& RedHat

Red Hat Developer Hub 1.1

Getting started with Red Hat Developer Hub

Last Updated: 2024-06-25

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document walks you through the requirements and instructions to install and configure the Red
Hat Developer Hub.

Table of Contents
PREFACE ...ttt ittt ettt e et e e e e
RED HAT DEVELOPER HUB SUPPORT uiitttit ittt et
CHAPTER 1. OVERVIEW OF RED HAT DEVELOPERHUB cuviviriniinininnnnnn,

CHAPTER 2. INSTALLING RED HAT DEVELOPERHUB t

CHAPTER 3. SUPPORTED CONFIGURATIONS FOR RED HAT DEVELOPERHUB

Table of Contents

3.1. ADDING A CUSTOM APPLICATION CONFIGURATION FILE TO RED HAT OPENSHIFT CONTAINER

PLATFORM
3.2. ADDING SOURCE CONTROL FOR CATALOG IN RED HAT DEVELOPER HUB
3.2.1. Configuring GitHub authentication
3.2.2. Configuring GitHub integration
3.2.3. Enabling GitHub discovery in Red Hat Developer Hub
3.2.4. Enabling GitHub organization member discovery in Red Hat Developer Hub

CHAPTER 4. CUSTOMIZING THE HOME PAGE IN RED HAT DEVELOPERHUB

CHAPTER 5. CUSTOMIZING THE TECH RADAR PAGE IN THE RED HAT DEVELOPER HUB

CHAPTER 6. ADDITIONAL CUSTOMIZATIONS IN RED HAT DEVELOPERHUB

CHAPTER 7. CUSTOMIZING YOUR THEME IN RED HAT DEVELOPERHUB

CHAPTER 8. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPERHUB

8.1. ENABLING SERVICENOW CUSTOM ACTIONS PLUGIN IN RED HAT DEVELOPER HUB
8.2. SUPPORTED SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB
8.2.1. ServiceNow custom actions

CHAPTER 9. GITHUB AUTHENTICATION PROVIDER i

9.1. GITHUB APP OVERVIEW

9.2. REGISTERING A GITHUB APP

9.3. CONFIGURING A GITHUB APP IN DEVELOPER HUB

9.4. ADDING THE GITHUB PROVIDER TO THE DEVELOPER HUB FRONT END

CHAPTER 10. OPENID CONNECT AUTHENTICATION PROVIDERoooiiiatt

10.1. OVERVIEW OF USING THE OIDC AUTHENTICATION PROVIDER IN DEVELOPER HUB
10.2. CONFIGURING KEYCLOAK WITH THE OIDC AUTHENTICATION PROVIDER
10.3. MIGRATING FROM OAUTH2 PROXY WITH KEYCLOAK TO OIDC IN DEVELOPER HUB

............... 33
33
33
33
34

............... 35
35
35
37

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

PREFACE

PREFACE

As a developer, you can use Red Hat Developer Hub to experience a streamlined development
environment. Red Hat Developer Hub is driven by a centralized software catalog, providing efficiency to

your microservices and infrastructure. It enables your product team to deliver quality code without any
compromises.

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

RED HAT DEVELOPER HUB SUPPORT

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal. You can use the Red Hat Customer Portal for the following purposes:

® To search or browse through the Red Hat Knowledgebase of technical support articles about
Red Hat products.

® To create asupport case for Red Hat Global Support Services (GSS). For support case
creation, select Red Hat Developer Hubas the product and select the appropriate product
version.

http://access.redhat.com
https://access.redhat.com/support/cases/#/case/new/get-support?caseCreate=true

CHAPTER 1. OVERVIEW OF RED HAT DEVELOPER HUB

CHAPTER 1. OVERVIEW OF RED HAT DEVELOPER HUB

Red Hat Developer Hub (Developer Hub) serves as an open developer platform designed for building
developer portals. Using Developer Hub, the engineering teams can access a unified platform that
streamlines the development process and provides a variety of tools and resources to build high-quality
software efficiently.

The goal of Developer Hub is to address the difficulties associated with creating and sustaining
developer portals using:

® A centralized dashboard to view all available developer tools and resources to increase
productivity

® Self-service capabilities, along with guardrails, for cloud-native application development that
complies with enterprise-class best practices

® Proper security and governance for all developers across the enterprise

The Red Hat Developer Hub simplifies decision-making by providing a developer experience that
presents a selection of internally approved tools, programming languages, and various developer
resources within a self-managed portal. This approach contributes to the acceleration of application
development and the maintenance of code quality, all while fostering innovation.

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

CHAPTER 2. INSTALLING RED HAT DEVELOPER HUB

Administrative users can configure roles, permissions, and other settings to enable other authorized

users to install Red Hat Developer Hub on multiple platforms. You can install Developer Hub with a Helm
chart or with the Red Hat Developer Hub Operator.

For more information about installing Developer Hub, see the Red Hat Developer Hub Administration
guide.

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.1/html/administration_guide_for_red_hat_developer_hub/index

CHAPTER 3. SUPPORTED CONFIGURATIONS FOR RED HAT DEVELOPER HUE

CHAPTER 3. SUPPORTED CONFIGURATIONS FOR RED HAT

DEVELOPER HUB

This section describes the configurations that are required to access the Red Hat Developer Hub,
including:

Custom applications configuration

Source control configuration for Developer Hub Catalog

3.1. ADDING A CUSTOM APPLICATION CONFIGURATION FILE TO RED
HAT OPENSHIFT CONTAINER PLATFORM

To access the Red Hat Developer Hub, you must add a custom application configuration file to
OpensShift. In OpenShift Container Platform, you can use the following content as a base template to
create a ConfigMap named app-config-rhdh:

kind: ConfigMap
apiVersion: v1
metadata:
name: app-config-rhdh
data:
app-config-rhdh.yaml: |

app:

title: Red Hat Developer Hub

Prerequisites

You have created an Red Hat OpenShift Container Platform account.

Procedure

1.

2.

3.

From the OpenShift Container Platform web console, select the ConfigMaps tab.
Click Create ConfigMap.

From Create ConfigMap page, select the YAML view option in Configure via and make the
changes to the file, if needed.

Click Create.

Go to the Helm tab.
The list of Helm Releases appears on the page.

Click the overflow menu on a Helm release and select Upgrade.

Use one of the following views to edit the Helm configuration:
® Using Form view

a. Expand Root Schema — Backstage chart schema = Backstage parameters = Extra
app configuration files to inline into command arguments.

b. Click the Add Extra app configuration files to inline into command argumentslink.

