marshaller can be deployed either in a separate jar, or in the same jar as the CacheEventConverter,
and/or CacheEventFilter instances.

NOTE

Only the deployment of a single Marshaller instance is supported. If multiple marshaller
instances are deployed, warning messages will be displayed as a reminder indicating which
marshaller instance will be used.

10.6.7. Remote Event Clustering and Failover

When a client adds a remote listener, it is installed in a single node in the cluster, which is in charge of
sending events back to the client for all affected operations that occur cluster-wide.

72

CHAPTER 10. THE NOTIFICATION/LISTENER API

In a clustered environment, when the node containing the listener goes down, the Hot Rod client
implementation transparently fails over the client listener registration to a different node. This may
result in a gap in event consumption, which can be solved using one of the following solutions.

State Delivery

The @ClientListener annotation has an optional includeCurrentState parameter, which when enabled,
has the server send CacheEntryCreatedEvent event instances for all existing cache entries to the
client. As this behavior is driven by the client it detects when the node where the listener is registered
goes offline and automatically registers the listener on another node in the cluster. By enabling
includeCurrentState clients may recompute their state or computation in the event the Hot Rod client
transparently fails over registered listeners. The performance of the includeCurrentState parameter is
impacted by the cache size, and therefore it is disabled by default.

@ClientCacheFailover

Rather than relying on receiving state, users can define a method with the @ClientCacheFailover
annotation, which receives ClientCacheFailoverEvent parameter inside the client listener
implementation. If the node where a Hot Rod client has registered a client listener fails, the Hot Rod
client detects it transparently, and fails over all listeners registered in the node that failed to another
node.

During this failover, the client may miss some events. To avoid this, the includeCurrentState parameter
can be set to true. With this enabled a client is able to clear its data, receive all of the
CacheEntryCreatedEvent instances, and cache these events with all keys. Alternatively, Hot Rod clients
can be made aware of failover events by adding a callback handler. This callback method is an efficient
solution to handling cluster topology changes affecting client listeners, and allows the client listener to
determine how to behave on a failover. Near Caching takes this approach and clears the near cache
upon receiving a ClientCacheFailoverEvent.

@ClientCacheFailover

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.”;

@ClientListener
public class EventLogListener {
...

@ClientCacheFailover
public void handleFailover(ClientCacheFailoverEvent e) {
/I Deal with client failover, e.g. clear a near cache.

}
}

9’ NOTE

The ClientCacheFailoverEvent is only thrown when the node that has the client listener
installed fails.

73

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 11. JSR-107 (JCACHE) API

1.1. JSR-107 (JCACHE) API

Starting with Red Hat JBoss Data Grid 7.2 an implementation of the JCache 1.1.0 API (JSR-107) is
included. JCache specified a standard Java API for caching temporary Java objects in memory. Caching
java objects can help get around bottlenecks arising from using data that is expensive to retrieve (i.e.
DB or web service), or data that is hard to calculate. Caching these types of objects in memory can help
speed up application performance by retrieving the data directly from memory instead of doing an
expensive roundtrip or recalculation. This document specifies how to use JCache with Red Hat JBoss
Data Grid's implementation of the new specification, and explains key aspects of the API.

11.2. DEPENDENCIES

The JCache dependencies may either be defined in Maven or added to the classpath; both methods are
described below:

11.2.1. Option 1: Maven

In order to use the JCache implementation the following dependencies need to be added to the Maven
pom.xml/ depending on how it is used:

® embedded:

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-embedded</artifactld>
<version>${infinispan.version}</version>
</dependency>

<dependency>
<groupld>javax.cache</groupld>
<artifactld>cache-api</artifactld>
<version>1.1.0.redhat-1</version>
</dependency>

® remote:

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-remote</artifactld>
<version>${infinispan.version}</version>
</dependency>

<dependency>
<groupld>javax.cache</groupld>
<artifactld>cache-api</artifactld>
<version>1.1.0.redhat-1</version>
</dependency>

11.2.2. Option 2: Adding the necessary files to the classpath

74

http://www.jcp.org/en/jsr/detail?id=107

CHAPTER 11. JSR-107 (JCACHE) API

When not using Maven the necessary jar files must be on the classpath at runtime. Having these
available at runtime may either be accomplished by embedding the jar files directly, by specifying them
at runtime, or by adding them into the container used to deploy the application.

Embedded Mode

1. Download the Red Hat JBoss Data Grid 7.2.1 Library from the Red Hat Customer Portal.
2. Extract the downloaded archive to a local directory.

3. Locate the following files:

® jboss-datagrid-7.2.1-library/infinispan-embedded-8.5.3.Final-redhat-00002.jar
® jboss-datagrid-7.2.1-library/lib/cache-api-11.0.redhat-1jar

4. Ensure both of the above jar files are on the classpath at runtime.

Remote Mode

1. Download the Red Hat JBoss Data Grid 7.2.1 Hot Rod Java Client from the Red Hat
Customer Portal.

2. Extract the downloaded archive to a local directory.

3. Locate the following files:
® jboss-datagrid-7.2.1-remote-java-client/infinispan-remote-8.5.3.Final-redhat-00002 jar
® jboss-datagrid-7.2.1-remote-java-client/lib/cache-api-1.1.0.redhat-1jar

4. Ensure both of the above jar files are on the classpath at runtime.

11.3. CREATE ALOCAL CACHE

Creating a local cache, using default configuration options as defined by the JCache API specification, is
as simple as doing the following:

import javax.cache.”;
import javax.cache.configuration.*;

// Retrieve the system wide cache manager
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
// Define a named cache with default JCache configuration
Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>());

75

Red Hat Data Grid 7.2 Developer Guide

' WARNING
A By default, the JCache API specifies that data should be stored as storeByValue,

so that object state mutations outside of operations to the cache, won't have an
impact in the objects stored in the cache. JBoss Data Grid has so far implemented
this using serialization/marshalling to make copies to store in the cache, and that
way adhere to the spec. Hence, if using default JCache configuration with
Infinispan, data stored must be marshallable.

Alternatively, JCache can be configured to store data by reference. To do that simply call:

Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>().setStoreByValue(false));

11.3.1. Library Mode

With Library mode a CacheManager may be configured by specifying the location of a configuration file
via the URL parameter of CachingProvider.getCacheManager. This allows the opportunity to define
clustered caches in a configuration file, and then obtain a reference to the preconfigured cache by
passing the cache’s name to the CacheManager.getCache method; otherwise local caches can only be
used, created from the CacheManager.createCache .

11.3.2. Client-Server Mode

With Client-Server mode specific configurations of a remote CacheManager is performed by passing
standard HotRod client properties via properties parameter of CachingProvider.getCacheManager.
The remote servers referenced must be running and able to receive the request.

If not specified the default address and port will be used (127.0.0.1:11222). In addition, contrary to Library
mode, the first time a cache reference is obtained CacheManager.createCache must be used so that
the cache may be registered internally. Subsequent queries may be performed via
CacheManager.getCache.

11.4. STORE AND RETRIEVE DATA

Even though the JCache API does not extend either java.util.Map or java.util.concurrent.ConcurrentMap
it provides a key/value API to store and retrieve data:

import javax.cache.”;
import javax.cache.configuration.*;

CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
Cache<String, String> cache = cacheManager.createCache("namedCache",

new MutableConfiguration<String, String>());
cache.put("hello", "world"); // Notice that javax.cache.Cache.put(K) returns void!
String value = cache.get("hello"); / Returns "world"

76

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html

CHAPTER 11. JSR-107 (JCACHE) API

Contrary to standard java.util.Map, javax.cache.Cache comes with two basic put methods called put and
getAndPut. The former returns void whereas the latter returns the previous value associated with the
key. The equivalent of java.util.Map.put(K) in JCache is javax.cache.Cache.getAndPut(K).

TIP

Even though JCache API only covers standalone caching, it can be plugged with a persistence store, and
has been designed with clustering or distribution in mind. The reason why javax.cache.Cache offers two
put methods is because standard java.util.Map put call forces implementors to calculate the previous
value. When a persistent store is in use, or the cache is distributed, returning the previous value could be
an expensive operation, and often users call standard
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html#put(K, V)[java.util. Map.put(K)] without
using the return value. Hence, JCache users need to think about whether the return value is relevant to
them, in which case they need to call javax.cache.Cache.getAndPut(K) , otherwise they can call
java.util.Map.put(K) which avoids returning the potentially expensive operation of returning the previous
value.

11.5. COMPARING JAVA.UTIL.CONCURRENT.CONCURRENTMAP AND
JAVAX.CACHE.CACHE APIS

Here is a brief comparison of the data manipulation APIs provided by
java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs:

Table 11.1. java.util.concurrent.ConcurrentMap and javax.cache.Cache Comparison

Operation java.util.concurrent.Concurrent javax.cache.Cache<K,V>

Map<K,V>

store and no return N/A
I void put(K key)

store and return previous value

I V put(K key) I V getAndPut(K key)
store if not present
V putlfAbsent(K key, V boolean putlfAbsent(K key,
Value) V value)
retrieve
I V get(Object key) I V get(K key)
delete if present
I V remove(Object key) I boolean remove(K key)
delete and return previous value
I V remove(Object key) I V getAndRemove(K key)

77

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html#put(K, V)
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html#put(K
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html#put(K, V)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java

Red Hat Data Grid 7.2 Developer Guide

Operation java.util.concurrent.Concurrent javax.cache.Cache<K,V>

Map<K,V>

delete conditional

boolean remove(Object boolean remove(K key, V
key, Object value) oldValue)
replace if present
I V replace(K key, V value) boolean replace(K key, V
value)
replace and return previous value
I V replace(K key, V value) V getAndReplace(K key, V
value)
replace conditional
boolean replace(K key, V boolean replace(K key, V
oldValue, V newValue) oldValue, V newValue)

Comparing the two APIs it can be seen that, where possible, JCache avoids returning the previous value
to avoid operations doing expensive network or 10 operations. This is an overriding principle in the
design of the JCache API. In fact, there is a set of operations that are present in
java.util.concurrent.ConcurrentMap, but are not present in the javax.cache.Cache because they could be
expensive to compute in a distributed cache. The only exception is iterating over the contents of the
cache:

Table 11.2. javax.cache.Cache avoiding returns

Operation java.util.concurrent.Concurrent javax.cache.Cache<K,V>
Map<K,V>

calculate size of cache N/A
I int size()

return all keys in the cache N/A

I Set<K> keySet()

return all values in the cache N/A
I Collection<V> values()

return all entries in the cache N/A
Set<Map.Entry<K, V>>
entrySet()

78

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java

CHAPTER 11. JSR-107 (JCACHE) API

Operation java.util.concurrent.Concurrent javax.cache.Cache<K,V>
Map<K,V>
iterate over the cache use iterator() method on keySet,
values, or entrySet lterator<Cache.Entry<K,
V>> iterator()

11.6. CLUSTERING JCACHE INSTANCES

Red Hat JBoss Data Grid implementation goes beyond the specification in order to provide the
possibility to cluster caches using the standard API. Given a configuration file to replicate caches such
as:

<namedCache name="namedCache">
<clustering mode="replication"/>
</namedCache>

It is possible to create a cluster of caches using this code:

import javax.cache.”;
import java.net.URI;

// For multiple cache managers to be constructed with the standard JCache API

// and live in the same JVM, either their names, or their classloaders, must

// be different.

// This example shows how to force their classloaders to be different.

// An alternative method would have been to duplicate the XML file and give

// it a different name, but this results in unnecessary file duplication.

ClassLoader tccl = Thread.currentThread().getContextClassLoader();

CacheManager cacheManager1 = Caching.getCachingProvider().getCacheManager(
URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

CacheManager cacheManager2 = Caching.getCachingProvider().getCacheManager(
URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

Cache<String, String> cache1 = cacheManager1.getCache("namedCache");
Cache<String, String> cache2 = cacheManager2.getCache("namedCache");

cachel.put("hello", "world");
String value = cache2.get("hello"); // Returns "world" if clustering is working

/==

public static class TestClassLoader extends ClassLoader {
public TestClassLoader(ClassLoader parent) {
super(parent);

}
}

11.7. MULTIPLE CACHING PROVIDERS

Caching providers are obtained from javax.cache.Caching using the overloaded

79

Red Hat Data Grid 7.2 Developer Guide

getCachingProvider() method; by default this method will attempt to load any META-
INF/services/javax.cache.spi.CachingProvider files found in the classpath. If one is found it will
determine the caching provider in use.

With multiple caching providers available a specific provider may be selected using either of the
following methods:

e getCachingProvider(ClassLoader classLoader)
e getCachingProvider(String fullyQualifiedClassName)

To switch between caching providers ensure that the appropriate provider is available in the default
classpath, or select it using one of the above methods.

All javax.cache.spi.CachingProviders that are detected or have been loaded by the Caching class are
maintained in an internal registry, and subsequent requests for the same caching provider will be
returned from this registry instead of being reloaded or reinstantiating the caching provider
implementation. To view the current caching providers either of the following methods may be used:

e getCachingProviders() - provides a list of caching providers in the default class loader.

e getCachingProviders(ClassLoader classLoader) - provides a list of caching providers in the
specified class loader.

80

CHAPTER12. THE HEALTH CHECK API

CHAPTER12. THE HEALTH CHECK API

12.1. THE HEALTH CHECK API
The Health Check API allows users to monitor the health of the cluster, and the caches contained within.
This information is particularly important when working in a cloud environment, as it provides a method
of querying to report the status of the cluster or cache.
This APl exposes the following information:

® The name of the cluster.

® The number of machines in the cluster.

® The overall status of the cluster or cache, represented in one of three values:
o Healthy - The entity is healthy.

o Unhealthy - The entity is unhealthy. This value indicates that one or more caches are in a
degraded state.

o Rebalancing - The entity is operational, but a rebalance is in progress. Cluster nodes should
not be adjusted when this value is reported.

® The status of each cache.
® A tail of the server log.

For information on using the Health Check API through non-programmatic methods, refer to the JBoss
Data Grid Administration and Configuration Guide.

12.2. ACCESSING THE HEALTH CHECK APl PROGRAMMATICALLY

The Health Check APl is only accessible programatically in Library mode, and may be accessed by calling
the embeddedCacheManager.getHealth() method.

This method returns an org.infinispan.health.Health object, which has access to the following methods:

e getClusterHealth() - returns a ClusterHealth object with access to the following methods:

o getNumberOfNodes() - returns an int representing the number of all nodes in the cluster
o getNodeNames() - returns a List<String> containing the names of all nodes in the cluster
o getClusterName() - returns a String containing the name of the cluster

o getHealthStatus() - returns a HealthStatus that contains the cluster’s health, being
reported as HEALTHY, UNHEALTHY, or REBALANCING

e getHostInfo() - returns a Hostinfo object with access to the following methods:

o getNumberOfCpus() - returns an int containing the number of CPUs installed in the host
o getTotalMemoryKb() - returns a long containing the total memory in KB

o getFreeMemorylnKb() - returns a long containing the free memory in KB

81

Red Hat Data Grid 7.2 Developer Guide

o getCacheHealth() - returns a List<CacheHealth>. Each CacheHealth object has access to the
following methods:

o getCacheName() - returns a String containing the name of the cache

o getStatus() - returns a HealthStatus that contains the cache’s health, being reported as
HEALTHY, UNHEALTHY, or REBALANCING

82

CHAPTER13. THE REST API

CHAPTER13. THE REST API

13.1. THE REST INTERFACE

Red Hat JBoss Data Grid provides a REST interface, allowing for loose coupling between the client and
server. Its primary benefit is interoperability with existing HTTP clients, along with providing a connection
for php clients. In addition, the need for specific versions of client libraries and bindings is eliminated.

The REST APl introduces an overhead, and requires a REST client or custom code to understand and
create REST calls. It is recommended to use the Hot Rod client where performance is a concern.

To interact with Red Hat JBoss Data Grid's REST APl only a HTTP client library is required. For Java, this
may be the Apache HTTP Commons Client, or the java.net API.

IMPORTANT

The following examples assume that REST security is disabled on the REST connector.
To disable REST security remove the authentication and encryption elements from the
connector.

13.2. RUBY CLIENT CODE

The following code is an example of interacting with Red Hat JBoss Data Grid REST API using ruby. The
provided code does not require any special libraries and standard net/HTTP libraries are sufficient.

Using the REST API with Ruby

require 'net/http’

http = Net::HTTP.new('localhost', 8080)

#An example of how to create a new entry

http.post('/rest/MyData/MyKey', 'DATA_HERE', {"Content-Type" => "text/plain"})
#An example of using a GET operation to retrieve the key

puts http.get('/rest/MyData/MyKey').body

#An Example of using a PUT operation to overwrite the key
http.put('/rest/MyData/MyKey', 'MORE DATA', {"Content-Type" => "text/plain"})
#An example of Removing the remote copy of the key
http.delete('/rest/MyData/MyKey")

#An example of creating binary data

http.put(/rest/Mylmages/Image.png', File.read('/Users/michaelneale/logo.png’), {"Content-Type" =>

"image/png"})

13.3. USING JSON WITH RUBY EXAMPLE

83

Red Hat Data Grid 7.2 Developer Guide

Prerequisites

To use JavaScript Object Notation (JSON) with ruby to interact with Red Hat JBoss Data Grid's REST
Interface, install the JSON Ruby library (see your platform’s package manager or the Ruby
documentation) and declare the requirement using the following code:

I require 'json’

Using JSON with Ruby

The following code is an example of how to use JavaScript Object Notation (JSON) in conjunction with
Ruby to send specific data, in this case the name and age of an individual, using the PUT function.

data = {:name => "michael", :age => 42 }
http.put('/rest/Users/data/0', data.to_json, {"Content-Type" => "application/json"})

13.4. PYTHON CLIENT CODE

The following code is an example of interacting with the Red Hat JBoss Data Grid REST API using
Python. The provided code requires only the standard HTTP library.

Using the REST API with Python

import httplib
#How to insert data

conn = httplib.HTTPConnection("localhost:8080")

data = "SOME DATA HERE \!" #could be string, or a file...
conn.request("POST", "/rest/default/0", data, {"Content-Type": "text/plain"})
response = conn.getresponse()

print response.status

#How to retrieve data

import httplib

conn = httplib.HTTPConnection("localhost:8080")
conn.request("GET", "/rest/default/0")

response = conn.getresponse()

print response.status

print response.read()

13.5. JAVA CLIENT CODE

The following code is an example of interacting with Red Hat JBoss Data Grid REST API using Java.

Defining Imports

import java.io.BufferedReader;
import java.io.lOException;

import java.io.lnputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;

84

CHAPTER13. THE REST API

Adding a String Value to a Cache

// Using the imports in the previous example
public class RestExample {

/**
* Method that puts a String value in cache.
* @param urlServerAddress
* @param value
* @throws IOException
Y/

public void putMethod(String urlServerAddress, String value) throws IOException {

System.out.printin(" --");
System.out.printin("Executing PUT");
System.out.printin(" --");

URL address = new URL(urlServerAddress);

System.out.printin("executing request " + urlServerAddress);

HttpURLConnection connection = (HttpURLConnection) address.openConnection();
System.out.printin("Executing put method of value: " + value);
connection.setRequestMethod("PUT");
connection.setRequestProperty("Content-Type", "text/plain");
connection.setDoOutput(true);

OutputStreamWriter outputStreamWriter = new
OutputStreamWriter(connection.getOutputStream());
outputStreamWriter.write(value);

connection.connect();
outputStreamWriter.flush();

System.out.printin(" --");
System.out.printin(connection.getResponseCode() + " " + connection.getResponseMessage());
System.out.printin(" --");

connection.disconnect();

The following code is an example of a method used that reads a value specified in a URL using Java to
interact with the Red Hat JBoss Data Grid REST Interface.

Get a String Value from a Cache

// Continuation of RestExample defined in previous example
/**
* Method that gets an value by a key in url as param value.
* @param urlServerAddress
* @return String value
* @throws IOException
Y/
public String getMethod(String urlServerAddress) throws IOException {
String line = new String();
StringBuilder stringBuilder = new StringBuilder();

85

Red Hat Data Grid 7.2 Developer Guide

System.out.printin(" --");
System.out.printin("Executing GET");
System.out.printin(" --");

URL address = new URL(urlServerAddress);
System.out.printin("executing request " + urlServerAddress);

HttpURLConnection connection = (HttpURLConnection) address.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("Content-Type", "text/plain");
connection.setDoOutput(true);

BufferedReader bufferedReader = new BufferedReader(new
InputStreamReader(connection.getinputStream()));

connection.connect();
while ((line = bufferedReader.readLine()) != null) {

stringBuilder.append(line + "\n');

}

System.out.printin("Executing get method of value: " + stringBuilder.toString());

System.out.printin(" --");
System.out.printin(connection.getResponseCode() + " " + connection.getResponseMessage());
System.out.printin(" --");

connection.disconnect();

return stringBuilder.toString();

Using a Java Main Method

// Continuation of RestExample defined in previous example
/**

* Main method example.

* @param args

* @throws IOException

Y/

public static void main(String[] args) throws IOException {
//Note that the cache name is "cacheX"
RestExample restExample = new RestExample();
restExample.putMethod("http://localhost:8080/rest/cacheX/1", "Infinispan REST Test");
restExample.getMethod("http://localhost:8080/rest/cacheX/1");

}

13.6. USING THE REST INTERFACE

13.6.1. REST Interface Operations

In Remote Client-Server mode, Red Hat JBoss Data Grid provides a REST interface that allows clients
to:

86

CHAPTER13. THE REST API

® Add data
® Retrieve data
® Remove data

® Query data

13.6.1.1. Data Formats

The REST APl exposes caches that store data in a format defined by a configurable media type.

The following XML snippet shows an example configuration that defines the media type for keys and
values:

<cache>
<encoding>
<key media-type="application/x-java-object; type=java.lang.Integer"/>
<value media-type="application/xml; charset=UTF-8"/>
</encoding>
</cache>

For more information, see Configuring Media Types.

13.6.1.2. Headers

Calls to the Red Hat JBoss Data Grid REST API can provide headers that describe:
® Content written to the cache.
® Required data format of the content when reading from the cache.

JBoss Data Grid supports the HTTP/1.1 Content-Type and Accept headers applied to values as well as
the Key-Content-Type header for keys.

13.6.1.3. Accept Header

The Red Hat JBoss Data Grid REST server complies with the RFC-2616 specification for Accept
headers and negotiates the correct media type based on the supported conversions.

For example, a client sends the following header in a call to read data from the cache:

I Accept: text/plain;q=0.7, application/json;q=0.8, */*;q=0.6

In this case, JBoss Data Grid gives precedence to JSON format during negotiation because that media
type has highest priority (0.8). If the server does not support JSON format, text/plain takes precedence

because the media type has the next highest priority (0.7).

In the event that the server does not support either the JSON or text/plain media types, / takes
precedence, which indicates any suitable media type based on the cache configuration.

When the negotiation completes, the server continues using the chosen media type for the operation. If
any errors occur during the operation, the server does not attempt to use any other media type.

13.6.1.4. Key-Content-Type Header

87

Red Hat Data Grid 7.2 Developer Guide

Most calls to the REST APl include the key in the URL. When handling those calls, Red Hat JBoss Data
Grid uses the java.lang.String as the content type for keys by default. However, you can use the Key-
Content-Type header to specify different content types for keys.

Table 13.1. Key-Content-Type Header Examples

Use API Call Header

Specify a byte[] key as a Base64 PUT /my-cache/AQIDBDM= Key-Content-Type:

string application/octet-stream
Specify abyte[] key asa GET /my- Key-Content-Type:
hexadecimal string cache/0x01CA03042F application/octet-stream;

encoding=hex

Specify a double key POST /my-cache/3.141456 Key-Content-Type:
application/x-java-
object;type=java.lang.Double

NOTE
The type parameter for application/x-java-object is restricted to primitive wrapper
types and java.lang.String. This parameter is also restricted to bytes, with the result that

application/x-java-object;type=Bytes is equivalent to application/octet-
stream;encoding=hex.

13.6.2. Adding Data Through the REST API

13.6.2.1. Adding Data to the Cache

Add data to the cache with the following methods:
e HTTP PUT method
e HTTP POST method

When you call the REST API with the PUT and POST methods, the body of the request contains the
data.

13.6.2.2. PUT /{cacheName}/{cacheKey}

A PUT request from the provided URL form places the payload, from the request body in the targeted
cache using the provided key. The targeted cache must exist on the server for this task to successfully
complete.

As an example, in the following URL, the value hr is the cache name and payRoll%2F3 is the key. The
value %2F indicates that a / character was used in the key.

I http://someserver/rest/hr/payRoll%2F3

Any existing data is replaced and Time-To-Live and Last-Modified values are updated, if required.

88

CHAPTER13. THE REST API

NOTE

A cache key that contains the value %2F to represent a /in the key (as in the provided
example) can be successfully run if the server is started using the following argument:

I -Dorg.apache.tomcat.util.buf.UDecoder. ALLOW_ENCODED_SLASH=true

13.6.2.3. POST /{cacheName}/{cacheKey}

The POST method from the provided URL form places the payload (from the request body) in the
targeted cache using the provided key. However, in a POST method, if a value in a cache/key exists, a
HTTP CONFLICT status is returned and the content is not updated.

13.6.2.4. Headers for the PUT and POST Methods

Table 13.2. Headers for PUT and POST Methods

Header Optional or Required Description

Key-Content-Type Optional Specifies the content type for the
key in the URL.

Content-Type Optional Specifies the media type of the
value sent to the REST API.

performAsync Optional Specifies a boolean value. If the
value is true, it returns
immediately and then
independently replicates data to
the cluster, which is useful when
inserting data in bulk or for large
clusters.

timeTolLiveSeconds Optional Specifies the number of seconds
before the entry is automatically
deleted. Negative values create
entries that are never deleted.

maxldleTimeSeconds Optional Specifies the number of seconds
that the entry can remain idle
before it is deleted. Negative
values create entries that are
never deleted.

The following combinations can be set for the timeToLiveSeconds and maxldleTimeSeconds
headers:
e |f both the timeToLiveSeconds and maxldleTimeSeconds headers are assigned the value 0,
the cache uses the default timeToLiveSeconds and maxidleTimeSeconds values configured

either using * XML or programatically.

e [f only the maxldleTimeSeconds header value is set to 0, the timeToLiveSeconds value

89

Red Hat Data Grid 7.2 Developer Guide

should be passed as the parameter (or the default -1, if the parameter is not present).
Additionally, the maxldleTimeSeconds parameter value defaults to the values configured
either using ~ XML or programatically.

e |f only the timeToLiveSeconds header value is set to 0, expiration occurs immediately and the
maxldleTimeSeconds value is set to the value passed as a parameter (or the default -1if no
parameter was supplied).

13.6.3. Retrieving Data Through the REST API

13.6.3.1. Retrieving Data from the Cache

Retrieve data from the cache with the following methods:
e HTTP GET method

e HTTP HEAD method

13.6.3.2. GET /{cacheName}/{cacheKey}

The GET method returns the data located in the supplied cacheName, matched to the relevant key, as
the body of the response. The Content-Type header provides the type of the data. A browser can
directly access the cache.

A unique entity tag (ETag) is returned for each entry along with a Last-Modified header which indicates
the state of the data at the requested URL. ETags allow browsers (and other clients) to ask for data
only in the case where it has changed (to save on bandwidth). ETag is a part of the HTTP standard and is
supported by Red Hat JBoss Data Grid.

The type of content stored is the type returned. As an example, if a String was stored, a String is
returned. An object which was stored in a serialized form must be manually deserialized.

Appending the extended parameter to the query returns additional information. For example,

I GET /{cacheName}/{cacheKey}?extended

Returns the following custom headers:
e Cluster-Primary-Owner which identifies the node that is the primary owner of the key.

® (Cluster-Node-Name which specifies the JGroups node name of the server that handled the
request.

e Cluster-Physical-Address which specifies the physical JGroups address of the server that
handled the request.

13.6.3.3. HEAD /{cacheName}/{cacheKey}

The HEAD method operates in a manner similar to the GET method, however returns no content
(header fields are returned).

NOTE

The HEAD method also supports the extended parameter to return additional
information.

90

CHAPTER13. THE REST API

13.6.3.4. GET /{cacheName}

The GET method can return a list of keys that reside in the cache. The list of keys is returned in the
body of the response.

The Accept header can format the response as follows:
e application/xml returns a list of keys in XML format.
e application/json returns a list of keys in JSON format.
e text/plain returns a list of keys in plain text with one key per line.

If the cache is distributed then only keys that are owned by the node that handles the request are
returned. To return all keys, append the global parameter to the query as follows:

I GET /{cacheName}?global

13.6.3.5. Headers for the GET and HEAD Methods

Table 13.3. Headers for GET and HEAD Methods

Header Optional or Required Description

Key-Content-Type Optional Specifies the content type for the
key in the URL. Defaults to
application/x-java-object;
type=java.lang.String if not
specified.

Accept Optional Specifies the format in which to
return the content for calls with
the GET method.

13.6.4. Removing Data Through the REST API

13.6.4.1. Removing Data from the Cache

Remove data from Red Hat JBoss Data Grid with the HTTP DELETE method.
The DELETE method can:
® Remove a cache entry/value. (DELETE /{cacheName}/{cacheKey})

® Remove all entries from a cache. (DELETE /{cacheName})

13.6.4.2. DELETE /{cacheName}/{cacheKey}

Used in this context (DELETE /{cacheName}/{cacheKey}), the DELETE method removes the
key/value from the cache for the provided key.

13.6.4.3. DELETE /{cacheName}

o1

Red Hat Data Grid 7.2 Developer Guide

In this context (DELETE /{cacheName}), the DELETE method removes all entries in the named cache.

After a successful DELETE operation, the HTTP status code 200 is returned.

13.6.4.4. Background Delete Operations

Set the value of the performAsync header to true to ensure an immediate return while the removal
operation continues in the background.

13.6.5. ETag Based Headers

ETag Based Headers

ETags (Entity Tags) are returned for each REST Interface entry, along with a Last-Modified header that
indicates the state of the data at the supplied URL. ETags are used in HTTP operations to request data
exclusively in cases where the data has changed to save bandwidth. The following headers support
ETags (Entity Tags) based optimistic locking:

Table 13.4. Entity Tag Related Headers

92

Header

If-Match

I[f-None-Match

Algorithm

If-Match = "If-Match" ""
("*" | #entity-tag)

Example

Description

Used in conjunction with
a list of associated entity
tags to verify that a
specified entity (that
was previously obtained
from a resource)
remains current.

Used in conjunction with
a list of associated entity
tags to verify that none
of the specified entities
(that was previously
obtained from a
resource) are current.
This feature facilitates
efficient updates of
cached information
when required and with
minimal transaction
overhead.

CHAPTER13. THE REST API

Header Algorithm Example Description

If-Modified-Since If-Modified-Since = "If- If-Modified-Since: Sat, Compares the
Modified-Since" ™" 29 Oct 1994 19:43:31 requested variant's last
HTTP-date GMT modification time and

date with a supplied
time and date value. If
the requested variant
has not been modified
since the specified time
and date, a 304 (not
modified) response is
returned without a
message-body instead

of an entity.
If-Unmodified-Since If-Unmodified-Since = If-Unmodified-Since: Compares the
"If-Unmodified-Since" Sat, 29 Oct 1994 requested variant's last
""HTTP-date 19:43:31 GMT modification time and

date with a supplied
time and date value. If
the requested resources
has not been modified
since the supplied date
and time, the specified
operation is performed.
If the requested
resource has been
modified since the
supplied date and time,
the operation is not
performed and a 412
(Precondition Failed)
response is returned.

13.6.6. Querying Data via the REST Interface

Red Hat JBoss Data Grid lets you query data via the REST interface using Ickle queries in JSON format.

IMPORTANT

Querying data via the REST interface is a Technology Preview feature in JBoss Data Grid
7.2.

13.6.6.1. JSON to Protostream Conversion

JBoss Data Grid uses protocol buffers to efficiently store data in binary format in the cache while
exposing queries and enabling you to read and write content in JSON format.

To store Protobuf encoded entries, the cache must be configured with the application/x-protostream
media type. JBoss Data Grid then automatically converts JSON to Protobuf.

93

Red Hat Data Grid 7.2 Developer Guide

If the cache is indexed, you do not need to perform any configuration. By default, an indexed cache
stores entries with the application/x-protostream media type.

However, if the cache is not indexed, you must configure keys and values with the application/x-
protostream media type, as in the following example:

<cache>
<encoding>
<key media-type="application/x-protostream"/>
<value media-type="application/x-protostream"/>
</encoding>
</cache>

13.6.6.2. Registering Protobuf Schemas

To register a Protobuf schema, you can use the HTTP POST method to insert the schema in the
___protobuf_metadata cache, as in the following example:

curl -u user:password -X POST --data-binary @./schema.proto
http://127.0.0.1:8080/rest/___protobuf_metadata/schema.proto

For more information about Protobuf encoding and registering Protobuf schemas, see Protobuf
Encoding.

13.6.6.3. Mapping JSON Documents to Protobuf Messages

The _type field must be included in JSON documents. This field identifies the Protobuf message to
which the JSON document corresponds.

For example, the following is a Protobuf message defined as Person:

message Person {
required string name = 1;
required int32 age = 2;

}

The corresponding JSON document is as follows:

Person.json

{

"_type": "Person”,
"name": "user1"”,
"age": 32
}
13.6.6.4. Populating the Cache

You can write content to the cache in JSON format as follows:

curl -u user:user -XPOST --data-binary @./Person.json -H "Content-Type: application/json;
charset=UTF-8" http://127.0.0.1:8080/rest/{cacheName}/{key}

94

CHAPTER13. THE REST API

e {cacheName} specifies the name of the cache to query.
e {key} specifies the name of the key that stores the data in the cache.

After you write content to the cache, you can read it in JSON format as follows:

I curl -u user:user http://127.0.0.1:8080/rest/{cacheName}/{key}

13.6.6.5. Querying REST Endpoints

Use the HTTP GET method or the POST method to query data via the REST interface.

Query requests with the GET method have the following structure:

I {cacheName}?action=search&query={ickle query}

e [cacheName} specifies the name of the cache to query.
e [fickle query} specifies the Ickle query to perform.
The following are example queries:

® Return all data from the entity named Person: http://localhost:8080/rest/mycache?
action=search&query=from Person

e Refine the query with a select clause: http://localhost:8080/rest/mycache?
action=search&query=Select name, age from Person

® Group the results of the query: http://localhost:8080/rest/mycache?
action=search&query=from Person group by age

Query requests with the POST method have the following structure:

I {cacheName}?action=search

The body of the request specifies the query and any parameters in JSON format.

The following is an example query that returns data from the entity named Entity and filters results
using a where clause:

{

"query":"from Entity where name:\"user1\"",
"max_results":20,
"offset":10

}

13.6.6.5.1. Optional Request Parameters

The following optional parameters can apply to query requests:

Parameter Description

95

Red Hat Data Grid 7.2 Developer Guide

Parameter Description

max_results Limits the results of the query to a maximum number.
The default value is 10.

offset Specifies the index of the first result to return. The
default value is 0.

query_mode Specifies how the server executes the query with the
following values:

BROADCAST broadcasts a query to each node in
the cluster and then retrieves and combines the
results of the query before returning them. This
execution mode is suitable for non-shared indexes
where each node contains a subset of data in its
index.

FETCH executes the query in the node that the
query calls. This execution mode is suitable where all
of the indexes for data across the cluster are
available locally. This is the default value.

13.6.6.5.2. Query Results

Results of Ickle queries are returned in JSON format as in the following example:

{

"total_results" : 150,
"hits" : [{
"hit" : {
"name" : "usert”,
"age" : 35
!
b A
"hit" : {
"name" : "user2",
"age" : 42
1
3 A
"hit" : {
"name" : "user3",
"age" : 25
!
3
1

e total_results is the number of results that the query returned.
® hits lists all results that match the query.
e hit contains the fields for each result in the query.

For more information about Ickle queries, see Building a Query using the Ickle Query Language.

96

CHAPTER 14. CLUSTERED COUNTERS

CHAPTER 14. CLUSTERED COUNTERS

Clustered counters are distributed and shared across nodes in a Red Hat JBoss Data Grid cluster.
Clustered counters allow you to record the count of objects.

Clustered counters are identified by their names and are initialized with a value, which defaults to O.
Clustered counters can also be persisted so that the values are kept after cluster restarts.

There are two types of clustered counter:

Strong stores the counter value in a single key for consistency. During updates to the counter,
the value is known. Updates to the counter value are performed under the key lock. However,
reads of the current value of the counter do not acquire any lock. Strong counters allow the
counter value to be bounded and provide atomic operations such as compareAndSet or
compareAndSwap.

Weak stores the counter value in multiple keys. Each key stores a partial state of the counter
value and can be updated concurrently. During updates to the counter, the value is not known.
Retrieving the counter value does not always return the current, up to date value.

Both strong and weak clustered counters support updating the counter value, return the current value
of a counter, and provide events when a counter value is updated.

14.1. THE COUNTER API

The counter API consists of the following:

EmbeddedCounterManagerFactory initializes a counter manager from an embedded cache
manager.

RemoteCounterManagerFactory initializes a counter manager from a remote cache manager.
CounterManager provides methods to create, define, and return counters.

StrongCounter implements strong counters. This interface provides atomic updates for a
counter. All operations are performed asynchronously and use the CompletableFuture class for
completion logic.

SyncStrongCounter implements synchronous strong counters.

WeakCounter implements weak counters. All operations are performed asynchronously and use
the CompletableFuture class for completion logic.

SyncWeakCounter implements synchronous weak counters.
CounterListener listens for changes to strong counters.
CounterEvent returns events when changes to strong counters occur.

Handle extends the CounterListener interface.

14.2. ADDING MAVEN DEPENDENCIES

To start using clustered counters, add the following dependency to pom.xmil:

pom.xml

97

Red Hat Data Grid 7.2 Developer Guide

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-clustered-counter</artifactld>
<version>...</version> </-- 7.2.0 or later -->
</dependency>

14.3. RETRIEVING THE counTERMANAGER INTERFACE

To use clustered counters in Red Hat JBoss Data Grid embedded mode, do the following:

// Create or obtain an EmbeddedCacheManager.
EmbeddedCacheManager manager = ...;

// Retrieve the CounterManager interface.
CounterManager counterManager =
EmbeddedCounterManagerFactory.asCounterManager(manager);

To use clustered counters with a Hot Rod client that interacts with a Red Hat JBoss Data Grid remote
server, do the following:

// Create or obtain a RemoteCacheManager.
RemoteCacheManager manager = ...;

// Retrieve the CounterManager interface.
CounterManager counterManager = RemoteCounterManagerFactory.asCounterManager(manager);

14.4. USING CLUSTERED COUNTERS

You can define and configure clustered counters in the cache-container XML configuration or
programmatically.

14.4.1. XML Configuration for Clustered Counters

The following XML snippet provides an example of a clustered counters configuration:

<?xml version="1.0" encoding="UTF-8"7>
<infinispan>
<cache-container>
<!I-- cache container configuration goes here -->
<!I-- cache configuration goes here -->
<counters>
<strong-counter name="counter-1" initial-value="1">
<upper-bound value="10"/>
</strong-counter>
<strong-counter name="counter-2" initial-value="2"/>
<weak-counter name="counter-3" initial-value="3"/>
</counters>
</cache-container>
</infinispan>

14.4.1.1. XML Definition

98

CHAPTER 14. CLUSTERED COUNTERS

The counters element configures counters for a cluster and has the following attributes:

® num-owners sets the number of copies of each counter to store across the cluster. A smaller
number results in faster update operations but supports a lower number of server crashes. The
value must be a positive number. The default value is 2.

e reliability sets the counter update behavior in a network partition and takes the following
values:

o AVAILABLE all partitions can read and update the value of the counter. This is the default
value.

o CONSISTENT the primary partition can read and update the value of the counter. The
remaining partitions can only read the value of the counter.

The strong-counter element creates and defines a strong clustered counter. The weak-counter
element creates and defines a weak clustered counter. The following attributes are common to both
elements:

e jnitial-value sets the initial value of the counter. The default valueis 0.

e storage configures how counter values are stored. This attribute determines if the counter
values are saved after the cluster shuts down and restarts. This attribute takes the following
values:

o VOLATILE stores the value of the counter in memory. The value of the counter is discarded
when the cluster shuts down. This is the default value.

o PERSISTENT stores the value of the counter in a private, local persistence store. The value
of the counter is saved when the cluster shuts down and restarts.

Attributes specific to the strong-counter element are as follows:
e Jower-bound sets the lower bound of a strong counter. The default value is Long.MIN_VALUE.

e upper-bound sets the upper bound of a strong counter. The default value is
Long.MAX_VALUE.

NOTE

The value of the initial-value attribute must be between the lower-bound value and the
upper-bound value. If you do not specify a lower and upper bound for a strong counter,
the counter is not bounded.

Attributes specific to the weak-counter element are as follows:

e concurrency-level sets the maximum number of concurrent updates to the value of a counter.
The value must be a positive number. The default value is 16.

14.4.2. Run-time Configuration of Clustered Counters

You can configure clustered counters on-demand at run-time after the EmbeddedCacheManager is
initialized, as in the following example:

CounterManager manager = ...;

99

Red Hat Data Grid 7.2 Developer Guide

// Create three counters.
// The first counter is a strong counter bounded to 10.
manager.defineCounter("counter-1",

CounterConfiguration.builder(CounterType.BOUNDED_STRONG).initialValue(1).upperBound(10).buil

d0);

// The second counter is an unbounded strong counter.
manager.defineCounter("counter-2",
CounterConfiguration.builder(CounterType.UNBOUNDED_STRONG).initialValue(2).build());

// The third counter is a weak counter.
manager.defineCounter("counter-3",
CounterConfiguration.builder(CounterType.WEAK).initialValue(3).build());

The defineCounter() method returns true if the counter is defined successfully or false if not. If the
counter configuration is not valid, a CounterConfigurationException exception is thrown.

TIP
Use the isDefined() method to determine if a counter is already defined, as in the following example:
CounterManager manager = ...

if (Imanager.isDefined("someCounter")) {
manager.define("someCounter", ...);

}

14.4.3. Programmatic Configuration of Clustered Counters

The following code sample illustrates how to configure clustered counters programmatically with the
GlobalConfigurationBuilder:

// Set up a clustered cache manager.
GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder();

// Create a counter configuration builder.
CounterManagerConfigurationBuilder builder =
global.addModule(CounterManagerConfigurationBuilder.class);
// Create three counters.

// The first counter is a strong counter bounded to 10.

builder.addStrongCounter().name("counter-1").upperBound(10).initialValue(1);

// The second counter is an unbounded strong counter.
builder.addStrongCounter().name("counter-2").initialValue(2);

// The third counter is a weak counter.
builder.addWeakCounter().name("counter-3").initialValue(3);

// Initialize a new default cache manager.
DefaultCacheManager cacheManager = new DefaultCacheManager(global.build());

14.4.3.1. Using Clustered Counters

100

CHAPTER 14. CLUSTERED COUNTERS

The following code example illustrates how you can use clustered counters that you create and define
programmatically:

// Retrieve the CounterManager interface from the cache manager.
CounterManager counterManager =
EmbeddedCounterManagerFactory.asCounterManager(cacheManager);

// Strong counters provide greater consistency than weak counters.

// The value of a strong counter is known during an increment or decrement operation.
// The value of a strong counter can also be bounded in cases where a limit is required.
StrongCounter counter1 = counterManager.getStrongCounter("counter-1");

// All methods are asynchronous and return CompletableFuture objects so that you can perform other
operations while the counter value is computed.

counteri.getValue().thenAccept(value -> System.out.printin("Counter-1 initial value is " +
value)).get();

// Attempt to add a value that exceeds the upper-bound value.
counteri.addAndGet(10).handle((value, throwable) -> {
// Value is null since the counter is bounded to a maximum of 10.
System.out.printin("Counter-1 Exception is " + throwable.getMessage());
return 0;

})-get();

// Check the counter value. The value should be 10.
counteri.getValue().thenAccept(value -> System.out.printin("Counter-1 value is " + value)).get();

//Decrement the counter value. The new value should be 9.
counter1.decrementAndGet().handle((value, throwable) -> {
// No exception is thrown.
System.out.printin("Counter-1 new value is " + value);
return value;

})-get();

// The second counter, counter2, is a strong counter that is unbounded. It never throws the
CounterOutOfBoundsException.
StrongCounter counter2 = counterManager.getStrongCounter("counter-2");

// All counters allow a listener to be registered.
// The handle interface can remove the listener.
counter2.addListener(event -> System.out
.printin("Counter-2 event: oldValue=" + event.getOldValue() + " newValue=" +
event.getNewValue()));

// Adding MAX_VALUE does not throw an exception.

// No increments take effect if the value exceeds the MAX _VALUE.
counter2.addAndGet(Long.MAX_VALUE).thenAccept(aLong -> System.out.printin("Counter-2 value
is " + aLong)).get();

// Conditional operations are allowed in strong counters.
counter2.compareAndSet(Long.MAX_VALUE, 0)

.thenAccept(aBoolean -> System.out.printin("Counter-2 CAS result is " + aBoolean)).get();
counter2.getValue().thenAccept(value -> System.out.printin("Counter-2 value is " + value)).get();

// Reset the value of the second counter to its initial value.
counter2.reset().get();

101

Red Hat Data Grid 7.2 Developer Guide

counter2.getValue().thenAccept(value -> System.out.printin("Counter-2 initial value is " +
value)).get();

// Retrieve the third counter, counter3.
WeakCounter counter3 = counterManager.getWeakCounter("counter-3");

// The value of weak counters is not available during update operations. As a result these counters
can increment faster than strong counters.

// The counter value is computed lazily and stored locally.

counter3.add(5).thenAccept(aVoid -> System.out.printin("Adding 5 to counter-3 completed!")).get();

// Check the counter value.
System.out.printin("Counter-3 value is " + counter3.getValue());

// Stop the cache manager and release all resources.
cacheManager.stop();

102

CHAPTER 15. CLUSTERED LOCKS

CHAPTER 15. CLUSTERED LOCKS

Clustered locks are data structures that are distributed and shared across nodes in a Red Hat JBoss
Data Grid cluster. Clustered locks allow you to run code that is synchronized between the nodes in a
cluster.

15.1. THE LOCK API
The lock API consists of the following:

e EmbeddedClusteredLockManagerFactory initializes a clustered lock manager from an
embedded cache manager.

e ClusteredLockManager provides methods to define, configure, retrieve, and remove clustered
locks.

® ClusteredLock provides methods to implement clustered locks.

NOTE

Clustered locks are available in Red Hat JBoss Data Grid embedded mode only.

15.2. SUPPORTED CONFIGURATION

As of this release, Red Hat JBoss Data Grid supports NODE ownership and non-reentrant clustered
locks.

NODE ownership allows all nodes in the Red Hat JBoss Data Grid cluster to use a lock.
Reentrant locks allow the node that owns the lock to acquire it again while the node has ownership of

the lock. Non-reentrant locks allow any node to acquire the lock. As a result, if two consecutive lock calls
are sent for the same owner, the first call acquires the lock if it is available and the second call is blocked.

15.3. ADDING MAVEN DEPENDENCIES

To start using clustered locks, add the following dependency to pom.xmil:

pom.xml

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-clustered-lock</artifactld>
<version>...</version> </-- 7.2.0 or later -->
</dependency>

15.4. USING CLUSTERED LOCKS

The following code sample illustrates how to use clustered locks:

// Set up a clustered cache manager.
GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder();

// Configure the cache mode as distributed and synchronous.

103

Red Hat Data Grid 7.2 Developer Guide

104

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC);

// Initialize a new default cache manager.
DefaultCacheManager cm = new DefaultCacheManager(global.build(), builder.build());

// Initialize a clustered lock manager from the cache manager.
ClusteredLockManager ciIm1 = EmbeddedClusteredLockManagerFactory.from(cm);

// Define a clustered lock named 'lock’ with the default configuration.
clm1.defineLock("lock");

// Get a lock from each node in the cluster.
ClusteredLock lock = clm1.get("lock");

Atomiclnteger counter = new Atomiclnteger(0);

// Acquire the lock as follows.
// Each 'lock.tryLock(1, TimeUnit. SECONDS)" method attempts to acquire the lock.
// If the lock is not available, the method waits for the timeout period to elapse. When the lock is
acquired, other calls to acquire the lock are blocked until the lock is released.
CompletableFuture<Boolean> call1 = lock.tryLock(1, TimeUnit. SECONDS).whenComplete((r, ex) -> {
if (r) {
System.out.printin("lock is acquired by the call 1");
lock.unlock().whenComplete((nil, ex2) -> {
System.out.printin("lock is released by the call 1");
counter.incrementAndGet();

CompletableFuture<Boolean> call2 = lock.tryLock(1, TimeUnit. SECONDS).whenComplete((r, ex) -> {
if (r) {
System.out.printin("lock is acquired by the call 2");
lock.unlock().whenComplete((nil, ex2) -> {
System.out.printin("lock is released by the call 2");
counter.incrementAndGet();

CompletableFuture<Boolean> call3 = lock.tryLock(1, TimeUnit. SECONDS).whenComplete((r, ex) -> {
if(r) {
System.out.printin("lock is acquired by the call 3");
lock.unlock().whenComplete((nil, ex2) -> {
System.out.printin("lock is released by the call 3");
counter.incrementAndGet();

CompletableFuture.allOf(call1, call2, call3).whenComplete((r, ex) -> {
// Print the value of the counter.
System.out.printin("Value of the counter is " + counter.get());

CHAPTER15. CLUSTERED LOCKS

// Stop the cache manager.
cm.stop();

h;

105

Red Hat Data Grid 7.2 Developer Guide

CHAPTER16. THE HOT ROD INTERFACE

16.1. ABOUT HOT ROD

Hot Rod is a binary TCP client-server protocol used in Red Hat JBoss Data Grid. It was created to
overcome deficiencies in other client/server protocols, such as Memcached.

Hot Rod will failover on a server cluster that undergoes a topology change. Hot Rod achieves this by
providing regular updates to clients about the cluster topology.

Hot Rod enables clients to do smart routing of requests in partitioned or distributed Red Hat JBoss Data
Grid server clusters. To do this, Hot Rod allows clients to determine the partition that houses a key and
then communicate directly with the server that has the key. This functionality relies on Hot Rod updating
the cluster topology with clients, and that the clients use the same consistent hash algorithm as the
servers.

Red Hat JBoss Data Grid contains a server module that implements the Hot Rod protocol. The Hot Rod
protocol facilitates faster client and server interactions in comparison to other text-based protocols and
allows clients to make decisions about load balancing, failover and data location operations.

16.2. HOT ROD HEADERS

16.2.1. Hot Rod Header Data Types

All keys and values used for Hot Rod in Red Hat JBoss Data Grid are stored as byte arrays. Certain
header values, such as those for REST and Memcached, are stored using the following data types
instead:

Table 16.1. Header Data Types

Data Type Size Details

vint Between 1-5 bytes. Unsigned variable length integer
values.

vLong Between 1-9 bytes. Unsigned variable length long
values.

string - Strings are always represented

using UTF-8 encoding.

16.2.2. Request Header

When using Hot Rod to access Red Hat JBoss Data Grid, the contents of the request header consist of
the following:

Table 16.2. Request Header Fields

Field Name Data Type/Size Details

106

CHAPTER16. THE HOT ROD INTERFACE

Field Name Data Type/Size Details

Magic 1 byte Indicates whether the header is a
request header or response
header.

Message ID vLong Contains the message ID.

Responses use this unique ID
when responding to a request.
This allows Hot Rod clients to
implement the protocol in an
asynchronous manner.

Version 1byte Contains the Hot Rod server
version.
Opcode 1byte Contains the relevant operation

code. In a request header, opcode
can only contain the request
operation codes.

Cache Name Length vint Stores the length of the cache
name. If Cache Name Length is
set to 0 and no value is supplied
for Cache Name, the operation
interacts with the default cache.

Cache Name string Stores the name of the target
cache for the specified operation.
This name must match the name
of a predefined cache in the
cache configuration file.

Flags vint Contains a numeric value of
variable length that represents
flags passed to the system. Each
bit represents a flag, except the
most significant bit, which is used
to determine whether more bytes
must be read. Using a bit to
represent each flag facilitates the
representation of flag
combinations in a condensed
manner.

Client Intelligence 1 byte Contains a value that indicates
the client capabilities to the
server.

107

Red Hat Data Grid 7.2 Developer Guide

Field Name Data Type/Size

Topology ID vint

16.2.3. Response Header

Details

Contains the last known view ID in
the client. Basic clients supply the
value O for this field. Clients that
support topology or hash
information supply the value 0
until the server responds with the
current view ID, which is
subsequently used until a new
view ID is returned by the server
to replace the current view ID.

When using Hot Rod to access Red Hat JBoss Data Grid, the contents of the response header consist of

the following:

Table 16.3. Response Header Fields

Field Name Data Type
Magic 1byte
Message ID vLong
Opcode 1byte
Status 1byte
Topology Change Marker 1byte

16.2.4. Topology Change Headers

16.2.4.1. Topology Change Headers

108

Details

Indicates whether the header is a
request or response header.

Contains the message ID. This
unique " ID" is used to pair the
response with the original
request. This allows Hot Rod
clients to implement the protocol
in an asynchronous manner.

Contains the relevant operation
code. In a response header,
opcode can only contain the
response operation codes.

Contains a code that represents
the status of the response.

Contains a marker byte that
indicates whether the response is
included in the topology change
information.

CHAPTER16. THE HOT ROD INTERFACE

When using Hot Rod to access Red Hat JBoss Data Grid, response headers respond to changes in the
cluster or view formation by looking for clients that can distinguish between different topologies or hash
distributions. The Hot Rod server compares the current topology ID and the topology ID sent by the
client and, if the two differ, it returns a new topology ID.

16.2.4.2. Topology Change Marker Values

The following is a list of valid values for the Topology Change Marker field in a response header:

Table 16.4. Topology Change Marker Field Values

Value Details

0 No topology change information is added.

1 Topology change information is added.

16.2.4.3. Topology Change Headers for Topology-Aware Clients

The response header sent to topology-aware clients when a topology change is returned by the server
includes the following elements:

Table 16.5. Topology Change Header Fields

Response Header Fields Data Type/Size Details

Response Header with Topology variable Refer to Response Header.
Change Marker

Topology ID vint Topology ID.

Num Servers in Topology vint Contains the number of Hot Rod
servers running in the cluster. This
value can be a subset of the
entire cluster if only some nodes
are running Hot Rod servers.

mX: Host/IP Length vint Contains the length of the
hostname or IP address of an
individual cluster member.
Variable length allows this
element to include hostnames,
IPv4 and IPv6 addresses.

mX: Host/IP Address string Contains the hostname or IP
address of an individual cluster
member. The Hot Rod client uses
this information to access the
individual cluster member.

109

Red Hat Data Grid 7.2 Developer Guide

Response Header Fields Data Type/Size Details

mX: Port Unsigned Short. 2 bytes Contains the port used by Hot
Rod clients to communicate with
the cluster member.

The three entries with the prefix mX, are repeated for each server in the topology. The first server in the
topology’s information fields will be prefixed with m1 and the numerical value is incremented by one for
each additional server till the value of X equals the number of servers specified in the num servers in
topology field.

16.2.4.4. Topology Change Headers for Hash Distribution-Aware Clients

The response header sent to clients when a topology change is returned by the server includes the
following elements:

Table 16.6. Topology Change Header Fields

Field Data Type/Size Details

Response Header with Topology variable Refer to Response Header.
Change Marker

Topology ID vint Topology ID.

Number Key Owners Unsigned short. 2 bytes. Contains the number of globally
configured copies for each
distributed key. Contains the
value 0 if distribution is not
configured on the cache.

Hash Function Version 1 byte Contains a pointer to the hash
function in use. Contains the value
0 if distribution is not configured
on the cache.

Hash Space Size vint Contains the modulus used by
JBoss Data Grid for all module
arithmetic related to hash code
generation. Clients use this
information to apply the correct
hash calculations to the keys.
Contains the value 0 if distribution
is not configured on the cache.

110

Field

Number servers in topology

Number Virtual Nodes Owners

mX: Host/IP Length

mX: Host/IP Address

mX: Port

Hash Function Version

Number of Segments in Topology

Number of Owners in Segment

First Wwner's Index

Data Type/Size

vint

vint

vint

string

Unsigned short. 2 bytes.

1byte

vint

1byte

vint

CHAPTER16. THE HOT ROD INTERFACE

Details

Contains the number of [path]_
Hot Rod_ servers running in the
cluster. This value can be a subset
of the entire cluster if only some
nodes are running [path]_Hot
Rod_ servers. This value also
represents the number of host to
port pairings included in the
header.

Contains the number of
configured virtual nodes.
Contains the value 0 if no virtual
nodes are configured or if
distribution is not configured on
the cache.

Contains the length of the
hostname or [path]_IP_address
of an individual cluster member.
Variable length allows this
element to include hostnames,
[path]_IPv4_and [path]_IPv6_
addresses.

Contains the hostname or [path]_
IP_ address of an individual
cluster member. The [path]_Hot
Rod_ client uses this information
to access the individual cluster
member.

Contains the port used by [path]_
Hot Rod_ clients to communicate
with the cluster member.

0x03

Total number of segments in the
topology.

This can be either O, 1, or 2
owners.

Given the list of all nodes, the

position of this owner in this list.
This is only present if number of
owners for this segmentis 1or 2.

m

Red Hat Data Grid 7.2 Developer Guide

Field

Second Owner's Index

NOTE

Data Type/Size

vint

Details

Given the list of all nodes, the
position of this owner in this list.
This is only present if number of
owners for this segment is 2.

Even though it is possible to have more than 2 owners per segment, the Hot Rod protocol
limits the number of owners to send for efficiency reasons.

The three entries with the prefix mX, are repeated for each server in the topology. The first server in the
topology’s information fields will be prefixed with m1 and the numerical value is incremented by one for
each additional server till the value of X equals the number of servers specified in the num servers in

topology field.

16.3. HOT ROD OPERATIONS

16.3.1. Hot Rod Operations

The following are valid operations when using Hot Rod protocol 1.3 to interact with Red Hat JBoss Data
Grid:

12

Authenticate
AuthMechList
BulkGet
BulkKeysGet
Clear
ContainsKey
Exec

Get

GetAll
GetWithMetadata
GetWithVersion
IterationEnd
[terationNext
[terationStart

Ping

CHAPTER16. THE HOT ROD INTERFACE

® Put

e PutAll

e PutlfAbsent

® Query

® Remove

® RemovelfUnmodified
® Replace

® ReplacelfUnmodified
® Stats

® Sjze

IMPORTANT

When using the RemoteCache API to call the Hot Rod client’s Put, PutlfAbsent , Replace ,
and ReplaceWithVersion operations, if lifespan is set to a value greater than 30 days, the
value is treated as UNIX time and represents the number of seconds since the date
1/1/1970.

16.3.2. Hot Rod Authenticate Operation

The purpose of this operation is to authenticate a client against a server using SASL. The authentication
process, depending on the chosen mech, might be a multi-step operation. Once complete the
connection becomes authenticated.

The Authenticate operation request format includes the following:

Table 16.7. Authenticate Operation Request Format

Field Data Type Details
Header variable Request header.
Mech String String containing the name of the

mech chosen by the client for
authentication. Empty on the
successive invocations.

Response length vint Length of the SASL client
response.
Response data byte array The SASL client response.

The response header for this operation contains the following:

Table 16.8. Authenticate Operation Response Format

13

Red Hat Data Grid 7.2 Developer Guide

Field Data Type Details
Header variable Response header.
Completed byte O if further processing is needed,

or Tif authentication is complete.

Challenge length vint Length of the SASL server
challenge.
Challenge data byte array The SASL server challenge.

16.3.3. Hot Rod AuthMechList Operation

The purpose of this operation is to obtain the list of valid SASL authentication mechs supported by the
server. The client will then need to issue an Authenticate request with the preferred mech.

The AuthMechList operation request format includes the following:

Table 16.9. AuthMechList Operation Request Format

Field Data Type Details

Header Variable Request header

The response header for this operation contains the following:

Table 16.10. AuthMechList Operation Response Format

Field Data Type Details

Header Variable Response header

Mech count vint The number of mechs.

Mech String String containing the name of the

SASL mech in its IANA-registered
form (e.g. GSSAPI, CRAM-MD5,
etc)

The Mech value recurs for each supported mech.

16.3.4. Hot Rod BulkGet Operation

A Hot Rod BulkGet operation uses the following request format:

Table 16.11. BulkGet Operation Request Format

14

CHAPTER16. THE HOT ROD INTERFACE

Field Data Type Details
Header variable Request Header.
Entry Count vint Contains the maximum number of

Red Hat JBoss Data Grid entries
to be returned by the server. The
entry is the key and value pair.

The response header for this operation contains one of the following response statuses:

Table 16.12. BulkGet Operation Response Format

Field Data Type Details
Header variable Response Header
More vint Represents if more entries must

be read from the stream. While
More is set to 1, additional entries
follow until the value of More is
set to 0, which indicates the end
of the stream.

Key Length vint Contains the length of the key.
Key byte array Contains the key value.

Value Length vint Contains the length of the value.
Value byte array Contains the value.

For each entry that was requested, a More, Key Size, Key, Value Size and Value entry is appended to
the response.

16.3.5. Hot Rod BulkKeysGet Operation

A Hot Rod BulkKeysGet operation uses the following request format:

Table 16.13. BulkKeysGet Operation Request Format

Field Data Type Details

Header variable Request header.

115

Red Hat Data Grid 7.2 Developer Guide

Field Data Type Details

Scope vint
P o 0= Default Scope - This

scope is used by
RemoteCache.keySet
() method. If the remote
cache is a distributed
cache, the server
launches a map/reduce
operation to retrieve all
keys from all of the
nodes (A topology-
aware Hot Rod Client
could be load balancing
the request to any one
node in the cluster).
Otherwise, it will get keys
from the cache instance
local to the server
receiving the request, as
the keys must be the
same across all nodes in
areplicated cache.

o 1=CGlobal Scope - This
scope behaves the same
to Default Scope.

® 2-=LocalScope-In
situations where the
remote cacheis a
distributed cache, the
server will not launch a
map/reduce operation
to retrieve keys from all
nodes. Instead, it will only
get keys local from the
cache instance local to
the server receiving the
request.

The response header for this operation contains one of the following response statuses:

Table 16.14. BulkKeysGet Operation Response Format

Field Data Type Details
Header variable Response header.
Response Status Tbyte 0x00 = success, data follows.

16

CHAPTER16. THE HOT ROD INTERFACE

Field Data Type Details

More 1byte One byte representing whether
more keys need to be read from
the stream. When set to 1 an
entry follows, when set to 0, it is
the end of stream and no more
entries are left to read.

Key Length vint Length of key
Key byte array Retrieved key.
More 1byte One byte representing whether

more entries need to be read
from the stream. So, when it's set
to 1, it means that an entry
follows, whereas when it's set to O,
it's the end of stream and no
more entries are left to read.

The values Key Length and Key recur for each key.

16.3.6. Hot Rod Clear Operation

The clear operation format includes only a header.
Valid response statuses for this operation are as follows:

Table 16.15. Clear Operation Response

Response Status Details

0x00 Red Hat JBoss Data Grid was successfully cleared.

16.3.7. Hot Rod ContainsKey Operation

A Hot Rod ContainsKey operation uses the following request format:

Table 16.16. ContainsKey Operation Request Format

Field Data Type Details

Header - -

17

Red Hat Data Grid 7.2 Developer Guide

Field Data Type Details

Key Length vint Contains the length of the key.
The vint data type is used because
of its size (up to 5 bytes), which is
larger than the size of
Integer.MAX_VALUE.
However, Java disallows single
array sizes to exceed the size of
Integer.MAX_VALUE. As a
result, this vintis also limited to
the maximum size of
Integer. MAX_VALUE .

Key Byte array Contains a key, the corresponding
value of which is requested.

The response header for this operation contains one of the following response statuses:

Table 16.17. ContainsKey Operation Response Format

Response Status Details

0x00 Successful operation.

0x02 The key does not exist.

The response for this operation is empty.

16.3.8. Hot Rod Exec Operation

The Exec operation request format includes the following:

Table 16.18. Exec Operation Request Format

Field Data Type Details

Header variable Request header.

Script String Name of the script to execute.
Parameter Count vint The number of parameters.
Parameter Name (per parameter) String The name of the parameter.
Parameter Length (per vint The length of the parameter.
parameter)

Parameter Value (per parameter) byte array The value of the parameter.

18

CHAPTER16. THE HOT ROD INTERFACE

Field Data Type Details

The response header for this operation contains the following:

Table 16.19. Exec Operation Response Format

Field Data Type Details
Header variable Response header.
Response status 1byte 0x0Q if the execution completed

successfully. 0x85 if the server
resulted in an error.

Value Length vint If success, length of return value.
Value byte array If success, the result of the
execution.

16.3.9. Hot Rod Get Operation

A Hot Rod Get operation uses the following request format:

Table 16.20. Get Operation Request Format

Field Data Type Details
Header Variable Request Header
Key Length vint Contains the length of the key.

The vint data type is used because
of its size (up to 5 bytes), which is
larger than the size of
Integer.MAX_VALUE.

However, Java disallows single
array sizes to exceed the size of
Integer.MAX_VALUE. As a
result, this vint is also limited to
the maximum size of

Integer.MAX_VALUE.

Key Byte array Contains a key, the corresponding
value of which is requested.

The response header for this operation contains one of the following response statuses:

Table 16.21. Get Operation Response Format

19

Red Hat Data Grid 7.2 Developer Guide

Response Status Details

0x00 Successful operation.

0x02 The key does not exist.

The format of the get operation’s response when the key is found is as follows:

Table 16.22. Get Operation Response Format

Field Data Type Details

Header Variable Response Header

Value Length vint Contains the length of the value.
Value Byte array Contains the requested value.

16.3.10. Hot Rod GetAll Operation

Bulk operation to get all entries that map to a given set of keys.
A Hot Rod GetAll operation uses the following request format:

Table 16.23. GetAll Operation Request Format

Field Data Type Details

Header variable Request header

Key Count vint How many keys to find entities
for.

Key Length vint Length of key.

Key byte array Retrieved key.

The Key Length and Key values recur for each key.
The response header for this operation contains the following:

Table 16.24. GetAll Operation Response Format

Field Data Type Details

Header variable Response header

120

CHAPTER16. THE HOT ROD INTERFACE

Field Data Type Details

Entry count vint How many entries are being
returned.

Key Length vint Length of key.

Key byte array Retrieved key.

Value Length vint Length of value.

Value byte array Retrieved value.

The Key Length, Key, Value Length, and Value entries recur per key and value.

16.3.11. Hot Rod GetWithMetadata Operation

A Hot Rod GetWithMetadata operation uses the following request format:

Table 16.25. GetWithMetadata Operation Request Format

Field Data Type Details
Header variable Request header.
Key Length vint Length of key. Note that the size

of a vint can be up to five bytes,
which theoretically can produce
bigger numbers than
Integer.MAX_VALUE.
However, Java cannot create a
single array that is bigger than
Integer.MAX_VALUE, hence
the protocol limits vint array
lengths to
Integer.MAX_VALUE.

Key byte array Byte array containing the key
whose value is being requested.

The response header for this operation contains one of the following response statuses:

Table 16.26. GetWithMetadata Operation Response Format

Field Data Type Details

Header variable Response header.

121

Red Hat Data Grid 7.2 Developer Guide

Field

Response status

Flag

Created

Lifespan

LastUsed

Maxldle

Entry Version

Value Length

Value

122

Data Type

1byte

1byte

Long

vint

Long

vint

8 bytes

vint

byte array

Details

0x00 = success, if key retrieved.

0x02 = if key does not exist.

A flag indicating whether the
response contains expiration
information. The value of the flag
is obtained as a bitwise OR
operation between
INFINITE_LIFESPAN (0x01)
and INFINITE_MAXIDLE
(0x02).

(optional) a Long representing
the timestamp when the entry
was created on the server. This
value is returned only if the flag's

INFINITE_LIFESPAN bit is not
set.

(optional) a vint representing the
lifespan of the entry in seconds.
This value is returned only if the

flag's INFINITE_LIFESPAN bit
is not set.

(optional) a Long representing
the timestamp when the entry
was last accessed on the server.
This value is returned only if the

flag's INFINITE_MAXIDLE bit is
not set.

(optional) a vint representing the
maxldle of the entry in seconds.
This value is returned only if the

flag's INFINITE_MAXIDLE bit is
not set.

Unique value of an existing entry
modification. The protocol does
not mandate that entry_version
values are sequential, however
they need to be unique per
update at the key level.

If success, length of value.

If success, the requested value.

CHAPTER16. THE HOT ROD INTERFACE

16.3.12. Hot Rod GetWithVersion Operation

A Hot Rod GetWithVersion operation uses the following request format:

Table 16.27. GetWithVersion Operation Request Format

Field Data Type Details
Header Variable Request Header
Key Length vint Contains the length of the key.

The vint data type is used because
of its size (up to 5 bytes), which is
larger than the size of
Integer.MAX_VALUE.

However, Java disallows single
array sizes to exceed the size of
Integer.MAX_VALUE. As a
result, this vint is also limited to
the maximum size of

Integer.MAX_VALUE.

Key Byte array Contains a key, the corresponding
value of which is requested.

The response header for this operation contains one of the following response statuses:

Table 16.28. GetWithVersion Operation Response Format

Response Status Details

0x00 Successful operation.

