& RedHat

Red Hat Data Grid 8.4

Cache Encoding and Marshalling

Encode Data Grid caches and marshall Java objects

Last Updated: 2024-04-19

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

Encode Data Grid caches and marshall Java objects

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Data Grid caches can store keys and values in different encodings. This document describes how
Data Grid encodes data for remote and embedded caches and explains how to use various media
types with your applications. Additionally this guide describes how to use the Data Grid
implementation of the ProtoStream API to marshall Java objects as Protocol Buffers (Protobuf).
You can also find information about adding ProtoStream annotations to your Java classes and then
generating Protobuf schema for marshalling capabilities as well as indexed queries.

Table of Contents

Table of Contents

RED HAT DAT A GRID ottt ittt ettt ettt et e et e aeeeaaeeeneeeaneesaneennneeaneesaneennnes, 4
DATA GRID DOCUMEN T ATION L.ttt ittt et ettt et eeeeeeaneennnesaneenaneennneeaneens 5
DATA GRID DOWNL O ADS ot iiittttittt ettt ettt ate et eeaeeaneeeaneesnneeaneesaneennneeaneens 6
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt ettt et eeaieennneeaneennneennneeaneens 7
CHAPTER 1. CONFIGURING CACHE ENCODING ...\ttt it taiteeeteenneennneeaneeraneennneenns 8
1.1. CACHE ENCODING 8
Remote caches 8
Embedded caches 8

1.2. PROTOBUF CACHE ENCODING 8
Interoperability 9
Queries 9
Custom types 9
1.2.1. Encoding caches as ProtoStream 10

1.3. TEXT-BASED CACHE ENCODING 10
1.3.1. Clients and text-based encoding 1

Hot Rod clients 1

REST clients n

1.4. MARSHALLED JAVA OBJECTS 1
1.4.1. Clients and marshalled objects 12

1.5. PLAIN OLD JAVA OBJECTS (POJO) 12
1.5.1. Clients and POJOs 13
Hot Rod clients 13

REST clients 13

1.6. ADDING JARS TO DATA GRID SERVER INSTALLATIONS 13
CHAPTER 2. MARSHALLING CUSTOM OBJECTS WITH PROTOSTREAM iiiiiiiiiiiiiiiiiinnnenns 14
2.1. PROTOSTREAM MARSHALLING 14
2.1.1. ProtoStream types 14
Additional type collections 15

2.1.2. ProtoStream annotations 16
ProtoField 16
ProtoFactory 17
AutoProtoSchemaBuilder 17
ProtoAdapter 18
ProtoName 18
ProtoEnumValue 18
ProtoReserved and ProtoReservedStatements 18
ProtoTypeld 18
ProtoUnknownFieldSet 18

Other annotations 19

2.2. CREATING SERIALIZATION CONTEXT INITIALIZERS 19
2.2.1. Adding the ProtoStream processor 19
2.2.2. Adding ProtoStream annotations to Java classes 20
2.2.3. Creating ProtoStream adapter classes 22
2.2.4. Generating serialization context initializers 23
2.2.5. Registering serialization context initializers 24
2.2.6. Registering Protobuf schemas with Data Grid Server 25
2.2.7. Manual serialization context initializer implementations 26

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

CHAPTER 3. USING ALTERNATIVE AND CUSTOM MARSHALLER IMPLEMENTATIONS
3.1. ALLOWING DESERIALIZATION OF JAVA CLASSES
3.2. USING JBOSS MARSHALLING
3.3. USING JAVA SERIALIZATION
3.4. USING CUSTOM MARSHALLERS

CHAPTER 4. DATA CONVERSION ... i i i e ettt
41.HOT ROD DATAFORMAT API
4.2. CONVERTING DATA ON DEMAND WITH EMBEDDED CACHES

27
27
28
29

30
31

Table of Contents

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

RED HAT DATA GRID

Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure
Flexibility to store different objects as key-value pairs.
Grid-based data storage
Designed to distribute and replicate data across clusters.
Elastic scaling
Dynamically adjust the number of nodes to meet demand without service disruption.
Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

DATA GRID DOCUMENTATION

DATA GRID DOCUMENTATION

Documentation for Data Grid is available on the Red Hat customer portal.
® Data Grid 8.4 Documentation
® Data Grid 8.4 Component Details
® Supported Configurations for Data Grid 8.4
® Data Grid 8 Feature Support

® Data Grid Deprecated Features and Functionality

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

Red Hat Data Grid 8.4 Cache Encoding and Marshalling
DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

CHAPTER 1. CONFIGURING CACHE ENCODING

Find out how to configure Data Grid caches with different media types and how encoding affects the
ways you can use Data Grid.

1.1. CACHE ENCODING

Encoding is the format, identified by a media type, that Data Grid uses to store entries (key/value pairs)
in caches.

Remote caches
Data Grid Server stores entries in remote caches with the encoding that is set in the cache
configuration.

Hot Rod and REST clients include a media type with each request they make to Data Grid Server. To
handle multiple clients making read and write requests with different media types, Data Grid Server
converts data on-demand to and from the media type that is set in the cache configuration.

If the remote cache does not have any encoding configuration, Data Grid Server stores keys and values
as generic byte[] without any media type information, which can lead to unexpected results when
converting data for clients request different formats.

Use ProtoStream encoding

Data Grid Server returns an error when client requests include a media type that it cannot convert to or
from the media type that is set in the cache configuration.

Data Grid recommends always configuring cache encoding with the application/x-protostream media
type if you want to use multiple clients, such as Data Grid Console or CLI, Hot Rod, or REST.
ProtoStream encoding also lets you use server-side tasks and perform indexed queries on remote
caches.

Embedded caches
Data Grid stores entries in embedded caches as Plain Old Java Objects (POJOs) by default.

