
Red Hat Developer Hub 1.1

Administration guide for Red Hat Developer
Hub

Last Updated: 2024-06-24

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer
Hub

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Developer Hub is a developer platform for building developer portals. This document
provides an overview of Red Hat Developer Hub and explains how to install the product.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

RED HAT DEVELOPER HUB SUPPORT

CHAPTER 1. INSTALLING THE RED HAT DEVELOPER HUB OPERATOR

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM
2.1. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM USING HELM CHART

2.1.1. Installing Red Hat Developer Hub using the Helm Chart in an air-gapped environment
2.2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM USING THE
OPERATOR

2.2.1. Configuring the Developer Hub Custom Resource
2.2.1.1. Adding a custom application configuration file to OpenShift Container Platform

2.2.2. Configuring dynamic plugins with the Red Hat Developer Hub Operator
2.2.3. Installing Red Hat Developer Hub using the Operator in an air-gapped environment

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)
3.1. DEPLOYING RED HAT DEVELOPER HUB IN ELASTIC KUBERNETES SERVICE (EKS) USING HELM CHART

3.2. DEPLOYING RED HAT DEVELOPER HUB ON ELASTIC KUBERNETES SERVICE (EKS) USING THE
OPERATOR

3.2.1. Installing the Red Hat Developer Hub Operator with the OLM framework
3.2.2. Installing the Red Hat Developer Hub Operator without the OLM framework
3.2.3. Installing the Developer Hub instance in EKS

3.3. MONITORING AND LOGGING WITH AMAZON WEB SERVICES (AWS) IN RED HAT DEVELOPER HUB
3.3.1. Monitoring with Amazon Prometheus

3.3.1.1. Configuring annotations for monitoring
3.3.2. Logging with Amazon CloudWatch logs

3.3.2.1. Configuring the application log level
3.3.2.2. Retrieving logs from Amazon CloudWatch

3.4. USING AMAZON COGNITO AS AN AUTHENTICATION PROVIDER IN RED HAT DEVELOPER HUB

CHAPTER 4. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE
(AKS)

4.1. DEPLOYING RED HAT DEVELOPER HUB ON AZURE KUBERNETES SERVICE (AKS)
4.1.1. Deploying the Red Hat Developer Hub on Azure Kubernetes Service (AKS) using the Helm chart
4.1.2. Deploying the Red Hat Developer Hub on Azure Kubernetes Service (AKS) using the Operator

4.2. MONITORING AND LOGGING WITH AZURE KUBERNETES SERVICES (AKS) IN RED HAT DEVELOPER
HUB

4.2.1. Viewing logs with Azure Kubernetes Services (AKS)
4.3. USING MICROSOFT AZURE AS AN AUTHENTICATION PROVIDER IN RED HAT DEVELOPER HUB

4.3.1. Using Microsoft Azure as an authentication provider in Helm deployment
4.3.2. Using Microsoft Azure as an authentication provider in Operator-backed deployment

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB
5.1. PERMISSION POLICIES CONFIGURATION

5.1.1. Configuration of permission policies administrators
5.1.2. Configuration of permission policies defined in an external file

5.1.2.1. Mounting policy.csv file to the Developer Hub Helm Chart
5.1.3. Permission policies in Red Hat Developer Hub

5.2. MANAGING ROLE-BASED ACCESS CONTROLS (RBAC) USING THE RED HAT DEVELOPER HUB WEB UI

5.2.1. Creating a role in the Red Hat Developer Hub Web UI

4

5

6

8

8
10

12
13
13
16
18

21

21

23
23
26
28
31
31
32
33
33
33
34

39
39
40
42

44
45
46
46
47

49
49
49
49
50
51

53
53

Table of Contents

1

. .

. .

5.2.2. Editing a role in the Red Hat Developer Hub Web UI
5.2.3. Deleting a role in the Red Hat Developer Hub Web UI

5.3. ROLE-BASED ACCESS CONTROL (RBAC) REST API
5.3.1. Sending requests with the RBAC REST API using a REST client or curl utility
5.3.2. Supported RBAC REST API endpoints

5.3.2.1. Permission policies
5.3.2.2. Roles

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION
6.1. VIEWING INSTALLED PLUGINS
6.2. PREINSTALLED DYNAMIC PLUGINS

6.2.1. Preinstalled dynamic plugin descriptions and details
6.3. INSTALLATION OF DYNAMIC PLUGINS USING THE HELM CHART

6.3.1. Obtaining the integrity checksum
6.3.2. Example Helm chart configurations for dynamic plugin installations
6.3.3. Installing external dynamic plugins using a Helm chart

6.4. INSTALLING EXTERNAL PLUGINS IN AN AIR-GAPPED ENVIRONMENT
6.5. USING A CUSTOM NPM REGISTRY FOR DYNAMIC PLUGIN PACKAGES
6.6. BASIC CONFIGURATION OF DYNAMIC PLUGINS
6.7. INSTALLATION AND CONFIGURATION OF ANSIBLE AUTOMATION PLATFORM

6.7.1. For administrators
6.7.1.1. Installing and configuring the AAP Backend plugin
6.7.1.2. Log lines for AAP Backend plugin troubleshoot

6.7.2. For users
6.7.2.1. Accessing templates from AAP in Developer Hub

6.8. INSTALLATION AND CONFIGURATION OF KEYCLOAK
6.8.1. For administrators

6.8.1.1. Installation
6.8.1.2. Basic configuration
6.8.1.3. Advanced configuration
6.8.1.4. Limitations

6.8.2. For users
6.8.2.1. Import of users and groups in Developer Hub using the Keycloak plugin

6.9. INSTALLATION AND CONFIGURATION OF NEXUS REPOSITORY MANAGER
6.9.1. For administrators

6.9.1.1. Installing and configuring the Nexus Repository Manager plugin
6.9.2. For users

6.9.2.1. Using the Nexus Repository Manager plugin in Developer Hub
6.10. INSTALLATION AND CONFIGURATION OF TEKTON

6.10.1. For administrators
6.10.1.1. Installation

6.10.2. For users
6.10.2.1. Using the Tekton plugin in RHDH

CHAPTER 7. MANAGING TEMPLATES
7.1. CREATING A TEMPLATE BY USING THE TEMPLATE EDITOR
7.2. CREATING A TEMPLATE AS A YAML FILE
7.3. IMPORTING AN EXISTING TEMPLATE TO RED HAT DEVELOPER HUB

54
54
55
57
58
58
62

65
65
65
65
87
88
88
89
90
90
90
91
91
91

92
92
92
94
94
94
94
95
96
97
97
99
99
99

100
100
101
101
101

103
104

105
105
106
108

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

2

Table of Contents

3

PREFACE
The Red Hat Developer Hub is an enterprise-grade, open developer platform that you can use to build
developer portals. This platform contains a supported and opinionated framework that helps reduce the
friction and frustration of developers while boosting their productivity.

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

4

RED HAT DEVELOPER HUB SUPPORT
If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal. You can use the Red Hat Customer Portal for the following purposes:

To search or browse through the Red Hat Knowledgebase of technical support articles about
Red Hat products.

To create a support case for Red Hat Global Support Services (GSS). For support case
creation, select Red Hat Developer Hub as the product and select the appropriate product
version.

RED HAT DEVELOPER HUB SUPPORT

5

http://access.redhat.com
https://access.redhat.com/support/cases/#/case/new/get-support?caseCreate=true

CHAPTER 1. INSTALLING THE RED HAT DEVELOPER HUB
OPERATOR

As an administrator, you can install the Red Hat Developer Hub Operator. Authorized users can use the
Operator to install Red Hat Developer Hub on the following platforms:

Red Hat OpenShift Container Platform (RHOCP)

Amazon Elastic Kubernetes Service (EKS)

Microsoft Azure Kubernetes Service (AKS)

Prerequisites

You are logged in as an administrator on the OpenShift Container Platform web console.

You have configured the appropriate roles and permissions within your project to create an
application. For more information, see the Red Hat OpenShift documentation on Building
applications.

NOTE

For enhanced security, deploy the Red Hat Developer Hub Operator in a dedicated
default namespace such as rhdh-operator. The cluster administrator can restrict other
users' access to the Operator resources through role bindings or cluster role bindings.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators > OperatorHub.

2. In the Filter by keyword box, enter Developer Hub and click the Red Hat Developer Hub
Operator card.

3. On the Red Hat Developer Hub Operator page, click Install.

4. On the Install Operator page, use the Update channel drop-down menu to select the update
channel that you want to use:

The fast channel provides y-stream (x.y) and z-stream (x.y.z) updates, for example,
updating from version 1.1 to 1.2, or from 1.1.0 to 1.1.1.

IMPORTANT

The fast channel includes all of the updates available for a particular version.
Any update might introduce unexpected changes in your Red Hat Developer
Hub deployment. Check the release notes for details about any potentially
breaking changes.

The fast-1.1 channel only provides z-stream updates, for example, updating from version 1.1.1
to 1.1.2. If you want to update the Red Hat Developer Hub y-version in the future, for
example, updating from 1.1 to 1.2, you must switch to the fast channel manually.

5. On the Install Operator page, choose the Update approval strategy for the Operator:

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

6

https://docs.openshift.com/container-platform/4.15/applications/index.html

If you choose the Automatic option, the Operator is updated without requiring manual
confirmation.

If you choose the Manual option, a notification opens when a new update is released in the
update channel. The update must be manually approved by an administrator before
installation can begin.

6. Click Install.

Verification

To view the installed Red Hat Developer Hub Operator, click View Operator.

Additional resources

Deploying Red Hat Developer Hub on OpenShift Container Platform using the Operator

Installing from OperatorHub using the web console

CHAPTER 1. INSTALLING THE RED HAT DEVELOPER HUB OPERATOR

7

https://docs.openshift.com/container-platform/4.15/operators/admin/olm-adding-operators-to-cluster.html#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON
OPENSHIFT CONTAINER PLATFORM

You can install Red Hat Developer Hub on OpenShift Container Platform using one of the following
methods:

The Helm chart

The Red Hat Developer Hub Operator

2.1. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT
CONTAINER PLATFORM USING HELM CHART

You can use a Helm chart in Red Hat OpenShift Container Platform to install Developer Hub, which is a
flexible installation method.

Helm is a package manager on OpenShift Container Platform that provides the following features:

Applies regular application updates using custom hooks

Manages the installation of complex applications

Provides charts that you can host on public and private servers

Supports rolling back to previous application versions

The Red Hat Developer Hub Helm chart is available in the Helm catalog on OpenShift Dedicated and
OpenShift Container Platform.

Prerequisites

You are logged in to your OpenShift Container Platform account.

A user with the OpenShift Container Platform admin role has configured the appropriate roles
and permissions within your project to create an application. For more information about
OpenShift Container Platform roles, see Using RBAC to define and apply permissions .

You have created a project in OpenShift Container Platform. For more information about
creating a project in OpenShift Container Platform, see Red Hat OpenShift Container Platform
documentation.

Procedure

1. From the Developer perspective on the Developer Hub web console, click +Add.

2. From the Developer Catalog panel, click Helm Chart.

3. In the Filter by keyword box, enter Developer Hub and click the Red Hat Developer Hub card.

4. From the Red Hat Developer Hub page, click Create.

5. From your cluster, copy the OpenShift Container Platform router host (for example: apps.
<clusterName>.com).

6. Select the radio button to configure the Developer Hub instance with either the form view or

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

8

https://docs.openshift.com/container-platform/4.15/authentication/using-rbac.html
https://docs.openshift.com/container-platform/4.15/applications/projects/working-with-projects.html#odc-creating-projects-using-developer-perspective_projects

6. Select the radio button to configure the Developer Hub instance with either the form view or
YAML view. The Form view is selected by default.

Using Form view

a. To configure the instance with the Form view, go to Root Schema → global → Enable
service authentication within Backstage instance and paste your OpenShift
Container Platform router host into the field on the form.

Using YAML view

a. To configure the instance with the YAML view, paste your OpenShift Container
Platform router hostname in the global.clusterRouterBase parameter value as shown
in the following example:

7. Edit the other values if needed.

NOTE

The information about the host is copied and can be accessed by the Developer
Hub backend.

When an OpenShift Container Platform route is generated automatically, the
host value for the route is inferred and the same host information is sent to the
Developer Hub. Also, if the Developer Hub is present on a custom domain by
setting the host manually using values, the custom host takes precedence.

8. Click Create and wait for the database and Developer Hub to start.

9. Click the Open URL icon to start using the Developer Hub platform.

global:
 auth:
 backend:
 enabled: true
 clusterRouterBase: apps.<clusterName>.com
 # other Red Hat Developer Hub Helm Chart configurations

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

9

NOTE

Your developer-hub pod might be in a CrashLoopBackOff state if the Developer Hub
container cannot access the configuration files. This error is indicated by the following
log:

To resolve the error, verify the configuration files.

2.1.1. Installing Red Hat Developer Hub using the Helm Chart in an air-gapped
environment

An air-gapped environment, also known as an air-gapped network or isolated network, ensures security
by physically segregating the system or network. This isolation is established to prevent unauthorized
access, data transfer, or communication between the air-gapped system and external sources.

You can install Red Hat Developer Hub in an air-gapped environment to ensure security and meet
specific regulatory requirements.

To install Developer Hub in an air-gapped environment, you must have access to the registry.redhat.io
and the registry for the air-gapped environment.

Prerequisites

You have installed an Red Hat OpenShift Container Platform 4.12 or later.

You have access to the registry.redhat.io.

You have access to the Red Hat OpenShift Container Platform image registry of your cluster.
For more information about exposing the image registry, see the Red Hat OpenShift Container
Platform documentation about Exposing the registry.

You have installed the oc command line tool on your workstation.

You have installed the podman command line tools on your workstation.

You you have an account in Red Hat Developer portal.

Procedure

1. Log in to your OpenShift Container Platform account using the oc command line tool, by
running the following command:

2. Log in to the OpenShift Container Platform image registry using the podman command line
tool, by running the following command:

Loaded config from app-config-from-configmap.yaml, env
...
2023-07-24T19:44:46.223Z auth info Configuring "database" as KeyStore provider
type=plugin
Backend failed to start up Error: Missing required config value at
'backend.database.client'

oc login -u <user> -p <password> https://api.<hostname>:6443

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

10

https://docs.openshift.com/container-platform/4.15/registry/securing-exposing-registry.html
https://developers.redhat.com/

NOTE

You can run the following commands to get the full host name of the OpenShift
Container Platform image registry, and then use the host name in a command to
log in:

3. Log in to the registry.redhat.io in podman by running the following command:

For more information about registry authentication, see Red Hat Container Registry
Authentication.

4. Pull Developer Hub and PostgreSQL images from Red Hat Image registry to your workstation,
by running the following commands:

5. Push both images to the internal OpenShift Container Platform image registry by running the
following commands:

For more information about pushing images directly to the OpenShift Container Platform image
registry, see How do I push an Image directly into the OpenShift 4 registry .

IMPORTANT

If an x509 error occurs, verify that you have installed the CA certificate used for
OpenShift Container Platform routes on your system.

6. Use the following command to verify that both images are present in the internal OpenShift
Container Platform registry:

podman login -u kubeadmin -p $(oc whoami -t) default-route-openshift-image-registry.
<hostname>

REGISTRY_HOST=$(oc get route default-route -n openshift-image-registry --
template='{{ .spec.host }}')

podman login -u kubeadmin -p $(oc whoami -t) $REGISTRY_HOST

podman login registry.redhat.io

podman pull registry.redhat.io/rhdh/rhdh-hub-rhel9:{product-chart-version}

podman pull registry.redhat.io/rhel9/postgresql-15:latest

podman push --remove-signatures registry.redhat.io/rhdh/rhdh-hub-rhel9:{product-chart-
version} default-route-openshift-image-registry.<hostname>/<project_name>/rhdh-hub-rhel9:
{product-chart-version}

podman push --remove-signatures registry.redhat.io/rhel9/postgresql-15:latest default-route-
openshift-image-registry.<hostname>/<project_name>/postgresql-15:latest

oc get imagestream -n <project_name>

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

11

https://access.redhat.com/RegistryAuthentication
https://catalog.redhat.com/software/containers/search
https://access.redhat.com/solutions/6959306
https://access.redhat.com/solutions/6088891

7. Enable local image lookup for both images by running the following commands:

8. Go to YAML view and update the image section for backstage and postgresql using the
following values:

Example values for Developer Hub image

Example values for PostgreSQL image

9. Install the Red Hat Developer Hub using Helm chart. For more information about installing
Developer Hub, see Section 2.1, “Deploying Red Hat Developer Hub on OpenShift Container
Platform using Helm Chart”.

2.2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT
CONTAINER PLATFORM USING THE OPERATOR

As a developer, you can deploy a Red Hat Developer Hub instance on OpenShift Container Platform by
using the Developer Catalog in the Red Hat OpenShift Container Platform web console. This
deployment method uses the Red Hat Developer Hub Operator.

Prerequisites

A cluster administrator has installed the Red Hat Developer Hub Operator. For more
information, see Installing the Red Hat Developer Hub Operator .

Procedure

1. Create a project in OpenShift Container Platform for your Red Hat Developer Hub instance, or
select an existing project.

TIP

For more information about creating a project in OpenShift Container Platform, see Creating a
project by using the web console in the Red Hat OpenShift Container Platform documentation.

oc set image-lookup postgresql-15

oc set image-lookup rhdh-hub-rhel9

upstream:
 backstage:
 image:
 registry: ""
 repository: rhdh-hub-rhel9
 tag: latest

upstream:
 postgresql:
 image:
 registry: ""
 repository: postgresql-15
 tag: latest

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

12

https://docs.openshift.com/container-platform/4.15/applications/projects/working-with-projects.html#creating-a-project-using-the-web-console_projects

2. From the Developer perspective on the OpenShift Container Platform web console, click +Add.

3. From the Developer Catalog panel, click Operator Backed.

4. In the Filter by keyword box, enter Developer Hub and click the Red Hat Developer Hub card.

5. Click Create.

6. Add custom configurations for the Red Hat Developer Hub instance.

7. On the Create Backstage page, click Create

Verification

After the pods are ready, you can access the Red Hat Developer Hub platform by opening the URL.

1. Confirm that the pods are ready by clicking the pod in the Topology view and confirming the
Status in the Details panel. The pod status is Active when the pod is ready.

2. From the Topology view, click the Open URL icon on the Developer Hub pod.

Additional resources

OpenShift Container Platform - Building applications overview

2.2.1. Configuring the Developer Hub Custom Resource

Updates to the Backstage custom resource (CR) are automatically handled by the Red Hat Developer
Hub Operator. However, updates to resources referenced by the CR, such as ConfigMaps or Secrets,
are not updated automatically unless the CR itself is updated. If you want to update resources
referenced by the CR, then you must manually delete the Backstage Deployment so that the Operator
can re-create it with the updated resources.