0x02 The key does not exist.

The format of the GetWithVersion operation’s response when the key is found is as follows:

Table 16.29. GetWithVersion Operation Response Format

Field Data Type Details
Header variable Response header
Entry Version 8 bytes Unique value of an existing entry's

modification. The protocol does
not mandate that entry_version
values are sequential. They just
need to be unique per update at
the key level.

123

Red Hat Data Grid 7.2 Developer Guide

Field Data Type Details
Value Length vint Contains the length of the value.
Value Byte array Contains the requested value.

16.3.13. Hot Rod IterationEnd Operation

The lterationEnd operation request format includes the following:

Table 16.30. IterationEnd Operation Request Format

Field Data Type Details

iterationld String The unique id of the iteration.

The following are the valid response values returned from this operation:

Table 16.31. IterationEnd Operation Response Format

Response Status Details

0x00 Successful operation.

0x05 Error for non existent iterationld.

16.3.14. Hot Rod IterationNext Operation

The lterationNext operation request format includes the following:

Table 16.32. IterationNext Operation Request Format

Field Data Type Details

Iterationld String The unique id of the iteration.

The response header for this operation contains the following:

Table 16.33. IterationNext Operation Response Format

Field Data Type Details

Finished segments size vint Size of the bitset representing
segments that were finished
iterating.

124

CHAPTER16. THE HOT ROD INTERFACE

Field Data Type Details

Finished segments byte array Bitset encoding of the segments
that were finished iterating.

Entry count vint How many entries are being
returned.

Number of value projections vint Number of projections for the
values.

Metadata 1byte If set, entry has metadata
associated.

Expiration 1 byte A flag indicating whether the

response contains expiration
information. The value of the flag
is obtained as a bitwise OR
operation between
INFINITE_LIFESPAN (0x01)
and INFINITE_MAXIDLE
(0x02). Only present if the
metadata flag above is set.

Created Long (optional) a Long representing
the timestamp when the entry
was created on the server. This
value is returned only if the flag's
INFINITE_LIFESPAN bit is not

set.

Lifespan vint (optional) a vint representing the
lifespan of the entry in seconds.
This value is returned only if the
flag's INFINITE_LIFESPAN bit

is not set.

LastUsed Long (optional) a Long representing
the timestamp when the entry
was last accessed on the server.
This value is returned only if the
flag's INFINITE_MAXIDLE bit is

not set.

Maxldle vint (optional) a vint representing the
maxldle of the entry in seconds.
This value is returned only if the
flag's INFINITE_MAXIDLE bit is

not set.

125

Red Hat Data Grid 7.2 Developer Guide

Field Data Type Details

Entry Version 8 bytes Unique value of an existing entry's
modification. Only present if
Metadata flag is set.

Key Length vint Length of key.
Key byte array Retrieved key.
Value Length vint Length of value.
Value byte array Retrieved value.

For each entry the Metadata, Expiration, Created, Lifespan, LastUsed, MaxIdle, Entry Version, Key
Length, Key, Value Length, and Value fields recur.
16.3.15. Hot Rod IterationStart Operation

The lterationStart operation request format includes the following:

Table 16.34. IterationStart Operation Request Format

Field Data Type Details

Segments size signed vint Size of the bitset encoding of the
segments ids to iterate on. The
size is the maximum segment id
rounded to nearest multiple of 8.
A value -1indicates no segment
filtering is to be done

126

Field

Segments

FilterConverter size

FilterConverter

Parameters size

Parameters

BatchSize

Data Type

byte array

signed vint

UTF-8 byte array

byte

bytef][]

vint

CHAPTER16. THE HOT ROD INTERFACE

Details

(Optional) Contains the segments
ids bitset encoded, where each bit
with value 1represents a segment
in the set. Byte order is little-
endian. Example: segments
[1,3,12,13] would result in the
following encoding:

00001010 00110000

size: 16 bits

first byte: represents
segments from 0 to 7, from
which 1 and 3 are set
second byte: represents
segments from 8 to 15,
from which 12 and 13 are
set

More details in the
java.util.BitSet implementation.
Segments will be sent if the
previous field is not negative

The size of the String
representing a
KeyValueFilterConverter
factory name deployed on the
server, or -1if no filter will be
used.

(Optional)
KeyValueFilterConverter
factory name deployed on the
server. Present if previous field is
not negative.

The number of parameters of the
filter. Only present when
FilterConverter is provided.

An array of parameters. Each
parameter is a byte array. Only
present if Parameters size is
greater than O.

Number of entries to transfers
from the server at one go.

127

Red Hat Data Grid 7.2 Developer Guide

Field Data Type Details

Metadata 1byte 1if metadata is to be returned for
each entry, O otherwise.

The response header for this operation contains the following:

Table 16.35. IterationEnd Operation Response Format

Field Data Type Details

Iterationld String The unique id of the iteration.

16.3.16. Hot Rod Ping Operation

The ping is an application level request to check for server availability.
Valid response statuses for this operation are as follows:

Table 16.36. Ping Operation Response

Response Status Details

0x00 Successful ping without any errors.

16.3.17. Hot Rod Put Operation

The put operation request format includes the following:

Field Data Type Details

Header variable Request header.

Key Length - Contains the length of the key.
Key Byte array Contains the key value.

128

CHAPTER16. THE HOT ROD INTERFACE

Field Data Type Details

TimeUnits Byte Time units of lifespan (first 4 bits)
and maxldle (last 4 bits). Special
units DEFAULT and INFINITE
can be used for default server
expiration and no expiration
respectively. Possible values:

0x00 = SECONDS

0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES

0x05 = HOURS

0x06 = DAYS

0x07 = DEFAULT

0x08 = INFINITE

Lifespan vint Duration which the entry is
allowed to life. Only sent when
time unitis not DEFAULT or
INFINITE

Max Idle vint Duration that each entry can be
idle before it's evicted from the
cache. Only sent when time unit is
not DEFAULT or INFINITE.

Value Length vint Contains the length of the value.

Value Byte array The requested value.

The following are the valid response values returned from this operation:

Response Status Details

0x00 The value was successfully stored.

0x03 The value was successfully stored, and the previous
value follows.

An empty response is the default response for this operation. However, if ForceReturnPreviousValue
is passed, the previous value and key are returned. If the previous key and value do not exist, the value
length would contain the value 0.

16.3.18. Hot Rod PutAll Operation

129

Red Hat Data Grid 7.2 Developer Guide

Bulk operation to put all key value entries into the cache at the same time.
The PutAll operation request format includes the following:

Table 16.37. PutAll Operation Request Format

Field Data Type Details
Header variable Request header.
TimeUnits Byte Time units of lifespan (first 4 bits)

and maxldle (last 4 bits). Special
units DEFAULT and INFINITE
can be used for default server
expiration and no expiration
respectively. Possible values:

0x00 = SECONDS

0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES

0x05 = HOURS

0x06 = DAYS

0x07 = DEFAULT

0x08 = INFINITE

Lifespan vint Duration which the entry is
allowed to life. Only sent when
time unit is not DEFAULT or
INFINITE

Max Idle vint Duration that each entry can be
idle before it's evicted from the
cache. Only sent when time unit is
not DEFAULT or INFINITE.

Entry count vint How many entries are being
inserted.

Key Length vint Length of key.

Key byte array Retrieved key.

Value Length vint Length of value.

Value byte array Retrieved value.

The Key Length, Key, Value Length, and Value fields repeat for each entry that will be placed.

The response header for this operation contains one of the following response statuses:

130

CHAPTER16. THE HOT ROD INTERFACE

Table 16.38. PutAll Operation Response Format

Response Status Details

0x00 Successful operation, indicating all keys were
successfully put.

16.3.19. Hot Rod PutlfAbsent Operation

The putlfAbsent operation request format includes the following:

Table 16.39. PutlfAbsent Operation Request Fields

Field Data Type Details

Header variable Request header.

Key Length vint Contains the length of the key.
Key Byte array Contains the key value.
TimeUnits Byte Time units of lifespan (first 4 bits)

and maxldle (last 4 bits). Special
units DEFAULT and INFINITE
can be used for default server
expiration and no expiration
respectively. Possible values:

0x00 = SECONDS

0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES

0x05 = HOURS

0x06 = DAYS

0x07 = DEFAULT

0x08 = INFINITE

Lifespan vint Duration which the entry is
allowed to life. Only sent when
time unitis not DEFAULT or
INFINITE

Max Idle vint Duration that each entry can be
idle before it's evicted from the
cache. Only sent when time unit is
not DEFAULT or INFINITE.

Value Length vint Contains the length of the value.

131

Red Hat Data Grid 7.2 Developer Guide

Field Data Type Details

Value Byte array Contains the requested value.

The following are the valid response values returned from this operation:

Response Status Details

0x00 The value was successfully stored.

0x01 The key was present, therefore the value was not
stored. The current value of the key is returned.

0x04 The operation failed because the key was present
and its value follows in the response.

An empty response is the default response for this operation. However, if ForceReturnPreviousValue
is passed, the previous value and key are returned. If the previous key and value do not exist, the value
length would contain the value 0.

16.3.20. Hot Rod Query Operation

The Query operation request format includes the following:

Table 16.40. Query Operation Request Fields

Field Data Type Details
Header variable Request header.
Query Length vint The length of the Protobuf

encoded query object.

Query Byte array Byte array containing the
Protobuf encoded query object,
having a length specified by
previous field.

The following are the valid response values returned from this operation:

Table 16.41. Query Operation Response

Response Status Data Details

Header variable Response header.

132

CHAPTER16. THE HOT ROD INTERFACE

Response Status Data Details

Response payload Length vint The length of the Protobuf
encoded response object.

Response payload Byte array Byte array containing the
Protobuf encoded response
object, having a length specified
by previous field.

The Hot Rod Query operation request and response types are defined in the
org/infinispan/query/remote/client/query.proto resource filed, found inside infinispan-remote-
query-client.jar.

16.3.21. Hot Rod Remove Operation

A Hot RodRemove operation uses the following request format:

Table 16.42. Remove Operation Request Format

Field Data Type Details
Header variable Request header.
Key Length vint Contains the length of the key.

The vint data type is used because
of its size (up to 5 bytes), which is
larger than the size of
Integer.MAX_VALUE.

However, Java disallows single
array sizes to exceed the size of
Integer.MAX_VALUE. As a
result, this vintis also limited to
the maximum size of

Integer. MAX_VALUE .

Key Byte array Contains a key, the corresponding
value of which is requested.

The response header for this operation contains one of the following response statuses:

Table 16.43. Remove Operation Response Format

Response Status Details

0x00 Successful operation.

0x02 The key does not exist.

133

Red Hat Data Grid 7.2 Developer Guide

Response Status Details

0x03 The key was removed, and the previous or removed
value follows in the response.

Normally, the response header for this operation is empty. However, if ForceReturnPreviousValue is
passed, the response header contains either:

® The value and length of the previous key.
® The value length 0 and the response status 0x02 to indicate that the key does not exist.
The remove operation’s response header contains the previous value and the length of the previous

value for the provided key if ForceReturnPreviousValue is passed. If the key does not exist or the
previous value was null, the value length is 0.

16.3.22. Hot Rod RemovelfUnmodified Operation

The RemovelfUnmodified operation request format includes the following:

Table 16.44. RemovelfUnmodified Operation Request Fields

Field Data Type Details

Header variable Request header.

Key Length vint Contains the length of the key.
Key Byte array Contains the key value.

Entry Version 8 bytes The version number for the entry.

The following are the valid response values returned from this operation:

Table 16.45. RemovelfUnmodified Operation Response

Response Status Details

0x00 The entry was replaced or removed.

0x01 The entry replace or remove was unsuccessful
because the key was modified.

0x02 The key does not exist.

0x03 The key was removed, and the previous or replaced
value follows in the response.

134

CHAPTER16. THE HOT ROD INTERFACE

Response Status Details

0x04 The entry remove was unsuccessful because the key
was modified, and the modified value follows in the
response.

An empty response is the default response for this operation. However, if ForceReturnPreviousValue
is passed, the previous value and key are returned. If the previous key and value do not exist, the value
length would contain the value 0.

16.3.23. Hot Rod Replace Operation

The replace operation request format includes the following:

Table 16.46. Replace Operation Request Fields

Field Data Type Details

Header variable Request header.

Key Length vint Contains the length of the key.
Key Byte array Contains the key value.
TimeUnits Byte Time units of lifespan (first 4 bits)

and maxldle (last 4 bits). Special
units DEFAULT and INFINITE
can be used for default server
expiration and no expiration
respectively. Possible values:

0x00 = SECONDS

0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES

0x05 = HOURS

0x06 = DAYS

0x07 = DEFAULT

0x08 = INFINITE

Lifespan vint Duration which the entry is
allowed to life. Only sent when
time unitis not DEFAULT or
INFINITE

135

Red Hat Data Grid 7.2 Developer Guide

Field Data Type Details

Max Idle vint Duration that each entry can be
idle before it's evicted from the
cache. Only sent when time unit is
not DEFAULT or INFINITE.

Value Length vint Contains the length of the value.

Value Byte array Contains the requested value.

The following are the valid response values returned from this operation:

Table 16.47. Replace Operation Response

Response Status Details

0x00 The value was successfully stored.

0x01 The value was not stored because the key does not
exist.

0x03 The value was successfully replaced, and the previous

or replaced value follows in the response.

An empty response is the default response for this operation. However, if ForceReturnPreviousValue
is passed, the previous value and key are returned. If the previous key and value do not exist, the value
length would contain the value 0.

16.3.24. Hot Rod ReplacelfUnmodified Operation

The ReplacelfUnmodified operation request format includes the following:

Table 16.48. ReplacelfUnmodified Operation Request Format

Field Data Type Details
Header variable Request header.
Key Length vint Length of key. Note that the size

of avint can be up to 5 bytes
which in theory can produce
bigger numbers than
Integer.MAX_VALUE.
However, Java cannot create a
single array that's bigger than
Integer.MAX_VALUE, hence
the protocol is limiting vint array
lengths to
Integer.MAX_VALUE.

136

Field

Key

TimeUnits

Lifespan

Max Idle

Entry Version

Value Length

Value

Data Type

byte array

Byte

vint

vint

8 bytes

vint

byte array

CHAPTER16. THE HOT ROD INTERFACE

Details

Byte array containing the key
whose value is being requested.

Time units of lifespan (first 4 bits)
and maxldle (last 4 bits). Special
units DEFAULT and INFINITE
can be used for default server
expiration and no expiration
respectively. Possible values:

0x00 = SECONDS

0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES

0x05 = HOURS

0x06 = DAYS

0x07 = DEFAULT

0x08 = INFINITE

Duration which the entry is
allowed to life. Only sent when
time unit is not DEFAULT or
INFINITE

Duration that each entry can be
idle before it's evicted from the
cache. Only sent when time unit is
not DEFAULT or INFINITE.

Use the value returned by
GetWithVersion operation.

Length of value.

Value to be stored.

137

Red Hat Data Grid 7.2 Developer Guide

The response header for this operation contains one of the following response statuses:

Table 16.49. ReplacelfUnmodified Operation Response Status

Response Status Details

0x00 The value was successfully stored.

0x01 Replace did not happen because key had been
modified.

0x02 Replace did not happen because key does not exist.

0x03 The key was replaced, and the previous or replaced

value follows in the response.

0x04 The entry replace was unsuccessful because the key
was modified, and the modified value follows in the
response.

The following are the valid response values returned from this operation:

Table 16.50. ReplacelfUnmodified Operation Response Format

Field Data Type Details
Header variable Response header.
Previous value length vint If force return previous value flag

was sent in the request, the
length of the previous value will
be returned. If the key does not
exist, value length would be 0. If
no flag was sent, no value length
would be present.

Previous value byte array If force return previous value flag
was sent in the request and the
key was replaced, previous value.

16.3.25. Hot Rod ReplaceWithVersion Operation

The ReplaceWithVersion operation request format includes the following:

NOTE
In the RemoteCache API, the Hot Rod ReplaceWithVersion operation uses the

ReplacelfUnmodified operation. As a result, these two operations are exactly the same
in JBoss Data Grid.

138

CHAPTER16. THE HOT ROD INTERFACE

Table 16.51. ReplaceWithVersion Operation Request Fields

Field Data Type Details

Header - -
Key Length vint Contains the length of the key.
Key Byte array Contains the key value.

Lifespan vint Contains the number of seconds
before the entry expires. If the
number of seconds exceeds thirty
days, the value is treated as UNIX
time (i.e. the number of seconds
since the date 1/1/1970) as the
entry lifespan. When set to the
value 0, the entry will never expire.

Max Idle vint Contains the number of seconds
an entry is allowed to remain idle
before it is evicted from the
cache. If this entry is set to 0, the
entry is allowed to remain idle
indefinitely without being evicted
due to the max idle value.

Entry Version 8 bytes The version number for the entry.

Value Length vint Contains the length of the value.

Value Byte array Contains the requested value.

The following are the valid response values returned from this operation:

Table 16.52. ReplaceWithVersion Operation Response

Response Status Details

0x00 Returned status if the entry was replaced or
removed.
0x01 Returns status if the entry replace or remove was

unsuccessful because the key was modified.

0x02 Returns status if the key does not exist.

An empty response is the default response for this operation. However, if ForceReturnPreviousValue
is passed, the previous value and key are returned. If the previous key and value do not exist, the value
length would contain the value 0.

139

Red Hat Data Grid 7.2 Developer Guide

16.3.26. Hot Rod Stats Operation

This operation returns a summary of all available statistics. For each returned statistic, a name and value
is returned in both string and UTF-8 formats.

The following are supported statistics for this operation:

Table 16.53. Stats Operation Request Fields

Name Details

timeSinceStart

currentNumberOfEntries

totalNumberOfEntries

stores

retrievals

hits

misses

removeHits

removeMisses

globalCurrentNumberOfEntries

globalStores

globalRetrievals

globalHits

globalMisses

globalRemoveHits

140

Contains the number of seconds since Hot Rod
started.

Contains the number of entries that currently exist in
the Hot Rod server.

Contains the total number of entries stored in the
Hot Rod server.

Contains the number of put operations attempted.

Contains the number of get operations attempted.

Contains the number of get hits.

Contains the number of get misses.

Contains the number of remove hits.

Contains the number of removal misses.

Number of entries currently across the Hot Rod
cluster.

Total number of put operations across the Hot Rod
cluster.

Total number of get operations across the Hot Rod
cluster.

Total number of get hits across the Hot Rod cluster.

Total number of get misses across the Hot Rod
cluster.

Total number of removal hits across the Hot Rod
cluster.

CHAPTER16. THE HOT ROD INTERFACE

Name Details

globalRemoveMisses Total number of removal misses across the Hot Rod
cluster.

NOTE

Any of the statistics beginning with global are not available if Hot Rod is running in local
mode.

The response header for this operation contains the following:

Table 16.54. Stats Operation Response

Name Data Type Details
Header variable Response Header.
Number of Stats vint Contains the number of individual

statistics returned.

Name Length vint Contains the length of the named
statistic.

Name string Contains the name of the
statistic.

Value Length vint Contains the length of the value.

Value string Contains the statistic value.

The values Name Length, Name, Value Length and Value recur for each statistic requested.

16.3.27. Hot Rod Size Operation

The Size operation request format includes the following:

Table 16.55. Size Operation Request Format

Field Data Type Details

Header variable Request header

The response header for this operation contains the following:

Table 16.56. Size Operation Response Format

141

Red Hat Data Grid 7.2 Developer Guide

Field Data Type Details
Header variable Response header.
Size vint Size of the remote cache, which is

calculated globally in the
clustered set ups, and if present,
takes cache store contents into
account as well.

16.4. HOT ROD OPERATION VALUES

16.4.1. Hot Rod Operation Values

The following is a list of valid opcode values for a request header and their corresponding response
header values:

Table 16.57. Opcode Request and Response Header Values

Operation Request Operation Code Response Operation Code
put 0x01 0x02
get 0x03 0Ox04
putlfAbsent 0x05 0x06
replace 0x07 0x08
replacelfUnmodified 0x09 Ox0A
remove 0x0B 0x0C
removelfUnmodified 0Ox0D OxOE
containsKey OxOF 0x10
clear 0x13 ox14
stats 0x15 Ox16
ping Ox17 Ox18
bulkGet Ox19 Ox1A
getWithMetadata Ox1B Ox1C

142

CHAPTER16. THE HOT ROD INTERFACE

Operation Request Operation Code Response Operation Code
bulkKeysGet Ox1D OxIE
query Ox1F 0x20
authMechList 0x21 0x22
auth 0x23 0x24
addClientListener 0x25 0x26
removeClientListener 0x27 0x28
size 0x29 Ox2A
exec Ox2B 0x2C
putAll Ox2D Ox2E
getAll Ox2F 0x30
iterationStart 0x31 0x32
iterationNext 0x33 0x34
iterationEnd 0x35 0x36

Additionally, if the response header opcode value is 0x50, it indicates an error response.

16.4.2. Magic Values
The following is a list of valid values for the Magic field in request and response headers:

Table 16.58. Magic Field Values

Value Details

OxAO Cache request marker.

OxAl Cache response marker.

16.4.3. Status Values

The following is a table that contains all valid values for the Status field in a response header:

Table 16.59. Status Values

143

Red Hat Data Grid 7.2 Developer Guide

Value Details

0x00 No error.

0x01 Not put/removed/replaced.

0x02 Key does not exist.

0x06 Success status and compatibility mode is enabled.
0x07 Success status and return previous value, with

compatibility mode is enabled.

0x08 Not executed and return previous value, with
compatibility mode is enabled.

0x81 Invalid Magic value or Message ID.
0x82 Unknown command.

0x83 Unknown version.

0Ox84 Request parsing error.

0x85 Server error.

Ox86 Command timed out.

16.4.4. Client Intelligence Values

The following is a list of valid values for Client Intelligence in a request header:

Table 16.60. Client Intelligence Field Values

Value Details

0x01 Indicates a basic client that does not require any
cluster or hash information.

0x02 Indicates a client that is aware of topology and
requires cluster information.

0x03 Indicates a client that is aware of hash and
distribution and requires both the cluster and hash
information.

16.4.5. Flag Values

144

CHAPTER16. THE HOT ROD INTERFACE

The following is a list of valid flag values in the request header:

Table 16.61. Flag Field Values

Value Details

0Ox0001 ForceReturnPreviousValue

16.4.6. Hot Rod Error Handling

Table 16.62. Hot Rod Error Handling using Response Header Fields

Field Data Type Details

Error Opcode - Contains the error operation
code.

Error Status Number - Contains a status number that
corresponds to the error
opcode.

Error Message Length vint Contains the length of the error
message.

Error Message string Contains the actual error

message. If an 0x84 error code
returns, which indicates that there
was an error in parsing the
request, this field contains the
latest version supported by the
[path]_Hot Rod_ server.

16.5. HOT ROD REMOTE EVENTS

16.5.1. Hot Rod Remote Events

Clients may register Remote Event Listeners, allowing them to receive updates on events happening in
the server. As soon as a client listener has been added events are generated and sent, allowing the client
to receive all events that have occurred after adding the listener.

16.5.2. Hot Rod Add Client Listener for Remote Events

Adding client listeners for remote events uses the following request format:

Table 16.63. Add Client Listener Operation Request Format

Field Data Type Details

Header variable Request Header.

145

Red Hat Data Grid 7.2 Developer Guide

Field

Listener ID

Include state

Key/value filter factory name

Key/value filter factory parameter
count

Key/value filter factory parameter
(per parameter)

146

Data Type

byte array

byte

String

byte

byte array

Details

Listener identifier.

When this byte is set to 1, cached
state is sent back to remote
clients when either adding a
cache listener for the first time, or
when the node where a remote
listener is registered changesin a
clustered environment. When
enabled, state is sent back as
cache entry created events to the
clients. If set to O, no state is sent
back to the client when adding a
listener, nor it gets state when the
node where the listener is
registered changes.

Optional name of the key/value
filter factory to be used with this
listener. The factory is used to
create key/value filter instances
which allow events to be filtered
directly in the Hot Rod server,
avoiding sending events that the
clientis not interested in. If no
factory is to be used, the length
of the string is O.

The key/value filter factory, when
creating a filter instance, can take
an arbitrary number of
parameters, enabling the factory
to be used to create different
filter instances dynamically. This
count field indicates how many
parameters will be passed to the
factory. If no factory name was
provided, this field is not present
in the request.

Key/value filter factory
parameter.

Field Data Type
Converter factory name String
Converter factory parameter byte
count

Converter factory parameter (per byte array
parameter)

Use raw data byte

The format of the operation’s response is as follows:

Table 16.64. Add Client Listener Response Format

Field Data Type

Header Variable

CHAPTER16. THE HOT ROD INTERFACE

Details

Optional name of the converter
factory to be used with this
listener. The factory is used to
transform the contents of the
events sent to clients. By default,
when no converter is in use,
events are well defined, according
to the type of event generated.
However, there might be
situations where users want to
add extra information to the
event, or they want to reduce the
size of the events. In these cases,
a converter can be used to
transform the event contents.
The given converter factory name
produces converter instances to
do this job. If no factory is to be
used, the length of the string is O.

The converter factory, when
creating a converter instance, can
take an arbitrary number of
parameters, enabling the factory
to be used to create different
converter instances dynamically.
This count field indicates how
many parameters will be passed
to the factory. If no factory name
was provided, this field is not
present in the request.

Converter factory parameter.

If filter/converter parameters
should be raw binary, then 1,
otherwise O.

Details

Response Header.

16.5.3. Hot Rod Remote Client Listener for Remote Events

147

Red Hat Data Grid 7.2 Developer Guide

Removing a previously added client listener uses the following request format:

Table 16.65. Remove Client Listener Operation Request Format

Field Data Type Details
Header variable Request Header.
Listener ID byte array Listener Identifier

The format of the operation’s response is as follows:

Table 16.66. Add Client Listener Response Format

Field Data Type Details

Header Variable Response Header.

16.5.4. Hot Rod Event Header

Each remote event uses a header that adheres to the following format:

Table 16.67. Remote Event Header

Field Name Size Value

Magic 1 byte OxAl = response

Message ID vLong ID of event

Opcode 1byte A code responding to the Event
type:

0x60 = cache entry created
event

0x61 = cache entry
modified event

0x62 = cache entry
removed event

0x50 = error

Status 1byte Status of the response, with the
following possible values:

I 0x00 = No error

148

CHAPTER16. THE HOT ROD INTERFACE

Field Name Size Value

Topology Change Marker 1byte Since events are not associated
with a particular incoming
topology ID to be able to decide
whether a new topology is
required to be sent or not, new
topologies will never be sent with
events. Hence, this marker will
always have O value for events.

16.5.5. Hot Rod Cache Entry Created Event

The CacheEntryCreated event includes the following:

Table 16.68. Cache Entry Created Event

Field Name Size Value

Header variable Event header with 0x60
operation code.

Listener ID byte array Listener for which this event is
directed
Custom Marker byte Custom event marker. For

created events, thisis O.

Command Retried byte Marker for events that are result
of retried commands. If command
is retried, it returns 1, otherwise O.

Key byte array Created key.

Version long Version of the created entry. This
version information can be used
to make conditional operations on
this cache entry.

16.5.6. Hot Rod Cache Entry Modified Event

The CacheEntryModified event includes the following:

Table 16.69. Cache Entry Modified Event

Field Name Size Value

Header variable Event header with 0x61
operation code.

149

Red Hat Data Grid 7.2 Developer Guide

Field Name Size Value

Listener ID byte array Listener for which this event is
directed

Custom Marker byte Custom event marker. For

created events, thisis O.

Command Retried byte Marker for events that are result
of retried commands. If command
is retried, it returns 1, otherwise O.

Key byte array Modified key.

Version long Version of the modified entry.
This version information can be
used to make conditional
operations on this cache entry.

16.5.7. Hot Rod Cache Entry Removed Event

The CacheEntryRemoved event includes the following:

Table 16.70. Cache Entry Removed Event

Field Name Size Value

Header variable Event header with 0x62
operation code.

Listener ID byte array Listener for which this event is
directed
Custom Marker byte Custom event marker. For

created events, thisis O.

Command Retried byte Marker for events that are result
of retried commands. If command
is retried, it returns 1, otherwise O.

Key byte array Removed key.

16.5.8. Hot Rod Custom Event

The Custom event includes the following:

Table 16.71. Custom Event

150

CHAPTER16. THE HOT ROD INTERFACE

Field Name Size Value

Header variable Event header with event specific
operation code

Listener ID byte array Listener for which this event is
directed
Custom Marker byte Custom event marker. For custom

events whose event data needs to
be unmarshalled before returning
to user the value is 1. For custom
events that need to return the
event data as-is to the user, the
value is 2.

Event Data byte array Custom event data. If the custom
marker is 1, the bytes represent
the marshalled version of the
instance returned by the
converter. If custom marker is 2, it
represents the byte array, as
returned by the converter.

16.6. PUT REQUEST EXAMPLE

The following is the coded request from a sample put request using Hot Rod:

Table 16.72. Put Request Example

Byte 0 1 2 3 4 5 6 Vs
8 OxAO 0x09 Ox41 Ox01 0x07 0x4D 0x79 0x43
M)) (<)
16 Ox61 Ox63 Ox68 Ox65 0x00 0x03 0x00 0x00
() (<) (h) (e)

24 0x00 0Ox05 0x48 Ox65 Ox6C Ox6C Ox6F 0x00
(H) (o) O O (o)

32 0x00 0x05 Ox57 Ox6F 0x72 Ox6C Ox64 -
W) (o) () O (d)

The following table contains all header fields and their values for the example request:

Table 16.73. Example Request Field Names and Values

151

Red Hat Data Grid 7.2 Developer Guide

Field Name Byte Value
Magic 0 OxAO
Version 2 Ox41
Cache Name Length 4 0x07
Flag 12 0x00
Topology ID 14 0x00
Transaction ID 16 0x00
Key 18-22 ‘Hello'
Max Idle 24 0x00
Value 26-30 ‘World'
Message ID 1 0x09
Opcode 3 0x01
Cache Name 5-1 ‘MyCache'
Client Intelligence 13 0x03
Transaction Type 15 0x00
Key Field Length 17 0x05
Lifespan 23 0x00
Value Field Length 25 0x05

The following is a coded response for the sample put request:

Table 16.74. Coded Response for the Sample Put Request

Byte (0] 1 2 3 4 5 6

8 OxAl 0x09 0x01 0x00 0x00 - -

The following table contains all header fields and their values for the example response:

Table 16.75. Example Response Field Names and Values

152

CHAPTER16. THE HOT ROD INTERFACE

Field Name Byte Value
Magic 0 OxAl
Opcode 2 0x01
Topology Change Marker 4 0x00
Message ID 1 0x09
Status 3 0x00

16.7. HOT ROD JAVA CLIENT

16.7.1. Hot Rod Java Client

Hot Rod is a binary, language neutral protocol. A Java client is able to interact with a server via the Hot
Rod protocol using the Hot Rod Java Client API.

16.7.2. Hot Rod Java Client Download

Use the following steps to download the JBoss Data Grid Hot Rod Java Client:

Procedure: Download Hot Rod Java Client

1. Loginto the Customer Portal at https://access.redhat.com.
2. Click the Downloads button near the top of the page.
3. Inthe Product Downloads page, click Red Hat JBoss Data Grid.
4. Select the appropriate JBoss Data Grid version from the Version: drop down menu.

5. Locate the Red Hat JBoss Data Grid 7.2 Hot Rod Java Cliententry and click the
corresponding Download link.

16.7.3. Hot Rod Java Client Configuration

The Hot Rod Java client is configured both programmatically and externally using a configuration file or
a properties file. The following example illustrate creation of a client instance using the available Java
fluent API:

Client Instance Creation

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb
= new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.tcpNoDelay(true)
.connectionPool()
.numTestsPerEvictionRun(3)
.testOnBorrow(false)
.testOnReturn(false)

153

https://access.redhat.com

Red Hat Data Grid 7.2 Developer Guide

testWhileldle(true)
.addServer()
.host("localhost")
.port(11222);
RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

Configuring the Hot Rod Java client using a properties file

To configure the Hot Rod Java client, edit the hotrod-client.properties file on the classpath.

The following example shows the possible content of the hotrod-client.properties file.

Configuration

154

infinispan.client.hotrod.transport_factory =
org.infinispan.client.hotrod.impl.transport.tcp. TcpTransportFactory

infinispan.client.hotrod.server_list = 127.0.0.1:11222

infinispan.client.hotrod.marshaller = org.infinispan.commons.marshall.jposs.GenericJBossMarshaller

infinispan.client.hotrod.async_executor_factory =
org.infinispan.client.hotrod.impl.async.DefaultAsyncExecutorFactory

infinispan.client.hotrod.default_executor_factory.pool_size = 1
infinispan.client.hotrod.default_executor_factory.queue_size = 10000

infinispan.client.hotrod.hash_function_impl.1 =
org.infinispan.client.hotrod.impl.consistenthash.ConsistentHashV1

infinispan.client.hotrod.tcp_no_delay = true
infinispan.client.hotrod.ping_on_startup = true

infinispan.client.hotrod.request_balancing_strategy =
org.infinispan.client.hotrod.impl.transport.tcp.RoundRobinBalancingStrategy

infinispan.client.hotrod.key_size_estimate = 64
infinispan.client.hotrod.value_size estimate = 512
infinispan.client.hotrod.force_return_values = false
infinispan.client.hotrod.tcp_keep_alive = true

below is connection pooling config
maxActive=-1

maxTotal = -1

maxldle = -1

whenExhaustedAction = 1

CHAPTER16. THE HOT ROD INTERFACE

timeBetweenEvictionRunsMillis=120000
minEvictableldleTimeMillis=300000
testWhileldle = true

minldle = 1

NOTE

The TCPKEEPALIVE configuration is enabled/disabled on the Hot Rod Java client either
through a config property as seen in the example
(infinispan.client.hotrod.tcp_keep_alive = true/false or programmatically through the
org.infinispan.client.hotrod.ConfigurationBuilder.tcpKeepAlive() method.

Either of the following two constructors must be used in order for the properties file to be consumed by
Red Hat JBoss Data Grid:

1. new RemoteCacheManager(boolean start)

2. new RemoteCacheManager()

16.7.4. Hot Rod Java Client Basic API

The following code shows how the client APl can be used to store or retrieve information from a Hot Rod
server using the Hot Rod Java client. This example assumes that a Hot Rod server has been started
bound to the default location, localhost:11222.

Basic API

//API entry point, by default it connects to localhost:11222

BasicCacheContainer cacheContainer = new RemoteCacheManager();
//obtain a handle to the remote default cache

BasicCache<String, String> cache = cacheContainer.getCache();
//now add something to the cache and ensure it is there

cache.put("car", "ferrari");

assert cache.get("car").equals("ferrari");
//remove the data

cache.remove("car");

assert Icache.containsKey("car") : "Value must have been removed!";

The RemoteCacheManager corresponds to DefaultCacheManager, and both implement
BasicCacheContainer.

This API facilitates migration from local calls to remote calls via Hot Rod. This can be done by switching
between DefaultCacheManager and RemoteCacheManager, which is simplified by the common
BasicCacheContainer interface.

All keys can be retrieved from the remote cache using the keySet() method. If the remote cache is a
distributed cache, the server will start a Map/Reduce job to retrieve all keys from clustered nodes and

return all keys to the client.

Use this method with caution if there are a large number of keys.

155

Red Hat Data Grid 7.2 Developer Guide
I Set keys = remoteCache.keySet();

16.7.5. Hot Rod Java Client Versioned API

To ensure data consistency, Hot Rod stores a version number that uniquely identifies each modification.
Using getVersioned, clients can retrieve the value associated with the key as well as the current version.

When using the Hot Rod Java client, a RemoteCacheManager provides instances of the RemoteCache
interface that accesses the named or default cache on the remote cluster. This extends the Cache
interface to which it adds new methods, including the versioned API.

Using Versioned Methods

// To use the versioned API, remote classes are specifically needed
RemoteCacheManager remoteCacheManager = new RemoteCacheManager();
RemoteCache<String, String> remoteCache = remoteCacheManager.getCache();
remoteCache.put("car", "ferrari");

VersionedValue valueBinary = remoteCache.getWithMetadata("car");

// removal only takes place only if the version has not been changed

//in between. (a new version is associated with 'car' key on each change)

assert remoteCache.removeWithVersion("car", valueBinary.getVersion());

assert IremoteCache.containsKey("car");

Using Replace

remoteCache.put("car", "ferrari");
VersionedValue valueBinary = remoteCache.getWithMetadata("car");
assert remoteCache.replaceWithVersion("car", "lamborghini", valueBinary.getVersion());

16.7.6. Cluster-Wide Dynamic Cache Creation with Hot Rod Java Client

If a cache needs to be created dynamically from a client, use the createCache() method as follows:

BasicCache<String, String> cache =
remoteCacheManager.administration().createCache("newCacheName", "newTemplate");
While a cache created this way will be available on all nodes in the cluster, it will also be ephemeral:
shutting down the entire cluster and restarting it will not automatically recreate the caches. To make the
caches persistent, use the PERMANENT flag as follows:

BasicCache<String, String> cache =
remoteCacheManager.administration().withFlags(AdminFlag.PERMANENT).createCache("newCache

Name", "newTemplate");

In order for the above to work, global state must be enabled and a suitable configuration storage
selected. The available configuration stores are:

® VOLATILE: as the name implies, this configuration storage does not support PERMANENT
caches.

e OVERLAY: this stores configurations in the global shared state persistent path in a file named
caches.xml.

156

CHAPTER16. THE HOT ROD INTERFACE

® MANAGED: this is only supported in server deployments, and will store PERMANENT caches in
the server model.

® CUSTOM: a custom configuration store.

16.8. HOT ROD C++ CLIENT

16.8.1. Hot Rod C++ Client

The Hot Rod C++ client enables C++ runtime applications to connect and interact with Red Hat JBoss
Data Grid remote servers, and to read or write data to remote caches. The Hot Rod C++ client supports
all three levels of client intelligence and is supported on the following platforms:

® Red Hat Enterprise Linux 6, 64-bit

® Red Hat Enterprise Linux 7, 64-bit

The Hot Rod C++ client is available as a Technology Preview on 64-bit Windows with Visual
Studio 2015.

16.8.2. Hot Rod C++ Client Formats
The Hot Rod C++ client is available in the following two library formats:
® Static library

® Shared/Dynamic library

Static Library

The static library is statically linked to an application. This increases the size of the final executable. The
application is self-contained and it does not need to ship a separate library.

Shared/Dynamic Library

Shared/Dynamic libraries are dynamically linked to an application at runtime. The library is stored in a
separate file and can be upgraded separately from the application, without recompiling the application.

NOTE

This can only happen if the library’s major version is equal to the one against which the
application was linked at compile time, indicating that it is binary compatible.

e

16.8.3. Hot Rod C++ Client Prerequisites

The following table details requirements needed to use the Hot Rod C++ Client depending on the
underlying OS:

Table 16.76. Hot Rod C++ Client Prerequisites by OS

Operating System Hot Rod C++ Client Prerequisites

RHEL 6, 64-bit C++ 03 compiler with support for shared_ptr TR1
(GCC 4.0+)

157

Red Hat Data Grid 7.2 Developer Guide

Operating System Hot Rod C++ Client Prerequisites

RHEL 7, 64-bit C++ 11 compiler (GCC 4.8.1)

Windows 7 x64 C 11 compiler (Visual Studio 2015, Microsoft Visual C
2013 Redistributable Package for the x64 platform)

16.8.4. Installing the Hot Rod C++ Client

16.8.4.1. Hot Rod C++ Client Download and Installation

The Hot Rod C++ client is distributed in two file types, based on the Operating System where the client
will be used:

® RHEL serversinstall via an RPM distribution.

® Windows servers install via a zip distribution.

16.8.4.2. Hot Rod C++ Client RHEL Download and Installation
To install the client perform the following steps:

1. Ensure your Red Hat Enterprise Linux (RHEL) system is registered to your account using Red
Hat Subscription Manager. For more information, refer to the Red Hat Subscription
Management documentation.

2. Using Red Hat Subscription Manager, enable the appropriate repository based on your version
of RHEL:

Table 16.77. RHSM Repositories
RHEL Version Repo Name
RHEL 6 jb-datagrid-7.2-for-rhel-6-server-rpms

RHEL 7 jb-datagrid-7.2-for-rhel-7-server-rpms

For instance, to enable the RHEL 7 repo the following command would be used:
I subscription-manager repos --enable=jb-datagrid-7.2-for-rhel-7-server-rpms

For RHEL 7 you also need to enable the rhel-7-server-optional-rpms repo which provides the
required protobuf-devel and protobuf-static RPMs:

I subscription-manager repos --enable=rhel-7-server-optional-rpms

3. Once the appropriate repos have been added the C++ client RPM may be installed with:

158

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html-single/Quick_Registration_for_RHEL/index.html

CHAPTER 16. THE HOT ROD INTERFACE
I yum install jdg-cpp-client

16.8.4.3. Hot Rod C++ Client Windows Download and Installation

The Hot Rod C++ Client for Windows is included in a separate zip file jboss-datagrid-<version>-hotrod-
cpp-WIN-x86_64.zip under Red Hat JBoss Data Grid binaries on the Red Hat Customer Portal at
https://access.redhat.com.

Once downloaded the C++ Client may be installed by extracing the zip file to the desired location on the
system.

16.8.5. Utilizing the Protobuf Compiler with the Hot Rod C++ Client

16.8.5.1. Using the Protobuf Compiler in RHEL 7

The C++ Hot Rod client channel in RHEL 7 includes the Protobuf compiler. The following instructions
detail using this compiler:

1. Ensure that the C++ channel has been added to the RHEL system, as outlined in Hot Rod C++
Client RHEL Download and Installation.:

2. Install the protobuf rpm:

I yum install protobuf

3. Add the included protobuf libraries to the library path. These libraries are included in /opt/lib64
by default:

I export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/lib64

4. Compile the desired protobuf files into C++ header and source files:

I /bin/protoc --cpp_out dllexport_decl=HR_PROTO_EXPORT:/path/to/output/ $FILE

NOTE

HR_PROTO_EXOPRT is a macro defined within the Hot Rod client code, and will
be expanded when the files are subsequently compiled.

5. The resulting header and source files will be generated in the designated output directory,
allowing them to be referenced and compiled as normal with the specific application code.

For additional information on Protobuf refer to Protobuf Encoding.

16.8.5.2. Using the Protobuf Compiler in Windows

The C++ Hot Rod client for Windows ships with the precompiled Hot Rod components along with the
Protobuf compiler included. For many users the included components may be used without the need for
additional compilation; however, should any .proto files require compiling the following instructions
document this process:

159

https://access.redhat.com

Red Hat Data Grid 7.2 Developer Guide

1. Extract the jboss-datagrid-<version>-hotrod-cpp-client-WIN-x86_64.zip locally to the
filesystem.

2. Open a command prompt and navigate to the newly extracted directory.

3. Compile the desired protobuf files into C++ header and source files:

I bin\protoc --cpp_out dllexport_decl=HR_PROTO_EXPORT :path\to\output\ $FILE

NOTE

HR_PROTO_EXOPRT is a macro defined within the Hot Rod client code, and will
be expanded when the files are subsequently compiled.

4. The resulting header and source files will be generated in the designated output directory,
allowing them to be referenced and compiled as normal with the specific application code.

For additional information on Protobuf refer to Protobuf Encoding.

16.8.6. Hot Rod C++ Client Configuration

The Hot Rod C++ client interacts with a remote Hot Rod server using the RemoteCache API. To initiate
communication with a particular Hot Rod server, configure RemoteCache and choose the specific cache
on the Hot Rod server.

Use the ConfigurationBuilder API to configure:
e The initial set of servers to connect to.
® Connection pooling attributes.
® Connection/Socket timeouts and TCP nodelay.
® Hot Rod protocol version.

Sample C++ main executable file configuration

The following example shows how to use the ConfigurationBuilder to configure a
RemoteCacheManager and how to obtain the default remote cache:

SimpleMain.cpp

#include "infinispan/hotrod/ConfigurationBuilder.h"
#include "infinispan/hotrod/RemoteCacheManager.h”
#include "infinispan/hotrod/RemoteCache.h"
#include <stdlib.h>
using namespace infinispan::hotrod;
int main(int argc, char*™ argv) {
ConfigurationBuilder b;
b.addServer().host("127.0.0.1").port(11222);
RemoteCacheManager cm(builder.build());
RemoteCache<std::string, std::string> cache = cm.getCache<std::string, std::string>();
return O;

160

CHAPTER16. THE HOT ROD INTERFACE

16.8.7. Hot Rod C++ Client API

The RemoteCacheManager is a starting point to obtain a reference to a RemoteCache. The
RemoteCache API can interact with a remote Hot Rod server and the specific cache on that server.

Using the RemoteCache reference obtained in the previous example, it is possible to put, get, replace
and remove values in a remote cache. It is also possible to perform bulk operations, such as retrieving all
of the keys, and clearing the cache.

When a RemoteCacheManager is stopped, all resources in use are released.

SimpleMain.cpp

RemoteCache<std::string, std::string> rc = cm.getCache<std::string, std::string>();
std::string k1("key13");
std::string v1("boron");
// put
rc.put(k1, v1);
std::auto_ptr<std::string> rv(rc.get(k1));
rc.putlfAbsent(k1, v1);
std::auto_ptr<std::string> rv2(rc.get(k1));
std::map<HR_SHARED_PTR«<std::string>,HR_SHARED_PTR<std::string> > map = rc.getBulk(0);
std::cout << "getBulk size" << map.size() << std::endl;

cm.stop();

16.8.8. Hot Rod C++ Client Asynchronous API

The Hot Rod C++ client offers asynchronous versions of many of the synchronous methods, allowing
non-blocking methods for interacting with remote caches.

These methods follow the same naming convention as the synchronous methods, except that Async is
appended to the end of each method. Asynchronous methods return a std::future containing the result
of the operation. If a method were to return a std::string, instead it will return a std::future <
std::string* >
A list of asynchronous methods are below:

e clearAsync

e getAsync

e putAsync

e putAllAsync

e putlfAbsentAsync

® removeAsync

e removeWithVersionAsync

e replaceAsync

e replaceWithVersionAsync

161

Red Hat Data Grid 7.2 Developer Guide

Hot Rod C++ Asynchronous APl Example

The following example demonstrates using these methods:

162

#include "infinispan/hotrod/ConfigurationBuilder.h"
#include "infinispan/hotrod/RemoteCacheManager.h"
#include "infinispan/hotrod/RemoteCache.h"
#include "infinispan/hotrod/Version.h"

#include "infinispan/hotrod/JBasicMarshaller.h"
#include <iostream>

#include <thread>

#include <future>

using namespace infinispan::hotrod;

int main(int argc, char*™ argv) {
ConfigurationBuilder builder;
builder.addServer().host(argc > 1 ? argv[1] : "127.0.0.1").port(argc > 2 ? atoi(argv[2]) :
11222).protocolVersion(Configuration::PROTOCOL_VERSION_24);
RemoteCacheManager cacheManager(builder.build(), false);
auto *km = new BasicMarshaller<std::string>();
auto *vm = new BasicMarshaller<std::string>();
auto cache = cacheManager.getCache<std::string, std::string>(km,
&Marshaller<std::string>::destroy, vm, &Marshaller<std::string>::destroy);
cacheManager.start();
std::string ak1("asyncK1"
std::string avi1("asyncV1"
std::string ak2("asyncK2"
std::string av2("asyncV2"
cache.clear();

’

’

’

’

~— ~— ~— ~—

// Put ak1,av1 in async thread

std::future<std::string*> future_put= cache.putAsync(ak1,av1);
// Get the value in this thread

std::string* arvi= cache.get(ak1);

// Now wait for put completion
future_put.wait();

// All is synch now

std::string* arv11= cache.get(ak1);

if (larv11 || arvii->compare(avi))

{
std::cout << "fail: expected " << av1l << "got " << (arv11 ? *arvi1 : "null") << std::endl;
return 1;

}

// Read ak1 again, but in async way and test that the result is the same
std::future<std::string*> future_ga= cache.getAsync(ak1);
std::string* arv2= future_ga.get();
if (larv2 || arv2->compare(avi))
{
std::cerr << "fail: expected " << avl << " got " << (arv2 ? *arv2 : "null") << std::endl;
return 1;

}

CHAPTER16. THE HOT ROD INTERFACE

// Now user pass a simple lambda func that set a flag to true when the put completes
bool flag=false;
std::future<std::string*> future_put1= cache.putAsync(ak2,av2,0,0,[&] (std::string *v){flag=true;
return v;});
// The put is not completed here so flag must be false
if (flag)
{
std::cerr << "fail: expected false got true" << std::endl;
return 1;
}
// Now wait for put completion
future_put1.wait();
// The user lambda must be executed so flag must be true
if (!flag)
{
std::cerr << "fail: expected true got false" << std::endl;
return 1;

}

// Same test for get
flag=false;
// Now user pass a simple lambda func that set a flag to true when the put completes
std::future<std::string*> future_get1= cache.getAsync(ak2,[&] (std::string *v){flag=true; return v;});
// The get is not completed here so flag must be false
if (flag)
{
std::cerr << "fail: expected false got true" << std::endl;
return 1;
!
// Now wait for get completion
future_get1.wait();
if (!flag)
{
std::cerr << "fail: expected true got false" << std::endl;
return 1;
!
std::string* arv3= future_geti.get();
if (larv3 || arv3->compare(av2))
{
std::cerr << "fail: expected " << av2 << " got " << (arv3 ? *arv3 : "null") << std::endl;
return 1;

}

cacheManager.stop();

16.8.9. Hot Rod C++ Client Remote Event Listeners

The Hot Rod C++ client supports remote cache listeners, and these may be added using the
add_listener function on the ClientCacheListener.

IMPORTANT

Remote Event Listeners are a Technology Preview feature of the Hot Rod C++ client in
Red Hat JBoss Data Grid 7.2.

163

Red Hat Data Grid 7.2 Developer Guide

This function takes a listener for each event type(create, modify, remove, expire, or custom). For more
information on Remote Event Listeners refer to Remote Event Listeners (Hot Rod). An example of this
is provided below:

ConfigurationBuilder builder;

builder.balancingStrategyProducer(nullptr);
builder.addServer().host("127.0.0.1").port(11222);
builder.protocolVersion(Configuration::PROTOCOL_VERSION_24);
RemoteCacheManager cacheManager(builder.build(), false);
cacheManager.start();
JBasicMarshaller<int> *km = new JBasicMarshaller<int>();
JBasicMarshaller<std::string> *vm = new JBasicMarshaller<std::string>();
RemoteCache<int, std::string> cache = cacheManager.getCache<int, std::string>(km,

&Marshaller<int>::destroy,

vm,

&Marshaller<std::string>::destroy);
cache.clear();
std::vector<std::vector<char> > filterFactoryParams;
std::vector<std::vector<char> > converterFactoryParams;
CacheClientListener<int, std::string> cl(cache);
int createdCount=0, modifiedCount=0, removedCount=0, expiredCount=0;

// We're using future and promise to have a basic listeners/main thread synch

int setFutureEventKey=0;

std::promise<void> promise;

std::function<void(ClientCacheEntryCreatedEvent<int>)> listenerCreated = [&createdCount,
&setFutureEventKey, &promise](ClientCacheEntryCreatedEvent<int> e) { createdCount++; if
(setFutureEventKey==e.getKey()) promise.set_value(); };
std::function<void(ClientCacheEntryModifiedEvent<int>)> listenerModified = [&modifiedCount,
&setFutureEventKey, &promise](ClientCacheEntryModifiedEvent <int> e) { modifiedCount++; if
(setFutureEventKey==e.getKey()) promise.set_value(); };
std::function<void(ClientCacheEntryRemovedEvent<int>)> listenerRemoved = [&removedCount,
&setFutureEventKey, &promise](ClientCacheEntryRemovedEvent <int> €) { removedCount++; if
(setFutureEventKey==e.getKey()) promise.set_value(); };
std::function<void(ClientCacheEntryExpiredEvent<int>)> listenerExpired = [&expiredCount,
&setFutureEventKey, &promise](ClientCacheEntryExpiredEvent <int> e) { expiredCount++; if
(setFutureEventKey==e.getKey()) promise.set_value(); };

cl.add_listener
cl.add_listener
cl.add_listener
cl.add_listener

listenerCreated);
listenerModified);
listenerRemoved);
listenerExpired);

—~ o~~~

cache.addClientListener(cl, filterFactoryParams, converterFactoryParams);

16.8.10. Hot Rod C++ Client Working with Sites

Multiple Red Hat JBoss Data Grid Server clusters may be deployed so that each cluster belongs to a
different site. Such deployments are done to enable data to be backed up from one cluster to another,
potentially in a different geographical location. C++ client implementation can failover between nodes
within a cluster, along with failing over to a different cluster entirely, should the original cluster become
nonresponsive. To be able to failover between clusters all Red Hat JBoss Data Grid Servers must be
configured with Cross-Datacenter replication. Instructions for this procedure are found in the Red Hat
JBoss Data Grid Administration and Configuration Guide.

164

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#set_up_cross_datacenter_replication

CHAPTER16. THE HOT ROD INTERFACE

Once failed over the client will remain connected to the alternative cluster until this new cluster
becomes unavailable, in which case it will throw an exception. If the original cluster becomes operational,
the client will not switch over automatically. To switch back to the original cluster use the
switchToDefaultCluster() method mentioned below.

Once Cross-Datacenter replication has been configured on the servers, the client has to provide the
alternative clusters' configuration with at least one host/port pair details for each of the clusters
configured. For example:

#include "infinispan/hotrod/ConfigurationBuilder.h"

#include "infinispan/hotrod/RemoteCacheManager.h”

#include "infinispan/hotrod/RemoteCache.h"

#include <stdlib.h>

using namespace infinispan::hotrod;

int main(int argc, char*™ argv) {
ConfigurationBuilder b;
b.addServer().host("127.0.0.1").port(11222);
b.addCluster("nyc").addClusterNode("127.0.0.1", 11322);

RemoteCacheManager cm(builder.build());
RemoteCache<std::string, std::string> cache = cm.getCache<std::string, std::string>();
return O;

16.8.10.1. Manual Cluster Switch

In addition to automatic site failover, C++ clients may switch between clusters by calling either of the
following methods:

e switchToCluster(clusterName) - Forces the client to switch to the pre-defined cluster name
passed in.

e switchToDefaultCluster - Forces the client to switch to the initial servers defined in the client
configuration.

16.8.11. Performing Remote Queries via the Hot Rod C++ Client

The Hot Rod C++ client allows remote querying, using Google's Protocol Buffers, once the
RemoteCacheManager has been configured with the Protobuf marshaller.

IMPORTANT

Performing Remote Queries is a Technology Preview feature of the Hot Rod C++ client in
Red Hat JBoss Data Grid 7.2.

Enable Remote Querying on the Hot Rod C++ Client

1. Obtain a connection to the remote Red Hat JBoss Data Grid server:

#include "addressbook.pb.h"

#include "bank.pb.h"

#include <infinispan/hotrod/BasicTypesProtoStreamMarshaller.h>
#include <infinispan/hotrod/ProtoStreamMarshaller.h>

#include "infinispan/hotrod/ConfigurationBuilder.h"

165

Red Hat Data Grid 7.2 Developer Guide

166

#include "infinispan/hotrod/RemoteCacheManager.h”
#include "infinispan/hotrod/RemoteCache.h"
#include "infinispan/hotrod/Version.h"

#include "infinispan/hotrod/query.pb.h"

#include "infinispan/hotrod/QueryUtils.h"

#include <vector>

#include <tuple>

#define PROTOBUF_METADATA_CACHE_NAME "___ protobuf metadata"
#tdefine ERRORS_KEY_ SUFFIX ".errors"

using namespace infinispan::hotrod;
using namespace org::infinispan::query::remote::client;

std::string read(std::string file)
{
std::ifstream t(file);
std::stringstream buffer;
buffer << t.rdbuf();
return buffer.str();

}

int main(int argc, char*™ argv) {
std::cout << "Tests for Query" << std::endl;
ConfigurationBuilder builder;
builder.addServer().host(argc > 1 ? argv[1] : "127.0.0.1").port(argc > 2 ? atoi(argv[2]) :
11222).protocolVersion(Configuration::PROTOCOL_VERSION_24);
RemoteCacheManager cacheManager(builder.build(), false);
cacheManager.start();

2. Create the Protobuf metadata cache with the Protobuf Marshaller:

// This example continues the previous codeblock
// Create the Protobuf Metadata cache peer with a Protobuf marshaller
auto *km = new BasicTypesProtoStreamMarshaller<std::string>();
auto *vm = new BasicTypesProtoStreamMarshaller<std::string>();
auto metadataCache = cacheManager.getCache<std::string, std::string>(
km, &Marshaller<std::string>::destroy,
vm, &Marshaller<std::string>::destroy, PROTOBUF_METADATA_CACHE_NAME,
false);

3. Install the data model in the Protobuf metadata cache:

// This example continues the previous codeblock
// Install the data model into the Protobuf metadata cache
metadataCache.put("sample_bank_account/bank.proto”, read("proto/bank.proto"));
if (metadataCache.containsKey(ERRORS_KEY_SUFFIX))
{

std::cerr << "fail: error in registering .proto model" << std::endl;

return -1;

}

4. This step adds data to the cache for the purposes of this demonstration, and may be ignored
when simply querying a remote cache:

CHAPTER16. THE HOT ROD INTERFACE

// This example continues the previous codeblock

// Fill the cache with the application data: two users Tom and Jerry
testCache.clear();

sample_bank_account::User_Address a;
sample_bank_account::User useri;

useri.set_id(3);

useri.set_name("Tom");

useri.set_surname("Cat");
useri.set_gender(sample_bank_account::User_Gender_MALE);
sample_bank_account::User_Address * addr= user1.add_addresses();
addr->set_street("Via Roma");

addr->set_number(3);

addr->set_postcode("202020");

testCache.put(3, useri);

useri.set_id(4);

useri.set_name("Jerry");

useri.set_surname("Mouse");

addr->set_street("Via Milano");
useri.set_gender(sample_bank_account::User_Gender_MALE);
testCache.put(4, useri);

5. Query the remote cache:

// This example continues the previous codeblock
// Simple query to get User objects
{
QueryRequest qr;
std::cout << "Query: from sample_bank_account.User" << std::endl;
gr.set_jpqlstring("from sample_bank_account.User");
QueryResponse resp = testCache.query(qr);
std::vector<sample_bank_account::User> res;
unwrapResults(resp, res);
for (autoi : res) {
std::cout << "User(id=" << i.id() << ",name=" << i.name()
<< ",surname=" << i.surname() << ")" << std::endl;
}
}

cacheManager.stop();
return 0O;

}

Additional Query Examples

The following examples are included to demonstrate more complicated queries, and may be used on the
same dataset found in the above procedure.

Using a query with a conditional

// Simple query to get User objects with where condition

{
QueryRequest qr;
std::cout << "from sample_bank_account.User u where u.addresses.street=\"Via Milano\"" <<
std::endl;
gr.set_jpqlstring("from sample_bank_account.User u where u.addresses.street=\"Via Milano\"");
QueryResponse resp = testCache.query(qr);

167

Red Hat Data Grid 7.2 Developer Guide

std::vector<sample_bank_account::User> res;
unwrapResults(resp, res);
for (autoi : res) {
std::cout << "User(id=" << i.id() << ",name=" << i.name()
<< ",surname=" << i.surname() << ")" << std::endl;
}
}

Using a query with a projection

// Simple query to get projection (name, surname)
{
QueryRequest qr;
std::cout << "Query: select u.name, u.surname from sample_bank_account.User u" << std::endl;
gr.set_jpqlstring(
"select u.name, u.surname from sample_bank_account.User u");
QueryResponse resp = testCache.query(qr);

//Typed resultset
std::vector<std::tuple<std::string, std::string> > prjRes;
unwrapProjection(resp, priRes);
for (autoi : prjRes) {
std::cout << "Name: " << std::get<0> (i)
<< " Surname: " << std::get<1> (i) << std::endl;
}
}

16.8.12. Using the Near Cache with the Hot Rod C++ Client

Near caches are optional caches for the Hot Rod C++ client that keep recently accessed data close to
the user, providing faster access to data that is accessed frequently. This cache acts as a local Hot Rod
client cache that are synchronized with the remote server in the background.

Near caches are enabled programmatically on the ConfigurationBuilder by using the nearCache()
method, as seen in the following example:

int main(int argc, char*™ argv) {
ConfigurationBuilder confBuilder;
confBuilder.addServer().host("127.0.0.1").port(11222);
confBuilder.protocolVersion(Configuration::PROTOCOL_VERSION_24);
confBuilder.balancingStrategyProducer(nullptr);

// Enable the near cache support
confBuilder.nearCache().mode(NearCacheMode::INVALIDATED).maxEntries(4);

The following methods are used to configure the near cache’s behavior:
e nearCache() - defines a NearCacheConfigurationBuilder which may be modified further.

e mode(NearCacheMode mode) - requires a NearCacheMode be passed in. Defaults to
DISABLED, indicating no near cache is enabled.

e maxEntries(int maxEntries) - indicates the maximum number of entries for the near cache to

contain. Once the near cache is full, the oldest entry will be evicted. Setting this value to 0
defines an unbounded near cache.

168

CHAPTER16. THE HOT ROD INTERFACE

Entries in the near cache are kept aligned with the remote cache via events. If a change occurs in the
server then an appropriate event is sent to the client, which will update the near cache accordingly.

16.8.13. Script Execution Using the Hot Rod C++ Client

The Hot Rod C++ client allows tasks to be executed directly on JBoss Data Grid servers via Remote
Execution. This feature executes logic close to the data, utilizing the resources of all nodes in the
cluster. Tasks may be deployed to the server instances, and may then be executed programmatically.

IMPORTANT

Remote Execution is a Technology Preview feature of the Hot Rod C++ client in Red Hat
JBoss Data Grid 7.2.

Installing a Task

Tasks may be installed on the server by being using the put(std::string name, std::string script)
method of the ___script_cache. The extension of the script name determines the engine used to
execute the script; however, this may be overridden by metadata in the script itself.

The following example demonstrates installing scripts:

Installing a Task with the C++ Client

#include "infinispan/hotrod/ConfigurationBuilder.h"
#include "infinispan/hotrod/RemoteCacheManager.h”
#include "infinispan/hotrod/RemoteCache.h"
#include "infinispan/hotrod/Version.h"
#include "infinispan/hotrod/JBasicMarshaller.h"
using namespace infinispan::hotrod;
int main(int argc, char*™ argv) {
// Configure the client
ConfigurationBuilder builder;
builder.addServer().host("127.0.0.1").port(11222).protocolVersion(
Configuration::PROTOCOL_VERSION_24);
RemoteCacheManager cacheManager(builder.build(), false);
try {
// Create the cache with the given marshallers
auto *km = new JBasicMarshaller<std::string>();
auto *vm = new JBasicMarshaller<std::string>();
RemoteCache<std::string, std::string> cache = cacheManager.getCache<
std::string, std::string>(km, &Marshaller<std::string>::destroy,
vm, &Marshaller<std::string>::destroy,
std::string("namedCache"));
cacheManager.start();

// Obtain a reference to the ___script_cache
RemoteCache<std::string, std::string> scriptCache =
cacheManager.getCache<std::string, std::string>(
" script_cache", false);
// Install on the server the getValue script
std::string getValueScript(
"/ mode=local,language=javascript\n "
"var cache = cacheManager.getCache(\"namedCache\");\n
"var ct = cache.get(\"accessCounter\");\n "

169

Red Hat Data Grid 7.2 Developer Guide

"var ¢ = ct==null ? 0 : parselnt(ct);\n "
"cache.put(\"accessCounter\",(++c).toString());\n "
"cache.get(\"privateValue\") ");
std::string getValueScriptName("getValue.js");
std::string pGetValueScriptName =
JBasicMarshaller<std::string>::addPreamble(getValueScriptName);
std::string pGetValueScript =
JBasicMarshaller<std::string>::addPreamble(getValueScript);
scriptCache.put(pGetValueScriptName, pGetValueScript);
// Install on the server the get access counter script
std::string getAccessScript(
"/ mode=local,language=javascript\n "
"var cache = cacheManager.getCache(\"namedCache\");\n
"cache.get(\"accessCounter\")");
std::string getAccessScriptName("getAccessCounter.js");
std::string pGetAccessScriptName =
JBasicMarshaller<std::string>::addPreamble(getAccessScriptName);
std::string pGetAccessScript =
JBasicMarshaller<std::string>::addPreamble(getAccessScript);
scriptCache.put(pGetAccessScriptName, pGetAccessScript);

Executing a Task

Once installed, a task may be executed by using the execute(std::string nhame, std::map<std::string,
std::string> args) method, passing in the name of the script to execute, along with any arguments that
are required for execution.

The following example demonstrates executing a script:

Executing a Script with the C++ Client

// The following is a continuation of the above example

cache.put("privateValue", "Counted Access Value");

std::map<std::string, std::string> s;

// Execute the getValue script

std::vector<unsigned char> execValueResult = cache.execute(
getValueScriptName, s);

// Execute the getAccess script

std::vector<unsigned char> execAccessResult = cache.execute(
getAccessScriptName, s);

std::string valug(
JBasicMarshallerHelper::unmarshall<std::string>(
(char*) execValueResult.data()));
std::string access(
JBasicMarshallerHelper::unmarshall<std::string>(
(char*) execAccessResult.data()));

std::cout << "Returned value is " << value

<< " and has been accessed: " << access << " times."
<< std::endl;

} catch (const Exception& e) {

std::cout << "is: " << typeid(e).name() << "\n’;

std::cerr << "fail unexpected exception: " << e.what() << std::endl;
return 1;

170

CHAPTER16. THE HOT ROD INTERFACE

}

cacheManager.stop();
return 0O;

}

16.9. HOT ROD C# CLIENT

16.9.1. Hot Rod C# Client

The Hot Rod C# client allows .NET runtime applications to connect and interact with Red Hat JBoss
Data Grid servers. This client is aware of the cluster topology and hashing scheme, and can access an
entry on the server in a single hop similar to the Hot Rod Java and Hot Rod C++ clients.

The Hot Rod C# client is compatible with 64-bit operating systems on which the .NET Framework is
supported by Microsoft. Visual Studio 2015 and .NET 4.6.2 are prerequisites for the Hot Rod C# client.

16.9.2. Hot Rod C# Client Download and Installation
The Hot Rod C# client is included in a .msi file jboss-datagrid-<version>-hotrod-dotnet-client.msi packed

for download with Red Hat JBoss Data Grid. To install the Hot Rod C# client, execute the following
instructions.

Installing the Hot Rod C# Client

1. As an administrator, navigate to the location where the Hot Rod C# .msi file is downloaded. Run
the .msi file to launch the windows installer and then click Next.

171

Red Hat Data Grid 7.2 Developer Guide

Figure 16.1. Hot Rod C# Client Setup Welcome

ﬁ infinispan-hotrod-dotnet Setup - x

Welcome o the infinispan-hotrod-dotnet
Setup Wizard

The Setup wWizard will install infinispan-hotrod-dotnet an your
compiiter, Click Mexk to continue or Cancel to exit the Setup
Wizard,

Back Mexk Cancel

2. Review the end-user license agreement. Select the | accept the terms in the License
Agreement check box and then click Next.

172

CHAPTER16. THE HOT ROD INTERFACE

Figure 16.2. Hot Rod C# Client End-User License Agreement

ﬁ' infinispan-hotrod-dotnet Setup

End-User License Agreement

Please read the Following license agreement carefully

Copyright 2009 - 2017, Red Hat Inc. andfar its affiliates.
All files in this repositary or distribution are licensed under the

Apache License, Yersion 2.0 ithe "License™);

yau may not use any files in this repasitary or distribution except
in compliance with the License.

You may obtain a copy of the License at

http: Mwevaw. apache. argdlicenses/LICEMNSE-2.0

[«]1 accept the terms in the License Agreement

Prink Back. Mexk

Cancel

3. To change the default directory, click Change... or click Next to install in the default directory.

173

Red Hat Data Grid 7.2 Developer Guide

174

Figure 16.3. Hot Rod C# Client Destination Folder

ﬁ infinispan-hotrod-dotnet Setup —

Destination Folder

Click Mext ta install ko the defaulk Folder or click Change to choose another,

Install infinispan-hokrod-doktnet ko

|C:'|,F‘ru:ugram Files\infinispan-hatrod-doknet 3.5.0.Final),

iChange. ..

Back. Mexk

Zancel

4. Click Install to begin the Hot Rod C# client installation.

CHAPTER16. THE HOT ROD INTERFACE

Figure 16.4. Hot Rod C# Client Begin Installation

ﬁ' infinispan-hotrod-dotnet Setup — b 4

Ready to install infinispan-hotrod-dotnhet

Click, Inskall ko beqgin the inskallation, Click Back to review or change any of wour
inskallation sektings, Click Cancel ko exit the wizard.

Back. Install Zancel

5. Click Finish to complete the Hot Rod C# client installation.

175

Red Hat Data Grid 7.2 Developer Guide

Figure 16.5. Hot Rod C# Client Setup Completion

jﬁ' infinispan-hotrod-dotnet Setup — bt

Completed the infinispan-hotrod-dotnet
Setup Wizard

Click the Finish biutban ko exik the Setup Wizard,

Back Finish Cancel

16.9.3. Creating a Hot Rod C# .NET Project

To use the Hot Rod C# client in a .NET project the following steps must be performed:

Configure the Hot Rod C# Project

1. Add the Path Environment Variables
The PATH environment variable must have the following folders added:

C:\path\to\infinispan-hotrod-dotnet 8.5.0.Final\bin
C:\path\to\infinispan-hotrod-dotnet 8.5.0.Final\lib

2. Remove Prefer 32 bit
On the Project properties, under the Build tab, ensure that Prefer 32 bitis unchecked.

3. Add the Hot Rod C# dlls

a.

b.

