& RedHat

Red Hat Data Grid 8.1

Data Grid REST API

Configure and interact with the Data Grid REST API

Last Updated: 2021-06-09

Red Hat Data Grid 8.1 Data Grid REST API

Configure and interact with the Data Grid REST API

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Access data, monitor and maintain clusters, perform administrative operations through the Data
Grid REST API.

Table of Contents

Table of Contents

RED HAT DAT A GRID oottt ittt ettt et ettt ettt et e e aeeeaneeeaneennnesaneesaneennneeaneens 5
DATA GRID DOCUMEN T ATION L.ttt ittt et ettt et eeeeeeaneennnesaneenaneennneeaneens 6
DATA GRID DOWNL O ADS ot iiittttittt ettt ettt ate et eeaeeaneeeaneesnneeaneesaneennneeaneens 7
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt ettt et eeaieennneeaneennneennneeaneens 8
CHAPTER 1. DATA GRID REST END P OINT .ottt tet et eeneeeaeeeaneeanneeaneeeaneennneenns 9
1.1. REST AUTHENTICATION 9
1.2. SUPPORTED PROTOCOLS 9
1.3. DATA FORMATS AND THE REST API 9
1.3.1. Supported Formats 9
1.3.2. Accept Headers 10
1.3.3. Names with Special Characters 10
1.3.4. Key-Content-Type Headers 10
1.3.5. JSON/Protostream Conversion 1

1.4. CROSS-ORIGIN RESOURCE SHARING (CORS) REQUESTS 12
1.4.1. Allowing all CORS permissions for some origins 12
CHAPTER 2. INTERACTING WITH THE DATA GRID REST APl ..ottt eie i aneens 14
2.1. CREATING AND MANAGING CACHES 14
2.1.1. Creating Caches 14
2.1.1.1. XML Configuration 14

2.1.1.2. JSON Configuration 15

2.1.2. Verifying Caches 15
2.1.3. Creating Caches with Templates 15
2.1.4. Retrieving Cache Configuration 15
2.1.5. Converting Cache Configurations to JSON 16
2.1.6. Retrieving All Cache Details 16
2.1.7. Adding Entries 17
2.1.8. Replacing Entries 19
2.1.9. Retrieving Data By Keys 19
2.1.10. Checking if Entries Exist 20
2.1.11. Deleting Entries 21
2.1.12. Deleting Caches 21
2.1.13. Retrieving All Keys from Caches 21
2.1.14. Clearing Caches 21
2.115. Getting Cache Size 22
2.1.16. Getting Cache Statistics 22
2.1.17. Querying Caches 22
2.1.18. Re-indexing Data 23
2.119. Purging Indexes 23
2.1.20. Retrieving Index Statistics 24
2.1.21. Retrieving Query Statistics 24
2.1.22. Clearing Query Statistics 25
2.1.23. Listing Caches 25
2.1.24. Cross-Site Operations with Caches 25
2.1.24.1. Getting Status of All Backup Locations 25
2.1.24.2. Getting Status of Specific Backup Locations 26
2.1.24.3. Taking Backup Locations Offline 26
2.1.24.4. Bringing Backup Locations Online 26

Red Hat Data Grid 8.1 Data Grid REST API

2.1.24.5. Pushing State to Backup Locations

2.1.24.6. Canceling State Transfer

2.1.24.7. Getting State Transfer Status

2.1.24.8. Clearing State Transfer Status

2.1.24.9. Modifying Take Offline Conditions

2.1.24.10. Canceling State Transfer from Receiving Sites
2.1.25. Rolling Upgrades

2.1.25.1. Synchronizing Data

2.1.25.2. Disconnecting Source Clusters

2.2. CREATING AND MANAGING COUNTERS
2.2.1. Creating Counters

2.2.2. Deleting Counters

2.2.3. Retrieving Counter Configuration
2.2.4. Adding Values to Counters

2.2.5. Getting Counter Values

2.2.6. Resetting Counters

2.2.7. Incrementing Counters

2.2.8. Adding Deltas to Counters

2.2.9. Decrementing Counter Values

2.2.10. Performing compareAndSet Operations on Strong Counters
2.2.11. Performing compareAndSwap Operations on Strong Counters
2.2.12. Listing Counters

2.3. WORKING WITH PROTOBUF SCHEMAS

2.3.1. Creating Protobuf Schemas

2.3.2. Reading Protobuf Schemas

2.3.3. Updating Protobuf Schemas
2.3.4. Deleting Protobuf Schemas
2.3.5. Listing Protobuf Schemas

2.4. WORKING WITH CACHE MANAGERS

2.4.1. Getting Basic Cache Manager Information

2.4.2. Getting Cluster Health

2.4.3. Getting Cache Manager Health Status

2.4.4. Checking REST Endpoint Availability

2.4.5. Obtaining Global Configuration for Cache Managers
2.4.6. Obtaining Configuration for All Caches

2.4.7. Listing Available Cache Templates

2.4.8. (Experimental) Obtaining Cache Status and Information
2.4.9. Getting Cache Manager Statistics

2.4.10. Cross-Site Operations with Cache Managers
2.4.10.1. Getting Status of Backup Locations

2.4.10.2. Taking Backup Locations Offline

2.4.10.3. Bringing Backup Locations Online

2.4.10.4. Starting State Transfer

2.4.10.5. Canceling State Transfer

2.5.WORKING WITH DATA GRID SERVERS

2.5.1. Retrieving Basic Server Information
2.5.2. Getting Cache Managers

2.5.3. Adding Caches to Ignore Lists
2.5.4. Removing Caches from Ignore Lists
2.5.5. Confirming Ignored Caches

2.5.6. Obtaining Server Configuration
2.5.7. Getting Environment Variables
2.5.8. Getting JVM Memory Details

27
27
27
27
27
28
28
28
28
28
29
29
29
29
30
30
30
30

31

31

31

31

31

31
32
32
32
33
33
33
35
36
36
36
37
37
38
38
40
40

41

41

41

41

41

41
42
42
42
42
42
43
43

Table of Contents

2.5.9. Getting JVM Thread Dumps 44
2.5.10. Getting Diagnostic Reports for Data Grid Servers 44
2.5.11. Stopping Data Grid Servers 44
2.6. WORKING WITH DATA GRID CLUSTERS 44
2.6.1. Stopping Data Grid Clusters 44
2.6.2. Stopping Specific Data Grid Servers in Clusters 44
2.7. DATA GRID SERVER LOGGING CONFIGURATION 44
2.7.1. Listing the logging appenders 45
2.7.2. Listing the loggers 45
2.7.3. Creating/modifying a logger 45
2.7.4. Removing a logger 46
2.8. USING SERVER TASKS 46
2.8.1. Retrieving Server Tasks Information 46
2.8.2. Executing Tasks 47
2.8.3. Uploading Script Tasks 47

Red Hat Data Grid 8.1 Data Grid REST API

RED HAT DATA GRID

RED HAT DATA GRID

Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure
Flexibility to store different objects as key-value pairs.
Grid-based data storage
Designed to distribute and replicate data across clusters.
Elastic scaling
Dynamically adjust the number of nodes to meet demand without service disruption.
Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

Red Hat Data Grid 8.1 Data Grid REST API

DATA GRID DOCUMENTATION

Documentation for Data Grid is available on the Red Hat customer portal.
® Data Grid 8.1 Documentation
® Data Grid 8.1 Component Details
® Supported Configurations for Data Grid 8.1
® Data Grid 8 Feature Support

® Data Grid Deprecated Features and Functionality

https://access.redhat.com/documentation/en-us/red_hat_data_grid/
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

DATA GRID DOWNLOADS
DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

Red Hat Data Grid 8.1 Data Grid REST API

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. DATA GRID REST ENDPOINT

CHAPTER 1. DATA GRID REST ENDPOINT

Data Grid servers provide RESTful HTTP access to data through a REST endpoint built on Netty.

1.1. REST AUTHENTICATION
Configure authentication to the REST endpoint with the Data Grid command line interface (CLI) and

the user command. The CLI lets you create and manage users, passwords, and authorization roles for
accessing the REST endpoint.