For clustered embedded caches, Data Grid needs to marshall any POJOs to a byte array that can be
replicated between nodes and then unmarshalled back into POJOs. This means you must ensure that
Data Grid can serialize your POJOs with the ProtoStream marshaller if you do not configure another
marshaller.

NOTE

If you store mutable POJOs in embedded caches, you should always update values using
new POJO instances. For example, if you store a HashMap as a key/value pair, the other
members of the Data Grid cluster do not see any local modifications to the Map.
Additionally, it is possible that a ConcurrentModificationException could occur if the
Map instance is updated at the same time that Data Grid is marshalling the object.

Additional resources

® Data Grid ProtoStream API

1.2. PROTOBUF CACHE ENCODING

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream

CHAPTER 1. CONFIGURING CACHE ENCODING

Protocol Buffers (Protobuf) is a lightweight binary media type for structured data. As a cache encoding,
Protobuf gives you excellent performance as well as interoperability between client applications in
different programming languages for both Hot Rod and REST endpoints.

Data Grid uses a ProtoStream library to encode caches as Protobuf with the application/x-
protostream media type.

The following example shows a Protobuf message that describes a Person object:

message Person {
optional int32 id = 1;
optional string name = 2;
optional string surname = 3;
optional Address address = 4;
repeated PhoneNumber phoneNumbers = 5;
optional uint32 age = 6;
enum Gender {
MALE = 0;
FEMALE = 1;
}
}

NOTE

Protobuf does not support circular objects. Use Java serialization or JBoss Marshalling to
marshall circular objects.

Interoperability
Because it is language neutral, Protobuf encoding means Data Grid can handle requests from client
applications written in Java, C++, C#, Python, Go, and more.

Protobuf also enables clients on different remote endpoints, Hot Rod or REST, to operate on the same
data. Because it uses the REST API, you can access and work with Protobuf-encoded caches through
Data Grid Console.

NOTE

You cannot use Data Grid Console with any binary encoding other than application/x-
protostream.

You should always use Protobuf cache encoding with the application/x-protostream media type for
integration with any Red Hat technology because it allows communication between applications and
services.

Queries
Data Grid needs a structured representation of data in caches for fast and reliable queries. To search
caches with the Ickle query language, you register Protobuf schema that describe your objects.

Custom types

Data Grid includes an implementation of the ProtoStream API with native support for frequently used
types, including String and Integer. If you want to store custom types in your caches, use ProtoStream
marshalling to generate and register serialization contexts with Data Grid so that it can marshall your
objects.

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

Additional resources

® Data Grid ProtoStream API

® developers.google.com/protocol-buffers

1.2.1. Encoding caches as ProtoStream

Configure Data Grid to use the ProtoStream library to store cache entries as Protocol Buffers
(Protobuf).

Procedure

e Specify the application/x-protostream media type for keys and values.

Declarative

<distributed-cache>
<encoding>
<key media-type="application/x-protostream"/>
<value media-type="application/x-protostream"/>
</encoding>
</distributed-cache>

Programmatic

//Create cache configuration that encodes keys and values as ProtoStream

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.clustering().cacheMode(CacheMode.DIST_SYNC)
.encoding().key().mediaType("application/x-protostream"”)
.encoding().value().mediaType("application/x-protostream");

Alternatively you can use the same encoding for keys and values:
Declarative

I <encoding media-type="application/x-protostream"/>

Programmatic

I .encoding().mediaType("application/x-protostream");

Additional resources

® Data Grid Schema Reference

® org.infinispan.configuration.cache.ConfigurationBuilder

1.3. TEXT-BASED CACHE ENCODING

10

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream
https://developers.google.com/protocol-buffers/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/configdocs/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/configuration/cache/ConfigurationBuilder.html

CHAPTER 1. CONFIGURING CACHE ENCODING

Text-based encoding is human-readable content such as plain text. The classic "Hello World" example
entry could be stored in a cache as follows:

key=hello
value=world

If you encode caches with the text/plain media type, Data Grid can convert to and from the following
media types:

e application/xml
e application/json
e application/x-protostream

The following example configuration encodes keys and values with the text/plain; charset=UTF-8
media type:

<distributed-cache>
<encoding>
<key media-type="text/plain; charset=UTF-8"/>
<value media-type="text/plain; charset=UTF-8"/>
</encoding>
</distributed-cache>

1.3.1. Clients and text-based encoding

If you configure encoding to store keys and values with a text-based media type, then you also need to
configure clients to operate on those caches.

Hot Rod clients

Data Grid uses the ProtoStream library to handle String and byte[] types natively. If you configure
cache encoding with the text/plain media type, Hot Rod clients might not necessarily require any
marshaller configuration to perform cache operations.

For other text-based media types, such as JSON or XML, Hot Rod clients can use the
org.infinispan.commons.marshall.UTF8StringMarshaller marshaller that converts to and from the
text/plain media type.

REST clients
REST clients must include the media type for caches in the request headers.

For example if you configure cache encoding as text/plain; charset=UTF-8 then REST clients should
send the following headers:

e Accept: text/plain; charset=UTF-8 for read operations.

o Content-Type: text/plain; charset=UTF-8 or Key-Content-Type: text/plain; charset=UTF-8
for write operations.

Additional resources

® org.infinispan.commons.marshall.UTF8StringMarshaller

1.4. MARSHALLED JAVA OBJECTS

1

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/commons/marshall/UTF8StringMarshaller.html

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

Data Grid stores marshalled Java objects in caches as byte arrays. For example, the following is a simple
representation of a Person object stored as a value in memory:

I value=[61 6¢c 61 6e 0a 70 61 72 74 72 69 64 67 65]

To store marshalled objects in caches, you should use the ProtoStream marshaller unless a strict
requirement exists. For example, when migrating client applications from older versions of Data Grid, you
might need to temporarily use JBoss marshalling with your Hot Rod Java clients.
Data Grid stores marshalled Java objects as byte arrays with the following media types:

e application/x-protostream

e application/x-jboss-marshalling

e application/x-java-serialized-object

NOTE

When storing unmarshalled Java objects, Data Grid uses the object implementation of
equals() and hashCode(). When storing marshalled objects, the marshalled bytes are
compared for equality and hashed instead.

