& RedHat

Red Hat Developer Hub 1.2

Administration guide for Red Hat Developer
Hub

Last Updated: 2024-07-02

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer
Hub

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Developer Hub is an enterprise-grade platform for building developer portals. As an
administrative user, you can manage roles and permissions of other users and configure Developer
Hub to meet the specific needs of your organization.

Table of Contents

Table of Contents

[3 2 Y o P 4
RED HAT DEVELOPER HUB SUP P O R T ..ttt iiiteee i iittneeeeeeenneeeeenanneseeeennnaneennns 5
CHAPTER 1. INSTALLING THE RED HAT DEVELOPERHUB OPERATOR ... ittt iiiieee e 6
CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM 8

2.1. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM USING HELM CHART
8
2.1.1. Installing Red Hat Developer Hub on Red Hat OpenShift Container Platform with Helm CLI 10
2.1.2. Adding a custom application configuration file to OpenShift Container Platform using the Helm chart 1
2.1.3. Installing Red Hat Developer Hub using the Helm Chart in an air-gapped environment 12

2.2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM USING THE

OPERATOR 14
2.2.1. Adding a custom application configuration file to OpenShift Container Platform using the Operator 15
2.2.2. Configuring dynamic plugins with the Red Hat Developer Hub Operator 18
2.2.3. Installing Red Hat Developer Hub using the Operator in an air-gapped environment 20
CHAPTER 3. CONFIGURING EXTERNAL POSTGRESQL DATABASESottt iiiiieeeeennnn, 23
3.1. CONFIGURING AN EXTERNAL POSTGRESQL INSTANCE USING THE OPERATOR 23
3.2. CONFIGURING AN EXTERNAL POSTGRESQL INSTANCE USING THE HELM CHART 25

3.3. MIGRATING LOCAL DATABASES TO AN EXTERNAL DATABASE SERVER USING THE OPERATOR 29

CHAPTER 4. ENABLING AUTHENTICATION IN RED HAT DEVELOPERHUB, 32
4.1. ENABLING THE MICROSOFT AZURE AUTHENTICATION PROVIDER 32
4.2. ENABLING THE GITLAB OAUTH AUTHENTICATION PROVIDER 34

CHAPTERS. TELEMETRY DATA COLLECTION .. i i et 37
5.1. DISABLING TELEMETRY DATA COLLECTION IN RHDH 37
5.2. ENABLING TELEMETRY DATA COLLECTION IN RHDH 38
5.3. CUSTOMIZING TELEMETRY SEGMENT SOURCE 39

CHAPTER 6. ENABLING OBSERVABILITY FOR RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER

o I I @]] A 41
6.1. ENABLING METRICS MONITORING IN A HELM CHART INSTALLATION ON AN OPENSHIFT CONTAINER
PLATFORM CLUSTER 41
6.2. ENABLING METRICS MONITORING IN A RED HAT DEVELOPER HUB OPERATOR INSTALLATION ON AN
OPENSHIFT CONTAINER PLATFORM CLUSTER 42
6.3. ADDITIONAL RESOURCES 43

CHAPTER 7. RUNNING THE RHDH APPLICATION BEHIND A CORPORATE PROXYccciviivien... 44
7.1. CONFIGURING PROXY INFORMATION IN HELM DEPLOYMENT 44
7.2. CONFIGURING PROXY INFORMATION IN OPERATOR DEPLOYMENT 45

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS) 47
8.1. DEPLOYING RED HAT DEVELOPER HUB ON ELASTIC KUBERNETES SERVICE (EKS) USING HELM CHART

47

8.2. DEPLOYING RED HAT DEVELOPER HUB ON ELASTIC KUBERNETES SERVICE (EKS) USING THE
OPERATOR 50
8.2.1. Installing the Red Hat Developer Hub Operator with the OLM framework 50
8.2.2. Installing the Red Hat Developer Hub Operator without the OLM framework 53
8.2.3. Installing the Developer Hub instance in EKS 55
8.3. MONITORING AND LOGGING WITH AMAZON WEB SERVICES (AWS) IN RED HAT DEVELOPERHUB 58
8.3.1. Monitoring with Amazon Prometheus 58
8.3.1.1. Configuring annotations for monitoring 58

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

8.3.2. Logging with Amazon CloudWatch logs 60
8.3.2.1. Configuring the application log level 60
8.3.2.2. Retrieving logs from Amazon CloudWatch 60

8.4. USING AMAZON COGNITO AS AN AUTHENTICATION PROVIDER IN RED HAT DEVELOPER HUB 61

CHAPTER 9. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE

(@A) T NP 65
9.1. DEPLOYING RED HAT DEVELOPER HUB ON AZURE KUBERNETES SERVICE (AKS) USING THE HELM
CHART 65
9.2. DEPLOYING THE RED HAT DEVELOPER HUB ON AZURE KUBERNETES SERVICE (AKS) USING THE
OPERATOR 68
9.3. MONITORING AND LOGGING WITH AZURE KUBERNETES SERVICES (AKS) IN RED HAT DEVELOPER
HUB 72

9.3.1. Viewing logs with Azure Kubernetes Services (AKS) 73
9.4. USING MICROSOFT AZURE AS AN AUTHENTICATION PROVIDER IN RED HAT DEVELOPER HUB 73
9.4.1. Using Microsoft Azure as an authentication provider in Helm deployment 74
9.4.2. Using Microsoft Azure as an authentication provider in Operator-backed deployment 75

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPERHUB 77

10.1. PERMISSION POLICIES IN RED HAT DEVELOPER HUB 77

10.1.1. Permission policies configuration 80
10.1.1.1. Configuration of permission policies administrators 80
10.1.1.2. Configuration of permission policies defined in an external file 81
10.1.1.2.1. Mounting policy.csv file to the Developer Hub Helm chart 82

10.2. CONDITIONAL POLICIES IN RED HAT DEVELOPER HUB 83
10.2.1. Conditional policies definition 84
10.2.1.1. Examples of conditional policies 87
10.3. MANAGING ROLE-BASED ACCESS CONTROLS (RBAC) USING THE RED HAT DEVELOPER HUB WEB UI
90

10.3.1. Creating a role in the Red Hat Developer Hub Web Ul 90
10.3.2. Editing a role in the Red Hat Developer Hub Web Ul 91
10.3.3. Deleting a role in the Red Hat Developer Hub Web Ul 92
10.4. ROLE-BASED ACCESS CONTROL (RBAC) REST API 92
10.4.1. Sending requests with the RBAC REST APl using a REST client or curl utility 95
10.4.2. Supported RBAC REST API endpoints 96
10.4.2.1. Roles 96
10.4.2.2. Permission policies 98
10.4.2.3. Conditional policies 103

CHAPTER 1I. MANAGING TEMPLATES .ttt ittt ettt et eeiteeeneeeaneennneenneenns m
11.1. CREATING A TEMPLATE BY USING THE TEMPLATE EDITOR m
11.2. CREATING A TEMPLATE AS A YAML FILE 12
11.3. IMPORTING AN EXISTING TEMPLATE TO RED HAT DEVELOPER HUB 14

CHAPTER 12. CONFIGURING THE TECHDOCS PLUGIN IN RED HAT DEVELOPERHUB 116
12.1. CONFIGURING STORAGE FOR TECHDOCS FILES 116

12.1.1. Using OpenShift Data Foundation for file storage 116
12.1.2. Making object storage accessible to containers by using the Helm chart n7
12.1.2.1. Example TechDocs Plugin configuration for the Helm chart n8
12.1.3. Making object storage accessible to containers by using the Operator 19
12.1.3.1. Example TechDocs Plugin configuration for the Operator 119
12.2. CONFIGURING CI/CD TO GENERATE AND PUBLISH TECDOCS SITES 120
12.2.1. Preparing your repository for Cl 121
12.2.2. Generating the TechDocs site 121
12.2.3. Publishing the TechDocs site 121

Table of Contents

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

PREFACE

The Red Hat Developer Hub is an enterprise-grade, open developer platform that you can use to build
developer portals. This platform contains a supported and opinionated framework that helps reduce the
friction and frustration of developers while boosting their productivity.

RED HAT DEVELOPER HUB SUPPORT

RED HAT DEVELOPER HUB SUPPORT

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal. You can use the Red Hat Customer Portal for the following purposes:

® To search or browse through the Red Hat Knowledgebase of technical support articles about
Red Hat products.

® To create asupport case for Red Hat Global Support Services (GSS). For support case
creation, select Red Hat Developer Hubas the product and select the appropriate product
version.

http://access.redhat.com
https://access.redhat.com/support/cases/#/case/new/get-support?caseCreate=true

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

CHAPTER 1. INSTALLING THE RED HAT DEVELOPER HUB
OPERATOR

As an administrator, you can install the Red Hat Developer Hub Operator. Authorized users can use the
Operator to install Red Hat Developer Hub on the following platforms:

® Red Hat OpenShift Container Platform (RHOCP)

® Amazon Elastic Kubernetes Service (EKS)

® Microsoft Azure Kubernetes Service (AKS)
RHOCP is currently supported from version 4.12 to 4.15. See also the Red Hat Developer Hub Life Cycle .
Containers are available for the following CPU architectures:

® AMDG64 and Intel 64 (x86_64)

Prerequisites

® You are logged in as an administrator on the OpenShift Container Platform web console.

® You have configured the appropriate roles and permissions within your project to create an
application. For more information, see the Red Hat OpenShift documentation on Building
applications.

NOTE

For enhanced security, deploy the Red Hat Developer Hub Operator in a dedicated
default namespace such as rhdh-operator. The cluster administrator can restrict other
users' access to the Operator resources through role bindings or cluster role bindings.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators > OperatorHub.

2. In the Filter by keyword box, enter Developer Hub and click the Red Hat Developer Hub
Operator card.

3. On the Red Hat Developer Hub Operatorpage, click Install.

4. On the Install Operator page, use the Update channel drop-down menu to select the update
channel that you want to use:

® The fast channel provides y-stream (x.y) and z-stream (x.y.z) updates, for example,
updating from version 1.1to 1.2, or from 1.1.0 to 1.1.1.

IMPORTANT

The fast channel includes all of the updates available for a particular version.
Any update might introduce unexpected changes in your Red Hat Developer
Hub deployment. Check the release notes for details about any potentially
breaking changes.

https://access.redhat.com/support/policy/updates/developerhub
https://docs.openshift.com/container-platform/4.15/applications/index.html

CHAPTER 1. INSTALLING THE RED HAT DEVELOPER HUB OPERATOF

® The fast-1.1channel only provides z-stream updates, for example, updating from version 1.1.1
to 1.1.2. If you want to update the Red Hat Developer Hub y-version in the future, for
example, updating from 1.1 to 1.2, you must switch to the fast channel manually.

5. On the Install Operator page, choose the Update approvalstrategy for the Operator:

e |f you choose the Automatic option, the Operator is updated without requiring manual
confirmation.

e |f you choose the Manual option, a notification opens when a new update is released in the
update channel. The update must be manually approved by an administrator before
installation can begin.

6. Click Install.

Verification

® To view the installed Red Hat Developer Hub Operator, click View Operator.

Additional resources

® Deploying Red Hat Developer Hub on OpenShift Container Platform using the Operator

® |Installing from OperatorHub using the web console

https://docs.openshift.com/container-platform/4.15/operators/admin/olm-adding-operators-to-cluster.html#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON

OPENSHIFT CONTAINER PLATFORM

You can install Red Hat Developer Hub on OpenShift Container Platform by using one of the following
methods:

® The Helm chart

® The Red Hat Developer Hub Operator

2.1. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT
CONTAINER PLATFORM USING HELM CHART

You can use a Helm chart in Red Hat OpenShift Container Platform to install Developer Hub, which is a
flexible installation method.

Helm is a package manager on OpenShift Container Platform that provides the following features:

Applies regular application updates using custom hooks
Manages the installation of complex applications
Provides charts that you can host on public and private servers

Supports rolling back to previous application versions

The Red Hat Developer Hub Helm chart is available in the Helm catalog on OpenShift Dedicated and
OpenShift Container Platform.

Prerequisites

You are logged in to your OpenShift Container Platform account.

A user with the OpenShift Container Platform admin role has configured the appropriate roles
and permissions within your project to create an application. For more information about
OpenShift Container Platform roles, see Using RBAC to define and apply permissions .

You have created a project in OpenShift Container Platform. For more information about
creating a project in OpenShift Container Platform, see Red Hat OpenShift Container Platform
documentation.

Procedure

1.

2.

From the Developer perspective on the Developer Hub web console, click +Add.

From the Developer Catalog panel, click Helm Chart.

In the Filter by keyword box, enter Developer Hub and click the Red Hat Developer Hubcard.
From the Red Hat Developer Hub page, click Create.