Reference

® Adding Users to Property Realms

® Configuring Endpoint Authentication Mechanisms

1.2. SUPPORTED PROTOCOLS
The Data Grid REST endpoint supports HTTP/1.1 and HTTP/2 protocols.
You can do either of the following to use HTTP/2:

® Performan HTTP/1.1upgrade.

® Negotiate the communication protocol using a TLS/ALPN extension.

NOTE

TLS/ALPN with JDK8 requires additional client configuration. Refer to the appropriate
documentation for your REST client. In most cases you need to use either the Jetty ALPN
Agent or OpenSSL bindings.

1.3. DATA FORMATS AND THE REST API
Data Grid caches store data in formats that you can define with a MediaType.
See the Encoding section for more information about MediaTypes and encoding data with Data Grid.

The following example configures storage format for entries:

<cache>
<encoding>
<key media-type="application/x-java-object"/>
<value media-type="application/xml; charset=UTF-8"/>
</encoding>
</cache>

If you do not configure a MediaType, Data Grid defaults to application/octet-stream for both keys and
values. However, if the cache is indexed, Data Grid defaults to application/x-protostream.

1.3.1. Supported Formats

http://en.wikipedia.org/wiki/Representational_State_Transfer
https://github.com/netty/netty
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.1/html-single/data_grid_server_guide/#user_tool-server
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.1/html-single/data_grid_server_guide/#endpoint_authentication
https://http2.github.io/http2-spec/#discover-http
https://http2.github.io/http2-spec/#versioning
https://en.wikipedia.org/wiki/Media_type
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.1/html-single/data_grid_developer_guide/#data_encoding

Red Hat Data Grid 8.1 Data Grid REST API

You can write and read data in different formats and Data Grid can convert between those formats
when required.

The following "standard" formats are interchangeable:
® application/x-java-object
® application/octet-stream
® application/x-www-form-urlencoded
® text/plain
You can also convert the preceding data formats into the following formats:
® application/xml
® application/json
® application/x-jboss-marshalling
® application/x-protostream
® application/x-java-serialized
Data Grid also lets you convert between application/x-protostream and application/json.
All calls to the REST API can provide headers describing the content written or the required format of

the content when reading. Data Grid supports the standard HTTP/1.1 headers "Content-Type" and
"Accept” that are applied for values, plus the "Key-Content-Type" with similar effect for keys.

1.3.2. Accept Headers

The Data Grid REST endpoint is compliant with the RFC-2616 Accept header and negotiates the
correct MediaType based on the conversions supported.

For example, send the following header when reading data:
I Accept: text/plain;q=0.7, application/json;q=0.8, */*;q=0.6

The preceding header causes Data Grid to first return content in JSON format (higher priority 0.8). If it
is not possible to convert the storage format to JSON, Data Grid attempts the next format of text/plain
(second highest priority 0.7). Finally, Data Grid falls back to */* which picks a suitable format based on
the cache configuration.

1.3.3. Names with Special Characters

The creation of any REST resource requires a name that is part of the URL, and in case this name
contains any special characters as defined in Section 2.2 of the RFC 3986 spec, it is necessary to encode
it with the Percent encoding mechanism.

1.3.4. Key-Content-Type Headers

Most REST API calls have the Key included in the URL. Data Grid assumes the Key is a java.lang.String
when handling those calls, but you can use a specific header Key-Content-Type for keys in different
formats.

10

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
https://tools.ietf.org/html/rfc3986#section-2.2
https://en.wikipedia.org/wiki/Percent-encoding

CHAPTER 1. DATA GRID REST ENDPOINT

Key-Content-Type Header Examples
® Specifying a byte[] Key as a Base64 string:

API call:
I "PUT /my-cache/AQIDBDM="

Headers:
Key-Content-Type: application/octet-stream
® Specifying a byte[] Key as a hexadecimal string:
API call:
GET /my-cache/0x01CA03042F

Headers:

I Key-Content-Type: application/octet-stream; encoding=hex
® Specifying a double Key:

API call:

POST /my-cache/3.141456

Headers:
I Key-Content-Type: application/x-java-object;type=java.lang.Double
The type parameter for application/x-java-object s restricted to:

® Primitive wrapper types

® java.lang.String

® Bytes, making application/x-java-object;type=Bytes equivalent to application/octet-
stream;encoding=hex

1.3.5. JSON/Protostream Conversion

When caches are indexed, or specifically configured to store application/x-protostream, you can send
and receive JSON documents that are automatically converted to and from Protostream.

You must register a protobuf schema for the conversion to work.

To register protobuf schemas via REST, invoke a POST or PUT in the ___protobuf_metadata cache as in
the following example:

curl -u user:password -X POST --data-binary @./schema.proto
http://127.0.0.1:11222/rest/v2/caches/___ protobuf metadata/schema.proto

1

Red Hat Data Grid 8.1 Data Grid REST API

When writing JSON documents, a special field _type must be present in the document to identity the
protobuf Message that corresponds to the document.

For example, consider the following schema:

message Person {
required string name = 1;
required int32 age = 2;

}

The corresponding JSON document is as follows:

{

"_type": "Person”,
"name": "usert”,
"age": 32

!

1.4. CROSS-ORIGIN RESOURCE SHARING (CORS) REQUESTS

The Data Grid REST connector supports CORS, including preflight and rules based on the request
origin.

The following shows an example REST connector configuration with CORS rules:

<rest-connector name="rest1" socket-binding="rest" cache-container="default">
<cors-rules>
<cors-rule name="restrict host1"
allow-credentials="false">
<allowed-origins>http://host1,https://host1</allowed-origins>
<allowed-methods>GET </allowed-methods>
</cors-rule>
<cors-rule name="allow ALL"
allow-credentials="true"
max-age-seconds="2000">
<allowed-origins>*</allowed-origins>
<allowed-methods>GET,OPTIONS,POST,PUT,DELETE</allowed-methods>
<allowed-headers>Key-Content-Type</allowed-headers>
</cors-rule>
</cors-rules>
</rest-connector>

Data Grid evaluates CORS rules sequentially based on the "Origin" header set by the browser.

In the preceding example, if the origin is either "http://host!" or "https://host!", then the rule "restrict
host1" applies. If the origin is different, then the next rule is tested.

Because the "allow ALL" rule permits all origins, any script that has an origin other than "http://host1" or
"https://hostl" can perform the allowed methods and use the supplied headers.

For information about configuring CORS rules, see the Data Grid Server Configuration Schema.

1.4.1. Allowing all CORS permissions for some origins

12

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.1/configdocs/

CHAPTER 1. DATA GRID REST ENDPOINT

The VM property infinispan.server.rest.cors-allow can be used when starting the server to allow all
permissions to one or more origins. Example:

./bin/server.sh -Dinfinispan.server.rest.cors-
allow=http://192.168.1.78:11222,http://host. mydomain.com

All origins specified using this method will take precedence over the configured rules.

13

Red Hat Data Grid 8.1 Data Grid REST API

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

The Data Grid REST API lets you monitor, maintain, and manage Data Grid deployments and provides
access to your data.

2.1. CREATING AND MANAGING CACHES

Create and manage Data Grid caches and perform operations on data.

2.1.1. Creating Caches

Create named caches across Data Grid clusters with POST requests that include XML or JSON
configuration in the payload.

I POST /rest/v2/caches/{cacheName}
Table 2.1. Headers

Header Required or Optional Parameter

Content-Type REQUIRED Sets the MediaType for the Data
Grid configuration payload; either
application/xml or
application/json.

Flags OPTIONAL Used to set AdminFlags

References

® Data Grid XML Configuration

® Data Grid JSON Configuration

2.1.1.1. XML Configuration

Data Grid configuration in XML format must conform to the schema and include:
e <infinispan> root element.
e <cache-containers> definition.