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

c. Enter the value in the following fields:
o configMapRef: app-config-rhdh
o filename: app-config-rhdh.yaml
d. Click Upgrade.
® Using YAML view

a. Set the value of the upstream.backstage.extraAppConfig.configMapRef and
upstream.backstage.extraAppConfig.filename parameters in the following manner:

... other Red Hat Developer Hub Helm Chart configurations
upstream:
backstage:
extraAppConfig:
- configMapRef: app-config-rhdh
filename: app-config-rhdh.yaml
... other Red Hat Developer Hub Helm Chart configurations

b. Click Upgrade.

3.2. ADDING SOURCE CONTROL FOR CATALOG IN RED HAT
DEVELOPER HUB

To populate the Catalog in Red Hat Developer Hub, you need to add software templates, and to add the
templates, you must enable a source control such as GitHub, GitLab, or BitBucket.

Prerequisites
® You have a GitHub account.
® You have an account on the Red Hat OpenShift cluster.

® You have installed the Developer Hub, otherwise the GitHub login fails. For more information
about installation, see Chapter 2, Installing Red Hat Developer Hub .

3.2.1. Configuring GitHub authentication

The configuration of GitHub authentication is required to enable the GitHub OAuth login in Developer
Hub.

Procedure

1. In the Red Hat OpenShift cluster, navigate to the main page of the GitHub organization where
you want to create the OAuth application.

2. Click Settings — Developer Settings - OAuth Apps — Register an application
3. Enter the application name as Developer Hub.

4. Add the following URL as the Homepage URL:
https://developer-hub-<NAMESPACE_NAME>.<OPENSHIFT_ROUTE_HOST>/

CHAPTER 3. SUPPORTED CONFIGURATIONS FOR RED HAT DEVELOPER HUE

5. Add the following URL as Authorization callback URL:
https://developer-hub-<NAMESPACE_NAME->.
<OPENSHIFT_ROUTE_HOST>/api/auth/github/handler/frame

6. Clear the Enable Device Flowcheckbox.
7. Click Register application to create your OAuth application.

8. After creating the application, click Generate a new client secretand copy the generated client
secret.

9. In OpenShift, click ConfigMaps.

10. Generate a key/value secret named 'github-secrets' using the provided environment variables
as keys, and input the values you generated for your GitHub OAuth application:

a. In Red Hat OpenShift, go to the Secrets tab and click Create.
b. Select Key/value secret
c. Enter Secret name as github-secrets.

d. Add environment variables as Key and Value and click Create.

Table 3.1. Environment variables

Key Value
GITHUB_OAUTH_CLIENT_ID Client ID from OAuth application
GITHUB_OAUTH_CLIENT_SECRET Client Secret from OAuth application

1. Modify your app-config-rhdh ConfigMap to include the GitHub authentication configuration as
follows:

kind: ConfigMap
apiVersion: v1
metadata:
name: app-config-rhdh
data:
app-config-rhdh.yaml: |
app:
title: Red Hat Developer Hub
auth:
see https://backstage.io/docs/auth/ to learn about auth providers
environment: development
providers:
github:
development:
clientld: ${GITHUB_OAUTH_CLIENT_ID}
clientSecret: ${GITHUB_OAUTH_CLIENT_SECRET}

12. Click Save.

13. Navigate to the Helm tab and select Upgrade.

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

14. Use one of the following views to edit the Helm configuration:
® Using Form view

a. Expand Root Schema — Backstage Chart Schema = Backstage Parameters =
Backstage container environment variables from existing Secrets.

b. Click the Add Backstage container environment variables from existing Secretslink.
c. Enter github-secrets as the value.
d. Click Upgrade.

® Using YAML view

a. Set the value of the upstream.backstage.extraEnvVarsSecrets parameter to github-
secrets as shown in the following example:

other Red Hat Developer Hub Helm Chart configurations
upstream:
backstage:
other Red Hat Developer Hub Helm Chart configurations
extraEnvVarsSecrets:
- github-secrets
other Red Hat Developer Hub Helm Chart configurations

b. Click Upgrade.

3.2.2. Configuring GitHub integration

The configuration of GitHub is required to enable the GitHub plugins in Developer Hub.

Procedure

1. In the Red Hat OpenShift cluster, navigate to the main page of the GitHub organization where
you want to create the OAuth application.

2. Click Settings — Developer Settings = GitHub Apps— New GitHub App.
3. Enter the application name as Developer Hub.

4. Add the following URL as the Homepage URL:
https://developer-hub-<NAMESPACE_NAME>.<OPENSHIFT_ROUTE_HOST>/

5. Add the following URL as Authorization callback URL:
https://developer-hub-<NAMESPACE_NAME->.
<OPENSHIFT_ROUTE_HOST>/api/auth/github/handler/frame

6. Deselect Webhook URL — Active.

7. Under the Where can this GitHub App be installed?section, ensure that Only on this account
is selected.

8. Click Register application.

10

1.

12.

13.

CHAPTER 3. SUPPORTED CONFIGURATIONS FOR RED HAT DEVELOPER HUE

After creating the application, click Generate a new client secretand copy the generated client
secret.

. Click Generate a private keyat the bottom of the page and download the generated file.

In OpenShift, click ConfigMaps.

Generate a key/value secret named 'github-secrets' using the provided environment variables
as keys, and input the values you generated for your GitHub OAuth application:

a. In Red Hat OpenShift, go to the Secrets tab and click Create.
b. Select Key/value secret

c. Enter Secret name as github-secrets.

d. Add environment variables as Key and Value and click Create.

Table 3.2. Environment variables

Key Value

GITHUB_APP_APP_ID App ID from GitHub application
GITHUB_APP_CLIENT_ID Client ID from GitHub application
GITHUB_APP_CLIENT_SECRET Client Secret from GitHub application
GITHUB_APP_WEBHOOK_URL Enter "none"
GITHUB_APP_WEBHOOK_SECRET Enter "none"

GITHUB_APP_PRIVATE_KEY Upload the private key that was downloaded

Modify your app-config-rhdh ConfigMap to include the GitHub integration configuration as
follows:

kind: ConfigMap
apiVersion: v1
metadata:
name: app-config-rhdh
data:
app-config-rhdh.yaml: |
app:
title: Red Hat Developer Hub
integrations:
github:
- host: github.com
apps:
- appld: ${GITHUB_APP_APP_ID}
clientld: ${GITHUB_APP_CLIENT_ID}
clientSecret: ${GITHUB_APP_CLIENT_SECRET}
webhookUrl: ${GITHUB_APP_WEBHOOK_URL}

1

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

webhookSecret: ${GITHUB_APP_WEBHOOK_SECRET}
privateKey: |
${GITHUB_APP_PRIVATE_KEY}

14. Click Toplogy — developer hub — Actions (drop-down) — Restart rollout

3.2.3. Enabling GitHub discovery in Red Hat Developer Hub

You can enable GitHub discoverability for your components in Developer Hub, such as any repositories
that contain catalog-info.yaml file.