2.2.1.1. Adding a custom application configuration file to OpenShift Container Platform

To change the configuration of your Red Hat Developer Hub instance, you must do the following:

Add a custom application configuration file to OpenShift Container Platform and reference it in
the Custom Resource (CR). In OpenShift Container Platform, you can use the following example
as a base template to create a ConfigMap such as app-config-rhdh.yaml:

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

13

https://docs.openshift.com/container-platform/4.15/applications/index.html

Use the mandatory backend auth key for Red Hat Developer Hub to reference an environment
variable defined in an OpenShift Container Platform Secret.

Set the external URL of your Red Hat Developer Hub instance in the app.baseUrl,
backend.baseUrl and backend.cors.origin fields of the application configuration. By default,
the URL is similar to the following example: https://backstage-
<CUSTOM_RESOURCE_NAME>-<NAMESPACE_NAME>.
<OPENSHIFT_INGRESS_DOMAIN>;.

You can use the oc get ingresses.config/cluster -o jsonpath='{.spec.domain}' command
to display your ingress domain. If you want to use a different host or sub-domain, customize
the Custom Resource spec.application.route field and adjust the application
configuration accordingly.

NOTE

You are responsible for protecting your Red Hat Developer Hub installation from external
and unauthorized access. Manage the backend auth key like any other secret. Meet
strong password requirements, do not expose it in any configuration files, and only inject
it into configuration files as an environment variable.

Prerequisites

You have an active Red Hat OpenShift Container Platform account.

Procedure

1. From the Developer perspective, select the ConfigMaps tab.

2. Click Create ConfigMap.

3. Select the YAML view option in Configure via and make the changes to the file, if necessary.

4. Click Create.

kind: ConfigMap
apiVersion: v1
metadata:
 name: app-config-rhdh
data:
 "app-config-rhdh.yaml": |
 app:
 title: Red Hat Developer Hub
 baseUrl: https://backstage-developer-hub-my-ns.apps.ci-ln-vtkzr22-72292.origin-ci-int-
gce.dev.rhcloud.com
 backend:
 auth:
 keys:
 - secret: "${BACKEND_SECRET}"
 baseUrl: https://backstage-backstage-sample-my-ns.apps.ci-ln-vtkzr22-72292.origin-ci-
int-gce.dev.rhcloud.com
 cors:
 origin: https://backstage-backstage-sample-my-ns.apps.ci-ln-vtkzr22-72292.origin-ci-int-
gce.dev.rhcloud.com

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

14

5. Select the Secrets tab.

6. Click Create Key/value Secret.

7. Name the secret secrets-rhdh.

8. Add a key named BACKEND_SECRET and a base64 encoded string as a value. Use a unique
value for each Red Hat Developer Hub instance. For example, you can use the following
command to generate a key from your terminal:

9. Click Create.

10. Select the Topology view.

11. Click the overflow menu for the Red Hat Developer Hub instance that you want to use and
select Edit Backstage to load the YAML view of the Red Hat Developer Hub instance.

12. Add the spec.application.appConfig.configMaps and spec.application.extraEnvs.secrets
fields to the custom resource. For example:

node -p 'require("crypto").randomBytes(24).toString("base64")'

spec:
 application:
 appConfig:
 mountPath: /opt/app-root/src
 configMaps:
 - name: app-config-rhdh
 extraEnvs:
 secrets:
 - name: secrets-rhdh

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

15

13. Click Save.

14. Navigate back to the Topology view and wait for the Red Hat Developer Hub pod to start.

15. Click the Open URL icon to start using the Red Hat Developer Hub platform with the new
configuration changes.

Additional resources

For more information about roles and responsibilities in Developer Hub, see Role-Based Access
Control (RBAC) in Red Hat Developer Hub in the Administration Guide for Red Hat Developer
Hub.

2.2.2. Configuring dynamic plugins with the Red Hat Developer Hub Operator

You can store the configuration for dynamic plugins in a ConfigMap object that your Backstage
custom resource (CR) can reference.

NOTE

If the pluginConfig field references environment variables, you must define the variables
in your secrets-rhdh secret.

Procedure

1. From the OpenShift Container Platform web console, select the ConfigMaps tab.

2. Click Create ConfigMap.

3. From the Create ConfigMap page, select the YAML view option in Configure via and edit the
file, if needed.

Example ConfigMap object using the GitHub dynamic plugin

 extraFiles:
 mountPath: /opt/app-root/src
 replicas: 1
 route:
 enabled: true
 database:
 enableLocalDb: true

kind: ConfigMap
apiVersion: v1
metadata:
 name: dynamic-plugins-rhdh
data:
 dynamic-plugins.yaml: |
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: './dynamic-plugins/dist/backstage-plugin-catalog-backend-module-github-
dynamic'
 disabled: false
 pluginConfig: {}

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

16

4. Click Create.

5. Go to the Topology tab.

6. Click on the overflow menu for the Red Hat Developer Hub instance that you want to use and
select Edit Backstage to load the YAML view of the Red Hat Developer Hub instance.

7. Add the dynamicPluginsConfigMapName field to your Backstage CR. For example:

8. Click Save.

9. Navigate back to the Topology view and wait for the Red Hat Developer Hub pod to start.

10. Click the Open URL icon to start using the Red Hat Developer Hub platform with the new
configuration changes.

Verification

Ensure that the dynamic plugins configuration has been loaded, by appending /api/dynamic-

apiVersion: rhdh.redhat.com/v1alpha1
kind: Backstage
metadata:
 name: my-rhdh
spec:
 application:
...
 dynamicPluginsConfigMapName: dynamic-plugins-rhdh
...

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

17

Ensure that the dynamic plugins configuration has been loaded, by appending /api/dynamic-
plugins-info/loaded-plugins to your Red Hat Developer Hub root URL and checking the list of
plugins:

Example list of plugins

2.2.3. Installing Red Hat Developer Hub using the Operator in an air-gapped
environment

On an OpenShift Container Platform cluster operating on a restricted network, public resources are not
available. However, deploying the Red Hat Developer Hub Operator and running Developer Hub
requires the following public resources:

Operator images (bundle, operator, catalog)

Operands images (RHDH, PostgreSQL)

To make these resources available, replace them with their equivalent resources in a mirror registry
accessible to the OpenShift Container Platform cluster.

You can use a helper script that mirrors the necessary images and provides the necessary configuration
to ensure those images will be used when installing the Red Hat Developer Hub Operator and creating
Developer Hub instances.

NOTE

This script requires a target mirror registry which you should already have installed if your
OpenShift Container Platform cluster is ready to operate on a restricted network.
However, if you are preparing your cluster for disconnected usage, you can use the script
to deploy a mirror registry in the cluster and use it for the mirroring process.

Prerequisites

You have an active oc session with administrative permissions to the OpenShift Container

[
 {
 "name": "backstage-plugin-catalog-backend-module-github-dynamic",
 "version": "0.5.2",
 "platform": "node",
 "role": "backend-plugin-module"
 },
 {
 "name": "backstage-plugin-techdocs",
 "version": "1.10.0",
 "role": "frontend-plugin",
 "platform": "web"
 },
 {
 "name": "backstage-plugin-techdocs-backend-dynamic",
 "version": "1.9.5",
 "platform": "node",
 "role": "backend-plugin"
 },
]

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

18

You have an active oc session with administrative permissions to the OpenShift Container
Platform cluster. See Getting started with the OpenShift CLI.

You have an active oc registry session to the registry.redhat.io Red Hat Ecosystem Catalog.
See Red Hat Container Registry Authentication .

The opm CLI tool is installed. See Installing the opm CLI.

The jq package is installed. See Download jq.

Podman is installed. See Podman Installation Instructions.

Skopeo version 1.14 or higher is installed. See Installing Skopeo .

If you already have a mirror registry for your cluster, an active Skopeo session with administrative
access to this registry is required. See Authenticating to a registry and Mirroring images for a
disconnected installation.

NOTE

The internal OpenShift Container Platform cluster image registry cannot be used as a
target mirror registry. See About the mirror registry.

If you prefer to create your own mirror registry, see Creating a mirror registry with mirror registry
for Red Hat OpenShift.

If you do not already have a mirror registry, you can use the helper script to create one for you
and you need the following additional prerequisites:

The cURL package is installed. For Red Hat Enterprise Linux, the curl command is available
by installing the curl package. To use curl for other platforms, see the cURL website.

The htpasswd command is available. For Red Hat Enterprise Linux, the htpasswd
command is available by installing the httpd-tools package.

Procedure

1. Download and run the mirroring script to install a custom Operator catalog and mirror the
related images: prepare-restricted-environment.sh (source).

curl -sSLO https://raw.githubusercontent.com/janus-idp/operator/1.1.x/.rhdh/scripts/prepare-
restricted-environment.sh

if you do not already have a target mirror registry
and want the script to create one for you
use the following example:
bash prepare-restricted-environment.sh \
 --prod_operator_index "registry.redhat.io/redhat/redhat-operator-index:v4.14" \
 --prod_operator_package_name "rhdh" \
 --prod_operator_bundle_name "rhdh-operator" \
 --prod_operator_version "v1.1.1"

if you already have a target mirror registry
use the following example:
bash prepare-restricted-environment.sh \
 --prod_operator_index "registry.redhat.io/redhat/redhat-operator-index:v4.14" \

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

19

https://docs.openshift.com/container-platform/4.15/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/RegistryAuthentication
https://docs.openshift.com/container-platform/4.15/cli_reference/opm/cli-opm-install.html
https://jqlang.github.io/jq/download/
https://podman.io/docs/installation
https://github.com/containers/skopeo/blob/main/install.md
https://github.com/containers/skopeo#authenticating-to-a-registry
https://docs.openshift.com/container-platform/4.15/installing/disconnected_install/installing-mirroring-installation-images.html
https://docs.openshift.com/container-platform/4.15/installing/disconnected_install/installing-mirroring-installation-images.html#installation-about-mirror-registry_installing-mirroring-installation-images
https://docs.openshift.com/container-platform/4.15/installing/disconnected_install/installing-mirroring-creating-registry.html
https://curl.se/
https://github.com/janus-idp/operator/blob/1.1.x/.rhdh/scripts/prepare-restricted-environment.sh

NOTE

The script can take several minutes to complete as it copies multiple images to
the mirror registry.

 --prod_operator_package_name "rhdh" \
 --prod_operator_bundle_name "rhdh-operator" \
 --prod_operator_version "v1.1.1" \
 --use_existing_mirror_registry "my_registry"

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

20

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH
AMAZON WEB SERVICES (AWS)

You can integrate your Red Hat Developer Hub application with Amazon Web Services (AWS), which
can help you streamline your workflows within the AWS ecosystem. Integrating the Developer Hub
resources with AWS provides access to a comprehensive suite of tools, services, and solutions.

The integration with AWS requires the deployment of Developer Hub in Elastic Kubernetes Service
(EKS) using one of the following methods:

The Helm chart

The Red Hat Developer Hub Operator

3.1. DEPLOYING RED HAT DEVELOPER HUB IN ELASTIC KUBERNETES
SERVICE (EKS) USING HELM CHART

When you deploy Developer Hub in Elastic Kubernetes Service (EKS) using Helm Chart, it orchestrates a
robust development environment within the AWS ecosystem.

Prerequisites

You have an EKS cluster with AWS Application Load Balancer (ALB) add-on installed. For more
information, see Application load balancing on Amazon Developer Hub and Installing the AWS
Load Balancer Controller add-on.

You have configured a domain name for your Developer Hub instance. The domain name can be
a hosted zone entry on Route 53 or managed outside of AWS. For more information, see
Configuring Amazon Route 53 as your DNS service documentation.

You have an entry in the AWS Certificate Manager (ACM) for your preferred domain name.
Make sure to keep a record of your Certificate ARN.

You have subscribed to registry.redhat.io. For more information, see Red Hat Container
Registry Authentication.

You have set the context to the EKS cluster in your current kubeconfig. For more information,
see Creating or updating a kubeconfig file for an Amazon EKS cluster .

You have installed kubectl. For more information, see Installing or updating kubectl .

You have installed Helm 3 or the latest. For more information, see Using Helm with Amazon
EKS.

Procedure

1. Go to your terminal and run the following command to add the Helm chart repository containing
the Developer Hub chart to your local Helm registry:

helm repo add openshift-helm-charts https://charts.openshift.io/

2. Create a pull secret using the following command:

kubectl create secret docker-registry rhdh-pull-secret \

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

21

https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html
https://access.redhat.com/RegistryAuthentication
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/helm.html

1

2

3

 --docker-server=registry.redhat.io \
 --docker-username=<user_name> \ 1
 --docker-password=<password> \ 2
 --docker-email=<email> 3

Enter your username in the command.

Enter your password in the command.

Enter your email address in the command.

The created pull secret is used to pull the Developer Hub images from the Red Hat Ecosystem.

3. Create a file named values.yaml using the following template:

global:
 # TODO: Set your application domain name.
 host: <your Developer Hub domain name>

route:
 enabled: false

upstream:
 service:
 # NodePort is required for the ALB to route to the Service
 type: NodePort

 ingress:
 enabled: true
 annotations:
 kubernetes.io/ingress.class: alb

 alb.ingress.kubernetes.io/scheme: internet-facing

 # TODO: Using an ALB HTTPS Listener requires a certificate for your own domain. Fill in
the ARN of your certificate, e.g.:
 alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:xxx:xxxx:certificate/xxxxxx

 alb.ingress.kubernetes.io/listen-ports: '[{"HTTP": 80}, {"HTTPS":443}]'

 alb.ingress.kubernetes.io/ssl-redirect: '443'

 # TODO: Set your application domain name.
 external-dns.alpha.kubernetes.io/hostname: <your rhdh domain name>

 backstage:

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

22

4. Run the following command in your terminal to deploy Developer Hub using the latest version of
Helm Chart and using the values.yaml file created in the previous step:

helm install rhdh \
 openshift-helm-charts/redhat-developer-hub \
 [--version 1.1.4] \
 --values /path/to/values.yaml

NOTE

For the latest chart version, see https://github.com/openshift-helm-
charts/charts/tree/main/charts/redhat/redhat/redhat-developer-hub

Verification

Wait until the DNS name is responsive, indicating that your Developer Hub instance is ready for use.

3.2. DEPLOYING RED HAT DEVELOPER HUB ON ELASTIC
KUBERNETES SERVICE (EKS) USING THE OPERATOR

You can deploy the Developer Hub on EKS using the Red Hat Developer Hub Operator with or without
Operator Lifecycle Manager (OLM) framework. Following that, you can proceed to install your
Developer Hub instance in EKS.

3.2.1. Installing the Red Hat Developer Hub Operator with the OLM framework

Prerequisites

You have set the context to the EKS cluster in your current kubeconfig. For more information,
see Creating or updating a kubeconfig file for an Amazon EKS cluster .

You have installed kubectl. For more information, see Installing or updating kubectl .

You have subscribed to registry.redhat.io. For more information, see Red Hat Container
Registry Authentication.

You have installed the Operator Lifecycle Manager (OLM). For more information about

 image:
 pullSecrets:
 - rhdh-pull-secret
 podSecurityContext:
 # you can assign any random value as fsGroup
 fsGroup: 2000
 postgresql:
 image:
 pullSecrets:
 - rhdh-pull-secret
 primary:
 podSecurityContext:
 enabled: true
 # you can assign any random value as fsGroup
 fsGroup: 3000
 volumePermissions:
 enabled: true

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

23

https://github.com/openshift-helm-charts/charts/tree/main/charts/redhat/redhat/redhat-developer-hub
https://olm.operatorframework.io
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://access.redhat.com/RegistryAuthentication

1

2

3

You have installed the Operator Lifecycle Manager (OLM). For more information about
installation and troubleshooting, see How do I get Operator Lifecycle Manager?

Procedure

1. Run the following command in your terminal to create the rhdh-operator namespace where the
Operator is installed:

kubectl create namespace rhdh-operator

2. Create a pull secret using the following command:

kubectl -n rhdh-operator create secret docker-registry rhdh-pull-secret \
 --docker-server=registry.redhat.io \
 --docker-username=<user_name> \ 1
 --docker-password=<password> \ 2
 --docker-email=<email> 3

Enter your username in the command.

Enter your password in the command.

Enter your email address in the command.

The created pull secret is used to pull the Developer Hub images from the Red Hat Ecosystem.

3. Create a CatalogSource resource that contains the Operators from the Red Hat Ecosystem:

cat <<EOF | kubectl -n rhdh-operator apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: redhat-catalog
spec:
 sourceType: grpc
 image: registry.redhat.io/redhat/redhat-operator-index:v4.15
 secrets:
 - "rhdh-pull-secret"
 displayName: Red Hat Operators
EOF

4. Create an OperatorGroup resource as follows:

cat <<EOF | kubectl apply -n rhdh-operator -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: rhdh-operator-group
EOF

5. Create a Subscription resource using the following code:

cat <<EOF | kubectl apply -n rhdh-operator -f -

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

24

https://operatorhub.io/how-to-install-an-operator#How-do-I-get-Operator-Lifecycle-Manager?

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: rhdh
 namespace: rhdh-operator
spec:
 channel: fast
 installPlanApproval: Automatic
 name: rhdh
 source: redhat-catalog
 sourceNamespace: rhdh-operator
 startingCSV: rhdh-operator.v1.1.2
EOF

6. Run the following command to verify that the created Operator is running:

kubectl -n rhdh-operator get pods -w

If the operator pod shows ImagePullBackOff status, then you might need permissions to pull
the image directly within the Operator deployment’s manifest.

TIP

You can include the required secret name in the
deployment.spec.template.spec.imagePullSecrets list and verify the deployment name using
kubectl get deployment -n rhdh-operator command:

kubectl -n rhdh-operator patch deployment \
 rhdh.fast --patch '{"spec":{"template":{"spec":{"imagePullSecrets":[{"name":"rhdh-pull-
secret"}]}}}}' \
 --type=merge

7. Update the default configuration of the operator to ensure that Developer Hub resources can
start correctly in EKS using the following steps:

a. Edit the backstage-default-config ConfigMap in the rhdh-operator namespace using the
following command:

kubectl -n rhdh-operator edit configmap backstage-default-config

b. Locate the db-statefulset.yaml string and add the fsGroup to its
spec.template.spec.securityContext, as shown in the following example:

 db-statefulset.yaml: |
 apiVersion: apps/v1
 kind: StatefulSet
--- TRUNCATED ---
 spec:
 --- TRUNCATED ---
 restartPolicy: Always
 securityContext:
 # You can assign any random value as fsGroup
 fsGroup: 2000

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

25

 serviceAccount: default
 serviceAccountName: default
--- TRUNCATED ---

c. Locate the deployment.yaml string and add the fsGroup to its specification, as shown in
the following example:

 deployment.yaml: |
 apiVersion: apps/v1
 kind: Deployment
--- TRUNCATED ---
 spec:
 securityContext:
 # You can assign any random value as fsGroup
 fsGroup: 3000
 automountServiceAccountToken: false
--- TRUNCATED ---

d. Locate the service.yaml string and change the type to NodePort as follows:

 service.yaml: |
 apiVersion: v1
 kind: Service
 spec:
 # NodePort is required for the ALB to route to the Service
 type: NodePort
--- TRUNCATED ---

e. Save and exit.
Wait for a few minutes until the changes are automatically applied to the operator pods.