From your cluster, copy the OpenShift Container Platform router host (for example: apps.
<clusterName>.com).

https://docs.openshift.com/container-platform/4.15/authentication/using-rbac.html
https://docs.openshift.com/container-platform/4.15/applications/projects/working-with-projects.html#odc-creating-projects-using-developer-perspective_projects

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

6. Select the radio button to configure the Developer Hub instance with either the form view or
YAML view. The Form view is selected by default.

® Using Form view

a. To configure the instance with the Form view, go to Root Schema — global - Enable
service authentication within Backstage instance and paste your OpenShift
Container Platform router host into the field on the form.

® Using YAML view

a. To configure the instance with the YAML view, paste your OpenShift Container
Platform router hostname in the global.clusterRouterBase parameter value as shown
in the following example:

global:
auth:
backend:
enabled: true
clusterRouterBase: apps.<clusterName>.com
other Red Hat Developer Hub Helm Chart configurations

7. Edit the other values if needed.

NOTE

The information about the host is copied and can be accessed by the Developer
Hub backend.

When an OpenShift Container Platform route is generated automatically, the
host value for the route is inferred and the same host information is sent to the
Developer Hub. Also, if the Developer Hub is present on a custom domain by
setting the host manually using values, the custom host takes precedence.

8. Click Create and wait for the database and Developer Hub to start.

9. Click the Open URL icon to start using the Developer Hub platform.

Qep :

o L+

Jdo :
develo..gresgl @ G developer-hub 3 :

ﬂ developer-hub

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

NOTE

Your developer-hub pod might be in a CrashLoopBackOff state if the Developer Hub
container cannot access the configuration files. This error is indicated by the following
log:

Loaded config from app-config-from-configmap.yaml, env

2023-07-24T19:44:46.223Z auth info Configuring "database" as KeyStore provider
type=plugin

Backend failed to start up Error: Missing required config value at
'backend.database.client'

To resolve the error, verify the configuration files.
2.1.1. Installing Red Hat Developer Hub on Red Hat OpenShift Container Platform
with Helm CLI

You can use the Helm CLI to install Red Hat Developer Hub on Red Hat OpenShift Container Platform.

Prerequisites
® You have installed the OpenShift CLI (o¢) on your workstation.
® You are logged in to your OpenShift Container Platform account.

® A user with the OpenShift Container Platform admin role has configured the appropriate roles
and permissions within your project to create an application. For more information about
OpenShift Container Platform roles, see [Using RBAC to define and apply permissions]
(https://docs.openshift.com/container-platform/4.15/authentication/using-rbac.html).

® You have created a project in OpenShift Container Platform. For more information about
creating a project in OpenShift Container Platform, see [Red Hat OpenShift Container Platform
documentation](https://docs.openshift.com/container-
platform/4.15/applications/projects/working-with-projects.html#odc-creating-projects-using-
developer-perspective_projects).

® You have installed the Helm CLI.
Procedure
1. Create and activate the <rhdh> OpenShift Container Platform project:

NAMESPACE=<emphasis><rhdh></emphasis>
oc new-project ${NAMESPACE} || oc project ${NAMESPACE}

2. Install the Red Hat Developer Hub Helm chart:

helm upgrade redhat-developer-hub -i https://github.com/openshift-helm-
charts/charts/releases/download/redhat-redhat-developer-hub-1.2.1/redhat-developer-hub-
1.2.1.1gz

3. Configure your Developer Hub Helm chart instance with the Developer Hub database password
and router base URL values from your OpenShift Container Platform cluster:

10

https://docs.openshift.com/container-platform/4.15/authentication/using-rbac.html
https://docs.openshift.com/container-platform/4.15/applications/projects/working-with-projects.html#odc-creating-projects-using-developer-perspective_projects
https://helm.sh/docs/intro/install

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

PASSWORD=$(oc get secret redhat-developer-hub-postgresql -o jsonpath="
{.data.password}" | base64 -d)
CLUSTER_ROUTER_BASE=$(oc get route console -n openshift-console -
o=jsonpath="{.spec.host}' | sed 's/"[*.]*\.//')
helm upgrade redhat-developer-hub -i "https://github.com/openshift-helm-
charts/charts/releases/download/redhat-redhat-developer-hub-1.2.1/redhat-developer-hub-
1.2.1.tgz"\

--set global.clusterRouterBase="$CLUSTER_ROUTER_BASE" \

--set global.postgresqgl.auth.password="$PASSWORD"

4. Display the running Developer Hub instance URL:

Verification

I echo "https://redhat-developer-hub-$NAMESPACE.$CLUSTER_ROUTER_BASE"

® Open the running Developer Hub instance URL in your browser to use Developer Hub.

2.1.2. Adding a custom application configuration file to OpenShift Container
Platform using the Helm chart

You can use the Red Hat Developer Hub Helm chart to add a custom application configuration file to
your OpenShift Container Platform instance.

Prerequisites

® You have created an Red Hat OpenShift Container Platform account.

Procedure

1.

2.

From the OpenShift Container Platform web console, select the ConfigMaps tab.

Click Create ConfigMap.

From Create ConfigMap page, select the YAML view option in Configure via and make
changes to the file, if needed.

Click Create.

Go to the Helm tab to see the list of Helm releases.

Click the overflow menu on the Helm release that you want to use and select Upgrade.

Use either the Form view or YAML view to edit the Helm configuration.

® Using Form view

a.

Expand Root Schema - Backstage chart schema = Backstage parameters = Extra
app configuration files to inline into command arguments.

Click the Add Extra app configuration files to inline into command argumentslink.

Enter the value in the following fields:

o configMapRef: app-config-rhdh

1

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

o filename: app-config-rhdh.yaml
d. Click Upgrade.

® Using YAML view

a. Set the value of the upstream.backstage.extraAppConfig.configMapRef and
upstream.backstage.extraAppConfig.filename parameters as follows:

... other Red Hat Developer Hub Helm Chart configurations
upstream:
backstage:
extraAppConfig:
- configMapRef: app-config-rhdh
filename: app-config-rhdh.yaml
... other Red Hat Developer Hub Helm Chart configurations

b. Click Upgrade.
2.1.3. Installing Red Hat Developer Hub using the Helm Chart in an air-gapped
environment

An air-gapped environment, also known as an air-gapped network or isolated network, ensures security
by physically segregating the system or network. This isolation is established to prevent unauthorized
access, data transfer, or communication between the air-gapped system and external sources.

You can install Red Hat Developer Hub in an air-gapped environment to ensure security and meet
specific regulatory requirements.

To install Developer Hub in an air-gapped environment, you must have access to the registry.redhat.io
and the registry for the air-gapped environment.

Prerequisites

® You have installed an Red Hat OpenShift Container Platform 4.12 or later.

® You have access to the registry.redhat.io.

® You have access to the Red Hat OpenShift Container Platform image registry of your cluster.
For more information about exposing the image registry, see the Red Hat OpenShift Container
Platform documentation about Exposing the registry.

® You have installed the OpenShift CLI (o¢) on your workstation.

® You have installed the podman command line tools on your workstation.

You you have an account in Red Hat Developer portal.

Procedure

1. Log in to your OpenShift Container Platform account using the OpenShift CLI (o¢), by running
the following command:

I oc login -u <user> -p <password> https://api.<hostname>:6443

12

https://docs.openshift.com/container-platform/4.15/registry/securing-exposing-registry.html
https://developers.redhat.com/

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

2. Login to the OpenShift Container Platform image registry using the podman command line

tool, by running the following command:

podman login -u kubeadmin -p $(oc whoami -t) default-route-openshift-image-registry.
<hostname>

NOTE

You can run the following commands to get the full host name of the OpenShift
Container Platform image registry, and then use the host name in a command to
login:

REGISTRY_HOST=$(oc get route default-route -n openshift-image-registry --
template='{{ .spec.host }}")

I podman login -u kubeadmin -p $(oc whoami -t) SREGISTRY_HOST

. Login to the registry.redhat.io in podman by running the following command:
I podman login registry.redhat.io

For more information about registry authentication, see Red Hat Container Registry
Authentication.

. Pull Developer Hub and PostgreSQL images from Red Hat Image registry to your workstation,
by running the following commands:

I podman pull registry.redhat.io/rhdh/rhdh-hub-rhel9:{product-chart-version}

I podman pull registry.redhat.io/rhel9/postgresql-15:latest

. Push both images to the internal OpenShift Container Platform image registry by running the
following commands:

podman push --remove-signatures registry.redhat.io/rhdh/rhdh-hub-rhel9:{product-chart-
version} default-route-openshift-image-registry.<hostname>/<project_name>/rhdh-hub-rhel9:
{product-chart-version}

podman push --remove-signatures registry.redhat.io/rhel9/postgresql-15:latest default-route-
openshift-image-registry.<hostname>/<project_name>/postgresql-15:latest

For more information about pushing images directly to the OpenShift Container Platform image
registry, see How do | push an Image directly into the OpenShift 4 registry .

IMPORTANT

If an x509 error occurs, verify that you have installed the CA certificate used for
OpenShift Container Platform routes on your system.

. Use the following command to verify that both images are present in the internal OpenShift
Container Platform registry:

13

https://access.redhat.com/RegistryAuthentication
https://catalog.redhat.com/software/containers/search
https://access.redhat.com/solutions/6959306
https://access.redhat.com/solutions/6088891

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

I oc get imagestream -n <project_name>

7. Enable local image lookup for both images by running the following commands:

I oc set image-lookup postgresql-15

I oc set image-lookup rhdh-hub-rhel9

8. Go to YAML view and update the image section for backstage and postgresql using the
following values:

Example values for Developer Hub image

upstream:
backstage:
image:
registry:
repository: rhdh-hub-rhel9
tag: latest

Example values for PostgreSQL image

upstream:
postgresql:
image:
registry:
repository: postgresql-15
tag: latest

9. Install the Red Hat Developer Hub using Helm chart. For more information about installing
Developer Hub, see Section 2.1, “Deploying Red Hat Developer Hub on OpenShift Container
Platform using Helm Chart”.

2.2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT
CONTAINER PLATFORM USING THE OPERATOR

As a developer, you can deploy a Red Hat Developer Hub instance on OpenShift Container Platform by
using the Developer Catalog in the Red Hat OpenShift Container Platform web console. This
deployment method uses the Red Hat Developer Hub Operator.

Prerequisites

® A cluster administrator has installed the Red Hat Developer Hub Operator. For more
information, see Installing the Red Hat Developer Hub Operator .

Procedure

1. Create a project in OpenShift Container Platform for your Red Hat Developer Hub instance, or
select an existing project.

14

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

TIP

For more information about creating a project in OpenShift Container Platform, see Creating a
project by using the web console in the Red Hat OpenShift Container Platform documentation.

2. From the Developer perspective on the OpenShift Container Platform web console, click +Add.
3. From the Developer Catalog panel, click Operator Backed.

4. In the Filter by keyword box, enter Developer Hub and click the Red Hat Developer Hubcard.
5. Click Create.

6. Add custom configurations for the Red Hat Developer Hub instance.

7. On the Create Backstage page, click Create

Verification

After the pods are ready, you can access the Red Hat Developer Hub platform by opening the URL.

1. Confirm that the pods are ready by clicking the pod in the Topology view and confirming the
Status in the Details panel. The pod status is Active when the pod is ready.

2. From the Topology view, click the Open URL icon on the Developer Hub pod.

Labels

Pod selector

Node selector
lectc

Tolerations

SS) backst..er-hub 3 backst..er-hub | 3

Annotations

developer-hub %

Additional resources

® OpenShift Container Platform - Building applications overview

2.2.1. Adding a custom application configuration file to OpenShift Container
Platform using the Operator

A custom application configuration file is a ConfigMap object that you can use to change the
configuration of your Red Hat Developer Hub instance. If you are deploying your Developer Hub
instance on Red Hat OpenShift Container Platform, you can use the Red Hat Developer Hub Operator
to add a custom application configuration file to your OpenShift Container Platform instance by
creating the ConfigMap object and referencing it in the Developer Hub custom resource (CR).

The custom application configuration file contains a sensitive environment variable, named
BACKEND_SECRET. This variable contains a mandatory backend authentication key that Developer

15

https://docs.openshift.com/container-platform/4.15/applications/projects/working-with-projects.html#creating-a-project-using-the-web-console_projects
https://docs.openshift.com/container-platform/4.15/applications/index.html

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Hub uses to reference an environment variable defined in an OpenShift Container Platform secret. You
must create a secret, named 'secrets-rhdh’, and reference it in the Developer Hub CR.

NOTE

You are responsible for protecting your Red Hat Developer Hub installation from external
and unauthorized access. Manage the backend authentication key like any other secret.
Meet strong password requirements, do not expose it in any configuration files, and only
inject it into configuration files as an environment variable.

Prerequisites

® You have an active Red Hat OpenShift Container Platform account.

® Your administrator has installed the Red Hat Developer Hub Operator in OpenShift Container
Platform. For more information, see Installing the Red Hat Developer Hub Operator .