1.4.1. Clients and marshalled objects

When you configure Hot Rod Java clients to use a marshaller, you must configure your cache with the
encoding for that marshaller.

Each marshaller uses a different media type to produce byte[] content that the client can transmit to
Data Grid Server. When reading from the server, the client marshaller performs the opposite operation,
using the media type to produce data from byte[] content.

Your cache encoding must be compatible with the Hot Rod client marshaller. For example, if you
configure a cache encoding as application/x-protostream, you can use the ProtoStream marshaller
with your clients to operate on that cache. However if the client marshaller uses an encoding that Data
Grid cannot convert to and from application/x-protostream, Data Grid throws an error message.

If you use JavaSerializationMarshaller or GenericJBossMarshaller you should encode caches with
the application/x-java-serialized-object or application/x-jboss-marshalling media type, respectively.

ProtoStream to JSON conversion

Data Grid converts keys and values encoded with the application/x-protostream media type to
application/json.

This allows REST clients to include the JSON media type in request headers and perform operations on
caches that use ProtoStream encoding:

e Accept: application/json for read operations.

e Content-Type: application/json for write operations.

1.5. PLAIN OLD JAVA OBJECTS (POJO)

For best performance, Data Grid recommends storing unmarshalled POJOs in embedded caches only.
However, you can configure keys and values with the following media type:

12

CHAPTER 1. CONFIGURING CACHE ENCODING

e application/x-java-object

1.5.1. Clients and POJOs

Even though Data Grid does not recommend doing so, clients can operate on caches that store
unmarshalled POJOs with the application/x-java-object media type.

Hot Rod clients
Hot Rod client marshallers must be available to Data Grid Server so it can deserialize your Java objects.
By default, the ProtoStream and Java Serialization marshallers are available on the server.

REST clients
REST clients must use either JSON or XML for keys and values so Data Grid can convert to and from
POJOs.

NOTE

Data Grid requires you to add Java classes to the deserialization allowlist to convert XML
to and from POJOs.

1.6. ADDING JARS TO DATA GRID SERVER INSTALLATIONS

Make custom JAR files available to Data Grid Server by adding them to the classpath.

IMPORTANT

® Data Grid loads JAR files during startup only.
You should bring all nodes in the cluster down gracefully and make any JAR files
available to each node before bringing the cluster back up.

® You should add custom JAR files to the SRHDG_HOME/server/lib directory
only.
The $RHDG_HOME/lib directory is reserved for Data Grid JAR files.

Procedure

1. Stop Data Grid Server if it is running.

2. Add JAR files to the server/lib directory, for example:

— server

| L—lib
L— UserObjects.jar
|

13

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

CHAPTER 2. MARSHALLING CUSTOM OBJECTS WITH
PROTOSTREAM

Marshalling is a process that converts Java objects into a binary format that can be transferred across
the network or stored to disk. The reverse process, unmarshalling, transforms data from a binary format
back into Java objects.
Data Grid performs marshalling and unmarshalling to:

® Send data to other Data Grid nodes in a cluster.

® Store data in persistent cache stores.

® Transmit objects between clients and remote caches.

® Store objects in native memory outside the JVM heap.

® Store objects in JVM heap memory when the cache encoding is not application/x-java-object.

When storing custom objects in Data Grid caches, you should use Protobuf-based marshalling with the
ProtoStream marshaller.

2.1. PROTOSTREAM MARSHALLING

Data Grid provides the ProtoStream API so you can marshall Java objects as Protocol Buffers
(Protobuf).

ProtoStream natively supports many different Java data types, which means you do not need to
configure ProtoStream marshalling for those types. For custom or user types, you need to provide some
information so that Data Grid can marshall those objects to and from your caches.

SerializationContext

A repository that contains Protobuf type definitions, loaded from Protobuf schemas (.proto files),
and the accompanying marshallers.

SerializationContextlnitializer

An interface that initializes a SerializationContext.

Additional resources

® org.infinispan.protostream.SerializationContext

® org.infinispan.protostream.SerializationContextlnitializer

2.1.1. ProtoStream types

Data Grid uses a ProtoStream library that can handle the following types for keys and values, as well as
the unboxed equivalents in the case of primitive types:

e byte[]
e Byte

e String

14

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream/org/infinispan/protostream/SerializationContext.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream/org/infinispan/protostream/SerializationContextInitializer.html

CHAPTER 2. MARSHALLING CUSTOM OBJECTS WITH PROTOSTREAM

e Integer

e Long

e Double

e Float

e Boolean

e Short

® Character

e java.util.Date

e java.time.Instant

Additional type collections
The ProtoStream library includes several adapter classes for common Java types, for example:

e java.math.BigDecimal
e java.math.Biginteger
e java.util.UUID

Data Grid provides all adapter classes for some common JDK classes in the protostream-types artifact,
which is included in the infinispan-core and infinispan-client-hotrod dependencies. You do not need
any configuration to store adapter classes as keys or values.

However, if you want to use adapter classes as marshallable fields in ProtoStream-annotated POJOS,
you can do so in the following ways:

e Specify the CommonTypesSchema and CommonContainerTypesSchema classes with the
dependsOn element of the AutoProtoSchemaBuilder annotation.

