& RedHat

Red Hat Data Grid 8.4

Embedding Data Grid in Java Applications

Create embedded caches with Data Grid

Last Updated: 2024-04-19

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

Create embedded caches with Data Grid

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Add Data Grid to Java projects and use embedded caches with your applications.

Table of Contents
REDHATDATAGRID ointiniintiei et
DATA GRID DOCUMENTATION oviueiniiniieiianeeniennnn,
DATA GRID DOWNLOADS \vivttieineineeeaeaeeeaeanenn,
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. ADDING DATA GRID TO YOUR MAVEN REPOSITORY
1.1. DOWNLOADING THE MAVEN REPOSITORY
1.2. ADDING RED HAT MAVEN REPOSITORIES
1.3. CONFIGURING YOUR PROJECT POM

CHAPTER 2. CREATING EMBEDDED CACHES ccvv.....
2.1. ADDING DATA GRID TO YOUR PROJECT
2.2. CREATING AND USING EMBEDDED CACHES
2.3. CACHE API
2.3.1. AdvancedCache API
2.3.1.1. Flags
2.3.2. Asynchronous API
2.3.2.1. Why use such an API?
2.3.2.2. Which processes actually happen asynchronously?

Table of Contents

CHAPTER 3. PROGRAMMATICALLY CONFIGURING USER ROLES AND PERMISSIONS

3.1. DATA GRID USER ROLES AND PERMISSIONS
3.1.1. Permissions
3.1.2. Role and permission mappers
3.1.2.1. Mapping users to roles and permissions in Data Grid
3.1.3. Configuring role mappers
Role mapper configuration

3.2. ENABLING AND CONFIGURING AUTHORIZATION FOR EMBEDDED CACHES

3.3. ADDING AUTHORIZATION ROLES AT RUNTIME

3.4. EXECUTING CODE WITH SECURE CACHES

3.5. CONFIGURING THE ACCESS CONTROL LIST (ACL) CACHE
ACL cache configuration

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORING

4.1. ENABLING STATISTICS IN EMBEDDED CACHES
Embedded cache statistics
4.2. CONFIGURING DATA GRID METRICS
Metrics configuration
4.3. REGISTERING JMX MBEANS
JMX configuration
4.3.1. Enabling JMX remote ports
4.3.2. Data Grid MBeans
4.3.3. Registering MBeans in custom MBean servers
JMX MBean server lookup configuration

4.4. EXPORTING METRICS DURING A STATE TRANSFER OPERATION

4.5. MONITORING THE STATUS OF CROSS-SITE REPLICATION
Monitoring cross-site replication with the REST API
Monitoring cross-site replication with the Prometheus metrics

CHAPTERS. SETTING UP DATA GRID CLUSTER TRANSPORT

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

5.1. DEFAULT JGROUPS STACKS
5.2. CLUSTER DISCOVERY PROTOCOLS
5.2.1. PING
5.2.2. TCPPING
5.2.3. MPING
5.2.4. TCPGOSSIP
5.2.5. JDBC_PING
5.2.6. DNS_PING
5.2.7. Cloud discovery protocols
Providing dependencies for cloud discovery protocols
5.3. USING THE DEFAULT JGROUPS STACKS
5.4. CUSTOMIZING JGROUPS STACKS
5.4.1. Inheritance attributes
5.5. USING JGROUPS SYSTEM PROPERTIES
5.5.1. Cluster transport properties
5.5.2. System properties for cloud discovery protocols
5.5.2.1. Amazon EC2
5.5.2.2. Google Cloud Platform
55.2.3. Azure
5.5.2.4. OpenShift
5.6. USING INLINE JGROUPS STACKS
5.7. USING EXTERNAL JGROUPS STACKS
5.8. USING CUSTOM JCHANNELS
5.9. ENCRYPTING CLUSTER TRANSPORT
5.9.1. JGroups encryption protocols
5.9.2. Securing cluster transport with asymmetric encryption
5.9.3. Securing cluster transport with symmetric encryption
5.10. TCP AND UDP PORTS FOR CLUSTER TRAFFIC
Cross-site replication

CHAPTER 6. CLUSTERED LOCKS ... i i

6.1. LOCK API
6.2. USING CLUSTERED LOCKS
6.3. CONFIGURING INTERNAL CACHES FOR LOCKS

CHAPTER7.EXECUTING CODEINTHEGRIDot

7.1. CLUSTER EXECUTOR
7.1.1. Filtering execution nodes
7.1.2. Timeout
7.1.3. Single Node Submission
7.1.3.1. Failover
7.1.4. Example: Pl Approximation

CHAPTER 8. USING THE STREAMS API FOR CODE EXECUTION

CHAPTER O. STREAMS .. i i

9.1. COMMON STREAM OPERATIONS

9.2.KEY FILTERING

9.3. SEGMENT BASED FILTERING

9.4. LOCAL/INVALIDATION

9.5. EXAMPLE

9.6. DISTRIBUTION/REPLICATION/SCATTERED
9.6.1. Rehash Aware
9.6.2. Serialization

36
36
37
37
38
38
38
39
39
40
40

41
42
42
43
44
44
45
45
45
46
47
48
48
48
49

51
52
52

53
53
53
55

57
57
57
58
58
58
58

61

62
62
62
62
63
63
63
63
63

Table of Contents

9.7. PARALLEL COMPUTATION 66
9.8. TASK TIMEOUT 66
9.9. INJECTION 67
9.10. DISTRIBUTED STREAM EXECUTION 67
9.11. KEY BASED REHASH AWARE OPERATORS 68
9.12. INTERMEDIATE OPERATION EXCEPTIONS 68
9.13. EXAMPLES 69
CHAPTER 10. USING THE CDI EXTENSION .. ittt ittt et ttieeeeeetenneeaeennnnneeeennnn 72
10.1. CDI DEPENDENCIES 72
10.2. INJECTING EMBEDDED CACHES 72
10.3. INJECTING REMOTE CACHES 74
10.4. JCACHE CACHING ANNOTATIONS 75
10.5. RECEIVING CACHE AND CACHE MANAGER EVENTS 77
CHAPTER 1L USING THE JCACHE APl .t ittt et ttaeeeeeetnnneeaeennnnneeeennnn 78
11.1. CREATING EMBEDDED CACHES 78
11.1.1. Configuring embedded caches 78

11.2. STORE AND RETRIEVE DATA 79
11.3. COMPARING JAVA.UTIL.CONCURRENT.CONCURRENTMAP AND JAVAX.CACHE.CACHE APIS 79
1N.4. CLUSTERING JCACHE INSTANCES 81
CHAPTER 12. MULTIMAPR CACHE .. ittt ittt e tttaeeeeetenneeeeennnneeeeennnnneeeennnn 83
12.1. MULTIMAP CACHE 83
12.1.1. Installation and configuration 83
12.1.2. MultimapCache API 83
12.1.3. Creating a Multimap Cache 85
12.1.3.1. Embedded mode 85

12.1.4. Limitations 85
12.1.4.1. Support for duplicates 85
12.1.4.2. Eviction 85
12.1.4.3. Transactions 85
CHAPTER 13. DATA GRID MODULES FORRED HAT JBOSS EAP ... ittt iiiiiieeeennnns 86
13.1. INSTALLING DATA GRID MODULES 86
13.2. CONFIGURING APPLICATIONS TO USE DATA GRID MODULES 86

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

RED HAT DATA GRID

RED HAT DATA GRID

Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure
Flexibility to store different objects as key-value pairs.
Grid-based data storage
Designed to distribute and replicate data across clusters.
Elastic scaling
Dynamically adjust the number of nodes to meet demand without service disruption.
Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

DATA GRID DOCUMENTATION

Documentation for Data Grid is available on the Red Hat customer portal.

Data Grid 8.4 Documentation

Data Grid 8.4 Component Details
Supported Configurations for Data Grid 8.4
Data Grid 8 Feature Support

Data Grid Deprecated Features and Functionality

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

DATA GRID DOWNLOADS
DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. ADDING DATA GRID TO YOUR MAVEN REPOSITORY

CHAPTER 1. ADDING DATA GRID TO YOUR MAVEN
REPOSITORY

Data Grid Java distributions are available from Maven.

You can download the Data Grid Maven repository from the customer portal or pull Data Grid
dependencies from the public Red Hat Enterprise Maven repository.

1.1. DOWNLOADING THE MAVEN REPOSITORY

Download and install the Data Grid Maven repository to a local file system, Apache HTTP server, or
Maven repository manager if you do not want to use the public Red Hat Enterprise Maven repository.

Procedure

1. Login to the Red Hat customer portal.
2. Navigate to the Software Downloads for Data Grid.
3. Download the Red Hat Data Grid 8.4 Maven Repository.
4. Extract the archived Maven repository to your local file system.

5. Open the README.md file and follow the appropriate installation instructions.

1.2. ADDING RED HAT MAVEN REPOSITORIES

Include the Red Hat GA repository in your Maven build environment to get Data Grid artifacts and
dependencies.

Procedure

® Add the Red Hat GA repository to your Maven settings file, typically ~/.m2/settings.xml, or
directly in the pom.xml file of your project.

<repositories>
<repository>
<id>redhat-ga-repository</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>redhat-ga-repository</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</pluginRepository>
</pluginRepositories>

Reference

® Red Hat Enterprise Maven Repository

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions
https://access.redhat.com/maven-repository

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

1.3. CONFIGURING YOUR PROJECT POM

Configure Project Object Model (POM) files in your project to use Data Grid dependencies for
embedded caches, Hot Rod clients, and other capabilities.

Procedure

1. Open your project pom.xml for editing.
2. Define the version.infinispan property with the correct Data Grid version.

3. Include the infinispan-bom in a dependencyManagement section.
The Bill Of Materials (BOM) controls dependency versions, which avoids version conflicts and
means you do not need to set the version for each Data Grid artifact you add as a dependency
to your project.

4. Save and close pom.xml.

The following example shows the Data Grid version and BOM:

<properties>
<version.infinispan>14.0.21.Final-redhat-00001 </version.infinispan>
</properties>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-bom</artifactld>
<version>${version.infinispan}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Next Steps

Add Data Grid artifacts as dependencies to your pom.xml as required.

10

CHAPTER 2. CREATING EMBEDDED CACHES

CHAPTER 2. CREATING EMBEDDED CACHES

Data Grid provides an EmbeddedCacheManager API that lets you control both the Cache Manager
and embedded cache lifecycles programmatically.

2.1. ADDING DATA GRID TO YOUR PROJECT

Add Data Grid to your project to create embedded caches in your applications.

Prerequisites

e Configure your project to get Data Grid artifacts from the Maven repository.

Procedure

® Add the infinispan-core artifact as a dependency in your pom.xml as follows:

<dependencies>
<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-core</artifactld>
</dependency>
</dependencies>

2.2. CREATING AND USING EMBEDDED CACHES

Data Grid provides a GlobalConfigurationBuilder API that controls the Cache Manager and a
ConfigurationBuilder API that configures caches.

Prerequisites

® Add the infinispan-core artifact as a dependency in your pom.xml.

Procedure

1. Initialize a CacheManager.

NOTE

You must always call the cacheManager.start() method to initialize a
CacheManager before you can create caches. Default constructors do this for
you but there are overloaded versions of the constructors that do not.

Cache Managers are also heavyweight objects and Data Grid recommends
instantiating only one instance per JVM.

2. Use the ConfigurationBuilder API to define cache configuration.

3. Obtain caches with getCache(), createCache(), or getOrCreateCache() methods.
Data Grid recommends using the getOrCreateCache() method because it either creates a
cache on all nodes or returns an existing cache.

1

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

4. If necessary use the PERMANENT flag for caches to survive restarts.

5. Stop the CacheManager by calling the cacheManager.stop() method to release JVM
resources and gracefully shutdown any caches.

// Set up a clustered Cache Manager.

GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder();

// Initialize the default Cache Manager.

DefaultCacheManager cacheManager = new DefaultCacheManager(global.build());

// Create a distributed cache with synchronous replication.

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC);

// Obtain a volatile cache.

Cache<String, String> cache =

cacheManager.administration().withFlags(CacheContainerAdmin.AdminFlag.VOLATILE).getOrCreateC

ache("myCache", builder.build());
// Stop the Cache Manager.
cacheManager.stop();

getCache() method

Invoke the getCache(String) method to obtain caches, as follows:

I Cache<String, String> myCache = manager.getCache("myCache");

The preceding operation creates a cache named myCache, if it does not already exist, and returns it.

Using the getCache() method creates the cache only on the node where you invoke the method. In
other words, it performs a local operation that must be invoked on each node across the cluster.
Typically, applications deployed across multiple nodes obtain caches during initialization to ensure that
caches are symmetric and exist on each node.

createCache() method

Invoke the createCache() method to create caches dynamically across the entire cluster.

Cache<String, String> myCache = manager.administration().createCache("myCache",
"myTemplate");

The preceding operation also automatically creates caches on any nodes that subsequently join the
cluster.

Caches that you create with the createCache() method are ephemeral by default. If the entire cluster
shuts down, the cache is not automatically created again when it restarts.

PERMANENT flag

Use the PERMANENT flag to ensure that caches can survive restarts.

Cache<String, String> myCache =
manager.administration().withFlags(AdminFlag.PERMANENT).createCache("myCache",
"myTemplate");

For the PERMANENT flag to take effect, you must enable global state and set a configuration storage
provider.

12

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/manager/EmbeddedCacheManager.html#getCache(java.lang.String)
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/manager/EmbeddedCacheManagerAdmin.html#createCache(java.lang.String,java.lang.String)

CHAPTER 2. CREATING EMBEDDED CACH

For more information about configuration storage providers, see
GlobalStateConfigurationBuilder#configurationStorage().

Additional resources

® EmbeddedCacheManager
® EmbeddedCacheManager Configuration
® org.infinispan.configuration.global.GlobalConfiguration

® org.infinispan.configuration.cache.ConfigurationBuilder

2.3. CACHE API

Data Grid provides a Cache interface that exposes simple methods for adding, retrieving and removing
entries, including atomic mechanisms exposed by the JDK's ConcurrentMap interface. Based on the
cache mode used, invoking these methods will trigger a number of things to happen, potentially even
including replicating an entry to a remote node or looking up an entry from a remote node, or potentially
a cache store.

For simple usage, using the Cache API should be no different from using the JDK Map API, and hence
migrating from simple in-memory caches based on a Map to Data Grid's Cache should be trivial.

Performance Concerns of Certain Map Methods

Certain methods exposed in Map have certain performance consequences when used with Data Grid,
such as size(), values() , keySet() and entrySet() . Specific methods on the keySet, values and
entrySet are fine for use please see their Javadoc for further details.

Attempting to perform these operations globally would have large performance impact as well as
become a scalability bottleneck. As such, these methods should only be used for informational or
debugging purposes only.

It should be noted that using certain flags with the withFlags() method can mitigate some of these
concerns, please check each method’s documentation for more details.

Mortal and Immortal Data

Further to simply storing entries, Data Grid’s cache API allows you to attach mortality information to
data. For example, simply using put(key, value) would create an immortal entry, i.e., an entry that lives in
the cache forever, until it is removed (or evicted from memory to prevent running out of memory). If,
however, you put data in the cache using put(key, value, lifespan, timeunit) , this creates a mortal entry,
i.e., an entry that has a fixed lifespan and expires after that lifespan.

In addition to lifespan , Data Grid also supports max/dle as an additional metric with which to determine
expiration. Any combination of lifespans or maxldles can be used.

putForExternalRead operation

Data Grid’s Cache class contains a different 'put’ operation called putForExternalRead . This operation
is particularly useful when Data Grid is used as a temporary cache for data that is persisted elsewhere.
Under heavy read scenarios, contention in the cache should not delay the real transactions at hand,
since caching should just be an optimization and not something that gets in the way.

To achieve this, putForExternalRead() acts as a put call that only operates if the key is not present in
the cache, and fails fast and silently if another thread is trying to store the same key at the same time. In

ES

13

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/configuration/global/GlobalStateConfigurationBuilder.html#configurationStorage(org.infinispan.globalstate.ConfigurationStorage)
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/manager/EmbeddedCacheManager.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/configuration/global/package-summary.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/configuration/global/GlobalConfiguration.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/configuration/cache/ConfigurationBuilder.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#size()
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#values()
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#keySet()
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#entrySet()
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/AdvancedCache.html#withFlags(java.util.Collection)
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/commons/api/BasicCache.html#put(K,V,long,java.util.concurrent.TimeUnit)
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#putForExternalRead(K,V)

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

this particular scenario, caching data is a way to optimise the system and it's not desirable that a failure
in caching affects the on-going transaction, hence why failure is handled differently.
putForExternalRead() is considered to be a fast operation because regardless of whether it's
successful or not, it doesn't wait for any locks, and so returns to the caller promptly.

