& RedHat

Red Hat Data Grid 8.3

Data Grid Operator Guide

Create Data Grid clusters on OpenShift

Last Updated: 2023-11-24

Red Hat Data Grid 8.3 Data Grid Operator Guide

Create Data Grid clusters on OpenShift

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Data Grid Operator provides operational intelligence and reduces management complexity for
deploying Data Grid on OpenShift.

Table of Contents

RED HAT DATA GRID o i i e ittt

DATA GRID DOCUMENTATION ... i i

DATA GRID DOWNLOADS ... i i e ettt

MAKING OPEN SOURCE MOREINCLUSIVE i

CHAPTER1L.DATAGRID OPERATOR ... i

1.1. DATA GRID OPERATOR DEPLOYMENTS
1.2. CLUSTER MANAGEMENT
1.3. RESOURCE RECONCILIATION

CHAPTER 2. INSTALLING THE NATIVE DATA GRID CLIAS ACLIENT PLUGIN

2.1. INSTALLING THE NATIVE DATA GRID CLI PLUGIN
2.2. KUBECTL-INFINISPAN COMMAND REFERENCE

CHAPTER 3. INSTALLING DATAGRID OPERATOR

3.1 INSTALLING DATA GRID OPERATOR ON RED HAT OPENSHIFT
3.2. INSTALLING DATA GRID OPERATOR WITH THE NATIVE CLI PLUGIN
3.3.INSTALLING DATA GRID OPERATOR WITH AN OPENSHIFT CLIENT

CHAPTER 4. CREATING DATAGRID CLUSTERS ...

4.1. INFINISPAN CUSTOM RESOURCE (CR)
4.2. CREATING DATA GRID CLUSTERS
4.3. VERIFYING DATA GRID CLUSTER VIEWS
Retrieving cluster view from logs
4.4 MODIFYING DATA GRID CLUSTERS
4.5. STOPPING AND STARTING DATA GRID CLUSTERS

CHAPTER 5. CONFIGURING DATAGRID CLUSTERS o

5.1. APPLYING CUSTOM CONFIGURATION TO DATA GRID CLUSTERS
5.2. CUSTOM DATA GRID CONFIGURATION

Cache template

Multiple caches

Logging configuration

CHAPTER 6. UPGRADING DATAGRID CLUSTERS

6.1. TECHNOLOGY PREVIEW FEATURES
6.2. DATA GRID CLUSTER UPGRADES
Shutdown upgrades
Hot Rod rolling upgrades
6.3. UPGRADING DATA GRID CLUSTERS WITH DOWNTIME
6.4. PERFORMING HOT ROD ROLLING UPGRADES FOR DATA GRID CLUSTERS

CHAPTER7.SETTINGUP DATAGRID SERVICESo

7.1.SERVICE TYPES
7.2. CREATING DATA GRID SERVICE PODS
7.2.1. Data Grid service CR
7.3. ALLOCATING STORAGE RESOURCES
7.3.1. Persistent volume claims
7.4. ALLOCATING CPU AND MEMORY
7.5.SETTING JVM OPTIONS
7.6. DISABLING FIPS MODE IN YOUR INFINISPAN CR

Table of Contents

.................. 21

21
22
22
24
25

.................. 27

27
27
27
27
28
28

30
30

31
33
34
35
35
36

Red Hat Data Grid 8.3 Data Grid Operator Guide

7.7. ADJUSTING LOG LEVELS
7.7.1. Logging reference

7.8. CREATING CACHE SERVICE PODS
7.8.1. Cache service CR

7.9. AUTOMATIC SCALING
7.9.1. Configuring automatic scaling

7.10. ADDING LABELS AND ANNOTATIONS TO DATA GRID RESOURCES
7.11. ADDING LABELS AND ANNOTATIONS WITH ENVIRONMENT VARIABLES

CHAPTER 8. CONFIGURING AUTHENTICATIONt

8.1. DEFAULT CREDENTIALS

8.2. RETRIEVING CREDENTIALS

8.3. ADDING CUSTOM USER CREDENTIALS
8.4. CHANGING THE OPERATOR PASSWORD
8.5. DISABLING USER AUTHENTICATION

CHAPTER 9. CONFIGURING CLIENT CERTIFICATE AUTHENTICATION
9.1. CLIENT CERTIFICATE AUTHENTICATION
9.2. ENABLING CLIENT CERTIFICATE AUTHENTICATION
9.3. PROVIDING CLIENT TRUSTSTORES
9.4. PROVIDING CLIENT CERTIFICATES

CHAPTER 10. CONFIGURING ENCRYPTION ...ttt
10.1. ENCRYPTION WITH RED HAT OPENSHIFT SERVICE CERTIFICATES

10.2. RETRIEVING TLS CERTIFICATES

10.3. DISABLING ENCRYPTION

10.4. USING CUSTOM TLS CERTIFICATES
10.4.1. Custom encryption secrets

CHAPTER 11. CONFIGURING USER ROLES AND PERMISSIONS e

11.1. ENABLING SECURITY AUTHORIZATION
11.2. USER ROLES AND PERMISSIONS
Data Grid Operator credentials
11.3. ASSIGNING ROLES AND PERMISSIONS TO USERS
11.4. ADDING CUSTOM ROLES AND PERMISSIONS

CHAPTER 12. CONFIGURING NETWORK ACCESSTODATAGRIDot

12.1. GETTING THE SERVICE FOR INTERNAL CONNECTIONS

12.2. EXPOSING DATA GRID THROUGH A LOADBALANCER SERVICE
12.3. EXPOSING DATA GRID THROUGH A NODEPORT SERVICE

12.4. EXPOSING DATA GRID THROUGH A ROUTE

12.5.NETWORK SERVICES

CHAPTER13. SETTING UP CROSS-SITE REPLICATION ... i

13.1. CROSS-SITE REPLICATION EXPOSE TYPES
13.2. MANAGED CROSS-SITE REPLICATION

13.2.1. Creating service account tokens for managed cross-site connections

13.2.2. Exchanging service account tokens
13.2.3. Configuring managed cross-site connections
13.3. MANUALLY CONFIGURING CROSS-SITE CONNECTIONS
13.4. RESOURCES FOR CONFIGURING CROSS-SITE REPLICATION
Managed cross-site connections
Manual cross-site connections
13.5. SECURING CROSS-SITE CONNECTIONS
13.5.1. Resources for configuring cross-site encryption

37
37
38
38
40

41
42
43

44
44
44
44
45
45

46
46
46
47
48

49
49
49
50
50

51

52
52
52
53
53
53

55
55
55
56
56
57

58
58
59
59
60
60
63
65
67
67
68
69

Table of Contents

13.5.2. Cross-site encryption secrets 70
13.6. CONFIGURING SITES IN THE SAME OPENSHIFT CLUSTER 71
CHAPTER 14. MONITORING DATA GRID SERVICES .. it ittt it ittt iinnaeeeannnn, 73
14.1. CREATING A PROMETHEUS SERVICE MONITOR 73
14.1.1. Disabling the Prometheus service monitor 74
14.2. INSTALLING THE GRAFANA OPERATOR 74
14.3. CREATING GRAFANA DATA SOURCES 74
14.4. CONFIGURING DATA GRID DASHBOARDS 75
CHAPTER 15. GUARANTEEING AVAILABILITY WITH ANTI-AFFINITY .. it eeeenn, 77
15.1. ANTI-AFFINITY STRATEGIES 77
Fault tolerance 77
15.2. CONFIGURING ANTI-AFFINITY 77
15.2.1. Anti-affinity strategy configurations 78
Schedule pods on different OpenShift nodes 78
Requiring different nodes 78
Schedule pods across multiple OpenShift zones 79
Requiring multiple zones 79
CHAPTER 16. CREATING CACHES WITH DATA GRID OPERATOR ittt ittt iiiiiieeeeennnns 80
16.1. DATA GRID CACHES 80
Cache CRs 80
16.2. CREATING CACHES WITH THE CACHE CR 80
Cache CR examples 81
16.3. ADDING PERSISTENT CACHE STORES 81
16.4. ADDING CACHES TO CACHE SERVICE PODS 82
16.4.1. Default cache configuration 82
CHAPTER 17. RUNNING BATCH OPERATIONS .. ittt it titee e ttnneeeeeennnneeeennnn, 83
17.1. RUNNING INLINE BATCH OPERATIONS 83
17.2. CREATING CONFIGMAPS FOR BATCH OPERATIONS 83
17.3. RUNNING BATCH OPERATIONS WITH CONFIGMAPS 84
17.4. BATCH STATUS MESSAGES 85
17.5. EXAMPLE BATCH OPERATIONS 85
17.5.1. Caches 86
17.5.2. Counters 86
17.5.3. Protobuf schema 86
17.5.4. Tasks 87
CHAPTER 18. BACKING UP AND RESTORING DATAGRID CLUSTERS 88
18.1. BACKUP AND RESTORE CRS 88
18.2. BACKING UP DATA GRID CLUSTERS 88
18.3. RESTORING DATA GRID CLUSTERS 90
18.4. BACKUP AND RESTORE STATUS 91
18.4.1. Handling failed backup and restore operations 92
CHAPTER 19. DEPLOYING CUSTOM CODE TODATAGRID ... cciiiiiiiiiiiii ittt iienneeneannnn, 93
19.1. COPYING CODE ARTIFACTS TO DATA GRID CLUSTERS 93
19.2. DOWNLOADING CODE ARTIFACTS 95
CHAPTER 20. SENDING CLOUD EVENTS FROMDATAGRID CLUSTERS ...ttt 97
20.1. TECHNOLOGY PREVIEW FEATURES 97
20.2. CLOUD EVENTS 97
20.3. ENABLING CLOUD EVENTS 98

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 21. ESTABLISHING REMOTE CLIENT CONNECTIONSottt iiiieieieennnenns 929
21.1. CLIENT CONNECTION DETAILS 99
21.2. CONNECTING TO DATA GRID CLUSTERS WITH REMOTE SHELLS 99
21.3. ACCESSING DATA GRID CONSOLE 100
21.4. HOT ROD CLIENTS 100

21.4.1. Hot Rod client configuration AP 101
On OpenShift 101
Outside OpenShift 102

21.4.2. Configuring Hot Rod clients for certificate authentication 103

21.4.3. Creating caches from Hot Rod clients 104
Programmatically creating caches 104
Using Hot Rod client properties 104

21.5. ACCESSING THE REST API 105

Table of Contents

Red Hat Data Grid 8.3 Data Grid Operator Guide

RED HAT DATA GRID

Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure
Flexibility to store different objects as key-value pairs.
Grid-based data storage
Designed to distribute and replicate data across clusters.
Elastic scaling
Dynamically adjust the number of nodes to meet demand without service disruption.
Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

DATA GRID DOCUMENTATION

DATA GRID DOCUMENTATION

Documentation for Data Grid is available on the Red Hat customer portal.
® Data Grid 8.3 Documentation
® Data Grid 8.3 Component Details
® Supported Configurations for Data Grid 8.3
® Data Grid 8 Feature Support

® Data Grid Deprecated Features and Functionality

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

Red Hat Data Grid 8.3 Data Grid Operator Guide
DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 1. DATA GRID OPERATOR

Data Grid Operator provides operational intelligence and reduces management complexity for
deploying Data Grid on Kubernetes and Red Hat OpenShift.

1.1. DATA GRID OPERATOR DEPLOYMENTS

When you install Data Grid Operator, it extends the Kubernetes API with Custom Resource Definitions
(CRDs) for deploying and managing Data Grid clusters on Red Hat OpenShift.

To interact with Data Grid Operator, OpenShift users apply Custom Resources (CRs) through the
OpenShift Web Console or oc client. Data Grid Operator listens for Infinispan CRs and automatically
provisions native resources, such as StatefulSets and Secrets, that your Data Grid deployment requires.
Data Grid Operator also configures Data Grid services according to the specifications in Infinispan CRs,
including the number of pods for the cluster and backup locations for cross-site replication.

Figure 1.1. Custom resources

Data Grid Operator OpenShift
native resources

Deployments

Statefulsets
Listen Reconcile
Kubernetes API 4+—> Controller 4 “—>r Routes

- A
OpenShift 1
]
]
i

user
Apply Secrets

v ConfigMaps

Custom resources .
Persistent Volumes

1.2. CLUSTER MANAGEMENT

A single Data Grid Operator installation can manage multiple Data Grid clusters in separate
namespaces. Each time a user applies CRs to modify the deployment, Data Grid Operator applies the
changes globally to all Data Grid clusters.

10

CHAPTER 1. DATA GRID OPERATOR

Figure 1.2. Operator-managed clusters

OpenShift Cluster

openshift-operators

Data Grid Operator

Namespace 1 Namespace 2
Data Grid cluster Data Grid cluster
Pod1 Pod 3 Pod1 Pod 3
d |-
| L
Manages clusters
Pod 2 Pod N Pod 2 Pod N

1.3. RESOURCE RECONCILIATION

Data Grid Operator reconciles custom resources such as the Cache CR with resources on your Data
Grid cluster.

Bidirectional reconciliation synchronizes your CRs with changes that you make to Data Grid resources
through the Data Grid Console, command line interface (CLI), or other client application and vice versa.
For example if you create a cache through the Data Grid Console then Data Grid Operator adds a
declarative Kubernetes representation.

To perform reconciliation Data Grid Operator creates a listener pod for each Data Grid cluster that
detects modifications for Infinispan resources.

Notes about reconciliation

® When you create a cache through the Data Grid Console, CLI, or other client application, Data
Grid Operator creates a corresponding Cache CR with a unique name that conforms to the
Kubernetes naming policy.

® Declarative Kubernetes representations of Data Grid resources that Data Grid Operator creates

with the listener pod are linked to Infinispan CRs.
Deleting Infinispan CRs removes any associated resource declarations.

1

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 2. INSTALLING THE NATIVE DATA GRID CLIAS A
CLIENT PLUGIN

Data Grid provides a command line interface (CLI) compiled to a native executable that you can install
as a plugin for oc clients. You can then use your oc client to:

® Create Data Grid Operator subscriptions and remove Data Grid Operator installations.
® Set up Data Grid clusters and configure services.

o Work with Data Grid resources via remote shells.

2.1.INSTALLING THE NATIVE DATA GRID CLI PLUGIN

Install the native Data Grid Command Line Interface (CLI) as a plugin for oc clients.

Prerequisites
® Have anoc client.

® Download the native Data Grid CLI distribution from the Data Grid software downloads.

Procedure

1. Extract the .zip archive for the native Data Grid CLI distribution.

2. Copy the native executable, or create a hard link, to a file named "kubectl-infinispan®, for
example:

I cp redhat-datagrid-cli kubectl-infinispan
3. Add kubectl-infinispan to your PATH.
4. Verify that the CLl is installed.
oc plugin list

The following compatible plugins are available:
/path/to/kubectl-infinispan

5. Use the infinispan --help command to view available commands.

I oc infinispan --help

Additional resources

® Extending the OpenShift CLI with plug-ins

2.2. KUBECTL-INFINISPAN COMMAND REFERENCE

This topic provides some details about the kubectl-infinispan plugin for clients.

12

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions
https://docs.openshift.com/container-platform/4.9/cli_reference/openshift_cli/extending-cli-plugins.html

CHAPTER 2. INSTALLING THE NATIVE DATA GRID CLI AS A CLIENT PLUGIN

TIP

Use the --help argument to view the complete list of available options and descriptions for each
command.

For example, oc infinispan create cluster --help prints all command options for creating Data Grid
clusters.

Command Description

oc infinispan install Creates Data Grid Operator subscriptions and
installs into the global namespace by default.

oc infinispan create cluster Creates Data Grid clusters.

oc infinispan get clusters Displays running Data Grid clusters.

oc infinispan shell Starts an interactive remote shell session on a Data
Grid cluster.

oc infinispan delete cluster Removes Data Grid clusters.

oc infinispan uninstall Removes Data Grid Operator installations and all

managed resources.

13

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 3. INSTALLING DATA GRID OPERATOR

Install Data Grid Operator into a OpenShift namespace to create and manage Data Grid clusters.

3.1. INSTALLING DATA GRID OPERATOR ON RED HAT OPENSHIFT

Create subscriptions to Data Grid Operator on OpenShift so you can install different Data Grid versions
and receive automatic updates.

Automatic updates apply to Data Grid Operator first and then for each Data Grid node. Data Grid
Operator updates clusters one node at a time, gracefully shutting down each node and then bringing it
back online with the updated version before going on to the next node.

Prerequisites

® Access to OperatorHub running on OpenShift. Some OpenShift environments, such as
OpenShift Container Platform, can require administrator credentials.

® Have an OpenShift project for Data Grid Operator if you plan to install it into a specific
namespace.

Procedure
1. Login to the OpenShift Web Console.
2. Navigate to OperatorHub.
3. Find and select Data Grid Operator.
4. Select Install and continue to Create Operator Subscription

5. Specify options for your subscription.

Installation Mode

You can install Data Grid Operator into a Specific namespace or All namespaces.
Update Channel

Get updates for Data Grid Operator 8.3.x.
Approval Strategies

Automatically install updates from the 8.3.x channel or require approval before installation.
6. Select Subscribe to install Data Grid Operator.

7. Navigate to Installed Operators to verify the Data Grid Operator installation.

3.2. INSTALLING DATA GRID OPERATOR WITH THE NATIVE CLI
PLUGIN

Install Data Grid Operator with the native Data Grid CLI plugin, kubectl-infinispan.

Prerequisites

® Have kubectl-infinispan on your PATH.

14

CHAPTER 3. INSTALLING DATA GRID OPERATOR

Procedure

1. Run the oc infinispan install command to create Data Grid Operator subscriptions, for
example:

oc infinispan install --channel=8.3.x
--source=redhat-operators
--source-namespace=openshift-marketplace

2. Verify the installation.

oc get pods -n openshift-operators | grep infinispan-operator
NAME READY STATUS
infinispan-operator-<id> 1/1 Running

TIP

Use oc infinispan install --help for command options and descriptions.
3.3.INSTALLING DATA GRID OPERATOR WITH AN OPENSHIFT
CLIENT

You can use the oc client to create Data Grid Operator subscriptions as an alternative to installing
through the OperatorHub or with the native Data Grid CLI.

Prerequisites

® Have anoc client.

Procedure
1. Set up projects.

a. Create a project for Data Grid Operator.

b. If you want Data Grid Operator to control a specific Data Grid cluster only, create a project
for that cluster.

oc new-project ${INSTALL_NAMESPACE} @)
oc new-project ${WATCH_NAMESPACE} @)

ﬂ Creates a project into which you install Data Grid Operator.