® You have created the Red Hat Developer Hub CR in OpenShift Container Platform.

Procedure

1. From the Developer perspective in the OpenShift Container Platform web console, select the
Topology view, and click the Open URL icon on the Developer Hub pod to identify your
Developer Hub external URL: <RHDH_URL>.

2. From the Developer perspective in the OpenShift Container Platform web console, select the
ConfigMaps view.

3. Click Create ConfigMap.

4. Select the YAML view option in Configure via and use the following example as a base
template to create a ConfigMap object, such as app-config-rhdh.yamil:

kind: ConfigMap
apiVersion: vi
metadata:
name: app-config-rhdh
data:
"app-config-rhdh.yaml": |
app:
title: Red Hat Developer Hub
baseUrl: <RHDH_URL> @)
backend:
auth:
keys:

- secret: "${BACKEND_SECRET}" 9
baseUrl: <RHDH_URL> €)
cors:

origin: <RHDH_URL> @)

ﬂ Set the external URL of your Red Hat Developer Hub instance.

Use an environment variable exposing an OpenShift Container Platform secret to define
the mandatory Developer Hub backend authentication key.

16

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/administration_guide_for_red_hat_developer_hub/index

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

9 Set the external URL of your Red Hat Developer Hub instance.

Q Set the external URL of your Red Hat Developer Hub instance.

5. Click Create.

6. Select the Secrets view.

7. Click Create Key/value Secret

8. Create a secret named secrets-rhdh.

9. Add a key named BACKEND_SECRET and a base64 encoded string as a value. Use a unique

value for each Red Hat Developer Hub instance. For example, you can use the following
command to generate a key from your terminal:

I node -p 'require("crypto").randomBytes(24).toString("base64")’
10. Click Create.

11. Select the Topology view.

12. Click the overflow menu for the Red Hat Developer Hub instance that you want to use and
select Edit Backstage to load the YAML view of the Red Hat Developer Hub instance.

developer-hub

B

Edit Backstage
"

Delete Backstage

13. In the CR, enter the name of the custom application configuration config map as the value for
the spec.application.appConfig.configMaps field, and enter the name of your secret as the
value for the spec.application.extraEnvs.secrets field. For example:

apiVersion: vi
kind: ConfigMap

17

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

metadata:
name: example
spec:
application:
appConfig:
mountPath: /opt/app-root/src
configMaps:
- name: app-config-rhdh
extraEnvs:
secrets:
- name: secrets-rhdh
extraFiles:
mountPath: /opt/app-root/src
replicas: 1
route:
enabled: true
database:
enableLocalDb: true

14. Click Save.

15. Navigate back to the Topology view and wait for the Red Hat Developer Hub pod to start.

16. Click the Open URL icon to use the Red Hat Developer Hub platform with the configuration

changes.

Additional resources

® For more information about roles and responsibilities in Developer Hub, see Role-Based Access

Control (RBAC) in Red Hat Developer Hub.

2.2.2. Configuring dynamic plugins with the Red Hat Developer Hub Operator

You can store the configuration for dynamic plugins in a ConfigMap object that your Backstage

custom resource (CR) can reference.

NOTE

If the pluginConfig field references environment variables, you must define the variables

in your secrets-rhdh secret.

Procedure

1. From the OpenShift Container Platform web console, select the ConfigMaps tab.

2. Click Create ConfigMap.

3. From the Create ConfigMap page, select the YAML view option in Configure via and edit the

file, if needed.

Example ConfigMap object using the GitHub dynamic plugin

kind: ConfigMap
apiVersion: vi
metadata:

18

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/administration_guide_for_red_hat_developer_hub/index

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

name: dynamic-plugins-rhdh

data:
dynamic-plugins.yaml: |
includes:
- dynamic-plugins.default.yaml
plugins:
- package: './dynamic-plugins/dist/backstage-plugin-catalog-backend-module-github-
dynamic'

disabled: false
pluginConfig: {}

4. Click Create.

5. Go to the Topology view.

6. Click on the overflow menu for the Red Hat Developer Hub instance that you want to use and
select Edit Backstage to load the YAML view of the Red Hat Developer Hub instance.

4
Qop Qoep
o o o o

Q
r Q
Q
o

Edit Backstage

iy

Delete Backstage

7. Add the dynamicPluginsConfigMapName field to your Backstage CR. For example:

apiVersion: rhdh.redhat.com/vialpha1i
kind: Backstage
metadata:

name: my-rhdh
spec:

application:
#...

dynamicPluginsConfigMapName: dynamic-plugins-rhdh

#...

8. Click Save.

19

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

9. Navigate back to the Topology view and wait for the Red Hat Developer Hub pod to start.

10. Click the Open URL icon to start using the Red Hat Developer Hub platform with the new
configuration changes.

Verification

® Ensure that the dynamic plugins configuration has been loaded, by appending /api/dynamic-
plugins-info/loaded-plugins to your Red Hat Developer Hub root URL and checking the list of
plugins:

Example list of plugins

"name": "backstage-plugin-catalog-backend-module-github-dynamic”,
"version": "0.5.2",

"platform": "node",

"role": "backend-plugin-module”

"name": "backstage-plugin-techdocs",
"version": "1.10.0",

"role": "frontend-plugin”,

"platform™: "web"

"name": "backstage-plugin-techdocs-backend-dynamic",
"version": "1.9.5",

"platform": "node",

"role": "backend-plugin”

2.2.3. Installing Red Hat Developer Hub using the Operator in an air-gapped
environment

On an OpenShift Container Platform cluster operating on a restricted network, public resources are not
available. However, deploying the Red Hat Developer Hub Operator and running Developer Hub
requires the following public resources:

® Operatorimages (bundle, operator, catalog)
® Operandsimages (RHDH, PostgreSQL)

To make these resources available, replace them with their equivalent resources in a mirror registry
accessible to the OpenShift Container Platform cluster.

You can use a helper script that mirrors the necessary images and provides the necessary configuration

to ensure those images will be used when installing the Red Hat Developer Hub Operator and creating
Developer Hub instances.

20

CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

NOTE

This script requires a target mirror registry which you should already have installed if your
OpenShift Container Platform cluster is ready to operate on a restricted network.
However, if you are preparing your cluster for disconnected usage, you can use the script
to deploy a mirror registry in the cluster and use it for the mirroring process.

Prerequisites

® You have an active OpenShift CLI (o¢) session with administrative permissions to the OpenShift
Container Platform cluster. See Getting started with the OpenShift CLI.

® You have an active oc registry session to the registry.redhat.io Red Hat Ecosystem Catalog.
See Red Hat Container Registry Authentication .

® The opm CLlI toolis installed. See Installing the opm CLI.

® The jq package is installed. See Download jq.

® Podman isinstalled. See Podman Installation Instructions.

® Skopeo version 114 or higher is installed. See Installing Skopeo.

e |f you already have a mirror registry for your cluster, an active Skopeo session with administrative
access to this registry is required. See Authenticating to a registry and Mirroring images for a
disconnected installation.

NOTE
The internal OpenShift Container Platform cluster image registry cannot be used as a
target mirror registry. See About the mirror registry.

e |f you prefer to create your own mirror registry, see Creating a mirror registry with mirror registry
for Red Hat OpenShift.

e |f you do not already have a mirror registry, you can use the helper script to create one for you
and you need the following additional prerequisites:

o The cURL package is installed. For Red Hat Enterprise Linux, the curl command is available
by installing the curl package. To use curl for other platforms, see the cURL website.
o The htpasswd command is available. For Red Hat Enterprise Linux, the htpasswd
command is available by installing the httpd-tools package.
Procedure

1. Download and run the mirroring script to install a custom Operator catalog and mirror the

related images: prepare-restricted-environment.sh (source).

curl -sSLO https://raw.githubusercontent.com/janus-idp/operator/1.1.x/.rhdh/scripts/prepare-
restricted-environment.sh

if you do not already have a target mirror registry
and want the script to create one for you

use the following example:

bash prepare-restricted-environment.sh \

21

https://docs.openshift.com/container-platform/4.15/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/RegistryAuthentication
https://docs.openshift.com/container-platform/4.15/cli_reference/opm/cli-opm-install.html
https://jqlang.github.io/jq/download/
https://podman.io/docs/installation
https://github.com/containers/skopeo/blob/main/install.md
https://github.com/containers/skopeo#authenticating-to-a-registry
https://docs.openshift.com/container-platform/4.15/installing/disconnected_install/installing-mirroring-installation-images.html
https://docs.openshift.com/container-platform/4.15/installing/disconnected_install/installing-mirroring-installation-images.html#installation-about-mirror-registry_installing-mirroring-installation-images
https://docs.openshift.com/container-platform/4.15/installing/disconnected_install/installing-mirroring-creating-registry.html
https://curl.se/
https://github.com/janus-idp/operator/blob/1.1.x/.rhdh/scripts/prepare-restricted-environment.sh

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

--prod_operator_index "registry.redhat.io/redhat/redhat-operator-index:v4.14" \
--prod_operator_package name "rhdh" \

--prod_operator_bundle_name "rhdh-operator" \

--prod_operator_version "v1.1.1"

if you already have a target mirror registry
use the following example:
bash prepare-restricted-environment.sh \
--prod_operator_index "registry.redhat.io/redhat/redhat-operator-index:v4.14" \
--prod_operator_package name "rhdh" \
--prod_operator_bundle_name "rhdh-operator" \
--prod_operator_version "v1.1.1"\
--use_existing_mirror_registry "my_registry"

NOTE

The script can take several minutes to complete as it copies multiple images to
the mirror registry.

22

CHAPTER 3. CONFIGURING EXTERNAL POSTGRESQL DATABASES

CHAPTER 3. CONFIGURING EXTERNAL POSTGRESQL
DATABASES

As an administrator, you can configure and use external PostgreSQL databases in Red Hat Developer
Hub. You can use a PostgreSQL certificate file to configure an external PostgreSQL instance using the
Operator or Helm Chart.

NOTE
Developer Hub supports only configuring external PostgreSQL databases. You can
perform maintenance activities, such as backing up your data or configuring high

availability (HA) for the external PostgreSQL databases.

Also, configuring an external PostgreSQL instance by using the Red Hat Developer Hub
Operator or Helm Chart is not intended for production use.

3.1. CONFIGURING AN EXTERNAL POSTGRESQL INSTANCE USING
THE OPERATOR

You can configure an external PostgreSQL instance using the Red Hat Developer Hub Operator. By
default, the Operator creates and manages a local instance of PostgreSQL in the same namespace
where you have deployed the RHDH instance. However, you can change this default setting to configure
an external PostgreSQL database server, for example, Amazon Web Services (AWS) Relational
Database Service (RDS) or Azure database.

Prerequisites

® You are using a supported version of PostgreSQL. For more information, see the Product life
cycle page.

® You have the following details:
o db-host: Denotes your PostgreSQL instance Domain Name System (DNS) or IP address
o db-port: Denotes your PostgreSQL instance port number, such as 5432
o username: Denotes the user name to connect to your PostgreSQL instance
o password: Denotes the password to connect to your PostgreSQL instance
® You have installed the Red Hat Developer Hub Operator.
® Optional: You have a CA certificate, Transport Layer Security (TLS) private key, and TLS

certificate so that you can secure your database connection by using the TLS protocol. For
more information, refer to your PostgreSQL vendor documentation.

NOTE

By default, Developer Hub uses a database for each plugin and automatically creates it if
none is found. You might need the Create Database privilege in addition to PSQL
Database privileges for configuring an external PostgreSQL instance.

Procedure

23

https://access.redhat.com/support/policy/updates/developerhub

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

1. Optional: Create a certificate secret to configure your PostgreSQL instance with a TLS
connection:

cat <<EOF | oc -n <your-namespace> create -f -
apiVersion: vi

kind: Secret

metadata:

name: <crt-secret> ﬂ

type: Opaque

stringData:

postgres-ca.pem: |-

<ca-certificate-key> g
postgres-key.key: |-

<tls-private-key> e
postgres-crt.pem: |-

<tls-certificate-key> ﬂ
#...
EOF
ﬂ Provide the name of the certificate secret.
9 Provide the CA certificate key.
9 Optional: Provide the TLS private key.

Q Optional: Provide the TLS certificate key.

2. Create a credential secret to connect with the PostgreSQL instance:

cat <<EOF | oc -n <your-namespace> create -f -
apiVersion: vi

kind: Secret

metadata:

name: <cred-secret> ﬂ

type: Opaque

stringData:

POSTGRES_PASSWORD: <password>
POSTGRES_PORT: "<db-port>"
POSTGRES_USER: <username>
POSTGRES_HOST: <db-host>

PGSSLMODE: <ssl-mode> # for TLS connectiong
NODE_EXTRA_CA_CERTS: <abs-path-to-pem-file> # for TLS connection, e.g. /opt/app-
root/src/postgres-crt.pem @

EOF

ﬂ Provide the name of the credential secret.
9 Provide credential data to connect with your PostgreSQL instance.