To understand how to use this operation, let’s look at basic example. Imagine a cache of Person
instances, each keyed by a Personld , whose data originates in a separate data store. The following code
shows the most common pattern of using putForExternalRead within the context of this example:

// Id of the person to look up, provided by the application
Personldid = ...;

// Get a reference to the cache where person instances will be stored
Cache<Personld, Person> cache = ...;

// First, check whether the cache contains the person instance
// associated with with the given id
Person cachedPerson = cache.get(id);

if (cachedPerson == null) {
// The person is not cached yet, so query the data store with the id
Person person = dataStore.lookup(id);

// Cache the person along with the id so that future requests can
// retrieve it from memory rather than going to the data store
cache.putForExternalRead(id, person);

} else {
// The person was found in the cache, so return it to the application
return cachedPerson;

}

Note that putForExternalRead should never be used as a mechanism to update the cache with a new
Person instance originating from application execution (i.e. from a transaction that modifies a Person’s
address). When updating cached values, please use the standard put operation, otherwise the possibility
of caching corrupt data is likely.

2.3.1. AdvancedCache API

In addition to the simple Cache interface, Data Grid offers an AdvancedCache interface, geared towards
extension authors. The AdvancedCache offers the ability to access certain internal components and to
apply flags to alter the default behavior of certain cache methods. The following code snippet depicts
how an AdvancedCache can be obtained:

I AdvancedCache advancedCache = cache.getAdvancedCache();

2.3.1.1. Flags

Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all
available flags, and their effects, see the Flag enumeration. Flags are applied using
AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a cache
invocation, for example:

14

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#putForExternalRead(K,V)
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#putForExternalRead(K,V)
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/AdvancedCache.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/context/Flag.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/AdvancedCache.html#withFlags(java.util.Collection)

CHAPTER 2. CREATING EMBEDDED CACHES

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
.withFlags(Flag.FORCE_SYNCHRONOUS)
put("hello”, "world");

2.3.2. Asynchronous API

In addition to synchronous APl methods like Cache.put(), Cache.remove(), etc., Data Grid also has an
asynchronous, non-blocking APl where you can achieve the same results in a non-blocking fashion.

These methods are named in a similar fashion to their blocking counterparts, with "Async" appended.
E.g., Cache.putAsync(), Cache.removeAsync(), etc. These asynchronous counterparts return a
CompletableFuture that contains the actual result of the operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String value)
returns String while Cache.putAsync(String key, String value) returns CompletableFuture<String>.

2.3.2.1. Why use such an API?

Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous
communications - with the ability to handle communication failures and exceptions - with the ease of
not having to block until a call completes. This allows you to better harness parallelism in your system.
For example:

Set<CompletableFuture<?>> futures = new HashSet<>();

futures.add(cache.putAsync(key1, valuel)); // does not block
futures.add(cache.putAsync(key2, value?)); // does not block
futures.add(cache.putAsync(key3, value3)); // does not block

// the remote calls for the 3 puts will effectively be executed
//in parallel, particularly useful if running in distributed mode

// and the 3 keys would typically be pushed to 3 different nodes
//in the cluster

// check that the puts completed successfully

for (CompletableFuture<?> f: futures) f.get();

2.3.2.2. Which processes actually happen asynchronously?

There are 4 things in Data Grid that can be considered to be on the critical path of a typical write
operation. These are, in order of cost:

® network calls
® marshalling
® writing to a cache store (optional)
® |ocking
Using the async methods will take the network calls and marshalling off the critical path. For various

technical reasons, writing to a cache store and acquiring locks, however, still happens in the caller’s
thread.

15

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#remove-java.lang.Object-
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/commons/api/AsyncCache.html#putAsync(K,V)
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/commons/api/AsyncCache.html#removeAsync(java.lang.Object)
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

CHAPTER 3. PROGRAMMATICALLY CONFIGURING USER

ROLES AND PERMISSIONS

Configure security authorization programmatically when using embedded caches in Java applications.

3.1. DATA GRID USER ROLES AND PERMISSIONS

Data Grid includes several roles that provide users with permissions to access caches and Data Grid

resources.

Role

admin

deployer

application

observer

monitor

Additional resources

Permissions

ALL

ALL_READ, ALL_WRITE, LISTEN,

EXEC, MONITOR, CREATE

ALL_READ, ALL_WRITE, LISTEN,
EXEC, MONITOR

ALL_READ, MONITOR

MONITOR

® org.infinispan.security.AuthorizationPermission Enum

® Data Grid configuration schema reference

3.1.1. Permissions

User roles are sets of permissions with different access levels.

Table 3.1. Cache Manager permissions

Permission

CONFIGURATION

16

Function

defineConfiguration

Description

Superuser with all permissions
including control of the Cache
Manager lifecycle.

Can create and delete Data Grid
resources in addition to
application permissions.

Has read and write access to Data
Grid resources in addition to
observer permissions. Can also
listen to events and execute
server tasks and scripts.

Has read access to Data Grid
resources in addition to monitor
permissions.

Can view statistics via JMX and
the metrics endpoint.

Description

Defines new cache configurations.

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/AuthorizationPermission.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/configdocs/

CHAPTER 3. PROGRAMMATICALLY CONFIGURING USER ROLES AND PERMISSIONS

LISTEN

LIFECYCLE

CREATE

MONITOR

ALL

Table 3.2. Cache permissions

Permission

READ

WRITE

EXEC

LISTEN

BULK_READ

BULK_WRITE

LIFECYCLE

addListener

stop

createCache, removeCache

getStats

Function

get contains

put, putlfAbsent, replace,
remove, evict

distexec, streams

addListener

keySet, values, entrySet,
query

clear, putAll

start, stop

Registers listeners against a
Cache Manager.

Stops the Cache Manager.

Create and remove container
resources such as caches,
counters, schemas, and scripts.

Allows access to JMX statistics
and the metrics endpoint.

Includes all Cache Manager
permissions.

Description

Retrieves entries from a cache.

Writes, replaces, removes, evicts
datain a cache.

Allows code execution against a
cache.

Registers listeners against a
cache.

Executes bulk retrieve operations.

Executes bulk write operations.

Starts and stops a cache.

17

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

ADMIN getVersion, addinterceptor*, Allows access to underlying
removelnterceptor, components and internal
getinterceptorChain, structures.

getEvictionManager,
getComponentRegistry,
getDistributionManager,
getAuthorizationManager,
evict, getRpcManager,
getCacheConfiguration,
getCacheManager,
getinvocationContextContai
ner, setAvailability,
getDataContainer, getStats,

getXAResource
MONITOR getStats Allows access to JMX statistics
and the metrics endpoint.
ALL - Includes all cache permissions.
ALL_READ - Combines the READ and
BULK_READ permissions.
ALL_WRITE - Combines the WRITE and

BULK_WRITE permissions.

Additional resources

® Data Grid Security API

3.1.2. Role and permission mappers

Data Grid implements users as a collection of principals. Principals represent either an individual user
identity, such as a username, or a group to which the users belong. Internally, these are implemented
with the javax.security.auth.Subject class.

To enable authorization, the principals must be mapped to role names, which are then expanded into a
set of permissions.

Data Grid includes the PrincipalRoleMapper API for associating security principals to roles, and the
RolePermissionMapper API for associating roles with specific permissions.

Data Grid provides the following role and permission mapper implementations:

Cluster role mapper
Stores principal to role mappings in the cluster registry.
Cluster permission mapper

Stores role to permission mappings in the cluster registry. Allows you to dynamically modify user
roles and permissions.

18

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/package-summary.html

CHAPTER 3. PROGRAMMATICALLY CONFIGURING USER ROLES AND PERMISSIONS

Identity role mapper

Uses the principal name as the role name. The type or format of the principal name depends on the
source. For example, in an LDAP directory the principal name could be a Distinguished Name (DN).

Common name role mapper

Uses the Common Name (CN) as the role name. You can use this role mapper with an LDAP
directory or with client certificates that contain Distinguished Names (DN); for example
cn=managers,ou=people,dc=example,dc=com maps to the managers role.

3.1.2.1. Mapping users to roles and permissions in Data Grid

Consider the following user retrieved from an LDAP server, as a collection of DNs:

CN=myapplication,OU=applications,DC=mycompany
CN=dataprocessors,OU=groups,DC=mycompany
CN=finance,OU=groups,DC=mycompany

Using the Common name role mapper, the user would be mapped to the following roles:

dataprocessors
finance

Data Grid has the following role definitions:

dataprocessors: ALL_WRITE ALL_READ
finance: LISTEN

The user would have the following permissions:

I ALL_WRITE ALL_READ LISTEN

Additional resources

® Data Grid Security API

® org.infinispan.security.PrincipalRoleMapper

® org.infinispan.security.RolePermissionMapper

® org.infinispan.security.mappers.ldentityRoleMapper

® org.infinispan.security.mappers.CommonNameRoleMapper

3.1.3. Configuring role mappers

Data Grid enables the cluster role mapper and cluster permission mapper by default. To use a different
implementation for role mapping, you must configure the role mappers.

Procedure

1. Open your Data Grid configuration for editing.

19

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/package-summary.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/PrincipalRoleMapper.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/RolePermissionMapper.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/mappers/IdentityRoleMapper.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/mappers/CommonNameRoleMapper.html

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

2. Declare the role mapper as part of the security authorization in the Cache Manager
configuration.

3. Save the changes to your configuration.

With embedded caches you can programmatically configure role and permission mappers with the
principalRoleMapper() and rolePermissionMapper() methods.

Role mapper configuration

XML

<cache-container>
<security>
<authorization>
<common-name-role-mapper />
</authorization>
</security>
</cache-container>

JSON

{
"infinispan" : {
"cache-container" : {
"security" : {
"authorization" : {
"common-name-role-mapper": {}

YAML

infinispan:
cacheContainer:
security:
authorization:
commonNameRoleMapper: ~

Additional resources

® Data Grid configuration schema reference

3.2. ENABLING AND CONFIGURING AUTHORIZATION FOR EMBEDDED
CACHES

When using embedded caches, you can configure authorization with the
GlobalSecurityConfigurationBuilder and ConfigurationBuilder classes.

20

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/configdocs/

CHAPTER 3. PROGRAMMATICALLY CONFIGURING USER ROLES AND PERMISSIONS

Procedure

1. Construct a GlobalConfigurationBuilder and enable security authorization with the
security().authorization().enable() method.

2. Specify a role mapper with the principalRoleMapper() method.

3. If required, define custom role and permission mappings with the role() and permission()
methods.

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
global.security().authorization().enable()
.principalRoleMapper(new ClusterRoleMapper())
.role("myroleone").permission(AuthorizationPermission.ALL_WRITE)
.role("myroletwo").permission(AuthorizationPermission.ALL_READ);

4. Enable authorization for caches in the ConfigurationBuilder.

® Add all roles from the global configuration.

ConfigurationBuilder config = new ConfigurationBuilder();
config.security().authorization().enable();

® Explicitly define roles for a cache so that Data Grid denies access for users who do not have
the role.

ConfigurationBuilder config = new ConfigurationBuilder();
config.security().authorization().enable().role("myroleone");

Additional resources
® org.infinispan.configuration.global.GlobalSecurityConfigurationBuilder

® org.infinispan.configuration.cache.ConfigurationBuilder

3.3. ADDING AUTHORIZATION ROLES AT RUNTIME

Dynamically map roles to permissions when using security authorization with Data Grid caches.

Prerequisites
e Configure authorization for embedded caches.

e Have ADMIN permissions for Data Grid.

Procedure

1. Obtain the RolePermissionMapper instance.

2. Define new roles with the addRole() method.
MutableRolePermissionMapper mapper = (MutableRolePermissionMapper)

cacheManager.getCacheManagerConfiguration().security().authorization().rolePermissionMap
per();

21

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/configuration/global/GlobalSecurityConfigurationBuilder.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/configuration/cache/ConfigurationBuilder.html

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

mapper.addRole(Role.newRole("myroleone”, true, AuthorizationPermission.ALL_WRITE,
AuthorizationPermission.LISTEN));

mapper.addRole(Role.newRole("myroletwo", true, AuthorizationPermission.READ,
AuthorizationPermission.WRITE));

Additional resources

® org.infinispan.security.RolePermissionMapper

3.4. EXECUTING CODE WITH SECURE CACHES

When you construct a DefaultCacheManager for an embedded cache that uses security authorization,
the Cache Manager returns a SecureCache that checks the security context before invoking any
operations. A SecureCache also ensures that applications cannot retrieve lower-level insecure objects
such as DataContainer. For this reason, you must execute code with a Data Grid user that has a role with
the appropriate level of permission.

Prerequisites

e Configure authorization for embedded caches.

Procedure

1. If necessary, retrieve the current Subject from the Data Grid context or
AccessControlContext:

I Security.getSubject();
2. Wrap method calls in a PrivilegedAction to execute them with the Subject.

I Security.doAs(mySubject, (PrivilegedAction<String>)() -> cache.put("key", "value"));

NOTE

You can use the Security.doAs() or Subject.doAs() method. Data Grid recommends
Security.doAs() for better performance.

Additional resources

® org.infinispan.security.Security

® org.infinispan.security.SecureCache

3.5. CONFIGURING THE ACCESS CONTROL LIST (ACL) CACHE

When you grant or deny roles to users, Data Grid stores details about which users can access your
caches internally. This ACL cache improves performance for security authorization by avoiding the need
for Data Grid to calculate if users have the appropriate permissions to perform read and write
operations for every request.

22

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/RolePermissionMapper.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/Security.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/security/SecureCache.html

CHAPTER 3. PROGRAMMATICALLY CONFIGURING USER ROLES AND PERMISSIONS

NOTE

Whenever you grant or deny roles to users, Data Grid flushes the ACL cache to ensure it
applies user permissions correctly. This means that Data Grid must recalculate cache
permissions for all users each time you grant or deny roles. For best performance you
should not frequently or repeatedly grant and deny roles in production environments.

Procedure

1. Open your Data Grid configuration for editing.

2. Specify the maximum number of entries for the ACL cache with the cache-size attribute.
Entries in the ACL cache have a cardinality of caches * users. You should set the maximum
number of entries to a value that can hold information for all your caches and users. For
example, the default size of 1000 is appropriate for deployments with up to 100 caches and 10
users.

3. Set the timeout value, in milliseconds, with the cache-timeout attribute.
If Data Grid does not access an entry in the ACL cache within the timeout period that entry is
evicted. When the user subsequently attempts cache operations then Data Grid recalculates
their cache permissions and adds an entry to the ACL cache.

IMPORTANT

Specifying a value of 0 for either the cache-size or cache-timeout attribute
disables the ACL cache. You should disable the ACL cache only if you disable
authorization.

4. Save the changes to your configuration.

ACL cache configuration

XML

<infinispan>
<cache-container name="acl-cache-configuration">
<security cache-size="1000"
cache-timeout="300000">
<authorization/>
</security>
</cache-container>
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {
"name" : "acl-cache-configuration",
"security" : {
"cache-size" : "1000",
"cache-timeout" : "300000",
"authorization" : {}

23

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

YAML

infinispan:
cacheContainer:
name: "acl-cache-configuration”
security:
cache-size: "1000"
cache-timeout: "300000"
authorization: ~

Additional resources

® Data Grid configuration schema reference

24

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/configdocs/

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORINGC

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID
STATISTICS AND JMX MONITORING

Data Grid can provide Cache Manager and cache statistics as well as export JMX MBeans.

4.1. ENABLING STATISTICS IN EMBEDDED CACHES

Configure Data Grid to export statistics for the Cache Manager and embedded caches.

Procedure

1. Open your Data Grid configuration for editing.
2. Add the statistics="true" attribute or the .statistics(true) method.
3. Save and close your Data Grid configuration.

Embedded cache statistics

XML

<infinispan>
<cache-container statistics="true">
<distributed-cache statistics="true"/>
<replicated-cache statistics="true"/>
</cache-container>
</infinispan>

GlobalConfigurationBuilder

GlobalConfigurationBuilder global =
GlobalConfigurationBuilder.defaultClusteredBuilder().cacheContainer().statistics(true);
DefaultCacheManager cacheManager = new DefaultCacheManager(global.build());

Configuration builder = new ConfigurationBuilder();
builder.statistics().enable();

4.2. CONFIGURING DATA GRID METRICS
Data Grid generates metrics that are compatible with any monitoring system.

® Gauges provide values such as the average number of nanoseconds for write operations or JVM
uptime.

® Histograms provide details about operation execution times such as read, write, and remove
times.

By default, Data Grid generates gauges when you enable statistics but you can also configure it to
generate histograms.

25

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

NOTE

Data Grid metrics are provided at the vendor scope. Metrics related to the JVM are
provided in the base scope.

Prerequisites

® You must add Micrometer Core and Micrometer Registry Prometheus JARs to your classpath to
export Data Grid metrics for embedded caches.

Procedure

1. Open your Data Grid configuration for editing.
2. Add the metrics element or object to the cache container.
3. Enable or disable gauges with the gauges attribute or field.
4. Enable or disable histograms with the histograms attribute or field.
5. Save and close your client configuration.

Metrics configuration

XML

<infinispan>
<cache-container statistics="true">
<metrics gauges="true"
histograms="true" />
</cache-container>
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {
"statistics" : "true",
"metrics” : {
"gauges" : "true",
"histograms" : "true"
}
}
}
}

YAML

infinispan:
cacheContainer:
statistics: "true"

26

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORINGC

metrics:
gauges: "true"
histograms: "true"

GlobalConfigurationBuilder

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
//Computes and collects statistics for the Cache Manager.
.statistics().enable()

//Exports collected statistics as gauge and histogram metrics.
.metrics().gauges(irue).histograms(true)
.build();

Additional resources

® Micrometer Prometheus

4.3. REGISTERING JMX MBEANS

Data Grid can register JMX MBeans that you can use to collect statistics and perform administrative
operations. You must also enable statistics otherwise Data Grid provides 0 values for all statistic
attributes in JMX MBeans.