176

On the Solution Explorer view select Project.

Select References.

. Right-click on references and select Add Reference.

In the window presented, click Browse and navigate to the C:\path\to\infinispan-hotrod-
dotnet 8.5.0.Final\lib\hotrodcs.dll file.

Click OK.

CHAPTER 16. THE HOT ROD INTERFACE
The Hot Rod C# APl may now be used in the .NET project.

16.9.4. Hot Rod C# Client Configuration

The Hot Rod C# client is configured programmatically using the ConfigurationBuilder. Configure the
host and the port to which the client should connect.

Sample C# file configuration

The following example shows how to use the ConfigurationBuilder to configure a
RemoteCacheManager.

C# configuration

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading.Tasks;
using Infinispan.HotRod;

using Infinispan.HotRod.Config;
namespace simpleapp

{

class Program

{

static void Main(string[] args)
{
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.AddServer()
.Host(args.Length > 1 ? args[0] : "127.0.0.1")
.Port(args.Length > 2 ? int.Parse(args[1]) : 11222);
Configuration config = builder.Build();
RemoteCacheManager cacheManager = new RemoteCacheManager(config);

[..]

16.9.5. Hot Rod C# Client API

The RemoteCacheManager is a starting point to obtain a reference to a RemoteCache.

The following example shows retrieval of a default cache from the server and a few basic operations.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using Infinispan.HotRod;

using Infinispan.HotRod.Config;
namespace simpleapp

{

class Program

{

177

Red Hat Data Grid 7.2 Developer Guide

static void Main(string|[] args)

{
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.AddServer()

.Host(args.Length > 1 ? args[0] : "127.0.0.1")
.Port(args.Length > 2 ? int.Parse(args[1]) : 11222);

Configuration config = builder.Build();
RemoteCacheManager cacheManager = new RemoteCacheManager(config);
cacheManager.Start();
/I Retrieve a reference to the default cache.
IRemoteCache<String, String> cache = cacheManager.GetCache<String, String>();
// Add entries.
cache.Put("key1", "value1");
cache.PutlfAbsent("key1", "anotherValuei");
cache.PutlfAbsent("key2", "value2");
cache.PutlfAbsent("key3", "value3");
/I Retrive entries.
Console.WriteLine("key1 -> " + cache.Get("key1"));
/I Bulk retrieve key/value pairs.
int limit = 10;
IDictionary<String, String> result = cache.GetBulk(limit);
foreach (KeyValuePair<String, String> kv in result)

{
}

// Remove entries.

cache.Remove("key2");

Console.WriteLine("key2 -> " + cache.Get("key2"));
cacheManager.Stop();

Console.WriteLine(kv.Key + " -> " + kv.Value);

16.9.6. Hot Rod C# Client Asynchronous API

The Hot Rod C# client offers asynchronous versions of many of the synchronous methods, allowing non-
blocking methods for interacting with remote caches.

These methods follow the same naming convention as the synchronous methods, except that Async is
appended to the end of each method. Asynchronous methods return a Task containing the result of the
operation. If a method were to return a String, instead it will return a Task<String>
A list of asynchronous methods are below:

e ClearAsync

e GetAsync

® PutAsync

e PutAllAsync

e PutifAbsentAsync

e RemoveAsync

178

CHAPTER16. THE HOT ROD INTERFACE

o RemoveWithVersionAsync
® ReplaceAsync
® ReplaceWithVersionAsync

Hot Rod C# Asynchronous APl Example

The following example demonstrates using these methods:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading.Tasks;
using Infinispan.HotRod;

using Infinispan.HotRod.Config;
namespace simpleapp

{

class Program

{

static void Main(string[] args)
{
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.AddServer()
.Host(args.Length > 1 ? args[0] : "127.0.0.1")
.Port(args.Length > 2 ? int.Parse(args[1]) : 11222);
Configuration config = builder.Build();
RemoteCacheManager cacheManager = new RemoteCacheManager(config);
IRemoteCache<String,String> cache = cacheManager.GetCache<String,String>();

// Add Entries Async
cache.PutAsync("key1","value1");
cache.PutAsync("key2","value2");

// Retrieve Entries Async
Task<string> futureExec = cache.GetAsync("key1");

string result = futureExec.Result;

16.9.7. Hot Rod C# Client Remote Event Listeners

The Hot Rod C# client supports remote cache listeners, and these may be added using the addListener
method on the ClientListener.

IMPORTANT

Remote Event Listeners is a Technology Preview feature of the Hot Rod C# client in Red
Hat JBoss Data Grid 7.2.

179

Red Hat Data Grid 7.2 Developer Guide

This method takes a listener for each event type(create, modify, remove, expire, or custom). For more
information on Remote Event Listeners refer to Remote Event Listeners (Hot Rod). An example of a
modifiedEvent is provided below:

[..]

private static void modifiedEventAction(Event.ClientCacheEntryModifiedEvent<string> e)
{

++modifiedEventCounter;

modifiedSemaphore.Release();

}
[...]
public void ModifiedEventTest()
{
IRemoteCache<string, string> cache = remoteManager.GetCache<string, string>();
cache.Clear();
Event.ClientListener<string, string> cl = new Event.ClientListener<string, string>();
cl.filterFactoryName = "";
cl.converterFactoryName ="";
cl.addListener(modifiedEventAction);
cache.addClientListener(cl, new string[] { }, new string[] { }, null);

16.9.8. Hot Rod C# Client Working with Sites

Multiple Red Hat JBoss Data Grid Server clusters may be deployed so that each cluster belongs to a
different site. Such deployments are done to enable data to be backed up from one cluster to another,
potentially in a different geographical location. The C# client implementation can failover between
nodes within a cluster, along with failing over to a different cluster entirely, should the original cluster
become nonresponsive. To be able to failover between clusters all Red Hat JBoss Data Grid Servers
must be configured with Cross-Datacenter replication. Instructions for this procedure are found in the
Red Hat JBoss Data Grid Administration and Configuration Guide.

Once failed over the client will remain connected to the alternative cluster until this new cluster
becomes unavailable, in which case it will throw an exception. If the original cluster becomes operational,
the client will not switch over automatically. To switch back to the original cluster use the
SwitchToDefaultCluster() method mentioned below.

Once Cross-Datacenter replication has been configured on the servers, the client has to provide the
alternative clusters' configuration with at least one host/port pair details for each of the clusters
configured. For example:

ConfigurationBuilder conf1 = new ConfigurationBuilder();
conf1.AddServer().Host("127.0.0.1").Port(11222);
conf1.AddCluster("nyc").AddClusterNode("127.0.0.1", 11322);
RemoteCacheManager manageri = new RemoteCacheManager(conf1.Build(), true);

ConfigurationBuilder conf2 = new ConfigurationBuilder();
conf2.AddServer().Host("127.0.0.1").Port(11322);

conf2.AddCluster("lon").AddClusterNode("127.0.0.1", 11222);
RemoteCacheManager remoteManager = new RemoteCacheManager(conf2.Build(), true);

16.9.8.1. Manual Cluster Switch

180

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#set_up_cross_datacenter_replication

CHAPTER16. THE HOT ROD INTERFACE

In addition to automatic site failover, C++ clients may switch between clusters by calling either of the
following methods:

e SwitchToCluster(clusterName) - Forces the client to switch to the pre-defined cluster name
passed in.

e SwitchToDefaultCluster() - Forces the client to switch to the initial servers defined in the client
configuration.

16.9.9. Performing Remote Queries via the Hot Rod C# Client

The Hot Rod C# client allows remote querying, using Google’s Protocol Buffers, once the
RemoteCacheManager has been configured with the Protobuf marshaller.

IMPORTANT

Performing Remote Queries is a Technology Preview feature of the Hot Rod C# Client in
Red Hat JBoss Data Grid 7.2.

Enable Remote Querying on the Hot Rod C# Client

1. Obtain a connection to the remote JBoss Data Grid server, passing the Protobuf marshaller into
the configuration:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading.Tasks;
using Infinispan.HotRod;

using Infinispan.HotRod.Config;
using Google.Protobuf;

using Org.Infinispan.Protostream;
using Org.Infinispan.Query.Remote.Client;
using QueryExampleBankAccount;
using System.lO;

namespace Query
{
/1 <summary>
/// This sample code shows how to perform Infinispan queries using the C# client
/1 </summary>
class Query

{

static void Main(string[] args)
{
// Cache manager setup
RemoteCacheManager remoteManager;
const string ERRORS_KEY_SUFFIX = ".errors";
const string PROTOBUF_METADATA_CACHE_NAME ="__ protobuf_metadata”;
ConfigurationBuilder conf = new ConfigurationBuilder();

conf.AddServer().Host("127.0.0.1").Port(11222).ConnectionTimeout(90000).SocketTimeout(

6000);
conf.Marshaller(new BasicTypesProtoStreamMarshaller());

181

Red Hat Data Grid 7.2 Developer Guide

remoteManager = new RemoteCacheManager(conf.Build(), true);

IRemoteCache<String, String> metadataCache = remoteManager.GetCache<String,
String>(PROTOBUF_METADATA_CACHE_NAME);

IRemoteCache<int, User> testCache = remoteManager.GetCache<int, User>
("namedCache");

2. Install any protobuf entities model:

// This example continues the previous codeblock
// Installing the entities model into the Infinispan ___protobuf_metadata cache
metadataCache.Put("sample_bank_account/bank.proto”,
File.ReadAllText("resources/proto2/bank.proto”));
if (metadataCache.ContainsKey(ERRORS_KEY_SUFFIX))
{
Console.WriteLine("fail: error in registering .proto model");
Environment.Exit(-1);

}

3. This step adds data to the cache for the purposes of this demonstration, and may be ignored
when simply querying a remote cache:

// This example continues the previous codeblock
// The application cache must contain entities only
testCache.Clear();

// Fill the application cache

User user1 = new User();

useri.ld = 4;

user1.Name = "Jerry";

user1.Surname = "Mouse";

User ret = testCache.Put(4, useri);

4. Query the remote cache:

// This example continues the previous codeblock
// Run a query

QueryRequest gr = new QueryRequest();
gr.JpglString = "from sample_bank_account.User";
QueryResponse result = testCache.Query(qr);
List<User> listOfUsers = new List<User>();
unwrapResults(result, listOfUsers);

5. To process the results convert the protobuf matter into C# objects. The following method
demonstrates this conversion:

// Convert Protobuf matter into C# objects
private static bool unwrapResults<T>(QueryResponse resp, List<T> res) where T :
IMessage<T>
{
if (resp.ProjectionSize > 0)
{ // Query has select
return false;

}

182

CHAPTER16. THE HOT ROD INTERFACE

for (inti=0; i< resp.NumResults; i++)

{

WrappedMessage wm = resp.Results.ElementAt(i);

if (wm.WrappedBytes != null)
{
WrappedMessage wmr =
WrappedMessage.Parser.ParseFrom(wm.WrappedBytes);
if (wmr.WrappedMessageBytes |= null)

{
System.Reflection.Propertylnfo pi = typeof(T).GetProperty("Parser");

MessageParser<T> p = (MessageParser<T>)pi.GetValue(null);
T u = p.ParseFrom(wmr.WrappedMessageBytes);
res.Add(u);
}
}
}
return true;
}
}
}

16.9.10. Using the Near Cache with the Hot Rod C# Client

Near caches are optional caches for the Hot Rod C# client that keep recently accessed data close to
the user, providing faster access to data that is accessed frequently. This cache acts as a local Hot Rod
client cache that is synchronized with the remote server in the background.

Near caches are enabled programmatically on the ConfigurationBuilder by using the NearCache()
method, as seen in the following example:

ConfigurationBuilder conf = new ConfigurationBuilder();
conf.AddServer().Host("127.0.0.1").Port(11222)

/I Define a Near Cache that contains up to 10 entries
.NearCache().Mode(NearCacheMode.INVALIDATED).MaxEntries(10);

The following methods are used to configure the near cache’s behavior:
e NearCache() - defines a NearCacheConfigurationBuilder which may be modified further.

o Mode(NearCacheMode mode) - requires a NearCacheMode be passed in. Defaults to
DISABLED, indicating no near cache is enabled.

e MaxEntries(int maxEntries) - indicates the maximum number of entries for the near cache to
contain. Once the near cache is full, the oldest entry will be evicted. Setting this value to 0

defines an unbounded near cache.

Entries in the near cache are kept aligned with the remote cache via events. If a change occurs in the
server then an appropriate event is sent to the client, which will update the near cache accordingly.

16.9.11. Script Execution Using the Hot Rod C# Client

183

Red Hat Data Grid 7.2 Developer Guide

The Hot Rod C# client allows tasks to be executed directly on Red Hat JBoss Data Grid servers via
Remote Execution. This feature executes logic close to the data, utilizing the resources of all nodes in
the cluster. Tasks may be deployed to the server instances, and may then be executed programmatically.

Installing a Task

Tasks may be installed on the server by being using the Put(string name, string script) method of the
script_cache. The extension of the script name determines the engine used to execute the script;
however, this may be overridden by metadata in the script itself.

The following example demonstrates installing scripts:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading.Tasks;
using Infinispan.HotRod;

using Infinispan.HotRod.Config;

namespace RemoteExec
{
/1 <summary>
/// This sample code shows how to perform a server remote execution using the C# client
/1 </summary>
class RemoteExec

{

static void Main(string[] args)
{
// Cache manager setup
RemoteCacheManager remoteManager;
IMarshaller marshaller;
ConfigurationBuilder conf = new ConfigurationBuilder();

conf.AddServer().Host("127.0.0.1").Port(11222).ConnectionTimeout(90000).SocketTimeout(6000);
marshaller = new JBasicMarshaller();
conf.Marshaller(marshaller);
remoteManager = new RemoteCacheManager(conf.Build(), true);

// Install the .js code into the Infinispan __script_cache
const string SCRIPT_CACHE_NAME ="___ script_cache";
string valueScriptName = "getValue.js";
string valueScript = "// mode=local,language=javascript\n "
+ "var cache = cacheManager.getCache(\"namedCache\");\n "
+ "var ct = cache.get(\"accessCounter\");\n "
+ "var ¢ = ct==null ? 0 : parselnt(ct);\n "
+ "cache.put(\"accessCounter\",(++c).toString());\n "
+ "cache.get(\"privateValue\") ";
string accessScriptName = "getAccess.js";
string accessScript = "/ mode=local,language=javascript\n "
+ "var cache = cacheManager.getCache(\"namedCache\");\n "
+ "cache.get(\"accessCounter\")";
IRemoteCache<string, string> scriptCache = remoteManager.GetCache<string, string>
(SCRIPT_CACHE_NAME);
IRemoteCache<string, string> testCache = remoteManager.GetCache<string, string>

184

CHAPTER16. THE HOT ROD INTERFACE

("namedCache");
scriptCache.Put(valueScriptName, valueScript);
scriptCache.Put(accessScriptName, accessScript);

Executing a Task

Once installed, a task may be executed by using the Execute(string name, Dictionary<string, string>
scriptArgs) method, passing in the name of the script to execute, along with any arguments that are
required for execution.

The following example demonstrates running the scripts:

// This example continues the previous codeblock

testCache.Put("privateValue", "Counted Access Value");

Dictionary<string, string> scriptArgs = new Dictionary<string, string>();

byte[] ret1 = testCache.Execute(valueScriptName, scriptArgs);

string value = (string)marshaller.ObjectFromByteBuffer(ret1);

byte[] ret2 = testCache.Execute(accessScriptName, scriptArgs);

string accessCount = (string)marshaller.ObjectFromByteBuffer(ret2);

Console.Write("Return value is " + value + " and has been accessed
times.");

+ accessCount + ™

IMPORTANT

Script execution using the Hot Rod C# Client is a Technology Preview Feature in JBoss
Data Grid 7.2.

16.9.12. String Marshaller for Interoperability

To use the string compatibility marshaller, pass an instance of CompatibilityMarshaller to the
Marshaller() method of the ConfigurationBuilder object similar to this:

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.Marshaller(new CompatibilityMarshaller());

RemoteCacheManager cacheManager = new RemoteCacheManager(builder.build(), true);
IRemoteCache<String, String> cache = cacheManager.GetCache<String, String>();

[...]

cache.Put("key", "value");

[...]
cache.Get("key");

[..]

NOTE

Attempts to store or retrieve non-string key/values will result in a
HotRodClientException being thrown.

16.10. HOT ROD NODE.JS CLIENT

185

Red Hat Data Grid 7.2 Developer Guide

16.10.1. Hot Rod Node.js Client

The Hot Rod Node.js client is an asynchronous event-driven client allowing Node.js users to
communicate to Red Hat JBoss Data Grid servers. This client supports many of the features in the Java
client, including the ability to execute and store scripts, utilize cache listeners, and receive the full cluster
topology.

The asynchronous operation results are represented with Promise instances, allowing the client to easily
chain multiple invocations together and centralizing error handling.

16.10.2. Installing the Hot Rod Node.js Client

The Hot Rod Node.js client is included in a standalone distribution that you download separately to Red
Hat JBoss Data Grid.

Procedure: Installing the Hot Rod Node.js Client
1. Download the jboss-datagrid-7.2.x-nodejs-client.zip from the Red Hat Customer Portal.
2. Extract the downloaded archive.

3. Use npm to install the provided tarball, as seen in the following command:

I npm install /path/to/jboss-datagrid-7.2.x-nodejs-client/infinispan-7.2.3-Final-redhat-00002.tgz

16.10.3. Hot Rod Node.js Requirements

The Hot Rod Node.js client has the following requirements:
® Node.js version 0.10 or higher.

® Red Hat JBoss Data Grid server instance 7.0.0 or higher.

16.10.4. Hot Rod Node.js Basic Functionality
The following example shows how to connect to a Red Hat JBoss Data Grid server and perform basic

operations, such as putting and retrieving data. The following example assumes that a Red Hat JBoss
Data Grid server is available at the default location of localhost:11222:

var infinispan = require('infinispan’);

// Obtain a connection to the JBoss Data Grid server

// As no cache is specified all operations will occur on the 'default’ cache
var connected = infinispan.client({port: 11222, host: '127.0.0.1'});

connected.then(function (client) {

// Attempt to put a value in the cache.
var clientPut = client.put('key’, 'value');

// Retrieve the value just placed

var clientGet = clientPut.then(
function() { return client.get('key'); });

186

CHAPTER16. THE HOT ROD INTERFACE

// Print out the value that was retrieved
var showGet = clientGet.then(
function(value) { console.log('get(key)="+ value); });

// Disconnect from the server
return showGet.finally(
function() { return client.disconnect(); });
}).catch(function(error) {

// Log any errors received
console.log("Got error: " + error.message);

hE

Connecting to a Named Cache
To connect to a specific cache the cacheName attribute may be defined when specifying the location

of the Red Hat JBoss Data Grid server instance, as seen in the following example:

var infinispan = require('infinispan’);

// Obtain a connection to the JBoss Data Grid server
// and connect to namedCache
var connected = infinispan.client(
{port: 11222, host: '127.0.0.1'}, {cacheName: 'namedCache'});

connected.then(function (client) {

// Log the result of the connection
console.log('Connected to "'namedCache™);

// Disconnect from the server
return client.disconnect();

}.catch(function(error) {

// Log any errors received
console.log("Got error: " + error.message);

hE

Using Data Sets

In addition to placing single entries the putAll and getAll methods may be used to place or retrieve a
set of data. The following example walks through these operations:

var infinispan = require('infinispan’);

// Obtain a connection to the JBoss Data Grid server
// As no cache is specified all operations will occur on the 'default’ cache
var connected = infinispan.client({port: 11222, host: '127.0.0.1});

connected.then(function (client) {
var data = [
{key: 'multi1’, value: 'vi'},
{key: 'multi2', value: 'v2'},

187

Red Hat Data Grid 7.2 Developer Guide

{key: 'multi3', value: 'v3'}];

// Place all of the key/value pairs in the cache
var clientPutAll = client.putAll(data);

// Obtain the values for two of the keys
var clientGetAll = clientPutAll.then(
function() { return client.getAll(['multi2', 'multi37); });

// Print out the values obtained.
var showGetAll = clientGetAll.then(
function(entries) {
console.log('getAll(multi2, multi3)=%s', JSON.stringify(entries));

}
);

// Obtain an iterator for the cache
var clientlterator = showGetAll.then(
function() { return client.iterator(1); });

// Iterate over the entries in the cache, printing the values
var showlterated = clientlterator.then(
function(it) {
function loop(promise, fn) {
// Simple recursive loop over iterator's next() call
return promise.then(fn).then(function (entry) {
return lentry.done ? loop(it.next(), fn) : entry.value;
};
}

return loop(it.next(), function (entry) {
console.log(iterator.next()="+ JSON.stringify(entry));
return entry;
};
}
);

// Clear the cache of all values

var clientClear = showlterated.then(
function() { return client.clear(); });

// Disconnect from the server

return clientClear.finally(
function() { return client.disconnect(); });

}).catch(function(error) {

// Log any errors received
console.log("Got error: " + error.message);

Ik

16.10.5. Hot Rod Node.js Conditional Operations

The Hot Rod protocol stores metadata in addition to each value associated with the keys.

188

CHAPTER16. THE HOT ROD INTERFACE

The getWithMetadata retrieves the value and metadata for the key.

The following example demonstrates utilizing this metadata:

var infinispan = require('infinispan’);

// Obtain a connection to the JBoss Data Grid server
// As no cache is specified all operations will occur on the 'default’ cache
var connected = infinispan.client({port: 11222, host: '127.0.0.1'});

connected.then(function (client) {

// Attempt to put a value in the cache if it does not exist
var clientPut = client.putlfAbsent('cond’, 'v0');

// Print out the result of the put operation
var showPut = clientPut.then(
function(success) { console.log(:putlfAbsent(cond)="+ success); });

// Replace the value in the cache
var clientReplace = showPut.then(
function() { return client.replace('cond’, 'v1'); });

// Print out the result of the replace
var showReplace = clientReplace.then(
function(success) { console.log('replace(cond)=" + success); });

// Obtain the value and metadata
var clientGetMetaForReplace = showReplace.then(
function() { return client.getWithMetadata('cond’); });

// Replace the value only if the version matches
var clientReplaceWithVersion = clientGetMetaForReplace.then(
function(entry) {
console.log('getWithMetadata(cond)="+ JSON.stringify(entry));
return client.replaceWithVersion('cond', 'v2', entry.version);

}
);

// Print out the result of the previous replace
var showReplaceWithVersion = clientReplaceWithVersion.then(
function(success) { console.log('replaceWithVersion(cond)=" + success); });

// Obtain the value and metadata
var clientGetMetaForRemove = showReplaceWithVersion.then(
function() { return client.getWithMetadata('cond'); });

// Remove the value only if the version matches
var clientRemoveWithVersion = clientGetMetaForRemove.then(
function(entry) {
console.log('getWithMetadata(cond)="+ JSON.stringify(entry));
return client.removeWithVersion('cond', entry.version);

}
);

// Print out the result of the previous remove

189

Red Hat Data Grid 7.2 Developer Guide

var showRemoveWithVersion = clientRemoveWithVersion.then(
function(success) { console.log('removeWithVersion(cond)=" + success)});

// Disconnect from the server
return showRemoveWithVersion.finally(
function() { return client.disconnect(); });

}.catch(function(error) {

// Log any errors received
console.log("Got error: " + error.message);

hE

16.10.6. Hot Rod Node.js Data Sets

The client may specify multiple server addresses when a connection is defined. When multiple servers
are defined it will loop through each one until a successful connection to a node is obtained. An example
of this configuration is below:

var infinispan = require('infinispan’);
// Accepts multiple addresses and fails over if connection not possible
var connected = infinispan.client(

[{port: 99999, host: '127.0.0.1}, {port: 11222, host: '127.0.0.1"]);

connected.then(function (client) {

// Obtain a list of all members in the cluster
var members = client.getTopologyInfo().getMembers();

// Print out the list of members
console.log('Connected to: ' + JSON.stringify(members));

// Disconnect from the server
return client.disconnect();

}).catch(function(error) {

// Log any errors received
console.log("Got error: " + error.message);

hE

16.10.7. Hot Rod Node.js Remote Events

The Hot Rod Node.js client supports remote cache listeners, and these may be added using the
addListener method. This method takes the event type (create, modify, remove, or expiry) and the
function callback as parameter. For more information on Remote Event Listeners refer to Remote Event
Listeners (Hot Rod). An example of this is shown below:

var infinispan = require('infinispan’);
var Promise = require('promise’);

190

CHAPTER16. THE HOT ROD INTERFACE

var connected = infinispan.client({port: 11222, host: '127.0.0.1'});
connected.then(function (client) {

var clientAddListenerCreate = client.addListener(
'create’, function(key) { console.log([Event] Created key: ' + key); });

var clientAddListeners = clientAddListenerCreate.then(
function(listenerld) {

// Multiple callbacks can be associated with a single client-side listener.

// This is achieved by registering listeners with the same listener id

// as shown in the example below.

var clientAddListenerModify = client.addListener(
'modify', function(key) { console.log([Event] Modified key: ' + key); },
{listenerld: listenerld});

var clientAddListenerRemove = client.addListener(
'remove’, function(key) { console.log([Event] Removed key: ' + key); },
{listenerld: listenerld});

return Promise.all([clientAddListenerModify, clientAddListenerRemove]));

Ds

var clientCreate = clientAddListeners.then(
function() { return client.putlfAbsent('eventful’, 'v0'); });

var clientModify = clientCreate.then(
function() { return client.replace('eventful’, 'v1'); });

var clientRemove = clientModify.then(
function() { return client.remove('eventful'); });

var clientRemovelListener =
Promise.all([clientAddListenerCreate, clientRemove]).then(
function(values) {
var listenerld = values|0];
return client.removeListener(listenerld);

h;

return clientRemovelListener.finally(
function() { return client.disconnect(); });

}.catch(function(error) {

console.log("Got error: " + error.message);

hE

16.10.8. Hot Rod Node.js Working with Clusters
Red Hat JBoss Data Grid server instances may be clustered together to provide failover and capabilities
for scaling up. While working with a cluster is very similar to using a single instance there are a few

considerations:

® The client only needs to know about a single server's address to receive information about the
entire server cluster, regardless of the cluster size.

191

Red Hat Data Grid 7.2 Developer Guide

® Fordistributed caches, key-based operations are routed in the cluster using the same
consistent hash algorithms used by the server. This means that the client can locate where any
particular key resides without the need for extra network hops.

e For distributed caches, multi-key or key-less operations are routed in round-robin fashion.

® Forreplicated and invalidated caches, all operations are routed in round-robin fashion,
regardless of whether they are key-based or multi-key/key-less.

All routing and failover is transparent to the client, so operations executed against a cluster look
identical to the code examples performed above.

The cluster topology can be obtained using the following example:
var infinispan = require('infinispan’);
var connected = infinispan.client({port: 11322, host: '127.0.0.1'});
connected.then(function (client) {
var members = client.getTopologyInfo().getMembers();

// Should show all expected cluster members
console.log('Connected to: ' + JSON.stringify(members));

// Add your own operations here...
return client.disconnect();
}).catch(function(error) {

// Log any errors received
console.log("Got error: " + error.message);

hE

16.10.9. Hot Rod Node.js Working with Sites

Multiple Red Hat JBoss Data Grid Server clusters may be deployed so that each cluster belongs to a
different site. Such deployments are done to enable data to be backed up from one cluster to another,
potentially in a different geographical location. The Node.js client implementation can failover between
nodes within a cluster, along with failing over to a different cluster entirely, should the original cluster
become nonresponsive. To be able to failover between clusters all Red Hat JBoss Data Grid Servers
must be configured with Cross-Datacenter replication. Instructions for this procedure are found in the
Red Hat JBoss Data Grid Administration and Configuration Guide.

Once failed over the client will remain connected to the alternative cluster until this new cluster
becomes unavailable, in which case it will try any other clusters defined, including the original server
settings.

Once Cross-Datacenter replication has been configured on the servers, the client has to provide the

alternative clusters' configuration with at least one host/port pair details for each of the clusters
configured. For example:

I var connected = infinispan.client({port: 11322, host: '127.0.0.11,

192

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#set_up_cross_datacenter_replication

CHAPTER16. THE HOT ROD INTERFACE

{

clusters: [
{
name: 'LON’,
servers: [{port: 1234, host: 'LONA1'}]
b

{
name: 'NYC',

servers: [{port: 2345, host: 'NYCB1'}, {port: 3456, host: 'NYCB2']
}

D;

16.10.9.1. Manual Cluster Switch

In addition to automatic site failover, Node.js clients may switch between site clusters manually by calling

either of the following methods:

e switchToCluster(clusterName) - Forces the client to switch to the pre-defined cluster name

passed in.

e switchToDefaultCluster() - Forces the client to switch to the initial servers defined in the client

configuration.

For example, to manually switch to the NYC cluster the following could be used:

var connected = infinispan.client({port: 11322, host: '127.0.0.11,
{

clusters: [

{
name: 'LON’,

servers: [{port: 1234, host: 'LONA1'}]

b

{
name: 'NYC',

servers: [{port: 2345, host: 'NYCB1'}, {port: 3456, host: 'NYCB2'}]
}

h;
connected.then(function (client) {
var switchToB = client.getTopologyInfo().switchToCluster('NYC");

[.]
b;

16.10.10. Memory Profiling

You can profile how much memory Hot Rod Node.js client consumes with the following programs:
e infinispan_memory_many_get.js profiles memory usage using multiple GET requests.
e infinispan_memory_one_get.js profiles memory usage using one GET request.

These programs are located in the memory-profiling directory of the client package.

193

Red Hat Data Grid 7.2 Developer Guide

To run the memory profiling programs, do the following:

I node --expose-gc memory-profiling/infinispan_memory_many_get.js

NOTE

You must pass the --expose-gc parameter so that the programs can access the global
garbage collector.

Tip: Use Google Chrome Developer Tools to visualize heap dumps. Load heap dumps from the Memory
tab. This tab lets you compare multiple snapshots, which is useful for finding objects that have been kept
in memory between points in time.

16.10.10.1. Avoiding Memory Issues with Promises

If the Node.js client creates many Promise instances the client can consume too much memory, which
degrades performance.

The following program is an example where too many Promise instances are created. In this example, a
user stores data and then generates multiple retrievals. The results are printed when all of the retrievals
are complete, which results in increased memory consumption.

var _ = require('underscore');
var infinispan = require('infinispan’);
var Promise = require('promise’);

var heapdump = require('heapdump’);

var connected = infinispan.client({port: 11222, host: '127.0.0.1'},{cacheName: 'namedCache'});
console.log("Connected to JDG server");
connected.then(function (client) {

var sessionA = "Key";

var clientPut = client.put(sessionA, "test");

var clientTemp = clientPut;

return clientTemp.then(function() {

var initialHeapUsed = process.memoryUsage().heapUsed;
console.log("process.memoryUsage().heapUsed: " + initialHeapUsed);
heapdump.writeSnapshot('/tmp/* + Date.now() + ".heapsnapshot’);

var temp = [[;

var numQOps = 10000; // 500000

.map(.range(numOps), function(i) {
temp.push(client.get(sessionA).then(function(value) {
console.log("value " + value);
h);
};

var promesas = Promise.all(temp);
var completed = promesas.then(function() {
console.log("Promises completed");

D;

194

CHAPTER16. THE HOT ROD INTERFACE

temp = null;
promesas = null;

return completed.then(function() {
global.gc();
console.log("process.memoryUsage().heapUsed (begin): " + initialHeapUsed);
console.log("process.memoryUsage().heapUsed: "+process.memoryUsage().heapUsed);

global.gc();
console.log("process.memoryUsage().heapUsed: "+process.memoryUsage().heapUsed);

heapdump.writeSnapshot('/tmp/' + Date.now() + "heapsnapshot’);

return client.disconnect();

D;
Ds

}).catch(function(err) {
console.log("connect error", err);

hE

The following output shows the increased memory consumption that resulted from having too many
Promise instances created for the data retrieval:

node --expose-gc test.js

process.memoryUsage().heapUsed (begin): 5620856
process.memoryUsage().heapUsed: 14368456
process.memoryUsage().heapUsed: 14274008

To avoid memory issues with multiple Promise instances, you can either use Promise instances in the
platform or generate a new Promise instance, depending on your version of Node,js.

Using Platform Promises
Recent Node.js versions include promise objects so that you do not need to load the promise library with
the following line:

I var Promise = require('promise’)

If you remove that line from the preceding example and then run it with a Node.js version such as 8.11,
the memory profiling results are as follows:

$ node --version
v8.11.1
$ node --expose-gc test.js

process.memoryUsage().heapUsed (begin): 6379448
process.memoryUsage().heapUsed: 6749056
process.memoryUsage().heapUsed: 6614560

Generating an Extra Promise

Older Node.js versions can generate a new Promise after the collection of promise objects has been
handled, as in the following example:

195

Red Hat Data Grid 7.2 Developer Guide

var _ = require('underscore');
var infinispan = require('infinispan’);
var Promise = require('promise’);

var heapdump = require('heapdump’);

var connected = infinispan.client({port: 11222, host: '127.0.0.1'},{cacheName: 'namedCache'});
console.log("Connected to JDG server");
connected.then(function (client) {

var sessionA = "Key";

var clientPut=client.put(sessionA, "test");

var clientTemp = clientPut;

return clientTemp.then(function() {

var initialHeapUsed = process.memoryUsage().heapUsed;
console.log("process.memoryUsage().heapUsed: " + initialHeapUsed);
heapdump.writeSnapshot(/tmp/* + Date.now() + ".heapsnapshot’);

var temp = [];

var numQOps = 10000; // 500000

.map(.range(numOps), function(i) {
temp.push(client.get(sessionA).then(function(value) {
console.log("value " + value);
)
1;

var promesas = Promise.all(temp);
var completed = promesas.then(function() {
console.log("Promises completed");

D;

temp = null;
promesas = null;

var getAfterAll = completed.then(function() {
return client.get(sessionA);

D;

var logGet = getAfterAll.then(function(value) {
console.log("[get after all] value: " + value);

)

return logGet.then(function() {
global.gc();
console.log("process.memoryUsage().heapUsed (begin): " + initialHeapUsed);
console.log("process.memoryUsage().heapUsed: "+process.memoryUsage().heapUsed);

global.gc();
console.log("process.memoryUsage().heapUsed: "+process.memoryUsage().heapUsed);

heapdump.writeSnapshot('/tmp/* + Date.now() + ".heapsnapshot’);
return client.disconnect();

Ik
b;

196

CHAPTER16. THE HOT ROD INTERFACE

}).catch(function(err) {
console.log("connect error", err);

hE

The preceding example has the following the memory profiling results:

$ node --version
v0.10.48
$ node --expose-gc test.js

process.memoryUsage().heapUsed (begin): 5735864
process.memoryUsage().heapUsed: 4054352
process.memoryUsage().heapUsed: 4050064

16.11. INTEROPERABILITY BETWEEN HOT ROD C++ AND HOT ROD
JAVA CLIENT

Red Hat JBoss Data Grid provides interoperability between Hot Rod Java and Hot Rod C++ clients to
access structured data. This is made possible by structuring and serializing data using Google’s Protobuf
format.

For example, using interoperability between languages would allow a Hot Rod C++ client to write the
following Person object structured and serialized using Protobuf, and the Hot Rod Java client can read
the same Person object structured as Protobuf.

Using Interoperability Between Languages

package sample;

message Person {
required int32 age = 1;
required string name = 2;

}

Interoperability between C++ and Hot Rod Java Client is fully supported for primitive data types, strings,
and byte arrays, as Protobuf and Protostream are not required for these types of interoperability.

16.12. COMPATIBILITY BETWEEN SERVER AND HOT ROD CLIENT
VERSIONS

Hot Rod clients, such as the Hot Rod Java, Hot Rod C++, and Hot Rod C#, are compatible with different
versions of Red Hat JBoss Data Grid server. The server should be of the latest version in order to run
with different Hot Rod clients.

NOTE

It is recommended to use the same version of the Hot Rod client and the Red Hat JBoss
Data Grid server, except in a case of migration or upgrade, to prevent any known
problems.

Consider the following scenarios.

Scenario 1: Server running on a newer version than the Hot Rod client.

197

Red Hat Data Grid 7.2 Developer Guide

The following will be the impact on the client side:
e client will not have advantage of the latest protocol improvements.
® client might run into known issues which are fixed for the server-side version.
® client can only use the functionalities available in its current version and the previous versions.

Scenario 2: Hot Rod client running on a newer version than the server.

In this case, when a Hot Rod client connects to a Red Hat JBoss Data Grid server, the connection will be
rejected with an exception error. The client can be downgraded to a known protocol version by either
setting the client side property infinispan.client.hotrod.protocol_version, or by using the
ConfigurationBuilder's protocolVersion(String version) method. When downgraded the client
version using either of these methods a String containing the desired version should be passed in. In this
case the client is able to connect to the server, but will be restricted to the functionality of that version.
Any command which is not supported by this protocol version will not work and throw an exception; in
addition, the topology information might be inefficient in this case.

Downgrading Client Hot Rod Protocol Version

The following code snippet demonstrates how to downgrade this version using the
protocolVersion(String version) method:

Configuration config = new ConfigurationBuilder()

[...]

.protocolVersion("2.2")
build();

NOTE

It is not recommended to use this approach without guidance from Red Hat support.

The following table details the compatibility between different Hot Rod client and server versions.

Table 16.78. Hot Rod protocol and server compatibility

Red Hat JBoss Data Grid Server Version Hot Rod Protocol Version

Red Hat JBoss Data Grid 7.2.0 Hot Rod 2.5 and later
Red Hat JBoss Data Grid 7.1.0 Hot Rod 2.5 and later
Red Hat JBoss Data Grid 7.0.0 Hot Rod 2.5 and later

198

PART Il. CREATING AND USING INFINISPAN QUERIES IN RED HAT JBOSS DATA GRIC

PART Il. CREATING AND USING INFINISPAN QUERIES IN RED
HAT JBOSS DATA GRID

199

Red Hat Data Grid 7.2 Developer Guide

CHAPTER17. GETTING STARTED WITH INFINISPAN QUERY

17.1. INTRODUCTION

The Red Hat JBoss Data Grid Library mode Querying APl enables you to search for entries in the grid
using properties of the values instead of keys. It provides features such as:

® Keyword, Range, Fuzzy, Wildcard, and Phrase queries
® Combining queries
® Sorting, filtering, and pagination of query results

This API, which is based on Apache Lucene and Hibernate Search, is supported in Red Hat JBoss Data
Grid. Additionally, Red Hat JBoss Data Grid provides an alternate mechanism that allows both indexless
and indexed searching. See The Infinispan Query DSL for details.

Enabling Querying

The Querying APl is enabled by default in Remote Client-Server Mode. Instructions for enabling
Querying in Library Mode are found in the Red Hat JBoss Data Grid Administration and Configuration
Guide. .

17.2. INSTALLING QUERYING FOR RED HAT JBOSS DATA GRID

In Red Hat JBoss Data Grid, the JAR files required to perform queries are packaged within the Red Hat
JBoss Data Grid Library and Remote Client-Server mode downloads.

For details about downloading and installing Red Hat JBoss Data Grid, see the Download and Install
JBoss Data Grid chapter in the Getting Started Guide.

In addition, the following Maven dependency must be defined:

<dependency>

<groupld>org.infinispan</groupld>
<artifactld>infinispan-embedded-query</artifactid>
<version>${version.infinispan}</version>
</dependency>

' WARNING
A The Infinispan query API directly exposes the Hibernate Search and the Lucene

APIs and cannot be embedded within the infinispan-embedded-query.jar file. Do not
include other versions of Hibernate Search and Lucene in the same deployment as
infinispan-embedded-query . This action will cause classpath conflicts and result in
unexpected behavior.

17.3. ABOUT QUERYING IN RED HAT JBOSS DATA GRID

200

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/getting_started_guide/#download_and_install_jdg

CHAPTER17. GETTING STARTED WITH INFINISPAN QUERY

17.3.1. Hibernate Search and the Query Module

Users have the ability to query the entire stored data set for specific items in Red Hat JBoss Data Grid.
Applications may not always be aware of specific keys, however different parts of a value can be queried
using the Query Module.
Objects can be searched for based on some of their properties. For example:

® Retrieve all red cars (an exact metadata match).

® Search for all books about a specific topic (full text search and relevance scoring).

An exact data match can also be implemented with the MapReduce function, however full text and
relevance based scoring can only be performed via the Query Module.

' WARNING
A The query capability is currently intended for rich domain objects, and primitive

values are not currently supported for querying.

17.3.2. Apache Lucene and the Query Module

In order to perform querying on the entire data set stored in the distributed grid, Red Hat JBoss Data
Grid utilizes the capabilities of the Apache Lucene indexing tool, as well as Hibernate Search.

® Apache Lucene is a document indexing tool and search engine. JBoss Data Grid uses Apache
Lucene 551

® JBoss Data Grid's Query Module is a toolkit based on Hibernate Search that reduces Java
objects into a format similar to a document, which is able to be indexed and queried by Apache

Lucene.

In JBoss Data Grid, the Query Module indexes values annotated with Hibernate Search indexing
annotations, then updates the index based in Apache Lucene accordingly.

Hibernate Search intercepts changes to entries stored in the data grid to generate corresponding
indexing operations

17.4. INDEXING

17.4.1. Indexing

When indexing is set up, the Query module transparently indexes every added, updated, or removed
cache entry. Indices improve performance of queries, though induce additional overhead during
updates. For index-less querying see The Infinispan Query DSL.

For data that already exists in the grid, create an initial Lucene index. After relevant properties and
annotations are added, trigger an initial batch index as shown in Rebuilding the Index.

17.4.2. Indexing with Transactional and Non-transactional Caches

201

Red Hat Data Grid 7.2 Developer Guide

In Red Hat JBoss Data Grid, the relationship between transactions and indexing is as follows:

e |f the cache is transactional, index updates are applied using a listener after the commit process
(after-commit listener). Index update failure does not cause the write to fail.

e |f the cache is not transactional, index updates are applied using a listener that works after the
event completes (post-event listener). Index update failure does not cause the write to fail.

17.4.3. Configure Indexing Programmatically

Indexing can be configured programmatically, avoiding XML configuration files.

In this example, Red Hat JBoss Data Grid is started programmatically and also maps an object Author,
which is stored in the grid and made searchable via two properties, without annotating the class.

Configure Indexing Programmatically

SearchMapping mapping = new SearchMapping();

mapping.entity(Author.class).indexed().providedld()
.property("name", ElementType.METHOD).field()
.property("surname", ElementType.METHOD).field();

Properties properties = new Properties();
properties.put(org.hibernate.search.cfg.Environment. MODEL_MAPPING, mapping);
properties.put("[other.options]”, "[...]");

Configuration infinispanConfiguration = new ConfigurationBuilder()
.indexing()
.index(Index.LOCAL)
.withProperties(properties)
build();

DefaultCacheManager cacheManager = new DefaultCacheManager(infinispanConfiguration);

Cache<Long, Author> cache = cacheManager.getCache();
SearchManager sm = Search.getSearchManager(cache);

Author author = new Author(1, "FirstName", "Surname");
cache.put(author.getld(), author);

QueryBuilder gb = sm.buildQueryBuilderForClass(Author.class).get();

Query q = gb.keyword().onField("name").matching("FirstName").createQuery();
CacheQuery cq = sm.getQuery(q, Author.class);
Assert.assertEquals(cq.getResultSize(), 1);

17.4.4. Rebuilding the Index

You can manually rebuild the Lucene index if required. However, you do not usually need to rebuild the
index manually because JBoss Data Grid maintains the index during normal operation.

Rebuilding the index actually reconstructs the entire index from the data store, which requires JBoss
Data Grid to process all data in the grid and can take a very long time to complete. You should only need

to rebuild the Lucene index if:

® The definition of what is indexed in the types has changed.

202

CHAPTER17. GETTING STARTED WITH INFINISPAN QUERY

® A parameter affecting how the index is defined, such as the Analyser changes.
® The indexis destroyed or corrupted, possibly due to a system administration error.

Server Mode

To rebuild the index in remote JBoss Data Grid servers, call the reindexCache() method in the
RemoteCacheManagerAdmin HotRod client interface, for example:

I remoteCacheManager.administration().reindexCache("MyCache");

Library Mode

To rebuild the index in Library mode, obtain a reference to the MassIindexer and start it as follows:

SearchManager searchManager = Search.getSearchManager(cache);
searchManager.getMassIndexer().start();

17.5. SEARCHING

To execute a search, create a Lucene query (see Building a Lucene Query Using the Lucene-based
Query API). Wrap the query in a org.infinispan.query.CacheQuery to get the required functionality
from the Lucene-based API. The following code prepares a query against the indexed fields. Executing
the code returns a list of Books.

Using Infinispan Query to Create and Execute a Search

QueryBuilder gb = Search.getSearchManager(cache).buildQueryBuilderForClass(Book.class).get();

org.apache.lucene.search.Query query = gb
.keyword()
.onFields("title", "author")
.matching("Java rocks!")
.createQuery();

// wrap Lucene query in a org.infinispan.query.CacheQuery
CacheQuery cacheQuery = Search.getSearchManager(cache).getQuery(query);

List list = cacheQuery.list();

203

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 18. ANNOTATING OBJECTS AND QUERYING

18.1. ANNOTATING OBJECTS AND QUERYING

Once indexing has been enabled, custom objects being stored in Red Hat JBoss Data Grid need to be
assigned appropriate annotations.

As a basic requirement, all objects required to be indexed must be annotated with
e @Indexed

In addition, all fields within the object that will be searched need to be annotated with @Field.

Annotating Objects with @Field

@Indexed
public class Person implements Serializable {
@Field(store = Store.YES)
private String name;
@Field(store = Store.YES)
private String description;
@Field(store = Store.YES)
private int age;

For other annotations and options, see Mapping Domain Objects to the Index Structure .

IMPORTANT

When using JBoss EAP modules with JBoss Data Grid with the domain model as a
module, add the org.infinispan.query dependency with slot 7.2 into the module.xml file.
The custom annotations are not picked by the queries without the org.infinispan.query
dependency and results in an error.

18.2. REGISTERING A TRANSFORMER VIA ANNOTATIONS

The key for each value must also be indexed, and the key instance must then be transformed in a String.
Red Hat JBoss Data Grid includes some default transformation routines for encoding common
primitives, however to use a custom key you must provide an implementation of
org.infinispan.query.Transformer.

The following example shows how to annotate your key type using org.infinispan.query.Transformer:

Annotating the Key Type

@Transformable(transformer = CustomTransformer.class)
public class CustomKey {

}

public class CustomTransformer implements Transformer {
@Override
public Object fromString(String s) {

204

CHAPTER 18. ANNOTATING OBJECTS AND QUERYING

return new CustomKey(...);

}

@Override

public String toString(Object customType) {
CustomKey ck = (CustomKey) customType;
return ck.toString();

}
}

The two methods must implement a biunique correspondence.
For example, for any object A the following must be true:

Biunique Correspondence
I A.equals(transformer.fromString(transformer.toString(A));

This assumes that the transformer is the appropriate Transformer implementation for objects of type A.

18.3. QUERYING EXAMPLE
The following provides an example of how to set up and run a query in Red Hat JBoss Data Grid.
In this example, the Person object has been annotated using the following:

Annotating the Person Object

@Indexed
public class Person implements Serializable {
@Field(store = Store.YES)
private String name;
@Field
private String description;
@Field(store = Store.YES)
private int age;

Assuming several of these Person objects have been stored in JBoss Data Grid, they can be searched
using querying. The following code creates a SearchManager and QueryBuilder instance:

Creating the SearchManager and QueryBuilder

SearchManager manager = Search.getSearchManager(cache);
QueryBuilder builder = manager.buildQueryBuilderForClass(Person.class) .get();
Query luceneQuery = builder.keyword()

.onField("name")

.matching("FirstName")

.createQuery();

The SearchManager and QueryBuilder are used to construct a Lucene query. The Lucene query is
then passed to the SearchManager to obtain a CacheQuery instance:

Running the Query

205

Red Hat Data Grid 7.2 Developer Guide

CacheQuery query = manager.getQuery(luceneQuery);
List<Object> results = query.list();
for (Object result : results) {

System.out.printin("Found " + result);

}

This CacheQuery instance contains the results of the query, and can be used to produce a list or it can
be used for repeat queries.

206

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX
STRUCTURE

19.1. BASIC MAPPING

19.1.1. Basic Mapping

In Red Hat JBoss Data Grid, the identifier for all @Indexed objects is the key used to store the value.
How the key is indexed can still be customized by using a combination of @Transformable,
@Providedld, custom types and custom FieldBridge implementations.

The @Documentld identifier does not apply to JBoss Data Grid values.

The Lucene-based Query API uses the following common annotations to map entities:
® @Indexed
e @Field

® @NumericField

19.1.2. @Indexed

The @Indexed annotation declares a cached entry indexable. All entries not annotated with @Indexed
are ignored.

Making a class indexable with @Indexed

@Indexed
public class Essay {

}

Optionally, specify the index attribute of the @Indexed annotation to change the default name of the
index.

19.1.3. @Field

Each property or attribute of an entity can be indexed. Properties and attributes are not annotated by
default, and therefore are ignored by the indexing process. The @Field annotation declares a property
as indexed and allows the configuration of several aspects of the indexing process by setting one or
more of the following attributes:

name

The name under which the property will be stored in the Lucene Document. By default, this attribute
is the same as the property name, following the JavaBeans convention.

store

Specifies if the property is stored in the Lucene index. When a property is stored it can be retrieved in
its original value from the Lucene Document. This is regardless of whether or not the element is
indexed. Valid options are:

e Store.YES: Consumes more index space but allows projection. See Projection.

207

Red Hat Data Grid 7.2 Developer Guide

® Store.COMPRESS: Stores the property as compressed. This attribute consumes more CPU.

e Store.NO: No storage. This is the default setting for the store attribute.
index
Describes if property is indexed or not. The following values are applicable:

e |ndex.NO: No indexing is applied; cannot be found by querying. This setting is used for
properties that are not required to be searchable, but are able to be projected.

® Index.YES: The element is indexed and is searchable. This is the default setting for the index
attribute.

analyze

Determines if the property is analyzed. The analyze attribute allows a property to be searched by its
contents. For example, it may be worthwhile to analyze a text field, whereas a date field does not
need to be analyzed. Enable or disable the Analyze attribute using the following:

e Analyze.YES

e Analyze.NO

The analyze attribute is enabled by default. The Analyze.YES setting requires the property to be
indexed via the Index.YES attribute.

NOTE

It is not possible to use relational operators if properties are analyzed with the
@Field(analyze=Analyze.YES) annotation.

The following attributes are used for sorting, and must not be analyzed.

norms

Determines whether or not to store index time boosting information. Valid settings are:

o Norms.YES

o Norms.NO

The default for this attribute is Norms.YES. Disabling norms conserves memory, however no index time
boosting information will be available.

termVector

Describes collections of term-frequency pairs. This attribute enables the storing of the term vectors
within the documents during indexing. The default value is TermVector.NO. Available settings for
this attribute are:

® TermVector.YES: Stores the term vectors of each document. This produces two
synchronized arrays, one contains document terms and the other contains the term’s
frequency.

® TermVector.NO: Does not store term vectors.

208

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

o TermVector.WITH_OFFSETS: Stores the term vector and token offset information. This is
the same as TermVector.YES plus it contains the starting and ending offset position
information for the terms.

e TermVector.WITH_POSITIONS: Stores the term vector and token position information. This
is the same as TermVector.YES plus it contains the ordinal positions of each occurrence of a
term in a document.

o TermVector.WITH_POSITION_OFFSETS: Stores the term vector, token position and offset
information. This is a combination of the YES, WITH_OFFSETS, and WITH_POSITIONS.

indexNullAs

This attribute provides replacement values for null properties. The value must conform to the
following format requirements:

® String values have no format requirement.

e Numeric values must use formats accepted by Double.parseDouble(),
Integer.parselnteger(), and other primitive parsing methods, depending on the field type.

® Boolean values must be either true or false.

® Date values, such as java.util.Calendar, java.util.Date, and java.time.*, must use the ISO-
8601 format.

19.1.4. @NumericField
The @NumericField annotation can be specified in the same scope as @Field.

The @NumericField annotation can be specified for Integer, Long, Float, and Double properties. At
index time the value will be indexed using a Trie structure. When a property is indexed as numeric field, it
enables efficient range query and sorting, orders of magnitude faster than doing the same query on
standard @Field properties. The @NumericField annotation accept the following optional parameters:

e forField: Specifies the name of the related @Field that will be indexed as numeric. It is
mandatory when a property contains more than a @Field declaration.

® precisionStep: Changes the way that the Trie structure is stored in the index. Smaller
precisionSteps lead to more disk space usage, and faster range and sort queries. Larger values
lead to less space used, and range query performance closer to the range query in normal
@Fields. The default value for precisionStep is 4.

@NumericField supports only Double, Long, Integer, and Float. It is not possible to take any
advantage from a similar functionality in Lucene for the other numeric types, therefore remaining types

must use the string encoding via the default or custom TwoWayFieldBridge.

Custom NumericFieldBridge can also be used. Custom configurations require approximation during
type transformation. The following is an example defines a custom NumericFieldBridge.

Defining a custom NumericFieldBridge

public class BigDecimalNumericFieldBridge extends NumericFieldBridge {
private static final BigDecimal storeFactor = BigDecimal.valueOf(100);

@Override

209

Red Hat Data Grid 7.2 Developer Guide

public void set(String name,
Object value,
Document document,
LuceneOptions luceneOptions) {
if (value != null) {
BigDecimal decimalValue = (BigDecimal) value;
Long indexedValue = Long.valueOf(
decimalValue
.multiply(storeFactor)
JlongValue());
luceneOptions.addNumericFieldToDocument(name, indexedValue, document);
}
}

@Override
public Object get(String name, Document document) {
String fromLucene = document.get(name);
BigDecimal storedBigDecimal = new BigDecimal(fromLucene);
return storedBigDecimal.divide(storeFactor);
}
}

19.2. MAPPING PROPERTIES MULTIPLE TIMES

Properties may need to be mapped multiple times per index, using different indexing strategies. For
example, sorting a query by field requires that the field is not analyzed. To search by words in this
property and sort it, the property will need to be indexed twice - once analyzed and once un-analyzed.
@Fields can be used to perform this search. For example:

Using @Fields to map a property multiple times

@Indexed(index = "Book")
public class Book {

@Fields({
@Field,
@Field(name = "summary_forSort", analyze = Analyze.NO, store = Store.YES)

)
public String getSummary() {

return summary;

}
}

In the example above, the field summary is indexed twice - once as summary in a tokenized way, and
once as summary_forSort in an untokenized way. @Field supports 2 attributes useful when @Fields is
used:

® analyzer: defines a @Analyzer annotation per field rather than per property

® bridge: defines a @FieldBridge annotation per field rather than per property

19.3. EMBEDDED AND ASSOCIATED OBJECTS

19.3.1. Embedded and Associated Objects

210

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

Associated objects and embedded objects can be indexed as part of the root entity index. This allows
searches of an entity based on properties of associated objects.

19.3.2. Indexing Associated Objects

The aim of the following example is to return places where the associated city is Atlanta via the Lucene
query address.city:Atlanta. The place fields are indexed in the Place index. The Place index
documents also contain the following fields:

® address.street
e address.city
These fields are also able to be queried.

Indexing associations

@Indexed
public class Place {

@Field
private String name;

@IndexedEmbedded
@ManyToOne(cascade = {CascadeType.PERSIST, CascadeType.REMOVE})
private Address address;

}

public class Address {

@Field
private String street;

@Field
private String city;

@ContainedIn
@OneToMany(mappedBy = "address")
private Set<Place> places;

19.3.3. @IndexedEmbedded

When using the @IndexedEmbedded technique, data is denormalized in the Lucene index. As a result,
the Lucene-based Query APl must be updated with any changes in the Place and Address objects to
keep the index up to date. Ensure the Place Lucene document is updated when its Address changes by
marking the other side of the bidirectional relationship with @ContainedIn. @ContainedIn can be used
for both associations pointing to entities and on embedded objects.

The @IndexedEmbedded annotation can be nested. Attributes can be annotated with
@IndexedEmbedded. The attributes of the associated class are then added to the main entity index. In

the following example, the index will contain the following fields:

® name

21

Red Hat Data Grid 7.2 Developer Guide

® address.street
® address.city
® address.ownedBy_name

Nested usage of @IndexedEmbedded and @Containedin

@Indexed

public class Place {
@Field
private String name;

@IndexedEmbedded
@ManyToOne(cascade = {CascadeType.PERSIST, CascadeType.REMOVE})
private Address address;

}

public class Address {
@Field
private String street;

@Field
private String city;

@IndexedEmbedded(depth = 1, prefix = "ownedBy_")
private Owner ownedBy;

@ContainedIn
@OneToMany(mappedBy = "address")
private Set<Place> places;

}

public class Owner {
@Field
private String name;

}

The default prefix is propertyName, following the traditional object navigation convention. This can be
overridden using the prefix attribute as it is shown on the ownedBYy property.

NOTE

The prefix cannot be set to the empty string.

The depth property is used when the object graph contains a cyclic dependency of classes. For example,
if Owner points to Place. the Query Module stops including attributes after reaching the expected
depth, or object graph boundaries. A self-referential class is an example of cyclic dependency. In the
provided example, because depth is set to 1, any @IndexedEmbedded attribute in Owner is ignored.

Using @IndexedEmbedded for object associations allows queries to be expressed using Lucene’s
query syntax. For example:

® Return places where name contains JBoss and where address city is Atlanta. In Lucene query
this is:

212

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

I +name:jboss +address.city:atlanta

® Return places where name contains JBoss and where owner’s name contain Joe. In Lucene
query this is:

I +name:jboss +address.ownedBy_name:joe

This operation is similar to the relational join operation, without data duplication. Out of the box, Lucene
indexes have no notion of association; the join operation does not exist. It may be beneficial to maintain
the normalized relational model while benefiting from the full text index speed and feature richness.

An associated object can be also be @Indexed. When @IndexedEmbedded points to an entity, the
association must be directional and the other side must be annotated using @ContainedIn. If not, the
Lucene-based Query API cannot update the root index when the associated entity is updated. In the
provided example, a Place index document is updated when the associated Address instance updates.

19.3.4. The targetElement Property

It is possible to override the object type targeted using the targetElement parameter. This method can
be used when the object type annotated by @IlndexedEmbedded is not the object type targeted by the
data grid and the Lucene-based Query API. This occurs when interfaces are used instead of their
implementation.

Using the targetElement property of @IndexedEmbedded

@Indexed
public class Address {

@Field
private String street;

@IndexedEmbedded(depth = 1, prefix = "ownedBy_", targetElement = Owner.class)
private Person ownedBy;

}

public class Owner implements Person { ... }

19.4. BOOSTING

19.4.1. Boosting

Lucene uses boosting to attach more importance to specific fields or documents over others. Lucene
differentiates between index and search-time boosting.

19.4.2. Static Index Time Boosting

The @Boost annotation is used to define a static boost value for an indexed class or property. This
annotation can be used within @Field, or can be specified directly on the method or class level.

In the following example:

213

Red Hat Data Grid 7.2 Developer Guide

® the probability of Essay reaching the top of the search list will be multiplied by 1.7.

o @Field.boost and @Boost on a property are cumulative, therefore the summary field will be
3.0 (2x1.5), and more important than the ISBN field.

® The text field is 1.2 times more important than the ISBN field.

Different ways of using @Boost

@Indexed
@Boost(1.7f)
public class Essay {

@Field(name = "Abstract", store=Store.YES, boost = @Boost(2f))
@Boost(1.5f)
public String getSummary() { return summary; }

@Field(boost = @Boost(1.2f))
public String getText() { return text; }

@Field
public String getISBN() { return isbn; }

19.4.3. Dynamic Index Time Boosting

The @Boost annotation defines a static boost factor that is independent of the state of the indexed
entity at runtime. However, in some cases the boost factor may depend on the actual state of the entity.
In this case, use the @DynamicBoost annotation together with an accompanying custom
BoostStrategy.

@Boost and @DynamicBoost annotations can both be used in relation to an entity, and all defined
boost factors are cumulative. The @DynamicBoost can be placed at either class or field level.

In the following example, a dynamic boost is defined on class level specifying VIPBoostStrategy as
implementation of the BoostStrategy interface used at indexing time. Depending on the annotation
placement, either the whole entity is passed to the defineBoost method or only the annotated
field/property value. The passed object must be cast to the correct type.

Dynamic boost example

public enum PersonType {
NORMAL,
VIP

}

@Indexed
@DynamicBoost(impl = VIPBoostStrategy.class)
public class Person {

private PersonType type;

}

public class VIPBoostStrategy implements BoostStrategy {
public float defineBoost(Object value) {

214

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

Person person = (Person) value;
if (person.getType().equals(PersonType.VIP)) {
return 2.0f;

}

else {
return 1.0f;

}
}
}

In the provided example all indexed values of a VIP would be twice the importance of the values of a
non-VIP.

NOTE

The specified BoostStrategy implementation must define a public no argument
constructor.

19.5. ANALYSIS

Analysis is the process of converting text strings into single terms that you can index and then query.

19.5.1. Default Analyzer and Analyzer by Class

The default analyzer class is used to index tokenized fields, and is configurable through the
default.analyzer property. The default value for this property is
org.apache.lucene.analysis.standard.StandardAnalyzer.

The analyzer class can be defined per entity, property, and per @Field, which is useful when multiple
fields are indexed from a single property.

In the following example, EntityAnalyzer is used to index all tokenized properties, such as name except,
summary and body, which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

Different ways of using @Analyzer

@Indexed
@Analyzer(impl = EntityAnalyzer.class)
public class MyEntity {

@Field
private String name;

@Field
@Analyzer(impl = PropertyAnalyzer.class)

private String summary;

@Field(analyzer = @Analyzer(impl = FieldAnalyzer.class))
private String body;

215

Red Hat Data Grid 7.2 Developer Guide

NOTE
Avoid using different analyzers on a single entity. Doing so can create complications in

building queries, and make results less predictable, particularly if using a QueryParser.
Use the same analyzer for indexing and querying on any field.

19.5.2. Named Analyzers

The Query Module uses analyzer definitions to deal with the complexity of the Analyzer function.
Analyzer definitions are reusable by multiple @Analyzer declarations and includes the following:

® aname: the unique string used to refer to the definition.

® alist of CharFilters: each CharFilter is responsible to pre-process input characters before the
tokenization. CharFilters can add, change, or remove characters. One common usage is for
character normalization.

® 3 Tokenizer: responsible for tokenizing the input stream into individual words.

® 3 list of filters: each filter is responsible to remove, modify, or sometimes add words into the
stream provided by the Tokenizer.

The Analyzer separates these components into multiple tasks, allowing individual components to be
reused and components to be built with flexibility using the following procedure:

The Analyzer Process

1. The CharFilters process the character input.
2. Tokenizer converts the character input into tokens.
3. The tokens are the processed by the TokenFilters.
The Lucene-based Query API supports this infrastructure by utilizing the Solr analyzer framework.

<analysis_default_analyzers><title>Default Analyzer Definitions</title>
JBoss Data Grid provides a set of default analyzers as follows:

Definition Description

standard Splits text fields into tokens, treating whitespace and
punctuation as delimiters.

simple Tokenizes input streams by delimiting at non-letters
and then converting all letters to lowercase
characters. Whitespace and non-letters are
discarded.

whitespace Splits text streams on whitespace and returns
sequences of non-whitespace characters as tokens.

keyword Treats entire text fields as single tokens.

216

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

Definition Description

stemmer Stems English words using the Snowball Porter filter.
ngram Generates n-gram tokens that are 3 grams in size by
default.

These analyzer definitions are based on Apache Lucene and are provided "as-is". For more information
about tokenizers, filters, and CharFilters, see the appropriate Lucene documentation.

If you require custom analyzer definitions, create an implementation of the
ProgrammaticSearchMappingProvider interface packagedina JAR and deploy it to JBoss Data Grid.
You must also specify the JAR in the cache container configuration, for example:

<cache-container name="mycache" default-cache="default">
<modules>
<module name="my.analyzers.jar"/>
</modules>

</analysis_default_analyzers>

19.5.3. Referencing Analyzer Definitions

Use the @Analyzer annotation to reference an analyzer definition.

Referencing an analyzer by name

@Indexed
@AnalyzerDef(name = "standard")
public class Team {

@Field
private String name;

@Field
private String location;

@Field
@Analyzer(definition = "standard")
private String description;

Analyzer instances declared by @AnalyzerDef are also available by their name in the SearchFactory,
which is useful when building queries.

I Analyzer analyzer = Search.getSearchManager(cache).getAnalyzer("standard")

When querying, fields must use the same analyzer that has been used to index the field. The same
tokens are reused between the query and the indexing process.

19.5.4. @AnalyzerDef for Solr

217

Red Hat Data Grid 7.2 Developer Guide

When using Maven all required Apache Solr dependencies are now defined as dependencies of the
artifact org.hibernate:hibernate-search-analyzers. Add the following dependency:

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-search-analyzers</artifactld>
<version>${version.hibernate.search}</version>
<dependency>

In the following example, a CharFilter is defined by its factory. In this example, a mapping char filter is
used, which will replace characters in the input based on the rules specified in the mapping file. Finally, a
list of filters is defined by their factories. In this example, the StopFilter filter is built reading the
dedicated words property file. The filter will ignore case.

@AnalyzerDef and the Solr framework

1. Configure the CharFilter
Define a CharFilter by factory. In this example, a mapping CharFilter is used, which will replace
characters in the input based on the rules specified in the mapping file.

@AnalyzerDef(name = "customanalyzer",

charFilters = {

@CharFilterDef(factory = MappingCharFilterFactory.class, params = {
@Parameter(name = "mapping",
value =
"org/hibernate/search/test/analyzer/solr/mapping-chars.properties")

})

b

2. Define the Tokenizer
A Tokenizer is then defined using the StandardTokenizerFactory.class.

@AnalyzerDef(name = "customanalyzer",

charFilters = {

@CharFilterDef(factory = MappingCharFilterFactory.class, params = {
@Parameter(name = "mapping",
value =
"org/hibernate/search/test/analyzer/solr/mapping-chars.properties")

)

b

tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class)

3. List of Filters
Define a list of filters by their factories. In this example, the StopFilter filter is built reading the
dedicated words property file. The filter will ignore case.

@AnalyzerDef(name = "customanalyzer",
charFilters = {
@CharFilterDef(factory = MappingCharFilterFactory.class, params = {
@Parameter(name = "mapping",
value =
"org/hibernate/search/test/analyzer/solr/mapping-chars.properties")

218

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

b

tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
filters = {

@TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
@TokenFilterDef(factory = LowerCaseFilterFactory.class),
@TokenFilterDef(factory = StopFilterFactory.class, params = {
@Parameter(name = "words",
value= "org/hibernate/search/test/analyzer/solr/stoplist.properties”),
@Parameter(name = "ignoreCase", value = "true")
})
})

public class Team {

}

NOTE

Filters and CharFilters are applied in the order they are defined in the @AnalyzerDef
annotation.

19.5.5. Loading Analyzer Resources

Tokenizers, TokenFilters, and CharFilters can load resources such as configuration or metadata files
using the StopFilterFactory.class or the synonym filter. The virtual machine default can be explicitly
specified by adding a resource_charset parameter.

Use a specific charset to load the property file

@AnalyzerDef(name = "customanalyzer",
charFilters = {
@CharFilterDef(factory = MappingCharFilterFactory.class, params = {
@Parameter(name = "mapping",
value =
"org/hibernate/search/test/analyzer/solr/mapping-chars.properties")
})
b
tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
filters = {
@TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
@TokenFilterDef(factory = LowerCaseFilterFactory.class),
@TokenFilterDef(factory = StopFilterFactory.class, params = {
@Parameter(name="words",
value= "org/hibernate/search/test/analyzer/solr/stoplist.properties”),
@Parameter(name = "resource_charset", value = "UTF-16BE"),
@Parameter(name = "ignoreCase", value = "true")
)
})

public class Team {

}

19.5.6. Dynamic Analyzer Selection

219

Red Hat Data Grid 7.2 Developer Guide

The Query Module uses the @AnalyzerDiscriminator annotation to enable the dynamic analyzer
selection.

An analyzer can be selected based on the current state of an entity that is to be indexed. This is
particularly useful in multilingual applications. For example, when using the BlogEntry class, the analyzer
can depend on the language property of the entry. Depending on this property, the correct language-
specific stemmer can then be chosen to index the text.

An implementation of the Discriminator interface must return the name of an existing Analyzer
definition, or null if the default analyzer is not overridden.

The following example assumes that the language parameter is either 'de’ or ‘'en’, which is specified in
the @AnalyzerDefs.

Configure the @AnalyzerDiscriminator

1. Predefine Dynamic Analyzers
The @AnalyzerDiscriminator requires that all analyzers that are to be used dynamically are
predefined via @AnalyzerDef. The @AnalyzerDiscriminator annotation can then be placed
either on the class, or on a specific property of the entity, in order to dynamically select an
analyzer. An implementation of the Discriminator interface can be specified using the
@AnalyzerDiscriminatorimpl parameter.