3.2.2. Installing the Red Hat Developer Hub Operator without the OLM framework

Prerequisites

You have installed the following commands:

git

make

sed

Procedure

1. Clone the Operator repository to your local machine using the following command:

git clone --depth=1 https://github.com/janus-idp/operator.git rhdh-operator && cd rhdh-
operator

2. Run the following command and generate the deployment manifest:

make deployment-manifest

The previous command generates a file named rhdh-operator-<VERSION>.yaml, which is

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

26

The previous command generates a file named rhdh-operator-<VERSION>.yaml, which is
updated manually.

3. Run the following command to apply replacements in the generated deployment manifest:

sed -i "s/backstage-operator/rhdh-operator/g" rhdh-operator-*.yaml
sed -i "s/backstage-system/rhdh-operator/g" rhdh-operator-*.yaml
sed -i "s/backstage-controller-manager/rhdh-controller-manager/g" rhdh-operator-*.yaml

4. Open the generated deployment manifest file in an editor and perform the following steps:

a. Locate the db-statefulset.yaml string and add the fsGroup to its
spec.template.spec.securityContext, as shown in the following example:

 db-statefulset.yaml: |
 apiVersion: apps/v1
 kind: StatefulSet
--- TRUNCATED ---
 spec:
 --- TRUNCATED ---
 restartPolicy: Always
 securityContext:
 # You can assign any random value as fsGroup
 fsGroup: 2000
 serviceAccount: default
 serviceAccountName: default
--- TRUNCATED ---

b. Locate the deployment.yaml string and add the fsGroup to its specification, as shown in
the following example:

 deployment.yaml: |
 apiVersion: apps/v1
 kind: Deployment
--- TRUNCATED ---
 spec:
 securityContext:
 # You can assign any random value as fsGroup
 fsGroup: 3000
 automountServiceAccountToken: false
--- TRUNCATED ---

c. Locate the service.yaml string and change the type to NodePort as follows:

 service.yaml: |
 apiVersion: v1
 kind: Service
 spec:
 # NodePort is required for the ALB to route to the Service
 type: NodePort
--- TRUNCATED ---

d. Replace the default images with the images that are pulled from the Red Hat Ecosystem:

sed -i "s#gcr.io/kubebuilder/kube-rbac-proxy:.*#registry.redhat.io/openshift4/ose-kube-

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

27

rbac-proxy:v4.15#g" rhdh-operator-*.yaml

sed -i "s#quay.io/janus-idp/operator:.*#registry.redhat.io/rhdh/rhdh-rhel9-operator:1.1#g"
rhdh-operator-*.yaml

sed -i "s#quay.io/janus-idp/backstage-showcase:.*#registry.redhat.io/rhdh/rhdh-hub-
rhel9:1.1#g" rhdh-operator-*.yaml

sed -i "s#quay.io/fedora/postgresql-15:.*#registry.redhat.io/rhel9/postgresql-15:latest#g"
rhdh-operator-*.yaml

5. Add the image pull secret to the manifest in the Deployment resource as follows:

6. Apply the manifest to deploy the operator using the following command:

kubectl apply -f rhdh-operator-VERSION.yaml

7. Run the following command to verify that the Operator is running:

kubectl -n rhdh-operator get pods -w

3.2.3. Installing the Developer Hub instance in EKS

After the Red Hat Developer Hub Operator is installed and running, you can create a Developer Hub

--- TRUNCATED ---

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/component: manager
 app.kubernetes.io/created-by: rhdh-operator
 app.kubernetes.io/instance: controller-manager
 app.kubernetes.io/managed-by: kustomize
 app.kubernetes.io/name: deployment
 app.kubernetes.io/part-of: rhdh-operator
 control-plane: controller-manager
 name: rhdh-controller-manager
 namespace: rhdh-operator
spec:
 replicas: 1
 selector:
 matchLabels:
 control-plane: controller-manager
 template:
 metadata:
 annotations:
 kubectl.kubernetes.io/default-container: manager
 labels:
 control-plane: controller-manager
 spec:
 imagePullSecrets:
 - name: rhdh-pull-secret
--- TRUNCATED ---

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

28

After the Red Hat Developer Hub Operator is installed and running, you can create a Developer Hub
instance in EKS.

Prerequisites

You have an EKS cluster with AWS Application Load Balancer (ALB) add-on installed. For more
information, see Application load balancing on Amazon Elastic Kubernetes Service and Installing
the AWS Load Balancer Controller add-on.

You have configured a domain name for your Developer Hub instance. The domain name can be
a hosted zone entry on Route 53 or managed outside of AWS. For more information, see
Configuring Amazon Route 53 as your DNS service documentation.

You have an entry in the AWS Certificate Manager (ACM) for your preferred domain name.
Make sure to keep a record of your Certificate ARN.

You have subscribed to registry.redhat.io. For more information, see Red Hat Container
Registry Authentication.

You have set the context to the EKS cluster in your current kubeconfig. For more information,
see Creating or updating a kubeconfig file for an Amazon {eks} cluster .

You have installed kubectl. For more information, see Installing or updating kubectl .

Procedure

1. Create a ConfigMap named app-config-rhdh containing the Developer Hub configuration using
the following template:

2. Create a Secret named secrets-rhdh and add a key named BACKEND_SECRET with a
Base64-encoded string as value:

apiVersion: v1
kind: ConfigMap
metadata:
 name: app-config-rhdh
data:
 "app-config-rhdh.yaml": |
 app:
 title: Red Hat Developer Hub
 baseUrl: https://<rhdh_dns_name>
 backend:
 auth:
 keys:
 - secret: "${BACKEND_SECRET}"
 baseUrl: https://<rhdh_dns_name>
 cors:
 origin: https://<rhdh_dns_name>

apiVersion: v1
kind: Secret
metadata:
 name: secrets-rhdh
stringData:
 # TODO: See https://backstage.io/docs/auth/service-to-service-auth/#setup
 BACKEND_SECRET: "xxx"

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

29

https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html
https://access.redhat.com/RegistryAuthentication
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html

IMPORTANT

Ensure that you use a unique value of BACKEND_SECRET for each Developer
Hub instance.

You can use the following command to generate a key:

node-p'require("crypto").randomBytes(24).toString("base64")'

3. To enable pulling the PostgreSQL image from the Red Hat Ecosystem Catalog, add the image
pull secret in the default service account within the namespace where the Developer Hub
instance is being deployed:

kubectl patch serviceaccount default \
 -p '{"imagePullSecrets": [{"name": "rhdh-pull-secret"}]}' \
 -n <your_namespace>

4. Create a Custom Resource file using the following template:

5. Create an Ingress resource using the following template, ensuring to customize the names as
needed:

apiVersion: rhdh.redhat.com/v1alpha1
kind: Backstage
metadata:
 # TODO: this the name of your Developer Hub instance
 name: my-rhdh
spec:
 application:
 imagePullSecrets:
 - "rhdh-pull-secret"
 route:
 enabled: false
 appConfig:
 configMaps:
 - name: "app-config-rhdh"
 extraEnvs:
 secrets:
 - name: "secrets-rhdh"

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 # TODO: this the name of your Developer Hub Ingress
 name: my-rhdh
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/target-type: ip

 # TODO: Using an ALB HTTPS Listener requires a certificate for your own domain. Fill in
the ARN of your certificate, e.g.:
 alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-xxx:xxxx:certificate/xxxxxx

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

30

In the previous template, replace ` <rhdh_dns_name>` with your Developer Hub domain name
and update the value of alb.ingress.kubernetes.io/certificate-arn with your certificate ARN.

Verification

Wait until the DNS name is responsive, indicating that your Developer Hub instance is ready for use.

3.3. MONITORING AND LOGGING WITH AMAZON WEB SERVICES
(AWS) IN RED HAT DEVELOPER HUB

In the Red Hat Developer Hub, monitoring and logging are facilitated through Amazon Web Services
(AWS) integration. With features like Amazon CloudWatch for real-time monitoring and Amazon
Prometheus for comprehensive logging, you can ensure the reliability, scalability, and compliance of
your Developer Hub application hosted on AWS infrastructure.

This integration enables you to oversee, diagnose, and refine your applications in the Red Hat
ecosystem, leading to an improved development and operational journey.

3.3.1. Monitoring with Amazon Prometheus

Red Hat Developer Hub provides Prometheus metrics related to the running application. For more
information about enabling or deploying Prometheus for EKS clusters, see Prometheus metrics in the
Amazon documentation.

To monitor Developer Hub using Amazon Prometheus, you need to create an Amazon managed service
for the Prometheus workspace and configure the ingestion of the Developer Hub Prometheus metrics.
For more information, see Create a workspace and Ingest Prometheus metrics to the workspace
sections in the Amazon documentation.

After ingesting Prometheus metrics into the created workspace, you can configure the metrics scraping

 alb.ingress.kubernetes.io/listen-ports: '[{"HTTP": 80}, {"HTTPS":443}]'

 alb.ingress.kubernetes.io/ssl-redirect: '443'

 # TODO: Set your application domain name.
 external-dns.alpha.kubernetes.io/hostname: <rhdh_dns_name>

spec:
 ingressClassName: alb
 rules:
 # TODO: Set your application domain name.
 - host: <rhdh_dns_name>
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 # TODO: my-rhdh is the name of your Backstage Custom Resource.
 # Adjust if you changed it!
 name: backstage-my-rhdh
 port:
 name: http-backend

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

31

https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html
https://aws.amazon.com/prometheus/
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-onboard-create-workspace.html
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-onboard-ingest-metrics.html

After ingesting Prometheus metrics into the created workspace, you can configure the metrics scraping
to extract data from pods based on specific pod annotations.

3.3.1.1. Configuring annotations for monitoring

You can configure the annotations for monitoring in both Helm deployment and Operator-backed
deployment.

Helm deployment

To annotate the backstage pod for monitoring, update your values.yaml file as follows:

Operator-backed deployment

Procedure

1. As an administrator of the operator, edit the default configuration to add Prometheus
annotations as follows:

2. Find the deployment.yaml key in the ConfigMap and add the annotations to the
spec.template.metadata.annotations field as follows:

3. Save your changes.

upstream:
 backstage:
 # --- TRUNCATED ---
 podAnnotations:
 prometheus.io/scrape: 'true'
 prometheus.io/path: '/metrics'
 prometheus.io/port: '7007'
 prometheus.io/scheme: 'http'

Update OPERATOR_NS accordingly
OPERATOR_NS=rhdh-operator
kubectl edit configmap backstage-default-config -n "${OPERATOR_NS}"

deployment.yaml: |-
 apiVersion: apps/v1
 kind: Deployment
 # --- truncated ---
 spec:
 template:
 # --- truncated ---
 metadata:
 labels:
 rhdh.redhat.com/app: # placeholder for 'backstage-<cr-name>'
 # --- truncated ---
 annotations:
 prometheus.io/scrape: 'true'
 prometheus.io/path: '/metrics'
 prometheus.io/port: '7007'
 prometheus.io/scheme: 'http'
 # --- truncated ---

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

32

Verification

To verify if the scraping works:

1. Use kubectl to port-forward the Prometheus console to your local machine as follows:

2. Open your web browser and navigate to http://localhost:9090 to access the Prometheus
console.

3. Monitor relevant metrics, such as process_cpu_user_seconds_total.

3.3.2. Logging with Amazon CloudWatch logs

Logging within the Red Hat Developer Hub relies on the winston library. By default, logs at the debug
level are not recorded. To activate debug logs, you must set the environment variable LOG_LEVEL to
debug in your Red Hat Developer Hub instance.

3.3.2.1. Configuring the application log level

You can configure the application log level in both Helm deployment and Operator-backed deployment.

Helm deployment

To update the logging level, add the environment variable LOG_LEVEL to your Helm chart’s
values.yaml file:

Operator-backed deployment

You can modify the logging level by including the environment variable LOG_LEVEL in your custom
resource as follows:

3.3.2.2. Retrieving logs from Amazon CloudWatch

The CloudWatch Container Insights are used to capture logs and metrics for Amazon EKS. For more
information, see Logging for Amazon EKS documentation.

To capture the logs and metrics, install the Amazon CloudWatch Observability EKS add-on in your

kubectl --namespace=prometheus port-forward deploy/prometheus-server 9090

upstream:
 backstage:
 # --- Truncated ---
 extraEnvVars:
 - name: LOG_LEVEL
 value: debug

spec:
 # Other fields omitted
 application:
 extraEnvs:
 envs:
 - name: LOG_LEVEL
 value: debug

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

33

https://github.com/winstonjs/winston
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/kubernetes-eks-logging.html

To capture the logs and metrics, install the Amazon CloudWatch Observability EKS add-on in your
cluster. Following the setup of Container Insights, you can access container logs using Logs Insights or
Live Tail views.

CloudWatch names the log group where all container logs are consolidated in the following manner:

/aws/containerinsights/<ClusterName>/application

Following is an example query to retrieve logs from the Developer Hub instance:

3.4. USING AMAZON COGNITO AS AN AUTHENTICATION PROVIDER
IN RED HAT DEVELOPER HUB

In this section, Amazon Cognito is an AWS service for adding an authentication layer to Developer Hub.
You can sign in directly to the Developer Hub using a user pool or fedarate through a third-party identity
provider.

Although Amazon Cognito is not part of the core authentication providers for the Developer Hub, it can
be integrated using the generic OpenID Connect (OIDC) provider.

You can configure your Developer Hub in both Helm Chart and Operator-backed deployments.

Prerequisites

You have a User Pool or you have created a new one. For more information about user pools,
see Amazon Cognito user pools documentation.

NOTE

Ensure that you have noted the AWS region where the user pool is located and
the user pool ID.

You have created an App Client within your user pool for integrating the hosted UI. For more
information, see Setting up the hosted UI with the Amazon Cognito console .
When setting up the hosted UI using the Amazon Cognito console, ensure to make the following
adjustments:

1. In the Allowed callback URL(s) section, include the URL
https://<rhdh_url>/api/auth/oidc/handler/frame. Ensure to replace <rhdh_url> with your
Developer Hub application’s URL, such as, my.rhdh.example.com.

2. Similarly, in the Allowed sign-out URL(s) section, add https://<rhdh_url>. Replace
<rhdh_url> with your Developer Hub application’s URL, such as my.rhdh.example.com.

3. Under OAuth 2.0 grant types, select Authorization code grant to return an authorization
code.

4. Under OpenID Connect scopes, ensure to select at least the following scopes:

OpenID

Profile

fields @timestamp, @message, kubernetes.container_name
| filter kubernetes.container_name in ["install-dynamic-plugins", "backstage-backend"]

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

34

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-EKS-addon.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html?icmpid=docs_cognito_console_help_panel
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-app-integration.html#cognito-user-pools-create-an-app-integration

Email

Helm deployment

Procedure

1. Edit or create your custom app-config-rhdh ConfigMap as follows:

2. Edit or create your custom secrets-rhdh Secret using the following template:

3. Add references of both the ConfigMap and Secret resources in your values.yaml file:

apiVersion: v1
kind: ConfigMap
metadata:
 name: app-config-rhdh
data:
 "app-config-rhdh.yaml": |
 # --- Truncated ---
 app:
 title: Red Hat Developer Hub

 signInPage: oidc
 auth:
 environment: production
 session:
 secret: ${AUTH_SESSION_SECRET}
 providers:
 oidc:
 production:
 clientId: ${AWS_COGNITO_APP_CLIENT_ID}
 clientSecret: ${AWS_COGNITO_APP_CLIENT_SECRET}
 metadataUrl: ${AWS_COGNITO_APP_METADATA_URL}
 callbackUrl: ${AWS_COGNITO_APP_CALLBACK_URL}
 scope: 'openid profile email'
 prompt: auto

apiVersion: v1
kind: Secret
metadata:
 name: secrets-rhdh
stringData:
 AUTH_SESSION_SECRET: "my super auth session secret - change me!!!"
 AWS_COGNITO_APP_CLIENT_ID: "my-aws-cognito-app-client-id"
 AWS_COGNITO_APP_CLIENT_SECRET: "my-aws-cognito-app-client-secret"
 AWS_COGNITO_APP_METADATA_URL: "https://cognito-idp.
[region].amazonaws.com/[userPoolId]/.well-known/openid-configuration"
 AWS_COGNITO_APP_CALLBACK_URL:
"https://[rhdh_dns]/api/auth/oidc/handler/frame"

upstream:
 backstage:
 image:
 pullSecrets:
 - rhdh-pull-secret

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

35

4. Upgrade the Helm deployment:

helm upgrade rhdh \
 openshift-helm-charts/redhat-developer-hub \
 [--version 1.1.4] \
 --values /path/to/values.yaml

Operator-backed deployment

1. Add the following code to your app-config-rhdh ConfigMap:

 podSecurityContext:
 fsGroup: 2000
 extraAppConfig:
 - filename: app-config-rhdh.yaml
 configMapRef: app-config-rhdh
 extraEnvVarsSecrets:
 - secrets-rhdh

apiVersion: v1
kind: ConfigMap
metadata:
 name: app-config-rhdh
data:
 "app-config-rhdh.yaml": |
 # --- Truncated ---

 signInPage: oidc
 auth:
 # Production to disable guest user login
 environment: production
 # Providing an auth.session.secret is needed because the oidc provider requires
session support.
 session:
 secret: ${AUTH_SESSION_SECRET}
 providers:
 oidc:
 production:
 # See https://github.com/backstage/backstage/blob/master/plugins/auth-
backend-module-oidc-provider/config.d.ts
 clientId: ${AWS_COGNITO_APP_CLIENT_ID}
 clientSecret: ${AWS_COGNITO_APP_CLIENT_SECRET}
 metadataUrl: ${AWS_COGNITO_APP_METADATA_URL}
 callbackUrl: ${AWS_COGNITO_APP_CALLBACK_URL}
 # Minimal set of scopes needed. Feel free to add more if needed.
 scope: 'openid profile email'

 # Note that by default, this provider will use the 'none' prompt which assumes
that your are already logged on in the IDP.
 # You should set prompt to:
 # - auto: will let the IDP decide if you need to log on or if you can skip login
when you have an active SSO session
 # - login: will force the IDP to always present a login form to the user
 prompt: auto

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

36

2. Add the following code to your secrets-rhdh Secret:

3. Ensure your Custom Resource contains references to both the app-config-rhdh
ConfigMap and secrets-rhdh Secret:

4. Optional: If you have an existing Developer Hub instance backed by the Custom
Resource and you have not edited it, you can manually delete the Developer Hub
deployment to recreate it using the operator. Run the following command to delete the
Developer Hub deployment:

apiVersion: v1
kind: Secret
metadata:
 name: secrets-rhdh
stringData:
 # --- Truncated ---

 # TODO: Change auth session secret.
 AUTH_SESSION_SECRET: "my super auth session secret - change me!!!"

 # TODO: user pool app client ID
 AWS_COGNITO_APP_CLIENT_ID: "my-aws-cognito-app-client-id"

 # TODO: user pool app client Secret
 AWS_COGNITO_APP_CLIENT_SECRET: "my-aws-cognito-app-client-secret"

 # TODO: Replace region and user pool ID
 AWS_COGNITO_APP_METADATA_URL: "https://cognito-idp.
[region].amazonaws.com/[userPoolId]/.well-known/openid-configuration"

 # TODO: Replace <rhdh_dns>
 AWS_COGNITO_APP_CALLBACK_URL:
"https://[rhdh_dns]/api/auth/oidc/handler/frame"

apiVersion: rhdh.redhat.com/v1alpha1
kind: Backstage
metadata:
 # TODO: this the name of your Developer Hub instance
 name: my-rhdh
spec:
 application:
 imagePullSecrets:
 - "rhdh-pull-secret"
 route:
 enabled: false
 appConfig:
 configMaps:
 - name: "app-config-rhdh"
 extraEnvs:
 secrets:
 - name: "secrets-rhdh"

kubectl delete deployment -l app.kubernetes.io/instance=<CR_NAME>

CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

37

Verification

1. Navigate to your Developer Hub web URL and sign in using OIDC authentication, which prompts
you to authenticate through the configured AWS Cognito user pool.