Procedure

1. Open your Data Grid configuration for editing.

2. Add the jmx element or object to the cache container and specify true as the value for the
enabled attribute or field.

3. Add the domain attribute or field and specify the domain where JMX MBeans are exposed, if
required.

4. Save and close your client configuration.

JMX configuration
XML

<infinispan>
<cache-container statistics="true">
<jmx enabled="true"
domain="example.com"/>
</cache-container>
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {
"statistics" : "true",

27

https://micrometer.io/docs/registry/prometheus

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

imx" : {
"enabled" : "true",
"domain” : "example.com"

}
}
}
}

YAML

infinispan:
cacheContainer:
statistics: "true"
jmx:
enabled: "true"
domain: "example.com”

GlobalConfigurationBuilder

GlobalConfiguration global = GlobalConfigurationBuilder.defaultClusteredBuilder()
Jjmx().enable()
.domain("org.mydomain");

4.3.1. Enabling JMX remote ports

Provide unique remote JMX ports to expose Data Grid MBeans through connections in JMXServiceURL
format.

You can enable remote JMX ports using one of the following approaches:

® Enable remote JMX ports that require authentication to one of the Data Grid Server security
realms.

® Enable remote JMX ports manually using the standard Java management configuration
options.

Prerequisites

® Forremote JMX with authentication, define JMX specific user roles using the default security
realm. Users must have controlRole with read/write access or the monitorRole with read-only
access to access any JMX resources.

Procedure

Start Data Grid Server with a remote JMX port enabled using one of the following ways:

® Enable remote JMX through port 9999.

I bin/server.sh --jmx 9999

28

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORINGC

' WARNING
A Using remote JMX with SSL disabled is not intended for production

environments.

® Pass the following system properties to Data Grid Server at startup.

bin/server.sh -Dcom.sun.management.jmxremote.port=9999 -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false

' WARNING
A Enabling remote JMX with no authentication or SSL is not secure and not

recommended in any environment. Disabling authentication and SSL allows
unauthorized users to connect to your server and access the data hosted
there.

Additional resources

® Creating security realms

4.3.2. Data Grid MBeans

Data Grid exposes JMX MBeans that represent manageable resources.

org.infinispan:type=Cache
Attributes and operations available for cache instances.
org.infinispan:type=CacheManager

Attributes and operations available for Cache Managers, including Data Grid cache and cluster health
statistics.

For a complete list of available JMX MBeans along with descriptions and available operations and
attributes, see the Data Grid JMX Components documentation.

Additional resources

® Data Grid JMX Components

4.3.3. Registering MBeans in custom MBean servers

Data Grid includes an MBeanServerLookup interface that you can use to register MBeans in custom
MBeanServer instances.

29

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_server_guide/#creating-security-realms_security-realms
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/jmxComponents.html

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

Prerequisites

® Create animplementation of MBeanServerLookup so that the getMBeanServer() method
returns the custom MBeanServer instance.

e Configure Data Grid to register JMX MBeans.

Procedure

1. Open your Data Grid configuration for editing.

2. Add the mbean-server-lookup attribute or field to the JMX configuration for the Cache
Manager.

3. Specify fully qualified name (FQN) of your MBeanServerLookup implementation.
4. Save and close your client configuration.

JMX MBean server lookup configuration

XML

<infinispan>
<cache-container statistics="true">
<jmx enabled="true"
domain="example.com"
mbean-server-lookup="com.example.MyMBeanServerLookup"/>
</cache-container>
</infinispan>

JSON

{
"infinispan” : {
"cache-container" : {
"statistics" : "true",
"jmx" : {
"enabled" : "true",
"domain" : "example.com",

"mbean-server-lookup” : "com.example.MyMBeanServerLookup"

}
}
}
}

YAML

infinispan:
cacheContainer:
statistics: "true"
jmx:
enabled: "true"
domain: "example.com"
mbeanServerLookup: "com.example.MyMBeanServerLookup"

30

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORINGC

GlobalConfigurationBuilder

GlobalConfiguration global = GlobalConfigurationBuilder.defaultClusteredBuilder()
Jjmx().enable()
.domain("org.mydomain")
.mBeanServerLookup(new com.acme.MyMBeanServerLookup());

4.4. EXPORTING METRICS DURING A STATE TRANSFER OPERATION
You can export time metrics for clustered caches that Data Grid redistributes across nodes.

A state transfer operation occurs when a clustered cache topology changes, such as a node joining or

leaving a cluster. During a state transfer operation, Data Grid exports metrics from each cache, so that

you can determine a cache’s status. A state transfer exposes attributes as properties, so that Data Grid
can export metrics from each cache.

NOTE

You cannot perform a state transfer operation in invalidation mode.

Data Grid generates time metrics that are compatible with the REST APl and the JMX API.

Prerequisites

e Configure Data Grid metrics.
® Enable metrics for your cache type, such as embedded cache or remote cache.

® |nitiate a state transfer operation by changing your clustered cache topology.

Procedure
® Choose one of the following methods:

o Configure Data Grid to use the REST API to collect metrics.

o Configure Data Grid to use the JMX API to collect metrics.

Additional resources

® Enabling and configuring Data Grid statistics and JMX monitoring (Data Grid caches)

o StateTransferManager (Data Grid 14.0 API)

4.5. MONITORING THE STATUS OF CROSS-SITE REPLICATION

Monitor the site status of your backup locations to detect interruptions in the communication between
the sites. When a remote site status changes to offline, Data Grid stops replicating your data to the
backup location. Your data become out of sync and you must fix the inconsistencies before bringing the
clusters back online.

31

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/configuring_data_grid_caches/#statistics-jmx
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/apijmxComponents.html#StateTransferManager

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

Monitoring cross-site events is necessary for early problem detection. Use one of the following
monitoring strategies:

® Monitoring cross-site replication with the REST API
® Monitoring cross-site replication with the Prometheus metrics or any other monitoring system

Monitoring cross-site replication with the REST API
Monitor the status of cross-site replication for all caches using the REST endpoint. You can implement a
custom script to poll the REST endpoint or use the following example.

Prerequisites

® FEnable cross-site replication.

Procedure

1. Implement a script to poll the REST endpoint.
The following example demonstrates how you can use a Python script to poll the site status
every five seconds.

#l/usr/bin/python3

import time

import requests

from requests.auth import HTTPDigestAuth

class InfinispanConnection:

def __init__ (self, server: str = 'http://localhost:11222", cache_manager: str = 'default’,
auth: tuple = ('admin’, ‘change_me")) -> None:
super().__init_ ()
self.__url = f{server}/rest/v2/cache-managers/{cache_manager}/x-site/backups/'
self.__auth = auth
self.__headers = {
'accept': 'application/json’

}

def get_sites_status(self):
try:
rsp = requests.get(self.__url, headers=self.__headers, auth=HTTPDigestAuth(self.__auth[0],
self.__auth[1]))
if rsp.status_code != 200:
return None
return rsp.json()
except:
return None

Specify credentials for Data Grid user with permission to access the REST endpoint
USERNAME = 'admin’

PASSWORD = 'change_me'

Set an interval between cross-site status checks

POLL_INTERVAL_SEC =5

Provide a list of servers

SERVERS =

32

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORINGC

InfinispanConnection('http://127.0.0.1:11222', auth=(USERNAME, PASSWORD)),
InfinispanConnection(‘'http://127.0.0.1:12222', auth=(USERNAME, PASSWORD))
]
#Specify the names of remote sites
REMOTE_SITES =
nyc

]

#Provide a list of caches to monitor
CACHES = |

'work’,

'sessions’

def on_event(site: str, cache: str, old_status: str, new_status: str):
TODO implement your handling code here
print(f'site={site} cache={cache} Status changed {old_status} -> {new_status}')

def __handle_mixed_state(state: dict, site: str, site_status: dict):
if site not in state:
state[site] = {c: 'online' if ¢ in site_status['online'] else 'offline’ for ¢ in CACHES}
return

for cache in CACHES:
__update_cache_state(state, site, cache, 'online' if cache in site_status['online'] else 'offline’)

def __handle_online_or_offline_state(state: dict, site: str, new_status: str):
if site not in state:
state[site] = {c: new_status for ¢ in CACHES}
return

for cache in CACHES:
__update_cache_state(state, site, cache, new_status)

def __update_cache_state(state: dict, site: str, cache: str, new_status: str):
old_status = state[site].get(cache)
if old_status != new_status:
on_event(site, cache, old_status, new_status)
state[site][cache] = new_status

def update_state(state: dict):

rsp = None

for conn in SERVERS:
rsp = conn.get_sites_status()
if rsp:

break

if rsp is None:
print(Unable to fetch site status from any server')
return

for site in REMOTE_SITES:
site_status = rsp.get(site, {})

33

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

new_status = site_status.get('status’)
if new_status == 'mixed".
__handle_mixed_state(state, site, site_status)
else:
__handle_online_or_offline_state(state, site, new_status)

if _name_ ==' main_ "
_state = {}
while True:
update_state(_state)
time.sleep(POLL_INTERVAL_SEC)

When a site status changes from online to offline or vice-versa, the function on_eventis invoked.
If you want to use this script, you must specify the following variables:

e USERNAME and PASSWORD: The username and password of Data Grid user with permission
to access the REST endpoint.

e POLL_INTERVAL_SEC: The number of seconds between polls.

e SERVERS: The list of Data Grid Servers at this site. The script only requires a single valid
response but the list is provided to allow fail over.

e REMOTE_SITES: The list of remote sites to monitor on these servers.

CACHES: The list of cache names to monitor.

Additional resources

® REST API: Getting status of backup locations
Monitoring cross-site replication with the Prometheus metrics

Prometheus, and other monitoring systems, let you configure alerts to detect when a site status
changes to offline.

TIP

Monitoring cross-site latency metrics can help you to discover potential issues.

Prerequisites

® FEnable cross-site replication.

Procedure
1. Configure Data Grid metrics.
2. Configure alerting rules using the Prometheus metrics format.
® For the site status, use 1 for online and 0 for offline.

® For the expr filed, use the following format:
vendor_cache_manager_default_cache_<cache name>_x_site_admin_<site
name>_status.

34

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_rest_api/#rest_v2_cache_manager_site_status_rest

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORINGC

In the following example, Prometheus alerts you when the NYC site gets offline for cache
named work or sessions.

groups:
- name: Cross Site Rules
rules:
- alert: Cache Work and Site NYC
expr: vendor_cache_manager_default_cache_work_x_site_admin_nyc_status == 0
- alert: Cache Sessions and Site NYC
expr: vendor_cache_manager_default_cache_sessions_x_site_admin_nyc_status ==
0

The following image shows an alert that the NYC site is offline for cache work.

Figure 4.1. Prometheus Alert

inactive firing (1)

> Cache Work and Site NYC (1 active)

> Cache Sessions and Site NYC (0 active)

Additional resources

® Configuring Data Grid metrics
® Prometheus Alerting Overview
® Grafana Alerting Documentation

® Openshift Managing Alerts

35

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_server_guide/#configuring-metrics_statistics-jmx
https://prometheus.io/docs/alerting/latest/overview/
https://grafana.com/docs/grafana/latest/alerting/
https://docs.openshift.com/container-platform/latest/monitoring/managing-alerts.html#creating-alerting-rules-for-user-defined-projects_managing-alerts

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

CHAPTERS. SETTING UP DATA GRID CLUSTER TRANSPORT

Data Grid requires a transport layer so nodes can automatically join and leave clusters. The transport
layer also enables Data Grid nodes to replicate or distribute data across the network and perform

operations such as re-balancing and state transfer.

5.1. DEFAULT JGROUPS STACKS

Data Grid provides default JGroups stack files, default-jgroups-*.xml, in the default-configs directory
inside the infinispan-core-14.0.21.Final-redhat-00001.jar file.

File name

default-jgroups-udp.xml

default-jgroups-tcp.xml

default-jgroups-

kubernetes.xml

default-jgroups-ec2.xml

default-jgroups-google.xml

default-jgroups-azure.xml

Additional resources

® JGroups Protocols

Stack name

udp

tcp

kubernetes

ec2

google

azure

Description

Uses UDP for transport and UDP multicast for
discovery. Suitable for larger clusters (over 100
nodes) or if you are using replicated caches or
invalidation mode. Minimizes the number of open
sockets.

Uses TCP for transport and the MPING protocol for
discovery, which uses UDP multicast. Suitable for
smaller clusters (under 100 nodes) only if you are
using distributed caches because TCP is more
efficient than UDP as a point-to-point protocol.

Uses TCP for transport and DNS_PING for
discovery. Suitable for Kubernetes and Red Hat
OpenShift nodes where UDP multicast is not always
available.

Uses TCP for transport and aws.S3_PING for
discovery. Suitable for Amazon EC2 nodes where
UDP multicast is not available. Requires additional
dependencies.

Uses TCP for transport and GOOGLE_PING2 for
discovery. Suitable for Google Cloud Platform nodes
where UDP multicast is not available. Requires
additional dependencies.

Uses TCP for transport and AZURE_PING for
discovery. Suitable for Microsoft Azure nodes where
UDP multicast is not available. Requires additional
dependencies.

5.2. CLUSTER DISCOVERY PROTOCOLS

36

http://www.jgroups.org/manual4/index.html#protlist

CHAPTER 5. SETTING UP DATA GRID CLUSTER TRANSPORT

Data Grid supports different protocols that allow nodes to automatically find each other on the network
and form clusters.

There are two types of discovery mechanisms that Data Grid can use:
® Generic discovery protocols that work on most networks and do not rely on external services.
® Discovery protocols that rely on external services to store and retrieve topology information for

Data Grid clusters.
For instance the DNS_PING protocol performs discovery through DNS server records.

NOTE

Running Data Grid on hosted platforms requires using discovery mechanisms that are
adapted to network constraints that individual cloud providers impose.

Additional resources

® JGroups Discovery Protocols

® JGroups cluster transport configuration for Data Grid 8.x (Red Hat knowledgebase article)

5.2.1. PING

PING, or UDPPING is a generic JGroups discovery mechanism that uses dynamic multicasting with the
UDP protocol.

When joining, nodes send PING requests to an IP multicast address to discover other nodes already in
the Data Grid cluster. Each node responds to the PING request with a packet that contains the address
of the coordinator node and its own address. C=coordinator’'s address and A=own address. If no nodes
respond to the PING request, the joining node becomes the coordinator node in a new cluster.

PING configuration example

I <PING num_discovery_runs="3"/>

Additional resources

® JGroups PING

5.2.2. TCPPING

TCPPING is a generic JGroups discovery mechanism that uses a list of static addresses for cluster
members.

With TCPPING, you manually specify the IP address or hostname of each node in the Data Grid cluster
as part of the JGroups stack, rather than letting nodes discover each other dynamically.

TCPPING configuration example

<TCP bind_port="7800" />
<TCPPING timeout="3000"
initial_hosts="${jgroups.tcpping.initial_hosts:hostname1[port1],hostname2[port2]}"

37

http://www.jgroups.org/manual4/index.html#DiscoveryProtocols
https://access.redhat.com/solutions/5608391
http://www.jgroups.org/manual4/index.html#PING

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

port_range="0"
num_initial_members="3"/>

Additional resources

® JGroups TCPPING

5.2.3. MPING

MPING uses IP multicast to discover the initial membership of Data Grid clusters.

You can use MPING to replace TCPPING discovery with TCP stacks and use multicasing for discovery
instead of static lists of initial hosts. However, you can also use MPING with UDP stacks.

MPING configuration example

<MPING mcast_addr="${jgroups.mcast_addr:239.6.7.8}"
mcast_port="${jgroups.mcast_port:46655}"
num_discovery_runs="3"
ip_ttl="${jgroups.udp.ip_ttl:2}"/>

Additional resources

® JGroups MPING

5.2.4. TCPGOSSIP

Gossip routers provide a centralized location on the network from which your Data Grid cluster can
retrieve addresses of other nodes.

You inject the address (IP:PORT) of the Gossip router into Data Grid nodes as follows:

1. Pass the address as a system property to the JVM; for example, -
DGossipRouterAddress="10.10.2.4[12001]".

2. Reference that system property in the JGroups configuration file.

Gossip router configuration example

<TCP bind_port="7800" />

<TCPGOSSIP timeout="3000"
initial_hosts="${GossipRouterAddress}"
num_initial_members="3" />

Additional resources

® JGroups Gossip Router

5.2.5. JDBC_PING

JDBC_PING uses shared databases to store information about Data Grid clusters. This protocol
supports any database that can use a JDBC connection.

38

http://www.jgroups.org/manual4/index.html#TCPPING_Prot
http://www.jgroups.org/manual4/index.html#MPING
http://www.jgroups.org/manual4/index.html#TCPGOSSIP_Prot

CHAPTER 5. SETTING UP DATA GRID CLUSTER TRANSPORT

Nodes write their IP addresses to the shared database so joining nodes can find the Data Grid cluster on
the network. When nodes leave Data Grid clusters, they delete their IP addresses from the shared
database.