Optionally creates a project for a specific Data Grid cluster if you do not want Data
Grid Operator to watch all projects.

2. Create an OperatorGroup resource.

Control all Data Grid clusters

oc apply -f - << EOF
apiVersion: operators.coreos.com/v1

15

Red Hat Data Grid 8.3 Data Grid Operator Guide

kind: OperatorGroup

metadata:

name: datagrid

namespace: ${INSTALL_NAMESPACE}
EOF

Control a specific Data Grid cluster

oc apply -f - << EOF

apiVersion: operators.coreos.com/v1
kind: OperatorGroup

metadata:

name: datagrid

namespace: ${INSTALL_NAMESPACE}
spec:

targetNamespaces:

- ${WATCH_NAMESPACE}

EOF

3. Create a subscription for Data Grid Operator.

oc apply -f - << EOF

apiVersion: operators.coreos.com/vialphat
kind: Subscription

metadata:

name: datagrid-operator

namespace: ${INSTALL_NAMESPACE}
spec:

channel: 8.3.x

installPlanApproval: Automatic

name: datagrid

source: redhat-operators
sourceNamespace: openshift-marketplace
EOF

NOTE

If you want to manually approve updates from the 8.3.x channel, change the value
of the spec.installPlanApproval field to Manual.

4. Verify the installation.
oc get pods -n ${INSTALL_NAMESPACE}

NAME READY STATUS
infinispan-operator-<id> 1/1 Running

16

CHAPTER 4. CREATING DATA GRID CLUSTERS

CHAPTER 4. CREATING DATA GRID CLUSTERS

Create Data Grid clusters running on OpenShift with the Infinispan CR or with the native Data Grid CLI
plugin for oc clients.

4.1. INFINISPAN CUSTOM RESOURCE (CR)

Data Grid Operator adds a new Custom Resource (CR) of type Infinispan that lets you handle Data Grid
clusters as complex units on OpenShift.

Data Grid Operator listens for Infinispan Custom Resources (CR) that you use to instantiate and
configure Data Grid clusters and manage OpenShift resources, such as StatefulSets and Services.

Infinispan CR

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:

name: infinispan
spec:

replicas: 2

service:

type: DataGrid

Field Description

apiVersion Declares the version of the Infinispan API.

kind Declares the Infinispan CR.

metadata.name Specifies a name for your Data Grid cluster.

spec.replicas Specifies the number of pods in your Data Grid
cluster.

spec.service.type Specifies the type of Data Grid service to create.

4.2. CREATING DATA GRID CLUSTERS

Create Data Grid clusters with the native CLI plugin, kubectl-infinispan.

Prerequisites

® |nstall Data Grid Operator.

® Have kubectl-infinispan on your PATH.

Procedure

1. Run the infinispan create cluster command.

17

Red Hat Data Grid 8.3 Data Grid Operator Guide

For example, create a Data Grid cluster with two pods as follows:

I oc infinispan create cluster --replicas=3 -Pservice.type=DataGrid infinispan
2. Watch Data Grid Operator create the Data Grid pods.

I oc get pods -w

Next steps

After you create a Data Grid cluster, use the oc to apply changes to Infinispan CR and configure your
Data Grid service.

You can also delete Data Grid clusters with kubectl-infinispan and re-create them as required.

I oc infinispan delete cluster infinispan

Additional resources

® kubectl-infinispan command reference

4.3. VERIFYING DATA GRID CLUSTER VIEWS

Confirm that Data Grid pods have successfully formed clusters.

Prerequisites

® C(Create at least one Data Grid cluster.

Procedure
® Retrieve the Infinispan CR for Data Grid Operator.
I oc get infinispan -o yaml

The response indicates that Data Grid pods have received clustered views, as in the following
example:

conditions:
- message: 'View: [infinispan-0, infinispan-1]'

status: "True"
type: wellFormed

TIP

Do the following for automated scripts:

I oc wait --for condition=wellFormed --timeout=240s infinispan/infinispan

Retrieving cluster view from logs
You can also get the cluster view from Data Grid logs as follows:

18

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/guide/fd77665b-d6df-4e25-a9cd-45fbed6dd6c1#native-cli-usage_installing-native-cli-plugin

CHAPTER 4. CREATING DATA GRID CLUSTERS

I oc logs infinispan-0 | grep ISPN000094

INFO [org.infinispan.CLUSTER] (MSC service thread 1-2) \
ISPNO00094: Received new cluster view for channel infinispan: \
[infinispan-0|0] (1) [infinispan-0]

INFO [org.infinispan.CLUSTER] (jgroups-3,infinispan-0) \

ISPNO00094: Received new cluster view for channel infinispan: \
[infinispan-0|1] (2) [infinispan-0, infinispan-1]

4.4. MODIFYING DATA GRID CLUSTERS

Configure Data Grid clusters by providing Data Grid Operator with a custom Infinispan CR.

Prerequisites
® |[nstall Data Grid Operator.
® C(Create at least one Data Grid cluster.

® Have anoc client.

Procedure

1. Create a YAML file that defines your Infinispan CR.

For example, create a my_infinispan.yaml file that changes the number of Data Grid pods to
two:

cat > cr_minimal.yaml<<EOF
apiVersion: infinispan.org/v1
kind: Infinispan
metadata:

name: infinispan
spec:

replicas: 2

service:

type: DataGrid

EOF

2. Apply your Infinispan CR.
I oc apply -f my_infinispan.yaml
3. Watch Data Grid Operator scale the Data Grid pods.

I oc get pods -w

4.5. STOPPING AND STARTING DATA GRID CLUSTERS

Stop and start Data Grid pods in a graceful, ordered fashion to correctly preserve cluster state.

19

Red Hat Data Grid 8.3 Data Grid Operator Guide

Clusters of Data Grid service pods must restart with the same number of pods that existed before
shutdown. This allows Data Grid to restore the distribution of data across the cluster. After Data Grid
Operator fully restarts the cluster you can safely add and remove pods.

Procedure

1. Change the spec.replicas field to 0 to stop the Data Grid cluster.

spec:
replicas: 0

2. Ensure you have the correct number of pods before you restart the cluster.
I oc get infinispan infinispan -o=jsonpath="{.status.replicasWantedAtRestart}'

3. Change the spec.replicas field to the same number of pods to restart the Data Grid cluster.

spec:
replicas: 6

20

CHAPTER 5. CONFIGURING DATA GRID CLUSTERS

CHAPTER 5. CONFIGURING DATA GRID CLUSTERS

Apply custom Data Grid configuration to clusters that Data Grid Operator manages.

5.1. APPLYING CUSTOM CONFIGURATION TO DATA GRID CLUSTERS

Add Data Grid configuration to a ConfigMap and make it available to Data Grid Operator. Data Grid
Operator can then apply the custom configuration to your Data Grid cluster.

IMPORTANT

Data Grid Operator applies default configuration on top of your custom configuration to
ensure it can continue to manage your Data Grid clusters.

Be careful when applying custom configuration outside the cache-container element or
field. You can apply custom configuration to underlying Data Grid Server mechanisms
such as endpoints, security realms, and cluster transport. Changing this configuration can
result in error and result in service downtime for your Data Grid deployment.

TIP

Use the Data Grid Helm chart to deploy clusters of fully configurable Data Grid Server instances on
OpenShift.

Prerequisites

® Have valid Data Grid configuration in XML, YAML, or JSON format.

Procedure

1. Add Data Grid configuration to a infinispan-config.[xmljyaml|json] key in the data field of
your ConfigMap.

XML

apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-config
namespace: rhdg-namespace
data:
infinispan-config.xml: >
<infinispan>
<!-- Custom configuration goes here. -->
</infinispan>

YAML

apiVersion: v1

kind: ConfigMap

metadata:
name: cluster-config
namespace: rhdg-namespace

21

Red Hat Data Grid 8.3 Data Grid Operator Guide

data:
infinispan-config.yaml: >
infinispan:
Custom configuration goes here.

JSON

apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-config
namespace: rhdg-namespace
data:
infinispan-config.json: >
{
"infinispan™: {
}
}

2. Create the ConfigMap from your YAML file.
I oc apply -f cluster-config.yaml

3. Specify the name of the ConfigMap with the spec.configMapName field in your Infinispan CR
and then apply the changes.

spec:
configMapName: "cluster-config"

Next steps

If your cluster is already running Data Grid Operator restarts it to apply the configuration. Each time you
modify the Data Grid configuration in the ConfigMap, Data Grid Operator detects the updates and
restarts the cluster to apply the changes.

Additional resources

® Data Grid Helm chart

5.2. CUSTOM DATA GRID CONFIGURATION

You can add Data Grid configuration to a ConfigMap in XML, YAML, or JSON format.

Cache template

XML

<infinispan>
<cache-container>
<distributed-cache-configuration name="base-template">
<expiration lifespan="5000"/>
</distributed-cache-configuration>
<distributed-cache-configuration name="extended-template"
configuration="base-template">

22

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/guide/7ed0018d-8d4a-4c8a-a74b-484c66900973

CHAPTER 5. CONFIGURING DATA GRID CLUSTERS

<encoding media-type="application/x-protostream"/>
<expiration lifespan="10000"
max-idle="1000"/>
</distributed-cache-configuration>
</cache-container>
</infinispan>

YAML

infinispan:
cacheContainer:
caches:
base-template:
distributedCacheConfiguration:
expiration:
lifespan: "5000"
extended-template:
distributedCacheConfiguration:
configuration: "base-template”
encoding:
mediaType: "application/x-protostream"
expiration:
lifespan: "10000"
maxldle: "1000"

JSON

{
"infinispan" : {
"cache-container" : {
"caches" : {
"base-template” : {
"distributed-cache-configuration" : {
"expiration" : {
"lifespan” : "5000"
}
}
b
"extended-template” : {
"distributed-cache-configuration" : {
"configuration" : "base-template”,
"encoding": {
"media-type": "application/x-protostream”
b
"expiration" : {
"lifespan” : "10000",
"max-idle" : "1000"

23

Red Hat Data Grid 8.3 Data Grid Operator Guide

Multiple caches

XML

<infinispan
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:config:13.0 https://infinispan.org/schemas/infinispan-config-
13.0.xsd
urn:infinispan:server:13.0 https://infinispan.org/schemas/infinispan-server-13.0.xsd"
xmlns="urn:infinispan:config:13.0"
xmins:server="urn:infinispan:server:13.0">
<cache-container name="default"
statistics="true">
<distributed-cache name="mycacheone"
mode="ASYNC"
statistics="true">
<encoding media-type="application/x-protostream"/>
<expiration lifespan="300000"/>
<memory max-size="400MB"
when-full="REMOVE"/>
</distributed-cache>
<distributed-cache name="mycachetwo"
mode="SYNC"
statistics="true">
<encoding media-type="application/x-protostream"/>
<expiration lifespan="300000"/>
<memory max-size="400MB"
when-full="REMOVE"/>
</distributed-cache>
</cache-container>
</infinispan>

YAML

infinispan:
cacheContainer:
name: "default”
statistics: "true"
caches:
mycacheone:
distributedCache:
mode: "ASYNC"
statistics: "true"
encoding:
mediaType: "application/x-protostream"
expiration:
lifespan: "300000"
memory:
maxSize: "400MB"
whenFull: "REMOVE"
mycachetwo:
distributedCache:
mode: "SYNC"
statistics: "true"
encoding:

24

mediaType: "application/x-protostream”

expiration:
lifespan: "300000"
memory:
maxSize: "400MB"
whenFull: "REMOVE"

JSON

{
"infinispan" : {
"cache-container" : {
"name" : "default",
"statistics" : "true",
"caches" : {
"mycacheone" : {
"distributed-cache" : {
"mode": "ASYNC",
"statistics": "true",
"encoding": {

"media-type": "application/x-protostream”

2

"expiration" : {
"lifespan” : "300000"

b

"memory": {
"max-size": "400MB",
"when-full": "REMOVE"

}
}
b
"mycachetwo" : {
"distributed-cache" : {
"mode": "SYNC",
"statistics": "true",
"encoding": {

"media-type": "application/x-protostream”

|3

"expiration" : {
"lifespan” : "300000"

|3

"memory": {
"max-size": "400MB",
"when-full": "REMOVE"

Logging configuration

CHAPTER 5. CONFIGURING DATA GRID CLUSTERS

You can also include Apache Log4j configuration in XML format as part of your ConfigMap.

25

Red Hat Data Grid 8.3 Data Grid Operator Guide

NOTE

Use the spec.logging.categories field in your Infinispan CR to adjust logging levels for
Data Grid clusters. Add Apache Log4j configuration only if you require advanced file-
based logging capabilities.

apiVersion: v1
kind: ConfigMap
metadata:
name: logging-config
namespace: rhdg-namespace
data:
infinispan-config.xml: >
<infinispan>
<!-- Add custom Data Grid configuration if required. -->
<!-- You can provide either Data Grid configuration, logging configuration, or both. -->
</infinispan>

log4j.xml: >
<?xml version="1.0" encoding="UTF-8"7?>
<Configuration name="ServerConfig" monitorinterval="60" shutdownHook="disable">
<Appenders>
<!-- Colored output on the console -->
<Console name="STDOUT">
<PatternLayout pattern="%d{HH:mm:ss,SSS} %-5p (%t) [Y%cC] Yom%throwable%n"/>
</Console>
</Appenders>

<Loggers>
<Root level="INFO">
<AppenderRef ref="STDOUT" level="TRACE"/>
</Root>
<Logger name="org.infinispan" level="TRACE"/>
</Loggers>
</Configuration>

26

CHAPTER 6. UPGRADING DATA GRID CLUSTERS

CHAPTER 6. UPGRADING DATA GRID CLUSTERS

Data Grid Operator handles Data Grid cluster upgrades when new versions become available.

IMPORTANT

Hot Rod rolling upgrades are available as a technology preview feature.

6.1. TECHNOLOGY PREVIEW FEATURES

Technology preview features or capabilities are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete.

Red Hat does not recommend using technology preview features or capabilities for production. These
features provide early access to upcoming product features, which enables you to test functionality and

provide feedback during the development process.

For more information, see Red Hat Technology Preview Features Support Scope .

6.2. DATA GRID CLUSTER UPGRADES

The spec.upgrades.type field controls how Data Grid Operator upgrades your Data Grid cluster when
new versions become available. There are two types of cluster upgrade:

Shutdown
Upgrades Data Grid clusters with service downtime. This is the default upgrade type.
HotRodRolling

Upgrades Data Grid clusters without service downtime.

Shutdown upgrades
To perform a shutdown upgrade, Data Grid Operator does the following:

1. Gracefully shuts down the existing cluster.
2. Removes the existing cluster.
3. Creates a new cluster with the target version.

Hot Rod rolling upgrades
To perform a Hot Rod rolling upgrade, Data Grid Operator does the following:

1. Creates a new Data Grid cluster with the target version that runs alongside your existing cluster
2. Creates a remote cache store to transfer data from the existing cluster to the new cluster.
3. Redirects all clients to the new cluster.

4. Removes the existing cluster when all data and client connections are transferred to the new
cluster.

27

https://access.redhat.com/support/offerings/techpreview/

Red Hat Data Grid 8.3 Data Grid Operator Guide

IMPORTANT

You should not perform Hot Rod rolling upgrades with caches that enable passivation
with persistent cache stores. In the event that the upgrade does not complete
successfully, passivation can result in data loss when Data Grid Operator rolls back the
target cluster.

If your cache configuration enables passivation you should perform a shutdown upgrade.

6.3. UPGRADING DATA GRID CLUSTERS WITH DOWNTIME

Upgrading Data Grid clusters with downtime results in service disruption but does not require any
additional capacity.

Prerequisites

e |f required, configure a persistent cache store to preserve your data during the upgrade.

IMPORTANT

At the start of the upgrade process Data Grid Operator shuts down your existing
cluster. This results in data loss if you do not configure a persistent cache store.

Procedure

1. Ensure that Shutdown is set as the value for the spec.upgrades.type field, which is the default.

spec:
upgrades:
type: Shutdown

2. Apply your changes, if necessary.

When it detects a new Data Grid version, Data Grid Operator automatically upgrades your cluster or
prompts you to manually approve the upgrade before proceeding.

6.4. PERFORMING HOT ROD ROLLING UPGRADES FOR DATA GRID
CLUSTERS

Performing Hot Rod rolling upgrades lets you move to a new Data Grid version without service
disruption. However, this upgrade type requires additional capacity and temporarily results in two Data
Grid clusters with different versions running concurrently.

Procedure
1. Specify HotRodRolling as the value for the spec.upgrades.type field.
spec:

upgrades:
type: HotRodRolling

2. Apply your changes.

28

CHAPTER 6. UPGRADING DATA GRID CLUSTERS

When it detects a new Data Grid version, Data Grid Operator automatically upgrades your cluster or
prompts you to manually approve the upgrade before proceeding.

29

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 7. SETTING UP DATA GRID SERVICES

Use Data Grid Operator to create clusters of either Cache service or Data Grid service pods.

7.1. SERVICE TYPES

Services are stateful applications, based on the Data Grid Server image, that provide flexible and robust
in-memory data storage. When you create Data Grid clusters you specify either DataGrid or Cache as
the service type with the spec.service.type field.

DataGrid service type
Deploy Data Grid clusters with full configuration and capabilities.
Cache service type

Deploy Data Grid clusters with minimal configuration.
Red Hat recommends recommends the DataGrid service type for clusters because it lets you:
® Back up data across global clusters with cross-site replication.

® Create caches with any valid configuration.

Add file-based cache stores to save data in a persistent volume.

Query values across caches using the Data Grid Query API.

® Use advanced Data Grid features and capabilities.

IMPORTANT

The Cache service type was designed to provide a convenient way to create a low-
latency data store with minimal configuration. Additional development on the Infinispan
CRD has shown that the Cache CR offers a better approach to achieving this goal,
ultimately giving users more choice and less deployment overhead. For this reason, the
Cache service type is planned for removal in the next version of the Infinispan CRD and
is no longer under active development.

The DataGrid service type continues to benefit from new features and improved tooling
to automate complex operations such as cluster upgrades and data migration.

7.2. CREATING DATA GRID SERVICE PODS

To use custom cache definitions along with Data Grid capabilities such as cross-site replication, create
clusters of Data Grid service pods.