Example XML Configuration

<infinispan>
<cache-container>
<distributed-cache name="myCache" mode="SYNC">
<encoding media-type="application/x-protostream"/>
<memory max-count="1000000" when-full="REMOVE"/>
</distributed-cache>
</cache-container>
</infinispan>

14

https://en.wikipedia.org/wiki/Media_type
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/commons/api/CacheContainerAdmin.AdminFlag.html

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

2.1.1.2. JSON Configuration
Data Grid configuration in JSON format:
® Requires the cache definition only.
® Must follow the structure of an XML configuration.
o XML elements become JSON objects.

o XML attributes become JSON fields.

Example JSON Configuration

{

"distributed-cache": {
"name": "myCache",
"mode": "SYNC",
"encoding": {
"media-type": "application/x-protostream”

b

"memory": {
"max-count": 1000000,
"when-full": "REMOVE"

}
}
}

2.1.2. Verifying Caches

Check if caches are available in Data Grid clusters with HEAD requests.

I HEAD /rest/v2/caches/{cacheName}

2.1.3. Creating Caches with Templates

Create caches from Data Grid templates with POST requests and the ?template= parameter.

I POST /rest/v2/caches/{cacheName}?template={templateName}

TIP

See Listing Available Cache Templates.

2.1.4. Retrieving Cache Configuration

Retrieve Data Grid cache configurations with GET requests.
I GET /rest/v2/caches/{name}?action=config

Table 2.2. Headers

15

Red Hat Data Grid 8.1 Data Grid REST API

16

Header Required or Optional Parameter

Accept OPTIONAL Sets the required format to return
content. Supported formats are
application/xml and
application/json. The default is
application/json. See Accept
for more information.

2.1.5. Converting Cache Configurations to JSON

Invoke a POST request with valid XML configuration and the ?action=toJSON parameter. Data Grid
responds with the equivalent JSON representation of the configuration.

I POST /rest/v2/caches?action=toJSON

2.1.6. Retrieving All Cache Details

Invoke a GET request to retreive all details for Data Grid caches.
I GET /rest/v2/caches/{name}

Data Grid provides a JSON response such as the following:

{

"stats": {
"time_since_start": -1,
"time_since_reset": -1,
"hits": -1,
"current_number_of entries": -1,
"current_number_of_entries_in_memory": -1,
"total_number_of entries": -1,
"stores": -1,
"off_heap_memory_used": -1,
"data_memory_used": -1,
"retrievals": -1,
"misses": -1,
"remove_hits": -1,
"remove_misses": -1,
"evictions™: -1,
"average_read_time™" -1,
"average_read_time_nanos": -1,
"average_write_time": -1,
"average_write_time_nanos": -1,
"average_remove_time": -1,
"average_remove_time_nanos": -1,
"required_minimum_number_of_nodes": -1

2

"size": 0,

"configuration™: {
"distributed-cache": {

"mode": "SYNC",

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

"transaction": {
"stop-timeout™: 0,
"mode": "NONE"

}

!
b
"rehash_in_progress": false,
"bounded": false,
"indexed": false,
"persistent": false,
"transactional": false,
"secured": false,
"has_remote_backup": false,
"indexing_in_progress": false,
"statistics": false

e stats current stats of the cache.

® size the estimated size for the cache.

e configuration the cache configuration.

e rehash_in_progress true when a rehashing is in progress.
® indexing_in_progress true when indexing is in progress.
® bounded when expiration is enabled.

e indexed true if the cache is indexed.

e persistent true if the cache is persisted.

e transactional true if the cache is transactional.

e secured true if the cache is secured.

e has_remote_backup true if the cache has remote backups.

2.1.7. Adding Entries

Add entries to caches with POST requests.

I POST /rest/v2/caches/{cacheName}/{cacheKey}

The preceding request places the payload, or request body, in the cacheName cache with the
cacheKey key. The request replaces any data that already exists and updates the Time-To-Live and
Last-Modified values, if they apply.

If a value already exists for the specified key, the POST request returns an HTTP CONFLICT status and
does not modify the value. To update values, you should use PUT requests. See Replacing Entries.

Table 2.3. Headers

17

Red Hat Data Grid 8.1 Data Grid REST API

Header

Key-Content-Type

Content-Type

timeToLiveSeconds

maxldleTimeSeconds

flags

NOTE

Required or Optional

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

Parameter

Sets the content type for the key
in the request. See Key-Content-
Type for more information.

Sets the MediaType of the value
for the key.

Sets the number of seconds
before the entry is automatically
deleted. If you do not set this
parameter, Data Grid uses the
default value from the
configuration. If you set a
negative value, the entry is never
deleted.

Sets the number of seconds that
entries can be idle. If a read or
write operation does not occur for
an entry after the maximum idle
time elapses, the entry is
automatically deleted. If you do
not set this parameter, Data Grid
uses the default value from the
configuration. If you set a
negative value, the entry is never
deleted.

The flags used to add the entry.
See Flag for more information.

The flags header also applies to all other operations involving data manipulation on the

cache,

-

18

https://en.wikipedia.org/wiki/Media_type
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/context/Flag.html

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

NOTE

If both timeToLiveSeconds and maxldleTimeSeconds have a value of 0, Data Grid uses
the default lifespan and maxldle values from the configuration.

If only maxldleTimeSeconds has a value of 0, Data Grid uses:
® the default maxldle value from the configuration.

® the value for timeToLiveSeconds that you pass as a request parameter or a
value of -1 if you do not pass a value.

If only timeToLiveSeconds has a value of 0, Data Grid uses:
e the default lifespan value from the configuration.

® the value for maxldle that you pass as a request parameter or a value of -1 if you
do not pass a value.

2.1.8. Replacing Entries

Replace entries in caches with PUT requests.

I PUT /rest/v2/caches/{cacheName}/{cacheKey}

If a value already exists for the specified key, the PUT request updates the value. If you do not want to
modify existing values, use POST requests that return HTTP CONFLICT status instead of modifying
values. See Adding Values.

2.1.9. Retrieving Data By Keys

Retrieve data for specific keys with GET requests.

I GET /rest/v2/caches/{cacheName}/{cacheKey}

The server returns data from the given cache, cacheName, under the given key, cacheKey, in the
response body. Responses contain Content-Type headers that correspond to the MediaType
negotiation.

NOTE

Browsers can also access caches directly, for example as a content delivery network
(CDN). Data Grid returns a unique ETag for each entry along with the Last-Modified and
Expires header fields.

These fields provide information about the state of the data that is returned in your
request. ETags allow browsers and other clients to request only data that has changed,
which conserves bandwidth.

Table 2.4. Headers

19

http://en.wikipedia.org/wiki/HTTP_ETag

Red Hat Data Grid 8.1 Data Grid REST API

Header Required or Optional Parameter

Key-Content-Type OPTIONAL Sets the content type for the key
in the request. The default is
application/x-java-object;
type=java.lang.String. See
Key-Content-Type for more
information.

Accept OPTIONAL Sets the required format to return
content. See Accept for more
information.

TIP
Append the extended parameter to the query string to get additional information:
I GET /rest/v2/caches/{cacheName}/{cacheKey}?extended

The preceding request returns custom headers:
e (Cluster-Primary-Owner returns the node name that is the primary owner of the key.
® (Cluster-Node-Name returns the JGroups node name of the server that handled the request.

e Cluster-Physical-Address returns the physical JGroups address of the server that handled the
request.

2.1.10. Checking if Entries Exist
Verify that specific entries exists with HEAD requests.

I HEAD /rest/v2/caches/{cacheName}/{cacheKey}

The preceding request returns only the header fields and the same content that you stored with the
entry. For example, if you stored a String, the request returns a String. If you stored binary, base64-
encoded, blobs or serialized Java objects, Data Grid does not de-serialize the content in the request.

NOTE

HEAD requests also support the extended parameter.

Table 2.5. Headers

Header Required or Optional Parameter

20

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

Header Required or Optional Parameter

Key-Content-Type OPTIONAL Sets the content type for the key
in the request. The defaultis
application/x-java-object;
type=java.lang.String. See
Key-Content-Type for more
information.