JDBC_PING configuration example

<JDBC_PING connection_url="jdbc:mysql://localhost:3306/database_name"
connection_username="user"
connection_password="password"
connection_driver="com.mysq|l.jdbc.Driver"/>

IMPORTANT

Add the appropriate JDBC driver to the classpath so Data Grid can use JDBC_PING.

Additional resources

e JDBC_PING

o JDBC_PING Wiki

5.2.6. DNS_PING

JGroups DNS_PING queries DNS servers to discover Data Grid cluster members in Kubernetes
environments such as OKD and Red Hat OpenShift.

DNS_PING configuration example

I <dns.DNS_PING dns_query="myservice.myproject.svc.cluster.local" />

Additional resources

® JGroups DNS_PING

® DNS for Services and Pods (Kubernetes documentation for adding DNS entries)

5.2.7. Cloud discovery protocols

Data Grid includes default JGroups stacks that use discovery protocol implementations that are
specific to cloud providers.

Discovery protocol Default stack file Artifact Version

aws.S3_PING default-jgroups- org.jgroups.aws:jgro 2.0.1.Final
ec2.xml ups-aws

GOOGLE_PING2 default-jgroups- org.jgroups.google:j 1.0.0.Final
google.xml groups-google

azure.AZURE_PING default-jgroups- org.jgroups.azure:jgr 2.0.0.Final
azure.xml oups-azure

39

http://www.jgroups.org/manual4/index.html#_jdbc_ping
http://community.jboss.org/wiki/JDBCPING
http://www.jgroups.org/manual4/index.html#_dns_ping
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

Providing dependencies for cloud discovery protocols
To use aws.S3_PING, GOOGLE_PING2, or azure.AZURE_PING cloud discovery protocols, you need to
provide dependent libraries to Data Grid.

Procedure

® Add the artifact dependencies to your project pom.xml.

You can then configure the cloud discovery protocol as part of a JGroups stack file or with system
properties.

Additional resources

® JGroups aws.S3_PING
® JGroups GOOGLE_PING2

® JGroups azure. AZURE_PING

5.3. USING THE DEFAULT JGROUPS STACKS

Data Grid uses JGroups protocol stacks so nodes can send each other messages on dedicated cluster
channels.

Data Grid provides preconfigured JGroups stacks for UDP and TCP protocols. You can use these
default stacks as a starting point for building custom cluster transport configuration that is optimized for
your network requirements.

Procedure

Do one of the following to use one of the default JGroups stacks:

® Use the stack attribute in your infinispan.xml file.

<infinispan>
<cache-container default-cache="replicatedCache">
<!I-- Use the default UDP stack for cluster transport. -->
<transport cluster="${infinispan.cluster.name}"
stack="udp"
node-name="${infinispan.node.name:}"/>
</cache-container>
</infinispan>

e Use the addProperty() method to set the JGroups stack file:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()
.defaultTransport()
.clusterName("ga-cluster")
//Uses the default-jgroups-udp.xml stack for cluster transport.
.addProperty("configurationFile", "default-jgroups-udp.xml")
Jbuild();

Verification

Data Grid logs the following message to indicate which stack it uses:

40

https://github.com/jgroups-extras/jgroups-aws
https://github.com/jgroups-extras/jgroups-google
https://github.com/jgroups-extras/jgroups-azure

CHAPTER 5. SETTING UP DATA GRID CLUSTER TRANSPORT

I [org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack udp

Additional resources

® JGroups cluster transport configuration for Data Grid 8.x (Red Hat knowledgebase article)

5.4. CUSTOMIZING JGROUPS STACKS

Adjust and tune properties to create a cluster transport configuration that works for your network
requirements.

Data Grid provides attributes that let you extend the default JGroups stacks for easier configuration.
You can inherit properties from the default stacks while combining, removing, and replacing other
properties.

Procedure

1. Create a new JGroups stack declaration in your infinispan.xml file.
2. Add the extends attribute and specify a JGroups stack to inherit properties from.

3. Use the stack.combine attribute to modify properties for protocols configured in the inherited
stack.

4. Use the stack.position attribute to define the location for your custom stack.

5. Specify the stack name as the value for the stack attribute in the transport configuration.
For example, you might evaluate using a Gossip router and symmetric encryption with the
default TCP stack as follows:

<infinispan>
<jgroups>
<!I-- Creates a custom JGroups stack named "my-stack”. -->
<!I-- Inherits properties from the default TCP stack. -->
<stack name="my-stack" extends="tcp">
<l-- Uses TCPGOSSIP as the discovery mechanism instead of MPING -->
<TCPGOSSIP initial_hosts="${jgroups.tunnel.gossip_router_hosts:localhost[12001]}"
stack.combine="REPLACE"
stack.position="MPING" />
<!-- Removes the FD_SOCK2 protocol from the stack. -->
<FD_SOCK2 stack.combine="REMOVE"/>
<I-- Modifies the timeout value for the VERIFY_SUSPECTZ2 protocol. -->
<VERIFY_SUSPECT2 timeout="2000"/>
<!-- Adds SYM_ENCRYPT to the stack after VERIFY_SUSPECT2. -->
<SYM_ENCRYPT sym_algorithm="AES"
keystore_name="mykeystore.p12"
keystore_type="PKCS12"
store_password="changeit"
key_password="changeit"
alias="myKey"
stack.combine="INSERT_AFTER"
stack.position="VERIFY_SUSPECT2" />
</stack>
</ijgroups>

41

https://access.redhat.com/solutions/5608391

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

<cache-container name="default" statistics="true">
<!I-- Uses "my-stack"” for cluster transport. -->
<transport cluster="${infinispan.cluster.name}"
stack="my-stack"
node-name="${infinispan.node.name:}"/>
</cache-container>
</infinispan>

6. Check Data Grid logs to ensure it uses the stack.

[org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack my-
stack

Reference

® JGroups cluster transport configuration for Data Grid 8.x (Red Hat knowledgebase article)

5.4.1. Inheritance attributes

When you extend a JGroups stack, inheritance attributes let you adjust protocols and properties in the
stack you are extending.

e stack.position specifies protocols to modify.

e stack.combine uses the following values to extend JGroups stacks:

Value Description

COMBINE Overrides protocol properties.
REPLACE Replaces protocols.
INSERT_AFTER Adds a protocol into the stack after another protocol. Does not

affect the protocol that you specify as the insertion point.

Protocols in JGroups stacks affect each other based on their

location in the stack. For example, you should put a protocol such
as NAKACK2 after the SYM_ENCRYPT or ASYM_ENCRYPT
protocol so that NAKACK2 is secured.

INSERT_BEFORE Inserts a protocols into the stack before another protocol. Affects
the protocol that you specify as the insertion point.

REMOVE Removes protocols from the stack.

5.5. USING JGROUPS SYSTEM PROPERTIES

Pass system properties to Data Grid at startup to tune cluster transport.

Procedure

42

https://access.redhat.com/solutions/5608391

CHAPTER 5. SETTING UP DATA GRID CLUSTER TRANSPORT

® Use -D<property-name>=<property-value> arguments to set JGroups system properties as
required.

For example, set a custom bind port and IP address as follows:

I java -cp ... -Djgroups.bind.port=1234 -Djgroups.bind.address=192.0.2.0

NOTE

When you embed Data Grid clusters in clustered Red Hat JBoss EAP applications,
JGroups system properties can clash or override each other.

For example, you do not set a unique bind address for either your Data Grid cluster or
your Red Hat JBoss EAP application. In this case both Data Grid and your Red Hat JBoss
EAP application use the JGroups default property and attempt to form clusters using the
same bind address.

5.5.1. Cluster transport properties

Use the following properties to customize JGroups cluster transport.

System Description Default Value Required/
Property Optional
jgroups.bi Bind address for cluster transport. SITE_LOCAL Optional
nd.addres

S

jgroups.bi Bind port for the socket. 7800 Optional
nd.port

jgroups.m IP address for multicast, both discovery and 239.6.7.8 Optional
cast_addr inter-cluster communication. The IP address

must be a valid "class D" address that is
suitable for IP multicast.

jgroups.m Port for the multicast socket. 46655 Optional
cast_port

jgroups.ip Time-to-live (TTL) for IP multicast packets. 2 Optional
_ttl The value defines the number of network

hops a packet can make before it is dropped.

jgroups.th Minimum number of threads for the thread 0 Optional
read_pool pool

.min_thre

ads

43

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

System
Property

jgroups.th
read_pool
.max_thre
ads

jgroups.jo
in_timeou
t

jgroups.th
read_dum
ps_thresh
old

jgroups.fd
.port-
offset

jgroups.fr
ag_size

jgroups.di
ag.enable
d

Description

Maximum number of threads for the thread
pool.

Maximum number of milliseconds to wait for
join requests to succeed.

Number of times a thread pool needs to be
full before a thread dump is logged.

Offset from jgroups.bind.port port for the
FD (failure detection protocol) socket.

Maximum number of bytes in a message.
Messages larger than that are fragmented.

Enables JGroups diagnostic probing.

Additional resources

® JGroups system properties

® JGroups protocol list

Default Value

200

2000

10000

50000 (port57800)

60000

false

5.5.2. System properties for cloud discovery protocols

Required/
Optional

Optional

Optional

Optional

Optional

Optional

Optional

Use the following properties to configure JGroups discovery protocols for hosted platforms.

5.5.2.1. Amazon EC2

System properties for configuring aws.S3_PING.

44

System
Property

jgroups.s
3.region_
hame

Description

Name of the Amazon S3 region.

Default Value

No default value.

Required/

Optional

Optional

http://www.jgroups.org/manual4/index.html#SystemProperties
http://www.jgroups.org/manual4/index.html#protlist

CHAPTER 5. SETTING UP DATA GRID CLUSTER TRANSPORT

System Description Default Value Required/
Property Optional
jgroups.s Name of the Amazon S3 bucket. The name No default value. Optional
3.bucket_ must exist and be unique.

name

5.5.2.2. Google Cloud Platform

System properties for configuring GOOGLE_PING2.

System Description Default Value Required/
Property Optional
jgroups.g Name of the Google Compute Engine No default value. Required
oogle.buc bucket. The name must exist and be unique.
ket_name

5.5.2.3. Azure

System properties for azure AZURE_PING".

System Description Default Value Required/

Property Optional

jboss.jgro Name of the Azure storage account. The No default value. Required
ups.azure name must exist and be unique.

_ping.stor

age_acco

unt_name

jboss.jgro Name of the Azure storage access key. No default value. Required
ups.azure

_ping.stor

age_acces

s_key

jboss.jgro Valid DNS name of the container that stores No default value. Required
ups.azure ping information.

_ping.con

tainer

5.5.2.4. OpenShift

System properties for DNS_PING.

45

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

System Description Default Value Required/
Property Optional
jgroups.d Sets the DNS record that returns cluster No default value. Required
ns.query members.

jgroups.d Sets the DNS record type. A Optional
ns.record

5.6. USING INLINE JGROUPS STACKS

You can insert complete JGroups stack definitions into infinispan.xml files.

Procedure

® Embed a custom JGroups stack declaration in your infinispan.xml file.

<infinispan>
<!I-- Contains one or more JGroups stack definitions. -->
<jgroups>
<!I-- Defines a custom JGroups stack named "prod". -->
<stack name="prod">
<TCP bind_port="7800" port_range="30" recv_buf_size="20000000"
send_buf size="640000"/>
<RED/>
<MPING break_on_coord_rsp="true"
mcast_addr="${jgroups.mping.mcast_addr:239.2.4.6}"
mcast_port="${jgroups.mping.mcast_port:43366}"
num_discovery_runs="3"
ip_ttl="${jgroups.udp.ip_ttl:2}"/>
<MERGES />
<FD_SOCK2 />
<FD_ALLS3 timeout="3000" interval="1000" timeout_check_interval="1000" />
<VERIFY_SUSPECT2 timeout="1000" />
<pbcast. NAKACK2 use_mcast_xmit="false" xmit_interval="200"
xmit_table_num_rows="50"
xmit_table_msgs_per_row="1024" xmit_table_max_compaction_time="30000"

/>
<UNICASTS3 conn_close_timeout="5000" xmit_interval="200" xmit_table_num_rows="50"
xmit_table_msgs_per_row="1024" xmit_table_max_compaction_time="30000" />
<pbcast.STABLE desired_avg_gossip="2000" max_bytes="1M" />
<pbcast.GMS print_local_addr="false" join_timeout="${jgroups.join_timeout:2000}" />
<UFC max_credits="4m" min_threshold="0.40" />
<MFC max_credits="4m" min_threshold="0.40" />
<FRAG4 />
</stack>
</ijgroups>

<cache-container default-cache="replicatedCache">
<I-- Uses "prod" for cluster transport. -->
<transport cluster="${infinispan.cluster.name}"
stack="prod"

46

CHAPTER 5. SETTING UP DATA GRID CLUSTER TRANSPORT

node-name="${infinispan.node.name:}"/>
</cache-container>
</infinispan>

5.7. USING EXTERNAL JGROUPS STACKS

Reference external files that define custom JGroups stacks in infinispan.xml files.

Procedure

1. Put custom JGroups stack files on the application classpath.
Alternatively you can specify an absolute path when you declare the external stack file.

2. Reference the external stack file with the stack-file element.

<infinispan>
<jgroups>
<!-- Creates a "prod-tcp" stack that references an external file. -->
<stack-file name="prod-tcp" path="prod-jgroups-tcp.xml"/>
</ijgroups>
<cache-container default-cache="replicatedCache">
<!I-- Use the "prod-tcp" stack for cluster transport. -->
<transport stack="prod-tcp" />
<replicated-cache name="replicatedCache"/>
</cache-container>
<!I-- Cache configuration goes here. -->
</infinispan>

You can also use the addProperty() method in the TransportConfigurationBuilder class to specify a
custom JGroups stack file as follows:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()
.defaultTransport()
.clusterName("prod-cluster")
//Uses a custom JGroups stack for cluster transport.
.addProperty("configurationFile", "my-jgroups-udp.xml")
Jbuild();

In this example, my-jgroups-udp.xml references a UDP stack with custom properties such as the
following:

Custom UDP stack example

<config xmins="urn:org:jgroups"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:org:jgroups http://www.jgroups.org/schema/jgroups-4.2.xsd">

<UDP bind_addr="${jgroups.bind_addr:127.0.0.1}"
mcast_addr="${jgroups.udp.mcast_addr:239.0.2.0}"
mcast_port="${jgroups.udp.mcast_port:46655}"
tos="8"
ucast_recv_buf size="20000000"
ucast_send_buf size="640000"
mcast_recv_buf size="25000000"
mcast_send_buf_size="640000"

47

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

bundler.max_size="64000"
ip_ttl="${jgroups.udp.ip_ttl:2}"
diag.enabled="false"
thread_naming_pattern="pl"
thread_pool.enabled="true"
thread_pool.min_threads="2"
thread_pool.max_threads="30"
thread_pool.keep_alive_time="5000" />
<!I-- Other JGroups stack configuration goes here. -->
</config>

Additional resources

® org.infinispan.configuration.global. TransportConfigurationBuilder

5.8. USING CUSTOM JCHANNELS

Construct custom JGroups JChannels as in the following example:

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
JChannel jchannel = new JChannel();
// Configure the jchannel as needed.
JGroupsTransport transport = new JGroupsTransport(jchannel);
global.transport().transport(transport);
new DefaultCacheManager(global.build());

NOTE

Data Grid cannot use custom JChannels that are already connected.

-

Additional resources

® JGroups JChannel

5.9. ENCRYPTING CLUSTER TRANSPORT

Secure cluster transport so that nodes communicate with encrypted messages. You can also configure
Data Grid clusters to perform certificate authentication so that only nodes with valid identities can join.

5.9.1. JGroups encryption protocols

To secure cluster traffic, you can configure Data Grid nodes to encrypt JGroups message payloads with
secret keys.

Data Grid nodes can obtain secret keys from either:
® The coordinator node (asymmetric encryption).
® Ashared keystore (symmetric encryption).

Retrieving secret keys from coordinator nodes

You configure asymmetric encryption by adding the ASYM_ENCRYPT protocol to a JGroups stack in
your Data Grid configuration. This allows Data Grid clusters to generate and distribute secret keys.

48

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/configuration/global/TransportConfigurationBuilder.html
http://www.jgroups.org/manual4/index.html#JChannel

CHAPTER 5. SETTING UP DATA GRID CLUSTER TRANSPORT

IMPORTANT

When using asymmetric encryption, you should also provide keystores so that nodes can
perform certificate authentication and securely exchange secret keys. This protects your
cluster from man-in-the-middle (MitM) attacks.

Asymmetric encryption secures cluster traffic as follows:
1. The first node in the Data Grid cluster, the coordinator node, generates a secret key.

2. Ajoining node performs certificate authentication with the coordinator to mutually verify
identity.

3. The joining node requests the secret key from the coordinator node. That request includes the
public key for the joining node.

4. The coordinator node encrypts the secret key with the public key and returns it to the joining
node.

5. The joining node decrypts and installs the secret key.
6. The node joins the cluster, encrypting and decrypting messages with the secret key.