Prerequisites

® You have set up the GitHub integration. For more information, see Section 3.2.2, “Configuring
GitHub integration”.

Procedure

1. In the Developer perspective of the OpenShift Container Platform web console, go to the
Helm tab.

2. Click the overflow menu on a Helm release and select Upgrade.
3. Use one of the following views to edit the Helm configuration:
® Using Form view

a. Expand Root Schema - global - Dynamic plugins configuration = List of dynamic
plugins that should be installed in the backstage application.

b. Click the Add List of dynamic plugins that should be installed in the backstage
application link.

c. Inthe Package specification of the dynamic plugin to install. It should be usable by
the npm pack command. field, add the following value:
./dynamic-plugins/dist/backstage-plugin-catalog-backend-module-github-dynamic

12

CHAPTER 3. SUPPORTED CONFIGURATIONS FOR RED HAT DEVELOPER HUE

Enable service authentication within Backstage instance >

Shorthand for users who do not want to specify a custom HOSTNAME. Used ONLY with the DEFAULT upstream.backstage.appConfig value
and with OCP Route enabled.

apps.ci-In-6xvy78k-76ef8.origin-ci-int-aws.dev.rhcloud.com

List of YAML files to include, each of which should contain a “plugins” array.

Package specification of the dynamic plugin to install. It should be usable by the “npm pack™ command.

./dynamic-plugins/dist/backstage-plugin-catalog-backend-module-github-dynamic

Disable the plugin.

Disable the plugin

Integrity checksum of the package. Optional for local packages. Supported algorithms include: “sha512", "sha384" and
*sha256°. Refer to https://w3c.github.io/webappsec-subresource-integrity/#integrity-metadata-description for more

information

d. Click Upgrade.

® Using YAML view

a. Set the value of the global.dynamic.plugins.package parameter to ./dynamic-
plugins/dist/backstage-plugin-catalog-backend-module-github-dynamic as shown
in the following example:

global:
dynamic:
other Red Hat Developer Hub Helm Chart configurations
plugins:
- disabled: false
package: >-
./dynamic-plugins/dist/backstage-plugin-catalog-backend-module-github-

dynamic

other Red Hat Developer Hub Helm Chart configurations

b. Click Upgrade.

4. Add the following code in the ConfigMap:

kind: ConfigMap
apiVersion: vi
metadata:
name: app-config-rhdh
data:
app-config-rhdh.yaml: |

catalog:

providers:
github:

13

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

providerld:
organization: '${GITHUB_ORGY}'
schedule:
frequency:
minutes: 30
initialDelay:
seconds: 15
timeout:
minutes: 3

In the previous code, replace ${GITHUB_ORG} with the GitHub organization from where you
want to discover the components. Also, if there is a single provider, then following code can be
added in the ConfigMap:

kind: ConfigMap
apiVersion: vi
metadata:
name: app-config-rhdh
data:
app-config-rhdh.yaml: |

catalog:
providers:
github:

organization: ${GITHUB_ORG}

schedule:
frequency: { minutes: 1}
timeout: { minutes: 1}
initialDelay: { seconds: 100 }

The providerld in the previous code is required to identify the provider when there is a list of
them.

5. Click Save.

3.2.4. Enabling GitHub organization member discovery in Red Hat Developer Hub

You can also enable GitHub discoverability for the members of your GitHub organization.

Prerequisites

® You have set up the GitHub integration. For more information, see Section 3.2.2, “Configuring
GitHub integration”.

Procedure

1. In the Developer perspective of the OpenShift Container Platform web console, go to the
Helm tab.

2. Click the overflow menu on a Helm release and select Upgrade.

3. Use one of the following views to edit the Helm configuration:

14

CHAPTER 3. SUPPORTED CONFIGURATIONS FOR RED HAT DEVELOPER HUE

e Using Form view

a. Expand Root Schema - global - Dynamic plugins configuration = List of dynamic
plugins that should be installed in the backstage application.

b. Click the Add List of dynamic plugins that should be installed in the backstage
application link.

c. Inthe Package specification of the dynamic plugin to install. It should be usable by
the npm pack command. field, add the following value:
./dynamic-plugins/dist/backstage-plugin-catalog-backend-module-github-org-
dynamic

Enable service authentication within Backstage instance >

Shorthand for users who do not want to specify a custom HOSTNAME. Used ONLY with the DEFAULT upstream.backstage.appConfig value
and with OCP Route enabled.

apps.ci-In-6xvy78k-76ef8.origin-ci-int-aws.dev.rhcloud.com

List of YAML files to include, each of which should contain a "plugins " array.

Package specification of the dynamic plugin to install. It should be usable by the “npm pack™ command.

./dynamic-plugins/dist/backstage-plugin-catalog-backend-module-github-org-dynamic

Disable the plugin.

Disable the plugin

Integrity checksum of the package. Optional for local packages. Supported algorithms include: “sha512°, "sha384" and
“sha256°". Refer to https://w3c.github.io/webappsec-subresource-integrity/#integrity-metadata-description for more
information

d. Click Upgrade.

® Using YAML view

a. Set the value of the global.dynamic.plugins.package parameter to ./dynamic-
plugins/dist/backstage-plugin-catalog-backend-module-github-org-dynamic as
shown in the following example:

global:
dynamic:
other Red Hat Developer Hub Helm Chart configurations
plugins:
- disabled: false
package: >-
./dynamic-plugins/dist/backstage-plugin-catalog-backend-module-github-org-

dynamic

other Red Hat Developer Hub Helm Chart configurations

b. Click Upgrade.

15

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

4. Add the following code in the ConfigMap:

kind: ConfigMap
apiVersion: vi
metadata:
name: app-config-rhdh
data:
app-config-rhdh.yaml: |

catalog:
providers:
githubOrg:
id: production
githubUrl: "${GITHUB_URL}"
orgs: ["${GITHUB_ORG}"]

where:

${GITHUB_URL}
Denotes a variable that you must replace with the GitHub URL.
${GITHUB_ORG}

Denotes a variable that you must replace with the GitHub organization you want to ingest
users from.