@AutoProtoSchemaBuilder(dependsOn = {org.infinispan.protostream.types.java.CommonTypes,
org.infinispan.protostream.types.java.CommonContainerTypes}, schemaFileName = "library.proto",
schemakFilePath = "proto", schemaPackageName = "example")

public interface Librarylnitalizer extends SerializationContextlnitializer {

}

® Specify the required adapter classes with the includeClasses element of the
AutoProtoSchemaBuilder annotation

@AutoProtoSchemaBuilder(includeClasses = { Author.class, Book.class, UUIDAdapter.class,
java.math.BigInteger }, schemaFileName = "library.proto", schemaFilePath = "proto",
schemaPackageName = "library")

public interface Librarylnitalizer extends SerializationContextlnitializer {

}

Additional resources

® Protocol Buffers

15

https://developers.google.com/protocol-buffers

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

® Data Grid ProtoStream API

2.1.2. ProtoStream annotations

The ProtoStream APl includes annotations that you can add to Java applications to define Protobuf
schemas, which provide a structured format for your objects.

This topic provides additional details about ProtoStream annotations. You should refer to the
documentation in the org.infinispan.protostream.annotations package for complete information.

ProtoField
@ProtoField defines a Protobuf message field.

This annotation is required and applies to fields as well as getter and setter methods. A class must have
at least one field annotated with @ProtoField before Data Grid can marshall it as Protobuf.

Parameter Optional or required Description

number Integer Required Tag numbers must be
unique within the class.

type Type Optional Declares the Protobuf
type of the field. If you
do not specify a type, it
is inferred from the Java
property.

You can use the
@ProtoField(type)
element to change the
Protobuf type, similarly
to changing Java int to
fixed32. Any
incompatible
declarations for the
Java property cause
compiler errors.

collectionlmplement Class Optional Indicates the actual

ation collection type if the
property typeis an
interface or abstract
class.

16

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream/org/infinispan/protostream/annotations/package-summary.html

CHAPTER 2. MARSHALLING CUSTOM OBJECTS WITH PROTOSTREAM

Parameter Optional or required Description

javaType Class Optional Indicates the actual Java
type if the property type
is an abstract class or
interface. The value
must be an instantiable
Java type assignable to
the property type.

If you declare a type
with the javaType
parameter, then all user
code must adhere to
that type. The
generated marshaller for
the entry uses that
implementation if it is
unmarshalled. If the
local client uses a
different
implementation than
declared it causes
ClassCastExceptions.

hame String Optional Specifies a name for the
Protobuf schema.

defaultValue String Optional Specifies the default
value for fields if they
are not available when
reading from the cache.
The value must follow
the correct syntax for
the Java field type.

ProtoFactory
@ProtoFactory marks a single constructor or static factory method for creating instances of the
message class.

You can use this annotation to support immutable message classes. All fields annotated with
@ProtoField must be included in the parameters.

® Field names and parameters of the @ProtoFactory constructor or method must match the
corresponding Protobuf message, however, the order is not important.

e |f you do not add a @ProtoFactory annotated constructor to a class, that class must have a
default no-argument constructor, otherwise errors occur during compilation.

AutoProtoSchemaBuilder

@AutoProtoSchemaBuilder generates an implementation of a class or interface that extends
SerializationContextlnitializer.

17

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

If active, the ProtoStream processor generates the implementation at compile time in the same
package with the Impl suffix or a name that you specify with the className parameter.

The includeClasses or basePackages parameters reference classes that the ProtoStream processor
should scan and include in the Protobuf schema and marshaller. If you do not set either of these
parameters, the ProtoStream processor scans the entire source path, which can lead to unexpected
results and is not recommended. You can also use the excludeClasses parameter with the
basePackages parameter to exclude classes.

The schemaFileName and schemaPackageName parameters register the generated Protobuf
schema under this name. If you do not set these parameters, the annotated simple class name is used
with the unnamed, or default, package. Schema names must end with the .proto file extension. You can
also use the marshallersOnly to generate marshallers only and suppress the Protobuf schema
generation.

The ProtoStream process automatically generates META-INF/services service metadata files, which
you can use so that Data Grid Server automatically picks up the JAR to register the Protobuf schema.

The dependsOn parameter lists annotated classes that implement SerializedContextInitializer to
execute first. If the class does not implement SerializedContextlnitializer or is not annotated with
AutoProtoSchemaBuilder, a compile time error occurs.

ProtoAdapter
@ProtoAdapter is a marshalling adapter for a class or enum that you cannot annotate directly.

If you use this annotation for:

e (lasses, the annotated class must have one @ProtoFactory annotated factory method for the
marshalled class and annotated accessor methods for each field. These methods can be
instance or static methods and their first argument must be the marshalled class.

® Enums, an identically named enum value must exist in the target enum.

ProtoName
@ProtoName is an optional annotation that specifies the Protobuf message or enum type name and
replaces the @ProtoMessage annotation.

ProtoEnumValue
@ProtoEnumValue defines a Protobuf enum value. You can apply this annotation to members of a
Java enum only.

ProtoReserved and ProtoReservedStatements
@ProtoReserved and @ProtoReservedStatements add reserved statements to generated messages
or enum definitions to prevent future usage of numbers, ranges, and names.

ProtoTypeld
@ProtoTypeld optionally specifies a globally unique numeric type identifier for a Protobuf message or
enum type.

NOTE

You should not add this annotation to classes because Data Grid uses it internally and
identifiers can change without notice.

ProtoUnknownFieldSet

18

CHAPTER 2. MARSHALLING CUSTOM OBJECTS WITH PROTOSTREAM

@ProtoUnknownFieldSet optionally indicates the field, or JavaBean property of type {@link
org.infinispan.protostream.UnknownFieldSet}, which stores any unknown fields.

NOTE

Data Grid does not recommend using this annotation because it is no longer supported
by Google and is likely to be removed in future.

Other annotations
Data Grid copies any other annotations on classes, fields, and methods as comments in the generated
Protobuf schema. This includes indexing annotations such as @Indexed and @Basic.