9 Optional: Provide the value based on the required Secure Sockets Layer (SSL) mode.

24

https://www.postgresql.org/docs/15/libpq-connect.html#LIBPQ-CONNECT-SSLMODE

CHAPTER 3. CONFIGURING EXTERNAL POSTGRESQL DATABASES

Q Optional: Provide the value only if you need a TLS connection for your PostgreSQL
instance.

3. Create a Backstage custom resource (CR):

cat <<EOF | oc -n <your-namespace> create -f -
apiVersion: rhdh.redhat.com/vialpha1l
kind: Backstage
metadata:
name: <backstage-instance-name>
spec:
database:
enableLocalDb: false §))
application:
extraFiles:
mountPath: <path> # e g /opt/app-root/src
secrets:
- name: <crt-secret> g
key: postgres-crt.pem, postgres-ca.pem, postgres-key.key # key name as in <crt-
secret> Secret
extraEnvs:
secrets:
- name: <cred-secret> 6
#...

Set the value of the enableLocalDb parameter to false to disable creating local
PostgreSQL instances.

Provide the name of the certificate secret if you have configured a TLS connection.

Provide the name of the credential secret that you created.

o0 o

NOTE

The environment variables listed in the Backstage CR work with the Operator
default configuration. If you have changed the Operator default configuration,
you must reconfigure the Backstage CR accordingly.

4. Apply the Backstage CR to the namespace where you have deployed the RHDH instance.

3.2. CONFIGURING AN EXTERNAL POSTGRESQL INSTANCE USING
THE HELM CHART

You can configure an external PostgreSQL instance by using the Helm Chart. By default, the Helm Chart
creates and manages a local instance of PostgreSQL in the same namespace where you have deployed
the RHDH instance. However, you can change this default setting to configure an external PostgreSQL
database server, for example, Amazon Web Services (AWS) Relational Database Service (RDS) or Azure
database.

Prerequisites

25

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

® You are using a supported version of PostgreSQL. For more information, see the Product life
cycle page.

® You have the following details:
o db-host: Denotes your PostgreSQL instance Domain Name System (DNS) or IP address
o db-port: Denotes your PostgreSQL instance port number, such as 5432
o username: Denotes the user name to connect to your PostgreSQL instance
o password: Denotes the password to connect to your PostgreSQL instance
® You have installed the RHDH application by using the Helm Chart.

® Optional: You have a CA certificate, Transport Layer Security (TLS) private key, and TLS
certificate so that you can secure your database connection by using the TLS protocol. For
more information, refer to your PostgreSQL vendor documentation.

NOTE

By default, Developer Hub uses a database for each plugin and automatically creates it if
none is found. You might need the Create Database privilege in addition to PSQL
Database privileges for configuring an external PostgreSQL instance.

-

Procedure

1. Optional: Create a certificate secret to configure your PostgreSQL instance with a TLS
connection:

cat <<EOF | oc -n <your-namespace> create -f -
apiVersion: vi

kind: Secret

metadata:

name: <crt-secret> ﬂ

type: Opaque

stringData:

postgres-ca.pem: |-

<ca-certificate-key> g
postgres-key.key: |-

<tls-private-key> e
postgres-crt.pem: |-

<tls-certificate-key> ﬂ
#...
EOF
Provide the name of the certificate secret.

Provide the CA certificate key.

Optional: Provide the TLS private key.

0009

Optional: Provide the TLS certificate key.

26

https://access.redhat.com/support/policy/updates/developerhub

CHAPTER 3. CONFIGURING EXTERNAL POSTGRESQL DATABASES

2. Create a credential secret to connect with the PostgreSQL instance:

cat <<EOF | oc -n <your-namespace> create -f -
apiVersion: vi

kind: Secret

metadata:

name: <cred-secret> ﬂ

type: Opaque

stringData:

POSTGRES_PASSWORD: <password>
POSTGRES_PORT: "<db-port>"
POSTGRES_USER: <username>
POSTGRES_HOST: <db-host>

PGSSLMODE: <ssl-mode> # for TLS connectiong
NODE_EXTRA_CA_CERTS: <abs-path-to-pem-file> # for TLS connection, e.g. /opt/app-
root/src/postgres-crt.pem @

EOF

ﬂ Provide the name of the credential secret.
9 Provide credential data to connect with your PostgreSQL instance.
9 Optional: Provide the value based on the required Secure Sockets Layer (SSL) mode.

Q Optional: Provide the value only if you need a TLS connection for your PostgreSQL
instance.

3. Configure your PostgreSQL instance in the Helm configuration file named values.yaml:

#...
upstream:
postgresql:
enabled: false # disable PostgreSQL instance creation a
auth:
existingSecret: <cred-secret> # inject credentials secret to Backstagee
backstage:
appConfig:
backend:
database:
connection: # configure Backstage DB connection parameters
host: ${POSTGRES_HOST}
port: ${POSTGRES_PORT}
user: ${POSTGRES_USER}
password: ${POSTGRES_PASSWORD}
ssl:
rejectUnauthorized: true,
ca:
$file: /opt/app-root/src/postgres-ca.pem
key:
$file: /opt/app-root/src/postgres-key.key
cert:
$file: /opt/app-root/src/postgres-crt.pem
extraEnvVarsSecrets:
- <cred-secret> # inject credentials secret to Backstageg

27

https://www.postgresql.org/docs/15/libpq-connect.html#LIBPQ-CONNECT-SSLMODE

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

extraEnvVars:
- name: BACKEND_SECRET
valueFrom:
secretKeyRef:
key: backend-secret
name: {{ include "janus-idp.backend-secret-name" $ }}'
extraVolumeMounts:
- mountPath: /opt/app-root/src/dynamic-plugins-root
name: dynamic-plugins-root
- mountPath: /opt/app-root/src/postgres-crt.pem
name: postgres-crt # inject TLS certificate to Backstage cont. @
subPath: postgres-crt.pem
- mountPath: /opt/app-root/src/postgres-ca.pem
name: postgres-ca # inject CA certificate to Backstage cont. 9
subPath: postgres-ca.pem
- mountPath: /opt/app-root/src/postgres-key.key
name: postgres-key # inject TLS private key to Backstage cont. G
subPath: postgres-key.key
extraVolumes:
- ephemeral:
volumeClaimTemplate:
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
name: dynamic-plugins-root
- configMap:
defaultMode: 420
name: dynamic-plugins
optional: true
name: dynamic-plugins
- name: dynamic-plugins-npmrc
secret:
defaultMode: 420
optional: true
secretName: dynamic-plugins-npmrc
- name: postgres-crt
secret:
secretName: <crt-secret> ﬂ
#...

Set the value of the upstream.postgresql.enabled parameter to false to disable creating
local PostgreSQL instances.

Provide the name of the credential secret.
Provide the name of the credential secret.
Optional: Provide the name of the TLS certificate only for a TLS connection.

Optional: Provide the name of the CA certificate only for a TLS connection.

QD000 9O

Optional: Provide the name of the TLS private key only if your TLS connection requires a
private key.

28

CHAPTER 3. CONFIGURING EXTERNAL POSTGRESQL DATABASES

Q Provide the name of the certificate secret if you have configured a TLS connection.

4. Apply the configuration changes in your Helm configuration file named values.yaml:

helm upgrade -n <your-namespace> <your-deploy-name> openshift-helm-charts/redhat-
developer-hub -f values.yaml --version 1.2.1

3.3. MIGRATING LOCAL DATABASES TO AN EXTERNAL DATABASE

SERVER USING THE OPERATOR

By default, Red Hat Developer Hub hosts the data for each plugin in a PostgreSQL database. When you
fetch the list of databases, you might see multiple databases based on the number of plugins configured
in Developer Hub. You can migrate the data from an RHDH instance hosted on a local PostgreSQL
server to an external PostgreSQL service, such as AWS RDS, Azure database, or Crunchy database. To

migrate the data from each RHDH instance, you can use PostgreSQL utilities, such as pg_dump with
psql or pgAdmin.

NOTE

The following procedure uses a database copy script to do a quick migration.

Prerequisites
® You have installed the pg_dump and psql utilities on your local machine.
e For data export, you have the PGSQL user privileges to make a full dump of local databases.

® Fordataimport, you have the PGSQL admin privileges to create an external database and
populate it with database dumps.

Procedure

1. Configure port forwarding for the local PostgreSQL database pod by running the following
command on a terminal:

I oc port-forward -n <your-namespace> <pgsql-pod-name> <forward-to-port>:<forward-from-
port>

Where:

® The <pgsql-pod-name> variable denotes the name of a PostgreSQL pod with the format
backstage-psql-<deployment-name>-<_indexs.

e The <forward-to-port> variable denotes the port of your choice to forward PostgreSQL
data to.

® The <forward-from-port> variable denotes the local PostgreSQL instance port, such as
5432.

Example: Configuring port forwarding

I oc port-forward -n developer-hub backstage-psql-developer-hub-0 15432:5432

29

https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-psql.html
https://www.pgadmin.org/
https://github.com/janus-idp/operator/blob/1.2.x/hack/db_copy.sh
https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-psql.html

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

2. Make a copy of the following db_copy.sh script and edit the details based on your
configuration:

#!/bin/bash

to_host=<db-service-host> ﬂ
to_port=5432 9
to_user=postgres 6

from_host=127.0.0.1)
from_port=15432 9
from_user=postgres G

allDB=("backstage_plugin_app" "backstage_plugin_auth" "backstage_plugin_catalog"
"backstage_plugin_permission" "backstage plugin_scaffolder" "backstage plugin_search")

for db in ${!allDB[@]};
do

db=${allDB[$db]}

echo Copying database: $db

PGPASSWORD=$TO_PSW psql -h $to_host -p $to_port -U $to_user -c "create database
$db;"

pg_dump -h $from_host -p $from_port -U $from_user -d $db | PGPASSWORD=$TO_PSW
psql -h $to_host -p $to_port -U $to_user -d $db
done

The destination host name, for example, <db-instance-names.rds.amazonaws.com.
The destination port, such as 5432.

The destination server username, for example, postgres.

The source host name, such as 127.0.0.1.

The source port number, such as the <forward-to-port> variable.

The source server username, for example, postgres.

9S00 00®9

The name of databases to import in double quotes separated by spaces, for example,
("backstage_plugin_app" "backstage_plugin_auth" "backstage plugin_catalog"
"backstage_plugin_permission” "backstage_plugin_scaffolder"
"backstage_plugin_search").

3. Create a destination database for copying the data:
I /bin/bash TO_PSW=<destination-db-passwords /path/to/db_copy.sh @)

The <destination-db-password> variable denotes the password to connect to the
destination database.

30

CHAPTER 3. CONFIGURING EXTERNAL POSTGRESQL DATABASES

NOTE

You can stop port forwarding when the copying of the data is complete. For more
information about handling large databases and using the compression tools, see
the Handling Large Databases section on the PostgreSQL website.

4. Reconfigure your Backstage custom resource (CR). For more information, see Configuring an
external PostgreSQL instance using the Operator.

5. Check that the following code is present at the end of your Backstage CR after
reconfiguration:

#...
spec:
database:
enableLocalDb: false
application:
#...
extraFiles:
secrets:
- name: <crt-secret>
key: postgres-crt.pem # key name as in <cri-secret> Secret
extraEnvs:
secrets:
- name: <cred-secret>

NOTE

Reconfiguring the Backstage CR deletes the corresponding StatefulSet and
Pod objects, but does not delete the PersistenceVolumeClaim object. Use the
following command to delete the local PersistenceVolumeClaim object:

I oc -n developer-hub delete pvc <local-psql-pvc-name>

where, the <local-psql-pvc-names> variable is in the data-<psql-pod-name>
format.

6. Apply the configuration changes.

Verification

1. Verify that your RHDH instance is running with the migrated data and does not contain the local
PostgreSQL database by running the following command:

I oc get pods -n <your-namespace>

2. Check the output for the following details:

® The backstage-developer-hub-xxx pod is in running state.

® The backstage-psql-developer-hub-0 pod is not available.
You can also verify these details using the Topology view in the OpenShift Container
Platform web console.

31

https://www.postgresql.org/docs/current/backup-dump.html#BACKUP-DUMP-LARGE
https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/administration_guide_for_red_hat_developer_hub/index#proc-configuring-postgresql-instance-using-operator_assembly-install-rhdh-ocp

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

CHAPTER 4. ENABLING AUTHENTICATION IN RED HAT
DEVELOPER HUB

Authentication within Red Hat Developer Hub facilitates user sign-in, identification, and access to
external resources. It supports multiple authentication providers.