5. Click Save.

16

CHAPTER 4. CUSTOMIZING THE HOME PAGE IN RED HAT DEVELOPER HUE

CHAPTER 4. CUSTOMIZING THE HOME PAGE IN RED HAT
DEVELOPER HUB

In Red Hat Developer Hub, the Home page data is configurable, which can be passed into the app-
config.yaml file as a proxy. You can provide the Home page data using the following ways:

e Using JSON files that are hosted or GitHub or GitLab. To access the data from the JSON files,
you can add the following code in the app-config.yaml file:

proxy:
endpoints:
Other Proxies
customize developer hub instance
'/developer-hub':
target: <DOMAIN_URL> # i.e https://raw.githubusercontent.com/
pathRewrite:
'"Mapi/proxy/developer-hub': <path to json file> # i.e /janus-idp/backstage-
showcase/main/packages/app/public’homepage/data.json
changeOrigin: true
secure: true
Change to "false" in case of using self hosted cluster with a self-signed certificate
headers:
<HEADER_KEY>: <HEADER_VALUE> # optional and can be passed as needed i.e
Authorization can be passed for private GitHub repo and PRIVATE-TOKEN can be passed
for private GitLab repo

e Using a separate service that provides the Home page data in JSON format using an API.

NOTE

It is not necessary that the same service provides the Home page and Tech
Radar data.

You can use the red-hat-developer-hub-customization-provider as an example service, which
provides data for both Home page and Tech Radar. The red-hat-developer-hub-
customization-provider service provides the same data as default Developer Hub data. You
can fork the red-hat-developer-hub-customization-provider service repository from GitHub
and modify it with your own data, if required.

This section describes how you can deploy the red-hat-developer-hub-customization-provider service

onto the cluster where the Developer Hub Helm Chart is deployed.

Prerequisites
® You have installed the Red Hat Developer Hub using Helm Chart. For more information, see
Chapter 2, Installing Red Hat Developer Hub .
Procedure

1. In Red Hat OpenShift, select +Add and click Import from Git option.

2. Add the URL of your Git repository to the Git Repo URL field.
To use the red-hat-developer-hub-customization-provider service, you can add the URL of
red-hat-developer-hub-customization-provider repository.

17

https://github.com/redhat-developer/red-hat-developer-hub-customization-provider
https://github.com/redhat-developer/red-hat-developer-hub-customization-provider

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

3. In the General section, rename the value in the Name field to rhdh-customization-provider
and click Create.

4. Go to the Advanced Options and copy the value from the Target Port.
The Target Portis used to automatically generate a Kubernetes or OpenShift service to
communicate with.

5. To view the service, navigate to the OpenShift Administrator view and go to the Networking
- Service section.
You can also view the Service Resources in the Topology view.

If you follow this procedure with examples, then rhdh-customization-provider service is called
and contains the 8080 port. The provided API URL for the Home page must return the data in
JSON format as shown in the following example:

[
{

"title": "Dropdown 1",
"isExpanded": false,
"links": [
{
"iconUrl": "https://imagehost.com/image.png",
"label": "Dropdown 1 ltem 1",
"url": "https://example.com/"

b

{
"iconUrl": "https://imagehost2.org/icon.png",

"label": "Dropdown 1 ltem 2",
llurlll: nn

]
}

{
"title": "Dropdown 2",

"isExpanded": true,
"links": [
{
"iconUrl": "http://imagehost3.edu/img.jpg",
"label": "Dropdown 2 ltem 1",
"url": "http://example.com”

}
]
}
]

If the request call fails or is not configured, the Developer Hub instance falls back to the default
local data.

To access the Home page in Red Hat Developer Hub, the base URL must include the
/developer-hub proxy.

6. Add the following code to the app-config-rhdh.yaml file:

proxy:
endpoints:
Other Proxies

18

CHAPTER 4. CUSTOMIZING THE HOME PAGE IN RED HAT DEVELOPER HUE

customize developer hub instance
'/developer-hub':
target: {HOMEPAGE_DATA_URL}
changeOrigin: true
Change to "false" in case of using self-hosted cluster with a self-signed certificate
secure: true

Ensure that the API request call returns the response in JSON format.

. Define the HOMEPAGE_DATA_URL as http://<SERVICE_NAME>:8080. For example,
“http://rhdh-customization-provider:8080.

You can replace the HOMEPAGE_DATA_URL by adding the URL to rhdh-secrets or directly
replacing it in your custom ConfigMap.

. Delete the Developer Hub Pod to pull in the changes.
If the images or icons do not load, then whitelist them by adding your image or icon host URLs
to the content security policy’s (csp) img-src in your custom ConfigMap as follows:

kind: ConfigMap
apiVersion: v1
metadata:
name: app-config-rhdh
data:
app-config-rhdh.yaml: |
app:
title: Red Hat Developer Hub
backend:
csp:
connect-src:
- "self"
- 'http:’
- 'https:'
img-src:
- "self"
- 'data:’
- <image host url 1>
- <image host url 2>
- <image host url 3>
Other Configurations

After that, delete the pod to ensure that the new configurations are loaded correctly.

19

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

CHAPTER 5. CUSTOMIZING THE TECH RADAR PAGE IN THE
RED HAT DEVELOPER HUB

In Red Hat Developer Hub, the Tech Radar page is not enabled using the dynamic plugin feature in the
Helm Chart.

Similar to Home page customization, the base Tech Radar URL must include the /developer-hub/tech-
radar proxy. You can provide the Tech Radar page data using the following ways:

® Using JSON files that are hosted or GitHub or GitLab. To access the data from the JSON files,
you can add the following code in the app-config.yaml file:

proxy:
endpoints:
Other Proxies
customize developer hub instance
'/developer-hub':
target: <DOMAIN_URL> # i.e https://raw.githubusercontent.com/
pathRewrite:
'"Napi/proxy/developer-hub/tech-radar': <path to json file> # i.e /janus-idp/backstage-
showcase/main/packages/app/public/tech-radar/data-default.json
'"Mapi/proxy/developer-hub': <path to json file> # i.e /janus-idp/backstage-
showcase/main/packages/app/public’homepage/data.json
changeOrigin: true
secure: true

Change to "false" in case of using self hosted cluster with a self-signed certificate
headers:
<HEADER_KEY>: <HEADER_VALUE> # optional and can be passed as needed i.e
Authorization can be passed for private GitHub repo and PRIVATE-TOKEN can be passed
for private GitLab repo

NOTE

As overlapping exist between the pathRewrites that are used for the tech-radar
and homepage quick access proxies, the configuration for the tech-radar
(Mapi/proxy/developer-hub/tech-radar) must exist before the configuration for

the homepage (*/api/proxy/developer-hub).