Procedure

1. Create an Infinispan CR that sets spec.service.type: DataGrid and configures any other Data
Grid service resources.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:

name: infinispan

30

CHAPTER 7. SETTING UP DATA GRID SERVICES

spec:
replicas: 2
service:
type: DataGrid

IMPORTANT

You cannot change the spec.service.type field after you create pods. To
change the service type, you must delete the existing pods and create new ones.

2. Apply your Infinispan CR to create the cluster.

7.2.1. Data Grid service CR

This topic describes the Infinispan CR for Data Grid service pods.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: infinispan
annotations:
infinispan.org/monitoring: 'true’
spec:
replicas: 6
upgrades:
type: Shutdown
service:
type: DataGrid
container:
storage: 2Gi
The ephemeralStorage and storageClassName fields are mutually exclusive.
ephemeralStorage: false
storageClassName: my-storage-class
sites:
local:
name: azure
expose:
type: LoadBalancer
locations:
- name: azure
url: openshift://api.azure.host:6443
secretName: azure-token
- name: aws
clusterName: infinispan
namespace: rhdg-namespace
url: openshift://api.aws.host:6443
secretName: aws-token
security:
endpointSecretName: endpoint-identities
endpointEncryption:
type: Secret
certSecretName: tls-secret
container:
extradvmOpts: "-XX:NativeMemoryTracking=summary"

31

Red Hat Data Grid 8.3 Data Grid Operator Guide

cpu: "2000m:1000m"
memory: "2Gi:1Gi"
logging:
categories:
org.infinispan: debug
org.jgroups: debug
org.jgroups.protocols. TCP: error
org.jgroups.protocols.relay.RELAY2: error
expose:
type: LoadBalancer
configMapName: "my-cluster-config"
configListener:
enabled: true
affinity:
podAntiAffinity:
preferredDuringSchedulinglgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchLabels:
app: infinispan-pod
clusterName: infinispan
infinispan_cr: infinispan
topologyKey: "kubernetes.io/hostname”

Field Description

metadata.name Names your Data Grid cluster.

metadata.annotations.infinispan.org/monitori Automatically creates a ServiceMonitor for your

ng cluster.

spec.replicas Specifies the number of pods in your cluster.

spec.upgrades.type Controls how Data Grid Operator upgrades your
Data Grid cluster when new versions become
available.

spec.service.type Configures the type Data Grid service. A value of
DataGrid creates a cluster with Data Grid service
pods.

spec.service.container Configures the storage resources for Data Grid

service pods.

spec.service.sites Configures cross-site replication.

spec.security.endpointSecretName Specifies an authentication secret that contains Data
Grid user credentials.

spec.security.endpointEncryption Specifies TLS certificates and keystores to encrypt
client connections.

32

CHAPTER 7. SETTING UP DATA GRID SERVICES

Field Description

spec.container Specifies JVM, CPU, and memory resources for Data
Grid pods.

spec.logging Configures Data Grid logging categories.

spec.expose Controls how Data Grid endpoints are exposed on

the network.

spec.configMapName Specifies a ConfigMap that contains Data Grid
configuration.

spec.configListener Creates a listener pod in each Data Grid cluster
that allows Data Grid Operator to reconcile server-
side modifications with Data Grid resources such as
the Cache CR.

The listener pod consumes minimal resources and is
enabled by default. Setting a value of false removes
the listener pod and disables bi-directional
reconciliation. You should do this only if you do not
need declarative Kubernetes representations of Data
Grid resources created through the Data Grid
Console, CLI, or client applications.

spec.affinity Configures anti-affinity strategies that guarantee
Data Grid availability.

7.3. ALLOCATING STORAGE RESOURCES
You can allocate storage for Data Grid service pods but not Cache service pods.
By default, Data Grid Operator allocates 1Gi for the persistent volume claim. However you should adjust

the amount of storage available to Data Grid service pods so that Data Grid can preserve cluster state
during shutdown.

IMPORTANT

If available container storage is less than the amount of available memory, data loss can
occur.

Procedure

1. Allocate storage resources with the spec.service.container.storage field.

2. Configure either the ephemeralStorage field or the storageClassName field as required.

33

Red Hat Data Grid 8.3 Data Grid Operator Guide

NOTE

These fields are mutually exclusive. Add only one of them to your Infinispan CR.

3. Apply the changes.

Ephemeral storage

spec:
service:
type: DataGrid
container:
storage: 2Gi
ephemeralStorage: true

Name of a StorageClass object

spec:
service:
type: DataGrid
container:
storage: 2Gi
storageClassName: my-storage-class

Field Description

spec.service.container.storage Specifies the amount of storage for Data Grid
service pods.

spec.service.container.ephemeralStorage Defines whether storage is ephemeral or permanent.
Set the value to true to use ephemeral storage,
which means all data in storage is deleted when
clusters shut down or restart. The default value is
false, which means storage is permanent.

spec.service.container.storageClassName Specifies the name of a StorageClass object to
use for the persistent volume claim (PVC). If you
include this field, you must specify an existing
storage class as the value. If you do not include this
field, the persistent volume claim uses the storage
class that has the
storageclass.kubernetes.io/is-default-class
annotation set to true.

7.3.1. Persistent volume claims

Data Grid Operator creates a persistent volume claim (PVC) and mounts container storage at:
/opt/infinispan/server/data

Caches

34

CHAPTER 7. SETTING UP DATA GRID SERVICES

When you create caches, Data Grid permanently stores their configuration so your caches are available
after cluster restarts. This applies to both Cache service and Data Grid service pods.

Data

Data is always volatile in clusters of Cache service pods. When you shutdown the cluster, you
permanently lose the data.

Use a file-based cache store, by adding the <file-store/> element to your Data Grid cache configuration,
if you want Data Grid service pods to persist data during cluster shutdown.

7.4. ALLOCATING CPU AND MEMORY

Allocate CPU and memory resources to Data Grid pods with the Infinispan CR.

NOTE

Data Grid Operator requests 1Gi of memory from the OpenShift scheduler when creating
Data Grid pods. CPU requests are unbounded by default.

Procedure

1. Allocate the number of CPU units with the spec.container.cpu field.

2. Allocate the amount of memory, in bytes, with the spec.container.memory field.
The cpu and memory fields have values in the format of <limit>:<requests>. For example,
cpu: "2000m:1000m" limits pods to a maximum of 2000m of CPU and requests 1000m of CPU
for each pod at startup. Specifying a single value sets both the limit and request.

3. Apply your Infinispan CR.

If your cluster is running, Data Grid Operator restarts the Data Grid pods so changes take
effect.

spec:
container:
cpu: "2000m:1000m"
memory: "2Gi:1Gi"

7.5.SETTING JVM OPTIONS

Pass additional JVM options to Data Grid pods at startup.

Procedure
1. Configure JVM options with the spec.container filed in your Infinispan CR.

2. Apply your Infinispan CR.

If your cluster is running, Data Grid Operator restarts the Data Grid pods so changes take
effect.

JVM options

spec:
container:

35

Red Hat Data Grid 8.3 Data Grid Operator Guide

extradvmOpts: "-<option>=<value>"
routerExtradvmOpts: "-<option>=<value>"
cliExtradvmOpts: "-<option>=<value>"

Field Description

spec.container.extradlvmOpts Specifies additional JVM options for the Data Grid
Server.

spec.container.routerExtradJvmOpts Specifies additional JVM options for the Gossip
router.

spec.container.cliExtradvmOpts Specifies additional JVM options for the Data Grid
CLLI

7.6. DISABLING FIPS MODE IN YOURINFINISPAN CR

The Red Hat OpenShift Container Platform can use certain Federal Information Processing Standards
(FIPS) components that ensure OpenShift clusters meet the requirements of a FIPS compliance audit.
This might cause issues when you want your Data Grid instance to run on any OpenShift cluster that has
FIPS mode enabled. Data Grid 8.3 does not support FIPS mode, so you must disable FIPS mode in your
Infinispan CR.

After you disable FIPS mode in your Infinispan CR, any component that uses a JVM, such as Data Grid
Server, Data Grid CLI, or Gossip router, ignores FIPS mode. This happens, because the JVM no longer
loads FIPS-related cryptographic libraries on implementation startup.

NOTE

You need to explicitly disable FIPS mode in your Infinispan CR configuration only if FIPS
mode is enabled for an OpenShift cluster.

Prerequisites

e Created Infinispan CR on OpenShift, so that your Data Grid Operator can interact with
OpenShift.

Procedure
1. Configure JVM options with the spec.container field in your Infinispan CR.
spec:
container:
extradJvmOpts: "-Dcom.redhat.fips=false"

cliExtradvmOpts: "-Dcom.redhat.fips=false"
routerExtradvmOpts: "-Dcom.redhat.fips=false"

2. Apply your Infinispan CR.

Additional resources

36

CHAPTER 7. SETTING UP DATA GRID SERVICES

® Support for FIPS cryptography Red Hat OpenShift Container Platform

® Setting JVM options

7.7. ADJUSTING LOG LEVELS

Change levels for different Data Grid logging categories when you need to debug issues. You can also
adjust log levels to reduce the number of messages for certain categories to minimize the use of
container resources.

Procedure

1. Configure Data Grid logging with the spec.logging.categories field in your Infinispan CR.

spec:
logging:
categories:
org.infinispan: debug
org.jgroups: debug

2. Apply the changes.
3. Retrieve logs from Data Grid pods as required.

I oc logs -f $POD_NAME

7.7.1. Logging reference

Find information about log categories and levels.

Table 7.1. Log categories

Root category Description Default level

org.infinispan Data Grid messages info

org.jgroups Cluster transport messages info

Table 7.2. Log levels

Log level Description

trace Provides detailed information about running state of
applications. This is the most verbose log level.

debug Indicates the progress of individual requests or
activities.
info Indicates overall progress of applications, including

lifecycle events.

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html/installing/installing-fips#doc-wrapper
https://access.redhat.com/documentation/en-us/red_hat_data_grid/13.0.10.Final-redhat-00001}/html-single/data_grid_operator_guide/index#setting-jvm-options_services

Red Hat Data Grid 8.3 Data Grid Operator Guide

Loglevel Description

warn Indicates circumstances that can lead to error or
degrade performance.

error Indicates error conditions that might prevent
operations or activities from being successful but do
not prevent applications from running.

Garbage collection (GC) messages

Data Grid Operator does not log GC messages by default. You can direct GC messages to stdout with
the following JVM options:

I extraJvmOpts: "-Xlog:gc*:stdout:time,level,tags”

7.8. CREATING CACHE SERVICE PODS

Create Data Grid clusters with Cache service pods for a volatile, low-latency data store with minimal
configuration.

IMPORTANT

Cache service pods provide volatile storage only, which means you lose all data when you
modify your Infinispan CR or update the version of your Data Grid cluster.

Procedure

1. Create an Infinispan CR that sets spec.service.type: Cache and configures any other Cache
service resources.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:

name: infinispan
spec:

replicas: 2

service:

type: Cache

2. Apply your Infinispan CR to create the cluster.

7.8.1. Cache service CR

This topic describes the Infinispan CR for Cache service pods.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:

name: infinispan

38

CHAPTER 7. SETTING UP DATA GRID SERVICES

annotations:
infinispan.org/monitoring: 'true’
spec:
replicas: 2
upgrades:
type: Shutdown
service:
type: Cache
replicationFactor: 2
autoscale:
maxMemUsagePercent: 70
maxReplicas: 5
minMemUsagePercent: 30
minReplicas: 2
security:
endpointSecretName: endpoint-identities
endpointEncryption:
type: Secret
certSecretName: tls-secret
container:
extradvmOpts: "-XX:NativeMemoryTracking=summary"
cpu: "2000m:1000m"
memory: "2Gi:1Gi"
logging:
categories:
org.infinispan: trace
org.jgroups: trace
expose:
type: LoadBalancer
affinity:
podAntiAffinity:
preferredDuringSchedulinglgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchLabels:
app: infinispan-pod
clusterName: infinispan
infinispan_cr: infinispan
topologyKey: "kubernetes.io/hostname”

Field Description

metadata.name Names your Data Grid cluster.

metadata.annotations.infinispan.org/monitori Automatically creates a ServiceMonitor for your
ng cluster.

spec.replicas Specifies the number of pods in your cluster. If you
enable autoscaling capabilities, this field specifies the
initial number of pods.

39

Red Hat Data Grid 8.3 Data Grid Operator Guide

Field Description

spec.upgrades.type Controls how Data Grid Operator upgrades your
Data Grid cluster when new versions become
available.

spec.service.type Configures the type Data Grid service. A value of

Cache creates a cluster with Cache service pods.

spec.service.replicationFactor Sets the number of copies for each entry across the
cluster. The default for Cache service pods is two,
which replicates each cache entry to avoid data loss.

spec.autoscale Enables and configures automatic scaling.

spec.security.endpointSecretName Specifies an authentication secret that contains Data
Grid user credentials.

spec.security.endpointEncryption Specifies TLS certificates and keystores to encrypt
client connections.

spec.container Specifies JVM, CPU, and memory resources for Data
Grid pods.

spec.logging Configures Data Grid logging categories.

spec.expose Controls how Data Grid endpoints are exposed on

the network.

spec.affinity Configures anti-affinity strategies that guarantee
Data Grid availability.

7.9. AUTOMATIC SCALING

Data Grid Operator can monitor the default cache on Cache service pods to automatically scale clusters
up or down, by creating or deleting pods based on memory usage.

IMPORTANT

Automatic scaling is available for clusters of Cache service pods only. Data Grid Operator
does not perform automatic scaling for clusters of Data Grid service pods.

When you enable automatic scaling, you define memory usage thresholds that let Data Grid Operator
determine when it needs to create or delete pods. Data Grid Operator monitors statistics for the default
cache and, when memory usage reaches the configured thresholds, scales your clusters up or down.

Maximum threshold

This threshold sets an upper boundary for the amount of memory that pods in your cluster can use
before scaling up or performing eviction. When Data Grid Operator detects that any node reaches the

40

CHAPTER 7. SETTING UP DATA GRID SERVICES

maximum amount of memory that you configure, it creates a new node if possible. If Data Grid Operator
cannot create a new node then it performs eviction when memory usage reaches 100 percent.

Minimum threshold

This threshold sets a lower boundary for memory usage across your Data Grid cluster. When Data Grid
Operator detects that memory usage falls below the minimum, it shuts down pods.

Default cache only

Autoscaling capabilities work with the default cache only. If you plan to add other caches to your cluster,
you should not include the autoscale field in your Infinispan CR. In this case you should use eviction to
control the size of the data container on each node.

7.9.1. Configuring automatic scaling

If you create clusters with Cache service pods, you can configure Data Grid Operator to automatically
scale clusters.

Procedure

1. Add the spec.autoscale resource to your Infinispan CR to enable automatic scaling.

NOTE

Set a value of true for the autoscale.disabled field to disable automatic scaling.

2. Configure thresholds for automatic scaling with the following fields:

Field Description

spec.autoscale.maxMemUsagePercent Specifies a maximum threshold, as a percentage,
for memory usage on each node.

spec.autoscale.maxReplicas Specifies the maximum number of Cache service
pods for the cluster.

spec.autoscale.minMemUsagePercent Specifies a minimum threshold, as a percentage,
for cluster memory usage.

spec.autoscale.minReplicas Specifies the minimum number of Cache service
pods for the cluster.

For example, add the following to your Infinispan CR:

spec:
service:
type: Cache
autoscale:
disabled: false
maxMemUsagePercent: 70

41

Red Hat Data Grid 8.3 Data Grid Operator Guide

maxReplicas: 5
minMemUsagePercent: 30
minReplicas: 2

3. Apply the changes.

7.10. ADDING LABELS AND ANNOTATIONS TO DATA GRID
RESOURCES

Attach key/value labels and annotations to pods and services that Data Grid Operator creates and
manages. Labels help you identify relationships between objects to better organize and monitor Data
Grid resources. Annotations are arbitrary non-identifying metadata for client applications or deployment
and management tooling.

NOTE

Red Hat subscription labels are automatically applied to Data Grid resources.

Procedure

1. Open your Infinispan CR for editing.

2. Attach labels and annotations to Data Grid resources in the metadata.annotations section.

e Define values for annotations directly in the metadata.annotations section.
e Define values for labels with the metadata.labels field.
3. Apply your Infinispan CR.

Custom annotations

apiVersion: infinispan.org/v1

kind: Infinispan

metadata:

annotations:

infinispan.org/targetAnnotations: service-annotation1, service-annotation2
infinispan.org/podTargetAnnotations: pod-annotation1, pod-annotation2
service-annotationi: value
service-annotation2: value
pod-annotationi: value
pod-annotation2: value

Custom labels

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
annotations:
infinispan.org/targetLabels: service-labell, service-label2
infinispan.org/podTargetLabels: pod-label1, pod-label2
labels:
service-label1: value
service-label2: value

42

CHAPTER 7. SETTING UP DATA GRID SERVICES

pod-labell: value

pod-label2: value

The operator does not attach these labels to resources.
my-label: my-value

environment: development

7.11. ADDING LABELS AND ANNOTATIONS WITH ENVIRONMENT
VARIABLES

Set environment variables for Data Grid Operator to add labels and annotations that automatically
propagate to all Data Grid pods and services.

Procedure

Add labels and annotations to your Data Grid Operator subscription with the spec.config.env field in
one of the following ways:

® Use the oc edit subscription command.
I oc edit subscription {subscription_name} -n openshift-operators

® Use the Red Hat OpenShift Console.
1. Navigate to Operators > Installed Operators > Subscription.

2. Select Edit Subscription from the Actions menu.

Labels and annotations with environment variables

spec:
config:
env:

- name: INFINISPAN_OPERATOR_TARGET_LABELS
value: |
{"service-label1":"value",
service-label1":"value"}

- name: INFINISPAN_OPERATOR_POD_TARGET_LABELS
value: |
{"pod-label1":"value",
"pod-label2":"value"}

- name: INFINISPAN_OPERATOR_TARGET_ANNOTATIONS
value: |
{"service-annotation1":"value",
"service-annotation2":"value"}

- name: INFINISPAN_OPERATOR_POD_TARGET_ANNOTATIONS
value: |
{"pod-annotation1":"value",
"pod-annotation2":"value"}

43

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 8. CONFIGURING AUTHENTICATION

Application users need credentials to access Data Grid clusters. You can use default, generated
credentials or add your own.

8.1. DEFAULT CREDENTIALS

Data Grid Operator generates base64-encoded credentials for the following users:

User Secret name Description

developer infinispan-generated-secret Credentials for the default
application user.

operator infinispan-generated- Credentials that Data Grid
operator-secret Operator uses to interact with
Data Grid resources.