Authentication providers are typically used in the following ways:
® One provider for sign-in and identification.
® Additional providers for accessing external resources.
The Red Hat Developer Hub supports the following authentication providers:

Microsoft Azure

microsoft
GitHub

github
Keycloak

oidc

For each provider that you want to use, follow the dedicated procedure to complete the following tasks:

1. Set up the shared secret that the authentication provider and Red Hat Developer Hub require
to communicate.

2. Configure Red Hat Developer Hub to use the authentication provider.

4.1. ENABLING THE MICROSOFT AZURE AUTHENTICATION PROVIDER

Red Hat Developer Hub includes a Microsoft Azure authentication provider that can authenticate users
by using OAuth.

Procedure

1. To allow Developer Hub to authenticate with Microsoft Azure, create an OAuth Application in
Microsoft Azure.

a. Go to Azure Portal > App registrations and create an App Registration for Developer
Hub.

b. On your App registration overview page, add a new Web platform configuration, with the
configuration:
Redirect URI

Enter the backend authentication URI set in Developer Hub:
https://<APP_FQDN>/api/auth/microsoft/handler/frame

Front-channel logout URL
Leave blank.
Implicit grant and hybrid flows

Leave all checkboxes cleared.

32

https://portal.azure.com/#view/Microsoft_AAD_RegisteredApps/ApplicationsListBlade

C.

CHAPTER 4. ENABLING AUTHENTICATION IN RED HAT DEVELOPER HUE

On the API permissions tab, click Add Permission, then add the following Delegated
permission for the Microsoft Graph APL

email, offline_access, openid, profile, User.Read, (Optional)

Optional custom scopes of the Microsoft Graph API that you define both here and in the
Developer Hub configuration (app-config-rhdh.yaml).

NOTE

Your company might require you to grant admin consent for these permissions. Even if
your company does not require admin consent, you might do so as it means users do not
need to individually consent the first time they access backstage. To grant admin
consent, a directory admin must go to the admin consent page and click Grant admin
consent for COMPANY NAME.

a. Go to the Certificates & Secretspage, then the Client secrets tab, and create a new client
secret. Save the Client secret for the next step.

1. Add your Microsoft Azure credentials in your Developer Hub secrets.

b. Edit your Developer Hub secrets, such as secrets-rhdh.

c. Add the following key/value pairs:

AUTH_AZURE_CLIENT _ID: Enter the Application ID that you generated on Microsoft
Azure.

AUTH_AZURE_CLIENT_SECRET: Enter the Client secret that you generated on
Microsoft Azure.

AUTH_AZURE_TENANT_ID: Enter your Tenant ID on Microsoft Azure.

1. Set up the Microsoft Azure authentication provider in your Developer Hub custom
configuration.
Edit your custom Developer Hub config map, such as app-config-rhdh.

In the app-config-rhdh.yaml content, add the microsoft provider configuration under
the root auth configuration, and enable the microsoft provider for sign-in:

app-config-rhdh.yaml fragment

auth:
environment: production
providers:
microsoft:
production:
clientld: ${AUTH_AZURE_CLIENT_ID}
clientSecret: ${AUTH_AZURE_CLIENT_SECRET}
tenantld: ${AUTH_AZURE_TENANT_ID}
domainHint: ${AUTH_AZURE_TENANT_ID} a
additionalScopes: 9
- Mail.Send
signinPage: microsoft 6

33

https://learn.microsoft.com/en-us/azure/active-directory/manage-apps/user-admin-consent-overview

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

ﬂ Optional for single-tenant applications. You can reduce login friction for users with
accounts in multiple tenants by automatically filtering out accounts from other
tenants. If you want to use this parameter for a single-tenant application,
uncomment and enter the tenant ID. If your application registration is multi-tenant,
leave this parameter blank. For more information, see Home Realm Discovery.

9 Optional for additional scopes. To add scopes for the application registration,
uncomment and enter the list of scopes that you want to add. The default and
mandatory value is ['user.read'].

9 To enable the Microsoft Azure provider as default sign-in provider.

NOTE

Optional for environments with restrictions on outgoing access, such as firewall rules. If
your environment has outgoing access restrictions make sure your Backstage backend
has access to the following hosts:

® |ogin.microsoftonline.com: To get and exchange authorization codes and
access tokens.

e graph.microsoft.com: To fetch user profile information (as seen in this source
code). If this host is unreachable, users might see an Authentication failed, failed
to fetch user profile error when they attempt to login.

4.2. ENABLING THE GITLAB OAUTH AUTHENTICATION PROVIDER

Red Hat Developer Hub includes a GitLab authentication provider that can authenticate users by using
GitLab OAuth.

Prerequistes

® You configured Developer Hub with a custom config map and secret.

Procedure

1. To allow Developer Hub to authenticate with Gitlab, create an OAuth Application in Gitlab.
Go to GitLab User settings > Applications, and click the Add new application button.

Name
Enter your application name, such as Developer Hub.
Redirect URI

Enter the backend authentication URI set in Developer Hub, such as
http://<APP_FQDN>/api/auth/gitlab/handler/frame. Due to a peculiarity with GitLab OAuth,
ensure the URL has no trailing / after 'frame’.

Scopes
Select the following scopes from the list and click Save application:
read_user

Grants read-only access to the authenticated user's profile through the /user API
endpoint, which includes username, public email, and full name. Also grants access to
read-only APl endpoints under /users.

34

https://learn.microsoft.com/en-us/azure/active-directory/manage-apps/home-realm-discovery-policy
https://gitlab.com/-/profile/applications

CHAPTER 4. ENABLING AUTHENTICATION IN RED HAT DEVELOPER HUE

read_repository

Grants read-only access to the authenticated user’s profile through the /user API
endpoint, which includes username, public email, and full name. Also grants access to
read-only APl endpoints under /users.

write_repository

Grants read/write access to repositories on private projects using Git-over-HTTP (not
using the API).

openid

Grants permission to authenticate with GitLab using OpenID Connect. Also gives read-
only access to the user's profile and group memberships.

profile
Grants read-only access to the user’s profile data using OpenID Connect.
email

Grants read-only access to the user’s primary email address using OpenlID Connect.
Save the Application ID and Secret for the next step.

2. Add your Gitlab credentials in your Developer Hub secrets.

a. Edit your Developer Hub secrets, such as secrets-rhdh.

b. Add the following key/value pairs:

AUTH_GITLAB_CLIENT_ID

Enter the Application ID that you generated on GitLab, such as
4928c033ab3d592845c044a653bc20583baf84f2e67b954c6fdb32a532ab76c9.

AUTH_GITLAB_CLIENT_SECRET

Enter the Secret that you generated on Gitlab, such as gloas-
f2c9¢350759cc08346fbf94a476ae83c579c76dd629fc5eeefddc21eedfe0475.

3. Set up the Gitlab authentication provider in your Developer Hub custom configuration.

a. Edit your custom Developer Hub config map, such as app-config-rhdh.

b. In the app-config-rhdh.yaml content, add the gitlab provider configuration under the root
auth configuration, and enable the gitlab provider for sign-in:

app-config-rhdh.yaml fragment

auth:
environment: production
providers:
gitlab:
production:

clientld: ${AUTH_GITLAB_CLIENT_ID}
clientSecret: ${AUTH_GITLAB_CLIENT_SECRET}
audience: https.//gitlab.company.com a

callbackUrl: https://<APP_FQDN>/api/auth/gitiab/handler/frame @)
signinPage: gitlab 6

35

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

ﬂ Optionally, when using a self-hosted Gitlab: uncomment, and enter your GitLab
instance base URL, such as https://gitlab.company.com.

9 Optionally, when using a custom redirect URI: uncomment, and enter the URL
matching the Redirect URIregistered when creating your GitLab OAuth App, such as
http://<APP_FQDN>/api/auth/gitlab/handler/frame. Due to a peculiarity with GitLab
OAuth, ensure the URL has no trailing / after 'frame'.

9 To enable the Gitlab provider as default sign-in provider.

Verification

1. The backstage-developer-hub deployment starts a pod with the updated configuration.

2. Your Developer Hub sign-in page displays Sign in using GitLab.

36

CHAPTER 5. TELEMETRY DATA COLLECTION

CHAPTERS. TELEMETRY DATA COLLECTION

The telemetry data collection feature is enabled by default. Red Hat Developer Hub sends telemetry
data to Red Hat by using the backstage-plugin-analytics-provider-segment plugin.

IMPORTANT

You can disable the telemetry data collection feature based on your needs. For example,
in an air-gapped environment, you can disable this feature to avoid needless outbound
requests affecting the responsiveness of the RHDH application. For more details, see the
Disabling telemetry data collection in RHDH section.

Red Hat collects and analyzes the following data to improve your experience with Red Hat Developer
Hub:

® Events of page visits and clicks on links or buttons.

® System-related information, for example, locale, timezone, user agent including browser and OS
details.

® Page-related information, for example, title, category, extension name, URL, path, referrer, and
search parameters.

® Anonymized IP addresses, recorded as 0.0.0.0.

® Anonymized username hashes, which are unique identifiers used solely to identify the number of
unique users of the RHDH application.

With RHDH, you can customize the telemetry data collection feature and the telemetry Segment source
configuration based on your needs.

5.1. DISABLING TELEMETRY DATA COLLECTION IN RHDH

To disable telemetry data collection, you must disable the analytics-provider-segment plugin either
using the Helm Chart or the Red Hat Developer Hub Operator configuration.

NOTE

If the analytics-provider-segment plugin is already present in your dynamic plugins
configuration, set the value of the plugins.disabled parameter to true to disable
telemetry data collection.

Procedure

1. Disable the analytics-provider-segment plugin by using one of the following options:

Using Helm Chart

e Add the following YAML code in your Helm configuration file:

#...
global:
dynamic:
plugins:

37

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/administration_guide_for_red_hat_developer_hub/index#disabling-telemetry-data-collection_assembly-install-rhdh-ocp

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

- package: './dynamic-plugins/dist/janus-idp-backstage-plugin-analytics-provider-
segment’
disabled: true
#...

Using the Operator
a. Perform one of the following steps:

e |f you have created the dynamic-plugins-rhdh ConfigMap file, add the analytics-
provider-segment plugin to the list of plugins and set its plugins.disabled parameter
to true.

® |f you have not created the ConfigMap file, create it with the following YAML code:

kind: ConfigMap
apiVersion: vi

metadata:
name: dynamic-plugins-rhdh
data:
dynamic-plugins.yaml: |
includes:
- dynamic-plugins.default.yaml
plugins:
- package: './dynamic-plugins/dist/janus-idp-backstage-plugin-analytics-provider-
segment’

disabled: true

b. Set the value of the dynamicPluginsConfigMapName parameter to the name of the
ConfigMap file in your Backstage custom resource:

#...
spec:
application:
dynamicPluginsConfigMapName: dynamic-plugins-rhdh
#...

2. Save the configuration changes.

5.2. ENABLING TELEMETRY DATA COLLECTION IN RHDH

The telemetry data collection feature is enabled by default. However, if you have disabled the feature
and want to re-enable it, you must enable the analytics-provider-segment plugin either by using the
Helm Chart or the Red Hat Developer Hub Operator configuration.

NOTE

If the analytics-provider-segment plugin is already present in your dynamic plugins
configuration, set the value of the plugins.disabled parameter to false to enable
telemetry data collection.

Procedure

1. Configure the analytics-provider-segment plugin by using one of the following options:

38

CHAPTER 5. TELEMETRY DATA COLLECTION

Using Helm Chart

® Add the following YAML code in your Helm configuration file:

#...
global:

dynamic:

plugins:
- package: './dynamic-plugins/dist/janus-idp-backstage-plugin-analytics-provider-
segment’
disabled: false

#...

Using the Operator
a. Perform one of the following steps:

e |f you have created the dynamic-plugins-rhdh ConfigMap file, add the analytics-
provider-segment plugin to the list of plugins and set its plugins.disabled parameter
to false.

® |f you have not created the ConfigMap file, create it with the following YAML code:

kind: ConfigMap
apiVersion: vi

metadata:
name: dynamic-plugins-rhdh
data:
dynamic-plugins.yaml: |
includes:
- dynamic-plugins.default.yaml
plugins:
- package: './dynamic-plugins/dist/janus-idp-backstage-plugin-analytics-provider-
segment’

disabled: false

b. Set the value of the dynamicPluginsConfigMapName parameter to the name of the
ConfigMap file in your Backstage custom resource:

#...
spec:
application:
dynamicPluginsConfigMapName: dynamic-plugins-rhdh
#...

2. Save the configuration changes.

5.3. CUSTOMIZING TELEMETRY SEGMENT SOURCE

The analytics-provider-segment plugin sends the collected telemetry data to Red Hat by default.
However, you can configure a new Segment source that receives telemetry data based on your needs.
For configuration, you need a unique Segment write key that points to the Segment source.

39

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

NOTE

By configuring a new Segment source, you can collect and analyze the same set of data
that is mentioned in the Telemetry data collection section. You might also require to
create your own telemetry data collection notice for your application users.

Procedure

1. Configure integration with your Segment source by using one of the following options:

Using Helm Chart

® Add the following YAML code in your Helm configuration file:

#...
upstream:
backstage:
extraEnvVars:
- name: SEGMENT_WRITE_KEY

value: <segment_key> ﬂ
#...