Retrieving secret keys from shared keystores

You configure symmetric encryption by adding the SYM_ENCRYPT protocol to a JGroups stack in your
Data Grid configuration. This allows Data Grid clusters to obtain secret keys from keystores that you
provide.

1. Nodes install the secret key from a keystore on the Data Grid classpath at startup.
2. Node join clusters, encrypting and decrypting messages with the secret key.

Comparison of asymmetric and symmetric encryption

ASYM_ENCRYPT with certificate authentication provides an additional layer of encryption in
comparison with SYM_ENCRYPT. You provide keystores that encrypt the requests to coordinator
nodes for the secret key. Data Grid automatically generates that secret key and handles cluster traffic,
while letting you specify when to generate secret keys. For example, you can configure clusters to
generate new secret keys when nodes leave. This ensures that nodes cannot bypass certificate
authentication and join with old keys.

SYM_ENCRYPT, on the other hand, is faster than ASYM_ENCRYPT because nodes do not need to
exchange keys with the cluster coordinator. A potential drawback to SYM_ENCRYPT is that there is no
configuration to automatically generate new secret keys when cluster membership changes. Users are
responsible for generating and distributing the secret keys that nodes use to encrypt cluster traffic.

5.9.2. Securing cluster transport with asymmetric encryption

Configure Data Grid clusters to generate and distribute secret keys that encrypt JGroups messages.

Procedure

1. Create a keystore with certificate chains that enables Data Grid to verify node identity.

2. Place the keystore on the classpath for each node in the cluster.
For Data Grid Server, you put the keystore in the $RHDG_HOME directory.

49

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

3. Add the SSL_KEY_EXCHANGE and ASYM_ENCRYPT protocols to a JGroups stack in your
Data Grid configuration, as in the following example:

<infinispan>
<jgroups>
<!I-- Creates a secure JGroups stack named "encrypt-tcp” that extends the default TCP
stack. -->
<stack name="encrypt-tcp" extends="tcp">
<I-- Adds a keystore that nodes use to perform certificate authentication. -->
<I-- Uses the stack.combine and stack.position attributes to insert
SSL_KEY EXCHANGE into the default TCP stack after VERIFY_SUSPECT2. -->
<SSL_KEY_EXCHANGE keystore_name="mykeystore.jks"
keystore_password="changeit"
stack.combine="INSERT_AFTER"
stack.position="VERIFY_SUSPECT2"/>
<I-- Configures ASYM_ENCRYPT -->
<I-- Uses the stack.combine and stack.position attributes to insert ASYM_ENCRYPT into
the default TCP stack before pbcast NAKACKZ2. -->
<I-- The use_external_key exchange = "true" attribute configures nodes to use the
‘SSL_KEY _EXCHANGE" protocol for certificate authentication. -->
<ASYM_ENCRYPT asym_keylength="2048"
asym_algorithm="RSA"
change_key_on_coord_leave = "false"
change_key_on_leave = "false"
use_external_key_exchange = "true"
stack.combine="INSERT_BEFORE"
stack.position="pbcast. NAKACK2"/>
</stack>
</ijgroups>
<cache-container name="default" statistics="true">
<!I-- Configures the cluster to use the JGroups stack. -->
<transport cluster="${infinispan.cluster.name}"
stack="encrypt-tcp"
node-name="${infinispan.node.name:}"/>
</cache-container>
</infinispan>

Verification

When you start your Data Grid cluster, the following log message indicates that the cluster is using the
secure JGroups stack:

[org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack
<encrypted_stack_name>

Data Grid nodes can join the cluster only if they use ASYM_ENCRYPT and can obtain the secret key
from the coordinator node. Otherwise the following message is written to Data Grid logs:

[org.jgroups.protocols.ASYM_ENCRYPT] <hostname>: received message without encrypt header
from <hostname>; dropping it

Additional resources

® JGroups 4 Manual

50

http://www.jgroups.org/manual4/index.html

CHAPTER 5. SETTING UP DATA GRID CLUSTER TRANSPORT
® JGroups 4.2 Schema

5.9.3. Securing cluster transport with symmetric encryption

Configure Data Grid clusters to encrypt JGroups messages with secret keys from keystores that you
provide.

Procedure

1. Create a keystore that contains a secret key.

2. Place the keystore on the classpath for each node in the cluster.
For Data Grid Server, you put the keystore in the $RHDG_HOME directory.

3. Add the SYM_ENCRYPT protocol to a JGroups stack in your Data Grid configuration.

<infinispan>
<jgroups>
<!I-- Creates a secure JGroups stack named "encrypt-tcp" that extends the default TCP stack. -->
<stack name="encrypt-tcp" extends="tcp">
<!-- Adds a keystore from which nodes obtain secret keys. -->
<I-- Uses the stack.combine and stack.position attributes to insert SYM_ENCRYPT into the
default TCP stack after VERIFY _SUSPECT2. -->
<SYM_ENCRYPT keystore_name="myKeystore.p12"
keystore_type="PKCS12"
store_password="changeit"
key_password="changeit"
alias="myKey"
stack.combine="INSERT_AFTER"
stack.position="VERIFY_SUSPECT2"/>
</stack>
</ijgroups>
<cache-container name="default" statistics="true">
<!I-- Configures the cluster to use the JGroups stack. -->
<transport cluster="${infinispan.cluster.name}"
stack="encrypt-tcp"
node-name="${infinispan.node.name:}"/>
</cache-container>
</infinispan>

Verification

When you start your Data Grid cluster, the following log message indicates that the cluster is using the
secure JGroups stack:

[org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack
<encrypted_stack_name>

Data Grid nodes can join the cluster only if they use SYM_ENCRYPT and can obtain the secret key
from the shared keystore. Otherwise the following message is written to Data Grid logs:

[org.jgroups.protocols.SYM_ENCRYPT] <hostname>: received message without encrypt header from
<hostname>; dropping it

51

http://www.jgroups.org/schema/jgroups-4.2.xsd

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

AdQaitional resources

® JGroups 4 Manual

® JGroups 4.2 Schema

5.10. TCP AND UDP PORTS FOR CLUSTER TRAFFIC

Data Grid uses the following ports for cluster transport messages:

Default Port Protocol Description
7800 TCP/UDP JGroups cluster bind port
46655 UDP JGroups multicast

Cross-site replication
Data Grid uses the following ports for the JGroups RELAY?2 protocol:
7900
For Data Grid clusters running on OpenShift.
7800
If using UDP for traffic between nodes and TCP for traffic between clusters.
7801

If using TCP for traffic between nodes and TCP for traffic between clusters.

52

http://www.jgroups.org/manual4/index.html
http://www.jgroups.org/schema/jgroups-4.2.xsd

CHAPTER 6. CLUSTERED LOCKS

CHAPTER 6. CLUSTERED LOCKS

Clustered locks are data structures that are distributed and shared across nodes in a Data Grid cluster.
Clustered locks allow you to run code that is synchronized between nodes.

6.1. LOCK API

Data Grid provides a ClusteredLock API that lets you concurrently execute code on a cluster when
using Data Grid in embedded mode.

The API consists of the following:
® ClusteredLock exposes methods to implement clustered locks.

e (ClusteredLockManager exposes methods to define, configure, retrieve, and remove clustered
locks.

o EmbeddedClusteredLockManagerFactory initializes ClusteredLockManager
implementations.

Ownership

Data Grid supports NODE ownership so that all nodes in a cluster can use a lock.

Reentrancy

Data Grid clustered locks are non-reentrant so any node in the cluster can acquire a lock but only the
node that creates the lock can release it.

If two consecutive lock calls are sent for the same owner, the first call acquires the lock if it is available
and the second call is blocked.

Reference

® EmbeddedClusteredLockManagerFactory
® ClusteredLockManager

® (ClusteredlLock

6.2. USING CLUSTERED LOCKS

Learn how to use clustered locks with Data Grid embedded in your application.

Prerequisites

® Add the infinispan-clustered-lock dependency to your pom.xmil:

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-clustered-lock</artifactld>
</dependency>

Procedure

53

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/lock/EmbeddedClusteredLockManagerFactory.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/lock/api/ClusteredLockManager.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/lock/api/ClusteredLock.html

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

1. Initialize the ClusteredLockManager interface from a Cache Manager. This interface is the
entry point for defining, retrieving, and removing clustered locks.

2. Give a unique name for each clustered lock.

3. Acquire locks with the lock.tryLock(1, TimeUnit.SECONDS) method.

// Set up a clustered Cache Manager.
GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder();

// Configure the cache mode, in this case it is distributed and synchronous.
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC);

// Initialize a new default Cache Manager.
DefaultCacheManager cm = new DefaultCacheManager(global.build(), builder.build());

// Initialize a Clustered Lock Manager.
ClusteredLockManager cim1 = EmbeddedClusteredLockManagerFactory.from(cm);

// Define a clustered lock named 'lock’.
clm1.defineLock("lock");

// Get a lock from each node in the cluster.
ClusteredLock lock = clm1.get("lock");

Atomiclnteger counter = new Atomiclnteger(0);

// Acquire the lock as follows.
// Each 'lock.tryLock(1, TimeUnit. SECONDS)' method attempts to acquire the lock.
// If the lock is not available, the method waits for the timeout period to elapse. When the lock is
acquired, other calls to acquire the lock are blocked until the lock is released.
CompletableFuture<Boolean> call1 = lock.tryLock(1, TimeUnit. SECONDS).whenComplete((r, ex) -> {
if (r) {
System.out.printin("lock is acquired by the call 1");
lock.unlock().whenComplete((nil, ex2) -> {
System.out.printin("lock is released by the call 1");
counter.incrementAndGet();
1;
}
D

CompletableFuture<Boolean> call2 = lock.tryLock(1, TimeUnit. SECONDS).whenComplete((r, ex) -> {
if(r) {
System.out.printin("lock is acquired by the call 2");
lock.unlock().whenComplete((nil, ex2) -> {
System.out.printin("lock is released by the call 2");
counter.incrementAndGet();
};
}
Wk

CompletableFuture<Boolean> call3 = lock.tryLock(1, TimeUnit. SECONDS).whenComplete((r, ex) -> {

if(r) {
System.out.printin("lock is acquired by the call 3");
lock.unlock().whenComplete((nil, ex2) -> {

54

CHAPTER 6. CLUSTERED LOCKS

System.out.printin("lock is released by the call 3");
counter.incrementAndGet();
1;
}
D

CompletableFuture.allOf(call1, call2, call3).whenComplete((r, ex) -> {
// Print the value of the counter.

System.out.printin("Value of the counter is " + counter.get());

// Stop the Cache Manager.
cm.stop();

h;

6.3. CONFIGURING INTERNAL CACHES FOR LOCKS

Clustered Lock Managers include an internal cache that stores lock state. You can configure the internal
cache either declaratively or programmatically.

Procedure

1. Define the number of nodes in the cluster that store the state of clustered locks. The default
value is -1, which replicates the value to all nodes.

2. Specify one of the following values for the cache reliability, which controls how clustered locks
behave when clusters split into partitions or multiple nodes leave:

® AVAILABLE: Nodes in any partition can concurrently operate on locks.

® CONSISTENT: Only nodes that belong to the majority partition can operate on locks. This is
the default value.

® Programmatic configuration

import org.infinispan.lock.configuration.ClusteredLockManagerConfiguration;
import org.infinispan.lock.configuration.ClusteredLockManagerConfigurationBuilder;
import org.infinispan.lock.configuration.Reliability;

GlobalConfigurationBuilder global =
GlobalConfigurationBuilder.defaultClusteredBuilder();

final ClusteredLockManagerConfiguration config =
global.addModule(ClusteredLockManagerConfigurationBuilder.class).numOwner(2).relia
bility(Reliability. AVAILABLE).create();

DefaultCacheManager cm = new DefaultCacheManager(global.build());

ClusteredLockManager ciIm1 = EmbeddedClusteredLockManagerFactory.from(cm);

clm1.defineLock("lock");

® Declarative configuration

I <infinispan

55

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="urn:infinispan:config:14.0
https://infinispan.org/schemas/infinispan-config-14.0.xsd"

xmlns="urn:infinispan:config:14.0">

<cache-container default-cache="default">
<transport/>
<local-cache name="default">
<locking concurrency-level="100" acquire-timeout="1000"/>
</local-cache>
<clustered-locks xmIns="urn:infinispan:config:clustered-locks:14.0"
num-owners = "3"
reliability="AVAILABLE">
<clustered-lock name="lock1" />
<clustered-lock name="lock2" />
</clustered-locks>
</cache-container>
<!I-- Cache configuration goes here. -->
</infinispan>

Reference

® ClusteredLockManagerConfiguration

® Clustered Locks Configuration Schema

56

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/lock/configuration/ClusteredLockManagerConfiguration.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/configdocs/infinispan-clustered-locks-config-infinispan-clustered-locks-config-12.0.html.html

CHAPTER 7. EXECUTING CODE IN THE GRID

CHAPTER 7. EXECUTING CODE IN THE GRID

The main benefit of a cache is the ability to very quickly lookup a value by its key, even across machines.
In fact this use alone is probably the reason many users use Data Grid. However Data Grid can provide
many more benefits that arent immediately apparent. Since Data Grid is usually used in a cluster of
machines we also have features available that can help utilize the entire cluster for performing the user’s
desired workload.

7.1. CLUSTER EXECUTOR

Since you have a group of machines, it makes sense to leverage their combined computing power for
executing code on all of them them. The Cache Manager comes with a nice utility that allows you to
execute arbitrary code in the cluster. Note this feature requires no Cache to be used. This Cluster
Executor can be retrieved by calling executor() on the EmbeddedCacheManager. This executor is
retrievable in both clustered and non clustered configurations.

NOTE

The ClusterExecutor is specifically designed for executing code where the code is not
reliant upon the data in a cache and is used instead as a way to help users to execute
code easily in the cluster.

This manager was built specifically using Java 8 and such has functional APIs in mind, thus all methods
take a functional interface as an argument. Also since these arguments will be sent to other nodes they
need to be serializable. We even used a nice trick to ensure our lambdas are immediately Serializable.
That is by having the arguments implement both Serializable and the real argument type (ie. Runnable
or Function). The JRE will pick the most specific class when determining which method to invoke, so in
that case your lambdas will always be serializable. It is also possible to use an Externalizer to possibly
reduce message size further.

The manager by default will submit a given command to all nodes in the cluster including the node where
it was submitted from. You can control on which nodes the task is executed on by using the filterTargets
methods as is explained in the section.

7.1.1. Filtering execution nodes

It is possible to limit on which nodes the command will be ran. For example you may want to only run a
computation on machines in the same rack. Or you may want to perform an operation once in the local
site and again on a different site. A cluster executor can limit what nodes it sends requests to at the
scope of same or different machine, rack or site level.

SameRack.java

EmbeddedCacheManager manager = ...;
manager.executor().filterTargets(ClusterExecutionPolicy. SAME_RACK).submit...)

To use this topology base filtering you must enable topology aware consistent hashing through Server
Hinting.

You can also filter using a predicate based on the Address of the node. This can also be optionally
combined with topology based filtering in the previous code snippet.

57

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/manager/ClusterExecutor.html

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

We also allow the target node to be chosen by any means using a Predicate that will filter out which
nodes can be considered for execution. Note this can also be combined with Topology filtering at the
same time to allow even more fine control of where you code is executed within the cluster.

Predicate.java

EmbeddedCacheManager manager = ...;

// Just filter

manager.executor().filterTargets(a -> a.equals(..)).submit(...)

// Filter only those in the desired topology
manager.executor().filterTargets(ClusterExecutionPolicy. SAME_SITE, a -> a.equals(..)).submit(...)

7.1.2. Timeout

Cluster Executor allows for a timeout to be set per invocation. This defaults to the distributed sync
timeout as configured on the Transport Configuration. This timeout works in both a clustered and non
clustered Cache Manager. The executor may or may not interrupt the threads executing a task when the
timeout expires. However when the timeout occurs any Consumer or Future will be completed passing
back a TimeoutException. This value can be overridden by ivoking the timeout method and supplying
the desired duration.

7.1.3. Single Node Submission

Cluster Executor can also run in single node submission mode instead of submitting the command to all
nodes it will instead pick one of the nodes that would have normally received the command and instead
submit it it to only one. Each submission will possibly use a different node to execute the task on. This
can be very useful to use the ClusterExecutor as a java.util.concurrent.Executor which you may have
noticed that ClusterExecutor implements.

SingleNode.java

EmbeddedCacheManager manager = ...;
manager.executor().singleNodeSubmission().submit...)

7.1.3.1. Failover

When running in single node submission it may be desirable to also allow the Cluster Executor handle
cases where an exception occurred during the processing of a given command by retrying the command
again. When this occurs the Cluster Executor will choose a single node again to resubmit the command
to up to the desired number of failover attempts. Note the chosen node could be any node that passes
the topology or predicate check. Failover is enabled by invoking the overridden singleNodeSubmission
method. The given command will be resubmitted again to a single node until either the command
completes without exception or the total submission amount is equal to the provided failover count.

7.1.4. Example: Pl Approximation

This example shows how you can use the ClusterExecutor to estimate the value of PI.