@Indexed
@AnalyzerDefs({
@AnalyzerDef(name = "en",
tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
filters = {
@TokenFilterDef(factory = LowerCaseFilterFactory.class),
@TokenFilterDef(factory = EnglishPorterFilterFactory.class)
1,
@AnalyzerDef(name = "de",
tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
filters = {
@TokenFilterDef(factory = LowerCaseFilterFactory.class),
@TokenFilterDef(factory = GermanStemFilterFactory.class)

}

}
public class BlogEntry {

@Field
@AnalyzerDiscriminator(impl = LanguageDiscriminator.class)
private String language;

@Field
private String text;

private Set<BlogEntry> references;

// standard getter/setter

2. Implement the Discriminator Interface
Implement the getAnalyzerDefinitionName() method, which is called for each field added to
the Lucene document. The entity being indexed is also passed to the interface method.

220

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

The value parameter is set if the @AnalyzerDiscriminator is placed on the property level

instead of the class level. In this example, the value represents the current value of this property.

public class LanguageDiscriminator implements Discriminator {
public String getAnalyzerDefinitionName(Object value, Object entity, String field) {
if (value == null || !(entity instanceof Article)) {
return null;
}
return (String) value;
}
}

19.5.7. Retrieving an Analyzer

Retrieving an analyzer can be used when multiple analyzers have been used in a domain model, in order
to benefit from stemming or phonetic approximation, etc. In this case, use the same analyzers to
building a query. Alternatively, use the Lucene-based Query API, which selects the correct analyzer
automatically. See Building a Lucene Query.

The scoped analyzer for a given entity can be retrieved using either the Lucene programmatic APl or the

Lucene query parser. A scoped analyzer applies the right analyzers depending on the field indexed.
Multiple analyzers can be defined on a given entity, each working on an individual field. A scoped
analyzer unifies these analyzers into a context-aware analyzer.

In the following example, the song title is indexed in two fields:

® Standard analyzer: used in the title field.

® Stemming analyzer: used in the title_stemmed field.

Using the analyzer provided by the search factory, the query uses the appropriate analyzer depending
on the field targeted.

Using the scoped analyzer when building a full-text query

SearchManager manager = Search.getSearchManager(cache);

org.apache.lucene.queryparser.classic.QueryParser parser = new QueryParser(
org.apache.lucene.util.Version.LUCENE_5 5 1,
"title",
manager.getAnalyzer(Song.class)

);

org.apache.lucene.search.Query luceneQuery =
parser.parse("title:sky Or title_stemmed:diamond");

// wrap Lucene query in a org.infinispan.query.CacheQuery
CacheQuery cacheQuery = manager.getQuery(luceneQuery, Song.class);

List result = cacheQuery.list();
//return the list of matching objects

Red Hat Data Grid 7.2 Developer Guide

NOTE

Analyzers defined via @AnalyzerDef can also be retrieved by their definition name using
searchManager.getAnalyzer(String).

19.6. BRIDGE

19.6.1. Bridges

When mapping entities, Lucene represents all index fields as strings. All entity properties annotated with
@Field are converted to strings to be indexed. Built-in bridges automatically translates properties for
the Lucene-based Query API. The bridges can be customized to gain control over the translation
process.

19.6.2. Built-in Bridges

The Lucene-based Query APl includes a set of built-in bridges between a Java property type and its full
text representation.

null

Per default null elements are not indexed. Lucene does not support null elements. However, in some
situation it can be useful to insert a custom token representing the null value. See @Field for more
information.

java.lang.String

Strings are indexed, as are:

o short, Short

e integer, Integer
® |ong, Long

e float, Float

e double, Double
e Biginteger

e BigDecimal

Numbers are converted into their string representation. Note that numbers cannot be compared by
Lucene, or used in ranged queries out of the box, and must be padded

NOTE

Using a Range query has disadvantages. An alternative approach is to use a Filter query
which will filter the result query to the appropriate range.

The Query Module supports using a custom StringBridge. See Custom Bridges.

java.util.Date

222

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

Dates are stored as yyyyMMddHHmMmssSSS in GMT time (200611072203012 for Nov 7th of 2006
4:03PM and 12ms EST). When using a TermRangeQuery, dates are expressed in GMT.
@DateBridge defines the appropriate resolution to store in the index, for example:
@DateBridge(resolution=Resolution.DAY). The date pattern will then be truncated accordingly.

@Indexed

public class Meeting {
@Field(analyze=Analyze.NO)
@DateBridge(resolution=Resolution.MINUTE)
private Date date;

The default Date bridge uses Lucene’s DateTools to convert from and to String. All dates are
expressed in GMT time. Implement a custom date bridge in order to store dates in a fixed time zone.

java.net.URI, java.net.URL
URI and URL are converted to their string representation
java.lang.Class

Class are converted to their fully qualified class name. The thread context classloader is used when
the class is rehydrated

19.6.3. Custom Bridges

19.6.3.1. Custom Bridges

Custom bridges are available in situations where built-in bridges, or the bridge’s String representation,
do not sufficiently address the required property types.

19.6.3.2. FieldBridge

For improved flexibility, a bridge can be implemented as a FieldBridge. The FieldBridge interface
provides a property value, which can then be mapped in the Lucene Document. For example, a property
can be stored in two different document fields.

Implementing the FieldBridge Interface

public class DateSplitBridge implements FieldBridge {
private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

public void set(String name,
Object value,
Document document,
LuceneOptions luceneOptions) {
Date date = (Date) value;
Calendar cal = GregorianCalendar.getinstance(GMT);
cal.setTime(date);
int year = cal.get(Calendar.YEAR);
int month = cal.get(Calendar.MONTH) + 1;
int day = cal.get(Calendar.DAY_OF_MONTH);

// set year

luceneOptions.addFieldToDocument(
name + ".year",
String.valueOf(year),

223

Red Hat Data Grid 7.2 Developer Guide

document);

// set month and pad it if needed
luceneOptions.addFieldToDocument(
name + ".month",
month < 10 ? "0" : " + String.valueOf(month),
document);

// set day and pad it if needed
luceneOptions.addFieldToDocument(
name + ".day",
day <10 ?"0": " + String.valueOf(day),
document);
}
}

//property
@FieldBridge(impl = DateSplitBridge.class)
private Date date;

In the following example, the fields are not added directly to the Lucene Document. Instead the
addition is delegated to the LuceneOptions helper. The helper will apply the options selected on
@Field, such as Store or TermVector, or apply the chosen @Boost value.

It is recommended that LuceneOptions is delegated to add fields to the Document, however the
Document can also be edited directly, ignoring the LuceneOptions.

NOTE

LuceneOptions shields the application from changes in Lucene API and simplifies the
code.

19.6.3.3. StringBridge

Use the org.infinispan.query.bridge.StringBridge interface to provide the Lucene-based Query API
with an implementation of the expected Object to String bridge, or StringBridge. All implementations
are used concurrently, and therefore must be thread-safe.

Custom StringBridge implementation

/**
* Padding Integer bridge.
* All numbers will be padded with 0 to match 5 digits
* @author Emmanuel Bernard
Y/
public class PaddedIntegerBridge implements StringBridge {

private int PADDING = 5;

public String objectToString(Object object) {
String rawlnteger = ((Integer) object).toString();
if (rawInteger.length() > PADDING)
throw new lllegalArgumentException("Try to pad on a number too big");
StringBuilder paddedinteger = new StringBuilder();

224

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

for (int padindex = rawlInteger.length() ; padindex < PADDING ; padindex++) {
paddedinteger.append('0");
}
return paddedinteger.append(rawinteger).toString();
}
}

The @FieldBridge annotation allows any property or field in the provided example to use the bridge:

@FieldBridge(impl = PaddedIntegerBridge.class)
private Integer length;

19.6.3.4. Two-Way Bridge

A TwoWayStringBridge is an extended version of a StringBridge, which can be used when the bridge
implementation is used on an ID property. The Lucene-based Query API reads the string representation
of the identifier and uses it to generate an object. The @FieldBridge annotation is used in the same
way.

Implementing a TwoWayStringBridge for ID Properties

public class PaddedIntegerBridge implements TwoWayStringBridge, ParameterizedBridge {

public static String PADDING_PROPERTY = "padding";
private int padding = 5; /default

public void setParameterValues(Map parameters) {
Object padding = parameters.get(PADDING_PROPERTY);
if (padding != null) this.padding = (Integer) padding;

}

public String objectToString(Object object) {
String rawlnteger = ((Integer) object).toString();
if (rawInteger.length() > padding)
throw new lllegalArgumentException("Try to pad on a number too big");
StringBuilder paddedinteger = new StringBuilder();
for (int padindex = rawlinteger.length(); padindex < padding; padindex++) {
paddedinteger.append('0");
}
return paddedinteger.append(rawinteger).toString();
}

public Object stringToObject(String stringValue) {
return new Integer(stringValue);
}
}

@FieldBridge(impl = PaddedIntegerBridge.class,
params = @Parameter(name = "padding", value = "10"))
private Integer id;

225

Red Hat Data Grid 7.2 Developer Guide

IMPORTANT

The two-way process must be idempotent (ie object =
stringToObject(objectToString(object))).

19.6.3.5. Parameterized Bridge

A ParameterizedBridge interface passes parameters to the bridge implementation, making it more
flexible. The ParameterizedBridge interface can be implemented by StringBridge,
TwoWayStringBridge, FieldBridge implementations. All implementations must be thread-safe.

The following example implements a ParameterizedBridge interface, with parameters passed through
the @FieldBridge annotation.

Configure the ParameterizedBridge Interface

public class PaddedIntegerBridge implements StringBridge, ParameterizedBridge {

public static String PADDING_PROPERTY = "padding";
private int padding = 5; /default

public void setParameterValues(Map <String,String> parameters) {
String padding = parameters.get(PADDING_PROPERTY);
if (padding != null) this.padding = Integer.parselnt(padding);

}

public String objectToString(Object object) {
String rawlnteger = ((Integer) object).toString();
if (rawlnteger.length() > padding)
throw new lllegalArgumentException("Try to pad on a number too big");
StringBuilder paddedinteger = new StringBuilder();
for (int padindex = rawlnteger.length() ; padindex < padding ; padindex++) {
paddedinteger.append('0");
}
return paddedinteger.append(rawinteger).toString();
}
}

//property

@FieldBridge(impl = PaddedIntegerBridge.class,
params = @Parameter(name = "padding", value = "10")

)

private Integer length;

19.6.3.6. Type Aware Bridge

Any bridge implementing AppliedOnTypeAwareBridge will get the type the bridge is applied on
injected. For example:

® the return type of the property for field/getter-level bridges.
® the class type for class-level bridges.

The type injected does not have any specific thread-safety requirements.

226

CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE

19.6.3.7. ClassBridge

More than one property of an entity can be combined and indexed in a specific way to the Lucene index
using the @ClassBridge annotation. @ClassBridge can be defined at class level, and supports the
termVector attribute.

In the following example, the custom FieldBridge implementation receives the entity instance as the
value parameter, rather than a particular property. The particular CatFieldsClassBridge is applied to
the department instance.The FieldBridge then concatenates both branch and network, and indexes the
concatenation.

Implementing a ClassBridge

@Indexed
@ClassBridge(name = "branchnetwork”,
store = Store.YES,
impl = CatFieldsClassBridge.class,
params = @Parameter(name = "sepChar", value = ""))
public class Department {
private int id;
private String network;
private String branchHead;
private String branch;
private Integer maxEmployees;

}

public class CatFieldsClassBridge implements FieldBridge, ParameterizedBridge {
private String sepChar;

public void setParameterValues(Map parameters) {
this.sepChar = (String) parameters.get("sepChar");
}

public void set(String name,
Object value,
Document document,
LuceneOptions luceneOptions) {

Department dep = (Department) value;
String fieldValue1 = dep.getBranch();
if (fieldValue1 == null) {
fieldValuel ="";
}
String fieldValue2 = dep.getNetwork();
if (fieldValue2 == null) {
fieldValue2 = "";
}
String fieldValue = fieldValue1 + sepChar + fieldValue2;
Field field = new Field(name, fieldValue, luceneOptions.getStore(),
luceneOptions.getindex(), luceneOptions.getTermVector());
field.setBoost(luceneOptions.getBoost());
document.add(field);

227

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 20. QUERYING

20.1. QUERYING

Infinispan Query can execute Lucene queries and retrieve domain objects from a Red Hat JBoss Data
Grid cache.

Prepare and Execute a Query

1. Get SearchManager of an indexing enabled cache as follows:

I SearchManager manager = Search.getSearchManager(cache);

2. Create a QueryBuilder to build queries for Myth.class as follows:

final org.hibernate.search.query.dsl.QueryBuilder queryBuilder =
manager.buildQueryBuilderForClass(Myth.class).get();

3. Create an Apache Lucene query that queries the Myth.class class' atributes as follows:

org.apache.lucene.search.Query query = queryBuilder.keyword()
.onField("history").boostedTo(3)
.matching("storm")
.createQuery();

// wrap Lucene query in a org.infinispan.query.CacheQuery
CacheQuery cacheQuery = manager.getQuery(query);

// Get query result
List<Object> result = cacheQuery.list();

20.2. BUILDING QUERIES

20.2.1. Building Queries

Query Module queries are built on Lucene queries, allowing users to use any Lucene query type. When
the query is built, Infinispan Query uses org.infinispan.query.CacheQuery as the query manipulation API
for further query processing.

20.2.2. Building a Lucene Query Using the Lucene-based Query API

With the Lucene API, use either the query parser (simple queries) or the Lucene programmatic API
(complex queries). For details, see the online Lucene documentation or a copy of Lucene in Action or
Hibernate Search in Action .

20.2.3. Building a Lucene Query

20.2.3.1. Building a Lucene Query

Using the Lucene programmatic API, it is possible to write full-text queries. However, when using
Lucene programmatic API, the parameters must be converted to their string equivalent and must also

228

CHAPTER 20. QUERYING

apply the correct analyzer to the right field. A ngram analyzer for example uses several ngrams as the
tokens for a given word and should be searched as such. It is recommended to use the QueryBuilder for
this task.

The Lucene-based query APl is fluent. This API has a following key characteristics:

® Method names are in English. As a result, APl operations can be read and understood as a series
of English phrases and instructions.

® [tuses|DE autocompletion which helps possible completions for the current input prefix and
allows the user to choose the right option.

® |t often uses the chaining method pattern.

® |tis easy to use and read the APl operations.
To use the AP, first create a query builder that is attached to a given indexed type. This QueryBuilder
knows what analyzer to use and what field bridge to apply. Several QueryBuilders (one for each type

involved in the root of your query) can be created. The QueryBuilder is derived from the
SearchManager.

I Search.getSearchManager(cache).buildQueryBuilderForClass(Myth.class).get();

The analyzer, used for a given field or fields can also be overridden.

SearchManager searchManager = Search.getSearchManager(cache);
QueryBuilder mythQB = searchManager.buildQueryBuilderForClass(Myth.class)
.overridesForField("history","stem_analyzer_definition")

.get();

The query builder is now used to build Lucene queries.

20.2.3.2. Keyword Queries

The following example shows how to search for a specific word:

Keyword Search

I Query luceneQuery = mythQB.keyword().onField("history").matching("storm").createQuery();

Table 20.1. Keyword query parameters

Parameter Description

keyword() Use this parameter to find a specific word

onField() Use this parameter to specify in which lucene field to
search the word

matching() use this parameter to specify the match for search
g

string
createQuery() creates the Lucene query object

229

Red Hat Data Grid 7.2 Developer Guide

® The value "storm" is passed through the "history" FieldBridge. This is useful when numbers or
dates are involved.

e The field bridge value is then passed to the analyzer used to index the field "history". This
ensures that the query uses the same term transformation than the indexing (lower case, ngram,
stemming and so on). If the analyzing process generates several terms for a given word, a
boolean query is used with the SHOULD logic (roughly an OR logic).

To search a property that is not of type string.

@Indexed
public class Myth {
@Field(analyze = Analyze.NO)
@DateBridge(resolution = Resolution.YEAR)
public Date getCreationDate() { return creationDate; }
public void setCreationDate(Date creationDate) { this.creationDate = creationDate; }
private Date creationDate;

}

Date birthdate = ...;

Query luceneQuery = mythQb.keyword()
.onField("creationDate")
.matching(birthdate)

.createQuery();

NOTE

In plain Lucene, the Date object had to be converted to its string representation (in this
case the year)

This conversion works for any object, provided that the FieldBridge has an objectToString method
(and all built-in FieldBridge implementations do).

The next example searches a field that uses ngram analyzers. The ngram analyzers index succession of
ngrams of words, which helps to avoid user typos. For example, the 3-grams of the word hibernate are
hib, ibe, ber, rna, nat, ate.

Searching Using Ngram Analyzers

@AnalyzerDef(name = "ngram",
tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
filters = {
@TokenFilterDef(factory = StandardFilterFactory.class),
@TokenFilterDef(factory = LowerCaseFilterFactory.class),
@TokenFilterDef(factory = StopFilterFactory.class),
@TokenFilterDef(factory = NGramFilterFactory.class,
params = {
@Parameter(name = "minGramSize", value = "3"),
@Parameter(name = "maxGramSize", value = "3")})
})
public class Myth {
@Field(analyzer = @Analyzer(definition = "ngram"))
public String getName() { return name; }
public String setName(String name) { this.name = name; }
private String name;

230

CHAPTER 20. QUERYING

}

Date birthdate = ...;

Query luceneQuery = mythQb.keyword()
.onField("name")
.matching("Sisiphus")

.createQuery();

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, phu, hus. Each
of these ngram will be part of the query. The user is then able to find the Sysiphus myth (with a'y). All
that is transparently done for the user.

NOTE

If the user does not want a specific field to use the field bridge or the analyzer then the
ignoreAnalyzer() or ignoreFieldBridge() functions can be called.

To search for multiple possible words in the same field, add them all in the matching clause.

Searching for Multiple Words

//search document with storm or lightning in their history
Query luceneQuery =
mythQB.keyword().onField("history").matching("storm lightning").createQuery();

To search the same word on multiple fields, use the onFields method.

Searching Multiple Fields

Query luceneQuery = mythQB
.keyword()
.onFields("history","description”,"name")
.matching("storm")
.createQuery();

In some cases, one field must be treated differently from another field even if searching the same term.
In this case, use the andField() method.

Using the andField Method

Query luceneQuery = mythQB.keyword()
.onField("history")
.andField("name")
.boostedTo(5)
.andField("description")
.matching("storm")
.createQuery();

In the previous example, only field name is boosted to 5.

20.2.3.3. Fuzzy Queries

231

Red Hat Data Grid 7.2 Developer Guide

To execute a fuzzy query (based on the Levenshtein distance algorithm), start like a keyword query and
add the fuzzy flag.

Fuzzy Query

Query luceneQuery = mythQB.keyword()
fuzzy()
.withEditDistanceUpTo(1)
.withPrefixLength(1)
.onField("history")
.matching("starm")
.createQuery();

The withEditDistanceUpTo is the maximum value of the edit distance (Levenshtein distance) to
consider two terms matching. It is an integer value between O and 2, with a default value of 2. The
prefixLength is the length of the prefix ignored by the "fuzzyness". While the default value is O, a non
zero value is recommended for indexes containing a huge amount of distinct terms.

20.2.3.4. Wildcard Queries

Wildcard queries can also be executed (queries where some of parts of the word are unknown). The ?
represents a single character and * represents any character sequence. Note that for performance
purposes, it is recommended that the query does not start with either ? or *.

Wildcard Query

Query luceneQuery = mythQB.keyword()
.wildcard()
.onField("history")
.matching("sto*")
.createQuery();

NOTE

Wildcard queries do not apply the analyzer on the matching terms. Otherwise the risk of *
or ? being mangled is too high.

20.2.3.5. Phrase Queries

So far we have been looking for words or sets of words, the user can also search exact or approximate
sentences. Use phrase() to do so.

Phrase Query

Query luceneQuery = mythQB.phrase()
.onField("history")
.sentence("Thou shalt not kill")
.createQuery();

Approximate sentences can be searched by adding a slop factor. The slop factor represents the number
of other words permitted in the sentence: this works like a within or near operator.

Adding Slop Factor

232

CHAPTER 20. QUERYING

Query luceneQuery = mythQB.phrase()
.withSlop(3)
.onField("history")
.sentence("Thou kill")
.createQuery();

20.2.3.6. Range Queries

A range query searches for a value in between given boundaries (included or not) or for a value below or
above a given boundary (included or not).

Range Query

//look for 0 <= starred < 3

Query luceneQuery = mythQB.range()
.onField("starred")
.from(0).to(3).excludeLimit()
.createQuery();

//look for myths strictly BC

Date beforeChrist = ...;

Query luceneQuery = mythQB.range()
.onField("creationDate")
.below(beforeChrist).excludeLimit()
.createQuery();

20.2.3.7. Combining Queries

Queries can be aggregated (combine) to create more complex queries. The following aggregation
operators are available:

e SHOULD: the query should contain the matching elements of the subquery.
® MUST: the query must contain the matching elements of the subquery.
e MUST NOT: the query must not contain the matching elements of the subquery.
The subqueries can be any Lucene query including a boolean query itself. Following are some examples:

Combining Subqueries

//look for popular modern myths that are not urban

Date twentiethCentury = ...;

Query luceneQuery = mythQB.bool()
.must(mythQB.keyword().onField("description").matching("urban").createQuery())
.not()
.must(mythQB.range().onField("starred").above(4).createQuery())
.must(mythQB.range()

.onField("creationDate")

.above(twentiethCentury)

.createQuery())
.createQuery();

//look for popular myths that are preferably urban
Query luceneQuery = mythQB

233

Red Hat Data Grid 7.2 Developer Guide

.bool()
.should(mythQB.keyword()

.onField("description")

.matching("urban")

.createQuery())
.must(mythQB.range().onField("starred").above(4).createQuery())
.createQuery();

//look for all myths except religious ones
Query luceneQuery = mythQB.all()
.except(mythQB.keyword()
.onField("description_stem")
.matching("religion")
.createQuery())
.createQuery();

20.2.3.8. Query Options

The following is a summary of query options for query types and fields:

e boostedTo (on query type and on field) boosts the query or field to a provided factor.

e withConstantScore (on query) returns all results that match the query and have a constant

score equal to the boost.

o filteredBy(Filter)(on query) filters query results using the Filter instance.

® ignoreAnalyzer (on field) ignores the analyzer when processing this field.

e ignoreFieldBridge (on field) ignores the field bridge when processing this field.

The following example illustrates how to use these options:
Querying Options

Query luceneQuery = mythQB
.bool()

.should(mythQB.keyword().onField("description").matching("urban").createQuery())

.should(mythQB
.keyword()
.onField("name")
.boostedTo(3)
.ignoreAnalyzer()
.matching("urban").createQuery())
.must(mythQB
.range()
.boostedTo(5)
.withConstantScore()
.onField("starred")
.above(4).createQuery())
.createQuery();

20.2.4. Build a Query with Infinispan Query

234

CHAPTER 20. QUERYING

20.2.4.1. Generality

After building the Lucene query, wrap it within a Infinispan CacheQuery. The query searches all indexed
entities and returns all types of indexed classes unless explicitly configured not to do so.

Wrapping a Lucene Query in an Infinispan CacheQuery
I CacheQuery cacheQuery = Search.getSearchManager(cache).getQuery(luceneQuery);

For improved performance, restrict the returned types as follows:

Filtering the Search Result by Entity Type

CacheQuery cacheQuery =
Search.getSearchManager(cache).getQuery(luceneQuery, Customer.class);

/or

CacheQuery cacheQuery =
Search.getSearchManager(cache).getQuery(luceneQuery, ltem.class, Actor.class);

The first part of the second example only returns the matching Customer instances. The second part of
the same example returns matching Actor and Item instances. The type restriction is polymorphic. As a
result, if the two subclasses Salesman and Customer of the base class Person return, specify
Person.class to filter based on result types.

20.2.4.2. Pagination

To avoid performance degradation, it is recommended to restrict the number of returned objects per
query. A user navigating from one page to another page is a very common use case. The way to define
pagination is similar to defining pagination in a plain HQL or Criteria query.

Defining pagination for a search query

CacheQuery cacheQuery = Search.getSearchManager(cache)
.getQuery(luceneQuery, Customer.class);

cacheQuery.firstResult(15); //start from the 15th element

cacheQuery.maxResults(10); /return 10 elements

NOTE

The total number of matching elements, despite the pagination, is accessible via
cacheQuery.getResultSize().

20.2.4.3. Sorting

Apache Lucene contains a flexible and powerful result sorting mechanism. The default sorting is by
relevance and is appropriate for a large variety of use cases. The sorting mechanism can be changed to
sort by other properties using the Lucene Sort object to apply a Lucene sorting strategy.

Specifying a Lucene Sort

org.infinispan.query.CacheQuery cacheQuery =
Search.getSearchManager(cache).getQuery(luceneQuery, Book.class);
org.apache.lucene.search.Sort sort = new Sort(

235

Red Hat Data Grid 7.2 Developer Guide

new SortField("title", SortField.STRING_FIRST));
cacheQuery.sort(sort);
List results = cacheQuery.list();

NOTE

Fields used for sorting must not be tokenized. For more information about tokenizing, see
@Field.

20.2.4.4. Projection

In some cases, only a small subset of the properties is required. Use Infinispan Query to return a subset
of properties as follows:

Using Projection Instead of Returning the Full Domain Object

SearchManager searchManager = Search.getSearchManager(cache);
CacheQuery cacheQuery = searchManager.getQuery(luceneQuery, Book.class);
cacheQuery.projection("id", "summary", "body", "mainAuthor.name");

List results = cacheQuery.list();

Object[] firstResult = (Object][]) results.get(0);

Integer id = (Integer) firstResult[0];

String summary = (String) firstResult[1];

String body = (String) firstResult[2];

String authorName = (String) firstResult[3];

The Query Module extracts properties from the Lucene index and converts them to their object
representation and returns a list of Object[]. Projections prevent a time consuming database round-trip.
However, they have following constraints:

® The properties projected must be stored in the index (@Field(store=Store.YES)), which
increases the index size.

® The properties projected must use a FieldBridge implementing

org.infinispan.query.bridge.TwoWayFieldBridge or
org.infinispan.query.bridge.TwoWayStringBridge, the latter being the simpler version.

NOTE

All Lucene-based Query API built-in types are two-way.

® Only the simple properties of the indexed entity or its embedded associations can be projected.
Therefore a whole embedded entity cannot be projected.

® Projection does not work on collections or maps which are indexed via @IlndexedEmbedded

Lucene provides metadata information about query results. Use projection constants to retrieve the
metadata.

Using Projection to Retrieve Metadata

SearchManager searchManager = Search.getSearchManager(cache);
CacheQuery cacheQuery = searchManager.getQuery(luceneQuery, Book.class);
cacheQuery.projection("mainAuthor.name");

236

CHAPTER 20. QUERYING

List results = cacheQuery.list();

Object[] firstResult = (Object][]) results.get(0);
float score = (Float) firstResult[0];

Book book = (Book) firstResult[1];

String authorName = (String) firstResult[2];

Fields can be mixed with the following projection constants:
® FullTextQuery.THIS returns the initialized and managed entity as a non-projected query does.
o FullTextQuery.DOCUMENT returns the Lucene Document related to the projected object.
e FullTextQuery.OBJECT_CLASS returns the indexed entity's class.

® FullTextQuery.SCORE returns the document score in the query. Use scores to compare one
result against another for a given query. However, scores are not relevant to compare the
results of two different queries.

e FullTextQuery.ID is the ID property value of the projected object.

o FullTextQuery.DOCUMENT _ID is the Lucene document ID. The Lucene document ID changes
between two IndexReader openings.

e FullTextQuery.EXPLANATION returns the Lucene Explanation object for the matching
object/document in the query. This is not suitable for retrieving large amounts of data. Running

FullTextQuery.EXPLANATION is as expensive as running a Lucene query for each matching
element. As a result, projection is recommended.

20.2.4.5. Limiting the Time of a Query

Limit the time a query takes in Infinispan Query as follows:
® Raise an exception when arriving at the limit.

® Limit to the number of results retrieved when the time limit is raised.

20.2.4.6. Raise an Exception on Time Limit

If a query uses more than the defined amount of time, a custom exception might be defined to be
thrown.

To define the limit when using the CacheQuery API, use the following approach:

Defining a Timeout in Query Execution

SearchManagerlmplementor searchManager = (SearchManagerImplementor)
Search.getSearchManager(cache);
searchManager.setTimeoutExceptionFactory(new MyTimeoutExceptionFactory());
CacheQuery cacheQuery = searchManager.getQuery(luceneQuery, Book.class);

//define the timeout in seconds
cacheQuery.timeout(2, TimeUnit. SECONDS);

try {
cacheQuery.list();

}

237

Red Hat Data Grid 7.2 Developer Guide

catch (MyTimeoutException e) {
//do something, too slow

}

private static class MyTimeoutExceptionFactory implements TimeoutExceptionFactory {
@Override
public RuntimeException createTimeoutException(String message, String queryDescription) {
return new MyTimeoutException();
}
}

public static class MyTimeoutException extends RuntimeException {

}

The getResultSize(), iterate() and scroll() honor the timeout until the end of the method call. As a
result, Iterable or the ScrollableResults ignore the timeout. Additionally, explain() does not honor this
timeout period. This method is used for debugging and to check the reasons for slow performance of a

query.

IMPORTANT

The example code does not guarantee that the query stops at the specified results
amount.

20.3. RETRIEVING THE RESULTS

20.3.1. Retrieving the Results

After building the Infinispan Query, it can be executed in the same way as a HQL or Criteria query. The
same paradigm and object semantic apply to Lucene Query query and all the common operations like
list().

20.3.2. Performance Considerations

list() can be used to receive a reasonable number of results (for example when using pagination) and to
work on them all. list() works best if the batch-size entity is correctly set up. If list() is used, the Query
Module processes all Lucene Hits elements within the pagination.

20.3.3. Result Size

Some use cases require information about the total number of matching documents. Consider the
following examples:

Retrieving all matching documents is costly in terms of resources. The Lucene-based Query API
retrieves all matching documents regardless of pagination parameters. Since it is costly to retrieve all
the matching documents, the Lucene-based Query API can retrieve the total number of matching
documents regardless of the pagination parameters. All matching elements are retrieved without
triggering any object loads.

Determining the Result Size of a Query

CacheQuery cacheQuery = Search.getSearchManager(cache).getQuery(luceneQuery,
Book.class);

238

CHAPTER 20. QUERYING

//return the number of matching books without loading a single one
assert 3245 == cacheQuery.getResultSize();

CacheQuery cacheQueryLimited =
Search.getSearchManager(cache).getQuery(luceneQuery, Book.class);

cacheQuery.maxResults(10);

List results = cacheQuery.list();

assert 10 == results.size();

//return the total number of matching books regardless of pagination

assert 3245 == cacheQuery.getResultSize();

The number of results is an approximation if the index is not correctly synchronized with the database.
An ansychronous cluster is an example of this scenario.

20.3.4. Understanding Results

Luke can be used to determine why a result appears (or does not appear) in the expected query result.
The Query Module also offers the Lucene Explanation object for a given result (in a given query). This is
an advanced class. Access the Explanation object as follows:

cacheQuery.explain(int) method

This method requires a document ID as a parameter and returns the Explanation object.

NOTE
In terms of resources, building an explanation object is as expensive as running the

Lucene query. Do not build an explanation object unless it is necessary for the
implementation.

20.4.FILTERS

20.4.1. Filters

Apache Lucene is able to filter query results according to a custom filtering process. This is a powerful
way to apply additional data restrictions, especially since filters can be cached and reused. Applicable
use cases include:

® security

e temporal data (example, view only last month’s data)

® population filter (example, search limited to a given category)

® and many more

20.4.2. Defining and Implementing a Filter

The Lucene-based Query APl includes transparent caches named filters which include parameters. The
APl is similar to the Hibernate Core filters:

Enabling Fulltext Filters for a Query

I cacheQuery = Search.getSearchManager(cache).getQuery(query, Driver.class);

239

https://github.com/DmitryKey/luke

Red Hat Data Grid 7.2 Developer Guide

cacheQuery.enableFullTextFilter("bestDriver");
cacheQuery.enableFullTextFilter("security").setParameter("login”, "andre");
cacheQuery.list(); /returns only best drivers where andre has credentials

In the provided example, two filters are enabled in the query. Enable or disable filters to customize the
query.

Declare filters using the @FullTextFilterDef annotation. This annotation applies to @Indexed entities
irrespective of the filter's query. Filter definitions are global therefore each filter must have a unique
name. If two @FullTextFilterDef annotations with the same name are defined, a SearchException is
thrown. Each named filter must specify its filter implementation.

Defining and Implementing a Filter

@FullTextFilterDefs({
@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilter.class),
@FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class)

)

public class Driver{ ... }

public class BestDriversFilter extends org.apache.lucene.search.Filter {

public DocldSet getDocldSet(IndexReader reader) throws IOException {
OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());
TermDocs termDocs = reader.termDocs(new Term("score", "5"));
while (termDocs.next()) {

bitSet.set(termDocs.doc());

}
return bitSet;

}

}

BestDriversFilter is a Lucene filter that reduces the result set to drivers where the scoreis 5. In the
example, the filter implements the org.apache.lucene.search.Filter directly and contains a no-arg
constructor.

20.4.3. The @Factory Filter

Use the following factory pattern if the filter creation requires further steps, or if the filter does not have
a no-arg constructor:

Creating a filter using the factory pattern

@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilterFactory.class)
public class Driver { ... }

public class BestDriversFilterFactory {
@Factory
public Filter getFilter() {

//some additional steps to cache the filter results per IndexReader
Filter bestDriversFilter = new BestDriversFilter();

240

CHAPTER 20. QUERYING

return new CachingWrapperFilter(bestDriversFilter);

}
}

The Lucene-based Query APl uses a @Factory annotated method to build the filter instance. The
factory must have a no argument constructor.

Named filters come in handy where parameters have to be passed to the filter. For example a security
filter might want to know which security level you want to apply:

Passing parameters to a defined filter

cacheQuery = Search.getSearchManager(cache).getQuery(query, Driver.class);
cacheQuery.enableFullTextFilter("security").setParameter("level”, 5);

Each parameter name should have an associated setter on either the filter or filter factory of the
targeted named filter definition.

Using parameters in the actual filter implementation

public class SecurityFilterFactory {
private Integer level;

/**
* injected parameter
Y/
public void setLevel(Integer level) {
this.level = level;

}

@Key

public FilterKey getKey() {
StandardFilterKey key = new StandardFilterKey();
key.addParameter(level);
return key;

}

@Factory

public Filter getFilter() {
Query query = new TermQuery(new Term("level", level.toString()));
return new CachingWrapperFilter(new QueryWrapperFilter(query));

}
}

Note the method annotated @Key returns a FilterKey object. The returned object has a special
contract: the key object must implement equals() / hashCode() so that two keys are equal if and only if
the given Filter types are the same and the set of parameters are the same. In other words, two filter
keys are equal if and only if the filters from which the keys are generated can be interchanged. The key
object is used as a key in the cache mechanism.

20.4.4. Key Objects

@Key methods are needed only if:

® the filter caching system is enabled (enabled by default)

241

Red Hat Data Grid 7.2 Developer Guide

® the filter has parameters

The StandardFilterKey delegates the equals() / hashCode() implementation to each of the
parameters equals and hashcode methods.

The defined filters are per default cached. The cache uses a combination of hard and soft references to
allow disposal of memory when needed. The hard reference cache keeps track of the most recently used
filters and transforms the ones least used to SoftReferences when needed. Once the limit of the hard
reference cache is reached additional filters are cached as SoftReferences. To adjust the size of the
hard reference cache, use default.filter.cache_strategy.size (defaults to 128). For advanced use of
filter caching, you can implement your own FilterCachingStrategy. The classname is defined by
default.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter results. In Lucene it is
common practice to wrap filters using the IndexReader around a CachingWrapperFilter. The wrapper
will cache the DocldSet returned from the getDocldSet(IndexReader reader) method to avoid
expensive recomputation. It is important to mention that the computed DocldSet is only cachable for
the same IndexReader instance, because the reader effectively represents the state of the index at the
moment it was opened. The document list cannot change within an opened IndexReader. A
different/newlndexReader instance, however, works potentially on a different set of Documents
(either from a different index or simply because the index has changed), hence the cached DocldSet
has to be recomputed.

20.4.5. Full Text Filter

The Lucene-based Query APl uses the cache flag of @FullTextFilterDef, set to
FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS which automatically caches the filter
instance and wraps the filter around a Hibernate specific implementation of CachingWrapperFilter.
Unlike Lucene's version of this class, SoftReferences are used with a hard reference count (see
discussion about filter cache). The hard reference count is adjusted using
default.filter.cache_docidresults.size (defaults to 5). Wrapping is controlled using the
@FullTextFilterDef.cache parameter. There are three different values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by
Hibernate Search. For every filter call, a new filter
instance is created. This setting might be useful for
rapidly changing data sets or heavily memory
constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused across
concurrent Filter.getDocldSet() calls. DocldSet
results are not cached. This setting is useful when a
filter uses its own specific caching mechanism or the
filter results change dynamically due to application
specific events making DocldSet caching in both
cases unnecessary.

FilterCacheModeType.INSTANCE_AND_DOCIDSET Both the filter instance and the DocldSet results are
RESULTS cached. This is the default value.

Filters should be cached in the following situations:

242

CHAPTER 20. QUERYING

® The system does not update the targeted entity index often (in other words, the IndexReader is
reused a lot).

® The Filter's DocldSet is expensive to compute (compared to the time spent to execute the
query).

20.4.6. Using Filters in a Sharded Environment

Execute queries on a subset of the available shards in a sharded environment as follows:

1. Create a sharding strategy to select a subset of IndexManagers depending on filter
configurations.

2. Activate the filter when running the query.

The following is an example of sharding strategy that queries a specific shard if the customer filter is
activated:

Querying a Specific Shard

public class CustomerShardingStrategy implements IndexShardingStrategy {

// stored IndexManagers in a array indexed by customerlD
private IndexManager[] indexManagers;

public void initialize(Properties properties, IndexManager[] indexManagers) {
this.indexManagers = indexManagers;

}

public IndexManager([] getindexManagersForAllShards() {
return indexManagers;

}

public IndexManager getindexManagerForAddition(
Class<?> entity, Serializable id, String idInString, Document document) {
Integer customerID = Integer.parselnt(document.getFieldable("customerlD")
.stringValue());
return indexManagers[customerID];

}

public IndexManager[] getindexManagersForDeletion(
Class<?> entity, Serializable id, String idInString) {
return getindexManagersForAllShards();

}

Jax
* Optimization; don't search ALL shards and union the results; in this case, we
* can be certain that all the data for a particular customer Filter is in a single
* shard; return that shard by customerlD.

Y/
public IndexManager[] getindexManagersForQuery(
FullTextFilterlmplementor[] filters) {
FullTextFilter filter = getCustomerFilter(filters, "customer");
if (filter == null) {
return getindexManagersForAllShards();

}

243

Red Hat Data Grid 7.2 Developer Guide

else {
return new IndexManager[] { indexManagers[Integer.parselnt(
filter.getParameter("customerlD").toString())] };

}
}

private FullTextFilter getCustomerFilter(FullTextFilterimplementor]] filters,
String name) {
for (FullTextFilterimplementor filter: filters) {
if (filter.getName().equals(name)) return filter;
}
return null;
}
}

If the customer filter is present in the example, the query only uses the shard dedicated to the
customer. The query returns all shards if the customer filter is not found. The sharding strategy reacts
to each filter depending on the provided parameters.

Activate the filter when the query must be run. The filter is a regular filter (as defined in Filters), which
filters Lucene results after the query. As an alternate, use a special filter that is passed to the sharding
strategy and then ignored for duration of the query. Use the ShardSensitiveOnlyFilter class to declare
the filter.

Using the ShardSensitiveOnlyFilter Class

@Indexed
@FullTextFilterDef(name = "customer”, impl = ShardSensitiveOnlyFilter.class)
public class Customer {

}

CacheQuery cacheQuery = Search.getSearchManager(cache).getQuery(query,
Customer.class);

cacheQuery.enableFullTextFilter("customer").setParameter("CustomerID", 5);

@SuppressWarnings("unchecked")

List results = cacheQuery.list();

If the ShardSensitiveOnlyFilter filter is used, Lucene filters do not need to be implemented. Use filters
and sharding strategies reacting to these filters for faster query execution in a sharded environment.

20.5. CONTINUOUS QUERIES

20.5.1. Continuous Query

Continuous Querying allows an application to receive the entries that currently match a query, and be
continuously notified of any changes to the queried data set. This includes both incoming matches, for
values that have joined the set, and outgoing matches, for values that have left the set, that resulted
from further cache operations. By using a Continuous Query the application receives a steady stream of
events instead of repeatedly executing the same query to look for changes, resulting in a more

efficient use of resources.

For instance, all of the following use cases could utilize Continuous Queries:

244

CHAPTER 20. QUERYING

1. Return all persons with an age between 18 and 25 (assuming the Person entity has an age
property and is updated by the user application).

2. Return all transactions higher than $2000.

3. Return all times where the lap speed of F1racers were less than 1:45.00s (assuming the cache
contains Lap entries and that laps are entered live during the race).

20.5.2. Continuous Query Evaluation

A Continuous Query uses a listener that receives a notification when:
® An entry starts matching the specified query, represented by a Join event.
® An entry stops matching the specified query, represented by a Leave event.

When a client registers a Continuous Query Listener it immediately begins to receive the results
currently matching the query, received as Join events as described above. In addition, it will receive
subsequent notifications when other entries begin matching the query, as Join events, or stop matching
the query, as Leave events, as a consequence of any cache operations that would normally generate
creation, modification, removal, or expiration events.

To determine if the listener receives a Join or Leave event the following logic is used:
1. If the query on both the old and new values evaluate false, then the event is suppressed.
2. If the query on both the old and new values evaluate true, then the event is suppressed.

3. If the query on the old value evaluates false and the query on the new value evaluates true, then
adJoin event is sent.

4. If the query on the old value evaluates true and the query on the new value evaluates false, then
aLeave event is sent.

5. If the query on the old value evaluates true and the entry is removed, then a Leave event is
sent.

NOTE

t;(ﬂxﬂqf Continuous Queries cannot use grouping, aggregation, or sorting operations.

20.5.3. Using Continuous Queries

The following instructions apply to both Library and Remote Client-Server modes.

Adding Continuous Queries

To create a Continuous Query the Query object will be created similar to other querying methods;
however, ensure that the Query is registered with a
org.infinispan.query.api.continuous.ContinuousQuery and a
org.infinispan.query.api.continuous.ContinuousQueryListener is in use.

The ContinuousQuery object associated to a cache can be obtained by calling the static method
org.infinispan.client.hotrod.Search.getContinuousQuery(RemoteCache<K, V> cache) if running in
Client-Server mode or org.infinispan.query.Search.getContinuousQuery(Cache<K, V> cache) when
running in Library mode.

245

Red Hat Data Grid 7.2 Developer Guide

Once the ContinuousQueryListener has been defined it may be added by using the
addContinuousQueryListener method of ContinuousQuery:

I continuousQuery.addContinuousQueryListener(query, listener)

The following example demonstrates a simple method of implementing and adding a Continuous Query
in Library mode:

Defining and Adding a Continuous Query

import org.infinispan.query.api.continuous.ContinuousQuery;

import org.infinispan.query.api.continuous.ContinuousQueryListener;
import org.infinispan.query.Search;

import org.infinispan.query.dsl.QueryFactory;

import org.infinispan.query.dsl.Query;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

[..]

// To begin we create a ContinuousQuery instance on the cache
ContinuousQuery<Integer, Person> continuousQuery = Search.getContinuousQuery(cache);

// Define our query. In this case we will be looking for any
// Person instances under 21 years of age.
QueryFactory queryFactory = Search.getQueryFactory(cache);
Query query = queryFactory.from(Person.class)
.having("age").It(21)
build();

final Map<lInteger, Person> matches = new ConcurrentHashMap<Integer, Person>();

// Define the ContinuousQueryListener
ContinuousQueryListener<Integer, Person> listener = new ContinuousQueryListener<Integer,
Personx>() {
@Override
public void resultJoining(Integer key, Person value) {
matches.put(key, value);

}

@Override
public void resultLeaving(Integer key) {
matches.remove(key);

}
1

// Add the listener and generated query
continuousQuery.addContinuousQueryListener(query, listener);

[..]

// Remove the listener to stop receiving notifications
continuousQuery.removeContinuousQueryListener(listener);

246

CHAPTER 20. QUERYING

As Person instances are added to the cache that contain an Age less than 21 they will be placed into
matches, and when these entries are removed from the cache they will be also be removed from
matches.

Removing Continuous Queries

To stop the query from further execution remove the listener:

I continuousQuery.removeContinuousQueryListener(listener);

20.5.4. C++ and C# Continuous Queries

In addition to native Java based continuous queries, JBoss Data Grid also supports C++ and C# based
continuous queries.

20.5.4.1. C++ Continous Queries

C++ continuous queries can be setup using the following code:

C++ Continuous Query setup

ContinuousQueryListener<int, sample_bank_account::User> cql(testCache,"select id from

sample_bank_account.User");

std::function<void(int, sample_bank_account::User)> join = [|(int k, sample_bank_account::User u) {
std::cout << "JOINING: key="<< u.id() << " value="<< u.name() << std::endl;

b

std::function<void(int, sample_bank_account::User)> leave =[|(int k, sample_bank_account::User u) {
std::cout << "LEAVING: key="<< u.id() << " value="<< u.name() << std::endl;

b

std::function<void(int, sample_bank_account::User)> change =[](int k, sample_bank_account::User

u) {
std::cout << "CHANGING: key="<< u.id() << " value="<< u.name() << std::endl;
I
cql.setJoiningListener(join);
cql.setLeavingListener(leave);

cql.setUpdatedListener(change);
testCache.addContinuousQueryListener(cql);

C++ continuous queries can be removed using the following code:

C++ Continuous Query Removal

testCache.addContinuousQueryListener(cql);

[..]

// Remove the listener to stop receiving notifications
testCache.removeContinuousQueryListener(cql);

20.5.4.2. C# Continuous Queries

C# continuous queries can be setup using the following code:

247

Red Hat Data Grid 7.2 Developer Guide

C# Continuous Query setup

qr.QueryString = "from sample_bank_account.User";

Event.ContinuousQueryListener<int, User> cqgl = new Event.ContinuousQueryListener<int, User>
(gr.QueryString);

cql.JoiningCallback = (int k, User v) => { Console.WriteLine("JOINING: " + k + ", " + v); s.Release(); };
cql.LeavingCallback = (int k, User v) => { Console.WriteLine("LEAVING: " + k + ", " + V); };
cqgl.UpdatedCallback = (int k, User v) => { Console.WriteLine("UPDATED: "+ k + ", " + v); };
userCache.AddContinuousQueryListener(cql);

C# continuous queries can be removed using the following code:

C# Continuous Query Removal

userCache.AddContinuousQueryListener(cql);

[..]

// Remove the listener to stop receiving notifications
userCache.RemoveContinuousQueryListener(cql);

20.5.5. Performance Considerations with Continuous Queries

Continuous Queries are designed to constantly keep any applications updated where it is implemented,
potentially resulting in a large number of events generated for particularly broad queries. In addition, a
new memory allocation is made for each event. This behavior may result in memory pressure, including
potential errors, if queries are not carefully designed.

To prevent these issues it is strongly recommended to ensure that each query captures only the

information needed, and that each ContinuousQueryListener is designed to quickly process all
received events.

20.6. BROADCAST QUERIES

20.6.1. Broadcast Queries

The broadcast query feature allows each node to index its own data during writes, and at query time, it
sends, or "broadcasts”, the query to each node. The results from each node are then combined before
being returned to the caller. This is ideal for DIST caches with large indices since the amount of data
transferred is the query itself and the results.

20.6.1.1. Using Broadcast Queries

To use broadcast queries include IndexedQueryMode.BROADCAST as an argument to your query. An
example of this is shown below:

CacheQuery<Person> broadcastQuery = Search.getSearchManager(cache).getQuery(new
MatchAllIDocsQuery(), IndexedQueryMode.BROADCAST);

List<Person> result = broadcastQuery.list();

248

CHAPTER 21. THE INFINISPAN QUERY DSL

CHAPTER 21. THE INFINISPAN QUERY DSL

21.1. THE INFINISPAN QUERY DSL

The Infinispan Query DSL provides an unified way of querying a cache. It can be used in Library mode for
both indexed and indexless queries, as well as for Remote Querying (via the Hot Rod Java client). The
Infinispan Query DSL allows queries without relying on Lucene native query APl or Hibernate Search
query API.

Indexless queries are only available with the Infinispan Query DSL for both the JBoss Data Grid remote
and embedded mode. Indexless queries do not require a configured index (see Enabling Infinispan
Query DSL-based Queries). The Hibernate Search/Lucene-based API cannot use indexless queries.

21.2. CREATING QUERIES WITH INFINISPAN QUERY DSL

The new query APl is located in the org.infinispan.query.dsl package. A query is created with the
assistance of the QueryFactory instance, which is obtained using Search.getQueryFactory(). Each
QueryFactory instance is bound to the one cache instance, and is a stateless and thread-safe object
that can be used for creating multiple parallel queries.

The Infinispan Query DSL uses the following steps to perform a query.

1. A query is created by invocating the from(Class entityType) method, which returns a
QueryBuilder object that is responsible for creating queries for the specified entity class from
the given cache.

2. The QueryBuilder accumulates search criteria and configuration specified through invoking its
DSL methods, and is used to build a Query object by invoking the QueryBuilder.build()
method, which completes the construction. The QueryBuilder object cannot be used for
constructing multiple queries at the same time except for nested queries, however it can be
reused afterwards.

3. Invoke the list() method of the Query object to execute the query and fetch the results. Once
executed, the Query object is not reusable. If new results must be fetched, a new instance must
be obtained by calling QueryBuilder.build().

IMPORTANT

A query targets a single entity type and is evaluated over the contents of a single cache.
Running a query over multiple caches, or creating queries targeting several entity types is
not supported.

21.3. ENABLING INFINISPAN QUERY DSL-BASED QUERIES

In library mode, running Infinispan Query DSL-based queries is almost identical to running Lucene-
based API queries. Prerequisites are:

e Alllibraries required for Infinispan Query on the classpath. Refer to the Administration and
Configuration Guide for details.

® Indexing enabled and configured for caches (optional). Refer to the Administration and
Configuration Guide for details.

249

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#set_up_and_configure_the_infinispan_query_api
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#configure_indexing

Red Hat Data Grid 7.2 Developer Guide

® Annotated POJO cache values (optional). If indexing is not enabled, POJO annotations are also
not required and are ignored if set. If indexing is not enabled, all fields that follow JavaBeans
conventions are searchable instead of only the fields with Hibernate Search annotations.

21.4. RUNNING INFINISPAN QUERY DSL-BASED QUERIES

Once Infinispan Query DSL-based queries have been enabled, obtain a QueryFactory from the Search
in order to run a DSL-based query.

Obtain a QueryFactory for a Cache

In Library mode, obtain a QueryFactory as follows:
I QueryFactory gf = org.infinispan.query.Search.getQueryFactory(cache)
Constructing a DSL-based Query

import org.infinispan.query.Search;
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;

QueryFactory gf = Search.getQueryFactory(cache);
Query q = gf.from(User.class)
.having("name").eq("John")
build();
List list = q.list();
assertEquals(1, list.size());
assertEquals("John", list.get(0).getName());
assertEquals("Doe", list.get(0).getSurname());

When using Remote Querying in Remote Client-Server mode, the Search object resides in package
org.infinispan.client.hotrod. See the example in Performing Remote Queries via the Hot Rod Java
Client for details.

It is also possible to combine multiple conditions with boolean operators, including sub-conditions. For
example:

Combining Multiple Conditions

Query q = gf.from(User.class)
.having("name").eq("John")
.and().having("surname").eq("Doe")
.and().not(qgf.having("address.street").like("%Tanzania%")
.or().having("address.postCode").in("TZ13", "TZ22"))
build();

This query API simplifies the way queries are written by not exposing the user to the low level details of
constructing Lucene query objects. It also has the benefit of being available to remote Hot Rod clients.

The following example shows how to write a query for the Book entity.

Querying the Book Entity

I import org.infinispan.query.Search;

250

CHAPTER 21. THE INFINISPAN QUERY DSL

import org.infinispan.query.dsl.*;

// get the DSL query factory, to be used for constructing the Query object:
QueryFactory gf = Search.getQueryFactory(cache);
// create a query for all the books that have a title which contains the word "engine":
Query query = gf.from(Book.class)

.having("title").like("%engine%")

build();
// get the results
List<Book> list = query.list();

21.5. PROJECTION QUERIES

In many cases returning the full domain object is unnecessary, and only a small subset of attributes are
desired by the application. Projection Queries allow a specific subset of attributes (or attribute paths) to
be returned. If a projection query is used then the Query.list() will not return the whole domain entity
(List<Object>), but instead will return a List<Object[]>, with each entry in the array corresponding to a
projected attribute.

To define a projection query use the select(...) method when building the query, as seen in the following
example:

Retrieving title and publication year

// Match all books that have the word "engine" in their title or description

// and return only their title and publication year.

Query query = queryFactory.from(Book.class)
.select(Expression.property("title"), Expression.property("publicationYear"))
.having("title").like("%engine%")
.or().having("description").like("%engine%")
build();

// results.get(0)[0] contains the first matching entry's title
// results.get(0)[1] contains the first matching entry's publication year
List<Object[]> results = query.list();

21.6. GROUPING AND AGGREGATION OPERATIONS

The Infinispan Query DSL has the ability to group query results according to a set of grouping fields and
construct aggregations of the results from each group by applying an aggregation function to the set of
values. Grouping and aggregation can only be used with projection queries.

The set of grouping fields is specified by calling the method groupBy(field) multiple times. The order of
grouping fields is not relevant.

All non-grouping fields selected in the projection must be aggregated using one of the grouping
functions described below.

Grouping Books by author and counting them

Query query = queryFactory.from(Book.class)
.select(Expression.property("author"), Expression.count("title"))
.having("title").like("%engine%")

.groupBy("author")

251

Red Hat Data Grid 7.2 Developer Guide

build();

// results.get(0)[0] will contain the first matching entry's author
// results.get(0)[1] will contain the first matching entry's title
List<Object[]> results = query.list();

Aggregation Operations

The following aggregation operations may be performed on a given field:

e avg() - Computes the average of a set of Numbers, represented as a Double. If there are no
non-null values the result is null instead.

e count() - Returns the number of non-null rows as a Long. If there are no non-null values the
result is O instead.

® max() - Returns the greatest value found in the specified field, with a return type equal to the
field in which it was applied. If there are no non-null values the result is null instead.

NOTE

Values in the given field must be of type Comparable, otherwise an
lllegalStateException will be thrown.

® min() - Returns the smallest value found in the specified field, with a return type equal to the
field in which it was applied. If there are no non-null values the result is null instead.

NOTE

Values in the given field must be of type Comparable, otherwise an
lllegalStateException will be thrown.

e sum() - Computes and returns the sum of a set of Numbers, with a return type dependent on
the indicated field's type. If there are no non-null values the result is null instead.
The following table indicates the return type based on the specified field.

Table 21.1. Sum Return Type

Field Type Return Type

Integral (other than Biglnteger) Long
Floating Point Double
Biginteger Biginteger
BigDecimal BigDecimal

Projection Query Special Cases

The following cases items describe special use cases with projection queries:

252

CHAPTER 21. THE INFINISPAN QUERY DSL

® A projection query in which all selected fields are aggregated and none is used for grouping is
legal. In this case the aggregations will be computed globally instead of being computed per
each group.

® A grouping field can be used in an aggregation. This is a degenerated case in which the
aggregation will be computed over a single data point, the value belonging to current group.

® A query that selects only grouping fields but no aggregation fields is legal.

Evaluation of grouping and aggregation queries

Aggregation queries can include filtering conditions, like usual queries, which may be optionally
performed before and after the grouping operation.

All filter conditions specified before invoking the groupBy method will be applied directly to the cache
entries before the grouping operation is performed. These filter conditions may refer to any properties
of the queried entity type, and are meant to restrict the data set that is going to be later used for

grouping.

All filter conditions specified after invoking the groupBy method will be applied to the projection that
results from the grouping operation. These filter conditions can either reference any of the fields
specified by groupBy or aggregated fields. Referencing aggregated fields that are not specified in the
select clause is allowed; however, referencing non-aggregated and non-grouping fields is forbidden.
Filtering in this phase will reduce the amount of groups based on their properties.

Ordering may also be specified similar to usual queries. The ordering operation is performed after the
grouping operation and can reference any fields that are allowed for post-grouping filtering as
described earlier.

21.7. USING NAMED PARAMETERS

Instead of creating a new query for every request it is possible to include parameters in the query which
may be replaced with each execution. This allows a query to be defined a single time and adjust variables
in the query as needed.

Parameters are defined when the query is created by using the Expression.param(...) operator on the
right hand side of any comparison operator from the having(...):

Defining Named Parameters

import org.infinispan.query.Search;
import org.infinispan.query.dsl.*;

[..]

QueryFactory queryFactory = Search.getQueryFactory(cache);

// Defining a query to search for various authors

Query query = queryFactory.from(Book.class)
.select("title")
.having("author").eq(Expression.param("authorName"))
.build()

[..]

Setting the values of Named Parameters

By default all declared parameters are null, and all defined parameters must be updated to non-null
values before the query must be executed. Once the parameters have been declared they may then be

253

Red Hat Data Grid 7.2 Developer Guide

updated by invoking either setParameter(parameterName, value) or setParameters(parameterMap)
on the query with the new values; in addition, the query does not need to be rebuilt. It may be executed
again after the new parameters have been defined.

Updating Parameters Individually

[..]

query.setParameter("authorName","Smith");

// Rerun the query and update the results
resultList = query.list();

[..]

Updating Parameters as a Map

[..]

parameterMap.put("authorName","Smith");
query.setParameters(parameterMap);

// Rerun the query and update the results
resultList = query.list();

[..]

254

CHAPTER 22. BUILDING A QUERY USING THE ICKLE QUERY LANGUAGE

CHAPTER 22. BUILDING A QUERY USING THE ICKLE QUERY
LANGUAGE

22.1. BUILDING A QUERY USING THE ICKLE QUERY LANGUAGE

Create relational and full-text queries in both Library and Remote Client-Server mode with the Ickle
query language.

Ickle is string-based and has the following characteristics:
® Queres Java classes and supports Protocol Buffers.
® Queries can target a single entity type.
® Queries can filter on properties of embedded objects, including collections.
® Supports projections, aggregations, sorting, named parameters.
® Supports indexed and non-indexed execution.
® Supports complex boolean expressions.
® Supports full-text queries.
® Does not support computations in expressions, such as user.age > sqrt(user.shoeSize+3).
® Does not support joins.
® Does not support subqueries.

® |ssupported across various JBoss Data Grid APIs. Whenever a Query is produced by the
QueryBuilder is accepted, including continuous queries or in event filters for listeners.

To use the AP, first obtain a QueryFactory to the cache and then call the .create() method, passing in
the string to use in the query. For instance:

QueryFactory gf = Search.getQueryFactory(remoteCache);
Query g = gf.create("from sample_bank_account.Transaction where amount > 20");
NOTE

When using Ickle all fields used with full-text operators must be both Indexed and
Analysed.

22.2.ICKLE QUERY LANGUAGE PARSER SYNTAX
The parser syntax for the Ickle query language has some notable rules:

o Whitespace is not significant.

® Wildcards are not supported in field names.

e A field name or path must always be specified, as there is no default field.

255

Red Hat Data Grid 7.2 Developer Guide

® && and || are accepted instead of AND or ORin both full-text and JPA predicates.

® ! may be usedinstead of NOT.

® A missing boolean operator is interpreted as OR.

® String terms must be enclosed with either single or double quotes.

® Fuzziness and boosting are not accepted in arbitrary order; fuzziness always comes first.
® I=isaccepted instead of <>.

® Boosting cannot be applied to >,>=<,& operators. Ranges may be used to achieve the same
result.

22.3. FUZZY QUERIES

To execute a fuzzy query add ~ along with an integer, representing the distance from the term used,
after the term. For instance

I Query fuzzyQuery = gf.create("from sample_bank_account.Transaction where description :
'cofee'~2");

22.4. RANGE QUERIES

To execute a range query define the given boundaries within a pair of braces, as seen in the following
example:

I Query rangeQuery = gf.create("from sample_bank_account.Transaction where amount : [20 to 50]");

22.5. PHRASE QUERIES

A group of words may be searched by surrounding them in quotation marks, as seen in the following
example:

I Query q = gf.create("from sample_bank_account.Transaction where description : 'bus fare™);

22.6. PROXIMITY QUERIES

To execute a proximity query, finding two terms within a specific distance, add a ~ along with the
distance after the phrase. For instance, the following example will find the words canceling and fee
provided they are not more than 3 words apart:

Query proximityQuery = gf.create("from sample_bank_account.Transaction where description :
'canceling fee'~3 ");

22.7. WILDCARD QUERIES
Both single-character and multi-character wildcard searches may be performed:

® Asingle-character wildcard search may be used with the ? character.

256

CHAPTER 22. BUILDING A QUERY USING THE ICKLE QUERY LANGUAGE

® A multi-character wildcard search may be used with the * character.

To search for text or test the following single-character wildcard search would be used:

I Query wildcardQuery = gf.create("from sample_bank_account.Transaction where description : 'te?t");

To search for test, tests, or tester the following multi-character wildcard search would be used:

I Query wildcardQuery = gf.create("from sample_bank_account.Transaction where description :
Itest*lll);

NOTE

Full-text wildcard queries match terms as they are stored in the index, which varies
depending on the analyzer you use.

You should also be aware that JBoss Data Grid does not analyze arguments in wildcard
operators. Use arguments that resemble the output of the analysis for the index.

For example, most analyzers converts text to lowercase before indexing it. In this case,
any wildcard searches that use arguments with capital letters return no matches.

In general, wildcard queries are also slower than other types of full-text queries and
should be avoided whenever possible.

22.8. REGULAR EXPRESSION QUERIES

Regular expression queries may be performed by specifing a pattern between /. Ickle uses Lucene’s
regular expression syntax, so to search for the words moat or boat the following could be used:

I Query regExpQuery = gf.create("from sample_library.Book where title : /[[mbJoat/");

22.9. BOOSTING QUERIES

Terms may be boosted by adding a » after the term to increase their relevance in a given query, the
higher the boost factor the more relevant the term will be. For instance to search for titles containing
beer and wine with a higher relevance on beer, by a factor of 3, the following could be used:

I Query boostedQuery = gf.create("from sample_library.Book where title : beer*3 OR wine");

257

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 23. REMOTE QUERYING

23.1. REMOTE QUERYING

Red Hat JBoss Data Grid’s Hot Rod protocol allows remote, language neutral querying, using either the
Infinispan Query Domain-specific Language (DSL) or the Ickle query language. Querying in either
method allows remote, language-neutral querying, and is implementable in all languages currently
available for the Hot Rod client.

The Infinispan Query Domain-specific Language

JBoss Data Grid uses its own query language based on an internal DSL. The Infinispan Query DSL
provides a simplified way of writing queries, and is agnostic of the underlying query mechanisms.
Additional information on the Infinispan Query DSL is available at The Infinispan Query DSL.

Ickle

Ickle is a string based query language allowing full-text and relational searches. Additional information on
Ickle is available at Constructing Ickle Queries.

Protobuf Encoding

Google’s Protocol Buffers is used as an encoding format for both storing and querying data. The
Infinispan Query DSL can be used remotely via the Hot Rod client that is configured to use the Protobuf
marshaller. Protocol Buffers are used to adopt a common format for storing cache entries and
marshalling them. Remote clients that need to index and query their stored entities must use the
Protobuf encoding format. It is also possible to store Protobuf entities for the benefit of platform
independence without indexing enabled if it is not required.

23.2. QUERYING COMPARISON

In Library mode, both Lucene Query-based and DSL querying is available. In Remote Client-Server
mode, only Remote Querying using DSL is available. The following table is a feature comparison
between Lucene Query-based querying, Infinispan Query DSL and Remote Querying.

Table 23.1. Embedded querying and Remote querying

Feature Library Library Remote Library Remote
Mode/Lucene Mode/DSL Client-Server Mode/Ickle Client-Server
Query Query Mode/DSL Query Mode/Ickle
Query Query
Indexing Mandatory Optional but Optional but Optional but Optional but
highly highly highly highly
recommended recommended recommended recommended

Index contents

Data Storage
Format

Keyword
Queries

258

Selected fields

Java objects

Yes

Selected fields

Java objects

No

Selected fields

Protocol
buffers

No

Selected fields

Java objects

Yes

Selected fields

Protocol
buffers

Yes

Feature

Range Queries

Fuzzy Queries

Wildcard

Phrase Queries

Combining
Queries

Sorting Results

Filtering
Results

Pagination of
Results

Continuous
Queries

Query
Aggregation
Operations

Library
Mode/Lucene

(@]V1=13Y

Yes

Yes

Yes

Yes

AND, OR, NOT,
SHOULD
Yes

Yes, both
within the
query and as
appended
operator
Yes

No

No

Library
Mode/DSL
Query

Yes

No

Limited to like
queries
(Matches a
wildcard
pattern that
follows JPA
rules).

No

AND, OR, NOT

Yes

Within the
query

Yes

Yes

Yes

Remote
Client-Server
Mode/DSL
Query

Yes

No

Limited to like
queries
(Matches a
wildcard
pattern that
follows JPA
rules).

No

AND, OR, NOT

Yes

Within the
query

Yes

Yes

Yes

CHAPTER 23. REMOTE QUERYING

Library
Mode/Ickle
(@]V1=13Y

Yes

Yes

Yes

Yes

AND, OR, NOT

Yes

Within the
query

Yes

No

Yes

Remote
Client-Server
Mode/Ickle
Query

Yes

Yes

Yes

Yes

AND, OR, NOT

Yes

Within the
query

Yes

No

Yes

23.3. PERFORMING REMOTE QUERIES VIATHE HOT ROD JAVA

CLIENT

Remote querying over Hot Rod can be enabled once the RemoteCacheManager has been configured
with the Protobuf marshaller.

The following procedure describes how to enable remote querying over its caches.

Prerequisites

259

Red Hat Data Grid 7.2 Developer Guide

RemoteCacheManager must be configured to use the Protobuf Marshaller.

Enabling Remote Querying via Hot Rod

260

1. Add the infinispan-remote.jar

The infinispan-remote.jar is an uberjar, and therefore no other dependencies are required for
this feature.

. Enable indexing on the cache configuration

Indexing is not mandatory for Remote Queries, but it is highly recommended because it makes
searches on caches that contain large amounts of data significantly faster. Indexing can be
configured at any time. Enabling and configuring indexing is the same as for Library mode.

Add the following configuration within the cache-container element loated inside the Infinispan
subsystem element.

<!-- A basic example of an indexed local cache
that uses the RAM Lucene directory provider -->
<local-cache name="an-indexed-cache">
<l-- Enable indexing using the RAM Lucene directory provider -->
<indexing index="ALL">
<property name="default.directory_provider">ram</property>
</indexing>
</local-cache>

. Register the Protobuf schema definition files

Register the Protobuf schema definition files by adding them in the ___protobuf_metadata
system cache. The cache key is a string that denotes the file name and the value is .proto file, as
a string. Alternatively, protobuf schemas can also be registered by invoking the
registerProtofile methods of the server’s ProtobufMetadataManager MBean. There is one
instance of this MBean per cache container and is backed by the ___protobuf_metadata, so
that the two approaches are equivalent.

For an example of providing the protobuf schema via____protobuf_metadata system cache,
see Registering a Protocol Buffers schema file.

NOTE

Writing to the ___protobuf_metadata cache requires the ___schema_manager
role be added to the user performing the write.

The following example demonstrates how to invoke the registerProtofile methods of the
ProtobufMetadataManager MBean.

Registering Protobuf schema definition files via JMX

import javax.management.MBeanServerConnection;
import javax.management.ObjectName;

import javax.management.remote.JMXConnector;
import javax.management.remote.JMXServiceURL;

String serverHost = ... // The address of your JDG server

CHAPTER 23. REMOTE QUERYING

int serverdmxPort = ... // The JMX port of your server

String cacheContainerName = ... // The name of your cache container
String schemaFileName = ... // The name of the schema file

String schemaFileContents = ... / The Protobuf schema file contents

JMXConnector jmxConnector = JMXConnectorFactory.connect(new JMXService URL(
"service:jmx:remoting-jmx://" + serverHost + ":" + serverdmxPort));
MBeanServerConnection jmxConnection = jmxConnector.getMBeanServerConnection();

ObjectName protobufMetadataManagerObjName =
new ObjectName("jboss.infinispan:type=RemoteQuery,name="+
ObjectName.quote(cacheContainerName) +
",component=ProtobufMetadataManager");

jmxConnection.invoke(protobufMetadataManagerObjName,
"registerProtofile",
new Object[[{schemaFileName, schemaFileContents},
new String[]{String.class.getName(), String.class.getName()});
jmxConnector.close();

Result

All data placed in the cache is immediately searchable, whether or not indexing is in use. Entries do not
need to be annotated, unlike embedded queries. The entity classes are only meaningful to the Java
client and do not exist on the server.