For more information about customizing the Home page in Red Hat Developer
Hub, see Chapter 4, Customizing the Home page in Red Hat Developer Hub .

® Using a separate service that provides the Tech Radar data in JSON format using an API.

Prerequisites

® You have installed the Red Hat Developer Hub using Helm Chart. For more information, see
Chapter 2, Installing Red Hat Developer Hub .

Procedure

1. Add the following code to the app-config-rhdh.yaml file:
I proxy:

20

CHAPTER 5. CUSTOMIZING THE TECH RADAR PAGE IN THE RED HAT DEVELOPER HUE

endpoints:
Other Proxies
'/developer-hub/tech-radar':
target: {TECHRADAR_DATA_URL}
changeOrigin: true
Change to "false" in case of using self hosted cluster with a self-signed certificate
secure: true

Ensure that the API request call returns the response in JSON format.

2. Define the TECHRADAR_DATA_URL' as http://<SERVICE_NAME>/tech-radar, for example
http:/rhdh-customization-provider/tech-radar.

NOTE

You can define the TECHRADAR_DATA_URL either by adding it to rhdh-
secrets or directly replacing it with its value in your custom ConfigMap.

3. Delete the Developer Hub Pod to pullin the changes.

21

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

CHAPTER 6. ADDITIONAL CUSTOMIZATIONS IN RED HAT
DEVELOPER HUB

This section describes additional customization options that you can apply to the Red Hat Developer
Hub.

Customizing tab tooltip

To customize the tab tooltip, add the following content to your app-config-rhdh.yaml file:

app:
title: My custom developer hub

Customizing branding of your Developer Hub instance

To customize the branding of your Developer Hub instance, add the following content to your app-
config-rhdh.yaml file:

app:
branding:
fullLogo: ${BASE64 _EMBEDDED_FULL_LOGO}
iconLogo: ${BASE64 _EMBEDDED_ICON_LOGO}
theme:
light:
primaryColor: ${PRIMARY_LIGHT_COLOR}
headerColor1: ${HEADER_LIGHT_COLOR_1}
headerColor2: ${HEADER_LIGHT_COLOR_2}
navigationlndicatorColor: ${NAV_INDICATOR_LIGHT_COLOR}
dark:
primaryColor: ${PRIMARY_DARK_COLOR}
headerColor1: ${HEADER_DARK_COLOR_1}
headerColor2: ${HEADER_DARK_COLOR_2}
navigationIndicatorColor: ${NAV_INDICATOR_DARK_COLOR}

In the previous configuration,

e fullLogo is the logo on the expanded (pinned) sidebar and expects a base64 encoded
image.

® jconLogois the logo on the collapsed (unpinned) sidebar and expects a base64 encoded
image.

e primaryColor is the color of links and most buttons to the inputted color. The supported
formats for primaryColor include:

o #nnn

© #nnnnnn
o rgb()

° rgba()
o hsl()

o hsla()

22

(o}

CHAPTER 6. ADDITIONAL CUSTOMIZATIONS IN RED HAT DEVELOPER HUB

color()

e headerColor1 (left-side of the banner) and headerColor2 (right-side of the banner)
changes the color of the header banner of each page, as well as the banner for template
cards. The supported formats for headerColor1 and headerColor2 include:

(o}

(o}

(o}

(o}

#nnn
#nnnnnn
rgb()
rgba()
hsl()
hsla()

color()

e navigationindicatorColor changes the color of the indicator in the sidebar that indicates
which tab you are on. The supported formats for navigationindicatorColor include:

(o}

#nnn
#nnnnnn
rgb()
rgba()
hsl()
hsla()

color()

23

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

CHAPTER 7. CUSTOMIZING YOUR THEME IN RED HAT
DEVELOPER HUB

You can customize your Red Hat Developer Hub (Developer Hub) theme mode.
RHDH supports the following theme modes:

e |ight theme (default)

® Dark theme

® Auto

Prerequisites

® You are logged in to the RHDH web console.

Procedure

1. Click Settings.

2. From the Appearance panel, click LIGHT THEME, DARK THEME, or AUTO to change the
theme mode.

Appearance
Theme . e e | o) —
H @ F AUTO
Change the theme mode o) “
Pin Sidebar .
Prevent the sidebar from collapsing

24

CHAPTER 8. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUE

CHAPTER 8. SERVICENOW CUSTOM ACTIONS IN RED HAT
DEVELOPER HUB

IMPORTANT

These features are for Technology Preview only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend using them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

In Red Hat Developer Hub, you can access ServiceNow custom actions (custom actions) for fetching
and registering resources in the catalog.

The custom actions in Developer Hub enable you to facilitate and automate the management of
records. Using the custom actions, you can perform the following actions:

® Create, update, or delete a record

® Retrieve information about a single record or multiple records

8.1. ENABLING SERVICENOW CUSTOM ACTIONS PLUGIN IN RED HAT
DEVELOPER HUB

In Red Hat Developer Hub, the ServiceNow custom actions are provided as a pre-loaded plugin, which is
disabled by default. You can enable the custom actions plugin using the following procedure.

Prerequisites

® Red Hat Developer Hub is installed and running. For more information about installing the
Developer Hub, see Chapter 2, Installing Red Hat Developer Hub .

® You have created a project in the Developer Hub.

Procedure

1. To activate the custom actions plugin, add a package with plugin name and update the
disabled field in your Helm Chart as follows:

global:
dynamic:
includes:
- dynamic-plugins.default.yaml
plugins:
- package: ./dynamic-plugins/dist/janus-idp-backstage-scaffolder-backend-module-
servicenow-dynamic
disabled: false

25

https://access.redhat.com/support/offerings/techpreview/

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

NOTE

The default configuration for a plugin is extracted from the dynamic-
plugins.default.yaml file, however, you can use a pluginConfig entry to override
the default configuration.