Pi approximation can greatly benefit from parallel distributed execution via Cluster Executor. Recall that
area of the square is Sa = 4r2 and area of the circle is Ca=pi*r2. Substituting r2 from the second
equation into the first one it turns out that pi = 4 * Ca/Sa. Now, image that we can shoot very large
number of darts into a square; if we take ratio of darts that land inside a circle over a total number of
darts shot we will approximate Ca/Sa value. Since we know that pi = 4 * Ca/Sa we can easily derive

58

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/manager/ClusterExecutor.html#timeout-long-java.util.concurrent.TimeUnit-
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/manager/ClusterExecutor.html#singleNodeSubmission-int-

CHAPTER 7. EXECUTING CODE IN THE GRID

approximate value of pi. The more darts we shoot the better approximation we get. In the example
below we shoot 1billion darts but instead of "shooting” them serially we parallelize work of dart shooting
across the entire Data Grid cluster. Note this will work in a cluster of 1was well, but will be slower.

public class PiAppx {

public static void main (String [] arg){
EmbeddedCacheManager cacheManager = ..
boolean isCluster = ..

int numPoints =1_000_000_000;
int numServers = isCluster ? cacheManager.getMembers().size() : 1;
int numberPerWorker = numPoints / numServers;

ClusterExecutor clusterExecutor = cacheManager.executor();
long start = System.currentTimeMillis();
// We receive results concurrently - need to handle that
AtomicLong countCircle = new AtomicLong();
CompletableFuture<Void> fut = clusterExecutor.submitConsumer(m -> {
int insideCircleCount = 0;
for (int i = 0; i < numberPerWorker; i++) {
double x = Math.random();
double y = Math.random();
if (insideCircle(x, y))
insideCircleCount++;
}
return insideCircleCount;
1, (address, count, throwable) -> {
if (throwable != null) {
throwable.printStackTrace();
System.out.printin("Address: " + address + " encountered an error: " + throwable);
}else {
countCircle.getAndAdd(count);
}
};

fut.whenComplete((v, t) -> {
// This is invoked after all nodes have responded with a value or exception
if (t I=null) {
t.printStackTrace();
System.out.printin("Exception encountered while waiting:" + t);
}else {
double appxPi = 4.0 * countCircle.get() / numPoints;

System.out.printin("Distributed Pl appx is " + appxPi +
"using " + numServers + " node(s), completed in " + (System.currentTimeMillis() - start) +

// May have to sleep here to keep alive if no user threads left

}

private static boolean insideCircle(double x, double y) {
return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))

59

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

<= Math.pow(0.5, 2);

60

CHAPTER 8. USING THE STREAMS API FOR CODE EXECUTION

CHAPTER 8. USING THE STREAMS API FOR CODE
EXECUTION

Efficiently process data stored in Data Grid caches using the Streams API.

61

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

CHAPTER 9. STREAMS

You may want to process a subset or all data in the cache to produce a result. This may bring thoughts

of Map Reduce. Data Grid allows the user to do something very similar but utilizes the standard JRE APIs
to do so. Java 8 introduced the concept of a Stream which allows functional-style operations on
collections rather than having to procedurally iterate over the data yourself. Stream operations can be
implemented in a fashion very similar to MapReduce. Streams, just like MapReduce allow you to perform
processing upon the entirety of your cache, possibly a very large data set, but in an efficient way.

NOTE

Streams are the preferred method when dealing with data that exists in the cache
because streams automatically adjust to cluster topology changes.

Also since we can control how the entries are iterated upon we can more efficiently perform the
operations in a cache that is distributed if you want it to perform all of the operations across the cluster
concurrently.

A stream is retrieved from the entrySet, keySet or values collections returned from the Cache by
invoking the stream or parallelStream methods.

9.1. COMMON STREAM OPERATIONS

This section highlights various options that are present irrespective of what type of underlying cache you
are using.

9.2. KEY FILTERING

Itis possible to filter the stream so that it only operates upon a given subset of keys. This can be done by
invoking the filterKeys method on the CacheStream. This should always be used over a Predicate filter
and will be faster if the predicate was holding all keys.

If you are familiar with the AdvancedCache interface you may be wondering why you even use getAll
over this keyFilter. There are some small benefits (mostly smaller payloads) to using getAll if you need
the entries as is and need them all in memory in the local node. However if you need to do processing on
these elements a stream is recommended since you will get both distributed and threaded parallelism
for free.

9.3. SEGMENT BASED FILTERING

NOTE

This is an advanced feature and should only be used with deep knowledge of Data Grid
segment and hashing techniques. These segments based filtering can be useful if you
need to segment data into separate invocations. This can be useful when integrating with
other tools such as Apache Spark.

This option is only supported for replicated and distributed caches. This allows the user to operate upon
a subset of data at a time as determined by the KeyPartitioner. The segments can be filtered by
invoking filterKeySegments method on the CacheStream. This is applied after the key filter but before
any intermediate operations are performed.

62

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#entrySet--
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#keySet--
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#values--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#filterKeys-java.util.Set-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html?is-external=true#filter-java.util.function.Predicate-
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/AdvancedCache.html#getAll-java.util.Set-
http://spark.apache.org/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/distribution/ch/KeyPartitioner.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#filterKeySegments-java.util.Set-

CHAPTER 9. STREAMS

9.4. LOCAL/INVALIDATION

A stream used with a local or invalidation cache can be used just the same way you would use a stream
on a regular collection. Data Grid handles all of the translations if necessary behind the scenes and works
with all of the more interesting options (ie. storeAsBinary and a cache loader). Only data local to the
node where the stream operation is performed will be used, for example invalidation only uses local
entries.

9.5. EXAMPLE

The code below takes a cache and returns a map with all the cache entries whose values contain the
string "JBoss"

Map<Obiject, String> jpossValues =

cache.entrySet().stream()
filter(e -> e.getValue().contains("JBoss"))
.collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

9.6. DISTRIBUTION/REPLICATION/SCATTERED

This is where streams come into their stride. When a stream operation is performed it will send the
various intermediate and terminal operations to each node that has pertinent data. This allows
processing the intermediate values on the nodes owning the data, and only sending the final results
back to the originating nodes, improving performance.

9.6.1. Rehash Aware

Internally the data is segmented and each node only performs the operations upon the data it owns as a
primary owner. This allows for data to be processed evenly, assuming segments are granular enough to
provide for equal amounts of data on each node.

When you are utilizing a distributed cache, the data can be reshuffled between nodes when a new node
joins or leaves. Distributed Streams handle this reshuffling of data automatically so you don’t have to
worry about monitoring when nodes leave or join the cluster. Reshuffled entries may be processed a
second time, and we keep track of the processed entries at the key level or at the segment level
(depending on the terminal operation) to limit the amount of duplicate processing.

It is possible but highly discouraged to disable rehash awareness on the stream. This should only be
considered if your request can handle only seeing a subset of data if a rehash occurs. This can be done
by invoking CacheStream.disableRehashAware() The performance gain for most operations when a

rehash doesn't occur is completely negligible. The only exceptions are for iterator and forEach, which will
use less memory, since they do not have to keep track of processed keys.

' WARNING
A Please rethink disabling rehash awareness unless you really know what you are

doing.

9.6.2. Serialization

63

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#disableRehashAware--

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

Since the operations are sent across to other nodes they must be serializable by Data Grid marshalling.
This allows the operations to be sent to the other nodes.

The simplest way is to use a CacheStream instance and use a lambda just as you would normally. Data
Grid overrides all of the various Stream intermediate and terminal methods to take Serializable versions
of the arguments (ie. SerializableFunction, SerializablePredicate...) You can find these methods at
CacheStream. This relies on the spec to pick the most specific method as defined here.

In our previous example we used a Collector to collect all the results into a Map. Unfortunately the
Collectors class doesn't produce Serializable instances. Thus if you need to use these, there are two ways
to do so:

One option would be to use the CacheCollectors class which allows for a Supplier<Collectors to be
provided. This instance could then use the Collectors to supply a Collector which is not serialized.

Map<Object, String> jbossValues = cache.entrySet().stream()
filter(e -> e.getValue().contains("Jboss"))
.collect(CacheCollectors.serializableCollector(() -> Collectors.toMap(Map.Entry::getKey,
Map.Entry::getValue)));

Alternatively, you can avoid the use of CacheCollectors and instead use the overloaded collect
methods that take Supplier<Collectors. These overloaded collect methods are only available via
CacheStream interface.

Map<Object, String> jpossValues = cache.entrySet().stream()
filter(e -> e.getValue().contains("Jboss"))
.collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

If however you are not able to use the Cache and CacheStream interfaces you cannot utilize
Serializable arguments and you must instead cast the lambdas to be Serializable manually by casting
the lambda to multiple interfaces. It is not a pretty sight but it gets the job done.

Map<Object, String> jbossValues = map.entrySet().stream()

filter((Serializable & Predicate<Map.Entry<Object, String>>) e ->
e.getValue().contains("Jboss"))

.collect(CacheCollectors.serializableCollector(() -> Collectors.toMap(Map.Entry::getKey,
Map.Entry::getValue)));

The recommended and most performant way is to use an AdvancedExternalizer as this provides the
smallest payload. Unfortunately this means you cannot use lamdbas as advanced externalizers require
defining the class before hand.

You can use an advanced externalizer as shown below:

Map<Object, String> jpossValues = cache.entrySet().stream()
filter(new ContainsFilter("Jboss"))
.collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

class ContainsFilter implements Predicate<Map.Entry<Object, String>> {
private final String target;

ContainsFilter(String target) {

this.target = target;
}

64

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2.5
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/stream/CacheCollectors.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/stream/CacheCollectors.html

CHAPTER 9. STREAMS

@Override
public boolean test(Map.Entry<Object, String> e) {
return e.getValue().contains(target);
}
}

class JbossFilterExternalizer implements AdvancedExternalizer<ContainsFilter> {

@Override
public Set<Class<? extends ContainsFilter>> getTypeClasses() {
return Util.asSet(ContainsFilter.class);

}

@Override
public Integer getld() {
return CUSTOM_ID;

}

@Override
public void writeObject(ObjectOutput output, ContainsFilter object) throws IOException {
output.writeUTF(object.target);

}

@Override
public ContainsFilter readObject(Objectinput input) throws IOException,
ClassNotFoundException {
return new ContainsFilter(input.readUTF());
}
}

You could also use an advanced externalizer for the collector supplier to reduce the payload size even
further.

Map<Object, String> map = (Map<Object, String>) cache.entrySet().stream()
filter(new ContainsFilter("Jboss"))
.collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

class ToMapCollectorSupplier<K, U> implements Supplier<Collector<Map.Entry<K, U>, ?, Map<K,
U>>> {

static final ToMapCollectorSupplier INSTANCE = new ToMapCollectorSupplier();
private ToMapCollectorSupplier() { }

@Override
public Collector<Map.Entry<K, U>, ?, Map<K, U>> get() {
return Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue);

}
}

class ToMapCollectorSupplierExternalizer implements
AdvancedExternalizer<ToMapCollectorSupplier> {

@Override
public Set<Class<? extends ToMapCollectorSupplier>> getTypeClasses() {
return Util.asSet(ToMapCollectorSupplier.class);

}

65

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

@Override
public Integer getld() {
return CUSTOM_ID;

}

@Override
public void writeObject(ObjectOutput output, ToMapCollectorSupplier object) throws IOException

}

@Override
public ToMapCollectorSupplier readObject(Objectinput input) throws IOException,
ClassNotFoundException {
return ToMapCollectorSupplier.INSTANCE;

}
}

9.7. PARALLEL COMPUTATION

Distributed streams by default try to parallelize as much as possible. It is possible for the end user to
control this and actually they always have to control one of the options. There are 2 ways these streams
are parallelized.

Local to each nodeWhen a stream is created from the cache collection the end user can choose
between invoking stream or parallelStream method. Depending on if the parallel stream was picked will
enable multiple threading for each node locally. Note that some operations like a rehash aware iterator
and forEach operations will always use a sequential stream locally. This could be enhanced at some point
to allow for parallel streams locally.

Users should be careful when using local parallelism as it requires having a large number of entries or
operations that are computationally expensive to be faster. Also it should be noted that if a user uses a
parallel stream with forEach that the action should not block as this would be executed on the common
pool, which is normally reserved for computation operations.

Remote requests When there are multiple nodes it may be desirable to control whether the remote
requests are all processed at the same time concurrently or one at a time. By default all terminal
operations except the iterator perform concurrent requests. The iterator, method to reduce overall
memory pressure on the local node, only performs sequential requests which actually performs slightly
better.

If a user wishes to change this default however they can do so by invoking the sequentialDistribution or
parallelDistribution methods on the CacheStream.

9.8. TASK TIMEOUT

Itis possible to set a timeout value for the operation requests. This timeout is used only for remote
requests timing out and it is on a per request basis. The former means the local execution will not
timeout and the latter means if you have a failover scenario as described above the subsequent
requests each have a new timeout. If no timeout is specified it uses the replication timeout as a default
timeout. You can set the timeout in your task by doing the following:

CacheStream<Map.Entry<Obiject, String>> stream = cache.entrySet().stream();
stream.timeout(1, TimeUnit. MINUTES);

66

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#sequentialDistribution--
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#parallelDistribution--

CHAPTER 9. STREAMS

For more information about this, please check the java doc in timeout javadoc.

9.9. INJECTION

The Stream has a terminal operation called forEach which allows for running some sort of side effect
operation on the data. In this case it may be desirable to get a reference to the Cache that is backing
this Stream. If your Consumer implements the CacheAware interface the injectCache method be
invoked before the accept method from the Consumer interface.

9.10. DISTRIBUTED STREAM EXECUTION

Distributed streams execution works in a fashion very similar to map reduce. Except in this case we are
sending zero to many intermediate operations (map, filter etc.) and a single terminal operation to the
various nodes. The operation basically comes down to the following:

1. The desired segments are grouped by which node is the primary owner of the given segment

2. Arequest is generated to send to each remote node that contains the intermediate and
terminal operations including which segments it should process

a. The terminal operation will be performed locally if necessary

b. Each remote node will receive this request and run the operations and subsequently send
the response back

3. The local node will then gather the local response and remote responses together performing
any kind of reduction required by the operations themselves.

4. Final reduced response is then returned to the user

In most cases all operations are fully distributed, as in the operations are all fully applied on each remote
node and usually only the last operation or something related may be reapplied to reduce the results
from multiple nodes. One important note is that intermediate values do not actually have to be
serializable, it is the last value sent back that is the part desired (exceptions for various operations will
be highlighted below).

Terminal operator distributed result reductionsThe following paragraphs describe how the
distributed reductions work for the various terminal operators. Some of these are special in that an
intermediate value may be required to be serializable instead of the final result.

allMatch noneMatch anyMatch

The allMatch operation is ran on each node and then all the results are logically anded together
locally to get the appropriate value. The noneMatch and anyMatch operations use a logical or
instead. These methods also have early termination support, stopping remote and local operations
once the final result is known.

collect

The collect method is interesting in that it can do a few extra steps. The remote node performs
everything as normal except it doesn’t perform the final finisher upon the result and instead sends
back the fully combined results. The local thread then combines the remote and local result into a
value which is then finally finished. The key here to remember is that the final value doesn’t have to
be serializable but rather the values produced from the supplier and combiner methods.

count
The count method just adds the numbers together from each node.
findAny findFirst

67

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#timeout-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/stream/CacheAware.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#allMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#noneMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#anyMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#finisher--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#supplier--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#count--

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

The findAny operation returns just the first value they find, whether it was from a remote node or
locally. Note this supports early termination in that once a value is found it will not process others.
Note the findFirst method is special since it requires a sorted intermediate operation, which is
detailed in the exceptions section.

max min

The max and min methods find the respective min or max value on each node then a final reduction
is performed locally to ensure only the min or max across all nodes is returned.

reduce

The various reduce methods 1, 2, 3 will end up serializing the result as much as the accumulator can
do. Then it will accumulate the local and remote results together locally, before combining if you
have provided that. Note this means a value coming from the combiner doesn't have to be
Serializable.

9.11. KEY BASED REHASH AWARE OPERATORS

The iterator, spliterator and forEach are unlike the other terminal operators in that the rehash
awareness has to keep track of what keys per segment have been processed instead of just segments.
This is to guarantee an exactly once (iterator & spliterator) or at least once behavior (forEach) even
under cluster membership changes.

The iterator and spliterator operators when invoked on a remote node will return back batches of
entries, where the next batch is only sent back after the last has been fully consumed. This batching is
done to limit how many entries are in memory at a given time. The user node will hold onto which keys it
has processed and when a given segment is completed it will release those keys from memory. This is
why sequential processing is preferred for the iterator method, so only a subset of segment keys are
held in memory at once, instead of from all nodes.

The forEach() method also returns batches, but it returns a batch of keys after it has finished

processing at least a batch worth of keys. This way the originating node can know what keys have been
processed already to reduce chances of processing the same entry again. Unfortunately this means it is
possible to have an at least once behavior when a node goes down unexpectedly. In this case that node
could have been processing a batch and not yet completed one and those entries that were processed
but not in a completed batch will be ran again when the rehash failure operation occurs. Note that adding
a node will not cause this issue as the rehash failover doesn’t occur until all responses are received.