ﬂ <segment_key> denotes a unique identifier for your Segment source.

Using the Operator

® Add the following YAML code in your Backstage custom resource (CR):

#...
extraEnvs:
envs:
- name: SEGMENT_WRITE_KEY

value: <segment_key> ﬂ
#...

ﬂ <segment_key> denotes a unique identifier for your Segment source.

2. Save the configuration changes.

40

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/administration_guide_for_red_hat_developer_hub/index#assembly-rhdh-telemetry

\PTER 6. ENABLING OBSERVABILITY FOR RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORWV

CHAPTER 6. ENABLING OBSERVABILITY FOR RED HAT
DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM

In OpenShift Container Platform, metrics are exposed through an HTTP service endpoint under the
/metrics canonical name. You can create a ServiceMonitor custom resource (CR) to scrape metrics
from a service endpoint in a user-defined project.

6.1. ENABLING METRICS MONITORING IN A HELM CHART
INSTALLATION ON AN OPENSHIFT CONTAINER PLATFORM CLUSTER

You can enable and view metrics for a Red Hat Developer Hub Helm deployment from the Developer
perspective of the OpenShift Container Platform web console.

Prerequisites

® Your OpenShift Container Platform cluster has monitoring for user-defined projects enabled.

® You have installed Red Hat Developer Hub on OpenShift Container Platform using the Helm
chart.

Procedure

1. From the Developer perspective in the OpenShift Container Platform web console, select the
Topology view.

2. Click the overflow menu of the Red Hat Developer Hub Helm chart, and select Upgrade.

883 redhat..gresqgl %

redhat-developer-hub ¥

Upgrade

3. Onthe Upgrade Helm Release page, select the YAML view option in Configure via, then
configure the metrics section in the YAML, as shown in the following example:

41

https://docs.openshift.com/container-platform/latest/observability/monitoring/enabling-monitoring-for-user-defined-projects.html

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

upstream:
#...
metrics:
serviceMonitor:
enabled: true
path: /metrics
#...

RedHat
OpenShift

Upgrade Helm Release

Upg or manually chai
Observe
Release name
Search
Functions
Builds
Pipelines
Helm

Project

4. Click Upgrade.

Verification

‘You are logged in as a temporary administrative user. Update the cluster QA

AML. For more information on tk

1. From the Developer perspective in the OpenShift Container Platform web console, select the

Observe view.

2. Click the Metrics tab to view metrics for Red Hat Developer Hub pods.

6.2. ENABLING METRICS MONITORING IN A RED HAT DEVELOPER
HUB OPERATOR INSTALLATION ON AN OPENSHIFT CONTAINER

PLATFORM CLUSTER

You can enable and view metrics for an Operator-installed Red Hat Developer Hub instance from the
Developer perspective of the OpenShift Container Platform web console.

Prerequisites

® Your OpenShift Container Platform cluster has monitoring for user-defined projects enabled.

42

https://docs.openshift.com/container-platform/latest/observability/monitoring/enabling-monitoring-for-user-defined-projects.html

\PTER 6. ENABLING OBSERVABILITY FOR RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORWV

® You have installed Red Hat Developer Hub on OpenShift Container Platform using the Red Hat
Developer Hub Operator.

® You have installed the OpenShift CLI (oc).

Procedure

Currently, the Red Hat Developer Hub Operator does not support creating a ServiceMonitor custom
resource (CR) by default. You must complete the following steps to create a ServiceMonitor CR to
scrape metrics from the endpoint.

1. Create the ServiceMonitor CR as a YAML file:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: <custom_resource_name> ﬂ
namespace: <project_name> g
labels:
app.kubernetes.io/instance: <custom_resource_name>
app.kubernetes.io/name: backstage
spec:
namespaceSelector:
matchNames:
- <project_name>
selector:
matchLabels:
rhdh.redhat.com/app: backstage-<custom_resource_name>
endpoints:
- port: backend
path: '/metrics'

ﬂ Replace <custom_resource_names with the name of your Red Hat Developer Hub CR.

Replace <project_names with the name of the OpenShift Container Platform project
where your Red Hat Developer Hub instance is running.

2. Apply the ServiceMonitor CR by running the following command:

I oc apply -f <filename>

Verification

1. From the Developer perspective in the OpenShift Container Platform web console, select the
Observe view.

2. Click the Metrics tab to view metrics for Red Hat Developer Hub pods.

6.3. ADDITIONAL RESOURCES

® OpenShift Container Platform - Managing metrics

43

https://docs.openshift.com/container-platform/latest/observability/monitoring/managing-metrics.html

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

CHAPTER 7. RUNNING THE RHDH APPLICATION BEHIND A
CORPORATE PROXY

You can run the RHDH application behind a corporate proxy by setting any of the following environment
variables before starting the application:

e HTTP_PROXY: Denotes the proxy to use for HTTP requests.
e HTTPS_PROXY: Denotes the proxy to use for HTTPS requests.

Additionally, you can set the NO_PROXY environment variable to exclude certain domains from
proxying. The variable value is a comma-separated list of hostnames that do not require a proxy to get
reached, even if one is specified.

7.1. CONFIGURING PROXY INFORMATION IN HELM DEPLOYMENT

For Helm-based deployment, either a developer or a cluster administrator with permissions to create
resources in the cluster can configure the proxy variables in a values.yaml Helm configuration file.

Prerequisites

® You have installed the Red Hat Developer Hub application.

Procedure

1. Set the proxy information in your Helm configuration file:

upstream:
backstage:
extraEnvVars:

- name: HTTP_PROXY
value: '<http_proxy_url>'

- name: HTTPS_PROXY
value: '<https_proxy_url>'

- name: NO_PROXY
value: '<no_proxy_settings>'

Where,

<http_proxy_url>

Denotes a variable that you must replace with the HTTP proxy URL.
<https_proxy_url>

Denotes a variable that you must replace with the HTTPS proxy URL.
<no_proxy_settings>

Denotes a variable that you must replace with comma-separated URLs, which you want to
exclude from proxying, for example, foo.com,baz.com.

Example: Setting proxy variables using Helm Chart

upstream:
backstage:
extraEnvVars:

44

CHAPTER 7. RUNNING THE RHDH APPLICATION BEHIND A CORPORATE PROXY

- name: HTTP_PROXY

value: 'http://10.10.10.105:3128'
- name: HTTPS_PROXY

value: 'http://10.10.10.106:3128'
- name: NO_PROXY

value: 'localhost,example.org'

2. Save the configuration changes.

7.2. CONFIGURING PROXY INFORMATION IN OPERATOR
DEPLOYMENT

For Operator-based deployment, the approach you use for proxy configuration is based on your role:

® As a cluster administrator with access to the Operator namespace, you can configure the proxy
variables in the Operator’s default ConfigMap file. This configuration applies the proxy settings
to all the users of the Operator.

® As adeveloper, you can configure the proxy variables in a custom resource (CR) file. This
configuration applies the proxy settings to the RHDH application created from that CR.

Prerequisites

® You have installed the Red Hat Developer Hub application.

Procedure
1. Perform one of the following steps based on your role:
® Asan administrator, set the proxy information in the Operator’s default ConfigMap file:

a. Search for a ConfigMap file named backstage-default-config in the default
namespace rhdh-operator and open it.

b. Find the deployment.yaml key.

c. Setthe value of the HTTP_PROXY, HTTPS_PROXY, and NO_PROXY environment
variables in the Deployment spec as shown in the following example:

Example: Setting proxy variables in a ConfigMap file

Other fields omitted
deployment.yaml: |-
apiVersion: apps/v1
kind: Deployment
spec:
template:
spec:
Other fields omitted
initContainers:
- name: install-dynamic-plugins
command omitted
env:
- name: NPM_CONFIG_USERCONFIG

45

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

value: /opt/app-root/src/.npmrc.dynamic-plugins
- name: HTTP_PROXY
value: 'http://10.10.10.105:3128"
- name: HTTPS_PROXY
value: 'http://10.10.10.106:3128"
- name: NO_PROXY
value: 'localhost,example.org'
Other fields omitted
containers:
- name: backstage-backend
Other fields omitted
env:
- name: APP_CONFIG_backend_listen_port
value: "7007"
- name: HTTP_PROXY
value: 'http://10.10.10.105:3128"
- name: HTTPS_PROXY
value: 'http://10.10.10.106:3128"
- name: NO_PROXY
value: 'localhost,example.org’

® Asa developer, set the proxy information in your custom resource (CR) file as shown in the
following example:

Example: Setting proxy variables in a CR file

spec:
Other fields omitted
application:
extraEnvs:
envs:
- name: HTTP_PROXY
value: 'http://10.10.10.105:3128"
- name: HTTPS_PROXY
value: 'http://10.10.10.106:3128"
- name: NO_PROXY
value: 'localhost,example.org'

2. Save the configuration changes.

46

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH
AMAZON WEB SERVICES (AWS)

You can integrate your Red Hat Developer Hub application with Amazon Web Services (AWS), which
can help you streamline your workflows within the AWS ecosystem. Integrating the Developer Hub
resources with AWS provides access to a comprehensive suite of tools, services, and solutions.

The integration with AWS requires the deployment of Developer Hub in Elastic Kubernetes Service
(EKS) using one of the following methods:

® The Helm chart

® The Red Hat Developer Hub Operator

8.1. DEPLOYING RED HAT DEVELOPER HUB ON ELASTIC
KUBERNETES SERVICE (EKS) USING HELM CHART

When you deploy Developer Hub in Elastic Kubernetes Service (EKS) using Helm Chart, it orchestrates a
robust development environment within the AWS ecosystem.

Prerequisites

® You have an EKS cluster with AWS Application Load Balancer (ALB) add-on installed. For more
information, see Application load balancing on Amazon Developer Hub and Installing the AWS
Load Balancer Controller add-on.

® You have installed the kubectl CLI.

® You are logged into your cluster using kubectl, and have developer or admin permissions.

® You have configured a domain name for your Developer Hub instance. The domain name can be
a hosted zone entry on Route 53 or managed outside of AWS. For more information, see

Configuring Amazon Route 53 as your DNS service documentation.

® You have an entry in the AWS Certificate Manager (ACM) for your preferred domain name.
Make sure to keep a record of your Certificate ARN.

® You have subscribed to registry.redhat.io. For more information, see Red Hat Container
Registry Authentication.

® You have set the context to the EKS cluster in your current kubeconfig. For more information,
see Creating or updating a kubeconfig file for an Amazon EKS cluster .

® You have installed Helm 3 or the latest. For more information, see Using Helm with Amazon
EKS.

Procedure

1. Go to your terminal and run the following command to add the Helm chart repository containing
the Developer Hub chart to your local Helm registry:

I helm repo add openshift-helm-charts https://charts.openshift.io/

2. Create and activate the <rhdh> namespace:

47

https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://kubernetes.io/docs/reference/kubectl/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html
https://access.redhat.com/RegistryAuthentication
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/helm.html

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

DEPLOYMENT_NAME=<redhat-developer-hub>
NAMESPACE=<rhdh>

kubectl create namespace ${NAMESPACE}

kubectl config set-context --current --namespace=${NAMESPACE}

3. Create a pull secret, which is used to pull the Developer Hub images from the Red Hat
Ecosystem, by running the following command:

kubectl create secret docker-registry rhdh-pull-secret \
--docker-server=registry.redhat.io \
--docker-username=<user_name> \ﬂ
--docker-password=<password> \ 9
--docker-email=<email> 6

ﬂ Enter your username in the command.
9 Enter your password in the command.