2.1.11. Deleting Entries

Remove entries from caches with DELETE requests.
I DELETE /rest/v2/caches/{cacheName}/{cacheKey}

Table 2.6. Headers

Header Required or Optional Parameter

Key-Content-Type OPTIONAL Sets the content type for the key
in the request. The defaultis
application/x-java-object;
type=java.lang.String. See
Key-Content-Type for more
information.

2.1.12. Deleting Caches

Remove caches from Data Grid clusters with DELETE requests.

I DELETE /rest/v2/caches/{cacheName}

2.1.13. Retrieving All Keys from Caches

Invoke GET requests to retrieve all the keys in a cache in JSON format.
I GET /rest/v2/caches/{cacheName}?action=keys
Table 2.7. Request Parameters

Parameter Required or Optional Value

batch-size OPTIONAL Specifies the internal batch size
when retrieving the keys. The
default value is 1000.

2.1.14. Clearing Caches

Red Hat Data Grid 8.1 Data Grid REST API

To delete all data from a cache, invoke a POST request with the ?action=clear parameter.

I POST /rest/v2/caches/{cacheName}?action=clear

2.1.15. Getting Cache Size

Retrieve the size of caches across the entire cluster with GET requests and the ?action=size
parameter.

I GET /rest/v2/caches/{cacheName}?action=size

2.1.16. Getting Cache Statistics

Obtain runtime statistics for caches with GET requests.

I GET /rest/v2/caches/{cacheName}?action=stats

2.1.17. Querying Caches

Perform Ickle queries on caches with GET requests and the ?action=search&query parameter.

I GET /rest/v2/caches/{cacheName}?action=search&query={ickle query}

Data Grid responds with query hits such as the following:

{

"total_results" : 150,
"hits" : [{
"hit" : {
"name" : "usert”,
"age": 35
!
b A
"hit" : {
"name" : "user2",
"age" : 42
1
b A
"hit" : {
"name" : "user3",
"age":12
!
3
!

e total_results displays the total number of results from the query.
® hits is an array of matches from the query.

® hitis an object that matches the query.

22

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

TIP

Hits can contain all fields or a subset of fields if you use a Select clause.

Table 2.8. Request Parameters

Parameter Required or Optional Value

query REQUIRED Specifies the query string.

max_results OPTIONAL Sets the number of results to
return. The default is 10.

offset OPTIONAL Specifies the index of the first
result to return. The default is 0.

query_mode OPTIONAL Specifies how the Data Grid

server executes the query. Values
are FETCH and BROADCAST.
The defaultis FETCH.

To use the body of the request instead of specifying query parameters, invoke POST requests as
follows:

I POST /rest/v2/caches/{cacheName}?action=search

The following example shows a query in the request body:

{

"query":"from Entity where name:\"user1\"",
"max_results":20,
"offset":10

}

2.1.18. Re-indexing Data

Re-index all data in caches with POST requests and the ?action=mass-index&mode={mode}
parameter.

I POST /v2/caches/{cacheName}/search/indexes?action=mass-index&mode={mode}
Values for the mode parameter are as follows:
® sync returns a response of 200 only after the re-indexing operation is complete.

® async returns a response of 200 immediately and the re-indexing operation continues running
in the cluster. You can check the status with the Index Statistics REST call.

2.1.19. Purging Indexes

Delete all indexes from caches with POST requests and the ?action=clear parameter.

23

Red Hat Data Grid 8.1 Data Grid REST API
I POST /v2/caches/{cacheName}/search/indexes?action=clear

2.1.20. Retrieving Index Statistics

Obtain information about indexes in caches with GET requests.

I GET /v2/caches/{cacheName}/search/indexes/stats

Data Grid provides a JSON response such as the following:

"indexed_class_names": ["org.infinispan.sample.User"],
"indexed_entities_count": {
"org.infinispan.sample.User": 4
2
"index_sizes": {
"cacheName_protobuf": 14551
}

reindexing": false

e indexed_class_names Provides the class names of the indexes present in the cache. For
Protobuf the value is always
org.infinispan.query.remote.impl.indexing.ProtobufValueWrapper.

e indexed_entities_count Provides the number of entities indexed per class.
e index_sizes Provides the size, in bytes, for each index in the cache.

e reindexing Indicates if a re-indexing operation was performed for the cache. If the value is true,
the MassiIndexer was started in the cache.

2.1.21. Retrieving Query Statistics

Get information about the queries that have been run in caches with GET requests.

I GET /v2/caches/{cacheName}/search/query/stats

Data Grid provides a JSON response such as the following:

"search_query_execution_count":20,

"search_query_total_time":5,
"search_query_execution_max_time":154,
"search_query_execution_avg_time":2,
"object_loading_total_time":1,
"object_loading_execution_max_time":1,
"object_loading_execution_avg_time":1,
"objects_loaded_count":20,
"search_query_execution_max_time_query_string": "FROM entity"

e search_query_execution_count Provides the number of queries that have been run.

24

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

e search_query_total_time Provides the total time spent on queries.
e search_query_execution_max_time Provides the maximum time taken for a query.
® search_query_execution_avg_time Provides the average query time.

e object_loading_total_time Provides the total time spent loading objects from the cache after
query execution.

® object_loading_execution_max_time Provides the maximum time spent loading objects
execution.

® object_loading_execution_avg_time Provides the average time spent loading objects
execution.

e objects_loaded count Provides the count of objects loaded.

® search_query_execution_max_time_query_string Provides the slowest query executed.
2.1.22. Clearing Query Statistics
Reset runtime statistics with POST requests and the ?action=clear parameter.

I POST /v2/caches/{cacheName}/search/query/stats?action=clear

2.1.23. Listing Caches

List all available caches in Data Grid clusters with GET requests.

I GET /rest/v2/caches/

2.1.24. Cross-Site Operations with Caches

Perform cross-site replication operations with the Data Grid REST API.

2.1.24.1. Getting Status of All Backup Locations

Retrieve the status of all backup locations with GET requests.

I GET /v2/caches/{cacheName}/x-site/backups/

Data Grid responds with the status of each backup location in JSON format, as in the following example:

{
"NYC": "online",

"LON": "offline"
}

Table 2.9. Returned Status

25

Red Hat Data Grid 8.1 Data Grid REST API

Value Description

online All nodes in the local cluster have a cross-site view
with the backup location.

offline No nodes in the local cluster have a cross-site view
with the backup location.

mixed Some nodes in the local cluster have a cross-site
view with the backup location, other nodes in the
local cluster do not have a cross-site view. The
response indicates status for each node.

2.1.24.2. Getting Status of Specific Backup Locations

Retrieve the status of a backup location with GET requests.

I GET /v2/caches/{cacheName}/x-site/backups/{siteName}

Data Grid responds with the status of each node in the site in JSSON format, as in the following example:

{
"NodeA":"offline",

"NodeB":"online"

}

Table 2.10. Returned Status

Value Description

online The node is online.
offline The node is offline.
failed Not possible to retrieve status. The remote cache

could be shutting down or a network error occurred
during the request.

2.1.24.3. Taking Backup Locations Offline

Take backup locations offline with POST requests and the ?action=take-offline parameter.

I POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=take-offline

2.1.24.4. Bringing Backup Locations Online

Bring backup locations online with the ?action=bring-online parameter.

I POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=bring-online

26

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

2.1.24.5. Pushing State to Backup Locations

Push cache state to a backup location with the ?action=start-push-state parameter.

I POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=start-push-state

2.1.24.6. Canceling State Transfer

Cancel state transfer operations with the ?action=cancel-push-state parameter.

I POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-push-state

2.1.24.7. Getting State Transfer Status

Retrieve status of state transfer operations with the ?action=push-state-status parameter.

I GET /v2/caches/{cacheName}/x-site/backups?action=push-state-status

Data Grid responds with the status of state transfer for each backup location in JSON format, as in the
following example:

{
"NYC":"CANCELED",

"LON":"OK"
}

Table 2.11. Returned Status

Value Description

SENDING State transfer to the backup location is in progress.
OK State transfer completed successfully.