Additional resources

® org.infinispan.protostream.annotations
® Protocol Buffers Language Guide - Reserved Fields

® Protocol Buffers Language Guide - Reserved Values

2.2. CREATING SERIALIZATION CONTEXT INITIALIZERS
A serialization context initializer lets you register the following with Data Grid:
® Protobuf schemas that describe user types.
® Marshallers that provide serialization and deserialization capabilities.
From a high level, you should do the following to create a serialization context initializer:
1. Add ProtoStream annotations to your Java classes.

2. Use the ProtoStream processor that Data Grid provides to compile your
SerializationContextlnitializer implementation.

NOTE

The org.infinispan.protostream.MessageMarshaller interface is deprecated and
planned for removal in a future version of ProtoStream. You should ignore any code
examples or documentation that show how to use MessageMarshaller until it is
completely removed.

2.2.1. Adding the ProtoStream processor

Data Grid provides a ProtoStream processor artifact that processes Java annotations in your classes at
compile time to generate Protobuf schemas, accompanying marshallers, and a concrete implementation
of the SerializationContextlInitializer interface.

Procedure

e Add the protostream-processor to the annotation processors configuration of maven-
compiler-plugin to your pom.xml.

I <build>

19

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream/org/infinispan/protostream/annotations/package-summary.html
https://developers.google.com/protocol-buffers/docs/proto#reserved
https://developers.google.com/protocol-buffers/docs/proto#reserved_values

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-compiler-plugin</artifactid>
<version>...</version>
<configuration>
<annotationProcessorPaths>
<annotationProcessorPath>
<groupld>org.infinispan.protostream</groupld>
<artifactld>protostream-processor</artifactld>
<version>...</version>
</annotationProcessorPath>
</annotationProcessorPaths>
</configuration>
</plugin>
</plugins>
</build>

2.2.2. Adding ProtoStream annotations to Java classes

Declare ProtoStream metadata by adding annotations to a Java class and its members. Data Grid then
uses the ProtoStream processor to generate Protobuf schema and related marshallers from those

annotations.

Procedure

1. Annotate the Java fields that you want to marshall with @ProtoField, either directly on the field

or on the getter or setter method.

Any non-annotated fields in your Java class are transient. For example, you have a Java class
with 15 fields and annotate five of them. The resulting schema contains only those five fields and
only those five fields are marshalled when storing a class instance in Data Grid.

2. Use @ProtoFactory to annotate constructors for immutable objects. The annotated
constructors must initialize all fields annotated with @ProtoField.

3. Annotate members of any Java enum with @ProtoEnumValue.

The following Author.java and Book.java examples show Java classes annotated with @ProtoField

and @ProtoFactory:
Author.java

import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;

public class Author {
@ProtoField(1)
final String name;

@ProtoField(2)
final String surname;

@ProtoFactory

Author(String name, String surname) {
this.name = name;

20

CHAPTER 2. MARSHALLING CUSTOM OBJECTS WITH PROTOSTREAM

this.surname = surname;

}
// public Getter methods omitted for brevity

}

Book.java

import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;

public class Book {
@ProtoField(number = 1)
public final UUID id;

@ProtoField(number = 2)
final String title;

@ProtoField(number = 3)
final String description;

@ProtoField(number = 4, defaultValue = "0")
final int publicationYear;

@ProtoField(number = 5, collectionlmplementation = ArrayList.class)
final List<Author> authors;

@ProtoField(number = 6)
public Language language;

@ProtoFactory
Book(UUID id, String title, String description, int publicationYear, List<Author> authors, Language
language) {

this.id = id;
this.title = title;
this.description = description;
this.publicationYear = publicationYear;
this.authors = authors;
this.language = language;

}

// public Getter methods not included for brevity

}

The following Language.java example shows a Java enum annotated with @ProtoEnumValue along
with the corresponding Protobuf schema:

Language.java

import org.infinispan.protostream.annotations.ProtoEnumValue;

public enum Language {
@ProtoEnumValue(number = 0, name = "EN")
ENGLISH,
@ProtoEnumValue(number = 1, name = "DE")
GERMAN,

21

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

@ProtoEnumValue(number = 2, name = "IT")

ITALIAN,

@ProtoEnumValue(number = 3, name = "ES")
SPANISH,

@ProtoEnumValue(number = 4, name = "FR")
FRENCH,;

Language.proto

enum Language {

EN =0;
DE =1;
IT=2;
ES =3;
FR = 4;

Additional resources

® org.infinispan.protostream.annotations.ProtoField

® org.infinispan.protostream.annotations.ProtoFactory

2.2.3. Creating ProtoStream adapter classes

ProtoStream provides a @ProtoAdapter annotation that you can use to marshall external, third-party
Java object classes that you cannot annotate directly.

Procedure

1. Create an Adapter class and add the @ProtoAdapter annotation, as in the following example:
import java.util.UUID;

import org.infinispan.protostream.annotations.ProtoAdapter;
import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;
import org.infinispan.protostream.descriptors.Type;

/**
* Human readable UUID adapter for UUID marshalling
Y/

@ProtoAdapter(UUID.class)

public class UUIDAdapter {

@ProtoFactory
UUID create(String stringUUID) {

22

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream/org/infinispan/protostream/annotations/ProtoField.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream/org/infinispan/protostream/annotations/ProtoFactory.html

CHAPTER 2. MARSHALLING CUSTOM OBJECTS WITH PROTOSTREAM

return UUID.fromString(stringUUID);
}

@ProtoField(1)
String getStringUUID(UUID uuid) {
return uuid.toString();

}
}

Additional resources

® org.infinispan.protostream.annotations.ProtoAdapter

2.2.4. Generating serialization context initializers

After you add the ProtoStream processor and annotate your Java classes, you can add the
@AutoProtoSchemaBuilder annotation to an interface so that Data Grid generates the Protobuf
schema, accompanying marshallers, and a concrete implementation of the
SerializationContextlnitializer.