9 Enter your email address in the command.

4. Create a file named values.yaml using the following template:

global:
TODQ: Set your application domain name.
host: <your Developer Hub domain name>

route:
enabled: false

upstream:
service:
NodePort is required for the ALB to route to the Service
type: NodePort

ingress:
enabled: true
annotations:
kubernetes.io/ingress.class: alb

alb.ingress.kubernetes.io/scheme: internet-facing

TODO: Using an ALB HTTPS Listener requires a certificate for your own domain. Fill in
the ARN of your certificate, e.g.:
alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:xxx:xxxx:certificate/xxxxxx

alb.ingress.kubernetes.io/listen-ports: [{"HTTP": 80}, {"HTTPS":443}]

48

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

alb.ingress.kubernetes.io/ssl-redirect: '443'

TODQ: Set your application domain name.
external-dns.alpha.kubernetes.io/hostname: <your rhdh domain name>

backstage:
image:
pullSecrets:
- rhdh-pull-secret
podSecurityContext:
you can assign any random value as fsGroup
fsGroup: 2000
postgresql:
image:
pullSecrets:
- rhdh-pull-secret
primary:
podSecurityContext:
enabled: true
you can assign any random value as fsGroup
fsGroup: 3000
volumePermissions:
enabled: true

5. Run the following command in your terminal to deploy Developer Hub using the latest version of
Helm Chart and using the values.yaml file created in the previous step:

helm install rhdh \
openshift-helm-charts/redhat-developer-hub \
[--version 1.2.1]\
--values /path/to/values.yami

NOTE

For the latest chart version, see https://github.com/openshift-helm-
charts/charts/tree/main/charts/redhat/redhat/redhat-developer-hub

-

6. Configure your Developer Hub Helm chart instance with the Developer Hub database password
and router base URL values from your cluster:

PASSWORD=$(kubectl get secret redhat-developer-hub-postgresql -o jsonpath="
{.data.password}" | base64 -d)
CLUSTER_ROUTER_BASE=$(kubectl get route console -n openshift-console -
o=jsonpath="{.spec.host}' | sed 's/"[*".]*\.//')
helm upgrade $DEPLOYMENT_NAME -i "https://github.com/openshift-helm-
charts/charts/releases/download/redhat-redhat-developer-hub-1.2.1/redhat-developer-hub-
1.2.1.tgz" \

--set global.clusterRouterBase="$CLUSTER_ROUTER_BASE"\

--set global.postgresql.auth.password="$PASSWORD"

7. Display the running Developer Hub instance URL, by running the following command:

49

https://github.com/openshift-helm-charts/charts/tree/main/charts/redhat/redhat/redhat-developer-hub

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

I echo "https://$DEPLOYMENT_NAME-$NAMESPACE.$CLUSTER_ROUTER_BASE"

Verification

® Open the running Developer Hub instance URL in your browser to use Developer Hub.

Upgrade

® To upgrade the deployment, run the following command:

helm upgrade $DEPLOYMENT_NAME -i https://github.com/openshift-helm-
charts/charts/releases/download/redhat-redhat-developer-hub-1.2.1/redhat-developer-hub-
1.2.1.1gz

Delete

® To delete the deployment, run the following command:

I helm -n SNAMESPACE delete $DEPLOYMENT_NAME

8.2. DEPLOYING RED HAT DEVELOPER HUB ON ELASTIC
KUBERNETES SERVICE (EKS) USING THE OPERATOR
You can deploy the Developer Hub on EKS using the Red Hat Developer Hub Operator with or without

Operator Lifecycle Manager (OLM) framework. Following that, you can proceed to install your
Developer Hub instance in EKS.

8.2.1. Installing the Red Hat Developer Hub Operator with the OLM framework

Prerequisites

® You have set the context to the EKS cluster in your current kubeconfig. For more information,
see Creating or updating a kubeconfig file for an Amazon EKS cluster .

® You have installed kubectl. For more information, see Installing or updating kubectl.

® You have subscribed to registry.redhat.io. For more information, see Red Hat Container
Registry Authentication.

® You have installed the Operator Lifecycle Manager (OLM). For more information about
installation and troubleshooting, see How do | get Operator Lifecycle Manager?

Procedure

1. Run the following command in your terminal to create the rhdh-operator namespace where the
Operator is installed:

I kubectl create namespace rhdh-operator
2. Create a pull secret using the following command:

I kubectl -n rhdh-operator create secret docker-registry rhdh-pull-secret \

50

https://olm.operatorframework.io
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://access.redhat.com/RegistryAuthentication
https://operatorhub.io/how-to-install-an-operator#How-do-I-get-Operator-Lifecycle-Manager?

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

--docker-server=registry.redhat.io \
--docker-username=<user_name> \ ﬂ
--docker-password=<password> \ 9
--docker-email=<email> 6

ﬂ Enter your username in the command.
9 Enter your password in the command.

9 Enter your email address in the command.

The created pull secret is used to pull the Developer Hub images from the Red Hat Ecosystem.

3. Create a CatalogSource resource that contains the Operators from the Red Hat Ecosystem:

cat <<EOF | kubectl -n rhdh-operator apply -f -
apiVersion: operators.coreos.com/vialphat
kind: CatalogSource
metadata:
name: redhat-catalog
spec:
sourceType: grpc
image: registry.redhat.io/redhat/redhat-operator-index:v4.15
secrets:
- "rhdh-pull-secret”
displayName: Red Hat Operators
EOF

4. Create an OperatorGroup resource as follows:

cat <<EOF | kubectl apply -n rhdh-operator -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: rhdh-operator-group
EOF

5. Create a Subscription resource using the following code:

cat <<EOF | kubectl apply -n rhdh-operator -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: rhdh
namespace: rhdh-operator
spec:
channel: fast
installPlanApproval: Automatic
name: rhdh
source: redhat-catalog
sourceNamespace: rhdh-operator
startingCSV: rhdh-operator.v1.2.0
EOF

51

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

6. Run the following command to verify that the created Operator is running:
I kubectl -n rhdh-operator get pods -w

If the operator pod shows ImagePullBackOff status, then you might need permissions to pull
the image directly within the Operator deployment’s manifest.

TIP

You can include the required secret name in the
deployment.spec.template.spec.imagePullSecrets list and verify the deployment name using
kubectl get deployment -n rhdh-operator command:

kubectl -n rhdh-operator patch deployment \

rhdh.fast --patch '{"spec":{"template":{"spec":{"imagePullSecrets":[{"name":"rhdh-pull-
secret"} I\

--type=merge

7. Update the default configuration of the operator to ensure that Developer Hub resources can
start correctly in EKS using the following steps:

a. Edit the backstage-default-config ConfigMap in the rhdh-operator namespace using the
following command:

I kubectl -n rhdh-operator edit configmap backstage-default-config

b. Locate the db-statefulset.yaml string and add the fsGroup to its
spec.template.spec.securityContext, as shown in the following example:

db-statefulset.yaml: |
apiVersion: apps/v1

kind: StatefulSet

--- TRUNCATED ---

spec:

--- TRUNCATED ---
restartPolicy: Always
securityContext:

You can assign any random value as fsGroup
fsGroup: 2000
serviceAccount: default
serviceAccountName: default
--- TRUNCATED ---

c. Locate the deployment.yaml string and add the fsGroup to its specification, as shown in
the following example:

deployment.yaml: |
apiVersion: apps/v1
kind: Deployment
--- TRUNCATED ---
spec:
securityContext:
You can assign any random value as fsGroup

52

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

fsGroup: 3000
automountServiceAccountToken: false
--- TRUNCATED ---

d. Locate the service.yaml string and change the type to NodePort as follows:

service.yaml: |
apiVersion: v1
kind: Service
spec:
NodePort is required for the ALB to route to the Service
type: NodePort
--- TRUNCATED ---

e. Save and exit.
Wait for a few minutes until the changes are automatically applied to the operator pods.

8.2.2. Installing the Red Hat Developer Hub Operator without the OLM framework

Prerequisites
® You have installed the following commands:
o git
o make

o sed

Procedure

1. Clone the Operator repository to your local machine using the following command:

I git clone --depth=1 https://github.com/janus-idp/operator.qgit rhdh-operator && cd rhdh-
operator

2. Run the following command and generate the deployment manifest:
I make deployment-manifest

The previous command generates a file named rhdh-operator-<VERSION>.yaml, which is
updated manually.

3. Run the following command to apply replacements in the generated deployment manifest:

sed -i "s/backstage-operator/rhdh-operator/g" rhdh-operator-*.yaml
sed -i "s/backstage-system/rhdh-operator/g" rhdh-operator-*.yaml
sed -i "s/backstage-controller-manager/rhdh-controller-manager/g" rhdh-operator-*.yaml

4. Open the generated deployment manifest file in an editor and perform the following steps:

a. Locate the db-statefulset.yaml string and add the fsGroup to its
spec.template.spec.securityContext, as shown in the following example:

53

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

db-statefulset.yaml: |
apiVersion: apps/v1

kind: StatefulSet

--- TRUNCATED ---

spec:

--- TRUNCATED ---
restartPolicy: Always
securityContext:

You can assign any random value as fsGroup
fsGroup: 2000
serviceAccount: default
serviceAccountName: default
--- TRUNCATED ---

b. Locate the deployment.yaml string and add the fsGroup to its specification, as shown in
the following example:

deployment.yaml: |
apiVersion: apps/v1
kind: Deployment
--- TRUNCATED ---
spec:
securityContext:
You can assign any random value as fsGroup
fsGroup: 3000
automountServiceAccountToken: false
--- TRUNCATED ---

c. Locate the service.yaml string and change the type to NodePort as follows:

service.yaml: |
apiVersion: v1
kind: Service
spec:
NodePort is required for the ALB to route to the Service
type: NodePort
--- TRUNCATED ---

d. Replace the defaultimages with the images that are pulled from the Red Hat Ecosystem:

sed -i "s#gcr.io/kubebuilder/kube-rbac-proxy:.*#registry.redhat.io/openshift4/ose-kube-
rbac-proxy:v4.15#g" rhdh-operator-*.yaml

sed -i "s#quay.io/janus-idp/operator:.*#registry.redhat.io/rhdh/rhdh-rhel9-operator:1.1#g"
rhdh-operator-*.yaml

sed -i "s#quay.io/janus-idp/backstage-showcase:.*#registry.redhat.io/rhdh/rhdh-hub-
rhel9:1.1#g" rhdh-operator-*.yaml

sed -i "s#quay.io/fedora/postgresql-15:.*#registry.redhat.io/rhel9/postgresql-15:latest#g"
rhdh-operator-*.yaml

5. Add the image pull secret to the manifest in the Deployment resource as follows:

54

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

--- TRUNCATED ---

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app.kubernetes.io/component: manager
app.kubernetes.io/created-by: rhdh-operator
app.kubernetes.io/instance: controller-manager
app.kubernetes.io/managed-by: kustomize
app.kubernetes.io/name: deployment
app.kubernetes.io/part-of: rhdh-operator
control-plane: controller-manager
name: rhdh-controller-manager
namespace: rhdh-operator
spec:
replicas: 1
selector:
matchLabels:
control-plane: controller-manager
template:
metadata:
annotations:
kubectl.kubernetes.io/default-container: manager
labels:
control-plane: controller-manager
spec:
imagePullSecrets:
- name: rhdh-pull-secret
--- TRUNCATED ---

6. Apply the manifest to deploy the operator using the following command:

I kubectl apply -f rhdh-operator-VERSION.yaml

7. Run the following command to verify that the Operator is running:

I kubectl -n rhdh-operator get pods -w

8.2.3. Installing the Developer Hub instance in EKS

After the Red Hat Developer Hub Operator is installed and running, you can create a Developer Hub
instance in EKS.

Prerequisites

® You have an EKS cluster with AWS Application Load Balancer (ALB) add-on installed. For more
information, see Application load balancing on Amazon Elastic Kubernetes Service and Installing
the AWS Load Balancer Controller add-on.

® You have configured a domain name for your Developer Hub instance. The domain name can be

a hosted zone entry on Route 53 or managed outside of AWS. For more information, see
Configuring Amazon Route 53 as your DNS service documentation.

55

https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

® You have an entry in the AWS Certificate Manager (ACM) for your preferred domain name.
Make sure to keep a record of your Certificate ARN.

® You have subscribed to registry.redhat.io. For more information, see Red Hat Container
Registry Authentication.

® You have set the context to the EKS cluster in your current kubeconfig. For more information,
see Creating or updating a kubeconfig file for an Amazon {eks? cluster .

® You have installed kubectl. For more information, see Installing or updating kubectl.

Procedure

1. Create a ConfigMap named app-config-rhdh containing the Developer Hub configuration using
the following template:

apiVersion: vi
kind: ConfigMap
metadata:
name: app-config-rhdh
data:
"app-config-rhdh.yaml": |
app:
title: Red Hat Developer Hub
baseUrl: https://<rhdh_dns_name>
backend:
auth:
keys:

- secret: "${BACKEND_SECRET}"
baseUrl: https://<rhdh_dns_name>
cors:

origin: https://<rhdh_dns_name>

2. Create a Secret named secrets-rhdh and add a key named BACKEND_SECRET with a
Base64-encoded string as value:

apiVersion: vi

kind: Secret

metadata:
name: secrets-rhdh

stringData:
TODOQO: See htips.//backstage.io/docs/auth/service-to-service-auth/#setup
BACKEND_SECRET: "xxx"

IMPORTANT

Ensure that you use a unique value of BACKEND_SECRET for each Developer
Hub instance.