Once remote querying has been enabled, the QueryFactory can be obtained using the following:

Obtaining the QueryFactory

import org.infinispan.client.hotrod.Search;
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;

import org.infinispan.query.dsl.SortOrder;

remoteCache.put(2, new User("John", 33));
remoteCache.put(3, new User("Alfred", 40));
remoteCache.put(4, new User("Jack", 56));
remoteCache.put(4, new User("Jerry", 20));

QueryFactory gf = Search.getQueryFactory(remoteCache);
Query query = gf.from(User.class)
.orderBy("age", SortOrder.ASC)
.having("name").like("J%")
.and().having("age").gte(33)
build();

List<User> list = query.list();
assertEquals(2, list.size());
assertEquals("John", list.get(0).getName());
assertEquals(33, list.get(0).getAge());
assertEquals("Jack", list.get(1).getName());
assertEquals(56, list.get(1).getAge());

Queries can now be run over Hot Rod similar to Library mode.

261

Red Hat Data Grid 7.2 Developer Guide

23.4. REMOTE QUERYING IN THE HOT ROD C++ CLIENT

For instructions on using remote querying in the Hot Rod C++ Client refer to Performing Remote
Queries in the Hot Rod C++ Client.

23.5.REMOTE QUERYING IN THE HOT ROD C# CLIENT

For instructions on using remote querying in the Hot Rod C# Client refer to Performing Remote Queries
in the Hot Rod C# Client.

23.6. PROTOBUF ENCODING

23.6.1. Protobuf Encoding

The Infinispan Query DSL can be used remotely via the Hot Rod client. In order to do this, protocol
buffers are used to adopt a common format for storing cache entries and marshalling them.

For more information, see https://developers.google.com/protocol-buffers/docs/overview

23.6.2. Storing Protobuf Encoded Entities

Protobuf requires data to be structured. This is achieved by declaring Protocol Buffer message types in
.proto files

For example:

Jibrary.proto

package book_sample;
message Book {
required string title = 1;
required string description = 2;
required int32 publicationYear = 3; // no native Date type available in Protobuf

repeated Author authors = 4;

}

message Author {
required string name = 1;
required string surname = 2;

}

The provided example:

1. An entity named Book is placed in a package named book_sample.

package book_sample;
message Book {

2. The entity declares several fields of primitive types and a repeatable field named authors.
required string title = 1;

required string description = 2;
required int32 publicationYear = 3; // no native Date type available in Protobuf

262

https://developers.google.com/protocol-buffers/docs/overview

CHAPTER 23. REMOTE QUERYING

repeated Author authors = 4;

}

3. The Author message instances are embedded in the Book message instance.

message Author {
required string name = 1;
required string surname = 2;

}

23.6.3. About Protobuf Messages

There are a few important things to note about Protobuf messages:

® Nesting of messages is possible, however the resulting structure is strictly a tree, and never a
graph.

® There is no type inheritance.

e Collections are not supported, however arrays can be easily emulated using repeated fields.

23.6.4. Using Protobuf with Hot Rod

Protobuf can be used with JBoss Data Grid’s Hot Rod using the following two steps:

1. Configure the client to use a dedicated marshaller, in this case, the ProtoStreamMarshaller.
This marshaller uses the ProtoStream library to assist in encoding objects.

IMPORTANT

If the infinispan-remote jar is not in use, then the infinispan-remote-query-

2. Instruct ProtoStream library on how to marshall message types by registering per entity
marshallers.

Use the ProtoStreamMarshaller to Encode and Marshall Messages

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.marshall.ProtoStreamMarshaller;
import org.infinispan.protostream.FileDescriptorSource;

import org.infinispan.protostream.SerializationContext;

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder.addServer()

.host("127.0.0.1").port(11234)

.marshaller(new ProtoStreamMarshaller());

RemoteCacheManager remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

SerializationContext serCtx =
ProtoStreamMarshaller.getSerializationContext(remoteCacheManager);

serCtx.registerProtoFiles(FileDescriptorSource.fromResources("/library.proto"));

client Maven dependency must be added to use the ProtoStreamMarshaller.

263

Red Hat Data Grid 7.2 Developer Guide

serCtx.registerMarshaller(new BookMarshaller());
serCtx.registerMarshaller(new AuthorMarshaller());
// Book and Author classes omitted for brevity

In the provided example,
® The SerializationContext is provided by the ProtoStream library.

e The SerializationContext.registerProtofile method receives the name of a .proto classpath
resource file that contains the message type definitions.

® The SerializationContext associated with the RemoteCacheManager is obtained, then
ProtoStream is instructed to marshall the protobuf types.

NOTE

A RemoteCacheManager has no SerializationContext associated with it unless it was
configured to use ProtoStreamMarshaller.

23.6.5. Registering Per Entity Marshallers

When using the ProtoStreamMarshaller for remote querying purposes, registration of per entity
marshallers for domain model types must be provided by the user for each type or marshalling will fail.
When writing marshallers, it is essential that they are stateless and threadsafe, as a single instance of
them is being used.

The following example shows how to write a marshaller.

BookMarshaller.java

import org.infinispan.protostream.MessageMarshaller;

public class BookMarshaller implements MessageMarshaller<Book> {

@Override

public String getTypeName() {
return "book_sample.Book";

}

@Override

public Class<? extends Book> getJavaClass() {
return Book.class;

}

@Override

public void writeTo(ProtoStreamWriter writer, Book book) throws IOException {
writer.writeString("title", book.getTitle());
writer.writeString("description”, book.getDescription());
writer.writeCollection("authors", book.getAuthors(), Author.class);

}

@Override

public Book readFrom(ProtoStreamReader reader) throws IOException {
String title = reader.readString("title");
String description = reader.readString("description”);
int publicationYear = reader.readInt("publicationYear");
Set<Author> authors = reader.readCollection("authors",

new HashSet<Author>(), Author.class);

264

CHAPTER 23. REMOTE QUERYING

return new Book(title, description, publicationYear, authors);

}
}

Once the client has been set up, reading and writing Java objects to the remote cache will use the entity
marshallers. The actual data stored in the cache will be protobuf encoded, provided that marshallers
were registered with the remote client for all involved types. In the provided example, this would be
Book and Author.

Objects stored in protobuf format are able to be utilized with compatible clients written in different
languages.

23.6.6. Indexing Protobuf Encoded Entities

You can configure indexing for caches on the JBoss Data Grid server after you configure the client to
use Protobuf.

To index entries in a cache, JBoss Data Grid must have access to the message types defined in a
Protobuf schema, which is a file with a.proto extension.

You provide JBoss Data Grid with a Protobuf schema by placingitin the ___protobuf_metadata cache
with a put, putAll, putlfAbsent, or replace operation. Alternatively you can invoke the
ProtobufMetadataManager MBean via JMX.

Both keys and values of the ____protobuf_metadata cache are Strings. The key is the file name and the
value is contents of the schema file.

NOTE

Users that perform write operations to the protobuf_metadata cache require the
__schema_manager role.

Registering a Protocol Buffers schema file

import org.infinispan.client.hotrod.RemoteCache;
import org.infinispan.client.hotrod.RemoteCacheManager;
import org.infinispan.query.remote.client.ProtobufMetadataManagerConstants;

RemoteCacheManager remoteCacheManager = ... // obtain a RemoteCacheManager

// obtain the '__protobuf _metadata' cache
RemoteCache<String, String> metadataCache =
remoteCacheManager.getCache(

ProtobufMetadataManagerConstants.PROTOBUF_METADATA_CACHE_NAME);

String schemaFileContents = ... // this is the contents of the schema file
metadataCache.put("my_protobuf_schema.proto”, schemaFileContents);

The ProtobufMetadataManager is a cluster-wide replicated repository of Protobuf schema definitions
or[path].proto files. For each running cache manager, a separate ProtobufMetadataManager MBean
instance exists, and is backed by the ___protobuf_metadata cache. The ProtobufMetadataManager
ObjectName uses the following pattern:

265

Red Hat Data Grid 7.2 Developer Guide

<jmx domain>:type=RemoteQuery,
name=<cache manager<methodname>putAliname>,
component=ProtobufMetadataManager

The following signature is used by the method that registers the Protobuf schema file:

I void registerProtofile(String name, String contents)

If indexing is enabled for a cache, all fields of Protobuf-encoded entries are indexed. All Protobuf-
encoded entries are searchable, regardless of whether indexing is enabled.

NOTE

Indexing is recommended for improved performance but is not mandatory when using
remote queries. Using indexing improves the searching speed but can also reduce the
insert/update speeds due to the overhead required to maintain the index.

23.6.7. Controlling Field Indexing

After you enable indexing for a cache, all Protobuf type fields are indexed and stored by default.
However, this indexing can degrade performance and result in inefficient querying for Protobuf message
types that contain many fields or very large fields.
You can control which fields are indexed using the @Indexed and @Field annotations directly in the
Protobuf schema in comment definitions on the last line of the comment before the message or field to
annotate.
@Indexed

® Applies to message types only.

® Has a boolean value. The default value is true so specifying @Indexed has the same result

as @Indexed(true). If you specify @Indexed(false) all field annotations are ignored and no

fields are indexed.

® | ets you specify the fields of the message type which are indexed. Using @Indexed(false)
indicates that no fields are to be indexed. As a result, the @Field annotations are ignored.

@Field

® Applies to fields only.

® Has three attributes: index, store, and analyze. Each attribute can have a value of NO or
YES.

o index specifies if the field is indexed, which includes the field in indexed queries.

o store specifies if the field is stored in the index, which allows the field to be used for
projections.

o analyze specifies if the field is included in full text searches.
e Defaults to @Field(index=Index.YES, store=Store.NO, analyze=Analyze.NO).

® Replaces the @IndexedField annotation.

266

CHAPTER 23. REMOTE QUERYING

As of this release, @IndexedField is deprecated. If you include this annotation, JBoss Data
Grid throws a warning message. You can replace @IndexedField annotations with @Field
annotations as follows:

o @IndexedField is equivalent to @Field(store=Store.YES)

o @IndexedField(store=false) is equivalent to @Field

o @IndexedField(index=false, store=false) is equivalent to @Field(index=Index.NO)

IMPORTANT

If you specify the @Indexed and @Field annotations, you must include annotations for
the message type and each field. Otherwise the entire message is not indexed.

23.6.7.1. Example of an Annotated Message Type

The following is an example of a message type that contains the @Indexed and @Field annotations:

/7\'
This type is indexed but not all fields are indexed.
@Indexed

*/

message Note {

/*
This field is indexed but not stored.
@Field

*/

optional string text = 1;

/*
This field is indexed and stored.
@Field(store=Store.YES)

*/

optional string author = 2;

/*
This field is stored but not indexed.
@Field(index=Index.NO, store=Store.YES)
*/
optional bool isRead = 3;

/*
This field is not indexed or stored.
@°Field(index=Index.NO)
*/
optional int32 priority;
}

23.6.7.2. Disabling Indexing for All Protobuf Message Types

You can disable indexing for all Protobuf message types that are not annotated. Set the value of the
indexed_by_default Protobuf schema option to false at the start of each schema file, as follows:

267

Red Hat Data Grid 7.2 Developer Guide
I option indexed_by_default = false; //Disable indexing of all types that are not annotated for indexing.

23.6.8. Defining Protocol Buffers Schemas With Java Annotations

You can declare Protobuf metadata using Java annotations. Instead of providing a MessageMarshaller
implementation and a .proto schema file, you can add minimal annotations to a Java class and its fields.

The objective of this method is to marshal Java objects to protobuf using the ProtoStream library. The
ProtoStream library internally generates the marshallar and does not require a manually implemented
one. The Java annotations require minimal information such as the Protobuf tag number. The rest is
inferred based on common sense defaults (Protobuf type, Java collection type, and collection element
type) and is possible to override.

The auto-generated schema is registered with the SerializationContext and is also available to the
users to be used as a reference to implement domain model classes and marshallers for other languages.

The following are examples of Java annotations

User.Java

package sample;

import org.infinispan.protostream.annotations.ProtoEnum;
import org.infinispan.protostream.annotations.ProtoEnumValue;
import org.infinispan.protostream.annotations.ProtoField;
import org.infinispan.protostream.annotations.ProtoMessage;

@ProtoMessage(name = "ApplicationUser")
public class User {

@ProtoEnum(name = "Gender")

public enum Gender {
@ProtoEnumValue(number = 1, name = "M")
MALE,

@ProtoEnumValue(number = 2, name = "F")
FEMALE

}

@ProtoField(number = 1, required = true)
public String name;

@ProtoField(number = 2)
public Gender gender;

Note.Java

package sample;

import org.infinispan.protostream.annotations.ProtoDoc;
import org.infinispan.protostream.annotations.ProtoField;

@ProtoDoc("@Indexed")

268

CHAPTER 23. REMOTE QUERYING

public class Note {
private String text;
private User author;

@ProtoDoc("@Field")

@ProtoField(number = 1)

public String getText() {
return text;

}

public void setText(String text) {
this.text = text;

}

@ProtoDoc("@Field(store = Store.YES)")
@ProtoField(number = 2)
public User getAuthor() {

return author;

}

public void setAuthor(User author) {
this.author = author;

}
}

ProtoSchemaBuilderDemo.Java

import org.infinispan.protostream.SerializationContext;

import org.infinispan.protostream.annotations.ProtoSchemaBuilder;
import org.infinispan.client.hotrod.RemoteCacheManager;

import org.infinispan.client.hotrod.marshall.ProtoStreamMarshaller;

RemoteCacheManager remoteCacheManager = ... // we have a RemoteCacheManager
SerializationContext serCtx =
ProtoStreamMarshaller.getSerializationContext(remoteCacheManager);

// generate and register a Protobuf schema and marshallers based
// on Note class and the referenced classes (User class)
ProtoSchemaBuilder protoSchemaBuilder = new ProtoSchemaBuilder();
String generatedSchema = protoSchemaBuilder
fileName("sample_schema.proto”)
.packageName("sample_package")
.addClass(Note.class)
.build(serCtx);

// the types can be marshalled now
assertTrue(serCtx.canMarshall(User.class));
assertTrue(serCtx.canMarshall(Note.class));
assertTrue(serCtx.canMarshall(User.Gender.class));

// display the schema file
System.out.printin(generatedSchema);

269

Red Hat Data Grid 7.2 Developer Guide

The following is the .proto file that is generated by the ProtoSchemaBuilderDemo.java example.

Sample_Schema.Proto

package sample_package;

/* @Indexed */
message Note {

/* @Field */
optional string text = 1;

/* @Field(store = Store.YES) */
optional ApplicationUser author = 2;

}

message ApplicationUser {

enum Gender {
M=1;
F=2;

}

required string name = 1;
optional Gender gender = 2;

}

The following table lists the supported Java annotations with its application and parameters.

Table 23.2. Java Annotations

Annotation Applies To Purpose Requirement Parameters
@ProtoDoc Class/Field/Enum/ Specifies the Optional A single String
Enum member documentation parameter, the
comment that will documentation
be attached to the text
generated

Protobuf schema
element (message
type, field
definition, enum
type, enum value

definition)
@ProtoMessag Class Specifies the name Optional name (String), the
e of the generated name of the
message type. If generated
missing, the class message type; if
name if used missing the Java
instead class name is used

by default

270

Annotation

Applies To

CHAPTER 23. REMOTE QUERYING

Purpose Requirement

Parameters

@ProtoField

@ProtoEnum

Field, Getter or
Setter

Enum

Specifies the Required
Protobuf field
number and its
Protobuf type.
Also indicates if
the field is
repeated, optional
or required and its
(optional) default
value. If the Java
field type is an
interface or an
abstract class, its
actual type must
be indicated. If the
field is repeatable
and the declared
collection type is
abstract then the
actual collection
implementation
type must be
specified. If this
annotation is
missing, the field is
ignored for
marshalling (it is
transient). A class
must have at least
one @ProtoField
annotated field to
be considered
Protobuf
marshallable.

Specifies the name Optional
of the generated

enum type. If

missing, the Java

enum name if used

instead

number (int,
mandatory), the
Protobuf number
type
(org.infinispan.pro
tostream.descript
ors.Type,
optional), the
Protobuf type, it
can usually be
inferred required
(boolean,
optional)name
(String, optional),
the Protobuf
namejavaType
(Class, optional),
the actual type,
only needed if
declared typeis
abstract
collectionlmpleme
ntation (Class,
optional), the
actual collection
type, only needed
if declared type is
abstract
defaultValue
(String, optional),
the string must
have the proper
format according
to the Java field

type

name (String), the
name of the
generated enum
type; if missing the
Java enum name
is used by default

271

Red Hat Data Grid 7.2 Developer Guide

Annotation Applies To Purpose Requirement Parameters

@ProtoEnumVa Enum member Specifies the Required number (int,
lue numeric value of mandatory), the
the corresponding Protobuf number
Protobuf enum name (String), the
value Protobuf name; if
missing the name
of the Java

member is used

NOTE

The @ProtoDoc annotation can be used to provide documentation comments in the
generated schema and also allows to inject the @Indexed and @Field annotations where
needed. See Custom Fields Indexing with Protobuf for additional information.

-

272

PART Ill. SECURING DATA IN RED HAT JBOSS DATA GRID

PART Illl. SECURING DATA IN RED HAT JBOSS DATA GRID

273

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 24. SECURING DATA IN RED HAT JBOSS DATA
GRID

In Red Hat JBoss Data Grid, data security can be implemented in the following ways:

Role-based Access Control

JBoss Data Grid features role-based access control for operations on designated secured caches. Roles
can be assigned to users who access your application, with roles mapped to permissions for cache and
cache-manager operations. Only authenticated users are able to perform the operations that are
authorized for their role.

In Library mode, data is secured via role-based access control for CacheManagers and Caches, with
authentication delegated to the container or application. In Remote Client-Server mode, JBoss Data
Grid is secured by passing identity tokens from the Hot Rod client to the server, and role-based access
control of Caches and CacheManagers.

Node Authentication and Authorization

Node-level security requires new nodes or merging partitions to authenticate before joining a cluster.
Only authenticated nodes that are authorized to join the cluster are permitted to do so. This provides
data protection by preventing unauthorized servers from storing your data.

Encrypted Communications Within the Cluster

JBoss Data Grid increases data security by supporting encrypted communications between the nodes in
a cluster by using a user-specified cryptography algorithm, as supported by Java Cryptography
Architecture (JCA).

JBoss Data Grid also provides audit logging for operations, and the ability to encrypt communication
between the Hot Rod Client and Server using Transport Layer Security (TLS/SSL).

274

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY:
AUTHORIZATION AND AUTHENTICATION

25.1. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND
AUTHENTICATION

Red Hat JBoss Data Grid is able to perform authorization on CacheManagers and Caches. JBoss Data
Grid authorization is built on standard security features available in a JDK, such as JAAS and the
SecurityManager.

If an application attempts to interact with a secured CacheManager and Cache, it must provide an
identity which JBoss Data Grid's security layer can validate against a set of required roles and
permissions. Once validated, the client is issued a token for subsequent operations. Where access is
denied, an exception indicating a security violation is thrown.

When a cache has been configured for with authorization, retrieving it returns an instance of
SecureCache. SecureCache is a simple wrapper around a cache, which checks whether the "current
user" has the permissions required to perform an operation. The "current user" is a Subject associated
with the AccessControlContext.

JBoss Data Grid maps Principals names to roles, which in turn, represent one or more permissions. The
following diagram represents these relationships:

Figure 25.1. Roles and Permissions Mapping

Subject Role CacheManager/
Cache
Principal Permission Role
Mapper > 4
Principal Permission Role
Principal Permission Role

25.2. PERMISSIONS

Access to a CacheManager or a Cache is controlled using a set of required permissions. Permissions
control the type of action that is performed on the CacheManager or Cache, rather than the type of
data being manipulated. Some of these permissions can apply to specifically name entities, such as a
named cache. Different types of permissions are available depending on the entity.

Table 25.1. CacheManager Permissions

275

Red Hat Data Grid 7.2 Developer Guide

Permission Function Description

CONFIGURATION defineConfiguration Whether a new cache
configuration can be defined.

LISTEN addListener Whether listeners can be
registered against a cache
manager.

LIFECYCLE stop, start Whether the cache manager can

be stopped or started
respectively.

ALL A convenience permission which
includes all of the above.

Table 25.2. Cache Permissions

Permission Function Description

READ get, contains Whether entries can be retrieved
from the cache.

WRITE put, putlfAbsent, replace, remove, Whether data can be
evict written/replaced/removed/evicte
d from the cache.

EXEC distexec, mapreduce Whether code execution can be
run against the cache.

LISTEN addListener Whether listeners can be
registered against a cache.

BULK_READ keySet, values, entrySet,query Whether bulk retrieve operations
can be executed.

BULK_WRITE clear, putAll Whether bulk write operations can
be executed.

LIFECYCLE start, stop Whether a cache can be started /
stopped.

276

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

Permission Function Description

ADMIN getVersion, addInterceptor*, Whether access to the underlying
removelnterceptor, components/internal structures is
getlnterceptorChain, allowed.

getEvictionManager,
getComponentRegistry,
getDistributionManager,
getAuthorizationManager, evict,
getRpcManager,
getCacheConfiguration,
getCacheManager,
getinvocationContextContainer,
setAvailability, getDataContainer,
getStats, getXAResource

ALL A convenience permission which
includes all of the above.

ALL_READ Combines READ and
BULK_READ.
ALL_WRITE Combines WRITE and
BULK_WRITE.
NOTE

Some permissions may need to be combined with others in order to be useful. For
example, EXEC with READ or with WRITE.

25.3. ROLE MAPPING

In order to convert the Principals in a Subject into a set of roles used for authorization, a
PrincipalRoleMapper must be specified in the global configuration. Red Hat JBoss Data Grid ships with
three mappers, and also allows you to provide a custom mapper.

Table 25.3. Mappers

Mapper Name NEVE XML Description
IdentityRoleMapper org.infinispan.security.im <identity-role-mapper Uses the Principal name
pl.ldentityRoleMapper /> as the role name.

277

Red Hat Data Grid 7.2 Developer Guide

Mapper Name NEVE] XML Description
CommonNameRoleMap org.infinispan.security.im <common-name-role- If the Principal name is a
per pl.CommonRoleMapper mapper /> Distinguished Name

(DN), this mapper
extracts the Common
Name (CN) and uses it
as arole name. For
example the DN
cn=managers,ou=pe
ople,dc=example,dc
=com will be mapped to
the role managers.

ClusterRoleMapper org.infinispan.security.im <cluster-role-mapper /> Uses the

pl.ClusterRoleMapper ClusterRegistry to
store principal to role
mappings. This allows
the use of the CLI's
GRANT and DENY
commands to
add/remove roles to a

Principal.
Custom Role Mapper <custom-role-mapper Supply the fully-
class="a.b.c" /> qualified class name of

an implementation of
org.infinispan.securi
ty.impl.PrincipalRole
Mapper

25.4. CONFIGURING AUTHENTICATION AND ROLE MAPPING USING
LOGIN MODULES

When using the authentication login-module for querying roles from LDAP, you must implement your
own mapping of Principals to Roles, as custom classes are in use. The following example demonstrates
how to map a principal obtained from a login-modaule to a role. It maps user principal name to a role,
performing a similar action to the IdentityRoleMapper:

Mapping a Principal

public class SimplePrincipalGroupRoleMapper implements PrincipalRoleMapper {
@Override
public Set<String> principalToRoles(Principal principal) {
if (principal instanceof SimpleGroup) {
Enumeration<Principal> members = ((SimpleGroup) principal).members();
if (members.hasMoreElements()) {
Set<String> roles = new HashSet<String>();
while (members.hasMoreElements()) {
Principal innerPrincipal = members.nextElement();
if (innerPrincipal instanceof SimplePrincipal) {
SimplePrincipal sp = (SimplePrincipal) innerPrincipal;

278

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

roles.add(sp.getName());

}
}
return roles;
}
}
return null;
}
}

IMPORTANT

For information on configuring an LDAP server, or specifying users and roles in an LDAP
server, refer to the Red Hat Directory Server Administration Guide .

25.5. CONFIGURING RED HAT JBOSS DATA GRID FOR
AUTHORIZATION

Authorization is configured at two levels: the cache container (CacheManager), and at the single cache.
Each cache container determines:

® whether to use authorization.

® 3 class which will map principals to a set of roles.

® asetof named roles and the permissions they represent.
You can choose to use only a subset of the roles defined at the container level.

Roles

Roles may be applied on a cache-per-cache basis, using the roles defined at the cache-container level,
as follows:

IMPORTANT

Any cache that is intended to require authentication must have a listing of roles defined;
otherwise authentication is not enforced as the no-anonymous policy is defined by the
cache’s authorization.

Programmatic CacheManager Authorization (Library Mode)

The following example shows how to set up the same authorization parameters for Library mode using
programmatic configuration:

CacheManager Authorization Programmatic Configuration

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
global
.security()
.authorization()
.principalRoleMapper(new IdentityRoleMapper())
.role("admin")
.permission(CachePermission.ALL)

279

Red Hat Data Grid 7.2 Developer Guide

.role("supervisor")
.permission(CachePermission.EXEC)
.permission(CachePermission.READ)
.permission(CachePermission.WRITE)

.role("reader")
.permission(CachePermission.READ);

ConfigurationBuilder config = new ConfigurationBuilder();
config
.security()
.enable()
.authorization()

.role("admin")

.role("supervisor")

.role("reader");

IMPORTANT

The REST protocol is not supported for use with authorization, and any attempts to
access a cache with authorization enabled will result in a SecurityException.

25.6. DATASECURITY FOR LIBRARY MODE

25.6.1. Subject and Principal Classes

To authorize access to resources, applications must first authenticate the request’s source. The JAAS
framework defines the term subject to represent a request’s source. The Subject class is the central
class in JAAS. A Subject represents information for a single entity, such as a person or service. It
encompasses the entity’s principals, public credentials, and private credentials. The JAAS APIs use the
existing Java 2 java.security.Principal interface to represent a principal, which is a typed name.

During the authentication process, a subject is populated with associated identities, or principals. A
subject may have many principals. For example, a person may have a name principal (John Doe), a social
security number principal (123-45-6789), and a user name principal (johnd), all of which help distinguish
the subject from other subjects. To retrieve the principals associated with a subject, two methods are
available:

public Set getPrincipals() {...}

public Set getPrincipals(Class ¢) {...}
getPrincipals() returns all principals contained in the subject. getPrincipals(Class c) returns only those
principals that are instances of class ¢ or one of its subclasses. An empty set is returned if the subject
has no matching principals.

NOTE

The java.security.acl.Group interface is a sub-interface of java.security.Principal, so
an instance in the principals set may represent a logical grouping of other principals or
groups of principals.

25.6.2. Obtaining a Subject

In order to use a secured cache in Library mode, you must obtain a javax.security.auth.Subject. The
Subject represents information for a single cache entity, such as a person or a service.

280

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

Red Hat JBoss Data Grid allows a JAAS Subject to be obtained either by using your container’s features,
or by using a third-party library.

In JBoss containers, this can be done using the following:

I Subject subject = SecurityContextAssociation.getSubject();

The Subject must be populated with a set of Principals, which represent the user and groups it belongs
to in your security domain, for example, an LDAP or Active Directory.

The Java EE API allows retrieval of a container-set Principal through the following methods:
e Servlets: ServlietRequest.getUserPrincipal()
e EJUBs: EJBContext.getCallerPrincipal()
® MessageDrivenBeans: MessageDrivenContext.getCallerPrincipal()

The mapper is then used to identify the principals associated with the Subject and convert them into
roles that correspond to those you have defined at the container level.

A Principal is only one of the components of a Subject, which is retrieved from the
java.security.AccessControlContext. Either the container sets the Subject on the
AccessControlContext, or the user must map the Principal to an appropriate Subject before wrapping
the call to the JBoss Data Grid APl using a Security.doAs() method.

Once a Subject has been obtained, the cache can be interacted with in the context of a PrivilegedAction.

Obtaining a Subject

import org.infinispan.security.Security;

Security.doAs(subject, new PrivilegedExceptionAction<Void>() {
public Void run() throws Exception {

cache.put("key", "value");

}
hE

The Security.doAs() method is in place of the typical Subject.doAs() method. Unless the
AccessControlContext must be modified for reasons specific to your application’s security model,
using Security.doAs() provides a performance advantage.

To obtain the current Subject, use Security.getSubject();, which will retrieve the Subject from either
the JBoss Data Grid context, or from the AccessControlContext.

25.6.3. Subject Authentication

Subject Authentication requires a JAAS login. The login process consists of the following points:

1. An application instantiates a LoginContext and passes in the name of the login configuration
and a CallbackHandler to populate the Callback objects, as required by the configuration
LoginModules.

2. The LoginContext consults a Configuration to load all the LoginModules included in the

named login configuration. If no such named configuration exists the other configuration is used
as a default.

281

Red Hat Data Grid 7.2 Developer Guide

3. The application invokes the LoginContext.login method.

4. The login method invokes all the loaded LoginModules. As each LoginModule attempts to
authenticate the subject, it invokes the handle method on the associated CallbackHandler to
obtain the information required for the authentication process. The required information is
passed to the handle method in the form of an array of Callback objects. Upon success, the
LoginModules associate relevant principals and credentials with the subject.

5. The LoginContext returns the authentication status to the application. Success is represented
by a return from the login method. Failure is represented through a LoginException being
thrown by the login method.

6. If authentication succeeds, the application retrieves the authenticated subject using the
LoginContext.getSubject method.

7. After the scope of the subject authentication is complete, all principals and related information
associated with the subject by the login method can be removed by invoking the
LoginContext.logout method.

The LoginContext class provides the basic methods for authenticating subjects and offers a way to
develop an application that is independent of the underlying authentication technology. The
LoginContext consults a Configuration to determine the authentication services configured for a
particular application. LoginModule classes represent the authentication services. Therefore, you can
plug different login modules into an application without changing the application itself. The following
code shows the steps required by an application to authenticate a subject.

CallbackHandler handler = new MyHandler();
LoginContext Ic = new LoginContext("some-config", handler);

try {
Ic.login();
Subject subject = Ic.getSubject();

} catch(LoginException €) {
System.out.printin("authentication failed");
e.printStackTrace();

}

// Perform work as authenticated Subject
...

// Scope of work complete, logout to remove authentication info
try {

Ic.logout();
} catch(LoginException €) {

System.out.printin("logout failed");

e.printStackTrace();

}

// A sample MyHandler class
class MyHandler
implements CallbackHandler
{
public void handle(Callback]] callbacks) throws
IOException, UnsupportedCallbackException
{

for (int i = 0; i < callbacks.length; i++) {

282

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

if (callbacks][i] instanceof NameCallback) {

NameCallback nc = (NameCallback)callbacks]i];
nc.setName(username);

} else if (callbacks|i] instanceof PasswordCallback) {
PasswordCallback pc = (PasswordCallback)callbacks]i];
pc.setPassword(password);

} else {
throw new UnsupportedCallbackException(callbacksi],

"Unrecognized Callback");

Developers integrate with an authentication technology by creating an implementation of the
LoginModule interface. This allows an administrator to plug different authentication technologies into
an application. You can chain together multiple LoginModules to allow for more than one
authentication technology to participate in the authentication process. For example, one LoginModule
may perform user name/password-based authentication, while another may interface to hardware
devices such as smart card readers or biometric authenticators.

The life cycle of a LoginModule is driven by the LoginContext object against which the client creates
and issues the login method. The process consists of two phases. The steps of the process are as
follows:

e The LoginContext creates each configured LoginModule using its public no-arg constructor.

® FEach LoginModule is initialized with a call to its initialize method. The Subject argumentis
guaranteed to be non-null. The signature of the initialize method is: public void
initialize(Subject subject, CallbackHandler callbackHandler, Map sharedState, Map
options)

® The login method is called to start the authentication process. For example, a method
implementation might prompt the user for a user name and password and then verify the
information against data stored in a naming service such as NIS or LDAP. Alternative
implementations might interface to smart cards and biometric devices, or simply extract user
information from the underlying operating system. The validation of user identity by each
LoginModule is considered phase 1 of JAAS authentication. The signature of the login method
is boolean login() throws LoginException . A LoginException indicates failure. A return value
of true indicates that the method succeeded, whereas a return value of false indicates that the
login module should be ignored.

e |f the LoginContext's overall authentication succeeds, commit is invoked on each
LoginModule. If phase 1succeeds for a LoginModule, then the commit method continues with
phase 2 and associates the relevant principals, public credentials, and/or private credentials
with the subject. If phase 1fails for a LoginModule, then commit removes any previously stored
authentication state, such as user names or passwords. The signature of the commit method is:
boolean commit() throws LoginException . Failure to complete the commit phase is indicated
by throwing a LoginException. A return of true indicates that the method succeeded, whereas
a return of false indicates that the login module should be ignored.

e |f the LoginContext's overall authentication fails, then the abort method is invoked on each

LoginModule. The abort method removes or destroys any authentication state created by the
login or initialize methods. The signature of the abort method is boolean abort() throws

283

Red Hat Data Grid 7.2 Developer Guide

LoginException . Failure to complete the abort phase is indicated by throwing a
LoginException. A return of true indicates that the method succeeded, whereas a return of
false indicates that the login module should be ignored.

® Toremove the authentication state after a successful login, the application invokes logout on
the LoginContext. This in turn results in a logout method invocation on each LoginModule.
The logout method removes the principals and credentials originally associated with the subject
during the commit operation. Credentials should be destroyed upon removal. The signature of
the logout method is: boolean logout() throws LoginException . Failure to complete the
logout process is indicated by throwing a LoginException. A return of true indicates that the
method succeeded, whereas a return of false indicates that the login module should be ignored.

When a LoginModule must communicate with the user to obtain authentication information, it uses a
CallbackHandler object. Applications implement the interface and pass it to the LoginContext, which
send the authentication information directly to the underlying login modules.

Login modules use the CallbackHandler both to gather input from users, such as a password or smart
card PIN, and to supply information to users, such as status information. By allowing the application to
specify the CallbackHandler, underlying LoginModules remain independent from the different ways
applications interact with users. For example, a CallbackHandler's implementation for a GUI application
might display a window to solicit user input. On the other hand, a CallbackHandler implementation for a
non-GUI environment, such as an application server, might simply obtain credential information by using
an application server API. The interface has one method to implement:

void handle(Callback]] callbacks)
throws java.io.lOException,
UnsupportedCallbackException;

The Callback interface is the last authentication class we will look at. This is a tagging interface for
which several default implementations are provided, including the NameCallback and
PasswordCallback used in an earlier example. A LoginModule uses a Callback to request information
required by the authentication mechanism. LoginModules pass an array of Callbacks directly to the
CallbackHandler.handle method during the authentication’s login phase. If a CallbackHandler does
not understand how to use a Callback object passed into the handle method, it throws an
UnsupportedCallbackException to abort the login call.

25.7. SECURING INTERFACES

25.7.1. Securing Interfaces
While the Hot Rod interface may be secured programmatically, both the memcached and REST

interfaces must be secured declaratively. Instructions for securing these interfaces are located in the
JBoss Data Grid Administration and Configuration Guide .

25.7.2. Hot Rod Interface Security

25.7.2.1. Encryption of communication between Hot Rod Server and Hot Rod client

Hot Rod can be encrypted using TLS/SSL, and has the option to require certificate-based client
authentication.

Use the following procedure to secure the Hot Rod connector using SSL.

Secure Hot Rod Using SSL/TLS

284

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;
import org.infinispan.client.hotrod.RemoteCache;

import org.infinispan.client.hotrod.RemoteCacheManager;

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.impl.ConfigurationProperties;

[...]
public class SslConfiguration {

public static final String ISPN_IP ="127.0.0.1";
public static final String SERVER_NAME = "node0";
public static final String SASL_MECH = "EXTERNAL";

private static final String KEYSTORE_PATH = "./keystore_client.jks";
private static final String KEYSTORE_PASSWORD = "secret";

private static final String TRUSTSTORE_PATH = "./truststore_client.jks";
private static final String TRUSTSTORE_PASSWORD = "secret";

SslConfiguration(boolean enabled,
String keyStoreFileName,
char[] keyStorePassword,
SSLContext sslContext,
String trustStoreFileName,
charf] trustStorePassword) {
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer()
.host(ISPN_IP)
.port(ConfigurationProperties. DEFAULT_HOTROD_PORT);
//setup auth
builder.security()
.authentication()
.serverName(SERVER_NAME)
.saslMechanism(SASL_MECH)
.enable()
.callbackHandler(new VoidCallbackHandler());
//setup encrypt
builder.security()
.ssl()
.enable()
.keyStoreFileName(KEYSTORE_PATH)
.keyStorePassword(KEYSTORE_PASSWORD.toCharArray())
trustStoreFileName(TRUSTSTORE_PATH)
trustStorePassword(TRUSTSTORE_PASSWORD.toCharArray());

RemoteCacheManager cacheManager = new RemoteCacheManager(builder.build());
RemoteCache<Object, Object> cache =
cacheManager.getCache(RemoteCacheManager.DEFAULT_CACHE_NAME);

}

private static class VoidCallbackHandler implements CallbackHandler {
@Override
public void handle(Callback]] clbcks) throws IOException, UnsupportedCallbackException {

285

Red Hat Data Grid 7.2 Developer Guide

IMPORTANT

To prevent plain text passwords from appearing in configurations or source codes, plain
text passwords should be changed to Vault passwords. For more information about how
to set up Vault passwords, see the Password Vault section of the JBoss Enterprise
Application Platform security documentation. .

25.7.2.2. Securing Hot Rod to LDAP Server using SSL

When connecting to an LDAP server with SSL enabled it may be necessary to specify a trust store or
key store containing the appropriate certificates.

PLAIN authentication over SSL may be used for Hot Rod client authentication against an LDAP server.
The Hot Rod client sends plain text credentials to the JBoss Data Grid server over SSL, and the server
subsequently verifies the provided credentials against the specified LDAP server. In addition, a secure
connection must be configured between the JBoss Data Grid server and the LDAP server. Refer to the
JBoss Data Grid Administration and Configuration Guide for additional information on configuring the
server to communicate to an LDAP backend. The example below demonstrates configuring PLAIN
authentication over SSL on the Hot Rod client side:

Hot Rod Client Authentication to LDAP Server

import static org.infinispan.demo.util. CacheOps.dumpCache;
import static org.infinispan.demo.util. CacheOps.onCache;
import static org.infinispan.demo.util. CacheOps.putTestKV;
import static org.infinispan.demo.util. CmdArgs.LOGIN_KEY;
import static org.infinispan.demo.util. CmdArgs.PASS_KEY;
import static org.infinispan.demo.util. CmdArgs.getCredentials;

import java.util.Map;
import javax.net.ssl.SSLContext;

import org.infinispan.client.hotrod.RemoteCache;

import org.infinispan.client.hotrod.RemoteCacheManager;

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.impl.ConfigurationProperties;
import org.infinispan.commons.util.SslIContextFactory;

import org.infinispan.demo.util.SaslUtils.SimpleLoginHandler;

public class HotRodPlainAuthOverSSL {
public static final String ISPN_IP ="127.0.0.1";
public static final String SERVER_NAME = "node0";
public static final String SASL_MECH = "PLAIN";
private static final String SECURITY_REALM = "ApplicationRealm";

private static final String TRUSTSTORE_PATH = "./truststore_client.jks";
private static final String TRUSTSTORE_PASSWORD = "secret";

public static void main(String[] args) {

286

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/how_to_configure_server_security/#password_vault

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

Map<String, String> userArgs = null;

try {
userArgs = getCredentials(args);

} catch (lllegalArgumentException e) {
System.err.printin(e.getMessage())
System.err.printin(

"Invalid credentials format, plase provide credentials (and optionally cache name) with --
cache=<cache> --user=<user> --password=<password>");
System.exit(1);
}

)

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer().host(ISPN_IP).port(ConfigurationProperties. DEFAULT_HOTROD_PORT);

//set up PLAIN auth

builder.security().authentication().serverName(SERVER_NAME).sasIMechanism(SASL_MECH).enable
().callbackHandler(

new SimpleLoginHandler(userArgs.get(LOGIN_KEY), userArgs.get(PASS_KEY),
SECURITY_REALM));

//set up SSL

SSLContext cont = SslContextFactory.getContext(null, null, TRUSTSTORE_PATH,
TRUSTSTORE_PASSWORD.toCharArray());

builder.security().ssl().sslContext(cont).enable();

RemoteCacheManager cacheManager = new RemoteCacheManager(builder.build());
RemoteCache<Object, Object> cache =
cacheManager.getCache(RemoteCacheManager.DEFAULT_CACHE_NAME);

onCache(cache, putTestKV.andThen(dumpCache));

cacheManager.stop();
System.exit(0);
!

IMPORTANT

To prevent plain text passwords from appearing in configurations or source codes, plain
text passwords should be changed to Vault passwords. For more information about how
to set up Vault passwords, see the Red Hat Enterprise Application Platform Security Guide

25.7.2.3. User Authentication over Hot Rod Using SASL

25.7.2.3.1. User Authentication over Hot Rod Using SASL

User authentication over Hot Rod can be implemented using the following Simple Authentication and
Security Layer (SASL) mechanisms:

® PLAIN is the least secure mechanism because credentials are transported in plain text format.
However, it is also the simplest mechanism to implement. This mechanism can be used in
conjunction with encryption (SSL) for additional security.

287

Red Hat Data Grid 7.2 Developer Guide

e DIGEST-MDS5 is a mechanism than hashes the credentials before transporting them. As a result,
it is more secure than the PLAIN mechanism.

® GSSAPI is a mechanism that uses Kerberos tickets. As a result, it requires a correctly configured
Kerberos Domain Controller (for example, Microsoft Active Directory).

e EXTERNAL is a mechanism that obtains the required credentials from the underlying transport
(for example, from a X.509 client certificate) and therefore requires client certificate encryption
to work correctly.

25.7.2.3.2. Configure Hot Rod Authentication (GSSAPI/Kerberos)

Use the following steps to set up Hot Rod Authentication using the SASL GSSAPI/Kerberos mechanism:

Configure SASL GSSAPI/Kerberos Authentication - Client-side Configuration

288

1. Ensure that the Server-Side configuration has been completed. As this is configured
declaratively this configuration is found in the JBoss Data Grid Administration and Configuration
Guide .

2. Define alogin module in a login configuration file (gss.conf) on the client side:
[source],options="nowrap"

GssExample {
com.sun.security.auth.module.Krb5LoginModule required client=TRUE;

1. Set up the following system properties:

java.security.auth.login.config=gss.conf
java.security.krb5.conf=/etc/krb5.conf

NOTE

The krb5.conffile is dependent on the environment and must point to the
Kerberos Key Distribution Center.

2. Implement the CallbackHandler:

public class MyCallbackHandler implements CallbackHandler {
final private String username;
final private char[] password;
final private String realm;

public MyCallbackHandler() { }

public MyCallbackHandler (String username, String realm, char[] password) {
this.username = username;
this.password = password;
this.realm = realm;

}

@Override
public void handle(Callback[] callbacks) throws IOException,

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

UnsupportedCallbackException {
for (Callback callback : callbacks) {

if (callback instanceof NameCallback) {
NameCallback nameCallback = (NameCallback) callback;
nameCallback.setName(username);

} else if (callback instanceof PasswordCallback) {
PasswordCallback passwordCallback = (PasswordCallback) callback;
passwordCallback.setPassword(password);

} else if (callback instanceof AuthorizeCallback) {
AuthorizeCallback authorizeCallback = (AuthorizeCallback) callback;
authorizeCallback.setAuthorized(authorizeCallback.getAuthenticationID().equals(

authorizeCallback.getAuthorizationlD()));

} else if (callback instanceof RealmCallback) {
RealmCallback realmCallback = (RealmCallback) callback;
realmCallback.setText(realm);

} else {
throw new UnsupportedCallbackException(callback);

}

}
}
}

3. Configure the Hot Rod Client, as seen in the below snippet:

LoginContext Ic = new LoginContext("GssExample", new MyCallbackHandler("krb_user",
"krb_password".toCharArra()));

Ic.login();

Subject clientSubject = Ic.getSubject();

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder.addServer()
.host("127.0.0.1")
.port(11222)
.socketTimeout(1200000)
.security()
.authentication()
.enable()
.serverName("infinispan-server")
.sasIMechanism("GSSAPI")
.clientSubject(clientSubject)
.callbackHandler(new MyCallbackHandler());
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

25.7.2.3.3. Configure Hot Rod Authentication (MD5)

Use the following steps to set up Hot Rod Authentication using the SASL MD5 mechanism:
1. Ensure that the server has been configured for MD5 Authentication. Instructions for performing
this configuration on the server are found in JBoss Data Grid's Administration and Configuration

Guide .

2. Implement the CallbackHandler:

I public class MyCallbackHandler implements CallbackHandler {

289

Red Hat Data Grid 7.2 Developer Guide

final private String username;
final private char[] password;
final private String realm;

public MyCallbackHandler (String username, String realm, char[] password) {
this.username = username;
this.password = password;
this.realm = realm;

}

@Override
public void handle(Callback][] callbacks) throws IOException,
UnsupportedCallbackException {
for (Callback callback : callbacks) {
if (callback instanceof NameCallback) {
NameCallback nameCallback = (NameCallback) callback;
nameCallback.setName(username);
} else if (callback instanceof PasswordCallback) {
PasswordCallback passwordCallback = (PasswordCallback) callback;
passwordCallback.setPassword(password);
} else if (callback instanceof AuthorizeCallback) {
AuthorizeCallback authorizeCallback = (AuthorizeCallback) callback;
authorizeCallback.setAuthorized(authorizeCallback.getAuthenticationlD().equals(
authorizeCallback.getAuthorizationlD()));
} else if (callback instanceof RealmCallback) {
RealmCallback realmCallback = (RealmCallback) callback;
realmCallback.setText(realm);
}else {
throw new UnsupportedCallbackException(callback);
}
}
}
}

3. Connect the client to the configured Hot Rod connector as seen below:

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder.addServer()
.host("127.0.0.1")
.port(11222)
.socketTimeout(1200000)
.security()
.authentication()
.enable()
.serverName("myhotrodserver")
.saslMechanism("DIGEST-MD5")
.callbackHandler(new MyCallbackHandler("myuser", "ApplicationRealm",
"qwer1234!".toCharArray()));
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

25.7.2.3.4. Configure Hot Rod C++ Authentication (GSSAPI/Kerberos)

Use the following steps to set up Hot Rod C++ client authentication using the SASL GSSAPI/Kerberos
mechanism:

290

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

Configure SASL GSSAPI/Kerberos Authentication - Client-side Configuration

1. Ensure that the Server-Side configuration has been completed. As this is configured
declaratively this configuration is found in the JBoss Data Grid Administration and Configuration
Guide .

Below is a complete example of using Kerberos with the Hot Rod C++ client:

#include "infinispan/hotrod/ConfigurationBuilder.h"
#include "infinispan/hotrod/RemoteCacheManager.h"
#include "infinispan/hotrod/RemoteCache.h"
#include "infinispan/hotrod/Version.h"

#include "infinispan/hotrod/JBasicMarshaller.h"
#include <sasl/saslplug.h>

#include <krb5.h>

#include <err.h>

#include <stdlib.h>

using namespace infinispan::hotrod;

int kinit();
void kdestroy();

/* Hotrod SASL is based on Cyrus Sasl libraries.
* Check cyrus docs for more info on how to setup callbacks
* https://www.cyrusimap.org/sasl/
Y/
static int simple(void* context , int id, const char **result, unsigned *len) {
*result = *(char**)context;
if (len)
*len = strlen(*result);
return SASL_OK;

}

static int getsecret(void* /* conn */, void* context, int id, sasl_secret_t **psecret) {
char *secret_data=*(char**)context;
size_t len = strlen(secret_data);
static sasl_secret_t *x;
x = (sasl_secret_t *) realloc(x, sizeof(sasl_secret_t) + len);
x->len = len;
strcpy((char *) x->data, secret_data);
*psecret = X;
return SASL_OK;
}

char *pusername;
char *psecret;

static std::vector<sasl|_callback_t> callbackHandler {
{ SASL_CB_USER, (sasl_callback_ft) &simple, &pusername },
{SASL_CB_PASS, (sasl_callback_ft) &getsecret, &psecret },
{SASL_CB_LIST_END, NULL, NULL }};

int kinit();
void kdestroy();

291

Red Hat Data Grid 7.2 Developer Guide

int main(int argc, char** argv) {
int result = 0;
{
kinit();
ConfigurationBuilder builder;
char username[]="supervisor@INFINISPAN.ORG";
char secret_data[]="lessStrongPassword";
pusername=username;
psecret=secret_data;
builder.addServer().host(argc > 1 ? argv[1] : "127.0.0.1").port(argc > 2 ? atoi(argv[2]) : 11222);
builder.protocolVersion(Configuration::PROTOCOL_VERSION_24);
builder.security().authentication().sasIMechanism("GSSAPI").serverFQDN(
"node0").callbackHandler(callbackHandler).enable();
builder.balancingStrategyProducer(nullptr);
RemoteCacheManager cacheManager(builder.build(), false);
BasicMarshaller<std::string> *km = new BasicMarshaller<std::string>();
BasicMarshaller<std::string> *vm = new BasicMarshaller<std::string>();
RemoteCache<std::string, std::string> cache = cacheManager.getCache<std::string, std::string>
(km,
&Marshaller<std::string>::destroy, vm, &Marshaller<std::string>::destroy,
std::string("authCache"));
cacheManager.start();
try {
cache.put("key", "value");
std::shared_ptr<std::string> ret(cache.get("key"));
result = 0;
} catch (Exception& ex) {
std::cerr << "FAIL: 'supervisor' should read and write" << std::endl;
result = -1;
}
cacheManager.stop();
std::cout << "PASS: 'GSSAPI' sasl authorization" << std::endl;
kdestroy();
}

return result;

}

krb5_context context;
krb5 creds creds;
krb5_principal client_princ = NULL;

int kinit() {
// Delegate Kerberos setup to the system
setenv("KRB5CCNAME", "krb5cc_hotrod", 1);
setenv("KRB5_CONFIG", "krb5.conf", 1);
std::system("echo lessStrongPassword | kinit -¢ krb5cc_hotrod supervisor@INFINISPAN.ORG");

}
void kdestroy() {

std::system("kdestroy");
}

25.7.2.3.5. Configure Hot Rod C++ Authentication (MD5)

Use the following steps to set up Hot Rod C++ client authentication using the SASL MD5 mechanism:

292

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

Configure SASL MD5 Authentication - Client-side Configuration

1. Ensure that the Server-Side configuration has been completed. As this is configured
declaratively this configuration is found in the JBoss Data Grid Administration and Configuration
Guide .

Below is a complete example of using SASL MD5 with the Hot Rod C++ client:

#include "infinispan/hotrod/ConfigurationBuilder.h"
#include "infinispan/hotrod/RemoteCacheManager.h”
#include "infinispan/hotrod/RemoteCache.h"
#include "infinispan/hotrod/Version.h"

#include "infinispan/hotrod/JBasicMarshaller.h"
#include <sasl/saslplug.h>
#include <krb5.h>

using namespace infinispan::hotrod;

/* Hotrod SASL is based on Cyrus Sasl libraries.
* Check cyrus docs for more info on how to setup callbacks
* https.//www.cyrusimap.org/sasl/
Y/
static int simple(void* context , int id, const char **result, unsigned *len) {
*result = *(char**)context;
if (len)
*len = strlen(*result);
return SASL_OK;

}

static int getsecret(void* /* conn */, void* context, int id, sasl_secret_t **psecret) {
char *secret_data=*(char**)context;
size_t len = strlen(secret_data);
static sasl_secret_t *x;
x = (sasl_secret_t *) realloc(x, sizeof(sasl_secret_t) + len);
x->len = len;
strcpy((char *) x->data, secret_data);
*psecret = x;
return SASL_OK;
}

char *pusername;
char *psecret;

static std::vector<sasl|_callback_t> callbackHandler {
{ SASL_CB_AUTHNAME, (sasl_callback_ft) &simple, &pusername },
{SASL_CB_PASS, (sasl_callback_ft) &getsecret, &psecret },
{SASL_CB_LIST_END, NULL, NULL }};

/* This sample authenticates the client with
* user=reader
* password=password
* credential, which is an account that can only do WRITE
*on the server.
Y/

293

Red Hat Data Grid 7.2 Developer Guide

int main(int argc, char*™ argv) {
int result = 0;
{
ConfigurationBuilder builder;
char usernamef[]="reader";
char secret_data[]="password";
pusername=username;
psecret=secret_data;
builder.addServer().host("127.0.0.1").port(11222);
builder.protocolVersion(Configuration::PROTOCOL_VERSION_24);
builder.security().authentication().sasIMechanism("DIGEST-
MD5").serverFQDN("node0").callbackHandler(callbackHandler).enable();
RemoteCacheManager cacheManager(builder.build(), false);
BasicMarshaller<std::string> *km = new BasicMarshaller<std::string>();
BasicMarshaller<std::string> *vm = new BasicMarshaller<std::string>();
auto cache = cacheManager.getCache<std::string, std::string>(km,
&Marshaller<std::string>::destroy, vm, &Marshaller<std::string>::destroy, std::string("authCache"));
cacheManager.start();
std::shared_ptr<std::string> ret(cache.get("key"));
try {
cache.put("key", "value");
std::cerr << "FAIL: 'reader' should not write" << std::endl;
return -1;
} catch (Exception& ex) {

}
std::cout << "PASS: 'DIGEST-MD5' sasl authorization" << std::endl;

cacheManager.stop();

}

return result;

}

25.7.2.3.6. Configure Hot Rod C++ Authentication (PLAIN)

Use the following steps to set up Hot Rod C++ client authentication using the SASL PLAIN mechanism:

Configure SASL PLAIN Authentication - Client-side Configuration

1. Ensure that the Server-Side configuration has been completed. As this is configured
declaratively this configuration is found in the JBoss Data Grid Administration and Configuration
Guide .

Below is a complete example of using SASL PLAIN with the Hot Rod C++ client:

#include "infinispan/hotrod/ConfigurationBuilder.h"
#include "infinispan/hotrod/RemoteCacheManager.h”
#include "infinispan/hotrod/RemoteCache.h"
#include "infinispan/hotrod/Version.h"

#include "infinispan/hotrod/JBasicMarshaller.h"
#include <sasl/saslplug.h>
#include <krb5.h>

using namespace infinispan::hotrod;

294

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

/* Hotrod SASL is based on Cyrus Sasl libraries.
* Check cyrus docs for more info on how to setup callbacks
* hitps://www.cyrusimap.org/sasl/
Y/
static int simple(void* context , int id, const char **result, unsigned *len) {
*result = *(char**)context;
if (len)
*len = strlen(*result);
return SASL_OK;

}

static int getsecret(void* /* conn */, void* context, int id, sasl_secret_t **psecret) {
char *secret_data=*(char**)context;
size_t len = strlen(secret_data);
static sasl_secret_t *x;
x = (sasl_secret_t *) realloc(x, sizeof(sasl_secret_t) + len);
x->len = len;
strcpy((char *) x->data, secret_data);
*psecret = x;
return SASL_OK;
}

char *pusername;
char *psecret;

static std::vector<sasl_callback_t> callbackHandler {
{ SASL_CB_AUTHNAME, (sasl_callback_ft) &simple, &pusername },
{SASL_CB_PASS, (sasl_callback_ft) &getsecret, &psecret },
{SASL_CB_LIST_END, NULL, NULL}};

/* This sample authenticates the client with
* user=writer
* password=somePassword
* credential, which is an account that can only do WRITE
*on the server.
Y/
int main(int argc, char*™ argv) {
int result = 0;
{
ConfigurationBuilder builder;
char usernamel]="writer";
char secret_data[]="somePassword";
pusername=username;
psecret=secret_data;
builder.addServer().host("127.0.0.1").port(11222);
builder.protocolVersion(Configuration::PROTOCOL_VERSION_24);

builder.security().authentication().sasIMechanism("PLAIN").serverFQDN("node0").callbackHandler(call
backHandler).enable();

RemoteCacheManager cacheManager(builder.build(), false);

BasicMarshaller<std::string> *km = new BasicMarshaller<std::string>();

BasicMarshaller<std::string> *vm = new BasicMarshaller<std::string>();

auto cache = cacheManager.getCache<std::string, std::string>(km,
&Marshaller<std::string>::destroy, vm, &Marshaller<std::string>::destroy, std::string("authCache"));

cacheManager.start();

cache.put("key", "value");

295

Red Hat Data Grid 7.2 Developer Guide

try {
std::shared_ptr<std::string> ret(cache.get("key"));

std::cerr << "FAIL: 'writer' should not read" << std::endl;
return -1;
} catch (Exception& ex) {

}

std::cout << "PASS: 'PLAIN' sasl authorization" << std::endl;
cacheManager.stop();

}

return result;

}

25.7.2.3.7. Configure Hot Rod C# Authentication (EXTERNAL)

Use the following steps to set up Hot Rod C# client authentication using the SASL EXTERNAL
mechanism:

Configure SASL EXTERNAL Authentication - Client-side Configuration

1. Ensure that the Server-Side configuration has been completed. As this is configured
declaratively this configuration is found in the JBoss Data Grid Administration and Configuration
Guide .

Below is a complete example of using SASL EXTERNAL with the Hot Rod C# client:

using Infinispan.HotRod;

using Infinispan.HotRod.Config;
using System;

using System.Text;

namespace Authentication

{

class Program

{

static void Main(string[] args)
{
ConfigurationBuilder conf = new ConfigurationBuilder();
conf.AddServer()
.Host("127.0.0.1")
.Port(11222)
.ConnectionTimeout(90000)
.SocketTimeout(900);
// Enable EXTERNAL mechanism for SASL
conf.Security().Authentication()
.Enable()
.SaslMechanism("EXTERNAL")
.ServerFQDN("node0");
// Enable SSL (EXTERNAL is based on the client certificate)
conf.Ssl().Enable()
.ServerCAFile("infinispan-ca.pem")
.ClientCertificateFile("keystore_client.p12");
// end of SASL configuration
// The subject specified in the truststore_client.p12 cert will be used to identify the client

296

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

IMarshaller marshaller = new JBasicMarshaller();

conf.Marshaller(marshaller);

Configuration ¢ = conf.Build();

RemoteCacheManager remoteManager = new RemoteCacheManager(c, true);

IRemoteCache<string, string> authCache = remoteManager.GetCache<string, string>
("authCache");

authCache.Put("K1", "V1");

authCache.Get("K1");

authCache.Clear();

25.7.2.3.8. Configure Hot Rod C# Authentication (MD5)

Use the following steps to set up Hot Rod C# client authentication using the SASL MD5 mechanism:

Configure SASL MD5 Authentication - Client-side Configuration

1. Ensure that the Server-Side configuration has been completed. As this is configured
declaratively this configuration is found in the JBoss Data Grid Administration and Configuration
Guide .

Below is a complete example of using SASL MD5 with the Hot Rod C# client:

using Infinispan.HotRod;

using Infinispan.HotRod.Config;
using System;

using System.Text;

namespace Authentication

{

class Program

{

static void Main(string[] args)
{
ConfigurationBuilder conf = new ConfigurationBuilder();
conf.AddServer()
.Host("127.0.0.1")
.Port(11222)
.ConnectionTimeout(90000)
.SocketTimeout(900);
// Enable authentication use PLAIN as mechanism (DIGEST-MD5 can be used the same way)
// and setup user password and realm
conf.Security().Authentication()
.Enable()
.SaslMechanism("DIGEST-MD5")
.ServerFQDN("node0")
.SetupCallback("writer", "somePassword", "ApplicationRealm");
// end of SASL configuration
IMarshaller marshaller = new JBasicMarshaller();
conf.Marshaller(marshaller);
Configuration ¢ = conf.Build();
RemoteCacheManager remoteManager = new RemoteCacheManager(c, true);

297

Red Hat Data Grid 7.2 Developer Guide

IRemoteCache<string, string> authCache = remoteManager.GetCache<string, string>
("authCache");

authCache.Put("K1", "V1");

authCache.Get("K1");

authCache.Clear();

}
}
}

25.7.3. Hot Rod C++ Client Encryption

By default all communication with the remote server is unencrypted; however, TLS encryption may be
enabled by defining the server’s key via the serverCAFile method on the SslConfigurationBuilder.
Additionally, the client’s certificate may be defined with the clientCertificateFile, allowing for client
authentication.

The following example demonstrates defining a server key with an optional client certificate:

Hot Rod C++ TLS Example

298

#include "infinispan/hotrod/ConfigurationBuilder.h"
#include "infinispan/hotrod/RemoteCacheManager.h”
#include "infinispan/hotrod/RemoteCache.h"
#include "infinispan/hotrod/Version.h"

#include "infinispan/hotrod/JBasicMarshaller.h"
#include <stdlib.h>

#include <iostream>

#include <memory>

#include <typeinfo>

using namespace infinispan::hotrod;

int main(int argc, char* argv) {
std::cout << "TLS Test" << std::endl;
if (argc < 2) {
std::cerr << "Usage: " << argv[0] << " server_ca_file [client_ca_file]" << std::endl;
return 1;
}
{

ConfigurationBuilder builder;

builder.addServer().host("127.0.0.1").port(11222).protocolVersion(Configuration::PROTOCOL_VERSI
ON_24);
// Enable the TLS layer and install the server public key
// this ensure that the server is authenticated
builder.ssl().enable().serverCAFile(argv[1]);
if (argc > 2) {
// Send a client certificate for authentication (optional)
// without this the socket will only be encrypted
std::cout << "Using supplied client certificate for authentication against the server” << std::endl;
builder.ssl().clientCertificateFile(argv[2]);
}
// That's all. Now do business as usual
RemoteCacheManager cacheManager(builder.build(), false);

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

BasicMarshaller<std::string> *km = new BasicMarshaller<std::string>();

BasicMarshaller<std::string> *vm = new BasicMarshaller<std::string>();

RemoteCache<std::string, std::string> cache = cacheManager.getCache<std::string, std::string>
(km,

&Marshaller<std::string>::destroy, vm, &Marshaller<std::string>::destroy);

cacheManager.start();

cache.clear();

std::string k1("key13");

std::string v1("boron");

cache.put(k1, v1);

std::unique_ptr<std::string> rv(cache.get(k1));

if (rv->compare(v1)) {
std::cerr << "get/put fail for " << k1 << " got " << *rv << " expected " << v1 << std::endl;
return 1;

}

cacheManager.stop();

}

return O;

}

The client may also indicate which hostname it is attempting to connect to at the start of the TLS/SNI
handshaking process by providing a value to the shiHostName function. For instance, the following
could be used:

[..]

builder.ssl().enable().serverCAFile(argv[1]).sniHostName("sni");

[..]

25.7.4. Hot Rod C# Client Encryption

By default all communication with the remote server is unencrypted; however, TLS encryption may be
enabled by defining the server’s key via the ServerCAFile method on the SslConfigurationBuilder.
Additionally, the client’s certificate may be defined with the ClientCertificateFile, allowing for client
authentication.

The following example demonstrates defining a server key with an optional client certificate:

Hot Rod C# TLS Example

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading.Tasks;
using Infinispan.HotRod;

using Infinispan.HotRod.Config;

namespace TLS

{

/// <summary>
/// This sample code shows how to perform operations over TLS using the C# client
/1 </summary>

class TLS

299

Red Hat Data Grid 7.2 Developer Guide

{

static void Main(string[] args)

{
// Cache manager setup
RemoteCacheManager remoteManager;
ConfigurationBuilder conf = new ConfigurationBuilder();

conf.AddServer().Host("127.0.0.1").Port(11222).ConnectionTimeout(90000).SocketTimeout(900);
SslConfigurationBuilder ssIConfB = conf.Ssl();
// Retrieve the server public certificate, needed to do server authentication. Mandatory
if (ISystem.lO.File.Exists("resources/infinispan-ca.pem"))
{
Console.WriteLine("File not found: resources/infinispan-ca.pem.");
Environment.Exit(-1);
}
sslConfB.Enable().ServerCAFile("resources/infinispan-ca.pem");
// Retrieve the client public certificate, needed if the server requires client authentication.
Optional
if (ISystem.lO.File.Exists("resources/keystore_client.p12"))
{
Console.WriteLine("File not found: resources/keystore_client.p12.");
Environment.Exit(-1);

}

sslConfB.ClientCertificateFile("resources/keystore_client.p12");

// Usual business now

conf.Marshaller(new JBasicMarshaller());

remoteManager = new RemoteCacheManager(conf.Build(), true);
IRemoteCache<string, string> testCache = remoteManager.GetCache<string, string>();
testCache.Clear();

string k1 = "key13";

string v1 = "boron";

testCache.Put(k1, v1);

The client may also indicate which hostname it is attempting to connect to at the start of the TLS/SNI
handshaking process by providing a value to SniHostName. For instance, the following call could be
included immediately after defining the ServerCAFile:

[..]

sslConfB.ServerCAFile("resources/infinispan-ca.pem").SniHostName("sni");

[..]

25.7.5. Hot Rod Node.js Encryption

The Node.js client supports encryption via SSL/TLS with optional TLS/SNI support. To configure this on
the client it is necessary to create a Java KeyStore (JKS) using the keytool application included in the
JDK. The created keystore must contain the keys and certificates necessary for the JBoss Data Grid
server to authorize connections, and the JBoss Data Grid server must be configured for encryption. For
details on configuring the server for encryption, refer to the JBoss Data Grid Administration and
Configuration Guide.

300

CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

IMPORTANT

The Node.js client implementation of TLS/SSL does not allow self-signed certificates. It is
recommended to either configure a local Certificate Authority to sign certificates, or to
use a free, open Certificate Authority, if certificates were previously self-signed.

By defining the location of a trusted certificate the client connection may be authorized by the server:

var connected = infinispan.client({port: 11222, host: '127.0.0.1',
{
ssl: {
enabled: true,
trustCerts: ['my-root-ca.crt.pem’]

}
}
);

In addition, the client may also read trusted certificates from PKCS#12 or PFX format key stores:

var connected = infinispan.client({port: 11222, host: '127.0.0.1"},
{
ssl: {
enabled: true,
cryptoStore: {
path: 'my-truststore.p12’,
passphrase: 'secret'

}
}
);

In addition, the client may be configured with encrypted authentication. To configure authentication it is
necessary to provide the location of the private key, the passphrase, and the certificate key of the
client:

var connected = infinispan.client({port: 11222, host: '127.0.0.1"},
{
ssl: {

enabled: true,

trustCerts: ['my-root-ca.crt.pemT,

clientAuth: {
key: 'privkey.pem’,
passphrase: 'secret’,
cert: 'cert.pem’

}
}
}
);

The client may also indicate which hostname it is attempting to connect to at the start of the TLS/SNI
handshaking process by including the sniHostName directive:

var connected = infinispan.client({port: 11222, host: '127.0.0.1',
{

301

Red Hat Data Grid 7.2 Developer Guide

ssl: {
enabled: true,
trustCerts: ['my-root-ca.crt.pem’]
sniHostName: 'example.com'’
}
}
);

NOTE

If no sniHostName is provided then the client will send localhost as the SNI parameter. If
the server’s default realm does not match localhost an error will be thrown.

25.8. THE SECURITY AUDIT LOGGER

25.8.1. The Security Audit Logger

Red Hat JBoss Data Grid includes a logger to audit security logs for the cache, specifically whether a
cache or a cache manager operation was allowed or denied for various operations.

The default audit logger is org.infinispan.security.impl.DefaultAuditLogger. This logger outputs audit
logs using the available logging framework (for example, JBoss Logging) and provides results at the
TRACE level and the AUDIT category.

To send the AUDIT category to either a log file, a JMS queue, or a database, use the appropriate log
appender.

25.8.2. Configure the Security Audit Logger (Library Mode)

Use the following to configure the audit logger in Red Hat JBoss Data Grid:

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
global.security()
.authorization()
.auditLogger(new DefaultAuditLogger());

25.8.3. Custom Audit Loggers

Users can implement custom audit loggers in Red Hat JBoss Data Grid Library and Remote Client-
Server Mode. The custom logger must implement the org.infinispan.security.AuditLogger interface. If
no custom logger is provided, the default logger (DefaultAuditLogger) is used.

302

CHAPTER 26. SECURITY FOR CLUSTER TRAFFIC

CHAPTER 26. SECURITY FOR CLUSTER TRAFFIC

26.1. CONFIGURE NODE SECURITY IN LIBRARY MODE

In Library mode, node authentication is configured directly in the JGroups configuration. JGroups can
be configured so that nodes must authenticate each other when joining or merging with a cluster. The
authentication uses SASL and is enabled by adding the SASL protocol to your JGroups XML
configuration.

SASL relies on JAAS notions, such as CallbackHandlers, to obtain certain information necessary for
the authentication handshake. Users must supply their own CallbackHandlers on both client and server
sides.

IMPORTANT

The JAAS APl is only available when configuring user authentication and authorization,
and is not available for node security.

The following example demonstrates how to implement a CallbackHandler class. In this example, login
and password are checked against values provided via Java properties when JBoss Data Grid is started,
and authorization is checked against role which is defined in the class ("test_user").