2. Once logged in, access Settings and verify user details.

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

38

CHAPTER 4. RED HAT DEVELOPER HUB INTEGRATION WITH
MICROSOFT AZURE KUBERNETES SERVICE (AKS)

You can integrate Developer Hub with Microsoft Azure Kubernetes Service (AKS), which provides a
significant advancement in development, offering a streamlined environment for building, deploying,
and managing your applications.

This integration requires the deployment of Developer Hub on AKS using one of the following methods:

The Helm chart

The Red Hat Developer Hub Operator

4.1. DEPLOYING RED HAT DEVELOPER HUB ON AZURE KUBERNETES
SERVICE (AKS)

You can deploy your Developer Hub application on Azure Kubernetes Services (AKS) to access a
comprehensive solution for building, testing, and deploying applications.

Prerequisites

You have an Azure account with active subscription.

You have installed Azure CLI in your machine and configured the Resource Group and Cluster.
For more information, see How to install the Azure CLI .
You can perform the following steps to configure the Resource Group and Cluster:

To access Azure, ensuring you’re logged in to our designated tenant use the following
command:

az login [--tenant=<optional-directory-name>]

To create a Resource Group, run the following command:

az group create --name <your_ResourceGroup> --location <location>

TIP

you can retrieve available regions using az account list-locations -o table.

Create an AKS cluster:

az aks create \
--resource-group <your_ResourceGroup> \
--name <your_ClusterName> \
--enable-managed-identity \
--generate-ssh-keys

You can refer to --help for additional options.

Connect to your cluster:

CHAPTER 4. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

39

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli

az aks get-credentials --resource-group <your_ResourceGroup> --name
<your_ClusterName>

The previous command configures the Kubernetes client and sets the current context in the
kubeconfig to point to your AKS cluster.

You have installed kubectl. For more information, see Installing or updating kubectl .

You have installed Helm 3 or the latest.

Comparison of AKS specifics with the base Developer Hub deployment

Permissions issue: Developer Hub containers might encounter permission-related
errors, such as Permission denied when attempting certain operations. This error can
be addresssed by adjusting the fsGroup in the PodSpec.securityContext.

Ingress configuration: In AKS, configuring ingress is essential for accessing the installed
Developer Hub instance. Accessing the Developer Hub instance requires enabling the
Routing add-on, an NGINX-based Ingress Controller, using the following commands:

az aks approuting enable --resource-group <your_ResourceGroup> --name
<your_ClusterName>

TIP

You might need to install the Azure CLI extension aks-preview. If the extension is not
installed automatically, you might need to install it manually using the following
command:

az extension add --upgrade -n aks-preview --allow-preview true

NOTE

After you install the Ingress Controller, the 'app-routing-system' namespace
with the Ingress Controller will be deployed in your cluster. Note the address
of your Developer Hub application from the installed Ingress Controller (for
example, 108.141.70.228) for later access to the Developer Hub application,
later referenced as <app_address>.

Namespace management: You can create a dedicated namespace for Developer Hub
deployment in AKS using the following command:

4.1.1. Deploying the Red Hat Developer Hub on Azure Kubernetes Service (AKS)
using the Helm chart

You can deploy your Developer Hub on AKS using Helm.

kubectl get svc nginx --namespace app-routing-system -o
jsonpath='{.status.loadBalancer.ingress[0].ip}'

kubectl create namespace <your_namespace>

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

40

https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html

Procedure

1. Open terminal and run the following command to add the Helm chart repository:

helm repo add openshift-helm-charts https://charts.openshift.io/

2. To create ImagePull Secret, run the following command:

3. Create a file named values.yaml using the following template:

4. To install Helm Chart, run the following command:

helm -n <your_namespace> install -f values.yaml <your_deploy_name> openshift-helm-
charts/redhat-developer-hub --version 1.1.1

5. Verify the deployment status:

6. Access the deployed Developer Hub using the URL: https://<app_address>, where
<app_address> is the Ingress address obtained earlier (for example, https://108.141.70.228).

kubectl -n <your_namespace> create secret docker-registry rhdh-pull-secret \
 --docker-server=registry.redhat.io \
 --docker-username=<redhat_user_name> \
 --docker-password=<redhat_password> \
 --docker-email=<email>

global:
 host: <app_address>
route:
 enabled: false
upstream:
 ingress:
 enabled: true
 className: webapprouting.kubernetes.azure.com
 host:
 backstage:
 image:
 pullSecrets:
 - rhdh-pull-secret
 podSecurityContext:
 fsGroup: 3000
 postgresql:
 image:
 pullSecrets:
 - rhdh-pull-secret
 primary:
 podSecurityContext:
 enabled: true
 fsGroup: 3000
 volumePermissions:
 enabled: true

kubectl get deploy <your_deploy_name>-developer-hub -n <your_namespace>

CHAPTER 4. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

41

https:
https://108.141.70.228

7. To upgrade or delete the deployment, run the following command:

Upgrade command

helm -n <your_namespace> upgrade -f values.yaml <your_deploy_name> openshift-helm-
charts/redhat-developer-hub --version 1.1.1

Delete command

helm -n <your_namespace> delete <your_deploy_name>

4.1.2. Deploying the Red Hat Developer Hub on Azure Kubernetes Service (AKS)
using the Operator

You can deploy your Developer Hub on AKS using the Red Hat Developer Hub Operator.

Procedure

1. Obtain the Red Hat Developer Hub Operator manifest file, named rhdh-operator-
<VERSION>.yaml, and modify the default configuration of db-statefulset.yaml and
deployment.yaml by adding the following fragment:

Following is the specified locations in the manifests:

db-statefulset.yaml: | spec.template.spec
deployment.yaml: | spec.template.spec

2. Apply the modified Operator manifest to your Kubernetes cluster:

NOTE

Execution of the previous command is cluster-scoped and requires appropriate
cluster privileges.

3. Create an ImagePull Secret named rhdh-pull-secret using your Red Hat credentials to access
images from the protected registry.redhat.io as shown in the following example:

4. Create an Ingress manifest file, named rhdh-ingress.yaml, specifying your Developer Hub
service name as follows:

securityContext:
 fsGroup: 300

kubectl apply -f rhdh-operator-<VERSION>.yaml

kubectl -n <your_namespace> create secret docker-registry rhdh-pull-secret \
 --docker-server=registry.redhat.io \
 --docker-username=<redhat_user_name> \
 --docker-password=<redhat_password> \
 --docker-email=<email>

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

42

5. To deploy the created Ingress, run the following command:

kubectl -n <your_namespace> apply -f rhdh-ingress.yaml

6. Create a ConfigMap named app-config-rhdh containing the Developer Hub configuration using
the following example:

7. Create a Secret named secrets-rhdh and add a key named BACKEND_SECRET with a
Base64-encoded string value as shown in the following example:

8. Create a Custom Resource (CR) manifest file named rhdh.yaml and include the previously
created rhdh-pull-secret as follows:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: rhdh-ingress
 namespace: <your_namespace>
spec:
 ingressClassName: webapprouting.kubernetes.azure.com
 rules:
 - http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: backstage-<your-CR-name>
 port:
 name: http-backend

apiVersion: v1
kind: ConfigMap
metadata:
 name: app-config-rhdh
data:
 "app-config-rhdh.yaml": |
 app:
 title: Red Hat Developer Hub
 baseUrl: https://<app_address>
 backend:
 auth:
 keys:
 - secret: "${BACKEND_SECRET}"
 baseUrl: https://<app_address>
 cors:
 origin: https://<app_address>

apiVersion: v1
kind: Secret
metadata:
 name: secrets-rhdh
stringData:
 BACKEND_SECRET: "xxx"

CHAPTER 4. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

43

9. Apply the CR manifest to your namespace:

kubectl -n <your_namespace> apply -f rhdh.yaml

10. Access the deployed Developer Hub using the URL: https://<app_address>, where
<app_address> is the Ingress address obtained earlier (for example, https://108.141.70.228).

11. Optional: To delete the CR, run the following command:

kubectl -n <your_namespace> delete -f rhdh.yaml

4.2. MONITORING AND LOGGING WITH AZURE KUBERNETES
SERVICES (AKS) IN RED HAT DEVELOPER HUB

Monitoring and logging are integral aspects of managing and maintaining Azure Kubernetes Services
(AKS) in Red Hat Developer Hub. With features like Managed Prometheus Monitoring and Azure
Monitor integration, administrators can efficiently monitor resource utilization, diagnose issues, and
ensure the reliability of their containerized workloads.

To enable Managed Prometheus Monitoring, use the -enable-azure-monitor-metrics option within
either the az aks create or az aks update command, depending on whether you’re creating a new
cluster or updating an existing one, such as:

The previous command installs the metrics add-on, which gathers Prometheus metrics. Using the
previous command, you can enable monitoring of Azure resources through both native Azure Monitor
metrics and Prometheus metrics. You can also view the results in the portal under Monitoring →
Insights. For more information, see Monitor Azure resources with Azure Monitor .

Furthermore, metrics from both the Managed Prometheus service and Azure Monitor can be accessed
through Azure Managed Grafana service. For more information, see Link a Grafana workspace section.

By default, Prometheus uses the minimum ingesting profile, which optimizes ingestion volume and sets
default configurations for scrape frequency, targets, and metrics collected. The default settings can be
customized through custom configuration. Azure offers various methods, including using different
ConfigMaps, to provide scrape configuration and other metric add-on settings. For more information

apiVersion: rhdh.redhat.com/v1alpha1
kind: Backstage
metadata:
 name: <your-rhdh-cr>
spec:
 application:
 imagePullSecrets:
 - rhdh-pull-secret
 appConfig:
 configMaps:
 - name: "app-config-rhdh"
 extraEnvs:
 secrets:
 - name: "secrets-rhdh"

az aks create/update --resource-group <your-ResourceGroup> --name <your-Cluster> --enable-
azure-monitor-metrics

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

44

https:
https://108.141.70.228
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/prometheus-metrics-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/monitor-azure-resource
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/azure-monitor-workspace-manage?tabs=azure-portal#link-a-grafana-workspace

about default configuration, see Default Prometheus metrics configuration in Azure Monitor and
Customize scraping of Prometheus metrics in Azure Monitor managed service for Prometheus
documentation.

4.2.1. Viewing logs with Azure Kubernetes Services (AKS)

You can access live data logs generated by Kubernetes objects and collect log data in Container
Insights within AKS.

Prerequisites

You have deployed Developer Hub on AKS. For more information, see Section 4.1, “Deploying
Red Hat Developer Hub on Azure Kubernetes Service (AKS)”.

Procedure

View live logs from your Developer Hub instance

1. Navigate to the Azure Portal.

2. Search for the resource group <your-ResourceGroup> and locate your AKS cluster <your-
Cluster>.

3. Select Kubernetes resources → Workloads from the menu.

4. Select the <your-rhdh-cr>-developer-hub (in case of Helm Chart installation) or <your-
rhdh-cr>-backstage (in case of Operator-backed installation) deployment.

5. Click Live Logs in the left menu.

6. Select the pod.

NOTE

There must be only single pod.

Live log data is collected and displayed.

View real-time log data from the Container Engine

1. Navigate to the Azure Portal.

2. Search for the resource group <your-ResourceGroup> and locate your AKS cluster <your-
Cluster>.

3. Select Monitoring → Insights from the menu.

4. Go to the Containers tab.

5. Find the backend-backstage container and click it to view real-time log data as it’s
generated by the Container Engine.

4.3. USING MICROSOFT AZURE AS AN AUTHENTICATION PROVIDER

CHAPTER 4. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

45

https://learn.microsoft.com/en-us/azure/azure-monitor/containers/prometheus-metrics-scrape-default
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/prometheus-metrics-scrape-configuration?tabs=CRDConfig%2CCRDScrapeConfig

4.3. USING MICROSOFT AZURE AS AN AUTHENTICATION PROVIDER
IN RED HAT DEVELOPER HUB

The core-plugin-api package in Developer Hub comes integrated with Microsoft Azure authentication
provider, authenticating signing in using Azure OAuth.

Prerequisites

You have deployed Developer Hub on AKS. For more information, see Section 4.1, “Deploying
Red Hat Developer Hub on Azure Kubernetes Service (AKS)”.

You have created registered your application in Azure portal. For more information, see
Register an application with the Microsoft identity platform .

4.3.1. Using Microsoft Azure as an authentication provider in Helm deployment

You can use Microsoft Azure as an authentication provider in Red Hat Developer Hub, when installed
using the Helm Chart. For more information, see Section 4.1.1, “Deploying the Red Hat Developer Hub
on Azure Kubernetes Service (AKS) using the Helm chart”.

Procedure

1. After the application is registered, note down the following:

clientId: Application (client) ID, found under App Registration → Overview.

clientSecret: Secret, found under *App Registration → Certificates & secrets (create new if
needed).

tenantId: Directory (tenant) ID, found under App Registration → Overview.

2. Ensure the following fragment is included in your Developer Hub ConfigMap:

You can either create a new file or add it to an existing one.

3. Apply the ConfigMap to your Kubernetes cluster:

4. Create or reuse an existing Secret containing Azure credentials and add the following fragment:

auth:
 environment: production
 providers:
 microsoft:
 production:
 clientId: ${AZURE_CLIENT_ID}
 clientSecret: ${AZURE_CLIENT_SECRET}
 tenantId: ${AZURE_TENANT_ID}
 domainHint: ${AZURE_TENANT_ID}
 additionalScopes:
 - Mail.Send

kubectl -n <your_namespace> apply -f <app-config>.yaml

stringData:
 AZURE_CLIENT_ID: <value-of-clientId>

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

46

https://learn.microsoft.com/en-us/entra/identity-platform/quickstart-register-app

5. Apply the secret to your Kubernetes cluster:

6. Ensure your values.yaml file references the previously created ConfigMap and Secret:

7. Optional: If the Helm Chart is already installed, upgrade it:

helm -n <your_namespace> upgrade -f <your-values.yaml> <your_deploy_name> redhat-
developer/backstage --version 1.1.4

8. Optional: If your rhdh.yaml file is not changed, for example, you only updated the ConfigMap
and Secret referenced from it, refresh your Developer Hub deployment by removing the
corresponding pods:

4.3.2. Using Microsoft Azure as an authentication provider in Operator-backed
deployment

You can use Microsoft Azure as an authentication provider in Red Hat Developer Hub, when installed
using the Operator. For more information, see Section 2.2, “Deploying Red Hat Developer Hub on
OpenShift Container Platform using the Operator”.

Procedure

1. After the application is registered, note down the following:

clientId: Application (client) ID, found under App Registration → Overview.

clientSecret: Secret, found under *App Registration → Certificates & secrets (create new if
needed).

tenantId: Directory (tenant) ID, found under App Registration → Overview.

2. Ensure the following fragment is included in your Developer Hub ConfigMap:

 AZURE_CLIENT_SECRET: <value-of-clientSecret>
 AZURE_TENANT_ID: <value-of-tenantId>

kubectl -n <your_namespace> apply -f <azure-secrets>.yaml

upstream:
 backstage:
 ...
 extraAppConfig:
 - filename: ...
 configMapRef: <app-config-containing-azure>
 extraEnvVarsSecrets:
 - <secret-containing-azure>

kubectl -n <your_namespace> delete pods -l backstage.io/app=backstage-<your-rhdh-cr>

auth:
 environment: production
 providers:
 microsoft:
 production:

CHAPTER 4. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

47

You can either create a new file or add it to an existing one.

3. Apply the ConfigMap to your Kubernetes cluster:

4. Create or reuse an existing Secret containing Azure credentials and add the following fragment:

5. Apply the secret to your Kubernetes cluster:

6. Ensure your Custom Resource manifest contains references to the previously created
ConfigMap and Secret:

7. Apply your Custom Resource manifest:

8. Optional: If your rhdh.yaml file is not changed, for example, you only updated the ConfigMap
and Secret referenced from it, refresh your Developer Hub deployment by removing the
corresponding pods:

 clientId: ${AZURE_CLIENT_ID}
 clientSecret: ${AZURE_CLIENT_SECRET}
 tenantId: ${AZURE_TENANT_ID}
 domainHint: ${AZURE_TENANT_ID}
 additionalScopes:
 - Mail.Send

kubectl -n <your_namespace> apply -f <app-config>.yaml

stringData:
 AZURE_CLIENT_ID: <value-of-clientId>
 AZURE_CLIENT_SECRET: <value-of-clientSecret>
 AZURE_TENANT_ID: <value-of-tenantId>

kubectl -n <your_namespace> apply -f <azure-secrets>.yaml

apiVersion: rhdh.redhat.com/v1alpha1
kind: Backstage
metadata:
 name: <your-rhdh-cr>
spec:
 application:
 imagePullSecrets:
 - rhdh-pull-secret
 route:
 enabled: false
 appConfig:
 configMaps:
 - name: <app-config-containing-azure>
 extraEnvs:
 secrets:
 - name: <secret-containing-azure>

kubectl -n <your_namespace> apply -f rhdh.yaml

kubectl -n <your_namespace> delete pods -l backstage.io/app=backstage-<your-rhdh-cr>

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

48

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED
HAT DEVELOPER HUB

Role-Based Access Control is a security paradigm that restricts access to authorized users. This feature
includes defining roles with specific permissions and then assigning those roles to the users.