ERROR An error occurred with state transfer. Check log files.
CANCELLING State transfer cancellation is in progress.

2.1.24.8. Clearing State Transfer Status

Clear state transfer status for sending sites with the ?action=clear-push-state-status parameter.
I POST /v2/caches/{cacheName}/x-site/local?action=clear-push-state-status
2.1.24.9. Modifying Take Offline Conditions

Sites go offline if certain conditions are met. Modify the take offline parameters to control when backup
locations automatically go offline.

27

Red Hat Data Grid 8.1 Data Grid REST API

Procedure

1. Check configured take offline parameters with GET requests and the take-offline-config
parameter.

I GET /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

The Data Grid response includes after_failures and min_wait fields as follows:

{

"after_failures": 2,
"min_wait": 1000

}

2. Modify take offline parameters in the body of PUT requests.

I PUT /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

2.1.24.10. Canceling State Transfer from Receiving Sites

If the connection between two backup locations breaks, you can cancel state transfer on the site that is
receiving the push.

Cancel state transfer from a remote site and keep the current state of the local cache with the ?
action=cancel-receive-state parameter.

I POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-receive-state

2.1.25. Rolling Upgrades

Perform rolling upgrades of cache data between Data Grid clusters

2.1.25.1. Synchronizing Data

Synchronize data from a source cluster to a target cluster with POST requests and the ?action=sync-
data parameter:

I POST /v2/caches/{cacheName}?action=sync-data

When the operation completes, Data Grid responds with the total number of entries copied to the target
cluster.

2.1.25.2. Disconnecting Source Clusters

After you synchronize data to target clusters, disconnect from the source cluster with POST requests
and the ?action=disconnect-source parameter:

I POST /v2/caches/{cacheName}?action=disconnect-source

2.2. CREATING AND MANAGING COUNTERS

Create, delete, and modify counters via the REST API.

28

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

2.2.1. Creating Counters

Create counters with POST requests that include configuration in the payload.

I POST /rest/v2/counters/{counterName}

Example Weak Counter

{

"weak-counter":{
"initial-value":5,
"storage":"PERSISTENT",
"concurrency-level":1

}
}

Example Strong Counter

{

"strong-counter”:{
"initial-value":3,
"storage":"PERSISTENT",
"upper-bound":5

}

}

2.2.2. Deleting Counters

Remove specific counters with DELETE requests.

I DELETE /rest/v2/counters/{counterName}

2.2.3. Retrieving Counter Configuration

Retrieve configuration for specific counters with GET requests.

I GET /rest/v2/counters/{counterName}/config

Data Grid responds with the counter configuration in JSON format.

2.2.4. Adding Values to Counters

Add values to specific counters with POST requests.

IMPORTANT

This method processes plain/text content only.

I POST /rest/v2/counters/{counterName}

29

Red Hat Data Grid 8.1 Data Grid REST API

If the request payload is empty, the counter is incremented by one, otherwise the payload is interpreted
as a signed long and added to the counter.

NOTE
WEAK counters never respond after operations.

STRONG counters return the current value after each operation.

2.2.5. Getting Counter Values

Retrieve counter values with GET requests.
I GET /rest/v2/counters/{counterName}

Table 2.12. Headers

Header Required or Optional Parameter

Accept OPTIONAL The required format to return the
content. Supported formats are
application/json and text/plain.
JSON is assumed if no header is
provided.

2.2.6. Resetting Counters

Restore the intial value of counters without POST requests and the ?action=reset parameter.

I POST /rest/v2/counters/{counterName}?action=reset

2.2.7.Incrementing Counters

Increment counter values with POST request” and the ?action=increment parameter.

I POST /rest/v2/counters/{counterName}?action=increment

NOTE
WEAK counters never respond after operations.

STRONG counters return the current value after each operation.

2.2.8. Adding Deltas to Counters

Add arbitrary values to counters with POST requests that include the ?action=add and delta
parameters.

I POST /rest/v2/counters/{counterName}?action=add&delta={delta}

30

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

NOTE
WEAK counters never respond after operations.

STRONG counters return the current value after each operation.

2.2.9. Decrementing Counter Values

Decrement counter values with POST requests and the ?action=decrement parameter.

I POST /rest/v2/counters/{counterName}?action=decrement

NOTE
WEAK counters never respond after operations.

STRONG counters return the current value after each operation.

2.2.10. Performing compareAndSet Operations on Strong Counters

Atomically set values for strong counters with GET requests and the compareAndSet parameter.

I POST /rest/v2/counters/{counterName}?action=compareAndSet&expect={expect}&update={update}

Data Grid atomically sets the value to {update} if the current value is {expect}. If the operation is
successful, Data Grid returns true.

2.2.11. Performing compareAndSwap Operations on Strong Counters

Atomically set values for strong counters with GET requests and the compareAndSwap parameter.

I POST /rest/v2/counters/{counterName}?action=compareAndSwap&expect={expect}&update=
{update}

Data Grid atomically sets the value to {update} if the current value is {expect}. If the operationis
successful, Data Grid returns the previous value in the payload.

2.2.12. Listing Counters

Retrieve a list of counters in Data Grid clusters with GET requests.

I GET /rest/v2/counters/

2.3. WORKING WITH PROTOBUF SCHEMAS

Create and manage Protobuf schemas, .proto files, via the Data Grid REST API.

2.3.1. Creating Protobuf Schemas

Create Protobuf schemas across Data Grid clusters with POST requests that include the content of a
protobuf file in the payload.

31

Red Hat Data Grid 8.1 Data Grid REST API

I POST /rest/v2/schemas/{schemaName}

If the schema already exists, Data Grid returns CONFLICT. If the schema is not valid, either because of
syntax errors, or because some of its dependencies are missing, Data Grid stores the schema and
returns the error in the response body.

Data Grid responds with the schema name and any errors.

{

"name" : "users.proto",
"error" : {
"message": "Schema users.proto has errors",
"cause": "java.lang.lllegalStateException:Syntax error in error.proto at 3:8: unexpected label:
messoge"

}
}

® pame is the name of the Protobuf schema.

e error is null for valid Protobuf schemas. If Data Grid cannot successfully validate the schema, it
returns errors.

2.3.2. Reading Protobuf Schemas

Retrieve Protobuf schema from Data Grid with GET requests.

I GET /rest/v2/schemas/{schemaName}

2.3.3. Updating Protobuf Schemas

Modify Protobuf schemas with PUT requests that include the content of a protobuf file in the payload.

I PUT /rest/v2/schemas/{schemaName}

If the schema is not valid, either because of syntax errors, or because some of its dependencies are
missing, Data Grid updates the schema and returns the error in the response body.

{

"name" : "users.proto",
"error" : {
"message": "Schema users.proto has errors",
"cause": "java.lang.lllegalStateException:Syntax error in error.proto at 3:8: unexpected label:
messoge"
}
}

® pame is the name of the Protobuf schema.

e error is null for valid Protobuf schemas. If Data Grid cannot successfully validate the schema, it
returns errors.

2.3.4. Deleting Protobuf Schemas

32

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

Remove Protobuf schemas from Data Grid clusters with DELETE requests.

I DELETE /rest/v2/schemas/{schemaName}

2.3.5. Listing Protobuf Schemas

List all available Protobuf schemas with GET requests.

I GET /rest/v2/schemas/

Data Grid responds with a list of all schemas available on the cluster.

[{

"name" : "users.proto",
"error" : {
"message": "Schema users.proto has errors",
"cause": "java.lang.lllegalStateException:Syntax error in error.proto at 3:8: unexpected label:
messoge"

}

5 A
"name" : "people.proto”,
"error" : null

1]

® pame is the name of the Protobuf schema.

e error is null for valid Protobuf schemas. If Data Grid cannot successfully validate the schema, it
returns errors.

2.4. WORKING WITH CACHE MANAGERS

Interact with Data Grid Cache Managers to get cluster and usage statistics.

2.4.1. Getting Basic Cache Manager Information

Retrieving information about Cache Managers with GET requests.