These operations batch sizes are both controlled by the same value which can be configured by invoking
distributedBatchSize method on the CacheStream. This value will default to the chunkSize configured
in state transfer. Unfortunately this value is a tradeoff with memory usage vs performance vs at least
once and your mileage may vary.

Using iterator with replicated and distributed caches

When a node is the primary or backup owner of all requested segments for a distributed stream, Data
Grid performs the iterator or spliterator terminal operations locally, which optimizes performance as
remote iterations are more resource intensive.

This optimization applies to both replicated and distributed caches. However, Data Grid performs

iterations remotely when using cache stores that are both shared and have write-behind enabled. In this
case performing the iterations remotely ensures consistency.

9.12. INTERMEDIATE OPERATION EXCEPTIONS

There are some intermediate operations that have special exceptions, these are skip, peek, sorted 12. &
distinct. All of these methods have some sort of artificial iterator implanted in the stream processing to

68

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#findAny--
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/embedding_data_grid_in_java_applications/#intermediate_operation_exceptions
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#max-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#min-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-T-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-U-java.util.function.BiFunction-java.util.function.BinaryOperator-
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#iterator--
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#spliterator--
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#forEach-java.util.function.Consumer-
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html#distributedBatchSize-int-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#skip-long-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--

CHAPTER 9. STREAMS

guarantee correctness, they are documented as below. Note this means these operations may cause
possibly severe performance degradation.

Skip

An artificial iterator is implanted up to the intermediate skip operation. Then results are brought
locally so it can skip the appropriate amount of elements.

Sorted

WARNING: This operation requires having all entries in memory on the local node. An artificial iterator
is implanted up to the intermediate sorted operation. All results are sorted locally. There are possible
plans to have a distributed sort which returns batches of elements, but this is not yet implemented.

Distinct

WARNING: This operation requires having all or nearly all entries in memory on the local node.
Distinct is performed on each remote node and then an artificial iterator returns those distinct
values. Then finally all of those results have a distinct operation performed upon them.

The rest of the intermediate operations are fully distributed as one would expect.

9.13. EXAMPLES

Word Count

Word count is a classic, if overused, example of map/reduce paradigm. Assume we have a mapping of
key — sentence stored on Data Grid nodes. Key is a String, each sentence is also a String, and we have
to count occurrence of all words in all sentences available. The implementation of such a distributed
task could be defined as follows:

public class WordCountExample {

/**
* In this example replace c1 and c2 with
* real Cache references
* @param args
Y/
public static void main(String[] args) {
Cache<String, String>c1 = ...;
Cache<String, String>c2 = ...;

c1.put("1", "Hello world here | am");
c2.put("2", "Infinispan rules the world");
c1.put("3", "JUDCon is in Boston");

c2.put("4", "JBoss World is in Boston as well");
c1.put("12","JBoss Application Server");
c2.put("15", "Hello world");

c1.put("14", "Infinispan community");
c2.put("15", "Hello world");

c1.put("111", "Infinispan open source");
c2.put("112", "Boston is close to Toronto");
c1.put("113", "Toronto is a capital of Ontario");
c2.put("114", "JUDCon is cool");
cl.put("211", "JBoss World is awesome");
c2.put("212", "JBoss rules");

(

c1.put("213", "JBoss division of RedHat ");

69

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

c2.put("214", "RedHat community");

Map<String, Long> wordCountMap = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\s"))
flatMap(Arrays::stream)
.collect(() -> Collectors.groupingBy(Function.identity(), Collectors.counting()));

}
}

In this case it is pretty simple to do the word count from the previous example.

However what if we want to find the most frequent word in the example? If you take a second to think
about this case you will realize you need to have all words counted and available locally first. Thus we
actually have a few options.

We could use a finisher on the collector, which is invoked on the user thread after all the results have
been collected. Some redundant lines have been removed from the previous example.

public class WordCountExample {
public static void main(String[] args) {
// Lines removed

String mostFrequentWord = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\s"))
flatMap(Arrays::stream)
.collect(() -> Collectors.collectingAndThen(
Collectors.groupingBy(Function.identity(), Collectors.counting()),
wordCountMap -> {
String mostFrequent = null;
long maxCount = 0;
for (Map.Entry<String, Long> e : wordCountMap.entrySet()) {
int count = e.getValue().intValue();
if (count > maxCount) {
maxCount = count;
mostFrequent = e.getKey();
}
}

return mostFrequent;

N
}

Unfortunately the last step is only going to be ran in a single thread, which if we have a lot of words could
be quite slow. Maybe there is another way to parallelize this with Streams.

We mentioned before we are in the local node after processing, so we could actually use a stream on the
map results. We can therefore use a parallel stream on the results.

public class WordFrequencyExample {
public static void main(String[] args) {
// Lines removed

Map<String, Long> wordCount = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\\s"))
flatMap(Arrays::stream)
.collect(() -> Collectors.groupingBy(Function.identity(), Collectors.counting()));

70

CHAPTER 9. STREAMS

Optional<Map.Entry<String, Long>> mostFrequent =
wordCount.entrySet().parallelStream().reduce(
(e1, e2) -> el.getValue() > e2.getValue() ? el : e2);

This way you can still utilize all of the cores locally when calculating the most frequent element.
Remove specific entries

Distributed streams can also be used as a way to modify data where it lives. For example you may want
to remove all entries in your cache that contain a specific word.

public class RemoveBadWords {
public static void main(String[] args) {
// Lines removed
String word = ..

c1.entrySet().parallelStream()
filter(e -> e.getValue().contains(word))
.forEach((c, e) -> c.remove(e.getKey()));

If we carefully note what is serialized and what is not, we notice that only the word along with the
operations are serialized across to other nods as it is captured by the lambda. However the real saving
piece is that the cache operation is performed on the primary owner thus reducing the amount of
network traffic required to remove these values from the cache. The cache is not captured by the
lambda as we provide a special BiConsumer method override that when invoked on each node passes
the cache to the BiConsumer

One thing to keep in mind using the forEach command in this manner is that the underlying stream
obtains no locks. The cache remove operation will still obtain locks naturally, but the value could have
changed from what the stream saw. That means that the entry could have been changed after the
stream read it but the remove actually removed it.

We have specifically added a new variant which is called LockedStream.

Plenty of other examples

The Streams APl is a JRE tool and there are lots of examples for using it. Just remember that your
operations need to be Serializable in some way.

71

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

CHAPTER 10. USING THE CDI EXTENSION

Data Grid provides an extension that integrates with the CDI (Contexts and Dependency Injection)
programming model and allows you to:

e Configure and inject caches into CDI Beans and Java EE components.
e Configure cache managers.
® Receive cache and cache manager level events.

® Control data storage and retrieval using JCache annotations.

10.1. CDI DEPENDENCIES

Update your pom.xml with one of the following dependencies to include the Data Grid CDI extension in
your project:

Embedded (Library) Mode

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-cdi-embedded</artifactld>
</dependency>

Server Mode

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-cdi-remote</artifactld>
</dependency>

10.2. INJECTING EMBEDDED CACHES

Set up CDI beans to inject embedded caches.

Procedure

1. Create a cache qualifier annotation.

import javax.inject.Qualifier;

@Qualifier

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})
@Retention(RetentionPolicy. RUNTIME)

@Documented

public @interface GreetingCache { ﬂ

}

ﬂ Creates a @GreetingCache qualifier.

72

CHAPTER 10. USING THE CDI EXTENSION

2. Add a producer method that defines the cache configuration.

import org.infinispan.configuration.cache.Configuration;
import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.cdi.ConfigureCache;

import javax.enterprise.inject.Produces;

public class Config {

@ConfigureCache("mygreetingcache") ﬂ
@GreetingCache 9
@Produces
public Configuration greetingCacheConfiguration() {
return new ConfigurationBuilder()
.memory()
.size(1000)

.build();

}
}

ﬂ Names the cache to inject.

9 Adds the cache qualifier.

3. Add a producer method that creates a clustered Cache Manager, if required

package org.infinispan.configuration.global.GlobalConfigurationBuilder;

public class Config {

@GreetingCache ﬂ
@Produces
@ApplicationScoped 9
public EmbeddedCacheManager defaultClusteredCacheManager() { 6
return new DefaultCacheManager(
new GlobalConfigurationBuilder().transport().defaultTransport().build();
}
}

Adds the cache qualifier.

Creates the bean once for the application. Producers that create Cache Managers should
always include the @ApplicationScoped annotation to avoid creating multiple Cache
Managers.

®9

9 Creates a new DefaultCacheManager instance that is bound to the @GreetingCache
qualifier.

73

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

NOTE

Cache managers are heavy weight objects. Having more than one Cache
Manager running in your application can degrade performance. When injecting
multiple caches, either add the qualifier of each cache to the Cache Manager
producer method or do not add any qualifier.

4. Add the @GreetingCache qualifier to your cache injection point.

import javax.inject.Inject;
public class GreetingService {

@Inject @GreetingCache
private Cache<String, String> cache;

public String greet(String user) {
String cachedValue = cache.get(user);
if (cachedValue == null) {
cachedValue = "Hello " + user;
cache.put(user, cachedValue);

}

return cachedValue;

}
}
10.3. INJECTING REMOTE CACHES

Set up CDI beans to inject remote caches.

Procedure

1. Create a cache qualifier annotation.

@Remote("mygreetingcache") 0

@Qualifier

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})
@Retention(RetentionPolicy. RUNTIME)

@Documented

public @interface RemoteGreetingCache { 9

}
ﬂ names the cache to inject.

Q creates a @RemoteGreetingCache qualifier.

2. Add the @RemoteGreetingCache qualifier to your cache injection point.

public class GreetingService {

@Inject @RemoteGreetingCache
private RemoteCache<String, String> cache;

74

CHAPTER 10. USING THE CDI EXTENSION

public String greet(String user) {
String cachedValue = cache.get(user);
if (cachedValue == null) {
cachedValue = "Hello " + user;
cache.put(user, cachedValue);

}

return cachedValue;

}
}

Tips for injecting remote caches

® You can inject remote caches without using qualifiers.

@Inject
@Remote("greetingCache")
private RemoteCache<String, String> cache;

e |f you have more than one Data Grid cluster, you can create separate remote Cache Manager
producers for each cluster.

import javax.enterprise.context.ApplicationScoped;
public class Config {

@RemoteGreetingCache

@Produces

@ApplicationScoped ﬂ

public ConfigurationBuilder builder = new ConfigurationBuilder(); g
builder.addServer().host("localhost").port(11222);
return new RemoteCacheManager(builder.build());

}
}

ﬂ creates the bean once for the application. Producers that create Cache Managers should
always include the @ApplicationScoped annotation to avoid creating multiple Cache
Managers, which are heavy weight objects.

9 creates a new RemoteCacheManager instance that is bound to the
@RemoteGreetingCache qualifier.

10.4. JCACHE CACHING ANNOTATIONS

You can use the following JCache caching annotations with CDI managed beans when JCache artifacts
are on the classpath:

@CacheResult
caches the results of method calls.
@CachePut

75

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

caches method parameters.
@CacheRemoveEntry

removes entries from a cache.
@CacheRemoveAll

removes all entries from a cache.

IMPORTANT

Target type: You can use these JCache caching annotations on methods only.

To use JCache caching annotations, declare interceptors in the beans.xml file for your application.

Managed Environments (Application Server)

<?xml version="1.0" encoding="UTF-8"?>

<beans xmins="http://xmIns.jcp.org/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlIns.jcp.org/xml/ns/javaee

http://xmins.jcp.org/xml/ns/javaee/beans_1_1.xsd"
version="1.2" bean-discovery-mode="annotated">

<interceptors>
<class>org.infinispan.jcache.annotation.InjectedCacheResultinterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCachePutInterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCacheRemoveEntrylnterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCacheRemoveAlllnterceptor</class>
</interceptors>
</beans>

Non-managed Environments (Standalone)

<?xml version="1.0" encoding="UTF-8"?>

<beans xmins="http://xmIns.jcp.org/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlIns.jcp.org/xml/ns/javaee

http://xmins.jcp.org/xml/ns/javaee/beans_1_1.xsd"
version="1.2" bean-discovery-mode="annotated">

<interceptors>
<class>org.infinispan.jcache.annotation.CacheResultInterceptor</class>
<class>org.infinispan.jcache.annotation.CachePutInterceptor</class>
<class>org.infinispan.jcache.annotation.CacheRemoveEntryInterceptor</class>
<class>org.infinispan.jcache.annotation.CacheRemoveAlllnterceptor</class>
<finterceptors>
</beans>

JCache Caching Annotation Examples

The following example shows how the @CacheResult annotation caches the results of the
GreetingService.greet() method:

I import javax.cache.interceptor.CacheResult;

76

CHAPTER 10. USING THE CDI EXTENSION

public class GreetingService {

@CacheResult
public String greet(String user) {
return "Hello" + user;

}
}

With JCache annotations, the default cache uses the fully qualified name of the annotated method with
its parameter types, for example:
org.infinispan.example.GreetingService.greet(java.lang.String)

To use caches other than the default, use the cacheName attribute to specify the cache name as in the
following example:

I @CacheResult(cacheName = "greeting-cache")

10.5. RECEIVING CACHE AND CACHE MANAGER EVENTS
You can use CDI Events to receive Cache and Cache Manager level events.

e Use the @Observes annotation as in the following example:

import javax.enterprise.event.Observes;

import org.infinispan.notifications.cachemanagerlistener.event.CacheStartedEvent;
import org.infinispan.notifications.cachelistener.event.”;

public class GreetingService {

// Cache level events
private void entryRemovedFromCache(@Observes CacheEntryCreatedEvent event) {

}

// Cache manager level events
private void cacheStarted(@Observes CacheStartedEvent event) {

}

77

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

Data Grid provides an implementation of the JCache (JSR-107) API that specifies a standard Java API
for caching temporary Java objects in memory. Caching Java objects can help get around bottlenecks
arising from using data that is expensive to retrieve or data that is hard to calculate. Caching these type
of objects in memory can help speed up application performance by retrieving the data directly from

CHAPTER 11. USING THE JCACHE API

memory instead of doing an expensive roundtrip or recalculation.

11.1. CREATING EMBEDDED CACHES

Prerequisites

1. Ensure that cache-api is on your classpath.

2. Add the following dependency to your pom.xmil:

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-jcache</artifactld>
</dependency>

Procedure

® Create embedded caches that use the default JCache API configuration as follows:

import javax.cache.”;
import javax.cache.configuration.*;

// Retrieve the system wide Cache Manager
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
// Define a named cache with default JCache configuration
Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>());

11.1.1. Configuring embedded caches

78

® Pass the URI for custom Data Grid configuration to the
CachingProvider.getCacheManager(URI) call as follows:

import java.net.URI;
import javax.cache.”;
import javax.cache.configuration.*;

// Load configuration from an absolute filesystem path

URI uri = URl.create("file:///path/to/infinispan.xml");

// Load configuration from a classpath resource

// URI uri = this.getClass().getClassLoader().getResource("infinispan.xml").toURI();

// Create a Cache Manager using the above configuration
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager(uri,
this.getClass().getClassLoader(), null);

CHAPTER 11. USING THE JCACHE API

' WARNING
A By default, the JCache API specifies that data should be stored as storeByValue,

so that object state mutations outside of operations to the cache, won't have an
impact in the objects stored in the cache. Data Grid has so far implemented this
using serialization/marshalling to make copies to store in the cache, and that way
adhere to the spec. Hence, if using default JCache configuration with Data Grid,
data stored must be marshallable.

Alternatively, JCache can be configured to store data by reference (just like Data Grid or JDK
Collections work). To do that, simply call:

Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>().setStoreByValue(false));

11.2. STORE AND RETRIEVE DATA

Even though JCache API does not extend neither java.util.Map not java.util.concurrent.ConcurrentMap,
it providers a key/value API to store and retrieve data:

import javax.cache.”;
import javax.cache.configuration.”;

CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
Cache<String, String> cache = cacheManager.createCache("namedCache",

new MutableConfiguration<String, String>());
cache.put("hello", "world"); // Notice that javax.cache.Cache.put(K) returns void!
String value = cache.get("hello"); / Returns "world"

Contrary to standard java.util.Map, javax.cache.Cache comes with two basic put methods called put and
getAndPut. The former returns void whereas the latter returns the previous value associated with the
key. So, the equivalent of java.util.Map.put(K) in JCache is javax.cache.Cache.getAndPut(K).

TIP

Even though JCache API only covers standalone caching, it can be plugged with a persistence store, and
has been designed with clustering or distribution in mind. The reason why javax.cache.Cache offers two
put methods is because standard java.util.Map put call forces implementors to calculate the previous
value. When a persistent store is in use, or the cache is distributed, returning the previous value could be
an expensive operation, and often users call standard java.util. Map.put(K) without using the return
value. Hence, JCache users need to think about whether the return value is relevant to them, in which
case they need to call javax.cache.Cache.getAndPut(K) , otherwise they can call java.util.Map.put(K, V)
which avoids returning the potentially expensive operation of returning the previous value.