2. Set the following variables in the Helm Chart to access the custom actions:

servicenow:
The base url of the ServiceNow instance.
baseUrl: ${SERVICENOW_BASE_URL}
The username to use for authentication.
username: ${SERVICENOW_USERNAME}
The password to use for authentication.
password: ${SERVICENOW_PASSWORD}

8.2. SUPPORTED SERVICENOW CUSTOM ACTIONS IN RED HAT
DEVELOPER HUB

The ServiceNow custom actions enable you to manage records in the Red Hat Developer Hub. The
custom actions support the following HTTP methods for APl requests:

GET: Retrieves specified information from a specified resource endpoint
POST: Creates or updates a resource

PUT: Modify a resource

PATCH: Updates a resource

DELETE: Deletes a resource

8.2.1. ServiceNow custom actions

[GET] servicenow:now:table:retrieveRecord

Retrieves information of a specified record from a table in the Developer Hub.

Table 8.1. Input parameters

Requiremen Description

t
tableName string Required Name of the table to retrieve the record from
sysid string Required Unique identifier of the record to retrieve
sysparmDi enum("true", Optional Returns field display values such as true,
splayValue "false", "all") actual values as false, or both. The default
value is false.

26

CHAPTER 8. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUE

Requiremen Description

t
sysparmE boolean Optional Set as true to exclude Table API links for
xcludeRef reference fields. The default value is false.
erencelin
k
sysparmFi string[] Optional Array of fields to return in the response
elds
sysparmVi string Optional Renders the response according to the
ew specified Ul view. You can override this

parameter using sysparm_fields.

sysparmQ boolean Optional Set as true to access data across domains if
ueryNoDo authorized. The default value is false.
main

Table 8.2. Output parameters

Name Type Description
result Record<PropertyKey, The response body of the request
unknown>

[GET] servicenow:now:table:retrieveRecords

Retrieves information about multiple records from a table in the Developer Hub.

Table 8.3. Input parameters

Requiremen Description

t
tableName string Required Name of the table to retrieve the records
from
sysparam string Optional Encoded query string used to filter the results
Query
sysparmDi enum("true", Optional Returns field display values such as true,
splayValue "false", "all") actual values as false, or both. The default
value is false.
sysparmE boolean Optional Set as true to exclude Table API links for
xcludeRef reference fields. The default value is false.
erencelin
k

27

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

Requiremen Description

t
sysparmS boolean Optional Set as true to suppress pagination header.
uppressPa The default value is false.
ginationHe
ader
sysparmFi string[] Optional Array of fields to return in the response
elds
sysparmLi int Optional Maximum number of results returned per
mit page. The default value is 10,000.
sysparmVi string Optional Renders the response according to the
ew specified Ul view. You can override this

parameter using sysparm_fields.

sysparmQ string Optional Name of the query category to use for
ueryCateg queries

ory

sysparmQ boolean Optional Set as true to access data across domains if
ueryNoDo authorized. The default value is false.

main

sysparmN boolean Optional Does not execute a select count(*) on the
oCount table. The default value is false.

Table 8.4. Output parameters

Name Type Description
result Record<PropertyKey, The response body of the request
unknown>

[POST] servicenow:now:table:createRecord

Creates arecord in a table in the Developer Hub.

Table 8.5. Input parameters

Requiremen Description

t

tableName string Required Name of the table to save the recordin

28

CHAPTER 8. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUE

Requiremen Description

t
requestBo Record<PropertyKe Optional Field name and associated value for each
dy y, unknown> parameter to define in the specified record
sysparmDi enum("true", Optional Returns field display values such as true,
splayValue "false", "all") actual values as false, or both. The default

value is false.

sysparmE boolean Optional Set as true to exclude Table API links for
xcludeRef reference fields. The default value is false.
erencelLin
k
sysparmFi string[] Optional Array of fields to return in the response
elds
sysparmin boolean Optional Set field values using their display value such
putDisplay as true or actual value asfalse. The default
Value value is false.
sysparmS boolean Optional Set as true to suppress auto-generation of
uppressAu system fields. The default value is false.
toSysField
sysparmVi string Optional Renders the response according to the
ew specified Ul view. You can override this

parameter using sysparm_fields.

Table 8.6. Output parameters

Name Type Description
result Record<PropertyKey, The response body of the request
unknown>

[PUT] servicenow:now:table:modifyRecord

Modifies a record in a table in the Developer Hub.

Table 8.7. Input parameters

Requiremen Description

t
tableName string Required Name of the table to modify the record from
sysid string Required Unique identifier of the record to modify

29

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

Requiremen Description

t
requestBo Record<PropertyKe Optional Field name and associated value for each
dy y, unknown> parameter to define in the specified record
sysparmDi enum("true", Optional Returns field display values such as true,
splayValue "false", "all") actual values as false, or both. The default

value is false.

sysparmE boolean Optional Set as true to exclude Table API links for
xcludeRef reference fields. The default value is false.
erencelLin
k
sysparmFi string[] Optional Array of fields to return in the response
elds
sysparmin boolean Optional Set field values using their display value such
putDisplay as true or actual value asfalse. The default
Value value is false.
sysparmS boolean Optional Set as true to suppress auto-generation of
uppressAu system fields. The default value is false.
toSysField
sysparmVi string Optional Renders the response according to the
ew specified Ul view. You can override this

parameter using sysparm_fields.

sysparmQ boolean Optional Set as true to access data across domains if
ueryNoDo authorized. The default value is false.
main

Table 8.8. Output parameters

Name Type Description
result Record<PropertyKey, The response body of the request
unknown>

[PATCH] servicenow:now:table:updateRecord

Updates a record in a table in the Developer Hub.

Table 8.9. Input parameters

30

CHAPTER 8. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUE

Requiremen Description

t
tableName string Required Name of the table to update the record in
sysid string Required Unique identifier of the record to update
requestBo Record<PropertyKe Optional Field name and associated value for each
dy y, unknown> parameter to define in the specified record
sysparmDi enum("true", Optional Returns field display values such as true,
splayValue "false", "all") actual values as false, or both. The default

value is false.

sysparmE boolean Optional Set as true to exclude Table API links for
xcludeRef reference fields. The default value is false.
erencelin
k
sysparmFi string[] Optional Array of fields to return in the response
elds
sysparmin boolean Optional Set field values using their display value such
putDisplay as true or actual value asfalse. The default
Value value is false.
sysparmS boolean Optional Set as true to suppress auto-generation of
uppressAu system fields. The default value is false.
toSysField
sysparmVi string Optional Renders the response according to the
ew specified Ul view. You can override this

parameter using sysparm_fields.

sysparmQ boolean Optional Set as true to access data across domains if
ueryNoDo authorized. The default value is false.
main

Table 8.10. Output parameters

Name Type Description
result Record<PropertyKey, The response body of the request
unknown>

[DELETE] servicenow:now:table:deleteRecord

Deletes a record from a table in the Developer Hub.