I GET /rest/v2/cache-managers/{cacheManagerName}

Data Grid responds with information in JSON format, as in the following example:

"version":"xx.x.x-FINAL",
"name":"default",
"coordinator":true,
"cache_configuration_names":[
" protobuf_metadata”,
"cache2",
"CacheManagerResourceTest",
"cachel"
1,
"cluster_name":"ISPN",
"physical_addresses":"[127.0.0.1:35770]",

33

Red Hat Data Grid 8.1 Data Grid REST API

34

"coordinator_address":"CacheManagerResourceTest-NodeA-49696",
"cache_manager_status":"RUNNING",
"created_cache_count":"3",
"running_cache_count":"3",
"node_address":"CacheManagerResourceTest-NodeA-49696",
"cluster_members"[
"CacheManagerResourceTest-NodeA-49696",
"CacheManagerResourceTest-NodeB-28120"
],
"cluster_members_physical_addresses":[
"127.0.0.1:35770",
"127.0.0.1:60031"
],
"cluster_size":2,
"defined_caches" [
{
"name":"CacheManagerResourceTest",
"started":true

"name":"cachel",
"started":true

"name™"___ protobuf_metadata”,
"started":true

"name":"cache?2",
"started":true

® version contains the Data Grid version
® name contains the name of the cache manager as defined in the configuration
e coordinator is true if the cache manager is the coordinator of the cluster

e cache_configuration_names contains an array of all caches configurations defined in the

cache manager

e cluster_name contains the name of the cluster as defined in the configuration

® physical_addresses contains the physical network addresses associated with the cache

manager

coordinator_address contains the physical network addresses of the coordinator of the cluster

e cache_manager_status the lifecycle status of the cache manager. For possible values, check

the org.infinispan.lifecycle.ComponentStatus documentation

e created_cache_count number of created caches, excludes all internal and private caches

e running_cache_count number of created caches that are running

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/lifecycle/ComponentStatus.html

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

® node_address contains the logical address of the cache manager

e cluster_members and cluster_members_physical_addresses an array of logical and physical
addresses of the members of the cluster

e cluster_size number of members in the cluster

e defined_caches A list of all caches defined in the cache manager, excluding private caches but
including internal caches that are accessible

2.4.2. Getting Cluster Health

Retrieve health information for Data Grid clusters with GET requests.

I GET /rest/v2/cache-managers/{cacheManagerName}/health

Data Grid responds with cluster health information in JSON format, as in the following example:

"cluster_health":{
"cluster_name":"ISPN",
"health_status":""HEALTHY",
"number_of nodes":2,
"node_names":[

"NodeA-36229",
"NodeB-28703"

]
}

"cache_health™][

{
"status":"HEALTHY",

"cache_name™:"___ protobuf_metadata

"status":"HEALTHY",
"cache_name":"cache2"

"status":"HEALTHY",
"cache_name":"mycache"

"status":"HEALTHY",
"cache_name":"cachel"

e cluster_health contains the health of the cluster

o cluster_name specifies the name of the cluster as defined in the configuration.

o health_status provides one of the following:

® DEGRADED indicates at least one of the caches is in degraded mode.

35

Red Hat Data Grid 8.1 Data Grid REST API

m HEALTHY_REBALANCING indicates at least one cache is in the rebalancing state.
m HEALTHY indicates all cache instances in the cluster are operating as expected.
m FAILED indicates the cache failed to start with the provided configuration.

o number_of_nodes displays the total number of cluster members. Returns a value of 0 for
non-clustered (standalone) servers.

o node_names is an array of all cluster members. Empty for standalone servers.

e cache_health contains health information per-cache

o status HEALTHY, DEGRADED, HEALTHY_REBALANCING or FAILED

o cache_name the name of the cache as defined in the configuration.
2.4.3. Getting Cache Manager Health Status
Retrieve the health status of Cache Managers with GET requests that do not require authentication.

I GET /rest/v2/cache-managers/{cacheManagerName}/health/status

Data Grid responds with one of the following in text/plain format:
e HEALTHY
e HEALTHY_REBALANCING
e DEGRADED

e FAILED

2.4.4. Checking REST Endpoint Availability

Verify Data Grid server REST endpoint availability with HEAD requests.

I HEAD /rest/v2/cache-managers/{cacheManagerName}/health

If you receive a successful response code then the Data Grid REST server is running and serving
requests.

2.4.5. Obtaining Global Configuration for Cache Managers

Retrieve global configuration for Cache Managers with GET requests.
I GET /rest/v2/cache-managers/{cacheManagerName}/config
Table 2.13. Headers

Header Required or Optional Parameter

36

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

Header Required or Optional Parameter

Accept OPTIONAL The required format to return the
content. Supported formats are
application/json and

application/xml. JSON is assumed
if no header is provided.

Reference

GlobalConfiguration

2.4.6. Obtaining Configuration for All Caches

Retrieve the configuration for all caches with GET requests.

I GET /rest/v2/cache-managers/{cacheManagerName}/cache-configs

Data Grid responds with JSON arrays that contain each cache and cache configuration, as in the
following example:

"name":"cachel",
"configuration™:{
"distributed-cache":{
"mode":"SYNC",
"partition-handling":{
"when-split":"DENY_READ_WRITES"
b

"statistics":true

"name":"cache2",
"configuration™:{
"distributed-cache":{
"mode":"SYNC",
"transaction":{
"mode":"NONE"

2.4.7. Listing Available Cache Templates

Retrieve all available Data Grid cache templates with GET requests.

I GET /rest/v2/cache-managers/{cacheManagerName}/cache-configs/templates

37

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.1/api/org/infinispan/configuration/global/GlobalConfiguration.html

Red Hat Data Grid 8.1 Data Grid REST API

TIP

See Creating Caches with Templates.

2.4.8. (Experimental) Obtaining Cache Status and Information

Retrieve a list of all available caches for a Cache Manager, along with cache statuses and details, with
GET requests.

I GET /rest/v2/cache-managers/{cacheManagerName}/caches

Data Grid responds with JSON arrays that lists and describes each available cache, as in the following
example:

[{
"status" : "RUNNING",

"name" : "cachel",
"type" : "local-cache”,
"simple_cache" : false,
"transactional" : false,
"persistent” : false,
"bounded": false,
"secured": false,
"indexed": true,
"has_remote_backup": true,
"health":"HEALTHY"

bA
"status" : "RUNNING",
"name" : "cache2",
"type" : "distributed-cache",
"simple_cache" : false,
"transactional” : true,
"persistent” : false,
"bounded": false,
"secured": false,
"indexed": true,
"has_remote_backup": true,
"health":"HEALTHY"

1]

2.4.9. Getting Cache Manager Statistics
Retrieve the statistics for Cache Managers with GET requests.

I GET /rest/v2/cache-managers/{cacheManagerName}/stats

Data Grid responds with Cache Manager statistics in JSON format, as in the following example:

"statistics_enabled":true,
"read_write_ratio":0.0,
"time_since_start":1,
"time_since_reset":1,
"number_of entries":0,

38

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

"total_number_of entries":0,
"off_heap_memory_used":0,
"data_memory_used":0,

"misses":0,

"remove_hits":0,

"remove_misses":0,

"evictions":0,

"average_read_time":0,
"average_read_time_nanos":0,
"average_write_time":0,
"average_write_time_nanos":0,
"average_remove_time":0,
"average_remove_time_nanos":0,
"required_minimum_number_of_nodes":1,
"hits":0,

"stores":0,
"current_number_of_entries_in_memory":0,
"hit_ratio":0.0,

"retrievals":0

statistics_enabled is true if statistics collection is enabled for the Cache Manager.
read_write_ratio displays the read/write ratio across all caches.
time_since_start shows the time, in seconds, since the Cache Manager started.

time_since_reset shows the number of seconds since the Cache Manager statistics were last
reset.

number_of_entries shows the total number of entries currently in all caches from the Cache
Manager. This statistic returns entries in the local cache instances only.

total_number_of_entries shows the number of store operations performed across all caches
for the Cache Manager.

off_heap_memory_used shows the amount, in bytes[], of off-heap memory used by this cache
container.

data_memory_used shows the amount, in bytes|[], that the current eviction algorithm
estimates is in use for data across all caches. Returns 0 if eviction is not enabled.

misses shows the number of get() misses across all caches.
remove_hits shows the number of removal hits across all caches.
remove_misses shows the number of removal misses across all caches.
evictions shows the number of evictions across all caches.

average_read_time shows the average number of milliseconds taken for get() operations
across all caches.

average read_time_nanos same as average_read_time but in nanoseconds.
average_remove_time shows the average number of milliseconds for remove() operations

across all caches.