The Red Hat Developer Hub uses RBAC to improve the permission system within the platform. The
RBAC feature in Developer Hub introduces an administrator role and leverages the organizational
structure including teams, groups, and users by facilitating efficient access control.

5.1. PERMISSION POLICIES CONFIGURATION

There are two approaches to configure the permission policies in Red Hat Developer Hub, including:

Configuration of permission policies administrators

Configuration of permission policies defined in an external file

5.1.1. Configuration of permission policies administrators

The permission policies for users and groups in the Developer Hub are managed by permission policy
administrators. Only permission policy administrators can access the Role-Based Access Control REST
API.

The purpose of configuring policy administrators is to enable a specific, restricted number of
authenticated users to access the RBAC REST API. The permission policies are defined in a policy.csv
file, which is referenced in the app-config-rhdh ConfigMap. OpenShift platform administrators or
cluster administrators can perform this task with access to the namespace where Red Hat Developer
Hub is deployed.

You can set the credentials of a permission policy administrator in the app-config.yaml file as follows:

5.1.2. Configuration of permission policies defined in an external file

You can follow this approach of configuring the permission policies before starting the Red Hat
Developer Hub. If permission policies are defined in an external file, then you can import the same file in
the Developer Hub. The permission policies need to be defined in Casbin rules format. For information
about the Casbin rules format, see Basics of Casbin rules.

The following is an example of permission policies configuration:

p, role:default/guests, catalog-entity, read, deny

p, role:default/guests, catalog.entity.create, create, deny

g, user:default/<USER_TO_ROLE>, role:default/guests

If a defined permission does not contain an action associated with it, then add use as a policy. See the

permission:
 enabled: true
 rbac:
 admin:
 users:
 - name: user:default/joeuser

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB

49

https://casbin.org/docs/category/the-basics

If a defined permission does not contain an action associated with it, then add use as a policy. See the
following example:

p, role:default/guests, kubernetes.proxy, use, deny

You can define the policy.csv file path in the app-config.yaml file:

5.1.2.1. Mounting policy.csv file to the Developer Hub Helm Chart

When the Red Hat Developer Hub is deployed with the Helm Chart, then you must define the policy.csv
file by mounting it to the Developer Hub Helm Chart.

You can add your policy.csv file to the Developer Hub Helm Chart by creating a configMap and
mounting it.

Prerequisites

You are logged in to your OpenShift Container Platform account using the OpenShift Container
Platform web console.

Red Hat Developer Hub is installed and deployed using Helm Chart.
For more information about installing the Red Hat Developer Hub on OpenShift Container
Platform using Helm Chart, see Section 2.1, “Deploying Red Hat Developer Hub on OpenShift
Container Platform using Helm Chart”.

Procedure

1. In OpenShift Container Platform, create a ConfigMap to hold the policies as shown in the
following example:

Example ConfigMap

kind: ConfigMap
apiVersion: v1
metadata:
 name: rbac-policy
 namespace: rhdh
data:
 rbac-policy.csv: |
 p, role:default/guests, catalog-entity, read, allow
 p, role:default/guests, catalog.entity.create, create, allow

 g, user:default/<YOUR_USER>, role:default/guests

2. In the Developer Hub Helm Chart, go to Root Schema → Backstage chart schema →
Backstage parameters → Backstage container additional volume mounts.

3. Select Add Backstage container additional volume mounts and add the following values:

mountPath: opt/app-root/src/rbac

permission:
 enabled: true
 rbac:
 policies-csv-file: /some/path/rbac-policy.csv

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

50

Name: rbac-policy

4. Add the RBAC policy to the Backstage container additional volumes in the Developer Hub
Helm Chart:

name: rbac-policy

configMap

defaultMode: 420

name: rbac-policy

5. Update the policy path in the app-config.yaml file as follows:

Example app-config.yaml file

5.1.3. Permission policies in Red Hat Developer Hub

Permission policies in Red Hat Developer Hub are a set of rules to govern access to resources or
functionalities. These policies state the authorization level that is granted to users based on their roles.
The permission policies are implemented to maintain security and confidentiality within a given
environment.

The following permission policies are supported in the Developer Hub:

Catalog permissions

Name Resource type Policy Description

catalog.ent
ity.read

catalog-entity read Allows user or role to read from the catalog

catalog.ent
ity.create

 create Allows user or role to create catalog entities,
including registering an existing component in
the catalog

catalog.ent
ity.refresh

catalog-entity update Allows user or role to refresh a single or
multiple entities from the catalog

catalog.ent
ity.delete

catalog-entity delete Allows user or role to delete a single or multiple
entities from the catalog

catalog.loc
ation.read

 read Allows user or role to read a single or multiple
locations from the catalog

permission:
 enabled: true
 rbac:
 policies-csv-file: ./rbac/rbac-policy.csv

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB

51

catalog.loc
ation.creat
e

 create Allows user or role to create locations within the
catalog

catalog.loc
ation.delet
e

 delete Allows user or role to delete locations from the
catalog

Name Resource type Policy Description

Scaffolder permissions

Name Resource type Policy Description

scaffolder.
action.exec
ute

scaffolder-action Allows the execution of an action from a
template

scaffolder.t
emplate.pa
rameter.rea
d

scaffolder-template read Allows user or role to read a single or multiple
one parameters from a template

scaffolder.t
emplate.ste
p.read

scaffolder-template read Allows user or role to read a single or multiple
steps from a template

RBAC permissions

Name Resource type Policy Description

policy.entit
y.read

policy-entity read Allows user or role to read permission policies
and roles

policy.entit
y.create

policy-entity create Allows user or role to create a single or multiple
permission policies and roles

policy.entit
y.update

policy-entity update Allows user or role to update a single or
multiple permission policies and roles

policy.entit
y.delete

policy-entity delete Allows user or role to delete a single or multiple
permission policies and roles

Kubernetes permissions

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

52

Name Resource type Policy Description

kubernetes
.proxy

 Allows user or role to access the proxy endpoint

5.2. MANAGING ROLE-BASED ACCESS CONTROLS (RBAC) USING
THE RED HAT DEVELOPER HUB WEB UI

Administrators can use the Developer Hub web interface (Web UI) to allocate specific roles and
permissions to individual users or groups. Allocating roles ensures that access to resources and
functionalities is regulated across the Developer Hub.

With the administrator role in Developer Hub, you can assign permissions to users and groups, which
allow users or groups to view, create, modify, and delete the roles using the Developer Hub Web UI.

To access the RBAC features in the Web UI, you must install and configure the @janus-idp/backstage-
plugin-rbac plugin as a dynamic plugin. For more information about installing a dynamic plugin, see
Chapter 6, Dynamic plugin installation .

After you install the @janus-idp/backstage-plugin-rbac plugin, the Administration option appears at
the bottom of the sidebar. When you can click Administration, the RBAC tab appears by default,
displaying all of the existing roles created in the Developer Hub. In the RBAC tab, you can also view the
total number of users, groups, and the total number of permission policies associated with a role. You
can also edit or delete a role using the Actions column.

5.2.1. Creating a role in the Red Hat Developer Hub Web UI

You can create a role in the Red Hat Developer Hub using the Web UI.

Prerequisites

You have an administrator role in the Developer Hub.

You have installed the @janus-idp/backstage-plugin-rbac plugin in Developer Hub. For more
information, see Chapter 6, Dynamic plugin installation .

You have configured the required permission policies. For more information, see Section 5.1,
“Permission policies configuration”.

Procedure

1. Go to Administration at the bottom of the sidebar in the Developer Hub.
The RBAC tab appears, displaying all the created roles in the Developer Hub.

2. (Optional) Click any role to view the role information on the OVERVIEW page.

3. Click CREATE to create a role.

4. Enter the name and description of the role in the given fields and click NEXT.

5. Add users and groups using the search field, and click NEXT.

6. Select Plugin and Permission from the drop-downs in the Add permission policies section.

7. Select or clear the Policy that you want to set in the Add permission policies section, and click

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB

53

7. Select or clear the Policy that you want to set in the Add permission policies section, and click
NEXT.

8. Review the added information in the Review and create section.

9. Click CREATE.

Verification

The created role appears in the list available in the RBAC tab.

5.2.2. Editing a role in the Red Hat Developer Hub Web UI

You can edit a role in the Red Hat Developer Hub using the Web UI.

NOTE

The policies generated from a policy.csv or ConfigMap file cannot be edited or deleted
using the Developer Hub Web UI.

Prerequisites

You have an administrator role in the Developer Hub.

You have installed the @janus-idp/backstage-plugin-rbac plugin in Developer Hub. For more
information, see Chapter 6, Dynamic plugin installation .

You have configured the required permission policies. For more information, see Section 5.1,
“Permission policies configuration”.

The role that you want to edit is created in the Developer Hub.

Procedure

1. Go to Administration at the bottom of the sidebar in the Developer Hub.
The RBAC tab appears, displaying all the created roles in the Developer Hub.

2. (Optional) Click any role to view the role information on the OVERVIEW page.

3. Select the edit icon for the role that you want to edit.

4. Edit the details of the role, such as name, description, users and groups, and permission policies,
and click NEXT.

5. Review the edited details of the role and click SAVE.

After editing a role, you can view the edited details of a role on the OVERVIEW page of a role. You can
also edit a role’s users and groups or permissions by using the edit icon on the respective cards on the
OVERVIEW page.

5.2.3. Deleting a role in the Red Hat Developer Hub Web UI

You can delete a role in the Red Hat Developer Hub using the Web UI.

NOTE

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

54

NOTE

The policies generated from a policy.csv or ConfigMap file cannot be edited or deleted
using the Developer Hub Web UI.

Prerequisites

You have an administrator role in the Developer Hub.

You have installed the @janus-idp/backstage-plugin-rbac plugin in Developer Hub. For more
information, see Chapter 6, Dynamic plugin installation .

You have configured the required permission policies. For more information, see Section 5.1,
“Permission policies configuration”.

The role that you want to delete is created in the Developer Hub.

Procedure

1. Go to Administration at the bottom of the sidebar in the Developer Hub.
The RBAC tab appears, displaying all the created roles in the Developer Hub.

2. (Optional) Click any role to view the role information on the OVERVIEW page.

3. Select the delete icon from the Actions column for the role that you want to delete.
Delete this role? pop-up appears on the screen.

4. Click DELETE.

5.3. ROLE-BASED ACCESS CONTROL (RBAC) REST API

Red Hat Developer Hub provides RBAC REST API that you can use to manage the permissions and roles
in the Developer Hub. This API supports you to facilitate and automate the maintenance of Developer
Hub permission policies and roles.

Using the RBAC REST API, you can perform the following actions:

Retrieve information about all permission policies or specific permission policies, or roles

Create, update, or delete a permission policy or a role

Retrieve permission policy information about static plugins

The RBAC REST API requires the following components:

Authorization

The RBAC REST API requires Bearer token authorization for the permitted user role. For development
purposes, you can access a web console in a browser. When you refresh a token request in the list of
network requests, you find the token in the response JSON.

Authorization: Bearer $token

For example, on the Homepage of the Developer Hub, you can navigate to the Network tab and search
for the query?term= network call. Alternatively, you can go to the Catalog page and select any network
call with entity-facets to acquire the Bearer token.

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB

55

HTTP methods

The RBAC REST API supports the following HTTP methods for API requests:

GET: Retrieves specified information from a specified resource endpoint

POST: Creates or updates a resource

PUT: Updates a resource

DELETE: Deletes a resource

Base URL

The base URL for RBAC REST API requests is http://SERVER:PORT/api/permission/policies, such as
http://localhost:7007/api/permission/policies.

Endpoints

RBAC REST API endpoints, such as /api/permission/policies/[kind]/[namespace]/[name] for specified
kind, namespace, and username, are the URI that you append to the base URL to access the
corresponding resource.

Example request URL for /api/permission/policies/[kind]/[namespace]/[name] endpoint is:

http://localhost:7007/api/permission/policies/user/default/johndoe

NOTE

If at least one permission is assigned to user:default/johndoe, then the example request
URL mentioned previously returns a result if sent in a GET response with a valid
authorization token. However, if permission is only assigned to roles, then the example
request URL does not return an output.

Request data

HTTP POST requests in the RBAC REST API may require a JSON request body with data to accompany
the request.

Example POST request URL and JSON request body data for
http://localhost:7007/api/permission/policies:

HTTP status codes

The RBAC REST API supports the following HTTP status codes to return as responses:

200 OK: The request was successful.

201 Created: The request resulted in a new resource being successfully created.

{
 "entityReference": "role:default/test",
 "permission": "catalog-entity",
 "policy": "delete",
 "effect": "allow"
}

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

56

204 No Content: The request was successful, but there is no additional content to send in the
response payload.

400 Bad Request: input error with the request

401 Unauthorized: lacks valid authentication for the requested resource

403 Forbidden: refusal to authorize request

404 Not Found: could not find requested resource

409 Conflict: request conflict with the current state and the target resource

5.3.1. Sending requests with the RBAC REST API using a REST client or curl utility

The RBAC REST API enables you to interact with the permission policies and roles in Developer Hub
without using the user interface. You can send RBAC REST API requests using any REST client or curl
utility.

Prerequisites

Red Hat Developer Hub is installed and running. For more information about installing Red Hat
Developer Hub, see Section 2.1, “Deploying Red Hat Developer Hub on OpenShift Container
Platform using Helm Chart”. .

You have access to the Developer Hub.

Procedure

1. Identify a relevant API endpoint to which you want to send a request, such as POST
/api/permission/policies. Adjust any request details according to your use case.
For REST client:

Authorization: Enter the generated token from the web console.

HTTP method: Set to POST.

URL: Enter the RBAC REST API base URL and endpoint such as
http://localhost:7007/api/permission/policies.

For curl utility:

-X: Set to POST

-H: Set the following header:
Content-type: application/json

Authorization: Bearer $token

$token is the requested token from the web console in a browser.

URL: Enter the following RBAC REST API base URL endpoint, such as
http://localhost:7007/api/permission/policies

-d: Add a request JSON body

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB

57

Example request:

curl -X POST "http://localhost:7007/api/permission/policies" -d
'{"entityReference":"role:default/test", "permission": "catalog-entity", "policy": "read",
"effect":"allow"}' -H "Content-Type: application/json" -H "Authorization: Bearer $token" -
v

2. Execute the request and review the response.

5.3.2. Supported RBAC REST API endpoints

The RBAC REST API provides the following endpoints for managing permission policies and roles in the
Developer Hub and for retrieving information about the policies and roles.

5.3.2.1. Permission policies

The RBAC REST API supports the following endpoints for managing permission policies in the Red Hat
Developer Hub.

[GET] /api/permission/policies

Returns permission policies list for all users.

Example response (JSON)

[GET] /api/permission/policies/{kind}/{namespace}/{name}

Returns permission policies related to the specified entity reference.

Table 5.1. Request parameters

Name Description Type Requirement

kind Kind of the entity String Required

namespac
e

Namespace of the entity String Required

name Username related to the entity String Required

[
 {
 "entityReference": "role:default/test",
 "permission": "catalog-entity",
 "policy": "read",
 "effect": "allow"
 },
 {
 "entityReference": "role:default/test",
 "permission": "catalog.entity.create",
 "policy": "use",
 "effect": "allow"
 },
]

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

58

Example response (JSON)

[POST] /api/permission/policies

Creates a permission policy for a specified entity.

Table 5.2. Request parameters

Name Description Type Requirement

entityRefer
ence

Reference values of an entity including
namespace and name

String Required

permissio
n

Type of the permission String Required

policy Read or write policy to the permission String Required

effect Indication of allowing or not allowing the
policy

String Required

Example request body (JSON)

Example response

201 Created

[PUT] /api/permission/policies/{kind}/{namespace}/{name}

Updates a permission policy for a specified entity.

[
 {
 "entityReference": "role:default/test",
 "permission": "catalog-entity",
 "policy": "read",
 "effect": "allow"
 },
 {
 "entityReference": "role:default/test",
 "permission": "catalog.entity.create",
 "policy": "use",
 "effect": "allow"
 }
]

{
 "entityReference": "role:default/test",
 "permission": "catalog-entity",
 "policy": "read",
 "effect": "allow"
}

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB

59

Request parameters

The request body contains the oldPolicy and newPolicy objects:

Name Description Type Requirement

permissio
n

Type of the permission String Required

policy Read or write policy to the permission String Required

effect Indication of allowing or not allowing the
policy

String Required

Example request body (JSON)

Example response

200

[DELETE] /api/permission/policies/{kind}/{namespace}/{name}?permission={value1}&policy=
{value2}&effect={value3}

Deletes a permission policy added to the specified entity.

Table 5.3. Request parameters

Name Description Type Requirement

kind Kind of the entity String Required

namespac
e

Namespace of the entity String Required

name Username related to the entity String Required

permissio
n

Type of the permission String Required

{
 "oldPolicy": {
 "permission": "catalog-entity",
 "policy": "read",
 "effect": "deny"
 },
 "newPolicy": {
 "permission": "policy-entity",
 "policy": "read",
 "effect": "allow"
 }
}

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

60

policy Read or write policy to the permission String Required

effect Indication of allowing or not allowing the
policy

String Required

Name Description Type Requirement

Example response

204 No Content

[GET] /api/permission/plugins/policies

Returns permission policies for all static plugins.

Example response (JSON)

[
 {
 "pluginId": "catalog",
 "policies": [
 {
 "permission": "catalog-entity",
 "policy": "read"
 },
 {
 "permission": "catalog.entity.create",
 "policy": "create"
 },
 {
 "permission": "catalog-entity",
 "policy": "delete"
 },
 {
 "permission": "catalog-entity",
 "policy": "update"
 },
 {
 "permission": "catalog.location.read",
 "policy": "read"
 },
 {
 "permission": "catalog.location.create",
 "policy": "create"
 },
 {
 "permission": "catalog.location.delete",
 "policy": "delete"
 }
]
 },
 ...
]

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB

61

5.3.2.2. Roles

The RBAC REST API supports the following endpoints for managing roles in the Red Hat Developer
Hub.

[GET] /api/permission/roles

Returns all roles in Developer Hub.