Table 8.11. Input parameters

31

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

32

tableName string

sysld string

sysparmQ boolean
ueryNoDo
main

Requiremen Description

t

Required Name of the table to delete the record from
Required Unique identifier of the record to delete
Optional Set as true to access data across domains if

authorized. The default value is false.

CHAPTER 9. GITHUB AUTHENTICATION PROVIDER

CHAPTER 9. GITHUB AUTHENTICATION PROVIDER

Red Hat Developer Hub uses a built-in GitHub authentication provider to authenticate users in GitHub
or GitHub Enterprise.

9.1. GITHUB APP OVERVIEW
GitHub Apps are generally preferred to OAuth apps because they use fine-grained permissions, give

more control over which repositories the application can access, and use short-lived tokens. For more
information, see GitHub Apps overview in the GitHub documentation.

9.2. REGISTERING A GITHUB APP

In a GitHub App, you configure the allowed scopes as part of that application, therefore, you must verify
the scope that your plugins require. The scope information is available in the plugin README files.

To add GitHub authentication, complete the steps in Registering a GitHub App on the GitHub website.

Use the following examples to enter the information about your production environment into the
required fields on the Register new GitHub App page:

® Application name: Red Hat Developer Hub

e Homepage URL: https://developer-hub-<NAMESPACE_NAME>.
<KUBERNETES_ROUTE_HOST>

® Authorization callback URL: https://developer-hub-<NAMESPACE_NAME->.
<KUBERNETES_ROUTE_HOST>/api/auth/github/handler/frame

NOTE

The Homepage URL points to the Developer Hub front end, while the authorization
callback URL points to the authentication provider backend.

.'-’-)

9.3. CONFIGURING A GITHUB APP IN DEVELOPER HUB

To add GitHub authentication for Developer Hub, you must configure the GitHub App in your app-
config.yaml file.

The GitHub authentication provider uses the following configuration keys:
e clientld: the client ID that you generated on GitHub. For example: b59241722e3c3b4816e2
e clientSecret: the client secret tied to the generated client ID.
e enterpriselnstanceUrl (optional): the base URL for a GitHub Enterprise instance. For example:
https://ghe.<company>.com. The enterpriselnstanceUrl is only needed for GitHub

Enterprise.

e callbackUrl (optional): the callback URL that GitHub uses when initiating an OAuth flow. For
example: https://your-intermediate-service.com/handler. The callbackUrl is only needed if
Developer Hub is not the immediate receiver, such as in cases when you use one OAuth app for
many Developer Hub instances.

33

https://docs.github.com/en/apps/overview
https://docs.github.com/en/apps/creating-github-apps/registering-a-github-app/registering-a-github-app

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

To configure the GitHub App, add the provider configuration to your app-config.yaml file under the
root auth configuration. For example:

auth:

environment: production

providers:

github:
production:

clientld: ${GITHUB_APP_CLIENT_ID}
clientSecret: ${GITHUB_APP_CLIENT_SECRET}
uncomment if using GitHub Enterprise
enterpriselnstanceUrl: ${GITHUB_URL}

9.4. ADDING THE GITHUB PROVIDER TO THE DEVELOPER HUB
FRONT END

To add the provider to the front end, add the sign in configuration to your app-config.yaml file. For
example:

I signinPage: github

Additional resources

e Forinformation about authenticating Backstage access with GitHub, see GitHub Authentication
Provider in the community documentation.

e Forinformation about adding the provider to the Backstage front end, see Enabling
authentication in Showcase in the community documentation.

34

https://backstage.io/docs/integrations/github/github-apps/
https://github.com/janus-idp/backstage-showcase/blob/main/showcase-docs/getting-started.md

CHAPTER 10. OPENID CONNECT AUTHENTICATION PROVIDER

CHAPTER 10. OPENID CONNECT AUTHENTICATION
PROVIDER

Red Hat Developer Hub uses the OpenlID Connect (OIDC) authentication provider to authenticate with
third-party services that support the OIDC protocol.

10.1. OVERVIEW OF USING THE OIDC AUTHENTICATION PROVIDER IN
DEVELOPER HUB

You can configure the OIDC authentication provider in Developer Hub by updating your app-
config.yaml file under the root auth configuration. For example:

auth:
environment: production
Providing an auth.session.secret will enable session support in the auth-backend
session:
secret: ${SESSION_SECRET}
providers:
oidc:
production:
metadataUrl: ${AUTH_OIDC_METADATA_URL}
clientld: ${AUTH_OIDC_CLIENT_ID}
clientSecret: ${AUTH_OIDC_CLIENT_SECRET}
prompt: ${AUTH_OIDC_PROMPT} # Recommended to use auto
Uncomment for additional configuration options
callbackUrl: ${AUTH_OIDC_CALLBACK_URL}
tokenEndpointAuthMethod: ${AUTH_OIDC_TOKEN_ENDPOINT_METHOD}
tokenSignedResponseAlg: ${AUTH_OIDC_SIGNED RESPONSE_ALG}
scope: ${AUTH_OIDC _SCOPE}

signinPage: oidc

10.2. CONFIGURING KEYCLOAK WITH THE OIDC AUTHENTICATION
PROVIDER

Red Hat Developer Hub includes an OIDC authentication provider that can authenticate users by using
Keycloak.

IMPORTANT
The user that you create in Keycloak must also be available in the Developer Hub catalog.

Procedure

1. In Keycloak, create a new realm, for example RHDH.

2. Add a new user.

Username
Username for the user, for example: rhdhuser

Email

35

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

Email address of the user.
First name

First name of the user.
Last name

Last name of the user.
Email verified

Toggle to On.
3. Click Create.
4. Navigate to the Credentials tab.
5. Click Set password.
6. Enter the Password for the user account and toggle Temporary to Off.

7. Create a new Client ID, for example, RHDH.

Client authentication
Toggle to On.
Valid redirect URIs

Set to the OIDC handler URL, for example,
https://<RHDH_URL>/api/auth/oidc/handler/frame.

8. Navigate to the Credentials tab and copy the Client secret.
9. Save the Client ID and the Client Secret for the next step.