39

Red Hat Data Grid 8.1 Data Grid REST API

® average remove_time_nanos same as average_remove_time but in nanoseconds.

e required_minimum_number_of _nodes shows the required minimum number of nodes to
guarantee data consistency.

® hits provides the number of get() hits across all caches.
e stores provides the number of put() operations across all caches.

e current_number_of_entries_in_memory shows the total number of entries currently in all
caches, excluding passivated entries.

e hit_ratio provides the total percentage hit/(hit+miss) ratio for all caches.

e retrievals shows the total number of get() operations.

2.4.10. Cross-Site Operations with Cache Managers

Perform cross-site operations with Cache Managers to apply the operations to all caches.

2.4.10.1. Getting Status of Backup Locations

Retrieve the status of all backup locations from Cache Managers with GET requests.

I GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/

Data Grid responds with status in JSON format, as in the following example:

{
"SFO-3"{
"status":"online"
2
"NYC-2"{
"status":"mixed",
"online™;[
"CACHE_1"
1,
"offline™;[
"CACHE_2"
]
}
}

Table 2.14. Returned Status

Value Description

online All nodes in the local cluster have a cross-site view
with the backup location.

offline No nodes in the local cluster have a cross-site view
with the backup location.

40

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

Value Description

mixed Some nodes in the local cluster have a cross-site
view with the backup location, other nodes in the
local cluster do not have a cross-site view. The
response indicates status for each node.

2.4.10.2. Taking Backup Locations Offline

Take backup locations offline with the ?action=take-offline parameter.
I POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=take-offline

2.4.10.3. Bringing Backup Locations Online

Bring backup locations online with the ?action=bring-online parameter.

I POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=bring-
online

2.4.10.4. Starting State Transfer

Push state of all caches to remote sites with the ?action=start-push-state parameter.

I POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=start-push-
state

2.4.10.5. Canceling State Transfer

Cancel ongoing state transfer operations with the ?action=cancel-push-state parameter.

I POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=cancel-
push-state

2.5. WORKING WITH DATA GRID SERVERS

Monitor and manage Data Grid server instances.

2.5.1. Retrieving Basic Server Information

View basic information about Data Grid servers with GET requests.

I GET /rest/v2/server

Data Grid responds with the server name, codename, and version in JSON format as in the following
example:

41

Red Hat Data Grid 8.1 Data Grid REST API

{

"version":"Infinispan 'Codename' xx.x.x.Final"

}

2.5.2. Getting Cache Managers

Retrieve lists of cache managers for Data Grid servers with GET requests.
I GET /rest/v2/server/cache-managers
Data Grid responds with an array of the cache manager names configured for the server.

2.5.3. Adding Caches to Ignore Lists

Configure Data Grid to temporarily exclude specific caches from client requests. Send empty POST
requests that include the names of the cache manager name and the cache.

I POST /v2/server/ignored-caches/{cache-manager}/{cache}

Data Grid returns a service unavailable status (503) for REST client requests and a Server Error (code
0x85) for Hot Rod client requests.

NOTE

Data Grid currently supports one cache manager per server only. For future compatibility
you must provide the cache manager name in the requests.

2.5.4. Removing Caches from Ignore Lists

Remove caches from the ignore list with DELETE requests.

I DELETE /v2/server/ignored-caches/{cache-manager}/{cache}

2.5.5. Confirming Ignored Caches

Confirm that caches are ignored with GET requests.

I GET /v2/server/ignored-caches/{cache-manager}

2.5.6. Obtaining Server Configuration

Retrieve Data Grid server configurations with GET requests.

I GET /rest/v2/server/config

Data Grid responds with the configuration in JSON format, as follows:

{

"server":{
"interfaces":{

42

"interface":{
"name":"public",
"inet-address":{

"value":"127.0.0.1"

!
}
b
"socket-bindings":{
"port-offset™:0,
"default-interface":"public",
"socket-binding":[
{
"name":"memcached",
"port":11221,

"interface":"memcached"

}
]
b
"security"{
"security-realms":{
"security-realm":{
"name":"default"

!
}
b
"endpoints":{
"socket-binding":"default",
"security-realm":"default",
"hotrod-connector":{
"name":"hotrod"
b
"rest-connector":{
"name":"rest"

}
}

2.5.7. Getting Environment Variables

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

Retrieve all environment variables for Data Grid servers with GET requests.

I GET /rest/v2/server/env

2.5.8. Getting JVM Memory Details

Retrieve JVM memory usage information for Data Grid servers with GET requests.

I GET /rest/v2/server/memory

Data Grid responds with heap and non-heap memory statistics, direct memory usage, and information
about memory pools and garbage collection in JSON format.

43

Red Hat Data Grid 8.1 Data Grid REST API

2.5.9. Getting JVM Thread Dumps

Retrieve the current thread dump for the JVM with GET requests.

I GET /rest/v2/server/threads

Data Grid responds with the current thread dump in text/plain format.

2.5.10. Getting Diagnostic Reports for Data Grid Servers

Retrieve aggregated reports for Data Grid servers with GET requests.

I GET /rest/v2/server/report

Data Grid responds with a tar.gz archive that contains an aggregated report with diagnostic information
about both the Data Grid server and the host. The report provides details about CPU, memory, open
files, network sockets and routing, threads, in addition to configuration and log files.

2.5.11. Stopping Data Grid Servers

Stop Data Grid servers with POST requests.

I POST /rest/v2/server?action=stop

Data Grid responds with 200(OK) and then stops running.

2.6. WORKING WITH DATA GRID CLUSTERS

Monitor and perform administrative tasks on Data Grid clusters.

2.6.1. Stopping Data Grid Clusters

Shut down entire Data Grid clusters with POST requests.

I POST /rest/v2/cluster?action=stop

Data Grid responds with 200(OK) and then performs an orderly shutdown of the entire cluster.

2.6.2. Stopping Specific Data Grid Servers in Clusters

Shut down one or more specific servers in Data Grid clusters with GET requests and the ?
action=stop&server parameter.

I POST /rest/v2/cluster?action=stop&server={server1_host}&server={server2_host}

Data Grid responds with 200(OK).

2.7. DATA GRID SERVER LOGGING CONFIGURATION

View and modify the logging configuration on Data Grid clusters at runtime.

44

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

2.7.1. Listing the logging appenders

View a list of all configured appenders with GET requests.

I GET /rest/v2/logging/appenders

Data Grid responds with a list of appenders in JSON format as in the following example:

{
"STDOUT" : {

"name" : "STDOUT"
|3
"JSON-FILE" : {

"name" : "JSON-FILE"
1
"HR-ACCESS-FILE" : {

"name" : "HR-ACCESS-FILE"
1
"FILE" : {

"name" : "FILE"
1
"REST-ACCESS-FILE" : {

"name" : "REST-ACCESS-FILE"

}
}

2.7.2. Listing the loggers

View a list of all configured loggers with GET requests.

I GET /rest/v2/logging/loggers

Data Grid responds with a list of loggers in JSON format as in the following example:

[{
llnamell : "ll’
"level" : "INFO",
"appenders" : ["STDOUT", "FILE"]
b
"name" : "org.infinispan.HOTROD_ACCESS_LOG",
"level" : "INFO",
"appenders" : ["HR-ACCESS-FILE"]
b
"name" : "com.arjuna”,
"level" : "WARN",
"appenders" : []
b
"name" : "org.infinispan.REST_ACCESS_LOG",
"level" : "INFO",
"appenders" : ["REST-ACCESS-FILE"]
1

2.7.3. Creating/modifying a logger

45

Red Hat Data Grid 8.1 Data Grid REST API

Create a new logger or modify an existing one with PUT requests.