11.3. COMPARING JAVA.UTIL.CONCURRENT.CONCURRENTMAP AND
JAVAX.CACHE.CACHE APIS

79

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

Here's a brief comparison of the data manipulation APIs provided by java.util.concurrent.ConcurrentMap

and javax.cache.Cache APls.

Operation

java.util.concurrent.Concurrent
Map<K, V>

javax.cache.Cache<K, V>

store and no return

store and return previous value

store if not present

retrieve

delete if present

delete and return previous value

delete conditional

replace if present

replace and return previous value

replace conditional

N/A

V put(K key)

V putlfAbsent(K key, V value)

V get(Object key)

V remove(Object key)

V remove(Object key)

boolean remove(Object key,
Object value)

V replace(K key, V value)

V replace(K key, V value)

boolean replace(K key, V
oldValue, V newValue)

void put(K key)

V getAndPut(K key)

boolean putlfAbsent(K key, V
value)

V get(K key)

boolean remove(K key)

V getAndRemove(K key)

boolean remove(K key, V
oldValue)

boolean replace(K key, V
value)

V getAndReplace(K key, V
value)

boolean replace(K key, V
oldValue, V newValue)

Comparing the two APIs, it's obvious to see that, where possible, JCache avoids returning the previous
value to avoid operations doing expensive network or |O operations. This is an overriding principle in the
design of JCache API. In fact, there’s a set of operations that are present in
java.util.concurrent.ConcurrentMap, but are not present in the javax.cache.Cache because they could be
expensive to compute in a distributed cache. The only exception is iterating over the contents of the

cache:

Operation

java.util.concurrent.Concurrent
Map<K, V>

javax.cache.Cache<K, V>

calculate size of cache

return all keys in the cache

return all values in the cache

80

int size()

Set<K> keySet()

Collection<V> values()

N/A

N/A

N/A

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java

CHAPTER 11. USING THE JCACHE API

Operation java.util.concurrent.Concurrent javax.cache.Cache<K, V>
Map<K, V>

return all entries in the cache Set<Map.Entry<K, V>> N/A
entrySet()

iterate over the cache use iterator() method on keySet, Iterator<Cache.Entry<K, V>>
values or entrySet iterator()

11.4. CLUSTERING JCACHE INSTANCES

Data Grid JCache implementation goes beyond the specification in order to provide the possibility to
cluster caches using the standard API. Given a Data Grid configuration file configured to replicate
caches like this:

infinispan.xml

<infinispan>
<cache-container default-cache="namedCache">
<transport cluster="jcache-cluster" />
<replicated-cache name="namedCache" />
</cache-container>
</infinispan>

You can create a cluster of caches using this code:

import javax.cache.”;
import java.net.URI;

// For multiple Cache Managers to be constructed with the standard JCache API

// and live in the same JVM, either their names, or their classloaders, must

// be different.

// This example shows how to force their classloaders to be different.

// An alternative method would have been to duplicate the XML file and give

// it a different name, but this results in unnecessary file duplication.

ClassLoader tccl = Thread.currentThread().getContextClassLoader();

CacheManager cacheManager1 = Caching.getCachingProvider().getCacheManager(
URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

CacheManager cacheManager2 = Caching.getCachingProvider().getCacheManager(
URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

Cache<String, String> cache1 = cacheManager1.getCache("namedCache");
Cache<String, String> cache2 = cacheManager2.getCache("namedCache");

cachel.put("hello", "world");
String value = cache2.get("hello"); / Returns "world" if clustering is working

/==

public static class TestClassLoader extends ClassLoader {
public TestClassLoader(ClassLoader parent) {

81

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

super(parent);

}
}

82

CHAPTER 12. MULTIMAP CACHE

CHAPTER 12. MULTIMAP CACHE

MutimapCache is a type of Data Grid Cache that maps keys to values in which each key can contain
multiple values.

12.1. MULTIMAP CACHE

MutimapCache is a type of Data Grid Cache that maps keys to values in which each key can contain
multiple values.

12.1.1. Installation and configuration

pom.xml

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-multimap</artifactid>
</dependency>

12.1.2. MultimapCache API

MultimapCache API exposes several methods to interact with the Multimap Cache. These methods are
non-blocking in most cases; see limitations for more information.

public interface MultimapCache<K; V> {
CompletableFuture<Optional<CacheEntry<K, Collection<V>>>> getEntry(K key);
CompletableFuture<Void> remove(SerializablePredicate<? super V> p);
CompletableFuture<Void> put(K key, V value);
CompletableFuture<Collection<V>> get(K key);
CompletableFuture<Boolean> remove (K key);
CompletableFuture<Boolean> remove(K key, V value);
CompletableFuture<Void> remove(Predicate<? super V> p);
CompletableFuture<Boolean> containsKey(K key);
CompletableFuture<Boolean> containsValue(V value);
CompletableFuture<Boolean> containsEntry (K key, V value);
CompletableFuture<Long> size();

boolean supportsDuplicates();

CompletableFuture<Void> put(K key, V value)

83

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

Puts a key-value pair in the multimap cache.

MultimapCache<String, String> multimapCache = ...;

multimapCache.put("giriNames", "marie")
.thenCompose(r1 -> multimapCache.put("girlNames", "oihana"))
.thenCompose(r3 -> multimapCache.get("girlNames"))
thenAccept(names -> {
if(names.contains("marie"))
System.out.printin("Marie is a girl name");

if(names.contains("oihana"))
System.out.printin("Oihana is a girl name");

D;

The output of this code is as follows:

Marie is a girl name
Oihana is a girl name
CompletableFuture<Collection<V>> get(K key)

Asynchronous that returns a view collection of the values associated with key in this multimap cache, if
any. Any changes to the retrieved collection won't change the values in this multimap cache. When this
method returns an empty collection, it means the key was not found.

CompletableFuture<Boolean> remove(K key)

Asynchronous that removes the entry associated with the key from the multimap cache, if such exists.

CompletableFuture<Boolean> remove(K key, V value)

Asynchronous that removes a key-value pair from the multimap cache, if such exists.

CompletableFuture<Void> remove(Predicate<? super V> p)

Asynchronous method. Removes every value that match the given predicate.

CompletableFuture<Boolean> containsKey(K key)

Asynchronous that returns true if this multimap contains the key.

CompletableFuture<Boolean> containsValue(V value)

Asynchronous that returns true if this multimap contains the value in at least one key.

CompletableFuture<Boolean> containsEntry(K key, V value)

Asynchronous that returns true if this multimap contains at least one key-value pair with the value.

CompletableFuture<Long> size()

Asynchronous that returns the number of key-value pairs in the multimap cache. It doesn’t return the
distinct number of keys.

boolean supportsDuplicates()

Asynchronous that returns true if the multimap cache supports duplicates. This means that the content
of the multimap can be 'a' = ['T, 'T", '2']. For now this method will always return false, as duplicates are not

84

CHAPTER 12. MULTIMAP CACHE

yet supported. The existence of a given value is determined by 'equals' and “hashcode' method'’s
contract.
12.1.3. Creating a Multimap Cache

Currently the MultimapCache is configured as a regular cache. This can be done either by code or XML
configuration. See how to configure a regular cache in Configuring Data Grid caches.

12.1.3.1. Embedded mode

// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager cm = ... ;

// create or obtain a MultimapCacheManager passing the EmbeddedCacheManager
MultimapCacheManager multimapCacheManager =
EmbeddedMultimapCacheManagerFactory.from(cm);

// define the configuration for the multimap cache
multimapCacheManager.defineConfiguration(multimapCacheName, c.build());

// get the multimap cache
multimapCache = multimapCacheManager.get(multimapCacheName);

12.1.4. Limitations

In almost every case the Multimap Cache will behave as a regular Cache, but some limitations exist in
the current version, as follows:

12.1.4.1. Support for duplicates

Duplicates are not supported yet. This means that the multimap won't contain any duplicate key-value
pair. Whenever put method is called, if the key-value pair already exist, this key-value par won't be
added. Methods used to check if a key-value pair is already present in the Multimap are the equals and
hashcode.

12.1.4.2. Eviction

For now, the eviction works per key, and not per key-value pair. This means that whenever a key is
evicted, all the values associated with the key will be evicted too.

12.1.4.3. Transactions

Implicit transactions are supported through the auto-commit and all the methods are non blocking.
Explicit transactions work without blocking in most of the cases. Methods that will block are size,
containsEntry and remove(Predicate<? super V> p)

85

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/configuring_data_grid_caches/#cache-configuration

Red Hat Data Grid 8.4 Embedding Data Grid in Java Applications

CHAPTER 13. DATA GRID MODULES FOR RED HAT JBOSS
EAP

To use Data Grid inside applications deployed to Red Hat JBoss EAP, you should install Data Grid
modules that:

® | etyou deploy applications without packaging Data Grid JAR files in your WAR or EAR file.

® Allow you to use a Data Grid version that is independent to the one bundled with Red Hat JBoss
EAP.

IMPORTANT

Red Hat JBoss EAP (EAP) applications can directly handle the infinispan subsystem
without the need to separately install Data Grid modules. Red Hat provides support for
this functionality since EAP version 7.4. However, your deployment requires the EAP
modules to use advanced capabilities such as indexing and querying.

13.1. INSTALLING DATA GRID MODULES

Download and install Data Grid modules for Red Hat JBoss EAP.

Prerequisites

1. JDK 8 or later.

2. An existing Red Hat JBoss EAP installation.

Procedure

1. Login to the Red Hat customer portal.
2. Download the ZIP archive for the modules from the Data Grid software downloads.

3. Extract the ZIP archive and copy the contents of modules to the modules directory of your
Red Hat JBoss EAP installation so that you get the resulting structure:
$EAP_HOME/modules/system/add-ons/rhdg/org/infinispan/rhdg-8.4

13.2. CONFIGURING APPLICATIONS TO USE DATA GRID MODULES

After you install Data Grid modules for Red Hat JBoss EAP, configure your application to use Data Grid
functionality.

Procedure

1. In your project pom.xml file, mark the required Data Grid dependencies as provided.
2. Configure your artifact archiver to generate the appropriate MANIFEST.MF file.

pom.xml

<dependencies>
<dependency>

86

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

CHAPTER 13. DATA GRID MODULES FOR RED HAT JBOSS EAP

<groupld>org.infinispan</groupld>
<artifactld>infinispan-core</artifactld>
<scope>provided</scope>
</dependency>
<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-cachestore-jdbc</artifactld>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-war-plugin</artifactld>
<configuration>
<archive>
<manifestEntries>
<Dependencies>org.infinispan:rhdg-8.4 services</Dependencies>
</manifestEntries>
</archive>
</configuration>
</plugin>
</plugins>
</build>

Data Grid functionality is packaged as a single module, org.infinispan, that you can add as an entry to
your application’s manifest as follows:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan:rhdg-8.4 services

AWS dependencies

If you require AWS dependencies, such as S3_PING, add the following module to your application’s
manifest:

Manifest-Version: 1.0
Dependencies: com.amazonaws.aws-java-sdk:rhdg-8.4 services

87

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. ADDING DATA GRID TO YOUR MAVEN REPOSITORY
	1.1. DOWNLOADING THE MAVEN REPOSITORY
	1.2. ADDING RED HAT MAVEN REPOSITORIES
	1.3. CONFIGURING YOUR PROJECT POM

	CHAPTER 2. CREATING EMBEDDED CACHES
	2.1. ADDING DATA GRID TO YOUR PROJECT
	2.2. CREATING AND USING EMBEDDED CACHES
	2.3. CACHE API
	2.3.1. AdvancedCache API
	2.3.1.1. Flags

	2.3.2. Asynchronous API
	2.3.2.1. Why use such an API?
	2.3.2.2. Which processes actually happen asynchronously?

	CHAPTER 3. PROGRAMMATICALLY CONFIGURING USER ROLES AND PERMISSIONS
	3.1. DATA GRID USER ROLES AND PERMISSIONS
	3.1.1. Permissions
	3.1.2. Role and permission mappers
	3.1.2.1. Mapping users to roles and permissions in Data Grid

	3.1.3. Configuring role mappers
	Role mapper configuration

	3.2. ENABLING AND CONFIGURING AUTHORIZATION FOR EMBEDDED CACHES
	3.3. ADDING AUTHORIZATION ROLES AT RUNTIME
	3.4. EXECUTING CODE WITH SECURE CACHES
	3.5. CONFIGURING THE ACCESS CONTROL LIST (ACL) CACHE
	ACL cache configuration

	CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORING
	4.1. ENABLING STATISTICS IN EMBEDDED CACHES
	Embedded cache statistics

	4.2. CONFIGURING DATA GRID METRICS
	Metrics configuration

	4.3. REGISTERING JMX MBEANS
	JMX configuration
	4.3.1. Enabling JMX remote ports
	4.3.2. Data Grid MBeans
	4.3.3. Registering MBeans in custom MBean servers
	JMX MBean server lookup configuration

	4.4. EXPORTING METRICS DURING A STATE TRANSFER OPERATION
	4.5. MONITORING THE STATUS OF CROSS-SITE REPLICATION
	Monitoring cross-site replication with the REST API
	Monitoring cross-site replication with the Prometheus metrics

	CHAPTER 5. SETTING UP DATA GRID CLUSTER TRANSPORT
	5.1. DEFAULT JGROUPS STACKS
	5.2. CLUSTER DISCOVERY PROTOCOLS
	5.2.1. PING
	5.2.2. TCPPING
	5.2.3. MPING
	5.2.4. TCPGOSSIP
	5.2.5. JDBC_PING
	5.2.6. DNS_PING
	5.2.7. Cloud discovery protocols
	Providing dependencies for cloud discovery protocols

	5.3. USING THE DEFAULT JGROUPS STACKS
	5.4. CUSTOMIZING JGROUPS STACKS
	5.4.1. Inheritance attributes

	5.5. USING JGROUPS SYSTEM PROPERTIES
	5.5.1. Cluster transport properties
	5.5.2. System properties for cloud discovery protocols
	5.5.2.1. Amazon EC2
	5.5.2.2. Google Cloud Platform
	5.5.2.3. Azure
	5.5.2.4. OpenShift

	5.6. USING INLINE JGROUPS STACKS
	5.7. USING EXTERNAL JGROUPS STACKS
	5.8. USING CUSTOM JCHANNELS
	5.9. ENCRYPTING CLUSTER TRANSPORT
	5.9.1. JGroups encryption protocols
	5.9.2. Securing cluster transport with asymmetric encryption
	5.9.3. Securing cluster transport with symmetric encryption

	5.10. TCP AND UDP PORTS FOR CLUSTER TRAFFIC
	Cross-site replication

	CHAPTER 6. CLUSTERED LOCKS
	6.1. LOCK API
	6.2. USING CLUSTERED LOCKS
	6.3. CONFIGURING INTERNAL CACHES FOR LOCKS

	CHAPTER 7. EXECUTING CODE IN THE GRID
	7.1. CLUSTER EXECUTOR
	7.1.1. Filtering execution nodes
	7.1.2. Timeout
	7.1.3. Single Node Submission
	7.1.3.1. Failover

	7.1.4. Example: PI Approximation

	CHAPTER 8. USING THE STREAMS API FOR CODE EXECUTION
	CHAPTER 9. STREAMS
	9.1. COMMON STREAM OPERATIONS
	9.2. KEY FILTERING
	9.3. SEGMENT BASED FILTERING
	9.4. LOCAL/INVALIDATION
	9.5. EXAMPLE
	9.6. DISTRIBUTION/REPLICATION/SCATTERED
	9.6.1. Rehash Aware
	9.6.2. Serialization

	9.7. PARALLEL COMPUTATION
	9.8. TASK TIMEOUT
	9.9. INJECTION
	9.10. DISTRIBUTED STREAM EXECUTION
	9.11. KEY BASED REHASH AWARE OPERATORS
	9.12. INTERMEDIATE OPERATION EXCEPTIONS
	9.13. EXAMPLES

	CHAPTER 10. USING THE CDI EXTENSION
	10.1. CDI DEPENDENCIES
	10.2. INJECTING EMBEDDED CACHES
	10.3. INJECTING REMOTE CACHES
	10.4. JCACHE CACHING ANNOTATIONS
	10.5. RECEIVING CACHE AND CACHE MANAGER EVENTS

	CHAPTER 11. USING THE JCACHE API
	11.1. CREATING EMBEDDED CACHES
	11.1.1. Configuring embedded caches

	11.2. STORE AND RETRIEVE DATA
	11.3. COMPARING JAVA.UTIL.CONCURRENT.CONCURRENTMAP AND JAVAX.CACHE.CACHE APIS
	11.4. CLUSTERING JCACHE INSTANCES

	CHAPTER 12. MULTIMAP CACHE
	12.1. MULTIMAP CACHE
	12.1.1. Installation and configuration
	12.1.2. MultimapCache API
	12.1.3. Creating a Multimap Cache
	12.1.3.1. Embedded mode

	12.1.4. Limitations
	12.1.4.1. Support for duplicates
	12.1.4.2. Eviction
	12.1.4.3. Transactions

	CHAPTER 13. DATA GRID MODULES FOR RED HAT JBOSS EAP
	13.1. INSTALLING DATA GRID MODULES
	13.2. CONFIGURING APPLICATIONS TO USE DATA GRID MODULES