Callback Handler Class

public class SasIPropAuthUserCallbackHandler implements CallbackHandler {
private static final String APPROVED_USER = "test_user";

private final String name;
private final char[] password;
private final String realm;

public SasIPropAuthUserCallbackHandler() {
this.name = System.getProperty("sasl.username");
this.password = System.getProperty("sasl.password").toCharArray();
this.realm = System.getProperty("sasl.realm");

}

@Override
public void handle(Callback][] callbacks) throws IOException, UnsupportedCallbackException {
for (Callback callback : callbacks) {
if (callback instanceof PasswordCallback) {
((PasswordCallback) callback).setPassword(password);
} else if (callback instanceof NameCallback) {
((NameCallback) callback).setName(name);
} else if (callback instanceof AuthorizeCallback) {
AuthorizeCallback authorizeCallback = (AuthorizeCallback) callback;
if (APPROVED_USER.equals(authorizeCallback.getAuthorizationID())) {
authorizeCallback.setAuthorized(true);
} else {
authorizeCallback.setAuthorized(false);
}
} else if (callback instanceof RealmCallback) {
RealmCallback realmCallback = (RealmCallback) callback;

303

Red Hat Data Grid 7.2 Developer Guide

realmCallback.setText(realm);
}else {
throw new UnsupportedCallbackException(callback);
}
}
}

For authentication, specify the javax.security.auth.callback.NameCallback and
javax.security.auth.callback.PasswordCallback callbacks

For authorization, specify the callbacks required for authentication, as well as specifying the
javax.security.sasl.AuthorizeCallback callback.

26.2. NODE AUTHORIZATION IN LIBRARY MODE

The SASL protocol in JGroups is concerned only with the authentication process. To implement node
authorization, you can do so within the server callback handler by throwing an Exception.

The following example demonstrates this.

Implementing Node Authorization

public class AuthorizingServerCallbackHandler implements CallbackHandler {

@Override
public void handle(Callback][] callbacks) throws IOException,
UnsupportedCallbackException {
for (Callback callback : callbacks) {
<!-- Additional configuration information here -->
if (callback instanceof AuthorizeCallback) {
AuthorizeCallback acb = (AuthorizeCallback) callback;
if (I"myclusterrole".equals(acb.getAuthenticationlD()))) {
throw new SecurityException("Unauthorized node " +user);
}
<!-- Additional configuration information here -->
}
}
}

304

PART IV. ADVANCED FEATURES IN RED HAT JBOSS DATA GRID

PART IV. ADVANCED FEATURES IN RED HAT JBOSS DATA
GRID

305

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 27. ADVANCED FEATURES IN RED HAT JBOSS
DATA GRID

JBoss Data Grid includes advanced features. This section describes these features and provides
instructions for using them.

306

CHAPTER 28. MONITORING

CHAPTER 28. MONITORING

28.1. MONITORING

28.2. ABOUT JAVA MANAGEMENT EXTENSIONS (JMX)

28.2.1. About Java Management Extensions (JMX)

Java Management Extension (JMX) is a Java based technology that provides tools to manage and
monitor applications, devices, system objects, and service oriented networks. Each of these objects is
managed, and monitored by MBeans.

JMX is the de facto standard for middleware management and administration. As a result, JMX is used
in Red Hat JBoss Data Grid to expose management and statistical information.

28.2.2. Using JMX with Red Hat JBoss Data Grid

Management in Red Hat JBoss Data Grid instances aims to expose as much relevant statistical
information as possible. This information allows administrators to view the state of each instance. While a
single installation can comprise of tens or hundreds of such instances, it is essential to expose and
present the statistical information for each of them in a clear and concise manner.

In JBoss Data Grid, JMXis used in conjunction with JBoss Operations Network (JON) to expose this
information and present it in an orderly and relevant manner to the administrator.

28.2.3. Enabling JMX for Cache Instances

You can enable JMX statistics at the Cache level either declaratively or programmatically.

Declaratively Enabling JMX at the Cache Level

Add the statistics attribute to the target <*-caches element as follows:
I <*-cache statistics="true">

Programmatically Enabling JMX at the Cache Level

Programmatically enable JMX at the cache level as follows:

Configuration configuration = new
ConfigurationBuilder().jmxStatistics().enable().build();

28.2.4. Enabling JMX for CacheManagers

You can enable JMX statistics at the CacheManager level either declaratively or programmatically.

Declaratively Enabling JMX at the CacheManager Level

Add the statistics attribute to the <cache-containers> element as follows:

I <cache-container statistics="true">

307

Red Hat Data Grid 7.2 Developer Guide

Programmatically Enabling JMX at the CacheManager Level

Programmatically enable JMX at the CacheManager level as follows:

GlobalConfiguration globalConfiguration = new
GlobalConfigurationBuilder().globaldmxStatistics().enable().build();

28.2.5. Multiple JMX Domains

Multiple JMX domains are used when multiple CacheManager instances exist on a single virtual machine,
or if the names of cache instances in different CacheManagers clash.

To resolve this issue, name each CacheManager in manner that allows it to be easily identified and used
by monitoring tools such as JMX and JBoss Operations Network.

Set a CacheManager Name Programmatically

Add the following code to set the CacheManager name programmatically:

GlobalConfiguration globalConfiguration = new
GlobalConfigurationBuilder().globaldmxStatistics().enable().
cacheManagerName("Hibernate2LC").build();

28.2.6. Registering MBeans in Non-Default MBean Servers

The default location where all the MBeans used are registered is the standard JVM MBeanServer
platform. Users can set up an alternative MBeanServer instance as well. Implement the
MBeanServerLookup interface to ensure that the getMBeanServer() method returns the desired (non
default) MBeanServer.

To set up a non default location to register your MBeans, create the implementation and then configure
Red Hat JBoss Data Grid with the fully qualified name of the class. An example is as follows:

To Add the Fully Qualified Domain Name Programmatically
Add the following code:

GlobalConfiguration globalConfiguration = new
GlobalConfigurationBuilder().globaldmxStatistics().enable().
mBeanServerLookup("com.acme.MyMBeanServerLookup").build();

28.3. STATISTICSINFOMBEAN

The StatisticsInfoMBean MBean accesses the Statistics object as described in the previous section.

308

CHAPTER 29. RED HAT JBOSS DATA GRID AS LUCENE DIRECTORY

CHAPTER 29. RED HAT JBOSS DATA GRID AS LUCENE
DIRECTORY

29.1. RED HAT JBOSS DATA GRID AS LUCENE DIRECTORY

Red Hat JBoss Data Grid can be used as a shared, in-memory index (Infinispan Directory) for Hibernate
Search queries on a relational database. By default, Hibernate Search uses a local filesystem to store the
Lucene indexes but optionally it can be configured to use JBoss Data Grid as a storage to achieve real-
time replication across multiple server nodes.

In the Infinispan Directory, the index is stored in memory and shared across multiple nodes. The
Infinispan Directory acts as a single directory distributed across all participating nodes. An index update
on one node updates the index on all the nodes. Index can be searched immediately after the node
update across the cluster. The default Hibernate Search configuration replicates the data defining the
index across all the nodes.

Data distribution for large indexes may be enabled to consume less memory; however, this will come at a
cost of locality resulting in query operations less efficient. The indexed data can also be offloaded to a
CacheStore configured on each node or configure a single centralized CacheStore shared by each
node.

NOTE

While enabling distribution rather than replication might save memory, the queries will be
slower. Enabling a CacheStore might save even more memory, but at cost of additional
performance if used for passivation.

29.2. CONFIGURATION

The directory provider is enabled by specifying it per index. If the default index is specified then all
indexes will use the directory provider unless specified:

hibernate.search.[default|<indexnames>].directory_provider = infinispan

This gives a cluster-replicated index, but the default configuration does not enable any form of
permanent persistence for the index. To enable such a feature provide an Infinispan configuration file.

Hibernate Search requires a CacheManager to use Infinispan. It can look up and reuse an existing
CacheManager, via JNDI, or start and manage a new one. When looking up an existing CacheManager

this will be provided from the Infinispan subsystem where it was originally registered; for instance, if this
was registered via JBoss EAP, then JBoss EAP’s Infinispan subsystem will provide the CacheManager .

NOTE

When using JNDI to register a CacheManager , it must be done using Red Hat JBoss Data
Grid configuration files only.

To use an existing CacheManager via JNDI (optional parameter):
hibernate.search.infinispan.cachemanager_jndiname = [jndiname]

To start a new CacheManager from a configuration file (optional parameter):

309

Red Hat Data Grid 7.2 Developer Guide

hibernate.search.infinispan.configuration_resourcename = [infinispan configuration filename]
If both the parameters are defined, JNDI will have priority. If none of these are defined, Hibernate

Search will use the default Infinispan configuration which does not store the index in a persistent cache
store.

29.3. RED HAT JBOSS DATA GRID MODULES

Red Hat JBoss Data Grid directory provider for Hibernate Search are distributed as part of the JBoss
Data Grid Library Modules for JBoss EAP. Download the files from the Red Hat Customer Portal.

Unpack the archive into the modules/ directory in the target JBoss Enterprise Application Platform
folder.

Add the following entry to the MANIFEST.MF file in the project archive:

I Dependencies: org.hibernate.search.orm services

For more information, see the Generate MANIFEST.MF entries using Maven section in the Red Hat
JBoss EAP Development Guide.

29.4. LUCENE DIRECTORY CONFIGURATION FOR REPLICATED
INDEXING

Define the following properties in the Hibernate configuration and in the Persistence unit configuration
file when using standard JPA. For instance, to change all of the default storage indexes the following
property could be configured:

I hibernate.search.default.directory_provider=infinispan

This may also be performed on unique indexes. In the following example tickets and actors are index
names:

hibernate.search.tickets.directory_provider=infinispan
hibernate.search.actors.directory_provider=filesystem

Lucene’s DirectoryProvider uses the following options to configure the cache names:

® locking_cachename - Cache name where Lucene’s locks are stored. Defaults to
LucenelndexesLocking.

e data_cachename - Cache name where Lucene’s data is stored, including the largest data
chunks and largest objects. Defaults to LucenelndexesData.

e metadata_cachename - Cache name where Lucene’'s metadata is stored. Defaults to
LucenelndexesMetadata.

To adjust the name of the locking cache to CustomLockingCache use the following:

I hibernate.search.default.directory_provider.locking_cachname="CustomLockingCache"

In addition, large files of the index are split into a smaller, configurable, chunk. It is often recommended
to set the index’s chunk_size to the highest value that may be handled efficiently by the network.

310

https://access.redhat.com/site/downloads/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/development_guide/#generate_manifest_mf_entries_using_maven

CHAPTER 29. RED HAT JBOSS DATA GRID AS LUCENE DIRECTORY

Hibernate Search already contains internally a default configuration which uses replicated caches to
hold the indexes.

It is important that if more than one node writes to the index at the same time, configure a JMS
backend. For more information on the configuration, see the Hibernate Search documentation.

IMPORTANT

In settings where distribution mode is needed to configure, the LucenelndexesMetadata
and LucenelndexesLocking caches should always use replication mode in all the cases.

29.5. JMS MASTER AND SLAVE BACK END CONFIGURATION

While using an Infinispan directory, it is recommended to use the JMS Master/Slave backend. In
Infinispan, all nodes share the same index and since IndexWriter is active on different nodes, it acquires
the lock on the same index. So instead of sending updates directly to the index, send it to a JMS queue
and make a single node apply all changes on behalf of all other nodes.

' WARNING
A Not enabling a JMS based backend will lead to timeout exceptions when multiple

nodes attempt to write to the index.

To configure a JMS slave, replace only the backend and set the directory provider to Infinispan. Set the
same directory provider on the master and it will connect without the need to set up the copy job across
nodes.

For Master and Slave backend configuration examples, see the Back End Setup and Operations section
of the Red Hat JBoss EAP Developing Hibernate Applications document.

31

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 30. TRANSACTIONS

30.1. ABOUT JAVA TRANSACTION API

Red Hat JBoss Data Grid supports configuring, use of, and participation in Java Transaction API (JTA)
compliant transactions.

JBoss Data Grid does the following for each cache operation:
1. First, it retrieves the transactions currently associated with the thread.

2. If not already done, it registers an XAResource with the transaction manager to receive
notifications when a transaction is committed or rolled back.

30.2. CONFIGURE TRANSACTIONS (LIBRARY MODE)

In Red Hat JBoss Data Grid, transactions in Library mode can be configured with synchronization and
transaction recovery. Transactions in their entirety (which includes synchronization and transaction
recovery) are not available in Remote Client-Server mode.

In order to execute a cache operation, the cache requires a reference to the environment’s Transaction
Manager. Configure the cache with the class name that belongs to an implementation of the
TransactionManagerLookup interface. When initialized, the cache creates an instance of the specified
class and invokes its getTransactionManager() method to locate and return a reference to the
Transaction Manager.

In Library mode, transactions are configured as follows:

Configure Transactions in Library Mode (Programmatic Configuration)

1. Enable Transactions

Configuration config = new ConfigurationBuilder()/* ... *.transaction()
.transactionMode(TransactionMode. TRANSACTIONAL)
.transactionManagerLookup(new GenericTransactionManagerLookup())
JockingMode(LockingMode.OPTIMISTIC)

.useSynchronization(true)
.recovery()
.recoverylnfoCacheName("anotherRecoveryCacheName").build();

a. Set the transaction mode.

b. Select and set a lookup class. See the table below this procedure for a list of available
lookup classes.

c. The lockingMode value determines whether optimistic or pessimistic locking is used. If the
cache is non-transactional, the locking mode is ignored. The default value is OPTIMISTIC.

d. The useSynchronization value configures the cache to register a synchronization with the
transaction manager, or register itself as an XA resource. The default value is true (use

synchronization).

e. The recovery parameter enables recovery for the cache when set to true.

312

CHAPTER 30. TRANSACTIONS

The recoverylnfoCacheName sets the name of the cache where recovery information is
held. The default name of the cache is specified by
RecoveryConfiguration.DEFAULT_RECOVERY_INFO_CACHE.

2. Configure Write Skew Check

The writeSkew check determines if a modification to the entry from a different transaction
should roll back the transaction. Write skew set to true requires isolation_level set to
REPEATABLE_READ. The default value for writeSkew and isolation_level are false and

READ_COMMITTED respectively.

Configuration config = new ConfigurationBuilder()/* ... */.locking()
.isolationLevel(lsolationLevel. REPEATABLE_READ).writeSkewCheck(true);

3. Configure Entry Versioning

For clustered caches, enable write skew check by enabling entry versioning and setting its value

to SIMPLE.

Configuration config = new ConfigurationBuilder()/* ... */.versioning()

.enable()

.scheme(VersioningScheme.SIMPLE);

Table 30.1. Transaction Manager Lookup Classes

Class Name Details

org.infinispan.transaction.lookup.DummyTransaction
ManagerLookup

org.infinispan.transaction.lookup.JBossStandaloneJT
AManagerLookup

org.infinispan.transaction.lookup.GenericTransaction
ManagerLookup

Used primarily for testing environments. This testing
transaction manager is not for use in a production
environment and is severely limited in terms of
functionality, specifically for concurrent transactions
and recovery.

The default transaction manager when Red Hat
JBoss Data Grid runs in a standalone environment. It
is a fully functional JBoss Transactions based
transaction manager that overcomes the
functionality limits of the
DummyTransactionManager.

GenericTransactionManagerLookup is used by

default when no transaction lookup class is specified.

This lookup class is recommended when using JBoss
Data Grid with Java EE-compatible environment
that provides a TransactionManager interface, and is
capable of locating the Transaction Manager in most
Java EE application servers. If no transaction
manager is located, it defaults to
DummyTransactionManager.

313

Red Hat Data Grid 7.2 Developer Guide

Class Name Details

org.infinispan.transaction.lookup.JBossTransactionM The JbossTransactionManagerLookup finds

anagerLookup the standard transaction manager running in the
application server. This lookup class uses JNDI to
look up the TransactionManager instance, and is
recommended when custom caches are being used in
JTA transactions.

NOTE

It is important to note that when using Red Hat JBoss Data Grid with Tomcat or an
ordinary Java Virtual Machine (JVM), the recommended Transaction Manager Lookup
class is JBossStandaloneJTAManagerLookup, which uses JBoss Transactions.

-

30.3. TRANSACTIONS SPANNING MULTIPLE CACHE INSTANCES

Each cache operates as a separate, standalone Java Transaction API (JTA) resource. However,
components can be internally shared by Red Hat JBoss Data Grid for optimization, but this sharing does
not affect how caches interact with a Java Transaction API (JTA) Manager.

30.4. THE TRANSACTION MANAGER

Use the following to obtain the TransactionManager from the cache:

I TransactionManager tm = cache.getAdvancedCache().getTransactionManager();

To execute a sequence of operations within transaction, wrap these with calls to methods begin() and
commit() or rollback() on the TransactionManager:

Performing Operations

tm.begin();
Object value = cache.get("A");
cache.remove("A");
Object prev = cache.put("B", value);
if (prev == null)

tm.commit();
else

tm.rollback();

NOTE

If a cache method returns a CacheException (or a subclass of the CacheException) within
the scope of a JTA transaction, the transaction is automatically marked to be rolled back.

To obtain a reference to a Red Hat JBoss Data Grid XAResource, use the following API:

314

CHAPTER 30. TRANSACTIONS

I XAResource xar = cache.getAdvancedCache().getXAResource();

315

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 31. MARSHALLING

31.1. MARSHALLING

Marshalling is the process of converting Java objects into a format that is transferable over the wire.
Unmarshalling is the reversal of this process where data read from a wire format is converted into Java
objects.

Red Hat JBoss Data Grid uses marshalling and unmarshalling to:
® transform data for relay to other JBoss Data Grid nodes within the cluster.

e transform data to be stored in underlying cache stores.

31.2. ABOUT THE JBOSS MARSHALLING FRAMEWORK

Red Hat JBoss Data Grid uses the JBoss Marshalling Framework to marshall and unmarshall Java
POJOs. Using the JBoss Marshalling Framework offers a significant performance benefit, and is
therefore used instead of Java Serialization. Additionally, the JBoss Marshalling Framework can
efficiently marshall Java POJOs, including Java classes.

The Java Marshalling Framework uses high performance java.io.ObjectOutput and java.io.Objectinput

implementations compared to the standard java.io.ObjectOutputStream and
java.io.ObjectinputStream.

31.3. SUPPORT FOR NON-SERIALIZABLE OBJECTS

A common user concern is whether Red Hat JBoss Data Grid supports the storage of non-serializable
objects. In JBoss Data Grid, marshalling is supported for non-serializable key-value objects; users can
provide externalizer implementations for non-serializable objects.

If you are unable to retrofit Serializable or Externalizable support into your classes, you could (as an
example) use XStream to convert the non-serializable objects into a String that can be stored in JBoss
Data Grid.

NOTE

transformations.

I slows down the process of storing key-value objects due to the required XML’

31.4. HOT ROD AND MARSHALLING

In Remote Client-Server mode, marshalling occurs both on the Red Hat JBoss Data Grid server and the
client levels, but to varying degrees.

® All data stored by clients on the JBoss Data Grid server are provided either as a byte array, or in
a primitive format that is marshalling compatible for JBoss Data Grid.
On the server side of JBoss Data Grid, marshalling occurs where the data stored in primitive
format are converted into byte array and replicated around the cluster or stored to a cache
store. No marshalling configuration is required on the server side of JBoss Data Grid.

® At the client level, marshalling must have a Marshaller configuration element specified in the
RemoteCacheManager configuration in order to serialize and deserialize POJOs.

316

CHAPTER 31. MARSHALLING

Due to Hot Rod's binary nature, it relies on marshalling to transform POJOs, specifically keys or
values, into byte array.

31.5. CONFIGURING THE MARSHALLER USING THE
REMOTECACHEMANAGER

A Marshaller is specified using the marshaller configuration element in the RemoteCacheManager, the
value of which must be the name of the class implementing the Marshaller interface. The default value
for this property is org.infinispan.commons.marshall.jboss.GenericJBossMarshaller.

' WARNING
A If developing your own custom marshaller, protect it from potential injection attacks

by verifying that any class names read, before instantiating, are amongst the
expected/allowed class names.

The following procedure describes how to define a Marshaller to use with RemoteCacheManager.

Define a Marshaller

1. Create a Configuration Builder
Create a ConfigurationBuilder and configure it with the required settings.

ConfigurationBuilder builder = new ConfigurationBuilder();
//... (other configuration)

2. Add a Marshaller Class
Add a Marshaller class specification within the Marshaller method.
I builder.marshaller(GenericJBossMarshaller.class);
a. Alternatively, specify a custom Marshaller instance.
I builder.marshaller(new GenericJBossMarshaller());
3. Start the RemoteCacheManager

Build the configuration containing the Marshaller, and start a new RemoteCacheManager with it.

Configuration configuration = builder.build();
RemoteCacheManager manager = new RemoteCacheManager(configuration);

At the client level, POJOs need to be either Serializable, Externalizable, or primitive types.

NOTE

The Hot Rod Java client does not support providing Externalizer instances to serialize
POJOs. This is only available for JBoss Data Grid Library mode.

.

317

Red Hat Data Grid 7.2 Developer Guide

31.6. RESTRICTING DESERIALIZATION TO SPECIFIC JAVA CLASSES

The Red Hat JBoss Data Grid server allows deserialization only for standard Java classes and primitives
in addition to the Java classes that you specify in a whitelist.

Clients, on the other hand, can deserialize objects that belong to any Java class unless you restrict
deserialization to specific classes. To do this, use the addJavaSerialWhiteList method in the
org.infinispan.client.hotrod.configuration.ConfigurationBuilder class.

For example, to restrict deserialization to only Java classes with fully qualified names that contain either
Person or Employee, specify the following configuration:

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

ConfigurationBuilder configBuilder = ...
configBuilder.addJavaSerialWhiteList(".*Person.™, ".*Employee.*");

For information on configuring the deserialization whitelist in the JBoss Data Grid server, see
Configuring the Deserialization Whitelist in the Administration and Configuration Guide.

31.7. TROUBLESHOOTING

31.7.1. Marshalling Troubleshooting

In Red Hat JBoss Data Grid, the marshalling layer and JBoss Marshalling in particular, can produce errors
when marshalling or unmarshalling a user object. The exception stack trace contains further information
to help you debug the problem.

Exception Stack Trace

java.io.NotSerializableException: java.lang.Object

at org.jboss.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:857)

at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)

at
org.infinispan.marshall.exts.ReplicableCommandExternalizer.writeObject(ReplicableCommandExternali
er.java:54)

at
org.infinispan.marshall.jooss.ConstantObjectTable$ExternalizerAdapter.writeObject(ConstantObjectTab
e.java:267)

at org.jposs.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:143)

at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)

at org.infinispan.marshall.jooss.JBossMarshaller.objectToObjectStream(JBossMarshaller.java:167)

at org.infinispan.marshall.VersionAwareMarshaller.objectToBuffer(VersionAwareMarshaller.java:92)

at
org.infinispan.marshall.VersionAwareMarshaller.objectToByteBuffer(VersionAwareMarshaller.java:170)

at
org.infinispan.marshall.VersionAwareMarshallerTest.testNestedNonSerializable(VersionAwareMarshalle
rTest.java:415)

Caused by: an exception which occurred:

in object java.lang.Object@b40ec4

in object org.infinispan.commands.write. PutKeyValueCommand@df661da7

... Removed 22 stack frames

318

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#configuring_the_deserialization_whitelist

CHAPTER 31. MARSHALLING

Messages starting with in object and stack traces are read in the same way: the highest in object
message is the innermost one and the outermost in object message is the lowest.

The provided example indicates that a java.lang.Object instance within an
org.infinispan.commands.write.PutKeyValueCommand instance cannot be serialized because
java.lang.Object@b40ec4 is not serializable.

However, if the DEBUG or TRACE logging levels are enabled, marshalling exceptions will contain
toString() representations of objects in the stack trace. The following is an example that depicts such a
scenario:

Exceptions with Logging Levels Enabled

java.io.NotSerializableException: java.lang.Object

Caused by: an exception which occurred:

in object java.lang.Object@b40ec4

-> toString = java.lang.Object@b40ec4

in object org.infinispan.commands.write. PutkKeyValueCommand@df661da7

-> toString = PutKeyValueCommand{key=k, value=java.lang.Object@b40ec4, putlfAbsent=false,
lifespanMillis=0, maxIdleTimeMillis=0}

Displaying this level of information for unmarshalling exceptions is expensive in terms of resources.
However, where possible, JBoss Data Grid displays class type information. The following example
depicts such levels of information on display:

Unmarshalling Exceptions

java.io.|OException: Injected failue!

at
org.infinispan.marshall.VersionAwareMarshallerTest$1.readExternal(VersionAwareMarshallerTest.java:
426)

at org.jboss.marshalling.river.RiverUnmarshaller.doReadNewObject(RiverUnmarshaller.java:1172)

at org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:273)

at org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:210)

at org.jboss.marshalling.AbstractUnmarshaller.readObject(AbstractUnmarshaller.java:85)

at org.infinispan.marshall.jooss.JBossMarshaller.objectFromObjectStream(JBossMarshaller.java:210)
at
org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarshaller.java:10
4)

at
org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarshaller.java:17
7)

at
org.infinispan.marshall.VersionAwareMarshallerTest.testErrorUnmarshalling(VersionAwareMarshallerT
est.java:431)

Caused by: an exception which occurred:

in object of type org.infinispan.marshall.VersionAwareMarshallerTest$1

In the provided example, an IOException was thrown when an instance of the inner class
org.infinispan.marshall.VersionAwareMarshallerTest$1 is unmarshalled.

In a manner similar to marshalling exceptions, when DEBUG or TRACE logging levels are enabled, the
class type's classloader information is provided. An example of this classloader information is as follows:

319

Red Hat Data Grid 7.2 Developer Guide

Classloader Information

java.io.lOException: Injected failue!

Caused by: an exception which occurred:

in object of type org.infinispan.marshall.VersionAwareMarshallerTest$1

-> classloader hierarchy:

-> type classloader = sun.misc.Launcher$AppClassLoader@ 198dfaf
->...file:/opt/eclipse/configuration/org.eclipse.osgi/bundles/285/1/.cp/eclipse-testng.jar
->...file:/opt/eclipse/configuration/org.eclipse.osgi/bundles/285/1/.cp/lib/testng-jdk15.jar
->...file:/home/galder/jboss/infinispan/code/trunk/core/target/test-classes/
->...file:/home/galder/jboss/infinispan/code/trunk/core/target/classes/
->...file:’lhome/galder/.m2/repository/org/testng/testng/5.9/testng-5.9-jdk15.jar
->...file:’lhome/galder/.m2/repository/net/jcip/jcip-annotations/1.0/jcip-annotations-1.0.jar

>...file:/home/galder/.m2/repository/org/easymock/easymockclassextension/2.4/easymockclassextensior
2.4 jar

->...file:’lhome/galder/.m2/repository/org/easymock/easymock/2.4/easymock-2.4.jar
->...file:’lhome/galder/.m2/repository/cglib/cglib-nodep/2.1_3/cglib-nodep-2.1_3.jar
->...file:/home/galder/.m2/repository/javax/xml/bind/jaxb-api/2.1/jaxb-api-2.1.jar
->...file:’lhome/galder/.m2/repository/javax/xml/stream/stax-api/1.0-2/stax-api-1.0-2.jar
->...file:’lhome/galder/.m2/repository/javax/activation/activation/1.1/activation-1.1.jar
->...file:’home/galder/.m2/repository/jgroups/jgroups/2.8.0.CR1/jgroups-2.8.0.CR1.jar
->...file:’lhome/galder/.m2/repository/org/jboss/javaee/jboss-transaction-api/1.0.1.GA/jboss-
transaction-api-1.0.1.GA.jar
->...file:/home/galder/.m2/repository/org/jboss/marshalling/river/1.2.0.CR4-SNAPSHOT/river-
1.2.0.CR4-SNAPSHOT jar
->...file:/home/galder/.m2/repository/org/jboss/marshalling/marshalling-api/1.2.0.CR4-
SNAPSHOT/marshalling-api-1.2.0.CR4-SNAPSHOT .jar
->...file:’lhome/galder/.m2/repository/org/jboss/jposs-common-core/2.2.14.GA/jboss-common-core-
2.2.14.GA jar
->...file:’lhome/galder/.m2/repository/org/jboss/logging/jboss-logging-spi/2.0.5.GA/jboss-logging-spi-
2.0.5.GA jar

->...file:/home/galder/.m2/repository/log4j/log4j/1.2.14/log4j-1.2.14.jar
->...file:/home/galder/.m2/repository/com/thoughtworks/xstream/xstream/1.2/xstream-1.2.jar
->...file:/home/galder/.m2/repository/xpp3/xpp3_min/1.1.3.4.0/xpp3_min-1.1.3.4.0.jar
->...file:’lhome/galder/.m2/repository/com/sun/xml/bind/jaxb-impl/2.1.3/jaxb-impl-2.1.3.jar

-> parent classloader = sun.misc.Launcher$ExtClassLoader@1858610
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/localedata.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/sunpkcs11.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/sunjce_provider.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/dnsns.jar

... Removed 22 stack frames

31.7.2. Other Marshalling Related Issues

Issues and exceptions related to Marshalling can also appear in different contexts, for example during
the State transfer with EOFException. During a state transfer, if an EOFException is logged that states
that the state receiver has Read past end of file , this can be dealt with depending on whether the state
provider encounters an error when generating the state. For example, if the state provider is currently
providing a state to a node, when another node requests a state, the state generator log can contain:

State Generator Log

I 2010-12-09 10:26:21,533 20267 ERROR

320

CHAPTER 31. MARSHALLING

[org.infinispan.remoting.transport.jgroups.JGroupsTransport] (STREAMING_STATE_TRANSFER-
sender-1,Infinispan-Cluster,NodeJ-2368:) Caught while responding to state transfer request
org.infinispan.statetransfer.State TransferException: java.util.concurrent. TimeoutException: Could not
obtain exclusive processing lock

at
org.infinispan.statetransfer.State TransferManagerimpl.generateState(State TransferManagerimpl.java:1
75)

at
org.infinispan.remoting.InboundlnvocationHandlerlmpl.generateState(InboundinvocationHandlerImpl.jav
a:119)

at
org.infinispan.remoting.transport.jgroups.JGroupsTransport.getState(JGroupsTransport.java:586)

at
org.jgroups.blocks.MessageDispatcher$ProtocolAdapter.handleUpEvent(MessageDispatcher.java:691)

at org.jgroups.blocks.MessageDispatcher$ProtocolAdapter.up(MessageDispatcher.java:772)

at org.jgroups.JChannel.up(JChannel.java:1465)

at org.jgroups.stack.ProtocolStack.up(ProtocolStack.java:954)

at org.jgroups.protocols.pbcast. FLUSH.up(FLUSH.java:478)

at
org.jgroups.protocols.pbcast. STREAMING_STATE_TRANSFER$StateProviderHandler.process(STRE
AMING_STATE_TRANSFER.java:653)

at
org.jgroups.protocols.pbcast. STREAMING_STATE_TRANSFER$StateProviderThreadSpawner$1.run(
STREAMING_STATE_TRANSFER.java:582)

at java.util.concurrent. ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)

at java.util.concurrent. ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)

at java.lang.Thread.run(Thread.java:680)
Caused by: java.util.concurrent. TimeoutException: Could not obtain exclusive processing lock

at
org.infinispan.remoting.transport.jgroups.JGroupsDistSync.acquireProcessingLock(JGroupsDistSync.ja\
a:71)

at
org.infinispan.statetransfer.StateTransferManagerimpl.generateTransactionLog(State TransferManager
Impl.java:202)

at
org.infinispan.statetransfer.State TransferManagerimpl.generateState(State TransferManagerimpl.java:1
65)

... 12 more

In logs, you can also spot exceptions which seems to be related to marshaling. However, the root cause
of the exception can be different. The implication of this exception is that the state generator was
unable to generate the transaction log hence the output it was writing in now closed. In such a situation,
the state receiver will often log an EOFException, displayed as follows, when failing to read the
transaction log that was not written by the sender:

EOFException

2010-12-09 10:26:21,535 20269 TRACE [org.infinispan.marshall.VersionAwareMarshaller]
(Incoming-2,Infinispan-Cluster,Nodel-38030:) Log exception reported
java.io.EOFException: Read past end of file
at org.jpboss.marshalling.AbstractUnmarshaller.eofOnRead(AbstractUnmarshaller.java:184)
at
org.jposs.marshalling.AbstractUnmarshaller.readUnsignedByteDirect(AbstractUnmarshaller.java:319)
at org.jboss.marshalling.AbstractUnmarshaller.readUnsignedByte(AbstractUnmarshaller.java:280)
at org.jposs.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:207)

321

Red Hat Data Grid 7.2 Developer Guide

at org.jboss.marshalling.AbstractUnmarshaller.readObject(AbstractUnmarshaller.java:85)

at
org.infinispan.marshall.jposs.GenericdJBossMarshaller.objectFromObjectStream(GenericJBossMarshalle
rjava:175)

at
org.infinispan.marshall.VersionAwareMarshaller.objectFromObjectStream(VersionAwareMarshaller.java
:184)

at
org.infinispan.statetransfer.State TransferManagerimpl.processCommitLog(State TransferManagerimpl. |
ava:228)

at
org.infinispan.statetransfer.State TransferManagerImpl.apply TransactionLog(State TransferManagerimpl
Jjava:250)

at
org.infinispan.statetransfer.State TransferManagerimpl.applyState(State TransferManagerimpl.java:320)

at
org.infinispan.remoting.InboundlnvocationHandlerlmpl.applyState(InboundinvocationHandlerImpl.java:1
02)

at
org.infinispan.remoting.transport.jgroups.JGroupsTransport.setState(JGroupsTransport.java:603)

When this error occurs, the state receiver attempts the operation every few seconds until it is
successful. In most cases, after the first attempt, the state generator has already finished processing the
second node and is fully receptive to the state, as expected.

322

CHAPTER 32. THE INFINISPAN CDI MODULE

CHAPTER 32. THE INFINISPAN CDI MODULE

32.1. THE INFINISPAN CDI MODULE

Infinispan includes Context and Dependency Injection (CDI) in the infinispan-cdi module. The
infinispan-cdi module offers:

e Configuration and injection using the Cache API.
® Abridge between the cache listeners and the CDI event system.

® Partial support for the JCACHE caching annotations.

32.2. USING INFINISPAN CDiI

32.2.1. Infinispan CDI Prerequisites

The following is a list of prerequisites to use the Infinispan CDI module with Red Hat JBoss Data Grid:
® Ensure that the most recent version of the infinispan-cdi module is used.

® Ensure that the correct dependency information is set.

32.2.2. Set the CDI Maven Dependency

The CDI module is included in the Infinispan jar for each deployment type, and no additional
dependencies are required.

Library Mode

In Library mode the infinispan-embedded artifact contains the CDI module, and should be added as a
dependency as seen in the below example:

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-embedded</artifactld>
<version>${infinispan.version}</version>
</dependency>

Remote Client-Server Mode

In Remote Client-Server mode the infinispan-remote artifact contains the CDI module, and should be
added as a dependency as seen in the below example:

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-remote</artifactld>
<version>${infinispan.version}</version>
</dependency>

32.3. USING THE INFINISPAN CDI MODULE

323

Red Hat Data Grid 7.2 Developer Guide

32.3.1. Using the Infinispan CDI Module

The Infinispan CDI module can be used for the following purposes:
® To configure and inject Infinispan caches into CDI Beans and Java EE components.
® To configure cache managers.

® To control storage and retrieval using CDI annotations.
32.3.2. Configure and Inject Infinispan Caches

32.3.2.1. Inject an Infinispan Cache

An Infinispan cache is one of the multiple components that can be injected into the project’s CDI beans.

The following code snippet illustrates how to inject a cache instance into the CDI bean:

public class MyCDIBean {
@Inject
Cache<String, String> cache;

}

32.3.2.2. Inject a Remote Infinispan Cache

The code snippet to inject a normal cache is slightly modified to inject a remote Infinispan cache, as
follows:

public class MyCDIBean {
@Inject
RemoteCache<String, String> remoteCache;

}

32.3.2.3. Set the Injection’s Target Cache

32.3.2.3.1. Set the Injection’s Target Cache

The following are the three steps to set an injection’s target cache:
1. Create a qualifier annotation.
2. Add a producer class.

3. Inject the desired class.

32.3.2.3.2. Create a Qualifier Annotation

To use CDI to return a specific cache, create custom cache qualifier annotations as follows:

Custom Cache Qualifier

@javax.inject.Qualifier
@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})

324

CHAPTER 32. THE INFINISPAN CDI MODULE

@Retention(RetentionPolicy. RUNTIME)
@Documented
public @interface SmallCache {}

Use the created @SmallCache qualifier to specify how to create specific caches.

32.3.2.3.3. Add a Producer Class

The following code snippet illustrates how the @SmallCache qualifier (created in the previous step)
specifies a way to create a cache:

Using the @SmallCache Qualifier

import org.infinispan.configuration.cache.Configuration;

import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.cdi.ConfigureCache;

import javax.enterprise.inject.Produces;

public class CacheCreator {
@ConfigureCache("smallcache")
@SmallCache
@Produces
public Configuration specialCacheCfg() {
return new ConfigurationBuilder()
.memory()
.size(10)
build();

The elements in the code snippet are:
e @ConfigureCache specifies the name of the cache.

e @SmallCache is the cache qualifier.

32.3.2.3.4. Inject the Desired Class

Use the @SmallCache qualifier and the new producer class to inject a specific cache into the CDI bean
as follows:

public class MyCDIBean {
@Inject @SmallCache
Cache<String, String> mySmallCache;

}

32.3.3. Configure Cache Managers with CDI

32.3.3.1. Configure Cache Managers with CDI

A Red Hat JBoss Data Grid Cache Manager (both embedded and remote) can be configured using CDI.
Whether configuring an embedded or remote cache manager, the first step is to specify a default
configuration that is annotated to act as a producer.

325

Red Hat Data Grid 7.2 Developer Guide

32.3.3.2. Specify the Default Configuration

Specify a method annotated as a producer for the Red Hat JBoss Data Grid configuration object to
replace the default Infinispan Configuration. The following sample configuration illustrates this step:

Specifying the Default Configuration

public class Config {
@Produces
public Configuration defaultEmbeddedConfiguration () {
return new ConfigurationBuilder()
.memory()
size(100)
build();

NOTE

CDI adds a @Default qualifier if no other qualifiers are provided.

If a @Produces annotation is placed in a method that returns a Configuration instance, the method is
invoked when a Configuration object is required.

In the provided example configuration, the method creates a new Configuration object which is
subsequently configured and returned.

32.3.3.3. Override the Creation of the Embedded Cache Manager

Prerequisites

See Specify the Default Configuration.

Creating Non Clustered Caches

After a producer method is annotated, this method will be called when creating an
EmbeddedCacheManager, as follows:

public class Config {

@Produces
@ApplicationScoped
public EmbeddedCacheManager defaultEmbeddedCacheManager() {
Configuration cfg = new ConfigurationBuilder()
.memory()
.size(150)
build();
return new DefaultCacheManager(cfg);
}
}

The @ApplicationScoped annotation specifies that the method is only called once.

Creating Clustered Caches

326

CHAPTER 32. THE INFINISPAN CDI MODULE

The following configuration can be used to create an EmbeddedCacheManager that can create
clustered caches.

public class Config {

@Produces
@ApplicationScoped
public EmbeddedCacheManager defaultClusteredCacheManager() {
GlobalConfiguration g = new GlobalConfigurationBuilder()
.ClusteredDefault()
.transport()
.ClusterName("InfinispanCluster")
build();
Configuration cfg = new ConfigurationBuilder()
.memory()
.size(150)
build();
return new DefaultCacheManager(g, cfg);
}
}

Invoke the Method to Generate an EmbeddedCacheManager

The method annotated with @Produces in the non clustered method generates Configuration objects.
The methods in the clustered cache example annonated with @Produces generate
EmbeddedCacheManager objects.

Add an injection as follows in your CDI Bean to invoke the appropriate annotated method. This generates
EmbeddedCacheManager and injects it into the code at runtime.

Generate an EmbeddedCacheManager

@Inject
EmbeddedCacheManager cacheManager;

32.3.3.4. Configure a Remote Cache Manager

The RemoteCacheManager is configured in a manner similar to EmbeddedCacheManagers, as follows:

Configuring the Remote Cache Manager

public class Config {

@Produces

@ApplicationScoped

public RemoteCacheManager defaultRemoteCacheManager() {
Configuration conf = new

ConfigurationBuilder().addServer().host(ADDRESS).port(PORT).build();
return new RemoteCacheManager(conf);

}

1

32.3.3.5. Configure Multiple Cache Managers with a Single Class

327

Red Hat Data Grid 7.2 Developer Guide

A single class can be used to configure multiple cache managers and remote cache managers based on
the created qualifiers. An example of this is as follows:

Configure Multiple Cache Managers

public class Config {
@Produces
@ApplicationScoped
public org.infinispan.manager.EmbeddedCacheManager
defaultEmbeddedCacheManager() {
Configuration cfg = new ConfigurationBuilder()
.memory()
.size(150)
.build();
return new DefaultCacheManager(cfg);

}

@Produces
@ApplicationScoped
@DefaultClustered
public org.infinispan.manager.EmbeddedCacheManager
defaultClusteredCacheManager() {
GlobalConfiguration g = new GlobalConfigurationBuilder()
.ClusteredDefault()
transport()
.clusterName("InfinispanCluster")
.build();
Configuration cfg = new ConfigurationBuilder()
.memory()
.size(150)
.build();
return new DefaultCacheManager(g, cfg);

}

@Produces
@ApplicationScoped
@DefaultRemote
public RemoteCacheManager
defaultRemoteCacheManager () {
org.infinispan.client.hotrod.configuration.Configuration conf = new
org.infinispan.client.hotrod.configuration.ConfigurationBuilder().addServer().host(ADDRESS).port(POR
T).build();
return new RemoteCacheManager(conf);

}

@Produces
@ApplicationScoped
@RemoteCachelnDifferentDataCentre
public RemoteCacheManager newRemoteCacheManager() {
org.infinispan.client.hotrod.configuration.Configuration confid = new
org.infinispan.client.hotrod.configuration.ConfigurationBuilder().addServer().host(ADDRESS_FAR_AW
AY).port(PORT).build();
return new RemoteCacheManager(confid);
}
}

328

CHAPTER 32. THE INFINISPAN CDI MODULE

32.4. STORAGE AND RETRIEVAL USING CDI ANNOTATIONS

32.4.1. Configure Cache Annotations

Specific CDI annotations are accepted for the JCache (JSR-107) specification. All included annotations
are located in the javax.cache package.

The annotations intercept method calls on CDI beans and perform storage and retrieval tasks as a result
of these interceptions.

IMPORTANT

CDl is supported in both Remote Client-Server Mode and Library Mode; however,
annotations such as @CachePut, @CacheRemove, @CacheRemoveAll, and @CacheResult
cannot be used in Remote Client-Server Mode.

32.4.2. Enable Cache Annotations

JBoss Data Grid includes two sets of interceptors depending on how they are used. Interceptors can be
added to the CDI bean archive using the beans.xml file.

Option 1: CDI Interceptors

Adding the following code adds interceptors such as the InjectedCacheResultinterceptor,
InjectedCachePutinterceptor, InjectedCacheRemoveEntrylnterceptor and the
InjectedCacheRemoveAlllnterceptor:

Adding CDI Interceptors

<beans xmins="http://java.sun.som/xml/ns/javaee"
xmins:xsi="http://www/w3/org/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd" >
<interceptors>
<class>org.infinispan.jcache.annotation.InjectedCacheResultinterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCachePutlnterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCacheRemoveEntrylnterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCacheRemoveAlllnterceptor</class>
</interceptors>
</beans>

Option 2: JCache Interceptors

Adding the following code adds interceptors such as the CacheResultinterceptor,
CachePutinterceptor, CacheRemoveEntrylnterceptor and the CacheRemoveAlllnterceptor:

Adding JCache Interceptors

<beans xmins="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

<interceptors>
<class>org.infinispan.jcache.annotation.CacheResultInterceptor</class>

329

Red Hat Data Grid 7.2 Developer Guide

<class>org.infinispan.jcache.annotation.CachePutInterceptor</class>

<class>org.infinispan.jcache.annotation.CacheRemoveEntryInterceptor</class>

<class>org.infinispan.jcache.annotation.CacheRemoveAlllnterceptor</class>
<finterceptors>

</beans>

NOTE

The listed interceptors must appear in the beans.xml file for Red Hat JBoss Data Grid to

- use javax.cache annotations.

32.4.3. Caching the Result of a Method Invocation

32.4.3.1. Caching the Result of a Method Invocation

A common practice for time or resource intensive operations is to save the results in a cache for future
access. The following code is an example of such an operation:

public String toCelsiusFormatted(float fahrenheit) {
return

NumberFormat.getinstance()

format((fahrenheit * 5/9) - 32)

+ " degrees Celsius";

}

A common approach is to cache the results of this method call and to check the cache when the result is
next required. The following is an example of a code snippet that looks up the result of such an operation
in a cache. If the results are not found, the code snippet runs the toCelsiusFormatted method again
and stores the result in the cache.

float f = getTemperaturelnFahrenheit();
Cache<Float, String>
fahrenheitToCelsiusCache = getCache();
String celsius =
fahrenheitToCelsiusCache = get(f);
if (celsius == null) {
celsius = toCelsiusFormatted(f);
fahrenheitToCelsiusCache.put(f, celsius);

}

In such cases, the Infinispan CDI module can be used to eliminate all the extra code in the related
examples. Annotate the method with the @CacheResult annotation instead, as follows:

@javax.cache.annotation.CacheResult

public String toCelsiusFormatted(float fahrenheit) {
return NumberFormat.getinstance()
.format((fahrenheit * 5/9) - 32)

+ " degrees Celsius";

}

Due to the annotation, Infinispan checks the cache and if the results are not found, it invokes the
toCelsiusFormatted() method call.

330

CHAPTER 32. THE INFINISPAN CDI MODULE

NOTE

The Infinispan CDI module allows checking the cache for saved results, but this approach
should be carefully considered before application. If the results of the call should always
be fresh data, or if the cache reading requires a remote network lookup or deserialization
from a cache loader, checking the cache before call method invocation can be counter
productive.

32.4.3.2. Specify the Cache Used

Add the following optional attribute (cacheName) to the @CacheResult annotation to specify the
cache to check for results of the method call:

@CacheResult(cacheName = "mySpecialCache")
public String doSomething(String parameter) {
<!-- Additional configuration information here -->

}

32.4.3.3. Cache Keys for Cached Results

As a default, the @CacheResult annotation creates a key for the results fetched from a cache. The key
consists of a combination of all parameters in the relevant method.

Create a custom key using the @CacheKey annotation as follows:

Create a Custom Key

@CacheResult

public String doSomething

(@CacheKey String p1,

@CacheKey String p2,

String dontCare) {

<!-- Additional configuration information here -->

}

In the specified example, only the values of p1 and p2 are used to create the cache key. The value of
dontCare is not used when determining the cache key.

32.4.3.4. Generate a Custom Key

Generate a custom key as follows:

import javax.cache.annotation.CacheKey;

import javax.cache.annotation.CacheKeyGenerator;

import javax.cache.annotation.CacheKeylnvocationContext;
import java.lang.annotation.Annotation;

public class MyCacheKeyGenerator implements CacheKeyGenerator {

@Override
public CacheKey generateCacheKey(CacheKeylnvocationContext<? extends Annotation> ctx) {

return new MyCacheKey(
ctx.getAllParameters()[0].getValue()

331

Red Hat Data Grid 7.2 Developer Guide

);
}
}

The listed method constructs a custom key. This key is passed as part of the value generated by the first
parameter of the invocation context.

To specify the custom key generation scheme, add the optional parameter cacheKeyGenerator to the
@CacheResult annotation as follows:

@CacheResult(cacheKeyGenerator = MyCacheKeyGenerator.class)
public void doSomething(String p1, String p2) {
<!-- Additional configuration information here -->

}

Using the provided method, p1 contains the custom key.
32.4.4. Cache Operations

32.4.4.1. Update a Cache Entry

When the method that contains the @CachePut annotation is invoked, a parameter (normally passed to
the method annotated with @CacheValue) is stored in the cache.

Sample @CachePut Annotated Method

import javax.cache.annotation.CachePut;
import javax.cache.annotation.CacheKey;
import javax.cache.annotation.CacheValue;

@CachePut (cacheName = "personCache")
public void updatePerson

(@CacheKey long personid,

@CacheValue Person newPerson) {

<!-- Additional configuration information here -->

}

Further customization is possible using cacheName and cacheKeyGenerator in the @CachePut
method. Additionally, some parameters in the invoked method may be annotated with @CacheKey to
control key generation.

See Also: Cache keys for Cached Results

32.4.4.2. Remove an Entry from the Cache

The following is an example of a @CacheRemoveEntry annotated method that is used to remove an
entry from the cache:

Removing an Entry from the Cache

import javax.cache.annotation.CacheRemoveEntry;
import javax.cache.annotation.CacheKey;

@CacheRemoveEntry (cacheName = "cacheOfPeople")

332

CHAPTER 32. THE INFINISPAN CDI MODULE

public void changePersonName

(@CacheKey long personid,

string newName) {

<!-- Additional configuration information here -->

}

The annotation accepts the optional cacheName and cacheKeyGenerator attributes.

32.4.4.3. Clear the Cache

Invoke the @CacheRemoveAll method to clear all entries from the cache.

Clear All Entries from the Cache with @CacheRemoveAll

import javax.cache.annotation.CacheRemoveAll;

@CacheRemoveAll (cacheName = "statisticsCache")
public void resetStatistics() {
<!-- Additional configuration information here -->

}

As displayed in the example, this annotation accepts an optional cacheName attribute.

333

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 33. INTEGRATION WITH THE SPRING FRAMEWORK

Red Hat JBoss Data Grid provides integration with the Spring Framework through a set of modules that
enable you to use JBoss Data Grid as a cache provider.

33.1. ENABLING SPRING CACHE SUPPORT

The first step to integrating Red Hat JBoss Data Grid with Spring is to enable cache support in the
application context. This step lets you use the @Cacheable and @CacheEvict annotations for adding
and removing entries from the cache.

33.1.1. Declaratively Enabling Spring Cache Support

To declaratively enable Spring cache support, add <cache:annotation-driven/> to the application
context, as in the following example:

<beans xmlns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:cache="http://www.springframework.org/schema/cache"
xmlins:p="http://www.springframework.org/schema/p"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

<cache:annotation-driven />

33.1.2. Programmatically Enabling Spring Cache Support

Programmatically enable Spring cache support as follows:

@EnableCaching @Configuration
public class Config {

}

33.2. ADDING THE SPRING INTEGRATION MODULE

Add the appropriate dependencies for Red Hat JBoss Data Grid and the Spring integration module to
your pom.xml as follows:

Library mode

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-spring4-embedded</artifactld>
<version>${version.spring}</version>
</dependency>

Remote Client-Server mode

334

CHAPTER 33. INTEGRATION WITH THE SPRING FRAMEWORK

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-spring4-remote</artifactld>
<version>${version.spring}</version>
</dependency>

33.3. CONFIGURING RED HAT JBOSS DATA GRID AS THE SPRING
CACHING PROVIDER

The Spring cache provider SPI has two interfaces through which it interacts with Red Hat JBoss Data
Grid, org.springframework.cache.CacheManager and org.springframework.cache.Cache. The
CacheManager interface acts as a factory for named Cache instances.

To use JBoss Data Grid acts as the caching provider, the Spring Framework requires a CacheManager
implementation with a bean named cacheManager in the application context.

The following examples show how you can configure your application context either declaratively or
programmatically:

33.3.1. Declaratively Configuring JBoss Data Grid as the Spring Caching Provider

Library mode

<bean id="cacheManager"
class="org.infinispan.spring.provider.SpringEmbeddedCacheManagerFactoryBean"
p:configurationFileLocation="classpath:/path/to/cache-config.xml" />

Remote Client-Server mode

<bean id="cacheManager"
class="org.infinispan.spring.provider.SpringRemoteCacheManagerFactoryBean"
p:configurationFileLocation="classpath:/path/to/hotrod-client.properties" />

33.3.2. Programmatically Configuring JBoss Data Grid as the Spring Caching
Provider

Library mode

@EnableCaching
@Configuration
public class Config {

@Bean
public CacheManager cacheManager() {
return new SpringEmbeddedCacheManager(infinispanCacheManager());

}

private EmbeddedCacheManager infinispanCacheManager() {
return new DefaultCacheManager();

335

Red Hat Data Grid 7.2 Developer Guide

}

Remote Client-Server mode

@EnableCaching
@Configuration
public class Config {

@Bean
public CacheManager cacheManager() {
return new SpringRemoteCacheManager(infinispanCacheManager());

}

private RemoteCacheManager infinispanCacheManager () {
return new DefaultCacheManager();

}

33.4. ADDING CACHING TO YOUR APPLICATION CODE

You can add caching to your application with Spring annotations.

Adding Cache Entries

To add entries to the cache add the @Cacheable annotation to select methods. This annotation will
add any returned values to the indicated cache. For instance, consider a method that returns a Book
based on a particular key.

By annotating this method with @Cacheable:

@Transactional
@Cacheable(value = "books", key = "#bookld")
public Book findBook(Integer bookld) {...}

Any Book instances returned from findBook(Integer bookld) will be placed in a named cache books,
using the bookld as the value's key.

IMPORTANT

If the key attribute is not specified then Spring will generate a hash from the supplied
arguments and use this generated value as the cache key. If your application needs to
reference the entries directly it is recommended to include the key attribute so that
entries may be easily obtained.

Deleting Cache Entries

To remove entries from the cache annotate the desired methods with @CacheEvict. This annotation
can be configured to evict all entries in a cache, or to only affect entries with the indicated key. Consider
the following examples:

I // Evict all entries in the "books" cache

336

CHAPTER 33. INTEGRATION WITH THE SPRING FRAMEWORK

@Transactional
@CacheEvict (value="books", key = "#bookld", allEntries = true)
public void deleteBookAllEntries() {...}

// Evict any entries in the "books" cache that match the passed in bookld
@Transactional

@CacheEvict (value="books", key = "#bookld")

public void deleteBook(Integer bookld) {...1}

33.5. CONFIGURING TIMEOUTS FOR CACHE OPERATIONS

The Red Hat JBoss Data Grid Spring Cache provider defaults to blocking behaviour when performing
read and write operations. By default operations are synchronous and do not time out. However, you
might want to set a maximum time to wait for operations before timing out in some situations. For
example, timeouts are useful if you need to ensure that an operation completes within a certain time and
you can ignore the cached value.

The following properties let you set timeouts for read and write operations:

e infinispan.spring.operation.read.timeout specifies the time, in milliseconds, to wait for read
operations to complete. The default is 0 which means unlimited wait time.

¢ infinispan.spring.operation.write.timeout specifies the time, in milliseconds, to wait for write
operations to complete. The default is 0 which means unlimited wait time.

To configure timeouts for cache operations, set the properties in the context XML for your application
on either SpringEmbeddedCacheManagerFactoryBean or
SpringRemoteCacheManagerFactoryBean as follows:

Library mode

<bean id="springEmbeddedCacheManagerConfiguredUsingConfigurationProperties"
class="org.infinispan.spring.provider.SpringEmbeddedCacheManagerFactoryBean">
<property name="configurationProperties">
<props>
<prop key="infinispan.spring.operation.read.timeout">500</prop>
<prop key="infinispan.spring.operation.write.timeout">700</prop>
</props>
</property>
</bean>

Remote Client-Server mode

<bean id="springRemoteCacheManagerConfiguredUsingConfigurationProperties"
class="org.infinispan.spring.provider.SpringRemoteCacheManagerFactoryBean">
<property name="configurationProperties">
<props>
<prop key="infinispan.spring.operation.read.timeout">500</prop>
<prop key="infinispan.spring.operation.write.timeout">700</prop>
</props>
</property>
</bean>

337

Red Hat Data Grid 7.2 Developer Guide

NOTE

In remote client-server mode you can also set these properties in hotrod-
client.properties.

33.6. EXTERNALIZING SESSIONS TO RED HAT JBOSS DATA GRID
CLUSTERS

Spring Session lets you externalize user session information to JBoss Data Grid in both library mode and
remote client-server mode.

To configure Spring Session integration in your application, do the following:

1. Add the following dependencies to your pom.xml:

<dependency>
<groupld>org.springframework</groupld>
<artifactld>spring-session</artifactld>
<version>${version.spring}</version>

</dependency>

<dependency>
<groupld>org.springframework</groupld>
<artifactld>spring-web</artifactld>
<version>${version.spring}</version>

</dependency>

2. Specify the appropriate FactoryBean to expose a CacheManager instance.

® Library mode: SpringEmbeddedCacheManagerFactoryBean

® Remote Client-Server mode: SpringRemoteCacheManagerFactoryBean
3. Enable Spring Session with the appropriate annotation.

® |ibrary mode: @EnablelnfinispanEmbeddedHttpSession

® Remote Client-Server mode: @EnablelnfinispanRemoteHttpSession
These annotations have the following optional parameters:

o maxlInactivelntervallnSeconds sets session expiration time in seconds. The default is
1800.

o cacheName specifies the name of the cache that stores sessions. The default is
sessions.

The following provides an example configuration for JBoss Data Grid in library mode:

@EnablelnfinispanEmbeddedHttpSession
@Configuration
public class Config {

@Bean

public SpringEmbeddedCacheManagerFactoryBean springCacheManager() {
return new SpringEmbeddedCacheManagerFactoryBean();

}

338

CHAPTER 33. INTEGRATION WITH THE SPRING FRAMEWORK

//An optional configuration bean that replaces the default cookie
//for obtaining configuration.
//For more information refer to Spring Session documentation.
@Bean
public HttpSessionStrategy httpSessionStrategy() {
return new HeaderHttpSessionStrategy();
}
}

339

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 34. INTEGRATION WITH APACHE SPARK

34.1. THE JBOSS DATA GRID APACHE SPARK CONNECTOR

JBoss Data Grid includes a Spark connector, providing tight integration with Apache Spark, and allowing
applications written either in Java or Scala to utilize JBoss Data Grid as a backing data store.

There actually are two connectors, one that supports Apache Spark 1.6.x, and one that supports Apache
Spark 2.x, which in turn support Scala 2.10.x, and 2.11.x, respectively. Both of these connectors are
shipped separately from the main distribution.
The Apache Spark 1.6 connector includes support for the following:

® Create an RDD from any cache

® Write a key/value RDD to a cache

® Create a DStream from cache-level events

® Write a key/value DStream to a cache
In addition to the above features, the Apache Spark 2 connector supports these features:

e Use JDG server side filters to create a cache based RDD

® Spark serializer based on JBoss Marshalling

® Dataset API with push down predicates support

NOTE

Support for Apache Spark is only available in Remote Client-Server Mode.

34.2. SPARK DEPENDENCIES

The following Maven configuration should be used depending on the desired version of Apache Spark:

pom.xml for Spark 1.6.x

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-spark</artifactld>
<version>0.3.0.Final-redhat-2</version>
</dependency>

pom.xml for Spark 2.x

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-spark</artifactld>
<version>0.6.0.Final-redhat-9</version>
</dependency>

340

CHAPTER 34. INTEGRATION WITH APACHE SPARK

34.3. CONFIGURING THE SPARK CONNECTOR

The Apache Spark version 1.6 and version 2 connectors do not use the same interfaces for
configuration. The version 1.6 connector uses properties, and the version 2 connector uses methods.

34.3.1. Properties to Configure the Version 1.6 Connector

Table 34.1. Properties to Configure the Version 1.6 Connector

Property Name

infinispan.client.hotrod.serve
r_list

infinispan.rdd.cacheName

infinispan.rdd.read_batch_si
ze

infinispan.rdd.write_batch_si
ze

infinispan.rdd.number_serve
r_partitions

infinispan.rdd.query.proto.pr
otofiles

infinispan.rdd.query.proto.m
arshallers

Description

List of JBoss Data Grid nodes

The name of the cache that will
back the RDD

Batch size (number of entries)
when reading from the cache

Batch size (number of entries)
when writing to the cache

Numbers of partitions created per
JBoss Data Grid server

Map with protobuf file names and
contents

List of protostream marshallers
classes for the objects in the
cache

Default Value

localhost:11222

default cache

10000

500

Can be omitted if entities are
annotated with protobuf
encoding information. Protobuf
encoding is required to filter the
RDD by Query.

Can be omitted if entities are
annotated with protobuf
encoding information. Protobuf
encoding is required to filter the
RDD by Query.

34.3.2. Methods to Configure the Version 2 Connector

The following methods can be used to configure the version 2 connector. They are provided by the
org.infinispan.spark.config.ConnectorConfiguration class.

Table 34.2. Methods to Configure the Version 2 Connector

Method Name Description Default Value

setServerList(String) List of JBoss Data Grid nodes localhost:11222

341

Red Hat Data Grid 7.2 Developer Guide

Method Name

setCacheName(String)

setReadBatchSize(Integer)

setWriteBatchSize(Integer)

setPartitions(Integer)

addProtoFile(String name,
String contents)

addMessageMarshaller(Class

)

addProtoAnnotatedClass(Cla
Ss)

setAutoRegisterProto()

addHotRodClientProperty(ke
y, value)

setTargetEntity(Class)

Description

The name of the cache that will
back the RDD

Batch size (number of entries)
when reading from the cache

Batch size (number of entries)
when writing to the cache

Numbers of partitions created per
JBoss Data Grid server

Map with protobuf file names and
contents

List of protostream marshallers
classes for the objects in the
cache

Registers a Class containing
protobuf annotations

Causes automatic registration of
protobuf schemas in the server

Configures additional Hot Rod
client properties when contacting
the JBoss Data Grid Server

Used in conjunction with the
Dataset API to specify the Query
target

34.3.3. Connecting to a Secured JDG Cluster

Default Value

default cache

10000

500

Can be omitted if entities are
annotated with protobuf
encoding information. Protobuf
encoding is required to filter the
RDD by Query.

Can be omitted if entities are
annotated with protobuf
encoding information. Protobuf
encoding is required to filter the
RDD by Query.

Alternative to using
addProtoFile and
addMessageMarshaller
methods, since both will be auto-
generated based on the
annotations.

None

None

If omitted, and in case thereis
only one class annotated with
protobuf configured, it will choose
that class.

If the JDG cluster is secured, Hot Rod must be configured with security for the Spark connector to work.
There are several Hot Rod properties that can be set to configure Hot Rod security. They are described

in the Hot Rod Properties table in the Appendix of the Administration and Configuration Guide, starting
with infinispan.client.hotrod.use_ssl

342

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#hotrod_properties

CHAPTER 34. INTEGRATION WITH APACHE SPARK

IMPORTANT

These properties are exclusive to the version 2 Apache Spark connector.

34.4. CODE EXAMPLES FOR SPARK 1.6

34.4.1. Code Examples for Spark 1.6

Since the connector for Apache Spark 1.6 uses a different configuration mechanism than the version 2
connector, and also because the version 2 connector supports some features 1.6 doesn't, the code
examples for each version are separated into their own sections. The following code examples work with
version 1.6 of the Spark connector. Follow this link for code examples for Spark 2.

34.4.2. Creating and Using RDDs

With the Apache Spark 1.6 connector, RDDs are created by specifying a Properties instance with
configurations described in Properties to Configure the Version 1.6 Connector , and then using it
together with the Spark context to create a InfinispanRDD that is used with the normal Spark
operations.

An example of this is below in both Java and Scala:

34.4.3. Creating an RDD

Creating an RDD (Java)

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.infinispan.spark.rdd.InfinispandavaRDD;

import java.util.Properties;

[...]

// Begin by defining a new Spark configuration and creating a Spark context from this.
SparkConf conf = new SparkConf().setAppName("example-RDD");
JavaSparkContext jsc = new JavaSparkContext(conf);

// Create the Properties instance, containing the JBoss Data Grid node and cache name.

Properties properties = new Properties();
properties.put("infinispan.client.hotrod.server_list", "server:11222");

properties.put("infinispan.rdd.cacheName","exampleCache");

// Create the RDD

JavaPairRDD<Integer, Book> exampleRDD = InfinispandavaRDD.createlnfinispanRDD(jsc,
properties);

JavaRDD<Book> booksRDD = exampleRDD.values();
Creating an RDD (Scala)

import java.util.Properties

import org.apache.spark.{SparkConf, SparkContext}

343

Red Hat Data Grid 7.2 Developer Guide

import org.infinispan.spark.rdd.InfinispanRDD
import org.infinispan.spark._

// Begin by defining a new Spark configuration and creating a Spark context from this.
val conf = new SparkConf().setAppName("example-RDD-scala")
val sc = new SparkContext(conf)

// Create the Properties instance, containing the JBoss Data Grid node and cache name.
val properties = new Properties

properties.put("infinispan.client.hotrod.server_list", "server:11222")
properties.put("infinispan.rdd.cacheName", "exampleCache")

// Create an RDD from the DataGrid cache
val exampleRDD = new InfinispanRDD[Integer, Book](sc, properties)

val booksRDD = exampleRDD.values

34.4.4. Querying an RDD

On

ce the RDD is available entries in the backing cache may be obtained by using either the Spark RDD

operations or Spark’s SQL support. The above example is expanded to count the entries, per author, in
the resulting RDD with an SQL query:

Querying an RDD (Java)

// The following imports should be added to the list from the previous example
import org.apache.spark.sqgl.DataFrame;

import org.apache.spark.sql.Row;

import org.apache.spark.sgl.SQLContext;

[...]

// Continuing the previous example

// Create a SQLContext, registering the data frame and table

SQLContext sqlContext = new SQLContext(jsc);

DataFrame dataFrame = sqlContext.createDataFrame(booksRDD, Book.class);
dataFrame.registerTempTable("books");

// Run the Query and collect results
List<Row> rows = sqglContext.sql("SELECT author, count(*) as a from books WHERE author != "N/A'
GROUP BY author ORDER BY a desc").collectAsList();

Querying an RDD (Scala)

344

import org.apache.spark.SparkContext

import org.apache.spark.sql.SQLContext

[...]

// Create a SQLContext, register a data frame and table

val sglContext = new SQLContext(sc)

val dataFrame = sqglContext.createDataFrame(booksRDD, classOf[Book])
dataFrame.registerTempTable("books")

// Run the Query and collect the results
val rows = sqglContext.sql("SELECT author, count(*) as a from books WHERE author != '"N/A' GROUP
BY author ORDER BY a desc").collect()

CHAPTER 34. INTEGRATION WITH APACHE SPARK

34.4.5. Writing an RDD to the Cache

Any key/value based RDD can be written to the Data Grid cache by using the static
InfinispanJavaRDD.write() method. This will copy the contents of the RDD to the cache:

Writing an RDD (Java)

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.infinispan.client.hotrod.RemoteCache;

import org.infinispan.spark.domain.Address;

import org.infinispan.spark.domain.Person;

import org.infinispan.spark.rdd.InfinispandavaRDD;

import scala.Tuple2;

import java.util.List;

import java.util.Properties;

[.-]

// Define the location of the JBoss Data Grid node

Properties properties = new Properties();
properties.put("infinispan.client.hotrod.server_list", "localhost:11222");
properties.put("infinispan.rdd.cacheName","exampleCache");

// Create the JavaSparkContext
SparkConf conf = new SparkConf().setAppName("write-example-RDD");
JavaSparkContext jsc = new JavaSparkContext(conf);

// Defining two entries to be stored in a RDD

// Each Book will contain the title, author, and publicationYear

Book bookOne = new Book("Linux Bible", "Negus, Chris", "2015");

Book bookTwo = new Book("Java 8 in Action", "Urma, Raoul-Gabriel", "2014");

List<Tuple2<Integer, Book>> pairs = Arrays.asList(
new Tuple2<>(1, bookOne),
new Tuple2<>(2, bookTwo)

);

// Create the RDD using the newly created List
JavaPairRDD<Integer, Book> pairsRDD = jsc.parallelizePairs(pairs);

// Write the entries into the cache
InfinispandavaRDD.write(pairsRDD, config);

Writing an RDD (Scala)

import java.util.Properties

import org.infinispan.spark._

import org.infinispan.spark.rdd.InfinispanRDD

[--]

// Define the location of the JBoss Data Grid node

val properties = new Properties
properties.put("infinispan.client.hotrod.server_list", "localhost:11222")
properties.put("infinispan.rdd.cacheName", "exampleCache")

// Create the SparkContext

345

Red Hat Data Grid 7.2 Developer Guide

34

val conf = new SparkConf().setAppName("write-example-RDD-scala")
val sc = new SparkContext(conf)

// Create an RDD of Books
val bookOne = new Book("Linux Bible", "Negus, Chris", "2015")
val bookTwo = new Book("Java 8 in Action", "Urma, Raoul-Gabriel", "2014")

val sampleBookRDD = sc.parallelize(Seq(bookOne,bookTwo))
val pairsRDD = sampleBookRDD.zipWithIndex().map(_.swap)

// Write the Key/Value RDD to the Data Grid
pairsRDD.writeTolnfinispan(properties)

.4.5.1. Creating and Using DStreams

DStreams represent a continuous stream of data, and are internally represented by a continuous series
of RDDs, with each RDD containing data from a specific time interval.

To

create a DStream a StreamingContext will be passed in along with StorageLevel and the JBoss

Data Grid RDD configuration, as seen in the below example:

Creating a DStream (Scala)

import org.infinispan.spark.stream._

import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.StoragelLevel

import java.util.Properties

// Spark context

val sc = ...