Example response (JSON)

[GET] /api/permission/roles/{kind}/{namespace}/{name}

Creates a role in Developer Hub.

Table 5.4. Request parameters

Name Description Type Requirement

body The memberReferences, group,
namespace, and name the new role to be
created.

Request
body

Required

Example request body (JSON)

Example response

201 Created

[PUT] /api/permission/roles/{kind}/{namespace}/{name}

Updates memberReferences, kind, namespace, or name for a role in Developer Hub.

Request parameters

The request body contains the oldRole and newRole objects:

[
 {
 "memberReferences": ["user:default/pataknight"],
 "name": "role:default/guests"
 },
 {
 "memberReferences": [
 "group:default/janus-authors",
 "user:default/matt"
],
 "name": "role:default/rbac_admin"
 }
]

{
 "memberReferences": ["group:default/test"],
 "name": "role:default/test_admin"
}

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

62

Name Description Type Requirement

body The memberReferences, group,
namespace, and name the new role to be
created.

Request
body

Required

Example request body (JSON)

Example response

200 OK

[DELETE] /api/permission/roles/{kind}/{namespace}/{name}?memberReferences=<VALUE>

Deletes the specified user or group from a role in Developer Hub.

Table 5.5. Request parameters

Name Description Type Requirement

kind Kind of the entity String Required

namespac
e

Namespace of the entity String Required

name Username related to the entity String Required

memberRe
ferences

Associated group information String Required

Example response

204

[DELETE] /api/permission/roles/{kind}/{namespace}/{name}

Deletes a specified role from Developer Hub.

Table 5.6. Request parameters

{
 "oldRole": {
 "memberReferences": ["group:default/test"],
 "name": "role:default/test_admin"
 },
 "newRole": {
 "memberReferences": ["group:default/test", "user:default/test2"],
 "name": "role:default/test_admin"
 }
}

CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB

63

Name Description Type Requirement

kind Kind of the entity String Required

namespac
e

Namespace of the entity String Required

name Username related to the entity String Required

Example response

204

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

64

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION
The dynamic plugin support is based on the backend plugin manager package, which is a service that
scans a configured root directory (dynamicPlugins.rootDirectory in the app config) for dynamic plugin
packages and loads them dynamically.

You can use the dynamic plugins that come preinstalled with Red Hat Developer Hub or install external
dynamic plugins from a public NPM registry.

6.1. VIEWING INSTALLED PLUGINS

Using the Dynamic Plugins Info front-end plugin, you can view plugins that are currently installed in your
Red Hat Developer Hub application. This plugin is enabled by default.

Procedure

1. Open your Developer Hub application and click Administration.

2. Go to the Plugins tab to view a list of installed plugins and related information.

6.2. PREINSTALLED DYNAMIC PLUGINS

Red Hat Developer Hub is preinstalled with a selection of dynamic plugins. The dynamic plugins that
require custom configuration are disabled by default.

For a complete list of dynamic plugins that are preinstalled in this release of Developer Hub, see the
Dynamic plugins support matrix .

Upon application startup, for each plugin that is disabled by default, the install-dynamic-plugins init
container within the Developer Hub pod log displays a message similar to the following:

To enable this plugin, add a package with the same name to the Helm chart and change the value in the
disabled field to ‘false’. For example:

NOTE

The default configuration for a plugin is extracted from the dynamic-
plugins.default.yaml` file, however, you can use a pluginConfig entry to override the
default configuration.

6.2.1. Preinstalled dynamic plugin descriptions and details

IMPORTANT

======= Skipping disabled dynamic plugin ./dynamic-plugins/dist/backstage-plugin-catalog-backend-
module-github-dynamic

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/backstage-plugin-catalog-backend-module-github-dynamic
 disabled: false

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

65

IMPORTANT

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend using them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

Additional detail on how Red Hat provides support for bundled community dynamic
plugins is available on the Red Hat Developer Support Policy page.

There are 56 plugins available in Red Hat Developer Hub. See the following table for more information:

Table 6.1. Dynamic plugins support matrix

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

3scale Backend @janus-
idp/back
stage-
plugin-
3scale-
backend

The
3scale
Backsta
ge
provider
plugin
synchron
izes the
3scale
content
into the
Backsta
ge
catalog.

1.4.7 Red Hat
Tech
Preview

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
3scale-
backend
-
dynamic

THREE
SCALE
_BASE
_URL

THREE
SCALE
_ACCE
SS_TO
KEN

Disabled

AAP Backend @janus-
idp/back
stage-
plugin-
aap-
backend

 1.5.5 Red Hat
Tech
Preview

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
aap-
backend
-
dynamic

AAP_B
ASE_U
RL

AAP_A
UTH_T
OKEN

Disabled

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

66

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/policy/developerhub-support-policy

ACR Fronten
d

@janus-
idp/back
stage-
plugin-
acr

 1.2.28 Red Hat
Tech
Preview

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
acr

 Disabled

Analytics
Provider
Segmen
t

Fronten
d

@janus-
idp/back
stage-
plugin-
analytics
-
provider
-
segment

This
plugin
provides
an
impleme
ntation
of the
Backsta
ge
Analytics
API for
Segmen
t. Once
installed
and
configur
ed,
analytics
events
will be
sent to
Segmen
t as your
users
navigate
and use
your
Backsta
ge
instance.

1.2.11 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
analytics
-
provider
-
segment

SEGME
NT_WR
ITE_KE
Y

SEGME
NT_MA
SK_IP

SEGME
NT_TE
ST_MO
DE

Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

67

Argo CD Fronten
d

@roadie
hq/back
stage-
plugin-
argo-cd

Backsta
ge plugin
to view
and
interact
with
Argo
CD.

2.4.1 Producti
on

./dynami
c-
plugins/
dist/roa
diehq-
backsta
ge-
plugin-
argo-cd

 Disabled

Argo CD Backend @roadie
hq/back
stage-
plugin-
argo-cd-
backend

Backsta
ge plugin
Argo CD
backend

2.14.5 Producti
on

./dynami
c-
plugins/
dist/roa
diehq-
backsta
ge-
plugin-
argo-
cd-
backend
-
dynamic

ARGO
CD_US
ERNA
ME

ARGO
CD_PA
SSWO
RD

ARGO
CD_IN
STANC
E1_UR
L

ARGO
CD_AU
TH_TO
KEN

ARGO
CD_IN
STANC
E2_UR
L

ARGO
CD_AU
TH_TO
KEN2

Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

68

Argo CD Backend @roadie
hq/scaff
older-
backend
-argocd

 1.1.23 Commu
nity
Support

./dynami
c-
plugins/
dist/roa
diehq-
scaffold
er-
backend
-
argocd-
dynamic

ARGO
CD_US
ERNA
ME

ARGO
CD_PA
SSWO
RD

ARGO
CD_IN
STANC
E1_UR
L

ARGO
CD_AU
TH_TO
KEN

ARGO
CD_IN
STANC
E2_UR
L

ARGO
CD_AU
TH_TO
KEN2

Disabled

Azure
Devops

Fronten
d

@backst
age/plu
gin-
azure-
devops

 0.3.12 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
azure-
devops

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

69

Azure
Devops

Backend @backst
age/plu
gin-
azure-
devops-
backend

Azure
DevOps
backend
plugin
that
contains
the API
for
retrievin
g builds,
pull
requests
, etc.
which is
used by
the
Azure
DevOps
frontend
plugin.

0.5.5 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
azure-
devops-
backend
-
dynamic

AZURE
_TOKE
N

AZURE
_ORG

Disabled

Azure
Devops

Backend @backst
age/plu
gin-
scaffold
er-
backend
-
module-
azure

The
azure
module
for
@backst
age/plu
gin-
scaffold
er-
backend

0.1.5 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
scaffold
er-
backend
-
module-
azure-
dynamic

 Enabled

Bitbucke
t

Backend @backst
age/plu
gin-
catalog-
backend
-
module-
bitbucke
t-cloud

A
Backsta
ge
catalog
backend
module
that
helps
integrat
e
towards
Bitbucke
t Cloud.

0.1.28 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
catalog-
backend
-
module-
bitbucke
t-cloud-
dynamic

BITBU
CKET_
WORK
SPACE

Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

70

Bitbucke
t

Backend @backst
age/plu
gin-
catalog-
backend
-
module-
bitbucke
t-server

A
Backsta
ge
catalog
backend
module
that
helps
integrat
e
towards
Bitbucke
t Server.

0.1.26 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
catalog-
backend
-
module-
bitbucke
t-
server-
dynamic

BITBU
CKET_
HOST

Disabled

Bitbucke
t

Backend @backst
age/plu
gin-
scaffold
er-
backend
-
module-
bitbucke
t-cloud

The
Bitbucke
t Cloud
module
for
@backst
age/plu
gin-
scaffold
er-
backend

0.1.3 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
scaffold
er-
backend
-
module-
bitbucke
t-cloud-
dynamic

 Enabled

Bitbucke
t

Backend @backst
age/plu
gin-
scaffold
er-
backend
-
module-
bitbucke
t-server

The
Bitbucke
t Server
module
for
@backst
age/plu
gin-
scaffold
er-
backend.

0.1.3 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
scaffold
er-
backend
-
module-
bitbucke
t-
server-
dynamic

 Enabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

71

Datadog Fronten
d

@roadie
hq/back
stage-
plugin-
datadog

Embed
Datadog
graphs
and
dashboa
rds into
Backsta
ge.

2.2.6 Commu
nity
Support

./dynami
c-
plugins/
dist/roa
diehq-
backsta
ge-
plugin-
datadog

 Disabled

Dynatra
ce

Fronten
d

@backst
age/plu
gin-
dynatrac
e

A
Backsta
ge plugin
that
integrat
es
towards
Dynatra
ce.

9.0.0 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
dynatrac
e

 Disabled

Dynamic
Plugins

Fronten
d

@janus-
idp/back
stage-
plugin-
dynamic
-
plugins-
info

Dynamic
Plugins
Info
plugin
for
Backsta
ge.

1.0.2 Producti
on

@janus-
idp/bac
kstage-
plugin-
dynamic
-
plugins-
info

 Enabled

Gerrit Backend @backst
age/plu
gin-
scaffold
er-
backend
-
module-
gerrit

The
gerrit
module
for
@backst
age/plu
gin-
scaffold
er-
backend.

0.1.5 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
scaffold
er-
backend
-
module-
gerrit-
dynamic

 Enabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

72

Github Backend @backst
age/plu
gin-
catalog-
backend
-
module-
github

A
Backsta
ge
catalog
backend
module
that
helps
integrat
e
towards
Github

0.5.3 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
catalog-
backend
-
module-
github-
dynamic

GITHU
B_ORG

Disabled

Github Backend @backst
age/plu
gin-
catalog-
backend
-
module-
github-
org

The
github-
org
backend
module
for the
catalog
plugin.

0.1.0 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
catalog-
backend
-
module-
github-
org-
dynamic

GITHU
B_URL

GITHU
B_ORG

Disabled

Github Fronten
d

@backst
age/plu
gin-
github-
actions

A
Backsta
ge plugin
that
integrat
es
towards
GitHub
Actions

0.6.11 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
github-
actions

 Disabled

Github Fronten
d

@backst
age/plu
gin-
github-
issues

A
Backsta
ge plugin
that
integrat
es
towards
GitHub
Issues

0.2.19 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
github-
issues

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

73

Github Backend @backst
age/plu
gin-
scaffold
er-
backend
-
module-
github

The
github
module
for
@backst
age/plu
gin-
scaffold
er-
backend.

0.2.3 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
scaffold
er-
backend
-
module-
github-
dynamic

 Enabled

Github Fronten
d

@roadie
hq/back
stage-
plugin-
github-
insights

Backsta
ge plugin
to
provide
Readme
s, Top
Contribu
tors and
other
widgets.

2.3.27 Commu
nity
Support

./dynami
c-
plugins/
dist/roa
diehq-
backsta
ge-
plugin-
github-
insights

 Disabled

Github Fronten
d

@roadie
hq/back
stage-
plugin-
github-
pull-
requests

Backsta
ge plugin
to view
and
interact
with
GitHub
pull
requests
.

2.5.24 Commu
nity
Support

./dynami
c-
plugins/
dist/roa
diehq-
backsta
ge-
plugin-
github-
pull-
requests

 Disabled

Github Fronten
d

@roadie
hq/back
stage-
plugin-
security-
insights

Backsta
ge plugin
to add
security
insights
for
GitHub
repos.

2.3.15 Commu
nity
Support

./dynami
c-
plugins/
dist/roa
diehq-
backsta
ge-
plugin-
security
-insights

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

74

Gitlab Backend @backst
age/plu
gin-
catalog-
backend
-
module-
gitlab

Extracts
reposito
ries out
of an
GitLab
instance.

0.3.10 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
catalog-
backend
-
module-
gitlab-
dynamic

 Disabled

Gitlab Backend @backst
age/plu
gin-
scaffold
er-
backend
-
module-
gitlab

A
module
for the
scaffold
er
backend
that lets
you
interact
with
gitlab

0.2.16 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
scaffold
er-
backend
-
module-
gitlab-
dynamic

 Disabled

Gitlab Fronten
d

@immobi
liarelabs
/backsta
ge-
plugin-
gitlab

Backsta
ge plugin
to
interact
with
GitLab

6.4.0 Commu
nity
Support

./dynami
c-
plugins/
dist/im
mobiliar
elabs-
backsta
ge-
plugin-
gitlab

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

75

Gitlab Backend @immobi
liarelabs
/backsta
ge-
plugin-
gitlab-
backend

Backsta
ge plugin
to
interact
with
GitLab

6.4.0 Commu
nity
Support

./dynami
c-
plugins/
dist/im
mobiliar
elabs-
backsta
ge-
plugin-
gitlab-
backend
-
dynamic

GITLA
B_HOS
T

GITLA
B_TOK
EN

Disabled

Jenkins Fronten
d

@backst
age/plu
gin-
jenkins

A
Backsta
ge plugin
that
integrat
es
towards
Jenkins

0.9.5 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
jenkins

 Disabled

Jenkins Backend @backst
age/plu
gin-
jenkins-
backend

A
Backsta
ge
backend
plugin
that
integrat
es
towards
Jenkins

0.3.7 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
jenkins-
backend
-
dynamic

JENKI
NS_UR
L

JENKI
NS_US
ERNA
ME

JENKI
NS_TO
KEN

Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

76

Jfrog
Artifacto
ry

Fronten
d

@janus-
idp/back
stage-
plugin-
jfrog-
artifacto
ry

The
Jfrog
Artifacto
ry plugin
displays
informati
on about
your
containe
r images
within
the
Jfrog
Artifacto
ry
registry.

1.2.28 Red Hat
Tech
Preview

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
jfrog-
artifacto
ry

ARTIF
ACTOR
Y_URL

ARTIF
ACTOR
Y_TOK
EN

ARTIF
ACTOR
Y_SEC
URE

Disabled

Jira Fronten
d

@roadie
hq/back
stage-
plugin-
jira

Backsta
ge plugin
to view
and
interact
with Jira

2.5.4 Commu
nity
Support

./dynami
c-
plugins/
dist/roa
diehq-
backsta
ge-
plugin-
jira

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

77

Keycloak Backend @janus-
idp/back
stage-
plugin-
keycloak
-
backend

The
Keycloak
backend
plugin
integrat
es
Keycloak
into
Backsta
ge.

1.8.6 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
keycloak
-
backend
-
dynamic

KEYCL
OAK_B
ASE_U
RL

KEYCL
OAK_L
OGIN_
REALM

KEYCL
OAK_R
EALM

KEYCL
OAK_C
LIENT_
ID

KEYCL
OAK_C
LIENT_
SECRE
T

Disabled

Kuberne
tes

Fronten
d

@backst
age/plu
gin-
kubernet
es

A
Backsta
ge plugin
that
integrat
es
towards
Kuberne
tes

0.11.5 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
kuberne
tes

 Enabled

Kuberne
tes

Backend @backst
age/plu
gin-
kubernet
es-
backend

A
Backsta
ge
backend
plugin
that
integrat
es
towards
Kuberne
tes

0.15.3 Producti
on

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
kuberne
tes-
backend
-
dynamic

K8S_C
LUSTE
R_NAM
E

K8S_C
LUSTE
R_URL

K8S_C
LUSTE
R_TOK
EN

Enabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

78

Kuberne
tes

Fronten
d

@janus-
idp/back
stage-
plugin-
topology

The
Topolog
y plugin
enables
you to
visualize
the
workload
s such as
Deploym
ent, Job,
Daemon
set,
Stateful
set,
CronJob
, and
Pods
powerin
g any
service
on the
Kuberne
tes
cluster.

1.18.8 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
topolog
y

 Enabled

Lighthou
se

Fronten
d

@backst
age/plu
gin-
lighthou
se

A
Backsta
ge plugin
that
integrat
es
towards
Lighthou
se

0.4.15 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
lighthou
se

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

79

Nexus
Reposito
ry
Manager

Fronten
d

@janus-
idp/back
stage-
plugin-
nexus-
reposito
ry-
manager

The
Nexus
Reposito
ry
Manager
plugin
displays
the
informati
on about
your
build
artifacts
that are
available
in the
Nexus
Reposito
ry
Manager
in your
Backsta
ge
applicati
on.

1.4.28 Red Hat
Tech
Preview

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
nexus-
reposito
ry-
manager

 Disabled

OCM Fronten
d

@janus-
idp/back
stage-
plugin-
ocm

The
Open
Cluster
Manage
ment
(OCM)
plugin
integrat
es your
Backsta
ge
instance
with the
MultiCl
usterH
ub and
MultiCl
uster
engines
of OCM.

3.7.5 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
ocm

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

80

OCM Backend @janus-
idp/back
stage-
plugin-
ocm-
backend

 3.5.7 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
ocm-
backend
-
dynamic

OCM_
HUB_N
AME

OCM_
HUB_U
RL

moc_in
fra_tok
en

Disabled

Pagerdu
ty

Fronten
d

@pagerd
uty/back
stage-
plugin

A
Backsta
ge plugin
that
integrat
es
towards
PagerDu
ty

0.9.3 Commu
nity
Support

././dyna
mic-
plugins/
dist/pag
erduty-
backsta
ge-
plugin

 Disabled

Quay Fronten
d

@janus-
idp/back
stage-
plugin-
quay

The
Quay
plugin
displays
the
informati
on about
your
containe
r images
within
the
Quay
registry
in your
Backsta
ge
applicati
on.

1.5.10 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
quay

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

81

Quay Backend @janus-
idp/back
stage-
scaffold
er-
backend
-
module-
quay

This
module
provides
Backsta
ge
template
actions
for
Quay.

1.3.5 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
scaffold
er-
backend
-
module-
quay-
dynamic

 Enabled

RBAC Fronten
d

@janus-
idp/back
stage-
plugin-
rbac

RBAC
frontend
plugin
for
Backsta
ge.