8.2. RETRIEVING CREDENTIALS

Get credentials from authentication secrets to access Data Grid clusters.
Procedure
® Retrieve credentials from authentication secrets.
I oc get secret infinispan-generated-secret

Base64-decode credentials.

I oc get secret infinispan-generated-secret -0 jsonpath="{.data.identities\.yaml}" | base64 --
decode

8.3. ADDING CUSTOM USER CREDENTIALS

Configure access to Data Grid cluster endpoints with custom credentials.

NOTE

Modifying spec.security.endpointSecretName triggers a cluster restart.

Procedure

1. Create an identities.yaml file with the credentials that you want to add.

credentials:

- username: myfirstusername
password: changeme-one

- username: mysecondusername
password: changeme-two

44

CHAPTER 8. CONFIGURING AUTHENTICATION

2. Create an authentication secret from identities.yaml.

I oc create secret generic --from-file=identities.yaml connect-secret

3. Specify the authentication secret with spec.security.endpointSecretName in your Infinispan
CR and then apply the changes.

spec:
security:
endpointSecretName: connect-secret

8.4. CHANGING THE OPERATOR PASSWORD

You can change the password for the operator user if you do not want to use the automatically
generated password.
Procedure

e Update the password key in the infinispan-generated-operator-secret secret as follows:

oc patch secret infinispan-generated-operator-secret -p='{"stringData":{"password":
"supersecretoperatorpassword"}}'

NOTE

You should update only the password key in the generated-operator-secret
secret. When you update the password, Data Grid Operator automatically
refreshes other keys in that secret.

8.5. DISABLING USER AUTHENTICATION

Allow users to access Data Grid clusters and manipulate data without providing credentials.

IMPORTANT

Do not disable authentication if endpoints are accessible from outside the OpenShift
cluster via spec.expose.type. You should disable authentication for development
environments only.

Procedure

1. Set false as the value for the spec.security.endpointAuthentication field in your Infinispan
CR.

spec:
security:
endpointAuthentication: false

2. Apply the changes.

45

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 9. CONFIGURING CLIENT CERTIFICATE
AUTHENTICATION

Add client trust stores to your project and configure Data Grid to allow connections only from clients
that present valid certificates. This increases security of your deployment by ensuring that clients are
trusted by a public certificate authority (CA).

9.1. CLIENT CERTIFICATE AUTHENTICATION

Client certificate authentication restricts in-bound connections based on the certificates that clients
present.

You can configure Data Grid to use trust stores with either of the following strategies:

Validate

To validate client certificates, Data Grid requires a trust store that contains any part of the certificate
chain for the signing authority, typically the root CA certificate. Any client that presents a certificate
signed by the CA can connect to Data Grid.

If you use the Validate strategy for verifying client certificates, you must also configure clients to
provide valid Data Grid credentials if you enable authentication.

Authenticate

Requires a trust store that contains all public client certificates in addition to the root CA certificate.
Only clients that present a signed certificate can connect to Data Grid.

If you use the Authenticate strategy for verifying client certificates, you must ensure that certificates
contain valid Data Grid credentials as part of the distinguished name (DN).

9.2. ENABLING CLIENT CERTIFICATE AUTHENTICATION

To enable client certificate authentication, you configure Data Grid to use trust stores with either the
Validate or Authenticate strategy.

Procedure

1. Set either Validate or Authenticate as the value for the
spec.security.endpointEncryption.clientCert field in your Infinispan CR.

NOTE

The default value is None.

2. Specify the secret that contains the client trust store with the
spec.security.endpointEncryption.clientCertSecretName field.
By default Data Grid Operator expects a trust store secret named <cluster-name>-client-cert-
secret.

46

CHAPTER 9. CONFIGURING CLIENT CERTIFICATE AUTHENTICATION

NOTE

The secret must be unique to each Infinispan CR instance in the OpenShift
cluster. When you delete the Infinispan CR, OpenShift also automatically
deletes the associated secret.

spec:
security:
endpointEncryption:
type: Secret
certSecretName: tls-secret
clientCert: Validate
clientCertSecretName: infinispan-client-cert-secret

3. Apply the changes.

Next steps

Provide Data Grid Operator with a trust store that contains all client certificates. Alternatively you can
provide certificates in PEM format and let Data Grid generate a client trust store.

9.3. PROVIDING CLIENT TRUSTSTORES

If you have a trust store that contains the required certificates you can make it available to Data Grid
Operator.

Data Grid supports trust stores in PKCS12 format only.

Procedure

1. Specify the name of the secret that contains the client trust store as the value of the
metadata.name field.

NOTE

The name must match the value of the
spec.security.endpointEncryption.clientCertSecretName field.

2. Provide the password for the trust store with the stringData.truststore-password field.

3. Specify the trust store with the data.truststore.p12 field.

apiVersion: vi
kind: Secret
metadata:
name: infinispan-client-cert-secret

type: Opaque
stringData:

truststore-password: changme
data:

truststore.p12: "<base64_encoded_PKCS12_trust_store>"

4. Apply the changes.

47

Red Hat Data Grid 8.3 Data Grid Operator Guide

9.4. PROVIDING CLIENT CERTIFICATES

Data Grid Operator can generate a trust store from certificates in PEM format.

Procedure

1.

5.

48

Specify the name of the secret that contains the client trust store as the value of the
metadata.name field.

NOTE

The name must match the value of the
spec.security.endpointEncryption.clientCertSecretName field.

. Specify the signing certificate, or CA certificate bundle, as the value of the data.trust.ca field.

If you use the Authenticate strategy to verify client identities, add the certificate for each client
that can connect to Data Grid endpoints with the data.trust.cert.<name> field.

NOTE

Data Grid Operator uses the <names value as the alias for the certificate when it
generates the trust store.

Optionally provide a password for the trust store with the stringData.truststore-password
field.

If you do not provide one, Data Grid Operator sets "password" as the trust store password.

apiVersion: v1i
kind: Secret
metadata:
name: infinispan-client-cert-secret
type: Opaque
stringData:
truststore-password: changme
data:
trust.ca: "<base64_encoded CA certificate>"
trust.cert.client1: "<base64 encoded client_certificate>"
trust.cert.client2: "<base64 encoded client_certificate>"

Apply the changes.

CHAPTER 10. CONFIGURING ENCRYPTION

CHAPTER 10. CONFIGURING ENCRYPTION

Encrypt connections between clients and Data Grid pods with Red Hat OpenShift service certificates or
custom TLS certificates.

10.1. ENCRYPTION WITH RED HAT OPENSHIFT SERVICE
CERTIFICATES

Data Grid Operator automatically generates TLS certificates that are signed by the Red Hat OpenShift
service CA. Data Grid Operator then stores the certificates and keys in a secret so you can retrieve them
and use with remote clients.

If the Red Hat OpenShift service CA is available, Data Grid Operator adds the following
spec.security.endpointEncryption configuration to the Infinispan CR:

spec:
security:
endpointEncryption:
type: Service
certServiceName: service.beta.openshift.io
certSecretName: infinispan-cert-secret

Field Description

spec.security.endpointEncryption.certServic Specifies the service that provides TLS certificates.
eName

spec.security.endpointEncryption.certSecret Specifies a secret with a service certificate and key in
Name PEM format. Defaults to <cluster_name>-cert-
secret.

NOTE

Service certificates use the internal DNS name of the Data Grid cluster as the common
name (CN), for example:

Subject: CN = example-infinispan.mynamespace.svc
For this reason, service certificates can be fully trusted only inside OpenShift. If you want
to encrypt connections with clients running outside OpenShift, you should use custom

TLS certificates.

Service certificates are valid for one year and are automatically replaced before they
expire.

10.2. RETRIEVING TLS CERTIFICATES

Get TLS certificates from encryption secrets to create client trust stores.

Procedure

49

Red Hat Data Grid 8.3 Data Grid Operator Guide

® Retrieve tls.crt from encryption secrets as follows:

I oc get secret infinispan-cert-secret -0 jsonpath="'{.data.tls\.crt}' | base64 --decode > tls.crt

10.3. DISABLING ENCRYPTION

You can disable encryption so clients do not need TLS certificates to establish connections with Data
Grid.

IMPORTANT

Do not disable encryption if endpoints are accessible from outside the OpenShift cluster
via spec.expose.type. You should disable encryption for development environments
only.

Procedure

1. Set None as the value for the spec.security.endpointEncryption.type field in your Infinispan
CR.

spec:
security:
endpointEncryption:
type: None

2. Apply the changes.

10.4. USING CUSTOM TLS CERTIFICATES

Use custom PKCSI12 keystore or TLS certificate/key pairs to encrypt connections between clients and
Data Grid clusters.

Prerequisites

® Create either a keystore or certificate secret.

NOTE

The secret must be unique to each Infinispan CR instance in the OpenShift
cluster. When you delete the Infinispan CR, OpenShift also automatically
deletes the associated secret.

Procedure

1. Add the encryption secret to your OpenShift namespace, for example:

I oc apply -f tls_secret.yaml

2. Specify the encryption secret with the spec.security.endpointEncryption.certSecretName
field in your Infinispan CR.

I spec:

50

CHAPTER 10. CONFIGURING ENCRYPTION

security:
endpointEncryption:
type: Secret
certSecretName: tls-secret

3. Apply the changes.

10.4.1. Custom encryption secrets

Custom encryption secrets that add keystores or certificate/key pairs to secure Data Grid connections
must contain specific fields.

Keystore secrets

apiVersion: v1
kind: Secret
metadata:
name: tls-secret
type: Opaque
stringData:
alias: server
password: changeme
data:
keystore.p12: "MIIKDgIBAzCCCdQGCSqGSIb3DQEHA..."

Field Description

stringData.alias Specifies an alias for the keystore.
stringData.password Specifies the keystore password.
data.keystore.p12 Adds a base64-encoded keystore.

Certificate secrets

apiVersion: v1

kind: Secret

metadata:
name: tls-secret

type: Opaque

data:
tls.key: "LSOtLS1CRUdJTiBQUk ..."
tls.crt: "LSOtLS1CRUdJTIBDRVI ..."

Field Description

data.tls.key Adds a base64-encoded TLS key.

data.tls.crt Adds a base64-encoded TLS certificate.

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 1. CONFIGURING USER ROLES AND PERMISSIONS

Secure access to Data Grid services by configuring role-based access control (RBAC) for users. This
requires you to assign roles to users so that they have permission to access caches and Data Grid
resources.

11.1. ENABLING SECURITY AUTHORIZATION

By default authorization is disabled to ensure backwards compatibility with Infinispan CR instances.
Complete the following procedure to enable authorization and use role-based access control (RBAC)
for Data Grid users.

Procedure

1. Set true as the value for the spec.security.authorization.enabled field in your Infinispan CR.

spec:
security:
authorization:
enabled: true

2. Apply the changes.

11.2. USER ROLES AND PERMISSIONS
Data Grid Operator provides a set of default roles that are associated with different permissions.

Table 11.1. Default roles and permissions

Role Permissions Description

admin ALL Superuser with all permissions
including control of the Cache
Manager lifecycle.

deployer ALL_READ, ALL_WRITE, LISTEN, Can create and delete Data Grid
EXEC, MONITOR, CREATE resources in addition to
application permissions.

application ALL_READ, ALL_WRITE, LISTEN, Has read and write access to Data
EXEC, MONITOR Grid resources in addition to
observer permissions. Can also
listen to events and execute
server tasks and scripts.

observer ALL_READ, MONITOR Has read access to Data Grid
resources in addition to monitor
permissions.

monitor MONITOR Can view statistics for Data Grid
clusters.

52

CHAPTER 11. CONFIGURING USER ROLES AND PERMISSIONS

Data Grid Operator credentials

Data Grid Operator generates credentials that it uses to authenticate with Data Grid clusters to
perform internal operations. By default Data Grid Operator credentials are automatically assigned the
admin role when you enable security authorization.

Additional resources

® How security authorization works (Data Grid Security Guide).

11.3. ASSIGNING ROLES AND PERMISSIONS TO USERS

Assign users with roles that control whether users are authorized to access Data Grid cluster resources.
Roles can have different permission levels, from read-only to unrestricted access.

NOTE

Users gain authorization implicitly. For example, "admin” gets admin permissions
automatically. A user named "deployer” has the deployer role automatically, and so on.

Procedure

1. Create an identities.yaml file that assigns roles to users.

credentials:
- username: admin
password: changeme
- username: my-user-1
password: changeme
roles:
- admin
- username: my-user-2
password: changeme
roles:
- monitor

2. Create an authentication secret from identities.yaml.
If necessary, delete the existing secret first.

oc delete secret connect-secret --ignore-not-found
oc create secret generic --from-file=identities.yaml connect-secret

3. Specify the authentication secret with spec.security.endpointSecretName in your Infinispan
CR and then apply the changes.

spec:

security:
endpointSecretName: connect-secret

11.4. ADDING CUSTOM ROLES AND PERMISSIONS

You can define custom roles with different combinations of permissions.

53

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_security_guide/#con_authz-authz

Red Hat Data Grid 8.3 Data Grid Operator Guide

Procedure

1. Open your Infinispan CR for editing.

2. Specify custom roles and their associated permissions with the
spec.security.authorization.roles field.

spec:
security:
authorization:
enabled: true
roles:
- name: my-role-1
permissions:
- ALL
- name: my-role-2
permissions:
- READ
- WRITE

3. Apply the changes.

54

CHAPTER 12. CONFIGURING NETWORK ACCESS TO DATA GRID

CHAPTER 12. CONFIGURING NETWORK ACCESS TO DATA
GRID

Expose Data Grid clusters so you can access Data Grid Console, the Data Grid command line interface
(CLI), REST API, and Hot Rod endpoint.

12.1. GETTING THE SERVICE FOR INTERNAL CONNECTIONS

By default, Data Grid Operator creates a service that provides access to Data Grid clusters from clients
running on OpenShift.

This internal service has the same name as your Data Grid cluster, for example:

metadata:
name: infinispan

Procedure

® Check that the internal service is available as follows:

I oc get services

12.2. EXPOSING DATA GRID THROUGH A LOADBALANCER SERVICE

Use a LoadBalancer service to make Data Grid clusters available to clients running outside OpenShift.

NOTE

To access Data Grid with unencrypted Hot Rod client connections you must use a
LoadBalancer service.

Procedure

1. Include spec.expose in your Infinispan CR.
2. Specify LoadBalancer as the service type with the spec.expose.type field.

3. Optionally specify the network port where the service is exposed with the spec.expose.port
field.

spec:
expose:

type: LoadBalancer
port: 65535

4. Apply the changes.

5. Verify that the -external service is available.

I oc get services | grep external

55

Red Hat Data Grid 8.3 Data Grid Operator Guide

12.3. EXPOSING DATA GRID THROUGH A NODEPORT SERVICE

Use a NodePort service to expose Data Grid clusters on the network.

Procedure

1.

2.

Include spec.expose in your Infinispan CR.
Specify NodePort as the service type with the spec.expose.type field.

Configure the port where Data Grid is exposed with the spec.expose.nodePort field.

spec:
expose:
type: NodePort
nodePort: 30000

. Apply the changes.

Verify that the -external service is available.

I oc get services | grep external

12.4. EXPOSING DATA GRID THROUGH A ROUTE

Use an OpenShift Route with passthrough encryption to make Data Grid clusters available on the
network.

Procedure

1.

2.

Include spec.expose in your Infinispan CR.
Specify Route as the service type with the spec.expose.type field.

Optionally add a hostname with the spec.expose.host field.

spec:
expose:
type: Route
host: www.example.org

. Apply the changes.

Verify that the route is available.

I oc get routes

Route ports

When you create a Route, it exposes a port on the network that accepts client connections and redirects
traffic to Data Grid services that listen on port 11222.

The port where the Route is available depends on whether you use encryption or not.

56

CHAPTER 12. CONFIGURING NETWORK ACCESS TO DATA GRID

Port Description

80 Encryption is disabled.
443 Encryption is enabled.
12.5. NETWORK SERVICES

Reference information for network services that Data Grid Operator creates and manages.

Service Port Protocol Description

<cluster_name> 11222 TCP Access to Data Grid
endpoints within the
OpenShift cluster or
from an OpenShift
Route.

<cluster_name>-ping 8888 TCP Cluster discovery for
Data Grid pods.

<cluster_name>- 11222 TCP Access to Data Grid

external endpoints from a
LoadBalancer or
NodePort service.

<cluster_name>-site 7900 TCP JGroups RELAY?2

channel for cross-site
communication.

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER13. SETTING UP CROSS-SITE REPLICATION

Ensure availability with Data Grid Operator by configuring geographically distributed clusters as a unified
service.

You can configure clusters to perform cross-site replication with:
® Connections that Data Grid Operator manages.

e Connections that you configure and manage.

NOTE

You can use both managed and manual connections for Data Grid clusters in the same
Infinispan CR. You must ensure that Data Grid clusters establish connections in the
same way at each site.

13.1. CROSS-SITE REPLICATION EXPOSE TYPES

You can use a NodePort service, a LoadBalancer service, or an OpenShift Route to handle network
traffic for backup operations between Data Grid clusters. Before you start setting up cross-site
replication you should determine what expose type is available for your Red Hat OpenShift cluster. In
some cases you may require an administrator to provision services before you can configure an expose

type.

NodePort

A NodePort is a service that accepts network traffic at a static port, in the 30000 to 32767 range, on an
IP address that is available externally to the OpenShift cluster.

To use a NodePort as the expose type for cross-site replication, an administrator must provision
external IP addresses for each OpenShift node. In most cases, an administrator must also configure DNS
routing for those external IP addresses.

LoadBalancer

A LoadBalancer is a service that directs network traffic to the correct node in the OpenShift cluster.

Whether you can use a LoadBalancer as the expose type for cross-site replication depends on the host
platform. AWS supports network load balancers (NLB) while some other cloud platforms do not. To use
a LoadBalancer service, an administrator must first create an ingress controller backed by an NLB.

Route

An OpenShift Route allows Data Grid clusters to connect with each other through a public secure URL.
Data Grid uses TLS with the SNI header to send backup requests between clusters through an
OpenShift Route. To do this you must add a keystore with TLS certificates so that Data Grid can
encrypt network traffic for cross-site replication.

When you specify Route as the expose type for cross-site replication, Data Grid Operator creates a

route with TLS passthrough encryption for each Data Grid cluster that it manages. You can specify a
hostname for the Route but you cannot specify a Route that you have already created.