// java.util. Properties with Infinispan RDD configuration
val props = ...

val ssc = new StreamingContext(sc, Seconds(1))

val stream = new InfinispaninputDStream[String, Book](ssc, StorageLevel. MEMORY_ONLY, props)

The InfinispanlnputDStream can be transformed using the many Spark’s DStream operations, and the
processing will occur after calling "start" in the StreamingContext. For example, to display every 10
seconds the number of books inserted in the cache in the last 30 seconds:

Processing a DStream (Scala)

346

import org.infinispan.spark.stream._

val stream = ... // From previous sample

// Filter only created entries

val createdBooksRDD = stream.filter { case (_, , 1) =>t==
Type.CLIENT_CACHE_ENTRY_CREATED }

// Reduce last 30 seconds of data, every 10 seconds

val windowedRDD: DStream[Long] = createdBooksRDD.count().reduceByWindow(_ + _,
Seconds(30), Seconds(10))

// Prints the results, couting the number of occurences in each individual RDD

CHAPTER 34. INTEGRATION WITH APACHE SPARK

windowedRDD.foreachRDD { rdd => printin(rdd.reduce(_ + _)) }

// Start the processing
ssc.start()
ssc.awaitTermination()

Writing to JBoss Data Grid with DStreams

Any DStream of Key/Value type can be written to JBoss Data Grid through the
InfinispanJavaDStream.writeTolnfinispan() Java method or in Scala using the implicit
writeTolnfinispan(properties) method directly on the DStream instance. Both methods take the JBoss
Data Grid RDD configuration as input and will write each RDD contained within the DStream

34.4.6. Using the Infinispan Query DSL with Spark

The Infinispan Query DSL can be used as a filter for the InfinispanRDD, allowing data to be pre-filtered
at the source rather than at RDD level.

IMPORTANT

Data in the cache must have been encoded with protobuf for the querying DSL to
function correctly. Instructions on using protobuf encoding are found in Protobuf
Encoding.

Consider the following example which retrieves a list of books that includes any author whose name
contains Doe:

34.4.7. Filtering by a Query

Filtering by a Query (Scala)

import org.infinispan.client.hotrod.impl.query.RemoteQuery

import org.infinispan.client.hotrod.{RemoteCacheManager, Search}

import org.infinispan.spark.domain._

[--]

val query = Search.getQueryFactory(remoteCacheManager.getCache(getCacheName))
.from(classOf[Book])
.having("author").like("Doe")
.toBuilder[RemoteQuery].build()

val rdd = createlnfinispanRDD[Int, Book]
filterByQuery[Book]](query, classOf[Book])

Projections are also fully supported; for instance, the above example may be adjusted to only obtain the
title and publication year, and sorting on the latter field:

34.4.8. Filtering with a Projection
Filtering with a Projection (Scala)

import org.infinispan.client.hotrod.impl.query.RemoteQuery
import org.infinispan.client.hotrod.{RemoteCacheManager, Search}
import org.infinispan.spark.domain._

347

Red Hat Data Grid 7.2 Developer Guide

[...]
val query = Search.getQueryFactory(remoteCacheManager.getCache(getCacheName))
.select("title","publicationYear")
.from(classOf[Book])
.having("author").like("Doe")
.groupBy("publicationYear")
.toBuilder[RemoteQuery].build()

val rdd = createlnfinispanRDD[Int, Book]
filterByQuery[Array[AnyRef]](query, classOf[Book])

In addition, if a filter has already been deployed to the JBoss Data Grid server it may be referenced by
name, as seen below:

34.4.9. Filtering with a Deployed Filter

Filtering with a Deployed Filter (Scala)

val rdd = InfinispanRDD[String,Book] =
// "my-filter-factory" filter and converts Book to a String, and has two parameters
val filteredRDD = rdd.filterByCustom[String]("my-filter-factory", "param1", "param2")

34.5. CODE EXAMPLES FOR SPARK 2

34.5.1. Code Examples for Spark 2

Since the connector for Apache Spark 2 uses a different configuration mechanism than the 1.6
connector, and also because the version 2 connector supports some features 1.6 doesn't, the code
examples for each version are separated into their own sections. The following code examples work with
version 2 of the Spark connector. Follow this link for code examples for Spark 1.6.

34.5.2. Creating and Using RDDs

In Apache Spark 2, Resilient Distributed Datasets (RDDs) are created by specifying a
ConnectorConfiguration instance with configurations described in the table from Methods to
Configure the Version 2 Connector.

Examples of this in both Java and Scala are below:

34.5.3. Creating an RDD

Creating an RDD (Java)

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;
import org.infinispan.spark.config.ConnectorConfiguration;
import org.infinispan.spark.rdd.InfinispandavaRDD;

JavaSparkContext jsc = new JavaSparkContext();

ConnectorConfiguration config = new ConnectorConfiguration()

348

CHAPTER 34. INTEGRATION WITH APACHE SPARK

.setCacheName("exampleCache").setServerList("server:11222");

JavaPairRDD<String, MyEntity> infinispanRDD = InfinispandavaRDD.createlnfinispanRDD(jsc,
config);

JavaRDD<MyEntity> entitiesRDD = infinispanRDD.values();
Creating an RDD (Scala)

import org.apache.spark.SparkContext
import org.infinispan.spark.config.ConnectorConfiguration
import org.infinispan.spark.rdd.InfinispanRDD

val sc: SparkContext = new SparkContext()

val config = new ConnectorConfiguration().setCacheName("my-
cache").setServerList("10.9.0.8:11222")

val infinispanRDD = new InfinispanRDD[String, MyEntity](sc, config)

val entitiesRDD = infinispanRDD.values

34.5.4. Querying an RDD

34.5.4.1. SparkSQL Queries

Using SparkSQL Queries (Java)

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

import org.apache.spark.sqgl.SparkSession;

import org.infinispan.spark.config.ConnectorConfiguration;
import org.infinispan.spark.rdd.InfinispandavaRDD;

JavaSparkContext jsc = new JavaSparkContext();
ConnectorConfiguration conf = new ConnectorConfiguration();

// Obtain the values from an InfinispanRDD
JavaPairRDD<Long, MyEntity> infinispanRDD = InfinispandavaRDD.createlnfinispanRDD(jsc, conf);

JavaRDD<MyEntity> valuesRDD = infinispanRDD.values();

// Create a DataFrame from a SparkSession

SparkSession sparkSession = SparkSession.builder().config(new
SparkConf().setMaster("masterHost")).getOrCreate();

Dataset<Row> dataFrame = sparkSession.createDataFrame(valuesRDD, MyEntity.class);

// Create a view
dataFrame.createOrReplaceTempView("myEntities");

349

Red Hat Data Grid 7.2 Developer Guide

// Create and run the Query
Dataset<Row> rows = sparkSession.sql("SELECT field1, count(*) as ¢ from myEntities WHERE
field1 = 'N/A' GROUP BY field1 ORDER BY c desc");

Using SparkSQL Queries (Scala)

import org.apache.spark.sql.SparkSession

import org.apache.spark.{SparkConf, SparkContext}
import org.infinispan.spark.config.ConnectorConfiguration
import org.infinispan.spark.rdd._

val sc: SparkContext = // Initialize your SparkContext here
val config = new ConnectorConfiguration().setServerList("myserveri:port,myserver2:port")

// Obtain the values from an InfinispanRDD
val infinispanRDD = new InfinispanRDD[Long, MyEntity](sc, config)
val valuesRDD = infinispanRDD.values

// Create a DataFrame from a SparkSession

val sparkSession = SparkSession.builder().config(new
SparkConf().setMaster("masterHost")).getOrCreate()

val dataFrame = sparkSession.createDataFrame(valuesRDD, classOf[MyEntity])

// Create a view
dataFrame.createOrReplaceTempView("myEntities")

// Create and run the Query, collect and print results
sparkSession.sqgl("SELECT field1, count(*) as ¢ from myEntities WHERE field1 = 'N/A' GROUP BY
field1 ORDER BY c desc")

.collect().take(20).foreach(printin)

34.5.5. Writing an RDD to the Cache

Any key/value based RDD can be written to the Data Grid cache by using the static
InfinispanJavaRDD.write() method. This will copy the contents of the RDD to the cache:

Writing an RDD (Java)

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaSparkContext;
import org.infinispan.spark.config.ConnectorConfiguration;
import org.infinispan.spark.rdd.InfinispandavaRDD;

import java.util.List;

import java.util.stream.Collectors;

import java.util.stream.IntStream;

JavaSparkContext jsc = new JavaSparkContext();
ConnectorConfiguration connectorConfiguration = new ConnectorConfiguration();

List<Integer> numbers = IntStream.rangeClosed(1, 1000).boxed().collect(Collectors.toList());

350

CHAPTER 34. INTEGRATION WITH APACHE SPARK

JavaPairRDD<Integer, Long> numbersRDD = jsc.parallelize(numbers).zipWithindex();

InfinispandavaRDD.write(numbersRDD, connectorConfiguration);
Writing an RDD (Scala)

import org.apache.spark.SparkContext
import org.infinispan.spark._
import org.infinispan.spark.config.ConnectorConfiguration

val config: ConnectorConfiguration = // Initialize your ConnectorConfiguration here
val sc: SparkContext = // Initialize your SparkContext here

val simpleRdd = sc.parallelize(1 to 1000).zipWithIindex()
simpleRdd.writeTolnfinispan(config)

34.5.6. Creating DStreams

DStreams represent a continuous stream of data, and are internally represented by a continuous series
of RDDs, with each RDD containing data from a specific time interval.

To create a DStream a StreamingContext will be passed in along with StoragelLevel and the JBoss
Data Grid RDD configuration, as seen in the below example:

Creating a DStream (Java)

import org.apache.spark.SparkConf;

import org.apache.spark.streaming.Seconds;

import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.infinispan.spark.config.ConnectorConfiguration;

import org.infinispan.spark.stream.InfinispanJavaDStream;

import static org.apache.spark.storage.StorageLeve MEMORY_ONLY;

SparkConf conf = new SparkConf().setAppName("my-stream-app");
ConnectorConfiguration configuration = new ConnectorConfiguration();
JavaStreamingContext jsc = new JavaStreamingContext(conf, Seconds.apply(1));

InfinispandavaDStream.createlnfinispaninputDStream(jsc, MEMORY_ONLY(), configuration);
Creating a DStream (Scala)

import org.apache.spark.SparkContext

import org.apache.spark.storage.StoragelLevel

import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.infinispan.spark.config.ConnectorConfiguration

import org.infinispan.spark.stream._

val sc = new SparkContext()

val config = new ConnectorConfiguration()

val ssc = new StreamingContext(sc, Seconds(1))

val stream = new InfinispaninputDStream[String, MyEntity](ssc, StorageLeve MEMORY_ONLY,
config)

351

Red Hat Data Grid 7.2 Developer Guide

Writing to JBoss Data Grid with DStreams

Any DStream of Key/Value type can be written to JBoss Data Grid through the
InfinispanJavaDStream.writeTolnfinispan() Java method or in Scala using the implicit
writeTolnfinispan(properties) method directly on the DStream instance. Both methods take the JBoss
Data Grid RDD configuration as input and will write each RDD contained within the DStream.

34.5.7. Using The Apache Spark Dataset API

In addition to the Resilient Distributed Dataset (RDD) programming interface, JBoss Data Grid includes
the Apache Spark Dataset API, with support for pushing down predicates, similar to rdd.filterByQuery.

Dataset APl Example (Java)

import org.apache.spark.SparkConf;

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

import org.apache.spark.sqgl.SparkSession;

import org.infinispan.spark.config.ConnectorConfiguration;

import java.util.List;

// Configure the connector using the ConnectorConfiguration: register entities annotated with
Protobuf,
// and turn on automatic registration of schemas
ConnectorConfiguration connectorConfig = new ConnectorConfiguration()
.setServerList("server1:11222,server2:11222")
.addProtoAnnotatedClass(User.class)
.setAutoRegisterProto();

// Create the SparkSession
SparkSession sparkSession = SparkSession.builder().config(new
SparkConf().setMaster("masterHost")).getOrCreate();

// Load the "infinispan" datasource into a DataFame, using the infinispan config
Dataset<Row> df =
sparkSession.read().format("infinispan").options(connectorConfig.toStringsMap()).load();

// From here it's possible to query using the DatasetSample API...
List<Row> rows = df filter(df.col("age").gt(30)).filter(df.col("age").1t(40)).collectAsList();

// ... or execute SQL queries

df.createOrReplaceTempView("user");

String query = "SELECT first(r.name) as name, first(r.age) as age FROM user u GROUP BY r.age";
List<Row> results = sparkSession.sql(query).collectAsList();

Dataset APl Example (Scala)

import org.apache.spark._

import org.apache.spark.sql._

import org.infinispan.protostream.annotations.{ProtoField, ProtoMessage}
import org.infinispan.spark.config.ConnectorConfiguration

import scala.annotation.meta.beanGetter
import scala.beans.BeanProperty

352

CHAPTER 34. INTEGRATION WITH APACHE SPARK

// Entities can be annotated in order to automatically generate protobuf schemas.
// Also, they should be valid java beans. From Scala this can be achieved as:

@ProtoMessage(name = "user")
class User(@(ProtoField@beanGetter)(number = 1, required = true) @BeanProperty var name:

String,
@(ProtoField@beanGetter)(number = 2, required = true) @BeanProperty var age: Int) {
def this() = {
this(name = "", age = -1)

}
}

// Configure the connector using the ConnectorConfiguration: register entities annotated with
Protobuf,
// and turn on automatic registration of schemas
val infinispanConfig: ConnectorConfiguration = new ConnectorConfiguration()
.setServerList("server1:11222,server2:11222")
.addProtoAnnotatedClass(classOf[User])
.setAutoRegisterProto()

// Create the SparkSession
val sparkSession = SparkSession.builder().config(new
SparkConf().setMaster("masterHost")).getOrCreate()

// Load the "infinispan" datasource into a DataFame, using the infinispan config
val df = sparkSession.read.format("infinispan").options(infinispanConfig.toStringsMap).load()

// From here it's possible to query using the DatasetSample API...
val rows: Array[Row] = df filter(df("age").gt(30)).filter(df("age").lt(40)).collect()

// ... or execute SQL queries

df.createOrReplaceTempView("user")

val query = "SELECT first(r.name) as name, first(r.age) as age FROM user u GROUP BY r.age"
val rowsFromSQL: Array[Row] = sparkSession.sql(query).collect()

34.5.8. Using the Infinispan Query DSL with Spark

The Infinispan Query DSL can be used as a filter for the InfinispanRDD, allowing data to be pre-filtered
at the source rather than at RDD level.

IMPORTANT

Data in the cache must have been encoded with protobuf for the querying DSL to
function correctly. Instructions on using protobuf encoding are found in Protobuf
Encoding.

34.5.9. Filtering with a pre-built Query Object

Filtering with a pre-built Query Object (Java)

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;

353

Red Hat Data Grid 7.2 Developer Guide

import org.infinispan.client.hotrod.RemoteCache;

import org.infinispan.client.hotrod.RemoteCacheManager;
import org.infinispan.client.hotrod.Search;

import org.infinispan.query.dsl.Query;

import org.infinispan.spark.config.ConnectorConfiguration;
import org.infinispan.spark.rdd.InfinispandavaRDD;

JavaSparkContext jsc = new JavaSparkContext();
ConnectorConfiguration conf = new ConnectorConfiguration();

InfinispandavaRDD<String, MyEntity> infinispanRDD = InfinispandavaRDD.createlnfinispanRDD(jsc,
conf);

RemoteCache<String, MyEntity> remoteCache = new RemoteCacheManager().getCache();

// Assuming MyEntity is already stored in the cache with protobuf encoding, and has protobuf
annotations.

Query query =
Search.getQueryFactory(remoteCache).from(MyEntity.class).having("field").equal("value").build();

JavaPairRDD<String, MyEntity> filtered = infinispanRDD.filterByQuery(query);
Filtering with a pre-built Query Object (Scala)

import org.infinispan.client.hotrod.{RemoteCache, Search}
import org.infinispan.spark.rdd.InfinispanRDD

val rdd: InfinispanRDD[String, MyEntity] = // Initalize your InfinispanRDD here
val cache: RemoteCache[String, MyEntity] = // Initalize your RemoteCache here

// Assuming MyEntity is already stored in the cache with protobuf encoding, and has protobuf
annotations.

val query =
Search.getQueryFactory(cache).from(classOf[MyEntity]).having("field").equal("value").build()

val filteredRDD = rdd.filterByQuery(query)

34.5.10. Filtering with an Ickle Query

Filtering with an Ickle Query (Java)

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaSparkContext;
import org.infinispan.spark.config.ConnectorConfiguration;
import org.infinispan.spark.rdd.InfinispandavaRDD;

JavaSparkContext jsc = new JavaSparkContext();
ConnectorConfiguration conf = new ConnectorConfiguration();

InfinispandavaRDD<String, MyEntity> infinispanRDD = InfinispandavaRDD.createlnfinispanRDD(jsc,
conf);

354

CHAPTER 34. INTEGRATION WITH APACHE SPARK

JavaPairRDD<String, MyEntity> filtered = infinispanRDD.filterByQuery("From myEntity where field =
'value™);

Filtering with an Ickle Query (Scala)

import org.infinispan.spark.rdd.InfinispanRDD

val rdd: InfinispanRDD[String, MyEntity] = // Initialize your InfinispanRDD here

val filteredRDD = rdd.filterByQuery("FROM MyEntity e where e.field BETWEEN 10 AND 20")
34.5.11. Filtering on the Server

Filtering on the Server (Java)

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaSparkContext;
import org.infinispan.spark.config.ConnectorConfiguration;
import org.infinispan.spark.rdd.InfinispandavaRDD;
JavaSparkContext jsc = new JavaSparkContext();

ConnectorConfiguration conf = new ConnectorConfiguration();

InfinispandavaRDD<String, MyEntity> infinispanRDD = InfinispandavaRDD.createlnfinispanRDD(jsc,
conf);

JavaPairRDD<String, MyEntity> filtered = infinispanRDD.filterByCustom("my-filter", "param1",
"param2");

Filtering on the Server (Scala)

import org.infinispan.spark.rdd.InfinispanRDD

val rdd: InfinispanRDD[String, MyEntity] = // Initalize your InfinispanRDD here
/I "my-filter-factory"” filter and converts MyEntity to a Double, and has two parameters
val filteredRDD = rdd.filterByCustom[Double]("my-filter-factory”, "param1", "param2")

34.6. SPARK PERFORMANCE CONSIDERATIONS

The Data Grid Spark connector creates by default two partitions per each Data Grid node, each partition
specifies a subset of the data in that particular node.

Those partitions are then sent to the Spark workers that will process them in parallel. If the number of
Spark workers is less than the number of Data Grid nodes, some delay can occur since each worker has a
maximum capacity of executing tasks in parallel. For this reason it is recommended to have at least the
same number of Spark workers as Data Grid nodes to take advantage of the parallelism.

In addition, if a Spark worker is co-located in the same node as the Data Grid node, the connector will
distribute tasks so that each worker only processes data found in the local Data Grid node.

355

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 35. INTEGRATION WITH APACHE HADOOP

35.1. INTEGRATION WITH APACHE HADOOP

The JBoss Data Grid connector allows the JBoss Data Grid to be a Hadoop compliant data source. It
accomplishes this integration by providing implementations of Hadoop's InputFormat and
OutputFormat, allowing applications to read and write data to a JBoss Data Grid server with best data
locality. While JBoss Data Grid's implementation of the InputFormat and OutputFormat allow one to
run traditional Hadoop Map/Reduce jobs, they may also be used with any tool or utility that supports
Hadoop’s InputFormat data source.

35.2. HADOOP DEPENDENCIES

The JBoss Data Grid implementations of Hadoop's formats are found in the following Maven
dependency:

<dependency>
<groupld>org.infinispan.hadoop</groupld>
<artifactld>infinispan-hadoop-core</artifactld>
<version>0.3.0.Final-redhat-9</version>
</dependency>

35.3. SUPPORTED HADOOP CONFIGURATION PARAMETERS

The following parameters are supported:

Table 35.1. Supported Hadoop Configuration Parameters

Default Value

Description

Parameter Name

hadoop.ispn.input.filter.facto = The name of the filter factory
ry deployed on the server to pre-
filter data before reading.

null (no filtering enabled)

hadoop.ispn.input.cache.na The name of cache where datawill ~ ___defaultcache

me

hadoop.ispn.input.remote.ca
che.servers

hadoop.ispn.output.cache.na
me

hadoop.ispn.output.remote.c
ache.servers

356

be read.

List of servers of the input cache,
in the format:

I host1:port;host2:port2

The name of cache where data will
be written.

List of servers of the output
cache, in the format:

I host1:port;host2:port2

localhost:11222

default

null (no output cache)

CHAPTER 35. INTEGRATION WITH APACHE HADOOP

Parameter Name Description Default Value

hadoop.ispn.input.read.batc Batch size when reading fromthe 5000

h cache.

hadoop.ispn.output.write.bat Batch size when writing to the 500

ch cache.

hadoop.ispn.input.converter Class name with an null (no converting enabled).

implementation of
org.infinispan.hadoop.KeyVa
lueConverter, applied after
reading from the cache.

hadoop.ispn.output.converte Class name with an null (no converting enabled).
r implementation of

org.infinispan.hadoop.KeyVa

lueConverter , applied before

writing.

35.4. USING THE HADOOP CONNECTOR

InfinispaninputFormat and InfinispanOutputFormat

In Hadoop, the InputFormat interface indicates how a specific data source is partitioned, along with
how to read data from each of the partitions, while the OutputFormat interface specifies how to write
data.

There are two methods of importance defined in the InputFormat interface:

1. The getSplits method defines a data partitioner, returning one or more InputSplit instances
that contain information regarding a certain section of the data.

I List<InputSplit> getSplits(JobContext context);

2. The InputSplit can then be used to obtain a RecordReader which will be used to iterate over
the resulting dataset.

I RecordReader<K,V> createRecordReader(InputSplit split, TaskAttemptContext context);

These two operations allow for parallelization of data processing across multiple nodes, resulting in
Hadoop’s high throughput over large datasets.

In regards to JBoss Data Grid, partitions are generated based on segment ownership, meaning that
each partition is a set of segments on a certain server. By default there will be as many partitions as

servers in the cluster, and each partition will contain all segments associated with that specific server.

Running a Hadoop Map Reduce job on JBoss Data Grid

Example of configuring a Map Reduce job targeting a JBoss Data Grid cluster:

357

Red Hat Data Grid 7.2 Developer Guide

import org.infinispan.hadoop.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Job;

[...]

Configuration configuration = new Configuration();
configuration.set(InfinispanConfiguration.INPUT_REMOTE_CACHE_SERVER_LIST,
"localhost:11222");

configuration.set(InfinispanConfiguration.INPUT_REMOTE_CACHE_NAME, "map-reduce-in");
configuration.set(InfinispanConfiguration.OUTPUT_REMOTE_CACHE_SERVER_LIST,
"localhost:11222");

configuration.set(InfinispanConfiguration.OUTPUT_REMOTE_CACHE_NAME, "map-reduce-out");

Job job = Job.getlnstance(configuration, "Infinispan Integration");

[..]

In order to target the JBoss Data Grid, the job needs to be configured with the InfinispaninputFormat
and InfinispanOutputFormat classes:

358

[...]

// Define the Map and Reduce classes
job.setMapperClass(MapClass.class);
job.setReducerClass(ReduceClass.class);

// Define the JBoss Data Grid implementations
job.setlnputFormatClass(InfinispaninputFormat.class);
job.setOutputFormatClass(InfinispanOutputFormat.class);

[..]

CHAPTER 36. INTEGRATION WITH EAP

CHAPTER 36. INTEGRATION WITH EAP

36.1. INTEGRATION WITH EAP

While EAP includes Infinispan modules, they are intended for internal EAP use, and are not supported
with JBoss Data Grid. To use JDG within EAP, use the JDG provided EAP modules. Using these
modules will avoid any conflict with EAP’s internal modules because the slot will be different. Using them
will also allow for deployment of an application without packaging JDG within the deployments (WARs,
EARs, etc.), thus minimizing their size.

36.2. INSTALLATION OF EAP MODULES

The modules for EAP can be downloaded from the Red Hat Customer Portal:

Procedure: Download EAP Modules

1. Loginto the Customer Portal at https://access.redhat.com.
2. Click the Downloads button near the top of the page.
3. Inthe Product Downloads page, click Red Hat JBoss Data Grid.
4. Select the appropriate JBoss Data Grid version from the Version: drop down menu.

5. Locate the Red Hat JBoss Data Grid 7.2 Library Module for JBoss EAPentry and click the
corresponding Download link.

The zip file should be extracted to EAP_HOME/modules. If the files were extracted correctly the
infinispan core module would be under EAP_HOME/modules/org/infinispan/core.

36.3. EAP DEPENDENCIES

To configure the modules using Maven, mark the JDG dependencies as provided and configure the
artifact archiver to generate a WAR file with the proper MANIFEST.MF using the following pom.xmil:

pom.xml

<dependencies>
<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-core</artifactld>
<version>${infinispan.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-cachestore-jdbc</artifactld>
<version>${infinispan.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>

359

https://access.redhat.com

Red Hat Data Grid 7.2 Developer Guide

<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-war-plugin</artifactld>
<configuration>
<archive>
<manifestEntries>
<Dependencies>org.infinispan.core:jdg-7.2 services, org.infinispan.cachestore.jdbc:jdg-7.2
services</Dependencies>
</manifestEntries>
</archive>
</configuration>
</plugin>
</plugins>
</build>

36.4. DEPENDENCIES FOR SPECIFIC JDG COMPONENTS

Various example MANIFEST.MF configuration files to enable specific features of JDG are provided
below.

36.4.1. Core Dependencies

To expose only JDG core dependencies to an application, add the following to the manifest:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan:jdg-7.2 services

36.4.2. Remote/Hot Rod Dependencies

To connect to remote JDG servers via Hot Rod, including for execution of remote queries, use the
module org.infinispan.remote. This exposes all needed dependencies automatically:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan.remote:jdg-7.2 services

36.4.3. Embedded Querying Dependencies

For embedded querying, including the Infinispan Query DSL, Lucene, and Hibernate Search Queries,
add the following to the manifest:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan:jdg-7.2 services, org.infinispan.query:jdg-7.2 services

36.4.4. Lucene Directory Dependencies

To use JDG as a directory for Lucene using org.apache.lucene.store.Directory, the query module isn't
needed, the following is sufficient

360

CHAPTER 36. INTEGRATION WITH EAP

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan.lucene-directory:jdg-7.2 services

36.4.5. Hibernate Search Directory Provider Dependencies

The Hibernate Search directory provider for JDG is also contained within the JBoss Data Grid 7.2
Library Module for JBoss EAP zip file. It is not necessary to add an entry to the manifest file since the
Hibernate Search module already has an optional dependency to it. When deciding what JDG module zip
to use, start by checking which Hibernate Search is in use.

36.4.6. Using EAP’s Internal Hibernate Search Modules

The Hibernate Search module present in EAP 7.1 has version 5.5.x, and has an optional dependency to
module org.infinispan.hibernate-search.directory-provider, with slot for-hibernatesearch-5.5. This
dependency is available once the Infinispan modules are installed.

36.4.7. Usage with Other Hibernate Search Modules

The module org.hibernate.search:jdg-7.2 distributed with JDG is to be used together with Infinispan
Query only (querying data from caches), and should not be used by Hibernate ORM applications. To use
a Hibernate Search with a different version that is present in EAP, consult the Hibernate Search
documentation.

Make sure the chosen Hibernate Search optional slot for org.infinispan.hibernate-search.directory-
provider matches the one distributed with JBoss Data Grid.

36.5. USAGE OF EAP MODULES

An application can use JDG within EAP either in Library (embedded) Mode, or in EAP Subsystem Mode.

36.5.1. Library Mode

When using JDG within EAP in Library Mode, all CacheManager and cache instances are created in
application logic. As such, the lifecycle of the EmbeddedCacheManager is tightly coupled with the
application’s lifecycle, resulting in any manager instances created by the application being destroyed
when the application is destroyed.

36.5.2. EAP Subsystem Mode

In EAP Subsystem Mode, where JDG is a subsystem to EAP, it's possible for cache containers and
caches to be created before runtime as part of EAP’s domain/configuration/domain.xml
configuration. This allows cache instances to be shared across multiple applications, with the lifecycle of
the underlying cache container being independent of the deployed application.

36.6. CONFIGURATION FOR EAP SUBSYSTEM MODE

To enable EAP Subsystem Mode, add the following to the EAP configuration in
domain/configuration/domain.xml.

361

https://docs.jboss.org/hibernate/search/5.6/reference/en-US/html_single/#search-configuration-deploy-on-wildfly

Red Hat Data Grid 7.2 Developer Guide

NOTE

Only the first two steps are required for local cache instances.

1. Add the infinispan extensions to the <extensions> section

<extensions>
<extension module="org.infinispan.extension:jdg-7.2"/>
<extension module="org.jgroups.extension:jdg-7.2"/>

<!I--Other EAP extensions-->
</extensions>

2. Configure the Infinispan subsystem, along with all required containers and caches, in the server
profile which requires Infinispan.

NOTE

Ensure the module attribute is defined or else the correct Infinispan classes won't be
- loaded.

<subsystem xmlns="urn:infinispan:server:core:8.5">
<cache-container name="jdg-container" default-cache="default"
module="org.infinispan.extension:jdg-7.2">
<transport channel="jdg-cluster"/>
<global-state/>
<distributed-cache-configuration name="default"/>
<distributed-cache name="default"/>
</cache-container>
</subsystem>

3. Define the EAP interface and socket bindings required by JGroup subsystems.

Interface definition:

<interfaces>
<interface name="jdg">
<inet-address value="${jdg.bind.address:127.0.0.1}"/>
<finterface>
<f/interfaces>

Socket bindings definition:

<socket-binding-group name="full-sockets" default-interface="public">
<socket-binding name="jdg-jgroups-udp" interface="jdg" port="55200" multicast-
address="${jdg.default.multicast.address:230.0.0.4}" multicast-port="45688"/>
<socket-binding name="jdg-jgroups-udp-fd" interface="jdg" port="54200"/>
</socket-binding-group>

For more information on EAP interface and socket bindings see Network and Port Configuration in the
EAP Configuration Guide.

4. Define JGroups transport, ensuring the model attribute, for all protocols specified, is defined.

362

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/configuration_guide/#network_and_port_configuration

CHAPTER 36. INTEGRATION WITH EAP

<subsystem xmlns="urn:infinispan:server:jgroups:8.0">
<channels>
<channel name="jdg-cluster" stack="udp"/>
</channels>
<stacks>
<stack name="udp">
<transport type="UDP" socket-binding="jdg-jgroups-udp" module="org.jgroups:jdg-7.2"/>
<protocol type="PING" module="org.jgroups:jdg-7.2"/>
<protocol type="MERGE3" module="org.jgroups:jdg-7.2"/>
<protocol type="FD_SOCK" socket-binding="jdg-jgroups-udp-fd" module="org.jgroups:jdg-7.2"/>
<protocol type="FD_ALL" module="org.jgroups:jdg-7.2"/>
<protocol type="VERIFY_SUSPECT" module="org.jgroups:jdg-7.2"/>
<protocol type="pbcast. NAKACK2" module="org.jgroups:jdg-7.2"/>
<protocol type="UNICAST3" module="org.jgroups:jdg-7.2"/>
<protocol type="pbcast. STABLE" module="org.jgroups:jdg-7.2"/>
<protocol type="pbcast. GMS" module="org.jgroups:jdg-7.2"/>
<protocol type="UFC" module="org.jgroups:jdg-7.2"/>
<protocol type="MFC" module="org.jgroups:jdg-7.2"/>
<protocol type="FRAG3" module="org.jgroups:jdg-7.2"/>
</stack>
</stacks>
</subsystem>

A command line script is also available to configure server mode:

adding the necessary modules to the EAP configuration

remember to add the datagrid library modules of JDG 7.2 before !
/extension=org.infinispan.extension\:jdg-7.2:add
/extension=org.jgroups.extension\:jdg-7.2:add

batch

/profile=full/subsystem=datagrid-infinispan:add
/profile=full/subsystem=datagrid-infinispan/cache-container=jdg-
container:add(module="org.infinispan.extension:jdg-7.2", default-cache="default"
/profile=full/subsystem=datagrid-infinispan/cache-container=jdg-
container/transport=TRANSPORT:add(channel=jdg-cluster)
/profile=full/subsystem=datagrid-infinispan/cache-container=jdg-container/global-
state=GLOBAL_STATE:add

add an interface for JDG cluster communication, can be skipped if the same as JGroups or public is
used
/interface=jdg:add(inet-address="${jdg.bind.address:127.0.0.1}"

add the port numbers for JDG JGroups
/socket-binding-group=full-sockets/socket-binding=jdg-jgroups-udp:add(interface="jdg", port=55200,
multicast-address="${jdg.default.multicast.address:230.0.0.4}", multicast-port="45688"
/socket-binding-group=full-sockets/socket-binding=jdg-jgroups-udp-fd:add(port=54200,
interface="jdg")

adding the datagrid JGroups subsystem with UDP stack
/profile=full/subsystem=datagrid-jgroups:add(default-channel=jdg-cluster)
/profile=full/subsystem=datagrid-jgroups/channel=jdg-cluster:add(stack=udp)
/profile=full/subsystem=datagrid-jgroups/stack=udp:add()
/profile=full/subsystem=datagrid-jgroups/stack=udp/transport=UDP:add(socket-binding=jdg-jgroups-
udp, module="org.jgroups:jdg-7.2")

363

Red Hat Data Grid 7.2 Developer Guide

/profile=full/subsystem=datagrid-jgroups/stack=udp/protocol=PING:add(module="org.jgroups:jdg-
7.2"
/profile=full/subsystem=datagrid-jgroups/stack=udp/protocol=MERGE3:add(module="org.jgroups:jdg-
7.2"

/profile=full/subsystem=datagrid-
jgroups/stack=udp/protocol=FD_SOCK:add(module="org.jgroups:jdg-7.2", socket-binding=jdg-
jgroups-udp-fd)
/profile=full/subsystem=datagrid-jgroups/stack=udp/protocol=FD_ALL:add(module="org.jgroups:jdg-
7.2"

/profile=full/subsystem=datagrid-
jgroups/stack=udp/protocol=VERIFY_SUSPECT:add(module="org.jgroups:jdg-7.2")
/profile=full/subsystem=datagrid-

jgroups/stack=udp/protocol=pbcast. NAKACK2:add(module="org.jgroups:jdg-7.2")
/profile=full/subsystem=datagrid-
jgroups/stack=udp/protocol=UNICAST3:add(module="org.jgroups:jdg-7.2")
/profile=full/subsystem=datagrid-

jgroups/stack=udp/protocol=pbcast. STABLE:add(module="org.jgroups:jdg-7.2")
/profile=full/subsystem=datagrid-

jgroups/stack=udp/protocol=pbcast. GMS:add(module="org.jgroups:jdg-7.2")
/profile=full/subsystem=datagrid-jgroups/stack=udp/protocol=UFC:add(module="org.jgroups:jdg-7.2")
/profile=full/subsystem=datagrid-jgroups/stack=udp/protocol=MFC:add(module="org.jgroups:jdg-7.2")
/profile=full/subsystem=datagrid-jgroups/stack=udp/protocol=FRAG3:add(module="org.jgroups:jdg-
7.2"

add a configuration as this is needed if the CLI is used to add a cache
/profile=full/subsystem=datagrid-infinispan/cache-container=jdg-
container/configurations=CONFIGURATIONS:add
/profile=full/subsystem=datagrid-infinispan/cache-container=jdg-
container/configurations=CONFIGURATIONS/distributed-cache-configuration=default:add

run-batch

To add the cache use the following command:

add a simple cache
/profile=full/subsystem=datagrid-infinispan/cache-container=jdg-container/distributed-
cache=default:add(configuration=default)

36.7. ACCESSING CONTAINERS AND CACHES REMOTELY

Once a container has been defined in the server’s configuration, it is possible to inject an instance of a
CacheContainer or Cache into the application using the @Resource JNDI lookup. A container is
accessed using the string java:jboss/datagrid-infinispan/container/<container_names, and similarly,
a cache is accessed via java:jboss/datagrid-
infinispan/container/<container_names>/cache/<cache_name>.

The example below shows how to inject the CacheContainer called "jdg-container"” and the distributed
cache "default" into an application.

public class ExampleApplication {
@Resource(lookup = "java:jboss/datagrid-infinispan/container/jdg-container")
CacheContainer container;

364

CHAPTER 36. INTEGRATION WITH EAP

@Resource(lookup = "java:jboss/datagrid-infinispan/container/jdg-container/cache/default”)
Cache cache;

}

v NOTE
This example code has a dependency on the jdg-7.2 module.

36.8. TROUBLESHOOTING EAP AND JDG IN EAP SUBSYSTEM MODE

36.8.1. Enable logging

Enabling trace on org.jboss.modules can be useful to debug issues like LinkageError and
ClassNotFoundException. To enable trace logging at runtime use the EAP CLI:

bin/jboss-cli.sh -c '/subsystem=Ilogging/logger=org.jboss.modules:add'
bin/jboss-cli.sh -¢ '/subsystem=Ilogging/logger=org.jboss.modules:write-
attribute(name=level,value=TRACE)'

36.8.2. Print Dependency Tree

The following command can be used to print all dependencies for a certain module. For example, to
obtain the tree for the module org.infinispan:jdg-7.2, execute the following from EAP_HOME:

I java -jar jposs-modules.jar -deptree -mp modules/ "org.infinispan:jdg-7.2"

365

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 37. HIGH AVAILABILITY USING SERVER HINTING

37.1. SERVER HINTING
Server Hinting helps you achieve high availability with your Red Hat JBoss Data Grid deployment.

To use Server Hinting, you provide information about the physical topology with attributes that identify
servers, racks, or data centers to achieve more resilience with your data in the event that all the nodes in
a given physical location become unavailable.

When you configure Server Hinting, JBoss Data Grid uses the location information you provided to
distribute data across the cluster so that backup copies of data are stored on as many servers, racks, and
data centers as possible.

In some cases JBoss Data Grid stores copies of data on nodes that share the same physical location.

For example, if the number of owners for segments is greater than the number of distinct sites, then
JBoss Data Grid assigns more than one owner for a given segment in the same site.

NOTE

Server Hinting does not apply to total replication, which requires complete copies of data
on every node.

Consistent Hashing controls how data is distributed across nodes. JBoss Data Grid uses
TopologyAwareSyncConsistentHashFactory if you enable Server Hinting. For details see
ConsistentHashFactories.

37.2. CONSISTENTHASHFACTORIES

37.2.1. ConsistentHashFactories

Red Hat JBoss Data Grid offers a pluggable mechanism for selecting the consistent hashing algorithm
and provides different implementations. You can also use a custom implementation.

IMPORTANT

You can configure ConsistentHashFactory implementations in Library Mode only. In
Remote Client/Server Mode, this configuration is not valid and results in a runtime error.

ConsistentHashFactory implementations

e SyncConsistentHashFactory guarantees that the key mapping is the same for each cache,
provided the current membership is the same. This has a drawback in that a node joining the
cache can cause the existing nodes to also exchange segments, resulting in either additional
state transfer traffic, the distribution of the data becoming less even, or both. This is the
default consistent hashing implementation without Server Hinting.

o TopologyAwareSyncConsistentHashFactory is equivalent to
SyncConsistentHashFactory but used with Server Hinting to distribute data across the
topology so that backed up copies of data are stored on different nodes in the topology
than the primary owners. This is the default consistent hashing implementation with Server
Hinting.

366

CHAPTER 37. HIGH AVAILABILITY USING SERVER HINTING

e DefaultConsistentHashFactory keeps segments balanced evenly across all nodes, however
the key mapping is not guaranteed to be same across caches as this depends on the history
of each cache.

o TopologyAwareConsistentHashFactory is equivalent to DefaultConsistentHashFactory
but used with Server Hinting to distribute data across the topology so that backed up copies
of data are stored on different nodes in the topology than the primary owners.

You configure JBoss Data Grid to use a consistent hash implementation with the consistent-hash-
factory attribute, as in the following example:

<distributed-cache consistent-hash-
factory="org.infinispan.distribution.ch.impl.SyncConsistentHashFactory">
This configuration guarantees caches with the same members have the same consistent hash, and if the
machineld, rackld, or siteld attributes are specified in the transport configuration it also spreads
backup copies across physical machines/racks/data centers.

It has a potential drawback in that it can move a greater number of segments than necessary during re-
balancing. This can be mitigated by using a larger number of segments.

Another potential drawback is that the segments are not distributed as evenly as possible, and actually
using a very large number of segments can make the distribution of segments worse.

Despite the above potential drawbacks the SyncConsistentHashFactory and
TopologyAwareSyncConsistentHashFactory both tend to reduce overhead in clustered
environments, as neither of these calculate the hash based on the order that nodes have joined the
cluster. In addition, both of these classes are typically faster than the default algorithms as both of these
classes allow larger differences in the number of segments allocated to each node.

37.2.2. Implementing a ConsistentHashFactory

A custom ConsistentHashFactory must implement the
org.infinispan.distribution.ch.ConsistenHashFactory interface with the following methods (all of
which return an implementation of org.infinispan.distribution.ch.ConsistentHash):

ConsistentHashFactory Methods

create(Hash hashFunction, int numOwners, int numSegments, List<Address>
members,Map<Address, Float> capacityFactors)

updateMembers(ConsistentHash baseCH, List<Address> newMembers, Map<Address,
Float> capacityFactors)

rebalance(ConsistentHash baseCH)

union(ConsistentHash ch1, ConsistentHash ch2)

37.3.KEY AFFINITY SERVICE

37.3.1. Key Affinity Service

The key affinity service allows a value to be placed in a certain node in a distributed Red Hat JBoss Data
Grid cluster. The service returns a key that is hashed to a particular node based on a supplied cluster
address identifying it.

367

Red Hat Data Grid 7.2 Developer Guide

The keys returned by the key affinity service cannot hold any meaning, such as a username. These are
only random identifiers that are used throughout the application for this record. The provided key
generators do not guarantee that the keys returned by this service are unique. For custom key format,
you can pass your own implementation of KeyGenerator.

The following is an example of how to obtain and use a reference to this service.

Key Affinity Service

EmbeddedCacheManager cacheManager = getCacheManager();
Cache cache = cacheManager.getCache();
KeyAffinityService keyAffinityService =
KeyAffinityServiceFactory.newlLocalKeyAffinityService(
cache,
new RndKeyGenerator(),
Executors.newSingleThreadExecutor(),
100);
Object localKey = keyAffinityService.getKeyForAddress(cacheManager.getAddress());
cache.put(localKey, "yourValue");

The following procedure is an explanation of the provided example.

Using the Key Affinity Service
1. Obtain a reference to a cache manager and cache.
2. This starts the service, then uses the supplied Executor to generate and queue keys.

3. Obtain a key from the service which will be mapped to the local node
(cacheManager.getAddress() returns the local address).

4. The entry with a key obtained from the KeyAffinityService is always stored on the node with
the provided address. In this case, it is the local node.

37.3.2. Lifecycle

KeyAffinityService extends Lifecycle, which allows the key affinity service to be stopped, started, and
restarted.

Key Affinity Service Lifecycle Parameter

public interface Lifecycle {
void start();
void stop();

}

The service is instantiated through the KeyAffinityServiceFactory. All factory methods have an
Executor, that is used for asynchronous key generation, so that this does not occur in the caller’s thread.
The user controls the shutting down of this Executor.

The KeyAffinityService must be explicitly stopped when it is no longer required. This stops the

background key generation, and releases other held resources. The KeyAffinityServce will only stop
itself when the cache manager with which it is registered is shut down.

368

CHAPTER 37. HIGH AVAILABILITY USING SERVER HINTING

37.3.3. Topology Changes

KeyAffinityService key ownership may change when a topology change occurs. The key affinity service
monitors topology changes and updates so that it doesn’t return stale keys, or keys that would map to a
different node than the one specified. However, this does not guarantee that a node affinity hasn't
changed when a key is used. For example:

1. Thread (T1) reads a key (K1) that maps to a node (A).
2. Atopology change occurs, resulting in K1 mapping to node B.

3. T1 uses K1 to add something to the cache. At this point, K1 maps to B, a different node to the
one requested at the time of read.

The above scenario is a not ideal, however it is a supported behavior for the application, as the keys that
are already in use may be moved over during cluster change. The KeyAffinityService provides an
access proximity optimization for stable clusters, which does not apply during the instability of topology
changes.

369

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 38. DISTRIBUTED EXECUTION

38.1. DISTRIBUTED EXECUTION

Red Hat JBoss Data Grid provides distributed execution through a standard JDK ExecutorService
interface. Tasks submitted for execution are executed on an entire cluster of JBoss Data Grid nodes,
rather than being executed in a local JVM.

JBoss Data Grid's distributed task executors can use data from JBoss Data Grid cache nodes as input
for execution tasks. As a result, there is no need to configure the cache store for intermediate or final
results. As input data in JBoss Data Grid is already load balanced, tasks are also automatically balanced,
therefore there is no need to explicitly assign tasks to specific nodes.

In JBoss Data Grid’s distributed execution framework:

e Each DistributedExecutorService is bound to a single cache. Tasks submitted have access to
key/value pairs from that particular cache if the task submitted is an instance of
DistributedCallable.

e FEvery Callable, Runnable, and/or DistributedCallable submitted must be either Serializable
or Externalizable, in order to prevent task migration to other nodes each time one of these
tasks is performed. The value returned from a Callable must also be Serializable or
Externalizable.

38.2. DISTRIBUTED EXECUTOR SERVICE

A DistributedExecutorService controls the execution of DistributedCallable, and other Callable and
Runnable, classes on the cluster. These instances are tied to a specific cache that is passed in upon
instantiation:

I DistributedExecutorService des = new DefaultExecutorService(cache);

Itis only possible to execute a DistributedTask against a subset of keys if DistributedCallable is
extended, as discussed in DistributedCallableAPI. If a task is submitted in this manner to a single node,
then JBoss Data Grid will locate the nodes containing the indicated keys, migrate the
DistributedCallable to this node, and return a CompletableFuture. Alternatively, if a task is submitted
to all available nodes in this manner then only the nodes containing the indicated keys will receive the
task.

Once a DistributedTask has been created it may be submitted to the cluster using any of the below
methods:

® The task can be submitted to all available nodes and key/value pairs on the cluster using the
submitEverywhere method:

I des.submitEverywhere(task)

® The submitEverywhere method can also take a set of keys as an argument. Passing in keys in
this manner will submit the task only to available nodes that contain the indicated keys:

I des.submitEverywhere(task, $KEY)

e |f akeyis specified, then the task will be executed on a single node that contains at least one of
the specified keys. Any keys not present locally will be retrieved from the cluster. This version of

370

CHAPTER 38. DISTRIBUTED EXECUTION

the submit method accepts one or more keys to be operated on, as seen in the following
examples:

des.submit(task, $KEY)
des.submit(task, $KEY1, $KEY2, SKEY3)

® A specific node can be instructed to execute the task by passing the node’s Address to the
submit method. The below will only be executed on the cluster’'s Coordinator:

I des.submit(cache.getCacheManager().getCoordinator(), task)

NOTE

By default tasks are automatically balanced, and there is typically no need to
indicate a specific node to execute against.

38.3. DISTRIBUTEDCALLABLE API

The DistributedCallable interface is a subtype of the existing Callable from
java.util.concurrent.package, and can be executed in a remote JVM and receive input from Red Hat
JBoss Data Grid. The DistributedCallable interface is used to facilitate tasks that require access to
JBoss Data Grid cache data.

When using the DistributedCallable API to execute a task, the task’s main algorithm remains
unchanged, however the input source is changed.

Users who have already implemented the Callable interface must extend DistributedCallable if access
to the cache or the set of passed in keys is required.

Using the DistributedCallable API

public interface DistributedCallable<K, V, T> extends Callable<T> {

/**
* Invoked by execution environment after DistributedCallable
* has been migrated for execution to a specific Infinispan node.
* @param cache
* cache whose keys are used as input data for this
* DistributedCallable task
* @param inputKeys
* keys used as input for this DistributedCallable task
Y/
public void setEnvironment(Cache<K, V> cache, Set<K> inputKeys);

38.4. CALLABLE AND CDI

Where DistributedCallable cannot be implemented or is not appropriate, and a reference to input
cache used in DistributedExecutorService is still required, there is an option to inject the input cache
by CDI mechanism.

371

Red Hat Data Grid 7.2 Developer Guide

When the Callable task arrives at a Red Hat JBoss Data Grid executing node, JBoss Data Grid’s CDI
mechanism provides an appropriate cache reference, and injects it to the executing Callable.

To use the JBoss Data Grid CDI with Callable:
1. Declare a Cache field in Callable and annotate it with org.infinispan.cdi.lnput
2. Include the mandatory @Inject annotation.

Using Callable and the CDI

public class CallableWithinjectedCache implements Callable<Integer>, Serializable {

@Inject
@Input
private Cache<String, String> cache;

@Override

public Integer call() throws Exception {
//use injected cache reference
return 1;

}

38.5. DISTRIBUTED TASK FAILOVER

Red Hat JBoss Data Grid's distributed execution framework supports task failover in the following
cases:

® Failover due to a node failure where a task is executing.
® Failover due to a task failure; for example, if a Callable task throws an exception.

The failover policy is disabled by default, and Runnable, Callable, and DistributedCallable tasks fail
without invoking any failover mechanism.

JBoss Data Grid provides a random node failover policy, which will attempt to execute a part of a
Distributed task on another random node if one is available.

A random failover execution policy can be specified using the following as an example:

Random Failover Execution Policy

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new
SomeCallable());

taskBuilder.failoverPolicy(DefaultExecutorService. RANDOM_NODE_FAILOVER);
DistributedTask<Boolean> distributedTask = taskBuilder.build();

Future<Boolean> future = des.submit(distributedTask);

Boolean r = future.get();

The DistributedTaskFailoverPolicy interface can also be implemented to provide failover
management.

372

CHAPTER 38. DISTRIBUTED EXECUTION

Distributed Task Failover Policy Interface

/**
* Distributed TaskFailoverPolicy allows pluggable fail over target selection for a failed remotely
* executed distributed task.
Y/

public interface DistributedTaskFailoverPolicy {

/**
* As parts of distributively executed task can fail due to the task itself throwing an exception
*or it can be an Infinispan system caused failure (e.g node failed or left cluster during task
* execution efc).

*

* @param failoverContext

* the FailoverContext of the failed execution
* @return result the Address of the Infinispan node selected for fail over execution
Y/

Address failover(FailoverContext context);

/**
* Maximum number of fail over attempts permitted by this DistributedTaskFailoverPolicy

*

* @return max number of fail over attempts
*/
int maxFailoverAttempts();

}

38.6. DISTRIBUTED TASK EXECUTION POLICY

The DistributedTaskExecutionPolicy allows tasks to specify a custom execution policy across the Red
Hat JBoss Data Grid cluster, by scoping execution of tasks to a subset of nodes.

For example, DistributedTaskExecutionPolicy can be used to manage task execution in the following
cases:

® where atask is to be exclusively executed on a local network site instead of a backup remote
network center.

® where only a dedicated subset of a certain JBoss Data Grid rack nodes are required for specific
task execution.

Using Rack Nodes to Execute a Specific Task

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new
SomeCallable());
taskBuilder.executionPolicy(DistributedTaskExecutionPolicy. SAME_RACK);
DistributedTask<Boolean> distributedTask = taskBuilder.build();

Future<Boolean> future = des.submit(distributedTask);

Boolean r = future.get();

38.7. DISTRIBUTED EXECUTION AND LOCALITY

373

Red Hat Data Grid 7.2 Developer Guide

In a Distributed Environment ownership, in regards to the DistributionManager and ConsistentHash, is
theoretical; neither of these classes have any knowledge if data is actively in the cache. Instead, these
classes are used to determine which node should store the specified key.

To examine the locality of a given key use either of the following options:

® Option 1: Confirm that the key is both found in the cache and the DistributionManager
indicates it is local, as seen in the following example:

(cache.getAdvancedCache().withFlags(SKIP_REMOTE_LOOKUP).containsKey(key)
&& cache.getAdvancedCache().getDistributionManager().getLocality (key).isLocal())

® Option 2: Query the DataContainer directly:

I cache.getAdvancedCache().getDataContainer().containsKey(key)

NOTE

If the entry is passivated then the DataContainer will return False, regardless of the key's
presence.

38.7.1. Distributed Execution Example

In this example, parallel distributed execution is used to approximate the value of Pi ()

1. As shown below, the area of a square is:
Area of a Square (S) = 4r?

2. The following is an equation for the area of a circle:
Area of a Circle (C) = x r?

3. Isolate r from the first equation:
r2=5/4

4. Inject this value of r into the second equation to find a value for Pi:
C=sm/4

5. Isolating in the equation results in:
C=5Sm/4
4C=5n
4C/S=1

374

CHAPTER 38. DISTRIBUTED EXECUTION

Figure 38.1. Distributed Execution Example

If we now throw a large number of darts into the square, then draw a circle inside the square, and discard
all dart throws that landed outside the circle, we can approximate the C/S value.

The value of is previously worked out to 4C/S. We can use this to derive the approximate value of . By
maximizing the amount of darts thrown, we can derive an improved approximation of .

In the following example, we throw 10 million darts by parallelizing the dart tossing across the cluster:

Distributed Execution Example

public class PiAppx {

public static void main (String [] arg){
List<Cache> caches = ...;
Cache cache = ..;

int numPoints = 10000000;
int numServers = caches.size();
int numberPerWorker = numPoints / numServers;

DistributedExecutorService des = new DefaultExecutorService(cache);
long start = System.currentTimeMillis();

CircleTest ct = new CircleTest(numberPerWorker);
List<CompletableFuture<Integer>> results = des.submitEverywhere(ct);
int countCircle = 0;

375

Red Hat Data Grid 7.2 Developer Guide

for (Future<Integer> f : results) {
countCircle += f.get();

}

double appxPi = 4.0 * countCircle / numPoints;

System.out.printin("Distributed Pl appx is " + appxPi +
" completed in " + (System.currentTimeMillis() - start) + " ms");

}

private static class CircleTest implements Callable<Integer>, Serializable {

/** The serialVersionUID */
private static final long serialVersionUID = 3496135215525904755L,;

private final int loopCount;

public CircleTest(int loopCount) {
this.loopCount = loopCount;

}

@Override
public Integer call() throws Exception {
int insideCircleCount = 0;
for (inti=0; i< loopCount; i++) {
double x = Math.random();
double y = Math.random();
if (insideCircle(x, y))
insideCircleCount++;

}

return insideCircleCount;

}

private boolean insideCircle(double x, double y) {
return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))
<= Math.pow(0.5, 2);
}
}

376

CHAPTER 39. STREAMS

CHAPTER 39. STREAMS

39.1. STREAMS

Streams were introduced in Java 8, allowing an efficient way of performing operations on very large data
sets, including the entirety of a given cache. These operations are performed on collections instead of
procedurally iterating over the entire dataset.

In addition, if the cache is distributed then operations may be performed even more efficiently as these
may be performed across the cluster concurrently.

A Stream may be obtained by invoking the stream(), for a single-threaded stream, or parallelStream(),
for a multi-threaded stream, methods on a given Map. Parallel streams are discussed in more detail at
Parallelism.

39.2. USING STREAMS ON A LOCAL/INVALIDATION/REPLICATION
CACHE

A stream used with a local, invalidation, or replication cache can be used identical to a stream on a
regular collection.

For example, consider a cache that contains a number of Books. To create a Map that contains all entries
with JBoss in the title the following could be used:

Map<Obiject, String> joossBooks = cache.entrySet().stream()
filter(e -> e.getValue().getTitle().contains("JBoss"))
.collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

39.3. USING STREAMS WITH A DISTRIBUTION CACHE

When a Stream operation is performed on a distribution cache it will send the intermediate and terminal
operations to each node, and then the resulting data will be sent back to the originating node. This
behavior allows operations to be performed on the remote nodes and only the end results returned,
resulting in much better performance as the intermediate values are not returned.

Rehash Aware

Once the stream has been created the data will be segmented so that each node will only perform
operations upon the data that it owns as the primary owner. Assuming the segments are granular
enough to provide an even distribution of data per node, this allows for even processing of data across
the segments.

This process can be volatile if new nodes are added or old nodes leave the cluster, as the data is
redistributed between nodes. This may cause issues where data can be processed a second time;
however, Distributed Streams handles the redistribution of data automatically so that manual
monitoring of nodes does not need to occur.

39.4.SETTING TIMEOUTS

Itis possible to configure a timeout value for the operation request; this is only used for remote requests
and is configured per request. This means that local requests will never timeout, and if a failover occurs
then each subsequent request will have a new timeout.

377

Red Hat Data Grid 7.2 Developer Guide

If no timeout is specified then the replication timeout will be used by default. This may be manually
configured by using the timeout(long timeout, TimeUnit unit) method of the stream, as seen in the
following example:

CacheStream<Map.Entry<Obiject, String>> stream = cache.entrySet().stream();
stream.timeout(1, TimeUnit. MINUTES);

39.5. DISTRIBUTED STREAMS

39.5.1. Distributed Streams

Distributed Streams work similarly to map reduce; however, with Distributed Streams there are zero to
many intermediate operations followed by a single terminal operation that is sent to each node where
work is performed. The following steps are used for this behavior:

1. The desired segments are grouped by which node is the primary owner of each given segment.

2. Arequest is generated for each remote node. This request contains the intermediate and
terminal operations, along with the segments to process.

® The thread where the terminal operation was initiated will perform the local operation
directly.

® FEach remote node will receive the generated request, run the operations on a remote
thread, and then send the response back.

3. Once all requests complete the user thread will gather all responses and perform any reductions
specified by the operations.

4. The final response is returned to the user.

39.5.2. Marshallability

When using distributed or replicated caches the keys and values must be marshallable; in addition,
operations executed on Distributed Streams must also be marshallable, as these operations are sent to
the other nodes in the cluster. This is most commonly accomplished by using a new class that is either
Serializable or has an Externalizer registered; however, as the Functionallnterface implements
Serializable all lambdas are instantly serialized and thus no additional cast is required.

NOTE

Intermediate values in distributed streams do not need to be marshallable; only the final
value sent back, typically the terminal operation, must be marshallable.

If a lambda function is in use this may be serialized by casting the parameter as an instance of
Serializable. For instance, consider a cache that stores Book entries; the following would create a
collection of Book instances that match a specific author:

List<Book> books = cache.keySet().stream()
filter(e -> e.getAuthor().equals("authorname"))
.collect(toList());

378

CHAPTER 39. STREAMS

Additionally, not all produced Collectors are marshallable by default. JBoss Data Grid has included
org.infinispan.stream.CacheCollectors as a convenient way to utilize any combination of Collectors
that function properly when marshalling is required.

39.5.3. Parallelism

There are two different methods to parallelize streams:
® Parallel Streams - causing each operation to be executed in parallel on a single node
® Parallel Distribution - parallelizing the request so that it involves multiple nodes

By default, Distributed Streams enable parallel distribution; however, this may be further coupled with a
parallel Stream, allowing concurrent operations executing across multiple nodes, with multiple threads
on each node.

To mark a Stream as parallel it may either be obtained with parallelStream(), or it may be enabled after
obtaining the Stream by invoking parallel(). The following example shows both methods:

// Obtain a parallel Stream initially
List<Book> books = cache.keySet().parallelStream()

[...]

// Create the initial stream and then invoke parallel
List<Book> books = cache.keySet().stream()
.parallel()

[...]

NOTE

Some operations, such as rehash aware iterator or forEach operations, have a sequential
stream forced locally. Using parallel streams on these operations is not possible at this
time.

39.5.4. Distributed Operators

39.5.4.1. Terminal Operator Distributed Result Reductions

Below each terminal operator is discussed, along with how the distributed reduction works for each one.

® allMatch
This operator is run on each node and then all results are combined using a logical AND
operation locally to obtain the final value. If a normal stream operation returns early then these
methods will complete early as well.

® noneMatch anyMatch
These operators are run on each node and then all results are combined using a logical OR
operation locally to obtain the final value. If a normal stream operation returns early then these
methods will complete early as well.

® collect
The collect method can perform a few extra steps. Similar to other methods the remote node
will perform everything as expected; however, instead of performing the final finisher operator it
sends back the fully combined results. The local thread will then combine all local and remote

379

Red Hat Data Grid 7.2 Developer Guide

results into a value which then performs the finisher operator. In addition, the final value does
not need to be serializable, but the values produced from the supplier and combiner methods
must be serialized.

® count
The count method simply adds the numbers received from each node.

e findAny findFirst
The findAny method will return the first value found, regardless if it was from a remote or local
node. This operation supports early termination, as once an initial value has been found no
others will be processed. The findFirst method behaves similarly, but requires a sorted
intermediate operation which is described in Intermediate_Operation_Exceptions.

® max min
The max and min methods find the respective value on each node before a final reduction is
performed locally to determine the true max or min across all nodes.

® reduce
The various reduce methods seralize the result as much as possible before accumulating the
local and remote results together locally, combining if enabled. Due to this behavior a value
returned from the combiner does not need to be serializable.

39.5.4.2. Key Based Rehash Aware Operators

Unlike the other terminal operators each of the following operators require a special type of rehash
awareness to keep track of which keys per segment have been processed. This guarantees each key will
be processed exactly once, for iterator and spliterator operators, or at least once, for forEach, even if
cluster membership changes.

® jterator spliterator
These operators return batches of entries when run on a remote node, where the next batch is
only sent after the previous is fully consumed. This behavior is to limit how many entries are
retained in memory at any given time. The user node will keep track of which keys have been
processed, and once a segment has completed those keys will be released from memory.
Because of this behavior it is preferable to use sequential processing, allowing only a subset of
segment keys to be held in memory instead of having keys from all nodes retained.

e forEach
While forEach returns batches it only returns a batch after it has finished processing at least a
batch worth of keys. This way the originating node knows which keys have been processed
already, which reduces the possibility of processing the same entry again; however, it is possible
to have the same set processed repeatedly if a node goes down unexpectedly. In this case the
node could have been processing an uncompleted batch when it went down, resulting in the
same batch to be ran again when the rehash failure operation occurs. Adding a node will not
cause this issue, as the rehash failover does not occur until all responses are received.

The operations' batch sizes are controlled by the same value, distributedBatchSize, on the
CacheStream. If no value is set then it will default to the chunkSize configured in state transfer. While
larger values will allow for larger batches, resulting in fewer returns, this results in increased memory
usage, and testing should be performed to determine an appropriate size for each application.

39.5.4.3. Intermediate Operation Exceptions

The following intermediate operations have special exceptions. All of these methods have some sort of
artificial iterator implanted in the stream processing to guarantee correctness, and due to this using any
of the following may cause severe performance degradation.

380

CHAPTER 39. STREAMS

® Skip
An artificial iterator is implanted up to the skip operation, and then results are brought locally so
that the appropriate number of elements may be skipped.

® Peek
An artificial iterator is implanted up to the peek operation. Only up to a number of peeked
elements are returned to a remote node, and then results are brought locally so that it may peek
at only the desired amount.

® Sorted
An artificial iterator is implanted up to the sorted operation, and then all results are locally
sorted.

' WARNING
A This operation requires having all entries in memory on the local node.

® Distinct
Distinct is performed on each remote node and then an artificial iterator returns those distinct
values, before all of those results have a distinct operation performed upon them.

' WARNING
A This operation requires having all entries in memory on the local node.

39.5.5. Distributed Stream Examples

A classic example of Map/Reduce is word count. Assuming we have a cache with String for keys and
values, and we need to count the occurrence of all words in all sentences, this could be implemented
using the following:

Map<String, Long> wordCountMap = cache.entrySet().parallelStream()

.map(e -> e.getValue().split("\s"))

flatMap(Arrays::stream)

.collect(CacheCollectors.serializableCollector(() -> Collectors.groupingBy(Function.identity(),
Collectors.counting())));

If we wanted to revise the example to find the most frequent word we would need to have all words
available and counted locally first. The following snippet extends our previous example to perform this
search:

String mostFrequentWord = cache.entrySet().parallelStream()
.map((Serializable & Function<Map.Entry<String, String>, String[]>) e -> e.getValue().split("\\s"))
flatMap((Function<String[], Stream<String>>) Arrays::stream)
.collect(CacheCollectors.serializableCollector(() -> Collectors.collectingAndThen(

381

Red Hat Data Grid 7.2 Developer Guide

Collectors.groupingBy(Function.identity(), Collectors.counting()),
wordCountMap -> {
String mostFrequent = null;
long maxCount = 0;
for (Map.Entry<String, Long> e : wordCountMap.entrySet()) {
int count = e.getValue().intValue();
if (count > maxCount) {
maxCount = count;
mostFrequent = e.getKey();

}
}

return mostFrequent;

D)

At present, this last step will be executed in a single thread. We can further optimize this operation by
using a parallel stream locally to perform the final operation:

Map<String, Long> wordCount = cache.entrySet().parallelStream()
.map((Function<Map.Entry<String, String>, String[]>) e -> e.getValue().split("\\s"))
flatMap((Function<String[], Stream<String>>) Arrays::stream)
.collect(CacheCollectors.serializableCollector(() -> Collectors.groupingBy(Function.identity(),

Collectors.counting())));

Optional<Map.Entry<String, Long>> mostFrequent = wordCount.entrySet().parallelStream()
.reduce((et, e2) -> el.getValue() > e2.getValue() ? el : e2);

382

CHAPTER 40. SCRIPTING

CHAPTER 40. SCRIPTING

40.1. SCRIPTING

JBoss Data Grid includes a method of storing scripts on servers, allowing remote clients to execute
scripts locally with the JDK's javax.script.ScriptEngines. By default the JDK comes with Nashorn,
capable of running JavaScript; however, this may be extended to run any JVM language that offers
their own ScriptEngine.

40.2. ACCESSING THE SCRIPT CACHE

Scripts are stored in a special, protected cache entitled script_cache. As this is a protected cache
only loopback requests or connections with authorization enabled will be allowed to access the cache.

The following requirements must be met to connect to the script_cache remotely:
® A user has been defined with the script_manager role.

® The client has a secure connection to the server; this may be attained by following the
instructions in Securing Interfaces.

® Authorization has been enabled on the cache-container.

Configuring the Server for Access the Script Cache

The following example covers configuring the server to access the script cache, using the DIGEST-MD5
method of securing the Hot Rod connector.

1. Add a user to the server as follows:

a. Execute the $JDG_HOME/bin/add-user.sh (Linux) or $JDG_HOME\bin\add-user.bat
(Windows) script.

b. Enter b at the first prompt to create an ApplicationRealm user.

What type of user do you wish to add?

a) Management User (mgmt-users.properties)

b) Application User (application-users.properties)
(a):b

c. Follow the prompts to define the desired username and password for the user.

d. When prompted for the groups enter ___script_manager for this user:

What groups do you want this user to belong to? (Please enter a comma separated list,
or leave blank for none)[]: ___ script_manager

2. Secure the communication between the client and server. As this example is using DIGEST-MD5
the instructions in Configure Hot Rod Authentication (MD5) will be followed. The following
snippet demonstrates the necessary xml configuration:

<cache-container name="local" default-cache="default" statistics="true">
<security>
<authorization>
<identity-role-mapper />

383

Red Hat Data Grid 7.2 Developer Guide

<role name="admin" permissions="ALL" />
<role name="reader" permissions="READ" />
<role name="writer" permissions="WRITE" />
<role name="supervisor" permissions="READ WRITE EXEC" />
</authorization>
</security>

[...]

<cache-container>

[...]

<hotrod-connector socket-binding="hotrod" cache-container="local">
<authentication security-realm="ApplicationRealm">

<sasl server-name="scriptserver" mechanisms="DIGEST-MD5" qop="auth" />

</authentication>

</hotrod-connector>

3. Create the cache manager using the secured connection, as seen in the following code snippet:

Configuration config = new ConfigurationBuilder()
.addServer()
.host("localhost")
.port(11222)
.security()
.authentication()
.enable()
.saslMechanism("DIGEST-MD5")
.serverName("scriptserver")
.callbackHandler(new MyCallbackHandler("user", "ApplicationRealm",
"password".toCharArray()))
build();

cacheManager = new RemoteCacheManager(config);

40.3. INSTALLING SCRIPTS

A script may be added to the ___script_cache by putting the script into the cache itself with the name
of the script as the key, and the content of the script as the value. If the name of the script contains a
filename extension, such as sample.js , then the extension will determine the engine used to execute the
script. This behavior may be overridden by specifying metadata inside the script itself.

As the contents of the script should be stored in the value of the script_cache this may either be
loaded from a pre-existing file, or manually entered. The following examples demonstrate both of these
options:

Loading a Script From a File

Assuming the script is stored within a file the following code sample may be used to read the contents of
the file and store it into the scripting cache:

private static final String SCRIPT_CACHE ="___ script_cache";
private RemoteCache<String, String> scriptingCache;

[...]
scriptingCache = cacheManager.getCache(SCRIPT_CACHE);
[...]

private void loadScript(String filename) throws IOException{

384

CHAPTER 40. SCRIPTING

StringBuilder sb = new StringBuilder();
BufferedReader reader = new BufferedReader(new FileReader(filename));
for (String line = reader.readLine(); line != null; line = reader.readLine()) {
sb.append(line);
sb.append("\n");

}
System.out.printin(sb.toString());

scriptingCache.put(filename,sb.toString());

Defining the Contents of the Script

Instead of loading a script from a file the script may be manually defined and placed into the scripting
cache:

RemoteCache<String, String> scriptCache = cacheManager.getCache("___ script_cache");
scriptCache.put("multiplication.js",

"// mode=local,language=javascript\n" +

"/| parameters=[multiplicand,multiplier]" +

"multiplicand * multiplier\n");

40.4. SCRIPTING METADATA

Metadata may be stored in the script to provide additional information to the server on how the script is
executed. This metadata is contained in a specially formatted comment on the first lines of the script.