10. In Developer Hub, add your Keycloak credentials in your Developer Hub secrets.

a. Edit your Developer Hub secrets, such as secrets-rhdh.

b. Add the following key/value pairs:

AUTH_KEYCLOAK_CLIENT_ID

Enter the Client ID that you generated in Keycloak, such as RHDH.
AUTH_KEYCLOAK_CLIENT_SECRET

Enter the Client Secret that you generated in Keycloak.

1. Set up the OIDC authentication provider in your Developer Hub custom configuration.
a. Edit your custom Developer Hub ConfigMap, such as app-config-rhdh.

b. In the app-config-rhdh.yaml content, add the oidc provider configuration under the root
auth configuration, and enable the oidc provider for sign-in:

app-config-rhdh.yaml fragment

auth:
environment: production
providers:
oidc:
production:

36

https:/api/auth/oidc/handler/frame

CHAPTER 10. OPENID CONNECT AUTHENTICATION PROVIDER

clientld: ${AUTH_KEYCLOAK_CLIENT_ID}

clientSecret: ${AUTH_KEYCLOAK_CLIENT_SECRET}

metadataUrl: ${KEYCLOAK_BASE_URL}/auth/realms/${KEYCLOAK_REALM}
prompt: ${KEYCLOAK_PROMPT} # recommended to use auto

Uncomment for additional configuration options

#callbackUrl: ${KEYCLOAK_CALLBACK _URL}

#tokenEndpointAuthMethod: ${KEYCLOAK_TOKEN_ENDPOINT_METHOD}
#tokenSignedResponseAlg: ${KEYCLOAK_SIGNED _RESPONSE_ALG}
#scope: ${KEYCLOAK _SCOPE}

signinPage: oidc

Verification

1. Restart your backstage-developer-hub application to apply the changes.

2. Your Developer Hub sign-in page displays Sign in using OIDC.

10.3. MIGRATING FROM OAUTH2 PROXY WITH KEYCLOAK TO OIDC IN
DEVELOPER HUB

If you are using OAuth2 Proxy as an authentication provider with Keycloak, and you want to migrate to
OIDC, you can update your authentication provider configuration to use OIDC.

Procedure

1. In Keycloak, update the valid redirect URI to https://<rhdh_url>/api/auth/oidc/handler/frame.
Make sure to replace <rhdh_url> with your Developer Hub application URL, such as,
my.rhdh.example.com.

2. Replace the oauth2Proxy configuration values in the auth section of your app-config.yaml file
with the oidec configuration values.

3. Update the signinPage configuration value from oauth2Proxy to oidc.
The following example shows the auth.providers and signinPage configuration for
oauth2Proxy prior to migrating the authentication provider to oidc:

auth:
environment: production
session:
secret: ${SESSION_SECRET}
providers:
oauth2Proxy: {}

signinPage: oauth2Proxy

The following example shows the auth.providers and signinPage configuration after migrating
the authentication provider to oidc:

auth:
environment: production
session:
secret: ${SESSION_SECRET}
providers:

37

https:/api/auth/oidc/handler/frame

Red Hat Developer Hub 1.1 Getting started with Red Hat Developer Hub

oidc:
production:
metadataUrl: ${KEYCLOAK_METADATA_URL}
clientld: ${KEYCLOAK_CLIENT_ID}
clientSecret: ${KEYCLOAK_CLIENT_SECRET}
prompt: ${KEYCLOAK_PROMPT} # recommended to use auto

signinPage: oidc

4. Remove the OAuth2 Proxy sidecar container and update the upstream.service section of your
Helm chart’s values.yaml file as follows:

® service.ports.backend: 7007

® service.ports.targetPort: backend
The following example shows the service configuration for oauth2Proxy prior to migrating
the authentication provider to oidc:

service:
ports:
name: http-backend
backend: 4180
targetPort: oauth2Proxy

The following example shows the service configuration after migrating the authentication
provider to oidc:

service:
ports:
name: http-backend
backend: 7007
targetPort: backend

5. Upgrade the Developer Hub Helm chart.

38

	Table of Contents
	PREFACE
	RED HAT DEVELOPER HUB SUPPORT
	CHAPTER 1. OVERVIEW OF RED HAT DEVELOPER HUB
	CHAPTER 2. INSTALLING RED HAT DEVELOPER HUB
	CHAPTER 3. SUPPORTED CONFIGURATIONS FOR RED HAT DEVELOPER HUB
	3.1. ADDING A CUSTOM APPLICATION CONFIGURATION FILE TO RED HAT OPENSHIFT CONTAINER PLATFORM
	3.2. ADDING SOURCE CONTROL FOR CATALOG IN RED HAT DEVELOPER HUB
	3.2.1. Configuring GitHub authentication
	3.2.2. Configuring GitHub integration
	3.2.3. Enabling GitHub discovery in Red Hat Developer Hub
	3.2.4. Enabling GitHub organization member discovery in Red Hat Developer Hub

	CHAPTER 4. CUSTOMIZING THE HOME PAGE IN RED HAT DEVELOPER HUB
	CHAPTER 5. CUSTOMIZING THE TECH RADAR PAGE IN THE RED HAT DEVELOPER HUB
	CHAPTER 6. ADDITIONAL CUSTOMIZATIONS IN RED HAT DEVELOPER HUB
	CHAPTER 7. CUSTOMIZING YOUR THEME IN RED HAT DEVELOPER HUB
	CHAPTER 8. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB
	8.1. ENABLING SERVICENOW CUSTOM ACTIONS PLUGIN IN RED HAT DEVELOPER HUB
	8.2. SUPPORTED SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB
	8.2.1. ServiceNow custom actions

	CHAPTER 9. GITHUB AUTHENTICATION PROVIDER
	9.1. GITHUB APP​ OVERVIEW
	9.2. REGISTERING A GITHUB​ APP
	9.3. CONFIGURING A GITHUB APP IN DEVELOPER HUB
	9.4. ADDING THE GITHUB PROVIDER TO THE DEVELOPER HUB FRONT END​

	CHAPTER 10. OPENID CONNECT AUTHENTICATION PROVIDER
	10.1. OVERVIEW OF USING THE OIDC AUTHENTICATION PROVIDER IN DEVELOPER HUB
	10.2. CONFIGURING KEYCLOAK WITH THE OIDC AUTHENTICATION PROVIDER
	10.3. MIGRATING FROM OAUTH2 PROXY WITH KEYCLOAK TO OIDC IN DEVELOPER HUB