NOTE
By default, generated implementation names are the annotated class name with an “Impl"
-~ suffix.
Procedure

1. Define an interface that extends GeneratedSchema or its super interface,
SerializationContextlnitializer.

NOTE
The GeneratedSchema interface includes a method to access the Protobuf

schema whereas the SerializationContextlnitializer interface supports only
registration methods.

2. Annotate the interface with @AutoProtoSchemaBuilder.

3. Ensure that includeClasses parameter includes all classes for the generated
SerializationContextlnitializer implementation.

4. Specify a name for the generated .proto schema with the schemaFileName parameter.

5. Set a path under target/classes where schema files are generated with the schemaFilePath
parameter.

6. Specify a package name for the generated .proto schema with the schemaPackageName
parameter.

The following example shows a GeneratedSchema interface annotated with
@AutoProtoSchemaBuilder:

@AutoProtoSchemaBuilder(
includeClasses = {

23

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream/org/infinispan/protostream/annotations/ProtoAdapter.html

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

Book.class,
Author.class,
UUIDAdapter.class,
Language.class

b

schemaFileName = "library.proto",
schemakFilePath = "proto/",
schemaPackageName = "book_sample")

interface Librarylnitializer extends GeneratedSchema {

}

Next steps

If you use embedded caches, Data Grid automatically registers your SerializationContextlnitializer
implementation.

If you use remote caches, you must register your SerializationContextInitializer implementation with
Data Grid Server.

Additional resources

® org.infinispan.protostream.annotations.AutoProtoSchemaBuilder

2.2.5. Registering serialization context initializers

For embedded caches, Data Grid automatically registers serialization contexts and marshallers in your
annotated SerializationContextlnitializer implementation using the java.util.ServiceLoader.

If you prefer, you can disable automatic registration of SerializationContextlnitializer implementations
and then register them manually.

IMPORTANT

If you manually register one SerializationContextlnitializer implementation, it disables
automatic registration. You must then manually register all other implementations.

Procedure

1. Set a value of false for the AutoProtoSchemaBuilder.service annotation.

@AutoProtoSchemaBuilder(
includeClasses = SomeClass.class,

service = false

2. Manually register SerializationContextlnitializer implementations either programmatically or
declaratively, as in the following examples:

Declarative

<serialization>
<context-initializer class="org.infinispan.example.LibraryInitializerimpl"/>
<context-initializer class="org.infinispan.example.another.SClimpl"/>

24

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/protostream/org/infinispan/protostream/annotations/AutoProtoSchemaBuilder.html

CHAPTER 2. MARSHALLING CUSTOM OBJECTS WITH PROTOSTREAM

I </serialization>

Programmatic

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()
.addContextlnitializers(new Librarylnitializerimpl(), new SClimpl());

2.2.6. Registering Protobuf schemas with Data Grid Server

Register Protobuf schemas with Data Grid Server to perform Ickle queries or convert from
application/x-protostream to other media types such as application/json.
Prerequisites

® Generate Protobuf schema with the ProtoStream processor.
You can find generated Protobuf schema in the target/<schemaFilePath>/ directory.

® Have a user with CREATE permissions.

NOTE

Security authorization requires CREATE permissions to add schemas. With the
default settings, you need the deployer role at minimum.

Procedure

Add Protobuf schema to Data Grid Server in one of the following ways:

® Open the Data Grid Console in any browser, select the Schema tab and then Add Protobuf
schema.

® Use the schema command with the --upload= argument from the Data Grid command line
interface (CLI).

I schema --upload=person.proto person

® |nclude the Protobuf schema in the payload of a POST request with the REST API.

I POST/rest/v2/schemas/<schema_name>

® Use the generated SerializationContextlnitializer implementation with a Hot Rod client to
register the Protobuf schema, as in the following example:

/**
* Register generated Protobuf schema with Data Grid Server.
* This requires the RemoteCacheManager to be initialized.
* @param initializer The serialization context initializer for the schema.
Y/

private void registerSchemas(SerializationContextlInitializer initializer) {
// Store schemas in the ' ___profobuf_metadata' cache to register them.

// Using ProtobufMetadataManagerConstants might require the query dependency.

25

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

final RemoteCache<String, String> protoMetadataCache =
remoteCacheManager.getCache(ProtobufMetadataManagerConstants. PROTOBUF_METAD
ATA_CACHE_NAME);

// Add the generated schema to the cache.

protoMetadataCache.put(initializer.getProtoFileName(), initializer.getProtoFile());

// Ensure the registered Protobuf schemas do not contain errors.
// Throw an exception if errors exist.
String errors =
protoMetadataCache.get(ProtobufMetadataManagerConstants. ERRORS_KEY_SUFFIX);
if (errors 1= null) {
throw new lllegalStateException("Some Protobuf schema files contain errors: " + errors +
"\nSchema :\n" + initializer.getProtoFileName());

}
}

® Add a JAR file with the SerializationContextInitializer implementation and custom classes to
the $RHDG_HOME/server/lib directory.
When you do this, Data Grid Server registers your Protobuf schema at startup. However, you
must add the archive to each server installation because the schema are not saved in the
___protobuf_metadata cache or automatically distributed across the cluster.

NOTE

You must do this if you require Data Grid Server to perform any application/x-
protostream to application/x-java-object conversions, in which case you must
also add any JAR files for your POJOs.

Next steps

Register the SerializationContextlnitializer with your Hot Rod clients, as in the following example:

ConfigurationBuilder remoteBuilder = new ConfigurationBuilder();
remoteBuilder.addServer().host(host).port(Integer.parselnt(port));

// Add your generated SerializationContextlInitializer implementation.

Librarylnitalizer initializer = new LibrarylnitalizerImpl();
remoteBuilder.addContextlnitializer(initializer);

2.2.7. Manual serialization context initializer implementations

IMPORTANT

Data Grid strongly recommends against manually implementing the
SerializationContextlnitializer or GeneratedSchema interfaces.