Additional resources

58

CHAPTER13. SETTING UP CROSS-SITE REPLICATION

® Configuring ingress cluster traffic overview

13.2. MANAGED CROSS-SITE REPLICATION

Data Grid Operator can discover Data Grid clusters running in different data centers to form global
clusters.

When you configure managed cross-site connections, Data Grid Operator creates router pods in each
Data Grid cluster. Data Grid pods use the <cluster_names>-site service to connect to these router pods
and send backup requests.

Router pods maintain a record of all pod IP addresses and parse RELAY message headers to forward
backup requests to the correct Data Grid cluster. If a router pod crashes then all Data Grid pods start
using any other available router pod until OpenShift restores it.

IMPORTANT

To manage cross-site connections, Data Grid Operator uses the Kubernetes API. Each
OpenShift cluster must have network access to the remote Kubernetes APl and a service
account token for each backup cluster.

NOTE

Data Grid clusters do not start running until Data Grid Operator discovers all backup
locations that you configure.

13.2.1. Creating service account tokens for managed cross-site connections

Generate service account tokens on OpenShift clusters that allow Data Grid Operator to automatically
discover Data Grid clusters and manage cross-site connections.

Prerequisites

® Ensure all OpenShift clusters have access to the Kubernetes API.
Data Grid Operator uses this AP| to manage cross-site connections.

NOTE

Data Grid Operator does not modify remote Data Grid clusters. The service
account tokens provide read only access through the Kubernetes API.

Procedure

1. Login to an OpenShift cluster.

2. Create a service account.
For example, create a service account at LON:

oc create sa lon
serviceaccount/lon created

3. Add the view role to the service account with the following command:

59

https://docs.openshift.com/container-platform/4.9/networking/configuring_ingress_cluster_traffic/overview-traffic.html

Red Hat Data Grid 8.3 Data Grid Operator Guide

I oc policy add-role-to-user view system:serviceaccount:<namespace>:lon

4. If you use a NodePort service to expose Data Grid clusters on the network, you must also add
the cluster-reader role to the service account:

oc adm policy add-cluster-role-to-user cluster-reader -z <service-account-name> -n
<namespace>

5. Repeat the preceding steps on your other OpenShift clusters.

6. Exchange service account tokens on each OpenShift cluster.

Additional resources

® Using service accounts in applications

13.2.2. Exchanging service account tokens

After you create service account tokens on your OpenShift clusters, you add them to secrets on each
backup location. For example, at LON you add the service account token for NYC. At NYC you add the
service account token for LON.

Prerequisites

® Get tokens from each service account.
Use the following command or get the token from the OpenShift Web Console:

oc sa get-token lon

eyJhbGciOidSUzI1NilsimtpZClI6lid9...

Procedure

1. Login to an OpenShift cluster.

2. Add the service account token for a backup location with the following command:
I oc create secret generic <token-name> --from-literal=token=<token>

For example, log in to the OpenShift cluster at NYC and create a lon-token secret as follows:
I oc create secret generic lon-token --from-literal=token=eyJhbGciOiJSUzI1NilsImtpZCI6liJ9...

3. Repeat the preceding steps on your other OpenShift clusters.

13.2.3. Configuring managed cross-site connections

Configure Data Grid Operator to establish cross-site views with Data Grid clusters.

Prerequisites

60

https://docs.openshift.com/container-platform/4.9/authentication/using-service-accounts-in-applications.html

CHAPTER13. SETTING UP CROSS-SITE REPLICATION

® Determine a suitable expose type for cross-site replication.
If you use an OpenShift Route you must add a keystore with TLS certificates and secure cross-
site connections.

® Create and exchange Red Hat OpenShift service account tokens for each Data Grid cluster.

Procedure

1. Create an Infinispan CR for each Data Grid cluster.

2. Specify the name of the local site with spec.service.sites.local.name.

3. Configure the expose type for cross-site replication.

a. Set the value of the spec.service.sites.local.expose.type field to one of the following:

e NodePort
e | oadBalancer
® Route

b. Optionally specify a port or custom hostname with the following fields:

® spec.service.sites.local.expose.nodePort if you use a NodePort service.
e spec.service.sites.local.expose.portif you use a LoadBalancer service.
e spec.service.sites.local.expose.routeHostName if you use an OpenShift Route.

4. Specify the number of pods that can send RELAY messages with the
service.sites.local. maxRelayNodes field.

TIP

Configure all pods in your cluster to send RELAY messages for better performance. If all pods
send backup requests directly, then no pods need to forward backup requests.

5. Provide the name, URL, and secret for each Data Grid cluster that acts as a backup location with
spec.service.sites.locations.

6. If Data Grid cluster names or namespaces at the remote site do not match the local site, specify
those values with the clusterName and namespace fields.
The following are example Infinispan CR definitions for LON and NYC:

e LON

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: infinispan
spec:
replicas: 3
service:
type: DataGrid
sites:

61

Red Hat Data Grid 8.3 Data Grid Operator Guide

local:
name: LON
expose:
type: LoadBalancer
port: 65535
maxRelayNodes: 1
locations:
- name: NYC
clusterName: <nyc_cluster_name>
namespace: <nyc_cluster_namespace>
url: openshift://api.rhdg-nyc.openshift-aws.myhost.com:6443
secretName: nyc-token
logging:
categories:
org.jgroups.protocols. TCP: error
org.jgroups.protocols.relay.RELAY2: error

e NYC

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: nyc-cluster
spec:
replicas: 2
service:
type: DataGrid
sites:
local:
name: NYC
expose:
type: LoadBalancer
port: 65535
maxRelayNodes: 1
locations:
- name: LON
clusterName: infinispan
namespace: rhdg-namespace
url: openshift://api.rhdg-lon.openshift-aws.myhost.com:6443
secretName: lon-token
logging:
categories:
org.jgroups.protocols. TCP: error
org.jgroups.protocols.relay.RELAY2: error

62

CHAPTER13. SETTING UP CROSS-SITE REPLICATI

IMPORTANT

Be sure to adjust logging categories in your Infinispan CR to decrease log

of log files from uses container storage.

spec:
logging:
categories:
org.jgroups.protocols. TCP: error
org.jgroups.protocols.relay.RELAY2: error

7. Configure your Infinispan CRs with any other Data Grid service resources and then apply the
changes.

8. Verify that Data Grid clusters form a cross-site view.

a. Retrieve the Infinispan CR.
I oc get infinispan -o yaml
b. Check for the type: CrossSiteViewFormed condition.

Next steps

If your clusters have formed a cross-site view, you can start adding backup locations to caches.

Additional resources

® Data Grid guide to cross-site replication

13.3. MANUALLY CONFIGURING CROSS-SITE CONNECTIONS

You can specify static network connection details to perform cross-site replication with Data Grid
clusters running outside OpenShift. Manual cross-site connections are necessary in any scenario where
access to the Kubernetes APl is not available outside the OpenShift cluster where Data Grid runs.

Prerequisites

® Determine a suitable expose type for cross-site replication.
If you use an OpenShift Route you must add a keystore with TLS certificates and secure cross-
site connections.

® Ensure you have the correct host names and ports for each Data Grid cluster and each
<cluster-name>-site service.
Manually connecting Data Grid clusters to form cross-site views requires predictable network
locations for Data Grid services, which means you need to know the network locations before
they are created.

Procedure

1. Create an Infinispan CR for each Data Grid cluster.

2. Specify the name of the local site with spec.service.sites.local.name.

ON

levels for JGroups TCP and RELAY?2 protocols. This prevents a large number

63

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_cross-site_replication/

Red Hat Data Grid 8.3 Data Grid Operator Guide

3. Configure the expose type for cross-site replication.

a. Set the value of the spec.service.sites.local.expose.type field to one of the following:

o NodePort
e | oadBalancer

e Route

b. Optionally specify a port or custom hostname with the following fields:

® spec.service.sites.local.expose.nodePort if you use a NodePort service.
e spec.service.sites.local.expose.portif you use a LoadBalancer service.
e spec.service.sites.local.expose.routeHostName if you use an OpenShift Route.

4. Provide the name and static URL for each Data Grid cluster that acts as a backup location with
spec.service.sites.locations, for example:

e LON

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: infinispan
spec:
replicas: 3
service:
type: DataGrid
sites:
local:
name: LON
expose:
type: LoadBalancer
port: 65535
maxRelayNodes: 1
locations:
- name: NYC
url: infinispan+xsite://infinispan-nyc.myhost.com:7900
logging:
categories:
org.jgroups.protocols. TCP: error
org.jgroups.protocols.relay.RELAY2: error

e NYC

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: infinispan
spec:
replicas: 2
service:
type: DataGrid
sites:

64

CHAPTER13. SETTING UP CROSS-SITE REPLICATION

local:
name: NYC
expose:
type: LoadBalancer
port: 65535
maxRelayNodes: 1
locations:
- name: LON
url: infinispan+xsite://infinispan-lon.myhost.com
logging:
categories:
org.jgroups.protocols. TCP: error
org.jgroups.protocols.relay.RELAY2: error

IMPORTANT

Be sure to adjust logging categories in your Infinispan CR to decrease log
levels for JGroups TCP and RELAY?2 protocols. This prevents a large number
of log files from uses container storage.

spec:
logging:
categories:
org.jgroups.protocols. TCP: error
org.jgroups.protocols.relay.RELAY2: error

5. Configure your Infinispan CRs with any other Data Grid service resources and then apply the
changes.

6. Verify that Data Grid clusters form a cross-site view.

a. Retrieve the Infinispan CR.
I oc get infinispan -o yaml
b. Check for the type: CrossSiteViewFormed condition.

Next steps

If your clusters have formed a cross-site view, you can start adding backup locations to caches.

Additional resources

® Data Grid guide to cross-site replication

13.4. RESOURCES FOR CONFIGURING CROSS-SITE REPLICATION
The following tables provides fields and descriptions for cross-site resources.

Table 13.1. service.type

65

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_cross-site_replication/

Red Hat Data Grid 8.3 Data Grid Operator Guide

Field Description

service.type: DataGrid Data Grid supports cross-site replication with Data
Grid service clusters only.

Table 13.2. service.sites.local

Field Description

service.sites.local.name Names the local site where a Data Grid cluster runs.

service.sites.local.expose.type Specifies the network service for cross-site
replication. Data Grid clusters use this service to
communicate and perform backup operations. You
can set the value to NodePort, LoadBalancer, or
Route.

service.sites.local.expose.nodePort Specifies a static port within the default range of
30000 to 32767 if you expose Data Grid through a
NodePort service. If you do not specify a port, the
platform selects an available one.

service.sites.local.expose.port Specifies the network port for the service if you
expose Data Grid through a LoadBalancer service.
The default port is 7900.

service.sites.local.expose.routeHostName Specifies a custom hostname if you expose Data
Grid through an OpenShift Route. If you do not set
a value then OpenShift generates a hostname.

service.sites.local.maxRelayNodes Specifies the maximum number of pods that can
send RELAY messages for cross-site replication. The
default value is 1.

Table 13.3. service.sites.locations

Field Description

service.sites.locations Provides connection information for all backup
locations.
service.sites.locations.name Specifies a backup location that matches

.spec.service.sites.local.name.

66

service.sites.locations.url

service.sites.locations.secretName

service.sites.locations.clusterName

service.sites.locations.namespace

Managed cross-site connections

spec:
service:
type: DataGrid
sites:
local:
name: LON
expose:
type: LoadBalancer
maxRelayNodes: 1
locations:
-name: NYC

clusterName: <nyc_cluster_name>
namespace: <nyc_cluster_namespace>

CHAPTER13. SETTING UP CROSS-SITE REPLICATION

Field Description

Specifies the URL of the Kubernetes API for
managed connections or a static URL for manual
connections.

Use openshift:// to specify the URL of the
Kubernetes API for an OpenShift cluster.

Note that the openshift:// URL must present a
valid, CA-signed certificate. You cannot use self-
signed certificates.

Use the infinispan+xsite://<hostname>:<port>

format for static hostnames and ports. The default
port is 7900.

Specifies the secret that contains the service
account token for the backup site.

Specifies the cluster name at the backup location if it
is different to the cluster name at the local site.

Specifies the namespace of the Data Grid cluster at
the backup location if it does not match the
namespace at the local site.

url: openshift://api.site-b.devcluster.openshift.com:6443

secretName: nyc-token
Manual cross-site connections

spec:
service:
type: DataGrid
sites:
local:

67

Red Hat Data Grid 8.3 Data Grid Operator Guide

name: LON
expose:
type: LoadBalancer
port: 65535
maxRelayNodes: 1
locations:
- name: NYC
url: infinispan+xsite:/infinispan-nyc.myhost.com:7900

13.5. SECURING CROSS-SITE CONNECTIONS
Add keystores and trust stores so that Data Grid clusters can secure cross-site replication traffic.

You must add a keystore to use an OpenShift Route as the expose type for cross-site replication.
Securing cross-site connections is optional if you use a NodePort or LoadBalancer as the expose type.

Prerequisites

® Have a PKCSI12 keystore that Data Grid can use to encrypt and decrypt RELAY messages.
You must provide a keystore for relay pods and router pods to secure cross-site connections.
The keystore can be the same for relay pods and router pods or you can provide separate
keystores for each.
You can also use the same keystore for each Data Grid cluster or a unique keystore for each
cluster.

e Optionally have a trust store that contains part of the certificate chain or root CA certificate
that verifies public certificates for Data Grid relay pods and router pods.
By default, Data Grid uses the Java trust store to verify public certificates.

Procedure
1. Create cross-site encryption secrets.

a. Create keystore secrets.
b. Create trust store secrets if you do not want to use the default Java trust store.

2. Modify the Infinispan CR for each Data Grid cluster to specify the secret name for the
encryption.transportKeyStore.secretName and encryption.routerKeyStore.secretName
fields.

3. Configure any other fields to encrypt RELAY messages as required and then apply the changes.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: infinispan
spec:
replicas: 2
expose:
type: LoadBalancer
service:
type: DataGrid
sites:
local:

68

name: SiteA
#...
encryption:
protocol: TLSv1.3
transportKeyStore:
secretName: transport-tls-secret
alias: transport
filename: keystore.p12
routerKeyStore:
secretName: router-tls-secret
alias: router
filename: keystore.p12
trustStore:
secretName: truststore-tls-secret
filename: truststore.p12
locations:
#...

CHAPTER13. SETTING UP CROSS-SITE REPLICATION

13.5.1. Resources for configuring cross-site encryption

The following tables provides fields and descriptions for encrypting cross-site connections.

Table 13.4. service.type.sites.local.encryption

Field Description

service.type.sites.local.encryption.protocol

service.type.sites.local.encryption.transport
KeyStore

service.type.sites.local.encryption.routerKey
Store

service.type.sites.local.encryption.trustStore

Specifies the TLS protocol to use for cross-site
connections. The default value is TLSv1.2 but you
can set TLSv1.3 if required.

Configures a keystore secret for relay pods.

Configures a keystore secret for router pods.

Configures an optional trust store secret for relay
pods and router pods.

Table 13.5. service.type.sites.local.encryption.transportKeyStore

Field Description

secretName

alias

Specifies the secret that contains a keystore that
relay pods can use to encrypt and decrypt RELAY
messages. This field is required.

Optionally specifies the alias of the certificate in the
keystore. The default value is transport.

69

Red Hat Data Grid 8.3 Data Grid Operator Guide

Field Description

filename Optionally specifies the filename of the keystore.
The default value is keystore.p12.

Table 13.6. service.type.sites.local.encryption.routerKeyStore

Field Description

secretName Specifies the secret that contains a keystore that
router pods can use to encrypt and decrypt RELAY
messages. This field is required.

alias Optionally specifies the alias of the certificate in the
keystore. The default value is router.

filename Optionally specifies the filename of the keystore.
The default value is keystore.p12.

Table 13.7. service.type.sites.local.encryption.trustStore

Field Description

secretName Optionally specifies the secret that contains a trust
store to verify public certificates for relay pods and
router pods. The default value is <cluster-name>-
truststore-site-tls-secret.

filename Optionally specifies the filename of the trust store.
The default value is truststore.p12.

13.5.2. Cross-site encryption secrets

Cross-site replication encryption secrets add keystores and optional trust stores for securing cross-site
connections.

Cross-site encryption secrets

apiVersion: v1
kind: Secret
metadata:
name: tls-secret
type: Opaque
stringData:
password: changeme
type: pkesi12
data:
<file-name>: "MIIKDgIBAzZCCCdQGCSqgGSIb3DQEHA..."

70

CHAPTER13. SETTING UP CROSS-SITE REPLICATION

Field Description

stringData.password Specifies the password for the keystore or trust
store.
stringData.type Optionally specifies the keystore or trust store type.

The default value is pkcs12.

data.<file-name> Adds a base64-encoded keystore or trust store.

13.6. CONFIGURING SITES IN THE SAME OPENSHIFT CLUSTER

For evaluation and demonstration purposes, you can configure Data Grid to back up between pods in
the same OpenShift cluster.

IMPORTANT

Using ClusterlP as the expose type for cross-site replication is intended for
demonstration purposes only. It would be appropriate to use this expose type only to
perform a temporary proof-of-concept deployment on a laptop or something of that
nature.

Procedure

1.

2.

Create an Infinispan CR for each Data Grid cluster.
Specify the name of the local site with spec.service.sites.local.name.

Set ClusterlP as the value of the spec.service.sites.local.expose.type field.

. Provide the name of the Data Grid cluster that acts as a backup location with

spec.service.sites.locations.clusterName.

If both Data Grid clusters have the same name, specify the namespace of the backup location
with spec.service.sites.locations.namespace.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: example-clustera
spec:
replicas: 1
expose:
type: LoadBalancer
service:
type: DataGrid
sites:
local:
name: SiteA
expose:
type: ClusterlP

71

Red Hat Data Grid 8.3 Data Grid Operator Guide

maxRelayNodes: 1
locations:
- name: SiteB
clusterName: example-clusterb
namespace: cluster-namespace

6. Configure your Infinispan CRs with any other Data Grid service resources and then apply the
changes.

7. Verify that Data Grid clusters form a cross-site view.

a. Retrieve the Infinispan CR.
I oc get infinispan -o yaml

b. Check for the type: CrossSiteViewFormed condition.

72

CHAPTER 14. MONITORING DATA GRID SERVICES

CHAPTER 14. MONITORING DATA GRID SERVICES

Data Grid exposes metrics that can be used by Prometheus and Grafana for monitoring and visualizing
the cluster state.