1.15.5 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
rbac

 Disabled

Regex Backend @janus-
idp/back
stage-
scaffold
er-
backend
-
module-
regex

This
plugin
provides
Backsta
ge
template
actions
for
RegExp.

1.3.5 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
scaffold
er-
backend
-
module-
regex-
dynamic

 Enabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

82

Scaffold
er

Backend @roadie
hq/scaff
older-
backend
-
module-
utils

This
contains
a
collectio
n of
actions
to use in
scaffold
er
template
s.

1.13.6 Commu
nity
Support

./dynami
c-
plugins/
dist/roa
diehq-
scaffold
er-
backend
-
module-
utils-
dynamic

 Enabled

Service
Now

Backend @janus-
idp/back
stage-
scaffold
er-
backend
-
module-
servicen
ow

This
plugin
provides
Backsta
ge
template
actions
for
Service
Now.

1.3.5 Red Hat
Tech
Preview

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
scaffold
er-
backend
-
module-
servicen
ow-
dynamic

SERVI
CENO
W_BAS
E_URL

SERVI
CENO
W_USE
RNAM
E

SERVI
CENO
W_PAS
SWOR
D

Disabled

SonarQu
be

Fronten
d

@backst
age/plu
gin-
sonarqu
be

A
Backsta
ge plugin
to
display
SonarQu
be code
quality
and
security
results.

0.7.12 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
sonarqu
be

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

83

SonarQu
be

Backend @backst
age/plu
gin-
sonarqu
be-
backend

 0.2.15 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
sonarqu
be-
backend
-
dynamic

SONA
RQUB
E_URL

SONA
RQUB
E_TOK
EN

Disabled

SonarQu
be

Backend @janus-
idp/back
stage-
scaffold
er-
backend
-
module-
sonarqu
be

This
module
provides
Backsta
ge
template
actions
for
SonarQu
be.

1.3.5 Red Hat
Tech
Preview

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
scaffold
er-
backend
-
module-
sonarqu
be-
dynamic

 Disabled

Tech
Radar

Fronten
d

@backst
age/plu
gin-
tech-
radar

A
Backsta
ge plugin
that lets
you
display a
Tech
Radar
for your
organiza
tion

0.6.13 Commu
nity
Support

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
tech-
radar

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

84

Techdoc
s

Fronten
d

@backst
age/plu
gin-
techdoc
s

The
Backsta
ge plugin
that
renders
technical
docume
ntation
for your
compon
ents

1.10.0 Producti
on

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
techdoc
s

 Enabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

85

Techdoc
s

Backend @backst
age/plu
gin-
techdoc
s-
backend

The
Backsta
ge
backend
plugin
that
renders
technical
docume
ntation
for your
compon
ents

1.9.6 Producti
on

./dynami
c-
plugins/
dist/bac
kstage-
plugin-
techdoc
s-
backend
-
dynamic

TECHD
OCS_B
UILDE
R_TYP
E

TECHD
OCS_G
ENERA
TOR_T
YPE

TECHD
OCS_P
UBLIS
HER_T
YPE

BUCKE
T_NAM
E

BUCKE
T_REG
ION_V
AULT

BUCKE
T_URL

AWS_A
CCESS
_KEY_I
D

AWS_S
ECRET
_ACCE
SS_KE
Y

Enabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

86

Tekton Fronten
d

@janus-
idp/back
stage-
plugin-
tekton

The
Tekton
plugin
enables
you to
visualize
the
Pipeline
Run
resource
s
available
on the
Kuberne
tes
cluster.

3.5.12 Producti
on

./dynami
c-
plugins/
dist/janu
s-idp-
backsta
ge-
plugin-
tekton

 Disabled

Name Role Plugin Descript
ion

Version Support
Level

Path Require
d
Variable
s

Default

6.3. INSTALLATION OF DYNAMIC PLUGINS USING THE HELM CHART

You can deploy a Developer Hub instance using a Helm chart, which is a flexible installation method. With
the Helm chart, you can sideload dynamic plugins into your Developer Hub instance without having to
recompile your code or rebuild the container.

To install dynamic plugins in Developer Hub using Helm, add the following global.dynamic parameters
in your Helm chart:

plugins: the dynamic plugins list intended for installation. By default, the list is empty. You can
populate the plugins list with the following fields:

package: a package specification for the dynamic plugin package that you want to install.
You can use a package for either a local or an external dynamic plugin installation. For a local
installation, use a path to the local folder containing the dynamic plugin. For an external
installation, use a package specification from a public NPM repository.

integrity (required for external packages): an integrity checksum in the form of <alg>-
<digest> specific to the package. Supported algorithms include sha256, sha384 and
sha512.

pluginConfig: an optional plugin-specific app-config YAML fragment. See plugin
configuration for more information.

disabled: disables the dynamic plugin if set to true. Default: false.

includes: a list of YAML files utilizing the same syntax.

NOTE

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

87

NOTE

The plugins list in the includes file is merged with the plugins list in the main Helm
values. If a plugin package is mentioned in both plugins lists, the plugins fields in the
main Helm values override the plugins fields in the includes file. The default
configuration includes the dynamic-plugins.default.yaml file, which contains all of the
dynamic plugins preinstalled in Developer Hub, whether enabled or disabled by default.

6.3.1. Obtaining the integrity checksum

To obtain the integrity checksum, enter the following command:

npm view <package name>@<version> dist.integrity

6.3.2. Example Helm chart configurations for dynamic plugin installations

The following examples demonstrate how to configure the Helm chart for specific types of dynamic
plugin installations.

Configuring a local plugin and an external plugin when the external plugin requires a
specific app-config

Disabling a plugin from an included file

Enabling a plugin from an included file

Enabling a plugin that is disabled in an included file

global:
 dynamic:
 plugins:
 - package: <alocal package-spec used by npm pack>
 - package: <external package-spec used by npm pack>
 integrity: sha512-<some hash>
 pluginConfig: ...

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: <some imported plugins listed in dynamic-plugins.default.yaml>
 disabled: true

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: <some imported plugins listed in dynamic-plugins.custom.yaml>
 disabled: false

global:

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

88

6.3.3. Installing external dynamic plugins using a Helm chart

The NPM registry contains external dynamic plugins that you can use for demonstration purposes. For
example, the following community plugins are available in the janus-idp organization in the NPMJS
repository:

Notifications (frontend and backend)

Kubernetes actions (scaffolder actions)

To install the Notifications and Kubernetes actions plugins, include them in the Helm chart values in the
global.dynamic.plugins list as shown in the following example:

global:
 dynamic:
 plugins:
 - package: '@janus-idp/plugin-notifications-backend-dynamic@1.3.6'
 # Integrity can be found at https://registry.npmjs.org/@janus-idp/plugin-notifications-backend-
dynamic
 integrity: 'sha512-
Qd8pniy1yRx+x7LnwjzQ6k9zP+C1yex24MaCcx7dGDPT/XbTokwoSZr4baSSn8jUA6P45NUUevu1d629
mG4JGQ=='
 - package: '@janus-idp/plugin-notifications@1.1.12
'
 # https://registry.npmjs.org/@janus-idp/plugin-notifications

 integrity: 'sha512-
GCdEuHRQek3ay428C8C4wWgxjNpNwCXgIdFbUUFGCLLkBFSaOEw+XaBvWaBGtQ5BLgE3jQEUx
a+422uzSYC5oQ=='
 pluginConfig:
 dynamicPlugins:
 frontend:
 janus-idp.backstage-plugin-notifications:
 appIcons:
 - name: notificationsIcon
 module: NotificationsPlugin
 importName: NotificationsActiveIcon
 dynamicRoutes:
 - path: /notifications
 importName: NotificationsPage
 module: NotificationsPlugin
 menuItem:
 icon: notificationsIcon
 text: Notifications
 config:
 pollingIntervalMs: 5000
 - package: '@janus-idp/backstage-scaffolder-backend-module-kubernetes-dynamic@1.3.5'
 # https://registry.npmjs.org/@janus-idp/backstage-scaffolder-backend-module-kubernetes-

 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: <some imported plugins listed in dynamic-plugins.custom.yaml>
 disabled: false

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

89

dynamic
 integrity: 'sha512-
19ie+FM3QHxWYPyYzE0uNdI5K8M4vGZ0SPeeTw85XPROY1DrIY7rMm2G0XT85L0ZmntHVwc9qW
+SbHolPg/qRA=='
 proxy:
 endpoints:
 /explore-backend-completed:
 target: 'http://localhost:7017'
 - package: '@dfatwork-pkgs/search-backend-module-explore-wrapped-dynamic@0.1.3-next.1'
 # https://registry.npmjs.org/@dfatwork-pkgs/search-backend-module-explore-wrapped-dynamic
 integrity: 'sha512-
mv6LS8UOve+eumoMCVypGcd7b/L36lH2z11tGKVrt+m65VzQI4FgAJr9kNCrjUZPMyh36KVGIjYqsu9+
kgzH5A=='
 - package: '@dfatwork-pkgs/plugin-catalog-backend-module-test-dynamic@0.0.0'
 # https://registry.npmjs.org/@dfatwork-pkgs/plugin-catalog-backend-module-test-dynamic
 integrity: 'sha512-
YsrZMThxJk7cYJU9FtAcsTCx9lCChpytK254TfGb3iMAYQyVcZnr5AA/AU+hezFnXLsr6gj8PP7z/mCZie
uuDA=='

6.4. INSTALLING EXTERNAL PLUGINS IN AN AIR-GAPPED
ENVIRONMENT

You can install external plugins in an air-gapped environment by setting up a custom NPM registry. To
configure the NPM registry URL and authentication information for dynamic plugin packages, see Using
a custom NPM registry for dynamic plugin packages.

6.5. USING A CUSTOM NPM REGISTRY FOR DYNAMIC PLUGIN
PACKAGES

You can configure the NPM registry URL and authentication information for dynamic plugin packages
using a Helm chart. For dynamic plugin packages obtained through npm pack, you can use a .npmrc file.

Using the Helm chart, add the .npmrc file to the NPM registry by creating a secret named dynamic-
plugins-npmrc with the following content:

apiVersion: v1
kind: Secret
metadata:
 name: dynamic-plugins-npmrc
type: Opaque
stringData:
 .npmrc: |
 registry=<registry-url>
 //<registry-url>:_authToken=<auth-token>
 ...

6.6. BASIC CONFIGURATION OF DYNAMIC PLUGINS

Some dynamic plugins require environment variables to be set. If a mandatory environment variable is
not set, and the plugin is enabled, then the application might fail at startup.

The mandatory environment variables for each plugin are listed in the Dynamic plugins support matrix .

NOTE

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

90

NOTE

Zib-bomb detection When installing some dynamic plugin containing large files, if the
installation script considers the package archive to be a Zib-Bomb, the installation fails.

To increase the maximum permitted size of a file inside a package archive, you can
increase the MAX_ENTRY_SIZE environment value of the deployment install-dynamic-
plugins initContainer from the default size of 20000000 bytes.

6.7. INSTALLATION AND CONFIGURATION OF ANSIBLE
AUTOMATION PLATFORM

The Ansible Automation Platform (AAP) plugin synchronizes the accessible templates including job
templates and workflow job templates from AAP into your Developer Hub catalog.

IMPORTANT

The Ansible Automation Platform plugin is a Technology Preview feature only.

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend using them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

Additional detail on how Red Hat provides support for bundled community dynamic
plugins is available on the Red Hat Developer Support Policy page.

6.7.1. For administrators

6.7.1.1. Installing and configuring the AAP Backend plugin

The AAP backend plugin allows you to configure one or multiple providers using your app-config.yaml
configuration file in Developer Hub.

Prerequisites

Your Developer Hub application is installed and running.

You have created an account in Ansible Automation Platform.

Installation

The AAP backend plugin is pre-loaded in Developer Hub with basic configuration properties. To enable
it, set the disabled property to false as follows:

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

91

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/policy/developerhub-support-policy

Basic configuration

To enable the AAP plugin, you must set the following environment variables:

AAP_BASE_URL: Base URL of the service

AAP AUTH TOKEN: Authentication token for the service

Advanced configuration

1. You can use the aap marker to configure the app-config.yaml file of Developer Hub as follows:

6.7.1.2. Log lines for AAP Backend plugin troubleshoot

When you start your Developer Hub application, you can see the following log lines:

6.7.2. For users

6.7.2.1. Accessing templates from AAP in Developer Hub

When you have configured the AAP backend plugin successfully, it synchronizes the templates including
job templates and workflow job templates from AAP and displays them on the Developer Hub Catalog
page as Resources.

 plugins:
 - package: ./dynamic-plugins/dist/janus-idp-backstage-plugin-aap-backend-dynamic
 disabled: false

 catalog:
 providers:
 aap:
 dev:
 baseUrl: $(AAP_BASE_URL)
 authorization: 'Bearer ${AAP_AUTH_TOKEN}'
 owner: <owner>
 system: <system>
 schedule: # optional; same options as in TaskScheduleDefinition
 # supports cron, ISO duration, "human duration" as used in code
 frequency: { minutes: 1 }
 # supports ISO duration, "human duration" as used in code
 timeout: { minutes: 1 }

[1] 2023-02-13T15:26:09.356Z catalog info Discovered ResourceEntity API type=plugin
target=AapResourceEntityProvider:dev
[1] 2023-02-13T15:26:09.423Z catalog info Discovered ResourceEntity Red Hat Event (DEV, v1.2.0)
type=plugin target=AapResourceEntityProvider:dev
[1] 2023-02-13T15:26:09.620Z catalog info Discovered ResourceEntity Red Hat Event (TEST, v1.1.1)
type=plugin target=AapResourceEntityProvider:dev
[1] 2023-02-13T15:26:09.819Z catalog info Discovered ResourceEntity Red Hat Event (PROD,
v1.1.1) type=plugin target=AapResourceEntityProvider:dev
[1] 2023-02-13T15:26:09.819Z catalog info Applying the mutation with 3 entities type=plugin
target=AapResourceEntityProvider:dev

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

92

Prerequisites

Your Developer Hub application is installed and running.

You have installed the AAP backend plugin. For installation and configuration instructions, see
Section 6.7.1.1, “Installing and configuring the AAP Backend plugin” .

Procedure

1. Open your Developer Hub application and Go to the Catalog page.

2. Select Resource from the Kind drop-down and job template or workflow job template from
the Type drop-down on the left side of the page.

A list of all the available templates from AAP appears on the page.

3. Select a template from the list.
The OVERVIEW tab appears containing different cards, such as:

About: Provides detailed information about the template.

Relations: Displays the visual representation of the template and associated aspects.

Links: Contains links to the AAP dashboard and the details page of the template.

Has subcomponents: Displays a list of associated subcomponents.

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

93

6.8. INSTALLATION AND CONFIGURATION OF KEYCLOAK

The Keycloak backend plugin, which integrates Keycloak into Developer Hub, has the following
capabilities:

Synchronization of Keycloak users in a realm.

Synchronization of Keycloak groups and their users in a realm.

6.8.1. For administrators

6.8.1.1. Installation

The Keycloak plugin is pre-loaded in Developer Hub with basic configuration properties. To enable it,
set the disabled property to false as follows:

6.8.1.2. Basic configuration

To enable the Keycloak plugin, you must set the following environment variables:

KEYCLOAK_BASE_URL

KEYCLOAK_LOGIN_REALM

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/janus-idp-backstage-plugin-keycloak-backend-dynamic
 disabled: false

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

94

KEYCLOAK_REALM

KEYCLOAK_CLIENT_ID

KEYCLOAK_CLIENT_SECRET

6.8.1.3. Advanced configuration

Schedule configuration

You can configure a schedule in the app-config.yaml file, as follows:

NOTE

If you have made any changes to the schedule in the app-config.yaml file, then restart to
apply the changes.

Keycloak query parameters

You can override the default Keycloak query parameters in the app-config.yaml file, as follows:

Communication between Developer Hub and Keycloak is enabled by using the Keycloak API. Username
and password, or client credentials are supported authentication methods.

The following table describes the parameters that you can configure to enable the plugin under
catalog.providers.keycloakOrg.<ENVIRONMENT_NAME> object in the app-config.yaml file:

 catalog:
 providers:
 keycloakOrg:
 default:
 # ...
 # highlight-add-start
 schedule: # optional; same options as in TaskScheduleDefinition
 # supports cron, ISO duration, "human duration" as used in code
 frequency: { minutes: 1 }
 # supports ISO duration, "human duration" as used in code
 timeout: { minutes: 1 }
 initialDelay: { seconds: 15 }
 # highlight-add-end

 catalog:
 providers:
 keycloakOrg:
 default:
 # ...
 # highlight-add-start
 userQuerySize: 500 # Optional
 groupQuerySize: 250 # Optional
 # highlight-add-end

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

95

Name Description Default Value Required

baseUrl Location of the Keycloak
server, such as
https://localhost:844
3/auth. Note that the
newer versions of
Keycloak omit the /auth
context path.

"" Yes

realm Realm to synchronize master No

loginRealm Realm used to
authenticate

master No

username Username to
authenticate

"" Yes if using password
based authentication

password Password to
authenticate

"" Yes if using password
based authentication

clientId Client ID to authenticate "" Yes if using client
credentials based
authentication

clientSecret Client Secret to
authenticate

"" Yes if using client
credentials based
authentication

userQuerySize Number of users to
query at a time

100 No

groupQuerySize Number of groups to
query at a time

100 No

When using client credentials, the access type must be set to confidential and service accounts must be
enabled. You must also add the following roles from the realm-management client role:

query-groups

query-users

view-users

6.8.1.4. Limitations

If you have self-signed or corporate certificate issues, you can set the following environment variable
before starting Developer Hub:

NODE_TLS_REJECT_UNAUTHORIZED=0

NOTE

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

96

NOTE

The solution of setting the environment variable is not recommended.

6.8.2. For users

6.8.2.1. Import of users and groups in Developer Hub using the Keycloak plugin

After configuring the plugin successfully, the plugin imports the users and groups each time when
started.

NOTE

If you set up a schedule, users and groups will also be imported.

After the first import is complete, you can select User to list the users from the catalog page:

You can see the list of users on the page:

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

97

When you select a user, you can see the information imported from Keycloak:

You can also select a group, view the list, and select or view the information imported from Keycloak for
a group:

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

98

6.9. INSTALLATION AND CONFIGURATION OF NEXUS REPOSITORY
MANAGER

The Nexus Repository Manager plugin displays the information about your build artifacts in your
Developer Hub application. The build artifacts are available in the Nexus Repository Manager.

IMPORTANT

The Nexus Repository Manager plugin is a Technology Preview feature only.