PUT /rest/v2/logging/loggers/{loggerName}?level={level}&appender={appender}&appender=
{appender}...

Data Grid sets the level of the logger identified by {loggerName} to {level}. Optionally, it is possible to
set one or more appenders for the logger. If no appenders are specified, those specified in the root
logger will be used.

2.7.4. Removing a logger

Remove an existing logger with DELETE requests.

I DELETE /rest/v2/logging/loggers/{loggerName}

Data Grid removes the logger identified by {loggerName}, effectively reverting to the use of the root
logger configuration.

2.8. USING SERVER TASKS

Retrieve, execute, and upload Data Grid server tasks.

2.8.1. Retrieving Server Tasks Information

View information about available server tasks with GET requests.

I GET /rest/v2/tasks
Table 2.15. Request Parameters

Parameter Required or Optional Value

type OPTIONAL user: will exclude internal (admin)
tasks from the results

Data Grid responds with a list of available tasks. The list includes the names of tasks, the engines that
handle tasks, the named parameters for tasks, the execution modes of tasks, either ONE_NODE or
ALL_NODES, and the allowed security role in JSON format, as in the following example:

[
{

"name": "SimpleTask",
"type": "TaskEngine",
"parameters": [
p1",
52"
1,
"execution_mode": "ONE_NODE",
"allowed_role": null
b
{

"name": "RunOnAlINodesTask",

46

"type": "TaskEngine",
"parameters":

"p1 n
1,

"execution_mode": "ALL_NODES",

"allowed_role™: null

"name": "SecurityAwareTask",
"type": "TaskEngine",
"parameters": [],

"execution_mode": "ONE_NODE",

"allowed_role": "MyRole"

2.8.2. Executing Tasks

CHAPTER 2. INTERACTING WITH THE DATA GRID REST API

Execute tasks with GET requests that include the task name and required parameters prefixed with

param.

I GET /rest/v2/tasks/myTask?action=exec¶m.pi=vi¶m.p2=v2

Data Grid responds with the task result.

2.8.3. Uploading Script Tasks

Upload script tasks with PUT or POST requests.

Supply the script as the content payload of the request. After Data Grid uploads the script, you can

execute it with GET requests.

I POST /rest/v2/tasks/taskName

47

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DATA GRID REST ENDPOINT
	1.1. REST AUTHENTICATION
	1.2. SUPPORTED PROTOCOLS
	1.3. DATA FORMATS AND THE REST API
	1.3.1. Supported Formats
	1.3.2. Accept Headers
	1.3.3. Names with Special Characters
	1.3.4. Key-Content-Type Headers
	1.3.5. JSON/Protostream Conversion

	1.4. CROSS-ORIGIN RESOURCE SHARING (CORS) REQUESTS
	1.4.1. Allowing all CORS permissions for some origins

	CHAPTER 2. INTERACTING WITH THE DATA GRID REST API
	2.1. CREATING AND MANAGING CACHES
	2.1.1. Creating Caches
	2.1.1.1. XML Configuration
	2.1.1.2. JSON Configuration

	2.1.2. Verifying Caches
	2.1.3. Creating Caches with Templates
	2.1.4. Retrieving Cache Configuration
	2.1.5. Converting Cache Configurations to JSON
	2.1.6. Retrieving All Cache Details
	2.1.7. Adding Entries
	2.1.8. Replacing Entries
	2.1.9. Retrieving Data By Keys
	2.1.10. Checking if Entries Exist
	2.1.11. Deleting Entries
	2.1.12. Deleting Caches
	2.1.13. Retrieving All Keys from Caches
	2.1.14. Clearing Caches
	2.1.15. Getting Cache Size
	2.1.16. Getting Cache Statistics
	2.1.17. Querying Caches
	2.1.18. Re-indexing Data
	2.1.19. Purging Indexes
	2.1.20. Retrieving Index Statistics
	2.1.21. Retrieving Query Statistics
	2.1.22. Clearing Query Statistics
	2.1.23. Listing Caches
	2.1.24. Cross-Site Operations with Caches
	2.1.24.1. Getting Status of All Backup Locations
	2.1.24.2. Getting Status of Specific Backup Locations
	2.1.24.3. Taking Backup Locations Offline
	2.1.24.4. Bringing Backup Locations Online
	2.1.24.5. Pushing State to Backup Locations
	2.1.24.6. Canceling State Transfer
	2.1.24.7. Getting State Transfer Status
	2.1.24.8. Clearing State Transfer Status
	2.1.24.9. Modifying Take Offline Conditions
	2.1.24.10. Canceling State Transfer from Receiving Sites

	2.1.25. Rolling Upgrades
	2.1.25.1. Synchronizing Data
	2.1.25.2. Disconnecting Source Clusters

	2.2. CREATING AND MANAGING COUNTERS
	2.2.1. Creating Counters
	2.2.2. Deleting Counters
	2.2.3. Retrieving Counter Configuration
	2.2.4. Adding Values to Counters
	2.2.5. Getting Counter Values
	2.2.6. Resetting Counters
	2.2.7. Incrementing Counters
	2.2.8. Adding Deltas to Counters
	2.2.9. Decrementing Counter Values
	2.2.10. Performing compareAndSet Operations on Strong Counters
	2.2.11. Performing compareAndSwap Operations on Strong Counters
	2.2.12. Listing Counters

	2.3. WORKING WITH PROTOBUF SCHEMAS
	2.3.1. Creating Protobuf Schemas
	2.3.2. Reading Protobuf Schemas
	2.3.3. Updating Protobuf Schemas
	2.3.4. Deleting Protobuf Schemas
	2.3.5. Listing Protobuf Schemas

	2.4. WORKING WITH CACHE MANAGERS
	2.4.1. Getting Basic Cache Manager Information
	2.4.2. Getting Cluster Health
	2.4.3. Getting Cache Manager Health Status
	2.4.4. Checking REST Endpoint Availability
	2.4.5. Obtaining Global Configuration for Cache Managers
	2.4.6. Obtaining Configuration for All Caches
	2.4.7. Listing Available Cache Templates
	2.4.8. (Experimental) Obtaining Cache Status and Information
	2.4.9. Getting Cache Manager Statistics
	2.4.10. Cross-Site Operations with Cache Managers
	2.4.10.1. Getting Status of Backup Locations
	2.4.10.2. Taking Backup Locations Offline
	2.4.10.3. Bringing Backup Locations Online
	2.4.10.4. Starting State Transfer
	2.4.10.5. Canceling State Transfer

	2.5. WORKING WITH DATA GRID SERVERS
	2.5.1. Retrieving Basic Server Information
	2.5.2. Getting Cache Managers
	2.5.3. Adding Caches to Ignore Lists
	2.5.4. Removing Caches from Ignore Lists
	2.5.5. Confirming Ignored Caches
	2.5.6. Obtaining Server Configuration
	2.5.7. Getting Environment Variables
	2.5.8. Getting JVM Memory Details
	2.5.9. Getting JVM Thread Dumps
	2.5.10. Getting Diagnostic Reports for Data Grid Servers
	2.5.11. Stopping Data Grid Servers

	2.6. WORKING WITH DATA GRID CLUSTERS
	2.6.1. Stopping Data Grid Clusters
	2.6.2. Stopping Specific Data Grid Servers in Clusters

	2.7. DATA GRID SERVER LOGGING CONFIGURATION
	2.7.1. Listing the logging appenders
	2.7.2. Listing the loggers
	2.7.3. Creating/modifying a logger
	2.7.4. Removing a logger

	2.8. USING SERVER TASKS
	2.8.1. Retrieving Server Tasks Information
	2.8.2. Executing Tasks
	2.8.3. Uploading Script Tasks