NOTE

This documentation explains how to set up monitoring on OpenShift Container Platform.
If you're working with community Prometheus deployments, you might find these
instructions useful as a general guide. However you should refer to the Prometheus
documentation for installation and usage instructions.

See the Prometheus Operator documentation.

14.1. CREATING A PROMETHEUS SERVICE MONITOR

Data Grid Operator automatically creates a Prometheus ServiceMonitor that scrapes metrics from your
Data Grid cluster.

Procedure

Enable monitoring for user-defined projects on OpenShift Container Platform.

When the Operator detects an Infinispan CR with the monitoring annotation set to true, which is the
default, Data Grid Operator does the following:

® Creates a ServiceMonitor named <cluster_name>-monitor.

® Adds the infinispan.org/monitoring: 'true’ annotation to your Infinispan CR metadata, if the
value is not already explicitly set:

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: infinispan
annotations:
infinispan.org/monitoring: 'true’
NOTE

To authenticate with Data Grid, Prometheus uses the operator credentials.

Verification

You can check that Prometheus is scraping Data Grid metrics as follows:

1. In the OpenShift Web Console, select the </> Developer perspective and then select
Monitoring.

2. Open the Dashboard tab for the namespace where your Data Grid cluster runs.

3. Open the Metrics tab and confirm that you can query Data Grid metrics such as:

I vendor_cache_manager_default_cluster_size

73

https://github.com/prometheus-operator/prometheus-operator

Red Hat Data Grid 8.3 Data Grid Operator Guide

Additional resources

® Enabling monitoring for user-defined projects

14.1.1. Disabling the Prometheus service monitor

You can disable the ServiceMonitor if you do not want Prometheus to scrape metrics for your Data Grid
cluster.

Procedure

1. Set 'false’ as the value for the infinispan.org/monitoring annotation in your Infinispan CR.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: infinispan
annotations:
infinispan.org/monitoring: 'false’

2. Apply the changes.

14.2. INSTALLING THE GRAFANA OPERATOR

To support various needs, Data Grid Operator integrates with the community version of the Grafana
Operator to create dashboards for Data Grid services.

Until Grafana is integrated with OpenShift user workload monitoring, the only option is to rely on the
community version. You can install the Grafana Operator on OpenShift from the OperatorHub and
should create a subscription for the alpha channel.

However, as is the policy for all Community Operators, Red Hat does not certify the Grafana Operator
and does not provide support for it in combination with Data Grid. When you install the Grafana

Operator you are prompted to acknowledge a warning about the community version before you can
continue.

14.3. CREATING GRAFANA DATA SOURCES

Create a GrafanaDatasource CR so you can visualize Data Grid metrics in Grafana dashboards.

Prerequisites

® Have anoc client.
® Have cluster-admin access to OpenShift Container Platform.
® Enable monitoring for user-defined projects on OpenShift Container Platform.

® |nstall the Grafana Operator from the alpha channel and create a Grafana CR.

Procedure

1. Create a ServiceAccount that lets Grafana read Data Grid metrics from Prometheus.

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/index#enabling-monitoring-for-user-defined-projects

apiVersion: v1
kind: ServiceAccount
metadata:

name: infinispan-monitoring

a. Apply the ServiceAccount.

I oc apply -f service-account.yaml

CHAPTER 14. MONITORING DATA GRID SERVICES

b. Grant cluster-monitoring-view permissions to the ServiceAccount.

I oc adm policy add-cluster-role-to-user cluster-monitoring-view -z infinispan-monitoring

2. Create a Grafana data source.

a. Retrieve the token for the ServiceAccount.

I oc serviceaccounts get-token infinispan-monitoring

b. Define a GrafanaDataSource that includes the token in the
spec.datasources.securedJsonData.httpHeaderValue1 field, as in the following example:

apiVersion: integreatly.org/vialphai
kind: GrafanaDataSource
metadata:
name: grafanadatasource
spec:
name: datasource.yaml
datasources:
- access: proxy
editable: true
isDefault: true
jsonData:
httpHeaderName1: Authorization
timelnterval: 5s
tIsSkipVerify: true
name: Prometheus
securedsonData:
httpHeaderValue1: >-
Bearer

eyJhbGciOidSUzI1NilsImtpZCl6Imc40...

type: prometheus

url: 'hitps://thanos-querier.openshift-monitoring.svc.cluster.local:9091"

3. Apply the GrafanaDataSource.

I oc apply -f grafana-datasource.yaml

Next steps

Enable Grafana dashboards with the Data Grid Operator configuration properties.

14.4. CONFIGURING DATA GRID DASHBOARDS

75

Red Hat Data Grid 8.3 Data Grid Operator Guide

Data Grid Operator provides global configuration properties that let you configure Grafana dashboards
for Data Grid clusters.

NOTE

You can modify global configuration properties while Data Grid Operator is running.

Prerequisites

® Data Grid Operator must watch the namespace where the Grafana Operator is running.

Procedure

1. Create a ConfigMap named infinispan-operator-config in the Data Grid Operator namespace.

apiVersion: v1

kind: ConfigMap

metadata:
name: infinispan-operator-config

data:
grafana.dashboard.namespace: infinispan
grafana.dashboard.name: infinispan
grafana.dashboard.monitoring.key: middleware

2. Specify the namespace of your Data Grid cluster with the
data.grafana.dashboard.namespace property.

NOTE

Deleting the value for this property removes the dashboard. Changing the value
moves the dashboard to that namespace.

3. Specify a name for the dashboard with the data.grafana.dashboard.name property.

4. If necessary, specify a monitoring key with the data.grafana.dashboard.monitoring.key
property.

5. Create infinispan-operator-config or update the configuration.
I oc apply -f infinispan-operator-config.yaml
6. Open the Grafana Ul, which is available at:

I oc get routes grafana-route -o jsonpath=https://"{.spec.host}"

76

CHAPTER 15. GUARANTEEING AVAILABILITY WITH ANTI-AFFINITY

CHAPTER 15. GUARANTEEING AVAILABILITY WITH ANTI-
AFFINITY

Kubernetes includes anti-affinity capabilities that protect workloads from single points of failure.

15.1. ANTI-AFFINITY STRATEGIES

Each Data Grid node in a cluster runs in a pod that runs on an OpenShift node in a cluster. Each Red Hat
OpenShift node runs on a physical host system. Anti-affinity works by distributing Data Grid nodes
across OpenShift nodes, ensuring that your Data Grid clusters remain available even if hardware failures
occur.

Data Grid Operator offers two anti-affinity strategies:

kubernetes.io/hosthame
Data Grid replica pods are scheduled on different OpenShift nodes.
topology.kubernetes.io/zone

Data Grid replica pods are scheduled across multiple zones.

Fault tolerance
Anti-affinity strategies guarantee cluster availability in different ways.

NOTE

The equations in the following section apply only if the number of OpenShift nodes or
zones is greater than the number of Data Grid nodes.

Scheduling pods on different OpenShift nodes

Provides tolerance of x node failures for the following types of cache:
® Replicated: x = spec.replicas - 1
® Distributed: X = num_owners - 1

Scheduling pods across multiple zones
Provides tolerance of x zone failures when X zones exist for the following types of cache:
® Replicated: x = spec.replicas - 1

® Distributed: X = num_owners - 1

NOTE

spec.replicas
Defines the number of pods in each Data Grid cluster.
num_owners

Is the cache configuration attribute that defines the number of replicas for each entry
in the cache.

15.2. CONFIGURING ANTI-AFFINITY

77

Red Hat Data Grid 8.3 Data Grid Operator Guide

Specify where OpenShift schedules pods for your Data Grid clusters to ensure availability.

Procedure
1. Add the spec.affinity block to your Infinispan CR.
2. Configure anti-affinity strategies as necessary.

3. Apply your Infinispan CR.

15.2.1. Anti-affinity strategy configurations

Configure anti-affinity strategies in your Infinispan CR to control where OpenShift schedules Data Grid
replica pods.

Topology keys Description

topologyKey: "topology.kubernetes.io/zone" Schedules Data Grid replica pods across multiple
zones.

topologyKey: "kubernetes.io/hosthame™ Schedules Data Grid replica pods on different
OpenShift nodes.

Schedule pods on different OpenShift nodes
The following is the anti-affinity strategy that Data Grid Operator uses if you do not configure the
spec.affinity field in your Infinispan CR:

spec:
affinity:
podAntiAffinity:
preferredDuringSchedulinglgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchLabels:
app: infinispan-pod
clusterName: <cluster_name>
infinispan_cr: <cluster_name>
topologyKey: "kubernetes.io/hostname”

Requiring different nodes
In the following example, OpenShift does not schedule Data Grid pods if different nodes are not
available:

spec:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchLabels:
app: infinispan-pod

78

CHAPTER 15. GUARANTEEING AVAILABILITY WITH ANTI-AFFINITY

clusterName: <cluster_name>
infinispan_cr: <cluster_name>
topologyKey: "topology.kubernetes.io/hostname”

NOTE

To ensure that you can schedule Data Grid replica pods on different OpenShift nodes,
the number of OpenShift nodes available must be greater than the value of
spec.replicas.

Schedule pods across multiple OpenShift zones
The following example prefers multiple zones when scheduling pods but schedules Data Grid replica
pods on different OpenShift nodes if it is not possible to schedule across zones:

spec:
affinity:
podAntiAffinity:
preferredDuringSchedulinglgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchLabels:
app: infinispan-pod
clusterName: <cluster_name>
infinispan_cr: <cluster_name>
topologyKey: "topology.kubernetes.io/zone"
- weight: 90
podAffinityTerm:
labelSelector:
matchLabels:
app: infinispan-pod
clusterName: <cluster_name>
infinispan_cr: <cluster_name>
topologyKey: "kubernetes.io/hostname”

Requiring multiple zones
The following example uses the zone strategy only when scheduling Data Grid replica pods:

spec:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchLabels:
app: infinispan-pod
clusterName: <cluster_name>
infinispan_cr: <cluster_name>
topologyKey: "topology.kubernetes.io/zone"

79

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 16. CREATING CACHES WITH DATA GRID
OPERATOR

Use Cache CRs to add cache configuration with Data Grid Operator and control how Data Grid stores
your data.

16.1. DATA GRID CACHES
Cache configuration defines the characteristics and features of the data store and must be valid with
the Data Grid schema. Data Grid recommends creating standalone files in XML or JSON format that
define your cache configuration. You should separate Data Grid configuration from application code for
easier validation and to avoid the situation where you need to maintain XML snippets in Java or some
other client language.
To create caches with Data Grid clusters running on OpenShift, you should:

® Use Cache CR as the mechanism for creating caches through the OpenShift front end.

e Use Batch CR to create multiple caches at a time from standalone configuration files.

® Access Data Grid Console and create caches in XML or JSON format.

You can use Hot Rod or HTTP clients but Data Grid recommends Cache CR or Batch CR unless your
specific use case requires programmatic remote cache creation.

Cache CRs

® Cache CRs apply to Data Grid service pods only.

® FEach Cache CR corresponds to a single cache on the Data Grid cluster.

16.2. CREATING CACHES WITH THE CACHE CR

Complete the following steps to create caches on Data Grid service clusters using valid configuration in
XML or YAML format.

Procedure

1. Create a Cache CR with a unique value in the metadata.name field.
2. Specify the target Data Grid cluster with the spec.clusterName field.

3. Name your cache with the spec.name field.

NOTE

The name attribute in the cache configuration does not take effect. If you do not
specify a name with the spec.name field then the cache uses the value of the
metadata.name field.

4. Add a cache configuration with the spec.template field.

5. Apply the Cache CR, for example:

80

CHAPTER 16. CREATING CACHES WITH DATA GRID OPERATOR

oc apply -f mycache.yaml
cache.infinispan.org/mycachedefinition created

Cache CR examples

XML

apiVersion: infinispan.org/v2alpha1
kind: Cache
metadata:
name: mycachedefinition
spec:
clusterName: infinispan
name: myXMLcache
template: <distributed-cache mode="SYNC" statistics="true"><encoding media-type="application/x-
protostream"/><persistence><file-store/></persistence></distributed-cache>

YAML

apiVersion: infinispan.org/v2alphai
kind: Cache
metadata:
name: mycachedefinition
spec:
clusterName: infinispan
name: myYAMLcache
template: |-
distributedCache:
mode: "SYNC"
owners: "2"
statistics: "true"
encoding:
mediaType: "application/x-protostream”
persistence:
fileStore: ~

16.3. ADDING PERSISTENT CACHE STORES

You can add persistent cache stores to Data Grid service pods to save data to the persistent volume.

Data Grid creates a Single File cache store, .dat file, in the /opt/infinispan/server/data directory.

Procedure

® Add the <file-store/> element to the persistence configuration in your Data Grid cache, as in
the following example:

<distributed-cache name="persistent-cache" mode="SYNC">
<encoding media-type="application/x-protostream"/>
<persistence>
<file-store/>
</persistence>
</distributed-cache>

81

Red Hat Data Grid 8.3 Data Grid Operator Guide

16.4. ADDING CACHES TO CACHE SERVICE PODS

Cache service pods include a default cache configuration with recommended settings. This default
cache lets you start using Data Grid without the need to create caches.

NOTE

Because the default cache provides recommended settings, you should create caches
only as copies of the default. If you want multiple custom caches you should create Data
Grid service pods instead of Cache service pods.

Procedure

® Access the Data Grid Console and provide a copy of the default configuration in XML or JSON
format.

® Use the Data Grid CLI to create a copy from the default cache as follows:

I [//containers/default]> create cache --template=default mycache

16.4.1. Default cache configuration

This topic describes default cache configuration for Cache service pods.

<distributed-cache name="default"
mode="SYNC"
owners="2">
<memory storage="OFF_HEAP"
max-size="<maximum_size_in_bytes>"
when-full="REMOVE" />
<partition-handling when-split="ALLOW_READ_WRITES"
merge-policy="REMOVE_ALL"/>
</distributed-cache>

Default caches:
® Use synchronous distribution to store data across the cluster.
® Create two replicas of each entry on the cluster.
® Store cache entries as bytes in native memory (off-heap).

® Define the maximum size for the data container in bytes. Data Grid Operator calculates the
maximum size when it creates pods.

® Evict cache entries to control the size of the data container. You can enable automatic scaling
so that Data Grid Operator adds pods when memory usage increases instead of removing

entries.

e Use a conflict resolution strategy that allows read and write operations for cache entries, even if
segment owners are in different partitions.

® Specify a merge policy that removes entries from the cache when Data Grid detects conflicts.

82

CHAPTER 17. RUNNING BATCH OPERATIONS

CHAPTER 17. RUNNING BATCH OPERATIONS

Data Grid Operator provides a Batch CR that lets you create Data Grid resources in bulk. Batch CR
uses the Data Grid command line interface (CLI) in batch mode to carry out sequences of operations.

NOTE

Modifying a Batch CR instance has no effect. Batch operations are "one-time" events
that modify Data Grid resources. To update .spec fields for the CR, or when a batch
operation fails, you must create a new instance of the Batch CR.

17.1. RUNNING INLINE BATCH OPERATIONS

Include your batch operations directly in a Batch CR if they do not require separate configuration
artifacts.

Procedure

1. Create a Batch CR.

a. Specify the name of the Data Grid cluster where you want the batch operations to run as
the value of the spec.cluster field.

b. Add each CLI command to run on a line in the spec.config field.

apiVersion: infinispan.org/v2alphai
kind: Batch
metadata:
name: mybatch
spec:
cluster: infinispan
config: |
create cache --template=org.infinispan.DIST_SYNC mycache
put --cache=mycache hello world
put --cache=mycache hola mundo

2. Apply your Batch CR.
I oc apply -f mybatch.yaml

3. Check the status.Phase field in the Batch CR to verify the operations completed successfully.

17.2. CREATING CONFIGMAPS FOR BATCH OPERATIONS

Create a ConfigMap so that additional files, such as Data Grid cache configuration, are available for
batch operations.

Prerequisites

For demonstration purposes, you should add some configuration artifacts to your host filesystem before
you start the procedure:

e Create a /tmp/mybatch directory where you can add some files.

83

Red Hat Data Grid 8.3 Data Grid Operator Guide

I mkdir -p /tmp/mybatch
® Create a Data Grid cache configuration.

cat > /tmp/mybatch/mycache.xml<<EOF

<distributed-cache name="mycache" mode="SYNC">
<encoding media-type="application/x-protostream"/>
<memory max-count="1000000" when-full="REMOVE"/>

</distributed-cache>

EOF

Procedure

1. Create a batch file that contains all commands you want to run.
For example, the following batch file creates a cache named "mycache" and adds two entries to
it:

create cache mycache --file=/etc/batch/mycache.xml
put --cache=mycache hello world
put --cache=mycache hola mundo

IMPORTANT

The ConfigMap is mounted in Data Grid pods at /etc/batch. You must prepend
all --file= directives in your batch operations with that path.

2. Ensure all configuration artifacts that your batch operations require are in the same directory as
the batch file.

Is /tmp/mybatch

batch
mycache.xml

3. Create a ConfigMap from the directory.

I oc create configmap mybatch-config-map --from-file=/tmp/mybatch
17.3. RUNNING BATCH OPERATIONS WITH CONFIGMAPS
Run batch operations that include configuration artifacts.

Prerequisites

e Create a ConfigMap that contains any files your batch operations require.

Procedure

1. Create a Batch CR that specifies the name of a Data Grid cluster as the value of the
spec.cluster field.

84

CHAPTER 17. RUNNING BATCH OPERATIONS

2. Set the name of the ConfigMap that contains your batch file and configuration artifacts with
the spec.configMap field.

cat > mybatch.yaml<<EOF
apiVersion: infinispan.org/v2alphai
kind: Batch
metadata:

name: mybatch
spec:

cluster: infinispan

configMap: mybatch-config-map
EOF

3. Apply your Batch CR.

I oc apply -f mybatch.yaml

4. Check the status.Phase field in the Batch CR to verify the operations completed successfully.

17.4. BATCH STATUS MESSAGES

Verify and troubleshoot batch operations with the status.Phase field in the Batch CR.

Phase Description

Succeeded All batch operations have completed successfully.

Initializing Batch operations are queued and resources are
initializing.

Initialized Batch operations are ready to start.

Running Batch operations are in progress.

Failed One or more batch operations were not successful.

Failed operations

Batch operations are not atomic. If a command in a batch script fails, it does not affect the other
operations or cause them to rollback.