It is possible to manually implement SerializationContextlnitializer or GeneratedSchema interfaces
using ProtobufTagMarshaller and RawProtobufMarshaller annotations.

However, manual implementations require a lot of tedious overhead and are prone to error.

Implementations that you generate with the protostream-processor artifact are a much more efficient
and reliable way to configure ProtoStream marshalling.

26

CHAPTER 3. USING ALTERNATIVE AND CUSTOM MARSHALLER IMPLEMENTATIONS

CHAPTER 3. USING ALTERNATIVE AND CUSTOM
MARSHALLER IMPLEMENTATIONS

Data Grid recommends you use Protobuf-based marshalling with the ProtoStream marshaller so you
can take advantage of Ickle queries and use the Data Grid CLI and Console. However, if required, you
can use alternative marshallers or a custom marshaller implementation.

3.1. ALLOWING DESERIALIZATION OF JAVA CLASSES

For security reasons Data Grid does not allow deserialization of arbitrary Java classes. If you use
JavaSerializationMarshaller or GenericJBossMarshaller, you must add your Java classes to a
deserialization allow list.

NOTE

The deserialization allow list applies to the Cache Manager so your Java classes can be
deserialized by all caches.

Procedure

e Add Java classes to the deserialization allow list in the Data Grid configuration or in system
properties.

Declarative

<infinispan>
<cache-container>
<serialization version="1.0"
marshaller="org.infinispan.marshall. TestObjectStreamMarshaller">
<allow-list>
<class>org.infinispan.test.data.Person</class>
<regex>org.infinispan.test.data.*</regex>
</allow-list>
</serialization>
</cache-container>
</infinispan>

System properties

/I Specify a comma-separated list of fully qualified class names
-Dinfinispan.deserialization.allowlist.classes=java.time.Instant,com.myclass.Entity

/I Specify a regular expression to match classes
-Dinfinispan.deserialization.allowlist.regexps=.*

3.2. USING JBOSS MARSHALLING

JBoss Marshalling is a serialization-based marshalling library and was the default marshaller in previous
Data Grid versions.

Procedure

27

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

1. Add the infinispan-jboss-marshalling dependency to your classpath.
2. Configure Data Grid to use the GenericJBossMarshaller.

3. Add your Java classes to the deserialization allowlist.

Declarative

<serialization marshaller="org.infinispan.jboss.marshalling.commons.GenericJBossMarshaller">
<allow-list>
<class>org.infinispan.concrete.SomeClass</class>
<regex>org.infinispan.example.*</regex>
</allow-list>
</serialization>

Programmatic

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()

.marshaller(new GenericJBossMarshaller())

.allowList()

.addRegexps("org.infinispan.example.", "org.infinispan.concrete.SomeClass");

Additional resources

® AdvancedExternalizer

3.3. USING JAVA SERIALIZATION

You can use Java serialization with Data Grid to marshall objects that implement the Java Serializable
interface.

TIP

Java serialization offers worse performance than ProtoStream marshalling. You should use Java
serialization only if there is a strict requirement to do so.
Procedure

1. Configure Data Grid to use JavaSerializationMarshaller.

2. Add your Java classes to the deserialization allowlist.

Declarative

<serialization marshaller="org.infinispan.commons.marshall.JavaSerializationMarshaller">
<allow-list>
<class>org.infinispan.concrete.SomeClass</class>
<regex>org.infinispan.example.*</regex>
</allow-list>
</serialization>

28

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/commons/marshall/AdvancedExternalizer.html

CHAPTER 3. USING ALTERNATIVE AND CUSTOM MARSHALLER IMPLEMENTATIONS

Programmatic

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()

.marshaller(new JavaSerializationMarshaller())

.allowList()

.addRegexps("org.infinispan.example.", "org.infinispan.concrete.SomeClass");

Additional resources

® Serializable

® org.infinispan.commons.marshall.JavaSerializationMarshaller

3.4. USING CUSTOM MARSHALLERS

Data Grid provides a Marshaller interface that you can implement for custom marshallers.

TIP

Custom marshaller implementations can access a configured access list via the initialize() method, which
is called during startup.

Procedure

1. Implement the Marshaller interface.
2. Configure Data Grid to use your marshaller.

3. Add your Java classes to the deserialization allowlist.

Declarative

<serialization marshaller="org.infinispan.example.marshall.CustomMarshaller">
<allow-list>
<class>org.infinispan.concrete.SomeClass</class>
<regex>org.infinispan.example.*</regex>
</allow-list>
</serialization>

Programmatic

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()
.marshaller(new org.infinispan.example.marshall.CustomMarshaller())
.allowList().addRegexp("org.infinispan.example.*");

Additional resources

® org.infinispan.commons.marshall.Marshaller

29

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/commons/marshall/JavaSerializationMarshaller.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/commons/marshall/Marshaller.html#initialize(org.infinispan.commons.configuration.ClassAllowList)
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/commons/marshall/Marshaller.html

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

CHAPTER 4. DATA CONVERSION

Data Grid uses transcoders to convert data between various encodings that are identified by media
types.

4.1. HOT ROD DATAFORMAT API

Read and write operations on remote caches via the Hot Rod endpoint use the client marshaller by
default. Hot Rod provides a DataFormat API for Java clients that you can use to perform cache
operations with different media type encodings and/or marshallers.

Different marshallers for key and values

You can override marshallers for keys and values at run time.

For example, to bypass all serialization in the Hot Rod client and read the byte[] array stored in the
remote cache:

// Existing RemoteCache instance
RemoteCache<String, Pojo> remoteCache = ...