Properties are defined as key=value pairs separated by commas, with the comment styles, such as //, ;;,
or \#, depending on the scripting language in use. This information may be split over multiple lines if

necessary, and single or double quotes may be used to delimit the values.

The following is an example of a valid metadata comment:

// name=test, language=javascript
// mode=local, parameters=[a,b,c]

Metadata Properties

The following metadata properties are available:

e mode: defines the mode of execution of a script. Can be one of the following values:

o local: the script will be executed only by the node handling the request. The script itself
however can invoke clustered operations.

o distributed: runs the script using the Distributed Executor Service.
® Janguage: defines the script engine that will be used to execute the script, e.g. Javascript.

e extension: an alternative method of specifying the script engine that will be used to execute
the script, e.g. js.

® role: a specific role which is required to execute the script.

® parameters: an array of valid parameter names for this script. Invocations which specify
parameter names not included in this list will cause an exception.

385

Red Hat Data Grid 7.2 Developer Guide

As the execution mode is a characteristic of the script there is no additional configuration required on
the client to invoke scripts in different modes.

40.5. SCRIPT BINDINGS

The script engine exposes several internal objects as pre-defined bindings when the script is executed.
These are:

® cache: the cache against which the script is being executed.
e cacheManager: the cacheManager for the cache.
e marshaller: the marshaller to use for marshalling/unmarshalling data to the cache.

e scriptingManager: the instance of the script manager which is being used to run the script. This
can be used to run other scripts from a script.

40.6. SCRIPT PARAMETERS

In addition to the standard bindings, a script may have a set of named parameters passed in which also
appear as bindings. Parameters are passed in as a map of name, value pairs where the name is a string,
and the value is any value understood by the marshaller in use.

Consider the following script which takes two parameters, multiplicand and multiplier:

// mode=Ilocal,language=javascript
// parameters=[multiplicand,multiplier]
multiplicand * multiplier

As the last operation is an evaluation its result will be returned to the script invoker. Passing in values
changes depending on how the script is executed, and will be covered under each execution method.

40.7. SCRIPT EXECUTION USING THE HOT ROD JAVA CLIENT

If authorization is disabled on the server then anyone may execute scripts once they have been installed.
Otherwise, only users with EXEC permissions will be allowed to run previously installed scripts.

Scripts may be executed in Hot Rod by calling execute(scriptName, parameters) on the cache where
the script should be executed. In this case the scriptName corresponds with the name of the script
stored inthe ___script_cache, and parameters is a Map<String,Object> of named parameters.

The following example demonstrates executing the above multiplication.js script through Hot Rod:

RemoteCache<String, Integer> cache = cacheManager.getCache();
// Create the parameters for script execution

Map<String, Object> params = new HashMap<>();
params.put("multiplicand", 10);

params.put("multiplier”, 20);

// Run the script on the server, passing in the parameters

Object result = cache.execute("multiplication.js", params);

40.8. SCRIPT EXAMPLES

386

CHAPTER 40. SCRIPTING

The following examples demonstrate various tasks to assist in the reader’s understanding of the
scripting syntax, and to get ideas on what tasks may be suitable for scripts in each environment.

Distributed Execution

The following is a script that runs within a Distributed Executor. Each node will return its address, and all
nodes will be collected in a List to be returned to the client:

// mode:distributed,language=javascript
cacheManager.getAddress().toString();

Word Count Stream

The following is a script that runs on the local cache, counting the occurrences of each word in the result
set, and then returning the words and their occurrences in a key, value pairing:

// mode=local,language=javascript
var Function = Java.type("java.util.function.Function")
var Collectors = Java.type("java.util.stream.Collectors")
var Arrays = Java.type("org.infinispan.scripting.utils.JSArrays")
cache
.entrySet().stream()
.map(function(e) e.getValue())
.map(function(v) v.toLowerCase())
.map(function(v) v.split(/\W]+/))
flatMap(function(f) Arrays.stream(f))
.collect(Collectors.groupingBy(Function.identity(), Collectors.counting()));

40.9. LIMITATIONS WHEN EXECUTING STORED SCRIPTS

Java Streams throw an error when used with clusters in DIST mode

It is not possible to use scripts that create a Stream in JavaScript when the clusterisin DIST mode. Any
attempts to execute these scripts will result in a NotSerializableException, as the lambdas fail when
attempting to be serialized. To workaround this issue it is recommended to manually iterate over data
using an lterator, or to execute lambdas after the data has been transferred from the script to the
originator node.

There are no issues using streams in clusters with other modes.

387

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 41. REMOTE TASK EXECUTION

41.1. REMOTE TASK EXECUTION

Tasks, or business logic, can run directly on JBoss Data Grid servers, which means task execution is close
to the data and uses the resources of all nodes in the cluster.

You can bundle tasks in Java executable files and deploy them to server instances where you can run
the executables programmatically.

41.2. CREATING REMOTE TASKS

To create a task for remote execution, you must create a .jar file that contains a class that implements
the org.infinispan.tasks.ServerTask interface.

The following methods are required in the implementation:

e void setTaskContext(TaskContext taskContext) Sets the task context. Use this method to
access caches and other necessary resources.

e String getName() Provides a unique name for the task. This name is used for execution by
TaskManager.

The following methods are optional in the implementation:

e TaskExecutionMethod getExecutionMode() Determines if the task is executed on one node,
as in TaskExecutionMode.ONE_NODE, or on all nodes, as in
TaskExecutionMode.ALL_NODES. Execution on one node is the default.

® Optional<String> getAllowedRole() Sets a role that users must have to run a task. No
additional user role is set by default. For more information, see Running Remote Tasks.

e Set<String> getParameters() Specifies named parameters for use with the task.

41.3. REMOTE TASK EXAMPLE

The following provides an example class that implements the org.infinispan.tasks.ServerTask
interface:

public class HelloTask implements ServerTask<String> {
private TaskContext ctx;

//Set the task context.

@Override

public void setTaskContext(TaskContext ctx) {
this.ctx = ctx;

}

//Take the name of a person as a parameter.
//Return a greeting with that person's name.
@Override
public String call() throws Exception {
String name = (String) ctx.getParameters().get().get("name");

388

CHAPTER 41. REMOTE TASK EXECUTION

return "Hello " + name;

}

//Return a unique name that clients can use to invoke the task.
@Override
public String getName() {

return "hello-task";

}

41.4.INSTALLING REMOTE TASKS

After you create a remote task and bundle it into a.jar file, you can deploy it to a JBoss Data Grid server
instance with one of the following options:

Option 1: Copy to the Deployments Directory
1. Copy the .jar file to the deployments/ directory.

I $] cp /path/to/sample_task.jar $JDG_HOME/standalone/deployments/

Option 2: Deploy with the CLI

1. Connect to the JBoss Data Grid server.
I [$JDG_HOME] $ bin/cli.sh --connect --controller=$IP:$PORT
2. Deploy the .jar file.

I deploy /path/to/sample_task.jar

NOTE

If JBoss Data Grid is in domain mode, you must specify the server groups with
either the --all-server-groups or --server-groups parameter.

41.5. REMOVING REMOTE TASKS
You can remove remote tasks from the running instances of JBoss Data Grid as follows:

1. Connect to the JBoss Data Grid server.

I [$JDG_HOME] $ bin/cli.sh --connect --controller=$IP:$PORT

2. Run the undeploy command to remove the .jar file.

I undeploy /path/to/sample_task.jar

389

Red Hat Data Grid 7.2 Developer Guide

NOTE

If JBoss Data Grid is in domain mode, you must specify the server groups with
either the --all-server-groups or --server-groups parameter.

41.6. RUNNING REMOTE TASKS

If authorization is enabled on the JBoss Data Grid server, only users with EXEC permissions can run
remote tasks. If authorization is not enabled, any user can run remote tasks.

Remote tasks can have additional user roles specified with the getAllowedRole method. In this case,
users must belong to the role to run remote tasks.

To execute a previously deployed task call execute(String taskName, Map parameters) on the desired
cache.

The following example shows how to run a task named sampleTask:

import org.infinispan.client.hotrod.*;
import java.util.”;

[.-]

String TASK_NAME = "sampleTask";

RemoteCacheManager rcm = new RemoteCacheManager();
RemoteCache remoteCache = rcm.getCache();

// Assume the task takes a single parameter, and will return a result
Map<String, String> params = new HashMap<>();

params.put("name", "James");

String result = (String) remoteCache.execute(TASK_NAME, params);

390

CHAPTER 42. CONFIGURING MEDIA TYPES

CHAPTER 42. CONFIGURING MEDIA TYPES

Red Hat JBoss Data Grid lets you configure the media type for data in the cache. In other words, you
can set a media type that defines the storage format for data in the cache.

JBoss Data Grid allows clients to write and read data in different storage formats and automatically
converts between formats when necessary.

42.1. DEFAULT MEDIA TYPE

The default media type is application/octet-stream for both keys and values with the following
exceptions:

® |ndexed caches have a default media type of application/x-protostream.

® Caches that use compatibility mode have a default media type of application/x-java-object.

42.2. SUPPORTED MEDIA TYPES

Red Hat JBoss Data Grid lets clients read and write data in different formats and automatically converts
between formats.

JBoss Data Grid supports several data formats that are interchangeable with one another, as follows:
e application/x-java-object
e application/octet-stream
e application/x-www-form-urlencoded
e text/plain

JBoss Data Grid also supports data formats that it must convert to and from the data formats in the
preceding list, as follows:

e application/xml

e application/json

e application/x-jboss-marshalling
e application/x-java-serialized

e application/x-protostream

In addition, JBoss Data Grid supports conversion between application/x-protostream and
application/json.

42.3. DECLARATIVELY CONFIGURING MEDIA TYPES
The following is an example configuration that defines the media type for keys and values:

<cache>
<encoding>
<key media-type="application/x-java-object; type=java.lang.Integer"/>

391

Red Hat Data Grid 7.2 Developer Guide

<value media-type="application/xml; charset=UTF-8"/>
</encoding>
</cache>

42.4. PROGRAMMATICALLY CONFIGURING MEDIA TYPES

Use the ConfigurationBuilder interface to programmatically configure the media type, as in the
following example:

ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("text/plain”);

cfg.encoding().value().mediaType("application/json");

42.5. OVERRIDING MEDIA TYPES

You can programmatically override the media type that is configured for the cache, as in the following
example:

DefaultCacheManager cacheManager = new DefaultCacheManager();
// The cache will store POJO for keys and values

ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("application/x-java-object");
cfg.encoding().key().mediaType("application/x-java-object");
cacheManager.defineConfiguration("mycache", cfg.build());
Cache<Integer, Person> cache = cacheManager.getCache("mycache");

cache.put(1, new Person("John","Doe"));

// Wraps cache using 'application/x-java-object’ for keys but JSON for values.

cache.getAdvancedCache().withMediaType("application/x-java-object”, "application/json");
byte[] json = cache.get(1);

This configuration returns the value in JSON format, as follows:

{

"_type":"org.infinispan.sample.Person”,
"name":"John",
"surname":"Doe"

}

392

CHAPTER 43. CONFIGURING COMPATIBILITY MODE

CHAPTER 43. CONFIGURING COMPATIBILITY MODE

Compatibility mode provides a mechanism for accessing data in the cache from multiple endpoints.

Compatibility mode configures JBoss Data Grid to use a marshaller that serializes and deserializes raw
bytes into strings and primitives. For this reason, compatibility mode supports only strings and primitives
and does not support objects.

IMPORTANT

Compatibility mode is not an efficient method for achieving interoperability between
remote endpoints. It is a legacy feature that is not recommended for new deployments.

Instead of using compatibility mode, you should configure the format in which the cache
stores data by defined the media type. See Endpoint Interoperability.

43.1. ENABLING COMPATIBILITY MODE

To enable compatibility mode, add enabled=true to the compatibility element as follows:

<cache-container name="local" default-cache="default" statistics="true">
<local-cache name="default" statistics="true">
<compatibility enabled="true"/>
</local-cache>
</cache-container>

43.2. MARSHALLERS IN COMPATIBILITY MODE

JBoss Data Grid does not support custom marshallers. You can use the following marshallers in
compatibility mode:

Marshaller Description

GenericJBossMarshaller Uses the JBoss marshaller to serialize and deserialize
strings and primitives as byte arrays. This is the
default marshaller in compatibility mode.

ProtoStreamCompatibilityMarshaller Uses the ProtoStream library to serialize and
deserialize strings and primitives as byte arrays.

UTF8StringMarshaller Serializes and deserializes strings and primitives as
UTF8 byte arrays.

43.3. SPECIFYING THE MARSHALLER

Specify marshallers with the marshaller attribute, as in the following example:

<cache-container name="local" default-cache="default" statistics="true">
<local-cache name="default" statistics="true">
<compatibility enabled="true"

393

Red Hat Data Grid 7.2 Developer Guide

marshaller="org.infinispan.commons.marshall. UTF8StringMarshaller"/>
</local-cache>
</cache-container>

43.3.1. Memcached Marshaller

When using memcached in compatibility mode, you must explicitly set the default marshaller,
GenericJBossMarshaller, in the configuration. For example:

<cache-container name="local" default-cache="default" statistics="true">
<local-cache name="default" statistics="true">
<compatibility enabled="true"
marshaller="org.infinispan.commons.marshall.jposs.GenericJBossMarshaller"/>
</local-cache>
</cache-container>

IMPORTANT

Java clients must use a transcoder to perform read and write operations in compatibility
mode. The transcoder enables memcached clients written in Java to convert between
byte arrays and strings or primitives.

394

CHAPTER 44. ENDPOINT INTEROPERABILITY

CHAPTER 44. ENDPOINT INTEROPERABILITY
Clients exchange data with Red Hat JBoss Data Grid through endpoints such as REST or Hot Rod.

Each endpoint uses a different protocol so that clients can read and write data in the cache in a suitable
storage format. Because JBoss Data Grid can interoperate with multiple clients at the same time, it
must convert data between client formats and the storage formats.

To configure JBoss Data Grid endpoint interoperability, you should define the media type that sets the
format for data stored in the cache.

44.1. CONSIDERATIONS WITH MEDIA TYPES AND ENDPOINT
INTEROPERABILITY

Configuring Red Hat JBoss Data Grid to store data with a specific media type affects client
interoperability.

REST clients generally handle text formats such as JSON, XML, or plain text better than binary formats.
Although the JBoss Data Grid REST API does handle binary formats represented as String, encoded in
hexadecimal or base64 format.

Java Hot Rod clients are suitable for handling Java objects that represent entities that reside in the
cache. Java Hot Rod clients use marshalling operations to serialize and deserialize those objects into
byte arrays.

Similarly, non-Java Hot Rod clients, such as the C++, C#, and Javascript clients, are suitable for handling
objects in the respective languages. However, non-Java Hot Rod clients can interoperate with Java Hot
Rod clients using platform independent data formats.

44.1.1. REST and Hot Rod Interoperability with Text-Based Storage

You can configure key and values with a text-based storage format.

For example, specify text/plain; charset=UTF-8, or any other character set, to set plain text as the
media type. You can also specify a media type for other text-based formats such as JSON
(application/json) or XML (application/xml) with an optional character set.

The following example configures the cache to store entries with the text/plain; charset=UTF-8 media
type:

<cache>
<encoding>
<key media-type="text/plain; charset=UTF-8"/>
<value media-type="text/plain; charset=UTF-8"/>
</encoding>
</cache>

To handle the exchange of data in a text-based format, you must configure Hot Rod clients with the
org.infinispan.commons.marshall.StringMarshaller marshaller.

REST clients must also send the correct headers when writing and reading from the cache, as follows:
e \Write: Content-Type: text/plain; charset=UTF-8

® Read: Accept: text/plain; charset=UTF-8

395

Red Hat Data Grid 7.2 Developer Guide

This configuration is compatible with...

REST clients Yes
Java Hot Rod clients Yes
Non-Java Hot Rod clients No
Querying and Indexing No
Custom Java objects No

44.1.2. Java and Non-Java Client Interoperability with Protobuf

Storing data in the cache as Protobuf encoded entries provides a platform independent configuration
that enables Java and Non-Java clients to access and query the cache from any endpoint.

If indexing is configured for the cache, JBoss Data Grid automatically stores keys and values with the
application/x-protostream media type.

If indexing is not configured for the cache, you can configure it to store entries with the application/x-
protostream media type as follows:

<distributed-cache name="my-cache">
<encoding>
<key media-type="application/x-protostream"/>
<value media-type="application/x-protostream"/>
</encoding>
</distributed-cache>

JBoss Data Grid converts between application/x-protostream and application/json, which allows

REST clients to read and write JSON formatted data. However REST clients must send the correct
headers, as follows:

Read Header

I Read: Accept: application/json

Write Header

I Write: Content-Type: application/json

IMPORTANT

The application/x-protostream media type uses Protobuf encoding, which requires you
to register a Protocol Buffers schema definition that describes the entities and
marshallers that the clients use. See Protobuf Encoding.

396

CHAPTER 44. ENDPOINT INTEROPERABILITY

This configuration is compatible with...

REST clients Yes
Java Hot Rod clients Yes
Non-Java Hot Rod clients Yes
Querying and Indexing Yes
Custom Java objects Yes

397

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 45. SET UP CROSS-DATACENTER REPLICATION

45.1. CROSS-DATACENTER REPLICATION

In Red Hat JBoss Data Grid, Cross-Datacenter Replication allows the administrator to create data
backups in multiple clusters. These clusters can be at the same physical location or different ones.
JBoss Data Grid's Cross-Site Replication implementation is based on JGroups' RELAY?2 protocol.

Cross-Datacenter Replication ensures data redundancy across clusters. In addition to creating backups
for data restoration, these datasets may also be used in an active-active mode. When configured in this
manner systems in separate environments are able to handle sessions should one cluster fail. Ideally,
each of these clusters should be in a different physical location than the others.

45.2. CROSS-DATACENTER REPLICATION OPERATIONS

Red Hat JBoss Data Grid’s Cross-Datacenter Replication operation is explained through the use of an
example, as follows:

398

CHAPTER 45. SET UP CROSS-DATACENTER REPLICATION

Figure 45.1. Cross-Datacenter Replication Example

CacheManager
Users

CacheManager -’ CacheManager

Orders Orders

Users CacheManager

CacheManager
Users

Orders

H RELAY2

(JGroups)

4= =) JGroups

CacheManager CacheManager

Three sites are configured in this example: LON, NYC and SFO. Each site hosts a running JBoss Data
Grid cluster made up of three to four physical nodes.

The Users cache is active in all three sites - LON, NYC and SFO. Changes to the Users cache at the
any one of these sites will be replicated to the other two as long as the cache defines the other two sites
as its backups through configuration. The Orders cache, however, is only available locally at the LON
site because it is not replicated to the other sites.

The Users cache can use different replication mechanisms each site. For example, it can back up data
synchronously to SFO and asynchronously to NYC and LON.

The Users cache can also have a different configuration from one site to another. For example, it can be

configured as a distributed cache with owners set to 2 in the LON site, as a replicated cache in the NYC
site and as a distributed cache with owners set to 1 in the SFO site.

399

Red Hat Data Grid 7.2 Developer Guide

JGroups is used for communication within each site as well as inter-site communication. Specifically, a
JGroups protocol called RELAYZ2 facilitates communication between sites. For more information, refer
to the RELAYZ2 section in the JBoss Data Grid Administration Guide .

45.3. CONFIGURE CROSS-DATACENTER REPLICATION
PROGRAMMATICALLY

The programmatic method to configure cross-datacenter replication in Red Hat JBoss Data Grid is as
follows:

Configure Cross-Datacenter Replication Programmatically

1. Identify the Node Location
Declare the site the node resides in:

I globalConfiguration.site().localSite("LON");

2. Configure JGroups
Configure JGroups to use the RELAY protocol:

I globalConfiguration.transport().addProperty("configurationFile",“jgroups-with-relay.xml”);

3. Set Up the Remote Site
Set up JBoss Data Grid caches to replicate to the remote site:

ConfigurationBuilder lon = new ConfigurationBuilder();
lon.sites().addBackup()
.site("NYC")
.backupFailurePolicy(BackupFailurePolicy. WARN)
.strategy(BackupConfiguration.BackupStrategy.SYNC)
.replicationTimeout(12000)
.sites().addInUseBackupSite("NYC")
.sites().addBackup()
.site("SFO")
.backupFailurePolicy(BackupFailurePolicy.IGNORE)
.strategy(BackupConfiguration.BackupStrategy.ASYNC)
.sites().addInUseBackupSite("SFO")

4. Optional: Configure the Backup Caches
JBoss Data Grid implicitly replicates data to a cache with same name as the remote site. If a
backup cache on the remote site has a different name, users must specify a backupFor cache
to ensure data is replicated to the correct cache.

NOTE

This step is optional and only required if the remote site's caches are named
differently from the original caches.

a. Configure the cache in site NYC to receive backup data from LON:

ConfigurationBuilder NYCbackupOfLon = new ConfigurationBuilder();
NYCbackupOfLon.sites().backupFor().remoteCache("lon").remoteSite("LON");

400

CHAPTER 45. SET UP CROSS-DATACENTER REPLICATION

b. Configure the cache in site SFO to receive backup data from LON:

ConfigurationBuilder SFObackupOfLon = new ConfigurationBuilder();
SFObackupOfLon.sites().backupFor().remoteCache("lon").remoteSite("LON");

5. Add the Contents of the Configuration File
As a default, Red Hat JBoss Data Grid includes JGroups configuration files such as default-

configs/default-jgroups-tcp.xml and default-configs/default-jgroups-udp.xml in the infinispan-
embedded-{VERSION}. jar package.

Copy the JGroups configuration to a new file (in this example, it is named jgroups-with-relay.xm/
) and add the provided configuration information to this file. Note that the relay.RELAY?2
protocol configuration must be the last protocol in the configuration stack.

<config>
<!I-- Additional configuration information here -->
<relay.RELAY2 site="LON"
config="relay.xml"
relay_multicasts="false" />
</config>

6. Configure the relay.xml File

Set up the relay.RELAYZ2 configuration in the relay.xml file. This file describes the global cluster
configuration.

<RelayConfiguration>
<sites>
<site name="LON"
id="0">
<bridges>
<bridge config="jgroups-global.xml"
name="global"/>
</bridges>
</site>
<site name="NYC"
id="1">
<bridges>
<bridge config="jgroups-global.xml"
name="global"/>
</bridges>
</site>
<site name="SFQO"
id="2">
<bridges>
<bridge config="jgroups-global.xml"
name="global"/>
</bridges>
</site>
</sites>
</RelayConfiguration>

7. Configure the Global Cluster

The file jgroups-global.xml referenced in relay.xml contains another JGroups configuration
which is used for the global cluster: communication between sites.

401

Red Hat Data Grid 7.2 Developer Guide

The global cluster configuration is usually TCP -based and uses the TCPPING protocol (instead
of PING or MPING) to discover members. Copy the contents of default-configs/default-
jgroups-tcp.xml into jgroups-global.xml and add the following configuration in order to configure
TCPPING :

<config>
<TCP bind_port="7800" <!-- Additional configuration information here --> />
<TCPPING initial_hosts="lon.hostname[7800],nyc.hostname[7800],sfo.hostname[7800]"
ergonomics="false" />
<!I-- Rest of the protocols -->
</config>

Replace the hostnames (or IP addresses) in TCPPING.initial_hosts with those used for your
site masters. The ports (7800 in this example) must match the TCP.bind_port.

For more information about the TCPPING protocol, refer to the JBoss Data Grid Administration
and Configuration Guide .

45.4. TAKING A SITE OFFLINE

In Red Hat JBoss Data Grid's Cross-datacenter replication configuration, if backing up to one site fails a
certain number of times during a time interval, that site can be marked as offline automatically. This
feature removes the need for manual intervention by an administrator to mark the site as offline.

To configure taking a Cross-datacenter replication site offline automatically in Red Hat JBoss Data Grid
programmatically:

Taking a Site Offline Programmatically

lon.sites().addBackup()
.site("NYC")
.backupFailurePolicy(BackupFailurePolicy.FAIL)
.strategy(BackupConfiguration.BackupStrategy.SYNC)
.takeOffline()
.afterFailures(500)
.minTimeToWait(10000);

45.5. HOT ROD CROSS SITE CLUSTER FAILOVER

Besides in-cluster failover, Hot Rod clients can failover to different clusters each representing
independent sites. Hot Rod Cross Site cluster failover is available in both automatic and manual modes.

Automatic Cross Site Cluster Failover

If the main/primary cluster nodes are unavailable, the client application checks for alternatively defined
clusters and will attempt to failover to them. Upon successful failover, the client will remain connected
to the alternative cluster until it becomes unavailable. After that, the client will try to failover to other
defined clusters and finally switch over to the main/primary cluster with the original server settings if the
connectivity is restored.

To configure an alternative cluster in the Hot Rod client, provide details of at least one host/port pair for
each of the clusters configured as shown in the following example.

Configure Alternate Cluster

402

CHAPTER 45. SET UP CROSS-DATACENTER REPLICATION

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb

= new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.addCluster("remote-cluster").addClusterNode("remote-cluster-host", 11222);
RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

NOTE

Regardless of the cluster definitions, the initial server(s) configuration must be provided
unless the initial servers can be resolved using the default server host and port details.

Manual Cross Site Cluster Failover

For manual site cluster switchover, call RemoteCacheManager's switchToCluster(clusterName) or
switchToDefaultCluster().

Using switchToCluster(clusterName), users can force a client to switch to one of the clusters

predefined in the Hot Rod client configuration. To switch to the default cluster use
switchToDefaultCluster() instead.

403

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 46. NEAR CACHING

46.1. NEAR CACHING

Near caches are optional caches for Hot Rod Java client implementations that keep recently accessed
data close to the user, providing faster access to data that is accessed frequently. This cache acts as a
local Hot Rod client cache that is updated whenever a remote entry is retrieved via get or getVersioned
operations.

IMPORTANT

Near Caching for Library mode, or non-Hot Rod interfaces, is achieved by configuring L1
Caches. Configuring L1 Caches are documented in the JBoss Data Grid Administration
and Configuration Guide .

In Red Hat JBoss Data Grid, near cache consistency is achieved by using remote events, which send
notifications to clients when entries are modified or removed (refer to Remote Event Listeners (Hot
Rod)). With Near Caching, local cache remains consistent with remote cache. Local entry is updated or
invalidated whenever remote entry on the server is updated or removed. At the client level, near caching
is configurable as either of the following:

e DISABLED - the default mode, indicating that Near Caching is not enabled.

® |[NVALIDATED - enables near caching, keeping it in sync with the remote cache via invalidation
messages.

NOTE

Near caching is disabled for Hot Rod clients by default.

Figure 46.1. Near Caching Architecture

(JVM \ (JVM \

Near Cache l

Hot Rod Protocol Hot Rod Protocol

@ @

Infinispan Infinispan

JBoss Data Grid Node JBoss Data Grid Node

404

CHAPTER 46. NEAR CACHING

46.2. CONFIGURING NEAR CACHES

Near caching can be enabled and disabled via configuration without making any changes to the Hot Rod
Client application. To enable near caching, configure the near caching mode as INVALIDATED on the
client, and optionally specify the number of entries to be kept in the cache.

Near cache mode is configured using the NearCacheMode enumeration.
The following example demonstrates how to configure near caching:

Enabling a Near Cache

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.configuration.NearCacheMode;

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(100);

A maximum size for the near cache must be provided, using the maxEntries(int maxEntries) method. In
the above example this is defined to 100. When the maximum size is reached, near cached entries are
evicted using a least-recently-used (LRU) algorithm. To define an unlimited near cache, a O or negative
value may be passed in.

46.3. NEAR CACHES IN A CLUSTERED ENVIRONMENT

Near caches are implemented using Hot Rod Remote Events, and utilize clustered listeners for receiving
events from across the cluster. Clustered listeners are installed on a single node within the cluster, with
the remaining nodes sending events to the node on which the listeners are installed. It is therefore
possible for a node running the near cache-backing clustered listener to fail. In this situation, another
node takes over the clustered listener.

When the node running the clustered listener fails, a client failover event callback can be defined and
invoked. For near caches, this callback and its implementation will clear the near cache, as during a

failover events may be missed.

Refer to Clustered Listeners for more information.

405

Red Hat Data Grid 7.2 Developer Guide

CHAPTER 47. CONFLICT MANAGER USAGE

47.1. FIND AND RESOLVE CACHE CONFLICTS

The Conflict Manager is often used with Partition Handling. A split-brain occurs when nodes in a cluster
are separated into two or more groups (partitions) that can't communicate with each other. In some
split-brain situations, nodes can have different data written to them. In this case, JBoss Data Grid’s
Partition Handling, combined with its Conflict Manager, can be used to automatically resolve differences
in the same CacheEntries across nodes. The Conflict Manager can also be used to manually search for
and resolve conflicts.

The code below shows how to retrieve an EmbeddedCacheManager’'s ConflictManager, how to
retrieve all versions of a given key, and how to check for conflicts across a given cache.

EmbeddedCacheManager manager = new DefaultCacheManager("example-config.xml");
Cache<lnteger, String> cache = manager.getCache("testCache");
ConflictManager<Integer, String> crm = ConflictManagerFactory.get(cache.getAdvancedCache());

// Get All Versions of Key
Map<Address, InternalCacheValue<String>> versions = crm.getAllVersions(1);

// Process conflicts stream and perform some operation on the cache
Stream<Map<Address, InternalCacheEntry<Integer, String>>> stream = crm.getConflicts();
stream.forEach(map -> {

CacheEntry<Object, Object> entry = map.values().iterator().next();

Object conflictKey = entry.getKey();
cache.remove(conflictKey);

h;

// Detect and then resolve conflicts using the configured EntryMergePolicy
crm.resolveConflicts();

// Detect and then resolve conflicts using the passed EntryMergePolicy instance
crm.resolveConflicts((preferredEntry, otherEntries) -> preferredEntry);

NOTE

Although the ConflictManager::getConflicts stream is processed per entry, the
underlying spliterator is in fact lazily-loading cache entries on a per segment basis.

406

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#conflict_manager
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#partition_handling_strategies

APPENDIX A. REFERENCES

APPENDIX A. REFERENCES

A.l. THE EXTERNALIZER

A.1.1. About Externalizer

An Externalizer is a class that can:
® Marshall a given object type to a byte array.
® Unmarshall the contents of a byte array into an instance of the object type.

Externalizers are used by Red Hat JBoss Data Grid and allow users to specify how their object types are
serialized. The marshalling infrastructure used in JBoss Data Grid builds upon JBoss Marshalling and
provides efficient payload delivery and allows the stream to be cached. The stream caching allows data
to be accessed multiple times, whereas normally a stream can only be read once.

A.1.2. Internal Externalizer Implementation Access

Externalizable objects should not access Red Hat JBoss Data Grids Externalizer implementations. The
following is an example of incorrect usage:

public static class ABCMarshallingExternalizer implements AdvancedExternalizer<ABCMarshalling> {
@Override
public void writeObject(ObjectOutput output, ABCMarshalling object) throws IOException {
MapExternalizer ma = new MapExternalizer();
ma.writeObject(output, object.getMap());

}

@Override
public ABCMarshalling readObject(Objectinput input) throws IOException,
ClassNotFoundException {
ABCMarshalling hi = new ABCMarshalling();
MapExternalizer ma = new MapExternalizer();
hi.setMap((ConcurrentHashMap<Long, Long>) ma.readObject(input));
return hi;

}

<!-- Additional configuration information here -->

End user externalizers do not need to interact with internal externalizer classes. The following is an
example of correct usage:

public static class ABCMarshallingExternalizer implements AdvancedExternalizer<ABCMarshalling> {
@Override
public void writeObject(ObjectOutput output, ABCMarshalling object) throws IOException {
output.writeObject(object.getMap());

}

@Override
public ABCMarshalling readObject(Objectinput input) throws IOException,
ClassNotFoundException {
ABCMarshalling hi = new ABCMarshalling();
hi.setMap((ConcurrentHashMap<Long, Long>) input.readObject());
return hi;

407

Red Hat Data Grid 7.2 Developer Guide

}

<!-- Additional configuration information here -->

}

A.2. HASH SPACE ALLOCATION

A.2.1. About Hash Space Allocation

Red Hat JBoss Data Grid is responsible for allocating a portion of the total available hash space to each
node. During subsequent operations that must store an entry, JBoss Data Grid creates a hash of the
relevant key and stores the entry on the node that owns that portion of hash space.

A.2.2. Locating a Key in the Hash Space

Red Hat JBoss Data Grid always uses an algorithm to locate a key in the hash space. As a result, the
node that stores the key is never manually specified. This scheme allows any node to know which node
owns a particular key without such ownership information being distributed. This scheme reduces the
amount of overhead and, more importantly, improves redundancy because the ownership information
does not need to be replicated in case of node failure.

408

	Table of Contents
	PART I. PROGRAMMABLE APIS
	CHAPTER 1. PROGRAMMABLE APIS
	CHAPTER 2. THE CACHE API
	2.1. THE CACHE API
	2.2. USING THE CONFIGURATIONBUILDER API TO CONFIGURE THE CACHE API
	2.3. PER-INVOCATION FLAGS
	2.3.1. Per-Invocation Flags
	2.3.2. Per-Invocation Flag Functions
	2.3.3. Configure Per-Invocation Flags
	2.3.4. Per-Invocation Flags Example

	2.4. THE ADVANCEDCACHE INTERFACE
	2.4.1. The AdvancedCache Interface
	2.4.2. Flag Usage with the AdvancedCache Interface
	2.4.3. GET and PUT Usage in Distribution Mode
	2.4.3.1. GET and PUT Usage in Distribution Mode
	2.4.3.2. Distributed GET and PUT Operation Resource Usage

	2.4.4. Limitations of Map Methods

	CHAPTER 3. THE MULTIMAP CACHE
	3.1. THE MULTIMAP CACHE
	3.2. INSTALLING MULTIMAPCACHE USING MAVEN
	3.3. CREATING A MULTIMAP CACHE
	3.4. EXAMPLE MULTIMAPCACHE USAGE

	CHAPTER 4. THE ASYNCHRONOUS API
	4.1. THE ASYNCHRONOUS API
	4.2. ASYNCHRONOUS API BENEFITS
	4.3. ABOUT ASYNCHRONOUS PROCESSES
	4.4. RETURN VALUES AND THE ASYNCHRONOUS API

	CHAPTER 5. THE BATCHING API
	5.1. THE BATCHING API
	5.2. ABOUT JAVA TRANSACTION API
	5.3. BATCHING AND THE JAVA TRANSACTION API (JTA)
	5.4. USING THE BATCHING API
	5.4.1. Configure the Batching API
	5.4.2. Use the Batching API

	CHAPTER 6. THE GROUPING API
	6.1. THE GROUPING API
	6.2. GROUPING API OPERATIONS
	6.3. GROUPING API USE CASE
	6.4. CONFIGURE THE GROUPING API
	6.4.1. Configure the Grouping API
	6.4.2. Enable Groups
	6.4.3. Specify an Intrinsic Group
	6.4.4. Specify an Extrinsic Group
	6.4.5. Register Groupers

	CHAPTER 7. THE PERSISTENCE SPI
	7.1. THE PERSISTENCE SPI
	7.2. PERSISTENCE SPI BENEFITS
	7.3. PROGRAMMATICALLY CONFIGURE THE PERSISTENCE SPI
	7.4. PERSISTENCE EXAMPLES
	7.4.1. Persistence Examples
	7.4.2. Configure the Cache Store Programmatically
	7.4.3. LevelDB Cache Store Programmatic Configuration
	7.4.4. JdbcBinaryStore Programmatic Configuration
	7.4.5. JdbcStringBasedStore Programmatic Configuration
	7.4.6. JdbcMixedStore Programmatic Configuration
	7.4.7. JPA Cache Store Sample Programmatic Configuration
	7.4.8. Cassandra Cache Store Sample Programmatic Configuration

	CHAPTER 8. THE CONFIGURATIONBUILDER API
	8.1. THE CONFIGURATIONBUILDER API
	8.2. USING THE CONFIGURATIONBUILDER API
	8.2.1. Programmatically Create a CacheManager and Replicated Cache
	8.2.2. Cluster-Wide Dynamic Cache Creation
	8.2.3. Create a Customized Cache Using the Default Named Cache
	8.2.4. Create a Customized Cache Using a Non-Default Named Cache
	8.2.5. Using the Configuration Builder to Create Caches Programmatically
	8.2.6. Global Configuration Examples
	8.2.6.1. Globally Configure the Transport Layer
	8.2.6.2. Globally Configure the Cache Manager Name
	8.2.6.3. Globally Configure JGroups

	8.2.7. Cache Level Configuration Examples
	8.2.7.1. Cache Level Configuration for the Cluster Mode
	8.2.7.2. Cache Level Eviction and Expiration Configuration
	8.2.7.3. Cache Level Configuration for JTA Transactions
	8.2.7.4. Cache Level Configuration Using Chained Persistent Stores
	8.2.7.5. Cache Level Configuration for Advanced Externalizers
	8.2.7.6. Cache Level Configuration for Partition Handling (Library Mode)

	CHAPTER 9. THE EXTERNALIZABLE API
	9.1. THE EXTERNALIZABLE API
	9.2. CUSTOMIZE EXTERNALIZERS
	9.3. ANNOTATING OBJECTS FOR MARSHALLING USING @SERIALIZEWITH
	9.4. USING AN ADVANCED EXTERNALIZER
	9.4.1. Using an Advanced Externalizer
	9.4.2. Implement the Methods
	9.4.3. Link Externalizers with Marshaller Classes
	9.4.4. Register the Advanced Externalizer (Programmatically)
	9.4.5. Register Multiple Externalizers

	9.5. CUSTOM EXTERNALIZER ID VALUES
	9.5.1. Custom Externalizer ID Values
	9.5.2. Customize the Externalizer ID (Programmatically)

	CHAPTER 10. THE NOTIFICATION/LISTENER API
	10.1. THE NOTIFICATION/LISTENER API
	10.2. LISTENER EXAMPLE
	10.3. LISTENER NOTIFICATIONS
	10.3.1. Listener Notifications
	10.3.2. About Cache-level Notifications
	10.3.3. Cache Manager-level Notifications
	10.3.4. About Synchronous and Asynchronous Notifications

	10.4. MODIFYING CACHE ENTRIES
	10.4.1. Modifying Cache Entries
	10.4.2. Cache Entry Modified Listener Configuration
	10.4.3. Cache Entry Modified Listener Example

	10.5. CLUSTERED LISTENERS
	10.5.1. Clustered Listeners
	10.5.2. Configuring Clustered Listeners
	10.5.3. The Cache Listener API
	10.5.4. Clustered Listener Example
	10.5.5. Optimized Cache Filter Converter

	10.6. REMOTE EVENT LISTENERS (HOT ROD)
	10.6.1. Remote Event Listeners (Hot Rod)
	10.6.2. Adding and Removing Event Listeners
	10.6.3. Remote Event Client Listener Example
	10.6.4. Filtering Remote Events
	10.6.4.1. Filtering Remote Events
	10.6.4.2. Custom Filters for Remote Events
	10.6.4.3. Enhanced Filter Factories

	10.6.5. Customizing Remote Events
	10.6.5.1. Customizing Remote Events
	10.6.5.2. Adding a Converter
	10.6.5.3. Lightweight Events
	10.6.5.4. Dynamic Converter Instances
	10.6.5.5. Adding a Remote Client Listener for Custom Events

	10.6.6. Event Marshalling
	10.6.7. Remote Event Clustering and Failover

	CHAPTER 11. JSR-107 (JCACHE) API
	11.1. JSR-107 (JCACHE) API
	11.2. DEPENDENCIES
	11.2.1. Option 1: Maven
	11.2.2. Option 2: Adding the necessary files to the classpath

	11.3. CREATE A LOCAL CACHE
	11.3.1. Library Mode
	11.3.2. Client-Server Mode

	11.4. STORE AND RETRIEVE DATA
	11.5. COMPARING JAVA.UTIL.CONCURRENT.CONCURRENTMAP AND JAVAX.CACHE.CACHE APIS
	11.6. CLUSTERING JCACHE INSTANCES
	11.7. MULTIPLE CACHING PROVIDERS

	CHAPTER 12. THE HEALTH CHECK API
	12.1. THE HEALTH CHECK API
	12.2. ACCESSING THE HEALTH CHECK API PROGRAMMATICALLY

	CHAPTER 13. THE REST API
	13.1. THE REST INTERFACE
	13.2. RUBY CLIENT CODE
	13.3. USING JSON WITH RUBY EXAMPLE
	13.4. PYTHON CLIENT CODE
	13.5. JAVA CLIENT CODE
	13.6. USING THE REST INTERFACE
	13.6.1. REST Interface Operations
	13.6.1.1. Data Formats
	13.6.1.2. Headers
	13.6.1.3. Accept Header
	13.6.1.4. Key-Content-Type Header

	13.6.2. Adding Data Through the REST API
	13.6.2.1. Adding Data to the Cache
	13.6.2.2. PUT /{cacheName}/{cacheKey}
	13.6.2.3. POST /{cacheName}/{cacheKey}
	13.6.2.4. Headers for the PUT and POST Methods

	13.6.3. Retrieving Data Through the REST API
	13.6.3.1. Retrieving Data from the Cache
	13.6.3.2. GET /{cacheName}/{cacheKey}
	13.6.3.3. HEAD /{cacheName}/{cacheKey}
	13.6.3.4. GET /{cacheName}
	13.6.3.5. Headers for the GET and HEAD Methods

	13.6.4. Removing Data Through the REST API
	13.6.4.1. Removing Data from the Cache
	13.6.4.2. DELETE /{cacheName}/{cacheKey}
	13.6.4.3. DELETE /{cacheName}
	13.6.4.4. Background Delete Operations

	13.6.5. ETag Based Headers
	13.6.6. Querying Data via the REST Interface
	13.6.6.1. JSON to Protostream Conversion
	13.6.6.2. Registering Protobuf Schemas
	13.6.6.3. Mapping JSON Documents to Protobuf Messages
	13.6.6.4. Populating the Cache
	13.6.6.5. Querying REST Endpoints

	CHAPTER 14. CLUSTERED COUNTERS
	14.1. THE COUNTER API
	14.2. ADDING MAVEN DEPENDENCIES
	14.3. RETRIEVING THE COUNTERMANAGER INTERFACE
	14.4. USING CLUSTERED COUNTERS
	14.4.1. XML Configuration for Clustered Counters
	14.4.1.1. XML Definition

	14.4.2. Run-time Configuration of Clustered Counters
	14.4.3. Programmatic Configuration of Clustered Counters
	14.4.3.1. Using Clustered Counters

	CHAPTER 15. CLUSTERED LOCKS
	15.1. THE LOCK API
	15.2. SUPPORTED CONFIGURATION
	15.3. ADDING MAVEN DEPENDENCIES
	15.4. USING CLUSTERED LOCKS

	CHAPTER 16. THE HOT ROD INTERFACE
	16.1. ABOUT HOT ROD
	16.2. HOT ROD HEADERS
	16.2.1. Hot Rod Header Data Types
	16.2.2. Request Header
	16.2.3. Response Header
	16.2.4. Topology Change Headers
	16.2.4.1. Topology Change Headers
	16.2.4.2. Topology Change Marker Values
	16.2.4.3. Topology Change Headers for Topology-Aware Clients
	16.2.4.4. Topology Change Headers for Hash Distribution-Aware Clients

	16.3. HOT ROD OPERATIONS
	16.3.1. Hot Rod Operations
	16.3.2. Hot Rod Authenticate Operation
	16.3.3. Hot Rod AuthMechList Operation
	16.3.4. Hot Rod BulkGet Operation
	16.3.5. Hot Rod BulkKeysGet Operation
	16.3.6. Hot Rod Clear Operation
	16.3.7. Hot Rod ContainsKey Operation
	16.3.8. Hot Rod Exec Operation
	16.3.9. Hot Rod Get Operation
	16.3.10. Hot Rod GetAll Operation
	16.3.11. Hot Rod GetWithMetadata Operation
	16.3.12. Hot Rod GetWithVersion Operation
	16.3.13. Hot Rod IterationEnd Operation
	16.3.14. Hot Rod IterationNext Operation
	16.3.15. Hot Rod IterationStart Operation
	16.3.16. Hot Rod Ping Operation
	16.3.17. Hot Rod Put Operation
	16.3.18. Hot Rod PutAll Operation
	16.3.19. Hot Rod PutIfAbsent Operation
	16.3.20. Hot Rod Query Operation
	16.3.21. Hot Rod Remove Operation
	16.3.22. Hot Rod RemoveIfUnmodified Operation
	16.3.23. Hot Rod Replace Operation
	16.3.24. Hot Rod ReplaceIfUnmodified Operation
	16.3.25. Hot Rod ReplaceWithVersion Operation
	16.3.26. Hot Rod Stats Operation
	16.3.27. Hot Rod Size Operation

	16.4. HOT ROD OPERATION VALUES
	16.4.1. Hot Rod Operation Values
	16.4.2. Magic Values
	16.4.3. Status Values
	16.4.4. Client Intelligence Values
	16.4.5. Flag Values
	16.4.6. Hot Rod Error Handling

	16.5. HOT ROD REMOTE EVENTS
	16.5.1. Hot Rod Remote Events
	16.5.2. Hot Rod Add Client Listener for Remote Events
	16.5.3. Hot Rod Remote Client Listener for Remote Events
	16.5.4. Hot Rod Event Header
	16.5.5. Hot Rod Cache Entry Created Event
	16.5.6. Hot Rod Cache Entry Modified Event
	16.5.7. Hot Rod Cache Entry Removed Event
	16.5.8. Hot Rod Custom Event

	16.6. PUT REQUEST EXAMPLE
	16.7. HOT ROD JAVA CLIENT
	16.7.1. Hot Rod Java Client
	16.7.2. Hot Rod Java Client Download
	16.7.3. Hot Rod Java Client Configuration
	16.7.4. Hot Rod Java Client Basic API
	16.7.5. Hot Rod Java Client Versioned API
	16.7.6. Cluster-Wide Dynamic Cache Creation with Hot Rod Java Client

	16.8. HOT ROD C++ CLIENT
	16.8.1. Hot Rod C++ Client
	16.8.2. Hot Rod C++ Client Formats
	16.8.3. Hot Rod C++ Client Prerequisites
	16.8.4. Installing the Hot Rod C++ Client
	16.8.4.1. Hot Rod C++ Client Download and Installation
	16.8.4.2. Hot Rod C++ Client RHEL Download and Installation
	16.8.4.3. Hot Rod C++ Client Windows Download and Installation

	16.8.5. Utilizing the Protobuf Compiler with the Hot Rod C++ Client
	16.8.5.1. Using the Protobuf Compiler in RHEL 7
	16.8.5.2. Using the Protobuf Compiler in Windows

	16.8.6. Hot Rod C++ Client Configuration
	16.8.7. Hot Rod C++ Client API
	16.8.8. Hot Rod C++ Client Asynchronous API
	16.8.9. Hot Rod C++ Client Remote Event Listeners
	16.8.10. Hot Rod C++ Client Working with Sites
	16.8.10.1. Manual Cluster Switch

	16.8.11. Performing Remote Queries via the Hot Rod C++ Client
	16.8.12. Using the Near Cache with the Hot Rod C++ Client
	16.8.13. Script Execution Using the Hot Rod C++ Client

	16.9. HOT ROD C# CLIENT
	16.9.1. Hot Rod C# Client
	16.9.2. Hot Rod C# Client Download and Installation
	16.9.3. Creating a Hot Rod C# .NET Project
	16.9.4. Hot Rod C# Client Configuration
	16.9.5. Hot Rod C# Client API
	16.9.6. Hot Rod C# Client Asynchronous API
	16.9.7. Hot Rod C# Client Remote Event Listeners
	16.9.8. Hot Rod C# Client Working with Sites
	16.9.8.1. Manual Cluster Switch

	16.9.9. Performing Remote Queries via the Hot Rod C# Client
	16.9.10. Using the Near Cache with the Hot Rod C# Client
	16.9.11. Script Execution Using the Hot Rod C# Client
	16.9.12. String Marshaller for Interoperability

	16.10. HOT ROD NODE.JS CLIENT
	16.10.1. Hot Rod Node.js Client
	16.10.2. Installing the Hot Rod Node.js Client
	16.10.3. Hot Rod Node.js Requirements
	16.10.4. Hot Rod Node.js Basic Functionality
	16.10.5. Hot Rod Node.js Conditional Operations
	16.10.6. Hot Rod Node.js Data Sets
	16.10.7. Hot Rod Node.js Remote Events
	16.10.8. Hot Rod Node.js Working with Clusters
	16.10.9. Hot Rod Node.js Working with Sites
	16.10.9.1. Manual Cluster Switch

	16.10.10. Memory Profiling
	16.10.10.1. Avoiding Memory Issues with Promises

	16.11. INTEROPERABILITY BETWEEN HOT ROD C++ AND HOT ROD JAVA CLIENT
	16.12. COMPATIBILITY BETWEEN SERVER AND HOT ROD CLIENT VERSIONS

	PART II. CREATING AND USING INFINISPAN QUERIES IN RED HAT JBOSS DATA GRID
	CHAPTER 17. GETTING STARTED WITH INFINISPAN QUERY
	17.1. INTRODUCTION
	17.2. INSTALLING QUERYING FOR RED HAT JBOSS DATA GRID
	17.3. ABOUT QUERYING IN RED HAT JBOSS DATA GRID
	17.3.1. Hibernate Search and the Query Module
	17.3.2. Apache Lucene and the Query Module

	17.4. INDEXING
	17.4.1. Indexing
	17.4.2. Indexing with Transactional and Non-transactional Caches
	17.4.3. Configure Indexing Programmatically
	17.4.4. Rebuilding the Index

	17.5. SEARCHING

	CHAPTER 18. ANNOTATING OBJECTS AND QUERYING
	18.1. ANNOTATING OBJECTS AND QUERYING
	18.2. REGISTERING A TRANSFORMER VIA ANNOTATIONS
	18.3. QUERYING EXAMPLE

	CHAPTER 19. MAPPING DOMAIN OBJECTS TO THE INDEX STRUCTURE
	19.1. BASIC MAPPING
	19.1.1. Basic Mapping
	19.1.2. @Indexed
	19.1.3. @Field
	19.1.4. @NumericField

	19.2. MAPPING PROPERTIES MULTIPLE TIMES
	19.3. EMBEDDED AND ASSOCIATED OBJECTS
	19.3.1. Embedded and Associated Objects
	19.3.2. Indexing Associated Objects
	19.3.3. @IndexedEmbedded
	19.3.4. The targetElement Property

	19.4. BOOSTING
	19.4.1. Boosting
	19.4.2. Static Index Time Boosting
	19.4.3. Dynamic Index Time Boosting

	19.5. ANALYSIS
	19.5.1. Default Analyzer and Analyzer by Class
	19.5.2. Named Analyzers
	19.5.3. Referencing Analyzer Definitions
	19.5.4. @AnalyzerDef for Solr
	19.5.5. Loading Analyzer Resources
	19.5.6. Dynamic Analyzer Selection
	19.5.7. Retrieving an Analyzer

	19.6. BRIDGE
	19.6.1. Bridges
	19.6.2. Built-in Bridges
	19.6.3. Custom Bridges
	19.6.3.1. Custom Bridges
	19.6.3.2. FieldBridge
	19.6.3.3. StringBridge
	19.6.3.4. Two-Way Bridge
	19.6.3.5. Parameterized Bridge
	19.6.3.6. Type Aware Bridge
	19.6.3.7. ClassBridge

	CHAPTER 20. QUERYING
	20.1. QUERYING
	20.2. BUILDING QUERIES
	20.2.1. Building Queries
	20.2.2. Building a Lucene Query Using the Lucene-based Query API
	20.2.3. Building a Lucene Query
	20.2.3.1. Building a Lucene Query
	20.2.3.2. Keyword Queries
	20.2.3.3. Fuzzy Queries
	20.2.3.4. Wildcard Queries
	20.2.3.5. Phrase Queries
	20.2.3.6. Range Queries
	20.2.3.7. Combining Queries
	20.2.3.8. Query Options

	20.2.4. Build a Query with Infinispan Query
	20.2.4.1. Generality
	20.2.4.2. Pagination
	20.2.4.3. Sorting
	20.2.4.4. Projection
	20.2.4.5. Limiting the Time of a Query
	20.2.4.6. Raise an Exception on Time Limit

	20.3. RETRIEVING THE RESULTS
	20.3.1. Retrieving the Results
	20.3.2. Performance Considerations
	20.3.3. Result Size
	20.3.4. Understanding Results

	20.4. FILTERS
	20.4.1. Filters
	20.4.2. Defining and Implementing a Filter
	20.4.3. The @Factory Filter
	20.4.4. Key Objects
	20.4.5. Full Text Filter
	20.4.6. Using Filters in a Sharded Environment

	20.5. CONTINUOUS QUERIES
	20.5.1. Continuous Query
	20.5.2. Continuous Query Evaluation
	20.5.3. Using Continuous Queries
	20.5.4. C++ and C# Continuous Queries
	20.5.4.1. C++ Continous Queries
	20.5.4.2. C# Continuous Queries

	20.5.5. Performance Considerations with Continuous Queries

	20.6. BROADCAST QUERIES
	20.6.1. Broadcast Queries
	20.6.1.1. Using Broadcast Queries

	CHAPTER 21. THE INFINISPAN QUERY DSL
	21.1. THE INFINISPAN QUERY DSL
	21.2. CREATING QUERIES WITH INFINISPAN QUERY DSL
	21.3. ENABLING INFINISPAN QUERY DSL-BASED QUERIES
	21.4. RUNNING INFINISPAN QUERY DSL-BASED QUERIES
	21.5. PROJECTION QUERIES
	21.6. GROUPING AND AGGREGATION OPERATIONS
	21.7. USING NAMED PARAMETERS

	CHAPTER 22. BUILDING A QUERY USING THE ICKLE QUERY LANGUAGE
	22.1. BUILDING A QUERY USING THE ICKLE QUERY LANGUAGE
	22.2. ICKLE QUERY LANGUAGE PARSER SYNTAX
	22.3. FUZZY QUERIES
	22.4. RANGE QUERIES
	22.5. PHRASE QUERIES
	22.6. PROXIMITY QUERIES
	22.7. WILDCARD QUERIES
	22.8. REGULAR EXPRESSION QUERIES
	22.9. BOOSTING QUERIES

	CHAPTER 23. REMOTE QUERYING
	23.1. REMOTE QUERYING
	23.2. QUERYING COMPARISON
	23.3. PERFORMING REMOTE QUERIES VIA THE HOT ROD JAVA CLIENT
	23.4. REMOTE QUERYING IN THE HOT ROD C++ CLIENT
	23.5. REMOTE QUERYING IN THE HOT ROD C# CLIENT
	23.6. PROTOBUF ENCODING
	23.6.1. Protobuf Encoding
	23.6.2. Storing Protobuf Encoded Entities
	23.6.3. About Protobuf Messages
	23.6.4. Using Protobuf with Hot Rod
	23.6.5. Registering Per Entity Marshallers
	23.6.6. Indexing Protobuf Encoded Entities
	23.6.7. Controlling Field Indexing
	23.6.7.1. Example of an Annotated Message Type
	23.6.7.2. Disabling Indexing for All Protobuf Message Types

	23.6.8. Defining Protocol Buffers Schemas With Java Annotations

	PART III. SECURING DATA IN RED HAT JBOSS DATA GRID
	CHAPTER 24. SECURING DATA IN RED HAT JBOSS DATA GRID
	CHAPTER 25. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION
	25.1. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION
	25.2. PERMISSIONS
	25.3. ROLE MAPPING
	25.4. CONFIGURING AUTHENTICATION AND ROLE MAPPING USING LOGIN MODULES
	25.5. CONFIGURING RED HAT JBOSS DATA GRID FOR AUTHORIZATION
	25.6. DATA SECURITY FOR LIBRARY MODE
	25.6.1. Subject and Principal Classes
	25.6.2. Obtaining a Subject
	25.6.3. Subject Authentication

	25.7. SECURING INTERFACES
	25.7.1. Securing Interfaces
	25.7.2. Hot Rod Interface Security
	25.7.2.1. Encryption of communication between Hot Rod Server and Hot Rod client
	25.7.2.2. Securing Hot Rod to LDAP Server using SSL
	25.7.2.3. User Authentication over Hot Rod Using SASL

	25.7.3. Hot Rod C++ Client Encryption
	25.7.4. Hot Rod C# Client Encryption
	25.7.5. Hot Rod Node.js Encryption

	25.8. THE SECURITY AUDIT LOGGER
	25.8.1. The Security Audit Logger
	25.8.2. Configure the Security Audit Logger (Library Mode)
	25.8.3. Custom Audit Loggers

	CHAPTER 26. SECURITY FOR CLUSTER TRAFFIC
	26.1. CONFIGURE NODE SECURITY IN LIBRARY MODE
	26.2. NODE AUTHORIZATION IN LIBRARY MODE

	PART IV. ADVANCED FEATURES IN RED HAT JBOSS DATA GRID
	CHAPTER 27. ADVANCED FEATURES IN RED HAT JBOSS DATA GRID
	CHAPTER 28. MONITORING
	28.1. MONITORING
	28.2. ABOUT JAVA MANAGEMENT EXTENSIONS (JMX)
	28.2.1. About Java Management Extensions (JMX)
	28.2.2. Using JMX with Red Hat JBoss Data Grid
	28.2.3. Enabling JMX for Cache Instances
	28.2.4. Enabling JMX for CacheManagers
	28.2.5. Multiple JMX Domains
	28.2.6. Registering MBeans in Non-Default MBean Servers

	28.3. STATISTICSINFOMBEAN

	CHAPTER 29. RED HAT JBOSS DATA GRID AS LUCENE DIRECTORY
	29.1. RED HAT JBOSS DATA GRID AS LUCENE DIRECTORY
	29.2. CONFIGURATION
	29.3. RED HAT JBOSS DATA GRID MODULES
	29.4. LUCENE DIRECTORY CONFIGURATION FOR REPLICATED INDEXING
	29.5. JMS MASTER AND SLAVE BACK END CONFIGURATION

	CHAPTER 30. TRANSACTIONS
	30.1. ABOUT JAVA TRANSACTION API
	30.2. CONFIGURE TRANSACTIONS (LIBRARY MODE)
	30.3. TRANSACTIONS SPANNING MULTIPLE CACHE INSTANCES
	30.4. THE TRANSACTION MANAGER

	CHAPTER 31. MARSHALLING
	31.1. MARSHALLING
	31.2. ABOUT THE JBOSS MARSHALLING FRAMEWORK
	31.3. SUPPORT FOR NON-SERIALIZABLE OBJECTS
	31.4. HOT ROD AND MARSHALLING
	31.5. CONFIGURING THE MARSHALLER USING THE REMOTECACHEMANAGER
	31.6. RESTRICTING DESERIALIZATION TO SPECIFIC JAVA CLASSES
	31.7. TROUBLESHOOTING
	31.7.1. Marshalling Troubleshooting
	31.7.2. Other Marshalling Related Issues

	CHAPTER 32. THE INFINISPAN CDI MODULE
	32.1. THE INFINISPAN CDI MODULE
	32.2. USING INFINISPAN CDI
	32.2.1. Infinispan CDI Prerequisites
	32.2.2. Set the CDI Maven Dependency

	32.3. USING THE INFINISPAN CDI MODULE
	32.3.1. Using the Infinispan CDI Module
	32.3.2. Configure and Inject Infinispan Caches
	32.3.2.1. Inject an Infinispan Cache
	32.3.2.2. Inject a Remote Infinispan Cache
	32.3.2.3. Set the Injection’s Target Cache

	32.3.3. Configure Cache Managers with CDI
	32.3.3.1. Configure Cache Managers with CDI
	32.3.3.2. Specify the Default Configuration
	32.3.3.3. Override the Creation of the Embedded Cache Manager
	32.3.3.4. Configure a Remote Cache Manager
	32.3.3.5. Configure Multiple Cache Managers with a Single Class

	32.4. STORAGE AND RETRIEVAL USING CDI ANNOTATIONS
	32.4.1. Configure Cache Annotations
	32.4.2. Enable Cache Annotations
	32.4.3. Caching the Result of a Method Invocation
	32.4.3.1. Caching the Result of a Method Invocation
	32.4.3.2. Specify the Cache Used
	32.4.3.3. Cache Keys for Cached Results
	32.4.3.4. Generate a Custom Key

	32.4.4. Cache Operations
	32.4.4.1. Update a Cache Entry
	32.4.4.2. Remove an Entry from the Cache
	32.4.4.3. Clear the Cache

	CHAPTER 33. INTEGRATION WITH THE SPRING FRAMEWORK
	33.1. ENABLING SPRING CACHE SUPPORT
	33.1.1. Declaratively Enabling Spring Cache Support
	33.1.2. Programmatically Enabling Spring Cache Support

	33.2. ADDING THE SPRING INTEGRATION MODULE
	33.3. CONFIGURING RED HAT JBOSS DATA GRID AS THE SPRING CACHING PROVIDER
	33.3.1. Declaratively Configuring JBoss Data Grid as the Spring Caching Provider
	33.3.2. Programmatically Configuring JBoss Data Grid as the Spring Caching Provider

	33.4. ADDING CACHING TO YOUR APPLICATION CODE
	33.5. CONFIGURING TIMEOUTS FOR CACHE OPERATIONS
	33.6. EXTERNALIZING SESSIONS TO RED HAT JBOSS DATA GRID CLUSTERS

	CHAPTER 34. INTEGRATION WITH APACHE SPARK
	34.1. THE JBOSS DATA GRID APACHE SPARK CONNECTOR
	34.2. SPARK DEPENDENCIES
	34.3. CONFIGURING THE SPARK CONNECTOR
	34.3.1. Properties to Configure the Version 1.6 Connector
	34.3.2. Methods to Configure the Version 2 Connector
	34.3.3. Connecting to a Secured JDG Cluster

	34.4. CODE EXAMPLES FOR SPARK 1.6
	34.4.1. Code Examples for Spark 1.6
	34.4.2. Creating and Using RDDs
	34.4.3. Creating an RDD
	34.4.4. Querying an RDD
	34.4.5. Writing an RDD to the Cache
	34.4.5.1. Creating and Using DStreams

	34.4.6. Using the Infinispan Query DSL with Spark
	34.4.7. Filtering by a Query
	34.4.8. Filtering with a Projection
	34.4.9. Filtering with a Deployed Filter

	34.5. CODE EXAMPLES FOR SPARK 2
	34.5.1. Code Examples for Spark 2
	34.5.2. Creating and Using RDDs
	34.5.3. Creating an RDD
	34.5.4. Querying an RDD
	34.5.4.1. SparkSQL Queries

	34.5.5. Writing an RDD to the Cache
	34.5.6. Creating DStreams
	34.5.7. Using The Apache Spark Dataset API
	34.5.8. Using the Infinispan Query DSL with Spark
	34.5.9. Filtering with a pre-built Query Object
	34.5.10. Filtering with an Ickle Query
	34.5.11. Filtering on the Server

	34.6. SPARK PERFORMANCE CONSIDERATIONS

	CHAPTER 35. INTEGRATION WITH APACHE HADOOP
	35.1. INTEGRATION WITH APACHE HADOOP
	35.2. HADOOP DEPENDENCIES
	35.3. SUPPORTED HADOOP CONFIGURATION PARAMETERS
	35.4. USING THE HADOOP CONNECTOR

	CHAPTER 36. INTEGRATION WITH EAP
	36.1. INTEGRATION WITH EAP
	36.2. INSTALLATION OF EAP MODULES
	36.3. EAP DEPENDENCIES
	36.4. DEPENDENCIES FOR SPECIFIC JDG COMPONENTS
	36.4.1. Core Dependencies
	36.4.2. Remote/Hot Rod Dependencies
	36.4.3. Embedded Querying Dependencies
	36.4.4. Lucene Directory Dependencies
	36.4.5. Hibernate Search Directory Provider Dependencies
	36.4.6. Using EAP’s Internal Hibernate Search Modules
	36.4.7. Usage with Other Hibernate Search Modules

	36.5. USAGE OF EAP MODULES
	36.5.1. Library Mode
	36.5.2. EAP Subsystem Mode

	36.6. CONFIGURATION FOR EAP SUBSYSTEM MODE
	36.7. ACCESSING CONTAINERS AND CACHES REMOTELY
	36.8. TROUBLESHOOTING EAP AND JDG IN EAP SUBSYSTEM MODE
	36.8.1. Enable logging
	36.8.2. Print Dependency Tree

	CHAPTER 37. HIGH AVAILABILITY USING SERVER HINTING
	37.1. SERVER HINTING
	37.2. CONSISTENTHASHFACTORIES
	37.2.1. ConsistentHashFactories
	37.2.2. Implementing a ConsistentHashFactory

	37.3. KEY AFFINITY SERVICE
	37.3.1. Key Affinity Service
	37.3.2. Lifecycle
	37.3.3. Topology Changes

	CHAPTER 38. DISTRIBUTED EXECUTION
	38.1. DISTRIBUTED EXECUTION
	38.2. DISTRIBUTED EXECUTOR SERVICE
	38.3. DISTRIBUTEDCALLABLE API
	38.4. CALLABLE AND CDI
	38.5. DISTRIBUTED TASK FAILOVER
	38.6. DISTRIBUTED TASK EXECUTION POLICY
	38.7. DISTRIBUTED EXECUTION AND LOCALITY
	38.7.1. Distributed Execution Example

	CHAPTER 39. STREAMS
	39.1. STREAMS
	39.2. USING STREAMS ON A LOCAL/INVALIDATION/REPLICATION CACHE
	39.3. USING STREAMS WITH A DISTRIBUTION CACHE
	39.4. SETTING TIMEOUTS
	39.5. DISTRIBUTED STREAMS
	39.5.1. Distributed Streams
	39.5.2. Marshallability
	39.5.3. Parallelism
	39.5.4. Distributed Operators
	39.5.4.1. Terminal Operator Distributed Result Reductions
	39.5.4.2. Key Based Rehash Aware Operators
	39.5.4.3. Intermediate Operation Exceptions

	39.5.5. Distributed Stream Examples

	CHAPTER 40. SCRIPTING
	40.1. SCRIPTING
	40.2. ACCESSING THE SCRIPT CACHE
	40.3. INSTALLING SCRIPTS
	40.4. SCRIPTING METADATA
	40.5. SCRIPT BINDINGS
	40.6. SCRIPT PARAMETERS
	40.7. SCRIPT EXECUTION USING THE HOT ROD JAVA CLIENT
	40.8. SCRIPT EXAMPLES
	40.9. LIMITATIONS WHEN EXECUTING STORED SCRIPTS

	CHAPTER 41. REMOTE TASK EXECUTION
	41.1. REMOTE TASK EXECUTION
	41.2. CREATING REMOTE TASKS
	41.3. REMOTE TASK EXAMPLE
	41.4. INSTALLING REMOTE TASKS
	41.5. REMOVING REMOTE TASKS
	41.6. RUNNING REMOTE TASKS

	CHAPTER 42. CONFIGURING MEDIA TYPES
	42.1. DEFAULT MEDIA TYPE
	42.2. SUPPORTED MEDIA TYPES
	42.3. DECLARATIVELY CONFIGURING MEDIA TYPES
	42.4. PROGRAMMATICALLY CONFIGURING MEDIA TYPES
	42.5. OVERRIDING MEDIA TYPES

	CHAPTER 43. CONFIGURING COMPATIBILITY MODE
	43.1. ENABLING COMPATIBILITY MODE
	43.2. MARSHALLERS IN COMPATIBILITY MODE
	43.3. SPECIFYING THE MARSHALLER
	43.3.1. Memcached Marshaller

	CHAPTER 44. ENDPOINT INTEROPERABILITY
	44.1. CONSIDERATIONS WITH MEDIA TYPES AND ENDPOINT INTEROPERABILITY
	44.1.1. REST and Hot Rod Interoperability with Text-Based Storage
	44.1.2. Java and Non-Java Client Interoperability with Protobuf

	CHAPTER 45. SET UP CROSS-DATACENTER REPLICATION
	45.1. CROSS-DATACENTER REPLICATION
	45.2. CROSS-DATACENTER REPLICATION OPERATIONS
	45.3. CONFIGURE CROSS-DATACENTER REPLICATION PROGRAMMATICALLY
	45.4. TAKING A SITE OFFLINE
	45.5. HOT ROD CROSS SITE CLUSTER FAILOVER

	CHAPTER 46. NEAR CACHING
	46.1. NEAR CACHING
	46.2. CONFIGURING NEAR CACHES
	46.3. NEAR CACHES IN A CLUSTERED ENVIRONMENT

	CHAPTER 47. CONFLICT MANAGER USAGE
	47.1. FIND AND RESOLVE CACHE CONFLICTS

	APPENDIX A. REFERENCES
	A.1. THE EXTERNALIZER
	A.1.1. About Externalizer
	A.1.2. Internal Externalizer Implementation Access

	A.2. HASH SPACE ALLOCATION
	A.2.1. About Hash Space Allocation
	A.2.2. Locating a Key in the Hash Space