NOTE

If your batch operations have any server or syntax errors, you can view log messages in
the Batch CRin the status.Reason field.

17.5. EXAMPLE BATCH OPERATIONS

Use these example batch operations as starting points for creating and modifying Data Grid resources
with the Batch CR.

85

Red Hat Data Grid 8.3 Data Grid Operator Guide

NOTE
You can pass configuration files to Data Grid Operator only via a ConfigMap.

The ConfigMap is mounted in Data Grid pods at /etc/batch so you must prepend all --
file= directives with that path.

17.5.1. Caches

® Create multiple caches from configuration files.

echo "creating caches..."

create cache sessions --file=/etc/batch/infinispan-prod-sessions.xml
create cache tokens --file=/etc/batch/infinispan-prod-tokens.xml
create cache people --file=/etc/batch/infinispan-prod-people.xml
create cache books --file=/etc/batch/infinispan-prod-books.xml
create cache authors --file=/etc/batch/infinispan-prod-authors.xml
echo "list caches in the cluster"

Is caches

® Create atemplate from a file and then create caches from the template.

echo "creating caches..."

create cache mytemplate --file=/etc/batch/mycache.xml
create cache sessions --template=mytemplate

create cache tokens --template=mytemplate

echo "list caches in the cluster”

Is caches

17.5.2. Counters

Use the Batch CR to create multiple counters that can increment and decrement to record the count of
objects.

You can use counters to generate identifiers, act as rate limiters, or track the number of times a
resource is accessed.

echo "creating counters..."

create counter --concurrency-level=1 --initial-value=5 --storage=PERSISTENT --type=weak
mycounter1

create counter --initial-value=3 --storage=PERSISTENT --type=strong mycounter2

create counter --initial-value=13 --storage=PERSISTENT --type=strong --upper-bound=10
mycounter3

echo "list counters in the cluster”

Is counters

17.5.3. Protobuf schema

Register Protobuf schema to query values in caches. Protobuf schema (.proto files) provide metadata
about custom entities and controls field indexing.

echo "creating schema..."
schema --upload=person.proto person.proto

86

CHAPTER 17. RUNNING BATCH OPERATIONS

schema --upload=book.proto book.proto
schema --upload=author.proto book.proto
echo "list Protobuf schema"

Is schemas

17.5.4. Tasks

Upload tasks that implement org.infinispan.tasks.ServerTask or scripts that are compatible with the
javax.script scripting API.

echo "creating tasks..."

task upload --file=/etc/batch/myfirstscript.js myfirstscript

task upload --file=/etc/batch/mysecondscript.js mysecondscript
task upload --file=/etc/batch/mythirdscript.js mythirdscript

echo "list tasks"

Is tasks

Additional resources

® Data Grid CLI Guide

87

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/using_the_data_grid_command_line_interface/

Red Hat Data Grid 8.3 Data Grid Operator Guide

CHAPTER 18. BACKING UP AND RESTORING DATA GRID
CLUSTERS

Data Grid Operator lets you back up and restore Data Grid cluster state for disaster recovery and to
migrate Data Grid resources between clusters.

18.1. BACKUP AND RESTORE CRS
Backup and Restore CRs save in-memory data at runtime so you can easily recreate Data Grid clusters.

Applying a Backup or Restore CR creates a new pod that joins the Data Grid cluster as a zero-capacity
member, which means it does not require cluster rebalancing or state transfer to join.

For backup operations, the pod iterates over cache entries and other resources and creates an archive, a
.zip file, in the /opt/infinispan/backups directory on the persistent volume (PV).

NOTE

Performing backups does not significantly impact performance because the other pods in
the Data Grid cluster only need to respond to the backup pod as it iterates over cache
entries.

For restore operations, the pod retrieves Data Grid resources from the archive on the PV and applies
them to the Data Grid cluster.

When either the backup or restore operation completes, the pod leaves the cluster and is terminated.

Reconciliation

Data Grid Operator does not reconcile Backup and Restore CRs which mean that backup and restore
operations are "one-time" events.

Modifying an existing Backup or Restore CR instance does not perform an operation or have any
effect. If you want to update .spec fields, you must create a new instance of the Backup or Restore CR.

18.2. BACKING UP DATA GRID CLUSTERS

Create a backup file that stores Data Grid cluster state to a persistent volume.

Prerequisites

® Create an Infinispan CR with spec.service.type: DataGrid.

® Ensure there are no active client connections to the Data Grid cluster.
Data Grid backups do not provide snapshot isolation and data modifications are not written to
the archive after the cache is backed up.
To archive the exact state of the cluster, you should always disconnect any clients before you
back it up.

Procedure

1. Name the Backup CR with the metadata.name field.

2. Specify the Data Grid cluster to backup with the spec.cluster field.

88

CHAPTER 18. BACKING UP AND RESTORING DATA GRID CLUSTERS

3. Configure the persistent volume claim (PVC) that adds the backup archive to the persistent
volume (PV) with the spec.volume.storage and spec.volume.storage.storageClassName
fields.

apiVersion: infinispan.org/v2alpha1
kind: Backup
metadata:
name: my-backup
spec:
cluster: source-cluster
volume:
storage: 1Gi
storageClassName: my-storage-class

4. Optionally include spec.resources fields to specify which Data Grid resources you want to back
up.
If you do not include any spec.resources fields, the Backup CR creates an archive that
contains all Data Grid resources. If you do specify spec.resources fields, the Backup CR
creates an archive that contains those resources only.

spec:

resources:
templates:
- distributed-sync-prod
- distributed-sync-dev
caches:
- cache-one
- cache-two
counters:
- counter-name
protoSchemas:
- authors.proto
- books.proto
tasks:
- wordStream.js

You can also use the * wildcard character as in the following example:

spec:

resources:
caches:

nxn

protoSchemas:

nxn

5. Apply your Backup CR.

I oc apply -f my-backup.yaml

Verification

89

Red Hat Data Grid 8.3 Data Grid Operator Guide

1. Check that the status.phase field has a status of Succeeded in the Backup CR and that Data
Grid logs have the following message:

I ISPN005044: Backup file created 'my-backup.zip'
2. Run the following command to check that the backup is successfully created:

I oc describe Backup my-backup

18.3. RESTORING DATA GRID CLUSTERS

Restore Data Grid cluster state from a backup archive.

Prerequisites

® Create a Backup CR on a source cluster.

® Create atarget Data Grid cluster of Data Grid service pods.

NOTE

If you restore an existing cache, the operation overwrites the data in the cache
but not the cache configuration.

For example, you back up a distributed cache named mycache on the source
cluster. You then restore mycache on a target cluster where it already exists as a
replicated cache. In this case, the data from the source cluster is restored and
mycache continues to have a replicated configuration on the target cluster.

® Ensure there are no active client connections to the target Data Grid cluster you want to restore.
Cache entries that you restore from a backup can overwrite more recent cache entries.
For example, a client performs a cache.put(k=2) operation and you then restore a backup that
contains k=1.

Procedure

1. Name the Restore CR with the metadata.name field.
2. Specify a Backup CR to use with the spec.backup field.

3. Specify the Data Grid cluster to restore with the spec.cluster field.

apiVersion: infinispan.org/v2alphai
kind: Restore
metadata:
name: my-restore
spec:
backup: my-backup
cluster: target-cluster

4. Optionally add the spec.resources field to restore specific resources only.

I spec:

90

resources:
templates:
- distributed-sync-prod
- distributed-sync-dev
caches:
- cache-one
- cache-two
counters:
- counter-name
protoSchemas:
- authors.proto
- books.proto
tasks:
- wordStream.js

5. Apply your Restore CR.

I oc apply -f my-restore.yaml

Verification

CHAPTER 18. BACKING UP AND RESTORING DATA GRID CLUSTERS

® Check that the status.phase field has a status of Succeeded in the Restore CR and that Data
Grid logs have the following message:

I ISPN005045: Restore 'my-backup’ complete

You should then open the Data Grid Console or establish a CLI connection to verify data and Data Grid
resources are restored as expected.

18.4. BACKUP AND RESTORE STATUS

Backup and Restore CRs include a status.phase field that provides the status for each phase of the

operation.

Status Description

Initializing

Initialized

Running

Succeeded

The system has accepted the request and the
controller is preparing the underlying resources to
create the pod.

The controller has prepared all underlying resources
successfully.

The pod is created and the operation is in progress
on the Data Grid cluster.

The operation has completed successfully on the
Data Grid cluster and the pod is terminated.

o1

Red Hat Data Grid 8.3 Data Grid Operator Guide

Status Description

Failed The operation did not successfully complete and the
pod is terminated.

Unknown The controller cannot obtain the status of the pod or
determine the state of the operation. This condition
typically indicates a temporary communication error
with the pod.

18.4.1. Handling failed backup and restore operations

If the status.phase field of the Backup or Restore CR is Failed, you should examine pod logs to
determine the root cause before you attempt the operation again.

Procedure

1. Examine the logs for the pod that performed the failed operation.
Pods are terminated but remain available until you delete the Backup or Restore CR.

I oc logs <backup|restore_pod_name>

2. Resolve any error conditions or other causes of failure as indicated by the pod logs.

3. Create a new instance of the Backup or Restore CR and attempt the operation again.

92

CHAPTER 19. DEPLOYING CUSTOM CODE TO DATA GRID

CHAPTER 19. DEPLOYING CUSTOM CODE TO DATA GRID

Add custom code, such as scripts and event listeners, to your Data Grid clusters.
Before you can deploy custom code to Data Grid clusters, you need to make it available. To do this you

can copy artifacts from a persistent volume (PV), download artifacts from an HTTP or FTP server, or use
both methods.

19.1. COPYING CODE ARTIFACTS TO DATA GRID CLUSTERS

Adding your artifacts to a persistent volume (PV) and then copy them to Data Grid pods.

This procedure explains how to use a temporary pod that mounts a persistent volume claim (PVC) that:
® | etsyou add code artifacts to the PV (perform a write operation).
® Allows Data Grid pods to load code artifacts from the PV (perform a read operation).

To perform these read and write operations, you need certain PV access modes. However, support for
different PVC access modes is platform dependent.

It is beyond the scope of this document to provide instructions for creating PVCs with different
platforms. For simplicity, the following procedure shows a PVC with the ReadWriteMany access mode.

In some cases only the ReadOnlyMany or ReadWriteOnce access modes are available. You can use a
combination of those access modes by reclaiming and reusing PVCs with the same spec.volumeName.

NOTE

Using ReadWriteOnce access mode results in all Data Grid pods in a cluster being
scheduled on the same OpenShift node.

Procedure

1. Change to the namespace for your Data Grid cluster.

I oc project rhdg-namespace

2. Create a PVC for your custom code artifacts, for example:

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: datagrid-libs
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 100Mi

3. Apply your PVC.

I oc apply -f datagrid-libs.yaml

93

Red Hat Data Grid 8.3 Data Grid Operator Guide

4. Create a pod that mounts the PVC, for example:

apiVersion: vi
kind: Pod
metadata:
name: datagrid-libs-pod
spec:
securityContext:

fsGroup: 2000

volumes:

- name: lib-pv-storage
persistentVolumeClaim:

claimName: datagrid-libs
containers:

- name: lib-pv-container
image: registry.redhat.io/datagrid/datagrid-8-rhel8:8.3
volumeMounts:

- mountPath: /tmp/libs
name: lib-pv-storage

5. Add the pod to the Data Grid namespace and wait for it to be ready.

oc apply -f datagrid-libs-pod.yaml
oc wait --for=condition=ready --timeout=2m pod/datagrid-libs-pod
6. Copy your code artifacts to the pod so that they are loaded into the PVC.
For example to copy code artifacts from a local libs directory, do the following:

I oc cp --no-preserve=true libs datagrid-libs-pod:/tmp/
7. Delete the pod.
I oc delete pod datagrid-libs-pod

Specify the persistent volume with spec.dependencies.volumeClaimName in your Infinispan
CR and then apply the changes.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
name: infinispan
spec:
replicas: 2
dependencies:
volumeClaimName: datagrid-libs
service:
type: DataGrid

NOTE

If you update your custom code on the persistent volume, you must restart the Data Grid

- cluster so it can load the changes.

94

CHAPTER 19. DEPLOYING CUSTOM CODE TO DATA GRID

Additional resources

® Configuring persistent storage
® Persistent Volumes
® Access Modes

® How to manually reclaim and reuse OpenShift Persistent volumes that are "Released” (Red Hat
Knowledgebase)

19.2. DOWNLOADING CODE ARTIFACTS

Add your artifacts to an HTTP or FTP server so that Data Grid Operator downloads them to the
{lib_path} directory on each Data Grid node.

When downloading files, Data Grid Operator can automatically detect the file type. Data Grid Operator
also extracts archived files, such as zip or tgz, to the filesystem after the download completes.

NOTE

Each time Data Grid Operator creates a Data Grid node it downloads the artifacts to the
node. The download also occurs when Data Grid Operator recreates pods after
terminating them.

Prerequisites

® Host your code artifacts on an HTTP or FTP server.

Procedure
1. Add the spec.dependencies.artifacts field to your Infinispan CR.

a. Specify the location of the file to download via HTTP or FTP as the value of the
spec.dependencies.artifacts.url field.

b. Optionally specify a checksum to verify the integrity of the download with the
spec.dependencies.artifacts.hash field.

The hash field requires a value is in the format of <algorithm>:<checksums> where
<algorithm> is shal|sha224|sha256|sha384|sha512|md5.

c. Set the file type, if necessary, with the spec.dependencies.artifacts.type field.
You should explicitly set the file type if it is not included in the URL or if the file type is
actually different to the extension in the URL.

NOTE

If you set type: file, Data Grid Operator downloads the file as-is without
extracting it to the filesystem.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:

name: infinispan

95

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/index#configuring-persistent-storage
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://access.redhat.com/solutions/4651451

Red Hat Data Grid 8.3 Data Grid Operator Guide

spec:
replicas: 2
dependencies:
artifacts:
- url: http://example.com:8080/path
hash:
sha256:596408848b56b5a23096baa110cd8b633c9a9aef2edd6b38943ade5b4edcd686
type: zip
service:
type: DataGrid

2. Apply the changes.

96

CHAPTER 20. SENDING CLOUD EVENTS FROM DATA GRID CLUSTERS

CHAPTER 20. SENDING CLOUD EVENTS FROM DATA GRID
CLUSTERS

Configure Data Grid as a Knative source by sending CloudEvents to Apache Kafka topics.

IMPORTANT

Sending cloud events with Red Hat OpenShift Serverless is available as a technology
preview feature.

20.1. TECHNOLOGY PREVIEW FEATURES

Technology preview features or capabilities are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete.

Red Hat does not recommend using technology preview features or capabilities for production. These
features provide early access to upcoming product features, which enables you to test functionality and
provide feedback during the development process.

For more information, see Red Hat Technology Preview Features Support Scope .

20.2. CLOUD EVENTS

You can send CloudEvents from Data Grid clusters when entries in caches are created, updated,
removed, or expired.

Data Grid sends structured events to Kafka in JSON format, as in the following example:

"specversion™: "1.0",
"source": "/infinispan/<cluster_name>/<cache_name>",
"type": "org.infinispan.entry.created",
"time": "<timestamp>",
"subject": "<key-name>",
"id": "key-name:CommandInvocation:node-name:0",
"data": {
"property": "value"
}
}

Field Description

type Prefixes events for Data Grid cache entries with
org.infinispan.entry.

data Entry value.
subject Entry key, converted to string.
id Generated identifier for the event.

97

https://access.redhat.com/support/offerings/techpreview/

Red Hat Data Grid 8.3 Data Grid Operator Guide

20.3. ENABLING CLOUD EVENTS

Configure Data Grid to send CloudEvents.

Prerequisites

® Set up an Kafka cluster that listens for Data Grid topics.

Procedure
1. Add spec.cloudEvents to your Infinispan CR.

a. Configure the number of acknowledgements with the spec.cloudEvents.acks field. Values

are"0","1", or "all".

b. List Kafka servers to which Data Grid sends events with the
spec.cloudEvents.bootstrapServers field.

c. Specify the Kafka topic for Data Grid events with the
spec.cloudEvents.cacheEntriesTopic field.

spec:
cloudEvents:
acks: "1"
bootstrapServers: my-cluster-kafka-bootstrap_1.<namespace_1>.svc:9092,my-cluster-
kafka-bootstrap_2.<namespace_2>.svc:9092
cacheEntriesTopic: target-topic

2. Apply your changes.

98

CHAPTER 21. ESTABLISHING REMOTE CLIENT CONNECTIONS

CHAPTER 21. ESTABLISHING REMOTE CLIENT
CONNECTIONS

Connect to Data Grid clusters from the Data Grid Console, Command Line Interface (CLI), and remote
clients.

21.1. CLIENT CONNECTION DETAILS
Client connections to Data Grid require the following information:
® Hostname
® Port
e Authentication credentials, if required
® TLS certificate, if you use encryption

Hostnames

The hostname you use depends on whether clients are running on the same OpenShift cluster as Data
Grid.

Client applications running on the same OpenShift cluster use the internal service name for the Data
Grid cluster.

metadata:
name: infinispan

Client applications running on a different OpenShift, or outside OpenShift, use a hostname that
depends on how Data Grid is exposed on the network.

A LoadBalancer service uses the URL for the load balancer. A NodePort service uses the node
hostname. An Red Hat OpenShift Route uses either a custom hostname that you define or a hostname

that the system generates.

Ports

Client connections on OpenShift and a through LoadBalancer service use port 11222,

NodePort services use a port in the range of 30000 to 60000. Routes use either port 80 (unencrypted)
or 443 (encrypted).

Additional resources

® Configuring Network Access to Data Grid
® Retrieving Credentials

® Retrieving TLS Certificates

21.2. CONNECTING TO DATA GRID CLUSTERS WITH REMOTE SHELLS

Start a remote shell session to Data Grid clusters and use the command line interface (CLI) to work with
Data Grid resources and perform administrative operations.

99

Red Hat Data Grid 8.3 Data Grid Operator Guide

Prerequisites

® Have kubectl-infinispan on your PATH.

® Have valid Data Grid credentials.
Procedure
1. Run the infinispan shell command to connect to your Data Grid cluster.

I oc infinispan shell <cluster_name>

NOTE

If you have access to authentication secrets and there is only one Data Grid user
the kubectl-infinispan plugin automatically detects your credentials and
authenticates to Data Grid. If your deployment has multiple Data Grid credentials,
specify a user with the --username argument and enter the corresponding
password when prompted.