// IdentityMarshaller is a no-op marshaller

DataFormat rawKeyAndValues =

DataFormat.builder()
.keyMarshaller(ldentityMarshaller.INSTANCE)
.valueMarshaller(ldentityMarshaller.INSTANCE)
.build();

// Creates a new instance of RemoteCache with the supplied DataFormat
RemoteCache<byte[], byte[]> rawResultsCache =
remoteCache.withDataFormat(rawKeyAndValues);

IMPORTANT

Using different marshallers and data formats for keys with keyMarshaller() and
keyType() methods can interfere with client intelligence routing mechanisms, causing
extra network hops within the Data Grid cluster. If performance is critical, you should use
the same encoding for keys on the client and on the server.

Reading data in different encodings

Request and send data in different encodings specified by a
org.infinispan.commons.dataconversion.MediaType as follows:

// Existing remote cache using ProtostreamMarshaller
RemoteCache<String, Pojo> protobufCache = ...

// Request values returned as JSON

// Use the UTF8StringMarshaller to convert UTF-8 to String

DataFormat jsonString =

DataFormat.builder()
.valueType(MediaType.APPLICATION_JSON)
.valueMarshaller(new UTF8StringMarshaller())

30

CHAPTER 4. DATA CONVERSION

Jbuild();
RemoteCache<byte[], byte[]> rawResultsCache =
protobufCache.withDataFormat(jsonString);

Using custom value marshallers

You can use custom marshallers for values, as in the following example that returns values as
org.codehaus.jackson.JsonNode objects.

In this example, Data Grid Server handles the data conversion and throws an exception if it does not
support the specified media type.

DataFormat jsonNode =

DataFormat.builder()
.valueType(MediaType.APPLICATION_JSON)
.valueMarshaller(new CustomdJacksonMarshaller()
build();

RemoteCache<String, JsonNode> jsonNodeCache =
remoteCache.withDataFormat(jsonNode);

Returning values as XML
The following code snippet returns values as XML
Object xmlValue = remoteCache
.withDataFormat(DataFormat.builder()
.valueType(MediaType.APPLICATION_XML)

.valueMarshaller(new UTF8StringMarshaller())
.build())

.get(key);

For example, the preceding get(key) call returns values such as:
I <?xml version="1.0" ?><string>Hello!</string>

Reference

org.infinispan.client.hotrod.DataFormat

4.2. CONVERTING DATA ON DEMAND WITH EMBEDDED CACHES
Embedded caches have a default request encoding of application/x-java-object and a storage
encoding that corresponds to the media type that you configure for the cache. This means that Data
Grid marshalls POJOs from the application to the storage encoding for the cache and then returns
POJOs back to the application. In some complex scenarios you can use the AdvancedCache API to
change the default conversion to and from POJOs to other encodings.

The following example uses the withMediaType() method to return values as application/json on
demand.

Advanced cache with MediaType

I DefaultCacheManager cacheManager = new DefaultCacheManager();

31

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/client/hotrod/DataFormat.html

Red Hat Data Grid 8.4 Cache Encoding and Marshalling

// Encode keys and values as Protobuf

ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("application/x-protostream”);
cfg.encoding().value().mediaType("application/x-protostream");

cacheManager.defineConfiguration("mycache", cfg.build());
Cache<Integer, Person> cache = cacheManager.getCache("mycache");
cache.put(1, new Person("John","Doe"));

// Use Protobuf for keys and JSON for values
Cache<Integer, byte[]> jsonValuesCache = (Cache<lInteger, byte[]>)
cache.getAdvancedCache().withMediaType("application/x-protostream”, "

’

byte[] json = jsonValuesCache.get(1);
Value returned in JSON format

{
"_type":"org.infinispan.sample.Person”,
"name":"John",
"surname":"Doe"

}

Additional resources

® org.infinispan.AdvancedCache

32

application/json");

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/AdvancedCache.html

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. CONFIGURING CACHE ENCODING
	1.1. CACHE ENCODING
	Remote caches
	Embedded caches

	1.2. PROTOBUF CACHE ENCODING
	Interoperability
	Queries
	Custom types
	1.2.1. Encoding caches as ProtoStream

	1.3. TEXT-BASED CACHE ENCODING
	1.3.1. Clients and text-based encoding
	Hot Rod clients
	REST clients

	1.4. MARSHALLED JAVA OBJECTS
	1.4.1. Clients and marshalled objects

	1.5. PLAIN OLD JAVA OBJECTS (POJO)
	1.5.1. Clients and POJOs
	Hot Rod clients
	REST clients

	1.6. ADDING JARS TO DATA GRID SERVER INSTALLATIONS

	CHAPTER 2. MARSHALLING CUSTOM OBJECTS WITH PROTOSTREAM
	2.1. PROTOSTREAM MARSHALLING
	2.1.1. ProtoStream types
	Additional type collections

	2.1.2. ProtoStream annotations
	ProtoField
	ProtoFactory
	AutoProtoSchemaBuilder
	ProtoAdapter
	ProtoName
	ProtoEnumValue
	ProtoReserved and ProtoReservedStatements
	ProtoTypeId
	ProtoUnknownFieldSet
	Other annotations

	2.2. CREATING SERIALIZATION CONTEXT INITIALIZERS
	2.2.1. Adding the ProtoStream processor
	2.2.2. Adding ProtoStream annotations to Java classes
	2.2.3. Creating ProtoStream adapter classes
	2.2.4. Generating serialization context initializers
	2.2.5. Registering serialization context initializers
	2.2.6. Registering Protobuf schemas with Data Grid Server
	2.2.7. Manual serialization context initializer implementations

	CHAPTER 3. USING ALTERNATIVE AND CUSTOM MARSHALLER IMPLEMENTATIONS
	3.1. ALLOWING DESERIALIZATION OF JAVA CLASSES
	3.2. USING JBOSS MARSHALLING
	3.3. USING JAVA SERIALIZATION
	3.4. USING CUSTOM MARSHALLERS

	CHAPTER 4. DATA CONVERSION
	4.1. HOT ROD DATAFORMAT API
	4.2. CONVERTING DATA ON DEMAND WITH EMBEDDED CACHES