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend using them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

Additional detail on how Red Hat provides support for bundled community dynamic
plugins is available on the Red Hat Developer Support Policy page.

6.9.1. For administrators

6.9.1.1. Installing and configuring the Nexus Repository Manager plugin

Installation

The Nexus Repository Manager plugin is pre-loaded in Developer Hub with basic configuration
properties. To enable it, set the disabled property to false as follows:

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

99

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/policy/developerhub-support-policy

Configuration

1. Set the proxy to the desired Nexus Repository Manager server in the app-config.yaml file as
follows:

2. Optional: Change the base URL of Nexus Repository Manager proxy as follows:

3. Optional: Enable the following experimental annotations:

4. Annotate your entity using the following annotations:

For additional information about installing and configuring dynamic plugins, see the Chapter 6, Dynamic
plugin installation section.

6.9.2. For users

6.9.2.1. Using the Nexus Repository Manager plugin in Developer Hub

The Nexus Repository Manager is a front-end plugin that enables you to view the information about

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/janus-idp-backstage-plugin-nexus-repository-manager
 disabled: false

proxy:
 '/nexus-repository-manager':
 target: 'https://<NEXUS_REPOSITORY_MANAGER_URL>'
 headers:
 X-Requested-With: 'XMLHttpRequest'
 # Uncomment the following line to access a private Nexus Repository Manager using a
token
 # Authorization: 'Bearer <YOUR TOKEN>'
 changeOrigin: true
 # Change to "false" in case of using self hosted Nexus Repository Manager instance with a
self-signed certificate
 secure: true

nexusRepositoryManager:
 # default path is `/nexus-repository-manager`
 proxyPath: /custom-path

nexusRepositoryManager:
 experimentalAnnotations: true

metadata:
 annotations:
 # insert the chosen annotations here
 # example
 nexus-repository-manager/docker.image-name: `<ORGANIZATION>/<REPOSITORY>`,

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

100

The Nexus Repository Manager is a front-end plugin that enables you to view the information about
build artifacts.

Prerequisites

Your Developer Hub application is installed and running.

You have installed the Nexus Repository Manager plugin. For the installation process, see
Section 6.9.1.1, “Installing and configuring the Nexus Repository Manager plugin” .

Procedure

1. Open your Developer Hub application and select a component from the Catalog page.

2. Go to the BUILD ARTIFACTS tab.
The BUILD ARTIFACTS tab contains a list of build artifacts and related information, such as
VERSION, REPOSITORY, REPOSITORY TYPE, MANIFEST, MODIFIED, and SIZE.

6.10. INSTALLATION AND CONFIGURATION OF TEKTON

You can use the Tekton plugin to visualize the results of CI/CD pipeline runs on your Kubernetes or
OpenShift clusters. The plugin allows users to visually see high level status of all associated tasks in the
pipeline for their applications.

6.10.1. For administrators

6.10.1.1. Installation

Prerequsites

You have installed and configured the @backstage/plugin-kubernetes and
@backstage/plugin-kubernetes-backend dynamic plugins. For more information about
installing dynamic plugins, see Chapter 6, Dynamic plugin installation .

You have configured the Kubernetes plugin to connect to the cluster using a ServiceAccount.

The ClusterRole must be granted for custom resources (PipelineRuns and TaskRuns) to the
ServiceAccount accessing the cluster.

NOTE

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

101

NOTE

If you have the RHDH Kubernetes plugin configured, then the ClusterRole is
already granted.

To view the pod logs, you have granted permissions for pods/log.

You can use the following code to grant the ClusterRole for custom resources and pod logs:

You can use the prepared manifest for a read-only ClusterRole, which provides access for both
Kubernetes plugin and Tekton plugin.

Add the following annotation to the entity’s catalog-info.yaml file to identify whether an entity
contains the Kubernetes resources:

You can also add the backstage.io/kubernetes-namespace annotation to identify the

kubernetes:
 ...
 customResources:
 - group: 'tekton.dev'
 apiVersion: 'v1'
 plural: 'pipelineruns'
 - group: 'tekton.dev'
 apiVersion: 'v1'

 ...
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: backstage-read-only
 rules:
 - apiGroups:
 - ""
 resources:
 - pods/log
 verbs:
 - get
 - list
 - watch
 ...
 - apiGroups:
 - tekton.dev
 resources:
 - pipelineruns
 - taskruns
 verbs:
 - get
 - list

annotations:
 ...

 backstage.io/kubernetes-id: <BACKSTAGE_ENTITY_NAME>

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

102

You can also add the backstage.io/kubernetes-namespace annotation to identify the
Kubernetes resources using the defined namespace.

Add the following annotation to the catalog-info.yaml file of the entity to enable the Tekton
related features in RHDH. The value of the annotation identifies the name of the RHDH entity:

Add a custom label selector, which RHDH uses to find the Kubernetes resources. The label
selector takes precedence over the ID annotations.

Add the following label to the resources so that the Kubernetes plugin gets the Kubernetes
resources from the requested entity:

NOTE

When you use the label selector, the mentioned labels must be present on the
resource.

Procedure

The Tekton plugin is pre-loaded in RHDH with basic configuration properties. To enable it, set
the disabled property to false as follows:

6.10.2. For users

annotations:
 ...

 backstage.io/kubernetes-namespace: <RESOURCE_NS>

annotations:
 ...

 janus-idp.io/tekton : <BACKSTAGE_ENTITY_NAME>

annotations:
 ...

 backstage.io/kubernetes-label-selector: 'app=my-app,component=front-end'

labels:
 ...

 backstage.io/kubernetes-id: <BACKSTAGE_ENTITY_NAME>

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/janus-idp-backstage-plugin-tekton
 disabled: false

CHAPTER 6. DYNAMIC PLUGIN INSTALLATION

103

6.10.2.1. Using the Tekton plugin in RHDH

You can use the Tekton front-end plugin to view PipelineRun resources.

Prerequisites

You have installed the Red Hat Developer Hub (RHDH).

You have installed the Tekton plugin. For the installation process, see Installing and configuring
the Tekton plugin.

Procedure

1. Open your RHDH application and select a component from the Catalog page.

2. Go to the CI tab.
The CI tab displays the list of PipelineRun resources associated with a Kubernetes cluster. The
list contains pipeline run details, such as NAME, VULNERABILITIES, STATUS, TASK STATUS,
STARTED, and DURATION.

3. Click the expand row button besides PipelineRun name in the list to view the PipelineRun
visualization. The pipeline run resource includes tasks to complete. When you hover the mouse
pointer on a task card, you can view the steps to complete that particular task.

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

104

CHAPTER 7. MANAGING TEMPLATES
A template is a form composed of different UI fields that is defined in a YAML file. Templates include
actions, which are steps that are executed in sequential order and can be executed conditionally.

You can use templates to easily create Red Hat Developer Hub components, and then publish these
components to different locations, such as the Red Hat Developer Hub software catalog, or repositories
in GitHub or GitLab.

7.1. CREATING A TEMPLATE BY USING THE TEMPLATE EDITOR

You can create a template by using the Template Editor.

Procedure

1. Access the Template Editor by using one of the following options:

Open the URL https://<rhdh_url>/create/edit for your Red Hat Developer Hub instance.

Click Create… in the navigation menu of the Red Hat Developer Hub console, then click the
overflow menu button and select Template editor.

2. Click Edit Template Form.

3. Optional: Modify the YAML definition for the parameters of your template. For more
information about these parameters, see Section 7.2, “Creating a template as a YAML file” .

4. In the Name * field, enter a unique name for your template.

5. From the Owner drop-down menu, choose an owner for the template.

6. Click Next.

7. In the Repository Location view, enter the following information about the hosted repository
that you want to publish the template to:

a. Select an available Host from the drop-down menu.

NOTE

CHAPTER 7. MANAGING TEMPLATES

105

NOTE

Available hosts are defined in the YAML parameters by the allowedHosts
field:

Example YAML

b. In the Owner * field, enter an organization, user or project that the hosted repository
belongs to.

c. In the Repository * field, enter the name of the hosted repository.

d. Click Review.

8. Review the information for accuracy, then click Create.

Verification

1. Click the Catalog tab in the navigation panel.

2. In the Kind drop-down menu, select Template.

3. Confirm that your template is shown in the list of existing templates.

7.2. CREATING A TEMPLATE AS A YAML FILE

You can create a template by defining a Template object as a YAML file.

The Template object describes the template and its metadata. It also contains required input variables
and a list of actions that are executed by the scaffolding service.

Template object example

...
 ui:options:
 allowedHosts:
 - github.com
...

apiVersion: scaffolder.backstage.io/v1beta3
kind: Template
metadata:
 name: template-name 1
 title: Example template 2
 description: An example template for v1beta3 scaffolder. 3
spec:
 owner: backstage/techdocs-core 4
 type: service 5
 parameters: 6
 - title: Fill in some steps
 required:
 - name
 properties:
 name:

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

106

1

2

3

4

5

Specify a name for the template.

Specify a title for the template. This is the title that is visible on the template tile in the Create…
view.

Specify a description for the template. This is the description that is visible on the template tile in
the Create… view.

Specify the ownership of the template. The owner field provides information about who is
responsible for maintaining or overseeing the template within the system or organization. In the
provided example, the owner field is set to backstage/techdocs-core. This means that this
template belongs to the techdocs-core project in the backstage namespace.

Specify the component type. Any string value is accepted for this required field, but your
organization should establish a proper taxonomy for these. Red Hat Developer Hub instances may
read this field and behave differently depending on its value. For example, a website type
component may present tooling in the Red Hat Developer Hub interface that is specific to just
websites.

The following values are common for this field:

service
A backend service, typically exposing an API.

website
A website.

library
A software library, such as an npm module or a Java library.

 title: Name
 type: string
 description: Unique name of the component
 owner:
 title: Owner
 type: string
 description: Owner of the component
 - title: Choose a location
 required:
 - repoUrl
 properties:
 repoUrl:
 title: Repository Location
 type: string
 steps: 7
 - id: fetch-base
 name: Fetch Base
 action: fetch:template
 # ...
 output: 8
 links:
 - title: Repository 9
 url: ${{ steps['publish'].output.remoteUrl }}
 - title: Open in catalog 10
 icon: catalog
 entityRef: ${{ steps['register'].output.entityRef }}
...

CHAPTER 7. MANAGING TEMPLATES

107

6

7

8

9

10

1

Use the parameters section to specify parameters for user input that are shown in a form view
when a user creates a component by using the template in the Red Hat Developer Hub console.

Use the steps section to specify steps that are executed in the backend. These steps must be
defined by using a unique step ID, a name, and an action. You can view actions that are available on
your Red Hat Developer Hub instance by visiting the URL https://<rhdh_url>/create/actions.

Use the output section to specify the structure of output data that is created when the template is
used. The output section, particularly the links subsection, provides valuable references and URLs
that users can utilize to access and interact with components that are created from the template.

Provides a reference or URL to the repository associated with the generated component.

Provides a reference or URL that allows users to open the generated component in a catalog or
directory where various components are listed.

Additional resources

Backstage documentation - Writing Templates

Backstage documentation - Builtin actions

Backstage documentation - Writing Custom Actions

7.3. IMPORTING AN EXISTING TEMPLATE TO RED HAT DEVELOPER
HUB

You can add an existing template to your Red Hat Developer Hub instance by using the Catalog
Processor.

Prerequisites

You have created a directory or repository that contains at least one template YAML file.

If you want to use a template that is stored in a repository such as GitHub or GitLab, you must
configure a Red Hat Developer Hub integration for your provider.

Procedure

In the app-config.yaml configuration file, modify the catalog.rules section to include a rule for
templates, and configure the catalog.locations section to point to the template that you want
to add, as shown in the following example:

To allow new templates to be added to the catalog, you must add a Template rule.

...
catalog:
 rules:
 - allow: [Template] 1
 locations:
 - type: url 2
 target: https://<repository_url>/example-template.yaml 3
...

Red Hat Developer Hub 1.1 Administration guide for Red Hat Developer Hub

108

https://backstage.io/docs/features/software-templates/writing-templates
https://backstage.io/docs/features/software-templates/builtin-actions
https://backstage.io/docs/features/software-templates/writing-custom-actions

2

3

If you are importing templates from a repository, such as GitHub or GitLab, use the url
type.

Specify the URL for the template.

Verification

1. Click the Catalog tab in the navigation panel.

2. In the Kind drop-down menu, select Template.

3. Confirm that your template is shown in the list of existing templates.

Additional resources

Configuring a GitHub App in Developer Hub

Enabling the GitLab OAuth authentication provider

CHAPTER 7. MANAGING TEMPLATES

109

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.1/html-single/getting_started_with_red_hat_developer_hub/index
https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.1/html-single/getting_started_with_red_hat_developer_hub/index

	Table of Contents
	PREFACE
	RED HAT DEVELOPER HUB SUPPORT
	CHAPTER 1. INSTALLING THE RED HAT DEVELOPER HUB OPERATOR
	CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM
	2.1. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM USING HELM CHART
	2.1.1. Installing Red Hat Developer Hub using the Helm Chart in an air-gapped environment

	2.2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM USING THE OPERATOR
	2.2.1. Configuring the Developer Hub Custom Resource
	2.2.1.1. Adding a custom application configuration file to OpenShift Container Platform

	2.2.2. Configuring dynamic plugins with the Red Hat Developer Hub Operator
	2.2.3. Installing Red Hat Developer Hub using the Operator in an air-gapped environment

	CHAPTER 3. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)
	3.1. DEPLOYING RED HAT DEVELOPER HUB IN ELASTIC KUBERNETES SERVICE (EKS) USING HELM CHART
	3.2. DEPLOYING RED HAT DEVELOPER HUB ON ELASTIC KUBERNETES SERVICE (EKS) USING THE OPERATOR
	3.2.1. Installing the Red Hat Developer Hub Operator with the OLM framework
	3.2.2. Installing the Red Hat Developer Hub Operator without the OLM framework
	3.2.3. Installing the Developer Hub instance in EKS

	3.3. MONITORING AND LOGGING WITH AMAZON WEB SERVICES (AWS) IN RED HAT DEVELOPER HUB
	3.3.1. Monitoring with Amazon Prometheus
	3.3.1.1. Configuring annotations for monitoring

	3.3.2. Logging with Amazon CloudWatch logs
	3.3.2.1. Configuring the application log level
	3.3.2.2. Retrieving logs from Amazon CloudWatch

	3.4. USING AMAZON COGNITO AS AN AUTHENTICATION PROVIDER IN RED HAT DEVELOPER HUB

	CHAPTER 4. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)
	4.1. DEPLOYING RED HAT DEVELOPER HUB ON AZURE KUBERNETES SERVICE (AKS)
	4.1.1. Deploying the Red Hat Developer Hub on Azure Kubernetes Service (AKS) using the Helm chart
	4.1.2. Deploying the Red Hat Developer Hub on Azure Kubernetes Service (AKS) using the Operator

	4.2. MONITORING AND LOGGING WITH AZURE KUBERNETES SERVICES (AKS) IN RED HAT DEVELOPER HUB
	4.2.1. Viewing logs with Azure Kubernetes Services (AKS)

	4.3. USING MICROSOFT AZURE AS AN AUTHENTICATION PROVIDER IN RED HAT DEVELOPER HUB
	4.3.1. Using Microsoft Azure as an authentication provider in Helm deployment
	4.3.2. Using Microsoft Azure as an authentication provider in Operator-backed deployment

	CHAPTER 5. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB
	5.1. PERMISSION POLICIES CONFIGURATION
	5.1.1. Configuration of permission policies administrators
	5.1.2. Configuration of permission policies defined in an external file
	5.1.2.1. Mounting policy.csv file to the Developer Hub Helm Chart

	5.1.3. Permission policies in Red Hat Developer Hub

	5.2. MANAGING ROLE-BASED ACCESS CONTROLS (RBAC) USING THE RED HAT DEVELOPER HUB WEB UI
	5.2.1. Creating a role in the Red Hat Developer Hub Web UI
	5.2.2. Editing a role in the Red Hat Developer Hub Web UI
	5.2.3. Deleting a role in the Red Hat Developer Hub Web UI

	5.3. ROLE-BASED ACCESS CONTROL (RBAC) REST API
	5.3.1. Sending requests with the RBAC REST API using a REST client or curl utility
	5.3.2. Supported RBAC REST API endpoints
	5.3.2.1. Permission policies
	5.3.2.2. Roles

	CHAPTER 6. DYNAMIC PLUGIN INSTALLATION
	6.1. VIEWING INSTALLED PLUGINS
	6.2. PREINSTALLED DYNAMIC PLUGINS
	6.2.1. Preinstalled dynamic plugin descriptions and details

	6.3. INSTALLATION OF DYNAMIC PLUGINS USING THE HELM CHART
	6.3.1. Obtaining the integrity checksum
	6.3.2. Example Helm chart configurations for dynamic plugin installations
	6.3.3. Installing external dynamic plugins using a Helm chart

	6.4. INSTALLING EXTERNAL PLUGINS IN AN AIR-GAPPED ENVIRONMENT
	6.5. USING A CUSTOM NPM REGISTRY FOR DYNAMIC PLUGIN PACKAGES
	6.6. BASIC CONFIGURATION OF DYNAMIC PLUGINS
	6.7. INSTALLATION AND CONFIGURATION OF ANSIBLE AUTOMATION PLATFORM
	6.7.1. For administrators
	6.7.1.1. Installing and configuring the AAP Backend plugin
	6.7.1.2. Log lines for AAP Backend plugin troubleshoot

	6.7.2. For users
	6.7.2.1. Accessing templates from AAP in Developer Hub

	6.8. INSTALLATION AND CONFIGURATION OF KEYCLOAK
	6.8.1. For administrators
	6.8.1.1. Installation
	6.8.1.2. Basic configuration
	6.8.1.3. Advanced configuration
	6.8.1.4. Limitations

	6.8.2. For users
	6.8.2.1. Import of users and groups in Developer Hub using the Keycloak plugin

	6.9. INSTALLATION AND CONFIGURATION OF NEXUS REPOSITORY MANAGER
	6.9.1. For administrators
	6.9.1.1. Installing and configuring the Nexus Repository Manager plugin

	6.9.2. For users
	6.9.2.1. Using the Nexus Repository Manager plugin in Developer Hub

	6.10. INSTALLATION AND CONFIGURATION OF TEKTON
	6.10.1. For administrators
	6.10.1.1. Installation

	6.10.2. For users
	6.10.2.1. Using the Tekton plugin in RHDH

	CHAPTER 7. MANAGING TEMPLATES
	7.1. CREATING A TEMPLATE BY USING THE TEMPLATE EDITOR
	7.2. CREATING A TEMPLATE AS A YAML FILE
	7.3. IMPORTING AN EXISTING TEMPLATE TO RED HAT DEVELOPER HUB