2. Perform CLI operations as required.

TIP

Press the tab key or use the --help argument to view available options and help text.
3. Use the quit command to end the remote shell session.

Additional resources

® Using the Data Grid Command Line Interface

21.3. ACCESSING DATA GRID CONSOLE

Access the console to create caches, perform adminstrative operations, and monitor your Data Grid
clusters.

Prerequisites

® Expose Data Grid on the network so you can access the console through a browser.
For example, configure a LoadBalancer service or create a Route.

Procedure

® Access the console from any browser at SBHOSTNAME:$PORT.
Replace SHOSTNAME:$PORT with the network location where Data Grid is available.

21.4. HOT ROD CLIENTS

Hot Rod is a binary TCP protocol that Data Grid provides for high-performance data transfer
capabilities with remote clients.

100

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/using_the_data_grid_command_line_interface/

CHAPTER 21. ESTABLISHING REMOTE CLIENT CONNECTIONS

Client intelligence

The Hot Rod protocol includes a mechanism that provides clients with an up-to-date view of the cache
topology. Client intelligence improves performance by reducing the number of network hops for read
and write operations.

Clients running in the same OpenShift cluster can access internal IP addresses for Data Grid pods so
you can use any client intelligence.

HASH_DISTRIBUTION_AWARE is the default intelligence mechanism and enables clients to route
requests to primary owners, which provides the best performance for Hot Rod clients.

BASIC intelligence
Hot Rod clients must use BASIC intelligence in the following situations:
e Connecting to Data Grid through a LoadBalancer, NodePort, or OpenShift Route.
® Failing over to a different OpenShift cluster when using cross-site replication.
OpenShift cluster administrators can define network policies that restrict traffic to Data Grid. In some

cases network isolation policies can require you to use BASIC intelligence even when clients are running
in the same OpenShift cluster but a different namespace.

21.4.1. Hot Rod client configuration API

You can programmatically configure Hot Rod client connections with the ConfigurationBuilder
interface.

NOTE

Replace $SERVICE_HOSTNAME in the following examples with the internal service
name of your Data Grid cluster.

name: infinispan

I metadata:

On OpenShift

ConfigurationBuilder

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.configuration.SaslQop;
import org.infinispan.client.hotrod.impl.ConfigurationProperties;

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer()
.host("$HOSTNAME")
.port(ConfigurationProperties. DEFAULT_HOTROD_PORT)
.security().authentication()
.username("username")
.password("changeme")
.realm("default")
.saslQop(SaslQop.AUTH)

101

Red Hat Data Grid 8.3 Data Grid Operator Guide

.saslMechanism("SCRAM-SHA-512")

.ssl()
.sniHostName("$SERVICE_HOSTNAME")
trustStoreFileName("/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt")
trustStoreType("pem");

hotrod-client.properties

Connection
infinispan.client.hotrod.server_list=fHOSTNAME:$PORT

Authentication

infinispan.client.hotrod.use_auth=true
infinispan.client.hotrod.auth_username=developer
infinispan.client.hotrod.auth_password=$PASSWORD
infinispan.client.hotrod.auth_server_name=$CLUSTER_NAME
infinispan.client.hotrod.sasl_properties.javax.security.sasl.qop=auth
infinispan.client.hotrod.sasl_mechanism=SCRAM-SHA-512

Encryption

infinispan.client.hotrod.sni_host_name=$SERVICE_HOSTNAME
infinispan.client.hotrod.trust_store_file_name=/var/run/secrets/kubernetes.io/serviceaccount/service-
ca.crt

infinispan.client.hotrod.trust_store_type=pem

Outside OpenShift

ConfigurationBuilder

import org.infinispan.client.hotrod.configuration.ClientIntelligence;
import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.configuration.SaslQop;

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer()
.host("$HOSTNAME")
.port("$PORT")
.security().authentication()
.username("username")
.password("changeme")
.realm("default")
.saslQop(SaslQop.AUTH)
.saslMechanism("SCRAM-SHA-512")
.ssl()
.sniHostName("$SERVICE_HOSTNAME")
//Create a client trust store with tls.crt from your project.
trustStoreFileName("/path/to/truststore.pkcs12")
trustStorePassword("trust_store_password")
trustStoreType("PCKS12");
builder.clientIntelligence(Clientintelligence.BASIC);

hotrod-client.properties

102

CHAPTER 21. ESTABLISHING REMOTE CLIENT CONNECTIONS

Connection
infinispan.client.hotrod.server_list=fHOSTNAME:$PORT

Client intelligence
infinispan.client.hotrod.client_intelligence=BASIC

Authentication

infinispan.client.hotrod.use_auth=true
infinispan.client.hotrod.auth_username=developer
infinispan.client.hotrod.auth_password=$PASSWORD
infinispan.client.hotrod.auth_server_name=$CLUSTER_NAME
infinispan.client.hotrod.sasl_properties.javax.security.sasl.qop=auth
infinispan.client.hotrod.sasl_mechanism=SCRAM-SHA-512

Encryption
infinispan.client.hotrod.sni_host_name=$SERVICE_HOSTNAME

Create a client trust store with tls.crt from your project.
infinispan.client.hotrod.trust_store_file_name=/path/to/truststore.pkcs12
infinispan.client.hotrod.trust_store_password=trust_store_password
infinispan.client.hotrod.trust_store_type=PCKS12

21.4.2. Configuring Hot Rod clients for certificate authentication

If you enable client certificate authentication, clients must present valid certificates when negotiating
connections with Data Grid.

Validate strategy

If you use the Validate strategy, you must configure clients with a keystore so they can present signed
certificates. You must also configure clients with Data Grid credentials and any suitable authentication
mechanism.

Authenticate strategy

If you use the Authenticate strategy, you must configure clients with a keystore that contains signed
certificates and valid Data Grid credentials as part of the distinguished name (DN). Hot Rod clients must
also use the EXTERNAL authentication mechanism.

NOTE

If you enable security authorization, you should assign the Common Name (CN) from the
client certificate a role with the appropriate permissions.

The following example shows a Hot Rod client configuration for client certificate authentication with the
Authenticate strategy:

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.security()
.authentication()
.saslMechanism("EXTERNAL")
.ssl()

103

Red Hat Data Grid 8.3 Data Grid Operator Guide

.keyStoreFileName("/path/to/keystore")
.keyStorePassword("keystorepassword".toCharArray())
.keyStoreType("PCKS12");

21.4.3. Creating caches from Hot Rod clients

You can remotely create caches on Data Grid clusters running on OpenShift with Hot Rod clients.
However, Data Grid recommends that you create caches using Data Grid Console, the CLI, or with
Cache CRs instead of with Hot Rod clients.

Programmatically creating caches
The following example shows how to add cache configurations to the ConfigurationBuilder and then
create them with the RemoteCacheManager:

import org.infinispan.client.hotrod.DefaultTemplate;
import org.infinispan.client.hotrod.RemoteCache;
import org.infinispan.client.hotrod.RemoteCacheManager;

builder.remoteCache("my-cache")
templateName(DefaultTemplate.DIST_SYNC);
builder.remoteCache("another-cache")
.configuration("<infinispan><cache-container><distributed-cache name=\"another-cache\">
<encoding media-type=\"application/x-protostream\"/></distributed-cache></cache-container>
</infinispan>");
try (RemoteCacheManager cacheManager = new RemoteCacheManager(builder.build())) {
// Get a remote cache that does not exist.
// Rather than return null, create the cache from a template.
RemoteCache<String, String> cache = cacheManager.getCache("my-cache");
// Store a value.
cache.put("hello", "world");
// Retrieve the value and print it.
System.out.printf("key = %s\n", cache.get("hello"));

This example shows how to create a cache named CacheWithXMLConfiguration using the
XMLStringConfiguration() method to pass the cache configuration as XML

import org.infinispan.client.hotrod.RemoteCacheManager;
import org.infinispan.commons.configuration. XMLStringConfiguration;

private void createCacheWithXMLConfiguration() {
String cacheName = "CacheWithXMLConfiguration"”;
String xml = String.format("<distributed-cache name=\"%s\">" +
"<encoding media-type=\"application/x-protostream\"/>" +
"<locking isolation=\"READ_COMMITTED\"/>" +
"<transaction mode=\"NON_XA\"/>" +
"<expiration lifespan=\"60000\" interval=\"20000\"/>" +
"</distributed-cache>"
, cacheName);
manager.administration().getOrCreateCache(cacheName, new XMLStringConfiguration(xml));
System.out.printin("Cache with configuration exists or is created.");

}

Using Hot Rod client properties

104

CHAPTER 21. ESTABLISHING REMOTE CLIENT CONNECTIONS

When you invoke cacheManager.getCache() calls for named caches that do not exist, Data Grid creates
them from the Hot Rod client properties instead of returning null.

Add cache configuration to hotrod-client.properties as in the following example:

Add cache configuration
infinispan.client.hotrod.cache.my-cache.template_name=org.infinispan.DIST_SYNC
infinispan.client.hotrod.cache.another-cache.configuration=<infinispan><cache-container>
<distributed-cache name=\"another-cache\"/></cache-container></infinispan>
infinispan.client.hotrod.cache.my-other-cache.configuration_uri=file:/path/to/configuration.xml

21.5. ACCESSING THE REST API

Data Grid provides a RESTful interface that you can interact with using HTTP clients.

Prerequisites

® Expose Data Grid on the network so you can access the REST API.
For example, configure a LoadBalancer service or create a Route.

Procedure

® Access the REST APl with any HTTP client at SHOSTNAME:$PORT/rest/v2.

Replace SHOSTNAME:$PORT with the network location where Data Grid listens for client
connections.

Additional resources

® Data Grid REST API

105

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_rest_api/

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DATA GRID OPERATOR
	1.1. DATA GRID OPERATOR DEPLOYMENTS
	1.2. CLUSTER MANAGEMENT
	1.3. RESOURCE RECONCILIATION

	CHAPTER 2. INSTALLING THE NATIVE DATA GRID CLI AS A CLIENT PLUGIN
	2.1. INSTALLING THE NATIVE DATA GRID CLI PLUGIN
	2.2. KUBECTL-INFINISPAN COMMAND REFERENCE

	CHAPTER 3. INSTALLING DATA GRID OPERATOR
	3.1. INSTALLING DATA GRID OPERATOR ON RED HAT OPENSHIFT
	3.2. INSTALLING DATA GRID OPERATOR WITH THE NATIVE CLI PLUGIN
	3.3. INSTALLING DATA GRID OPERATOR WITH AN OPENSHIFT CLIENT

	CHAPTER 4. CREATING DATA GRID CLUSTERS
	4.1. INFINISPAN CUSTOM RESOURCE (CR)
	4.2. CREATING DATA GRID CLUSTERS
	4.3. VERIFYING DATA GRID CLUSTER VIEWS
	Retrieving cluster view from logs

	4.4. MODIFYING DATA GRID CLUSTERS
	4.5. STOPPING AND STARTING DATA GRID CLUSTERS

	CHAPTER 5. CONFIGURING DATA GRID CLUSTERS
	5.1. APPLYING CUSTOM CONFIGURATION TO DATA GRID CLUSTERS
	5.2. CUSTOM DATA GRID CONFIGURATION
	Cache template
	Multiple caches
	Logging configuration

	CHAPTER 6. UPGRADING DATA GRID CLUSTERS
	6.1. TECHNOLOGY PREVIEW FEATURES
	6.2. DATA GRID CLUSTER UPGRADES
	Shutdown upgrades
	Hot Rod rolling upgrades

	6.3. UPGRADING DATA GRID CLUSTERS WITH DOWNTIME
	6.4. PERFORMING HOT ROD ROLLING UPGRADES FOR DATA GRID CLUSTERS

	CHAPTER 7. SETTING UP DATA GRID SERVICES
	7.1. SERVICE TYPES
	7.2. CREATING DATA GRID SERVICE PODS
	7.2.1. Data Grid service CR

	7.3. ALLOCATING STORAGE RESOURCES
	7.3.1. Persistent volume claims

	7.4. ALLOCATING CPU AND MEMORY
	7.5. SETTING JVM OPTIONS
	7.6. DISABLING FIPS MODE IN YOUR INFINISPAN CR
	7.7. ADJUSTING LOG LEVELS
	7.7.1. Logging reference

	7.8. CREATING CACHE SERVICE PODS
	7.8.1. Cache service CR

	7.9. AUTOMATIC SCALING
	7.9.1. Configuring automatic scaling

	7.10. ADDING LABELS AND ANNOTATIONS TO DATA GRID RESOURCES
	7.11. ADDING LABELS AND ANNOTATIONS WITH ENVIRONMENT VARIABLES

	CHAPTER 8. CONFIGURING AUTHENTICATION
	8.1. DEFAULT CREDENTIALS
	8.2. RETRIEVING CREDENTIALS
	8.3. ADDING CUSTOM USER CREDENTIALS
	8.4. CHANGING THE OPERATOR PASSWORD
	8.5. DISABLING USER AUTHENTICATION

	CHAPTER 9. CONFIGURING CLIENT CERTIFICATE AUTHENTICATION
	9.1. CLIENT CERTIFICATE AUTHENTICATION
	9.2. ENABLING CLIENT CERTIFICATE AUTHENTICATION
	9.3. PROVIDING CLIENT TRUSTSTORES
	9.4. PROVIDING CLIENT CERTIFICATES

	CHAPTER 10. CONFIGURING ENCRYPTION
	10.1. ENCRYPTION WITH RED HAT OPENSHIFT SERVICE CERTIFICATES
	10.2. RETRIEVING TLS CERTIFICATES
	10.3. DISABLING ENCRYPTION
	10.4. USING CUSTOM TLS CERTIFICATES
	10.4.1. Custom encryption secrets

	CHAPTER 11. CONFIGURING USER ROLES AND PERMISSIONS
	11.1. ENABLING SECURITY AUTHORIZATION
	11.2. USER ROLES AND PERMISSIONS
	Data Grid Operator credentials

	11.3. ASSIGNING ROLES AND PERMISSIONS TO USERS
	11.4. ADDING CUSTOM ROLES AND PERMISSIONS

	CHAPTER 12. CONFIGURING NETWORK ACCESS TO DATA GRID
	12.1. GETTING THE SERVICE FOR INTERNAL CONNECTIONS
	12.2. EXPOSING DATA GRID THROUGH A LOADBALANCER SERVICE
	12.3. EXPOSING DATA GRID THROUGH A NODEPORT SERVICE
	12.4. EXPOSING DATA GRID THROUGH A ROUTE
	12.5. NETWORK SERVICES

	CHAPTER 13. SETTING UP CROSS-SITE REPLICATION
	13.1. CROSS-SITE REPLICATION EXPOSE TYPES
	13.2. MANAGED CROSS-SITE REPLICATION
	13.2.1. Creating service account tokens for managed cross-site connections
	13.2.2. Exchanging service account tokens
	13.2.3. Configuring managed cross-site connections

	13.3. MANUALLY CONFIGURING CROSS-SITE CONNECTIONS
	13.4. RESOURCES FOR CONFIGURING CROSS-SITE REPLICATION
	Managed cross-site connections
	Manual cross-site connections

	13.5. SECURING CROSS-SITE CONNECTIONS
	13.5.1. Resources for configuring cross-site encryption
	13.5.2. Cross-site encryption secrets

	13.6. CONFIGURING SITES IN THE SAME OPENSHIFT CLUSTER

	CHAPTER 14. MONITORING DATA GRID SERVICES
	14.1. CREATING A PROMETHEUS SERVICE MONITOR
	14.1.1. Disabling the Prometheus service monitor

	14.2. INSTALLING THE GRAFANA OPERATOR
	14.3. CREATING GRAFANA DATA SOURCES
	14.4. CONFIGURING DATA GRID DASHBOARDS

	CHAPTER 15. GUARANTEEING AVAILABILITY WITH ANTI-AFFINITY
	15.1. ANTI-AFFINITY STRATEGIES
	Fault tolerance

	15.2. CONFIGURING ANTI-AFFINITY
	15.2.1. Anti-affinity strategy configurations
	Schedule pods on different OpenShift nodes
	Schedule pods across multiple OpenShift zones

	CHAPTER 16. CREATING CACHES WITH DATA GRID OPERATOR
	16.1. DATA GRID CACHES
	Cache CRs

	16.2. CREATING CACHES WITH THE CACHE CR
	Cache CR examples

	16.3. ADDING PERSISTENT CACHE STORES
	16.4. ADDING CACHES TO CACHE SERVICE PODS
	16.4.1. Default cache configuration

	CHAPTER 17. RUNNING BATCH OPERATIONS
	17.1. RUNNING INLINE BATCH OPERATIONS
	17.2. CREATING CONFIGMAPS FOR BATCH OPERATIONS
	17.3. RUNNING BATCH OPERATIONS WITH CONFIGMAPS
	17.4. BATCH STATUS MESSAGES
	17.5. EXAMPLE BATCH OPERATIONS
	17.5.1. Caches
	17.5.2. Counters
	17.5.3. Protobuf schema
	17.5.4. Tasks

	CHAPTER 18. BACKING UP AND RESTORING DATA GRID CLUSTERS
	18.1. BACKUP AND RESTORE CRS
	18.2. BACKING UP DATA GRID CLUSTERS
	18.3. RESTORING DATA GRID CLUSTERS
	18.4. BACKUP AND RESTORE STATUS
	18.4.1. Handling failed backup and restore operations

	CHAPTER 19. DEPLOYING CUSTOM CODE TO DATA GRID
	19.1. COPYING CODE ARTIFACTS TO DATA GRID CLUSTERS
	19.2. DOWNLOADING CODE ARTIFACTS

	CHAPTER 20. SENDING CLOUD EVENTS FROM DATA GRID CLUSTERS
	20.1. TECHNOLOGY PREVIEW FEATURES
	20.2. CLOUD EVENTS
	20.3. ENABLING CLOUD EVENTS

	CHAPTER 21. ESTABLISHING REMOTE CLIENT CONNECTIONS
	21.1. CLIENT CONNECTION DETAILS
	21.2. CONNECTING TO DATA GRID CLUSTERS WITH REMOTE SHELLS
	21.3. ACCESSING DATA GRID CONSOLE
	21.4. HOT ROD CLIENTS
	21.4.1. Hot Rod client configuration API
	On OpenShift
	Outside OpenShift

	21.4.2. Configuring Hot Rod clients for certificate authentication
	21.4.3. Creating caches from Hot Rod clients
	Programmatically creating caches
	Using Hot Rod client properties

	21.5. ACCESSING THE REST API