You can use the following command to generate a key:

I node-p'require("crypto").randomBytes(24).toString("base64")'

56

https://access.redhat.com/RegistryAuthentication
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

3. To enable pulling the PostgreSQL image from the Red Hat Ecosystem Catalog, add the image
pull secret in the default service account within the namespace where the Developer Hub
instance is being deployed:

kubectl patch serviceaccount default\
-p '{"imagePullSecrets": [{"name": "rhdh-pull-secret"}]}' \
-n <your_namespace>

4. Create a Custom Resource file using the following template:

apiVersion: rhdh.redhat.com/vialpha1i
kind: Backstage
metadata:
TODO: this the name of your Developer Hub instance
name: my-rhdh
spec:
application:
imagePullSecrets:
- "rhdh-pull-secret”
route:
enabled: false
appConfig:
configMaps:
- name: "app-config-rhdh"
extraEnvs:
secrets:
- name: "secrets-rhdh"

5. Create an Ingress resource using the following template, ensuring to customize the names as
needed:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

TODO: this the name of your Developer Hub Ingress
name: my-rhdh
annotations:

alb.ingress.kubernetes.io/scheme: internet-facing

alb.ingress.kubernetes.io/target-type: ip

TODO: Using an ALB HTTPS Listener requires a certificate for your own domain. Fill in
the ARN of your certificate, e.g.:

alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-xxx:xxxx:certificate/xxxxxx

alb.ingress.kubernetes.io/listen-ports: [{"HTTP": 80}, {"HTTPS":443}]

alb.ingress.kubernetes.io/ssl-redirect: '443'

TODQ: Set your application domain name.
external-dns.alpha.kubernetes.io/hostname: <rhdh_dns_name>

spec:

ingressClassName: alb
rules:

57

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

TODOQ: Set your application domain name.
- host: <rhdh_dns_name>
http:
paths:
- path: /
pathType: Prefix
backend:
service:
TODO: my-rhdh is the name of your Backstage Custom Resource.
Adjust if you changed it!
name: backstage-my-rhdh
port:
name: http-backend

In the previous template, replace * <rhdh_dns_name>" with your Developer Hub domain name
and update the value of alb.ingress.kubernetes.io/certificate-arn with your certificate ARN.

Verification

Wait until the DNS name is responsive, indicating that your Developer Hub instance is ready for use.

8.3. MONITORING AND LOGGING WITH AMAZON WEB SERVICES
(AWS) IN RED HAT DEVELOPER HUB

In the Red Hat Developer Hub, monitoring and logging are facilitated through Amazon Web Services
(AWS) integration. With features like Amazon CloudWatch for real-time monitoring and Amazon
Prometheus for comprehensive logging, you can ensure the reliability, scalability, and compliance of
your Developer Hub application hosted on AWS infrastructure.

This integration enables you to oversee, diagnose, and refine your applications in the Red Hat
ecosystem, leading to an improved development and operational journey.
8.3.1. Monitoring with Amazon Prometheus

Red Hat Developer Hub provides Prometheus metrics related to the running application. For more
information about enabling or deploying Prometheus for EKS clusters, see Prometheus metrics in the
Amazon documentation.

To monitor Developer Hub using Amazon Prometheus, you need to create an Amazon managed service
for the Prometheus workspace and configure the ingestion of the Developer Hub Prometheus metrics.
For more information, see Create a workspace and Ingest Prometheus metrics to the workspace
sections in the Amazon documentation.

After ingesting Prometheus metrics into the created workspace, you can configure the metrics scraping
to extract data from pods based on specific pod annotations.

8.3.1.1. Configuring annotations for monitoring

You can configure the annotations for monitoring in both Helm deployment and Operator-backed
deployment.

Helm deployment

To annotate the backstage pod for monitoring, update your values.yaml file as follows:

I upstream:

58

https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html
https://aws.amazon.com/prometheus/
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-onboard-create-workspace.html
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-onboard-ingest-metrics.html

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

backstage:
--- TRUNCATED ---
podAnnotations:
prometheus.io/scrape: 'true'
prometheus.io/path: /metrics'
prometheus.io/port: 7007
prometheus.io/scheme: 'http’

Operator-backed deployment

Procedure

1. As an administrator of the operator, edit the default configuration to add Prometheus
annotations as follows:

Update OPERATOR_NS accordingly
OPERATOR_NS=rhdh-operator
kubectl edit configmap backstage-default-config -n "${OPERATOR_NS}"

2. Find the deployment.yaml key in the ConfigMap and add the annotations to the
spec.template.metadata.annotations field as follows:

deployment.yaml: |-
apiVersion: apps/v1
kind: Deployment
--- truncated ---
spec:
template:
--- truncated ---
metadata:
labels:
rhdh.redhat.com/app: # placeholder for 'backstage-<cr-name>'
--- truncated ---
annotations:
prometheus.io/scrape: 'true’
prometheus.io/path: /metrics'
prometheus.io/port: '7007'
prometheus.io/scheme: 'hitp’
--- truncated ---

3. Save your changes.

Verification

To verify if the scraping works:

1. Use kubectl to port-forward the Prometheus console to your local machine as follows:

I kubectl --namespace=prometheus port-forward deploy/prometheus-server 9090

2. Open your web browser and navigate to http://localhost:9090 to access the Prometheus
console.

3. Monitor relevant metrics, such as process_cpu_user_seconds_total.

59

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

8.3.2. Logging with Amazon CloudWatch logs

Logging within the Red Hat Developer Hub relies on the winston library. By default, logs at the debug
level are not recorded. To activate debug logs, you must set the environment variable LOG_LEVEL to
debug in your Red Hat Developer Hub instance.

8.3.2.1. Configuring the application log level

You can configure the application log level in both Helm deployment and Operator-backed deployment.

Helm deployment

To update the logging level, add the environment variable LOG_LEVEL to your Helm chart’s
values.yaml file:

upstream:
backstage:
--- Truncated ---
extraEnvVars:
-name: LOG_LEVEL
value: debug

Operator-backed deployment

You can modify the logging level by including the environment variable LOG_LEVEL in your custom
resource as follows:

spec:
Other fields omitted
application:
extraEnvs:
envs:
-name: LOG_LEVEL
value: debug

8.3.2.2. Retrieving logs from Amazon CloudWatch

The CloudWatch Container Insights are used to capture logs and metrics for Amazon EKS. For more
information, see Logging for Amazon EKS documentation.

To capture the logs and metrics, install the Amazon CloudWatch Observability EKS add-on in your
cluster. Following the setup of Container Insights, you can access container logs using Logs Insights or
Live Tail views.

CloudWatch names the log group where all container logs are consolidated in the following manner:

/aws/containerinsights/<ClusterName>/application

Following is an example query to retrieve logs from the Developer Hub instance:

fields @timestamp, @message, kubernetes.container_name
| filter kubernetes.container_name in ["install-dynamic-plugins”, "backstage-backend"]

60

https://github.com/winstonjs/winston
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/kubernetes-eks-logging.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-EKS-addon.html

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

8.4. USING AMAZON COGNITO AS AN AUTHENTICATION PROVIDER
IN RED HAT DEVELOPER HUB

In this section, Amazon Cognito is an AWS service for adding an authentication layer to Developer Hub.
You can sign in directly to the Developer Hub using a user pool or fedarate through a third-party identity
provider.

Although Amazon Cognito is not part of the core authentication providers for the Developer Hub, it can
be integrated using the generic OpenlID Connect (OIDC) provider.

You can configure your Developer Hub in both Helm Chart and Operator-backed deployments.

Prerequisites

® You have a User Pool or you have created a new one. For more information about user pools,
see Amazon Cognito user pools documentation.

NOTE

Ensure that you have noted the AWS region where the user pool is located and
the user pool ID.

® You have created an App Client within your user pool for integrating the hosted Ul. For more
information, see Setting up the hosted Ul with the Amazon Cognito console .
When setting up the hosted Ul using the Amazon Cognito console, ensure to make the following
adjustments:

1. In the Allowed callback URL(s) section, include the URL
https://<rhdh_url>/api/auth/oidc/handler/frame. Ensure to replace <rhdh_url> with your
Developer Hub application’s URL, such as, my.rhdh.example.com.

2. Similarly, in the Allowed sign-out URL(s) section, add https://<rhdh_url>. Replace
<rhdh_url> with your Developer Hub application’s URL, such as my.rhdh.example.com.

3. Under OAuth 2.0 grant types, select Authorization code grantto return an authorization
code.

4. Under OpenlID Connect scopes, ensure to select at least the following scopes:

o OpenlD
o Profile
o Email

Helm deployment

Procedure

1. Edit or create your custom app-config-rhdh ConfigMap as follows:

apiVersion: vi
kind: ConfigMap
metadata:

name: app-config-rhdh

61

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html?icmpid=docs_cognito_console_help_panel
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-app-integration.html#cognito-user-pools-create-an-app-integration

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

data:
"app-config-rhdh.yaml": |
--- Truncated ---
app:
title: Red Hat Developer Hub

signinPage: oidc
auth:
environment: production
session:
secret: ${AUTH_SESSION_SECRET}
providers:
oidc:
production:
clientld: ${AWS_COGNITO_APP_CLIENT_ID}
clientSecret: ${AWS_COGNITO_APP_CLIENT_SECRET}
metadataUrl: ${AWS_COGNITO_APP_METADATA_URL}
callbackUrl: ${AWS_COGNITO_APP_CALLBACK_URL}
scope: 'openid profile email’
prompt: auto

2. Edit or create your custom secrets-rhdh Secret using the following template:

apiVersion: vi

kind: Secret

metadata:
name: secrets-rhdh

stringData:
AUTH_SESSION_SECRET: "my super auth session secret - change me!ll"
AWS_COGNITO_APP_CLIENT_ID: "my-aws-cognito-app-client-id"
AWS_COGNITO_APP_CLIENT_SECRET: "my-aws-cognito-app-client-secret"
AWS_COGNITO_APP_METADATA_URL: "https://cognito-idp.

[region].amazonaws.com/[userPoolld]/.well-known/openid-configuration”
AWS_COGNITO_APP_CALLBACK_URL:

"https://[rhdh_dns]/api/auth/oidc/handler/frame”

3. Add references of both the ConfigMap and Secret resources in your values.yaml file:

upstream:
backstage:
image:
pullSecrets:
- rhdh-pull-secret
podSecurityContext:
fsGroup: 2000
extraAppConfig:
- filename: app-config-rhdh.yaml
configMapRef: app-config-rhdh
extraEnvVarsSecrets:
- secrets-rhdh

4. Upgrade the Helm deployment:

helm upgrade rhdh \
openshift-helm-charts/redhat-developer-hub \

62

CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)

[--version 1.2.1]\
--values /path/to/values.yaml

Operator-backed deployment

1. Add the following code to your app-config-rhdh ConfigMap:

apiVersion: vi
kind: ConfigMap
metadata:
name: app-config-rhdh
data:
"app-config-rhdh.yaml": |
--- Truncated ---

signinPage: oidc
auth:
Production to disable guest user login
environment: production
Providing an auth.session.secret is needed because the oidc provider requires
session support.
session:
secret: ${AUTH_SESSION_SECRET}
providers:
oidc:
production:
See https.//github.com/backstage/backstage/blob/master/plugins/auth-
backend-module-oidc-provider/config.d.ts
clientld: ${AWS_COGNITO_APP_CLIENT_ID}
clientSecret: ${AWS_COGNITO_APP_CLIENT_SECRET}
metadataUrl: ${AWS_COGNITO_APP_METADATA_URL}
callbackUrl: ${AWS_COGNITO_APP_CALLBACK_URL}
Minimal set of scopes needed. Feel free to add more if needed.
scope: 'openid profile email’

Note that by default, this provider will use the 'none' prompt which assumes
that your are already logged on in the IDP.

You should set prompt to:

- auto: will let the IDP decide if you need to log on or if you can skip login
when you have an active SSO session

- login: will force the IDP to always present a login form to the user
prompt: auto

2. Add the following code to your secrets-rhdh Secret:

apiVersion: vi
kind: Secret
metadata:

name: secrets-rhdh
stringData:

--- Truncated ---

TODQO: Change auth session secret.
AUTH_SESSION_SECRET: "my super auth session secret - change me!ll"

63

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

TODO: user pool app client ID
AWS_COGNITO_APP_CLIENT_ID: "my-aws-cognito-app-client-id"

TODO: user pool app client Secret
AWS_COGNITO_APP_CLIENT_SECRET: "my-aws-cognito-app-client-secret”

TODO: Replace region and user pool ID
AWS_COGNITO_APP_METADATA_URL: "https://cognito-idp.
[region].amazonaws.com/[userPoolld]/.well-known/openid-configuration”

TODO: Replace <rhdh_dns>
AWS_COGNITO_APP_CALLBACK_URL:
"https://[rhdh_dns]/api/auth/oidc/handler/frame"

3. Ensure your Custom Resource contains references to both the app-config-rhdh
ConfigMap and secrets-rhdh Secret:

apiVersion: rhdh.redhat.com/vialpha1l
kind: Backstage
metadata:
TODO: this the name of your Developer Hub instance
name: my-rhdh
spec:
application:
imagePullSecrets:
- "rhdh-pull-secret”
route:
enabled: false
appConfig:
configMaps:
- name: "app-config-rhdh"
extraEnvs:
secrets:
- name: "secrets-rhdh"

4. Optional: If you have an existing Developer Hub instance backed by the Custom
Resource and you have not edited it, you can manually delete the Developer Hub
deployment to recreate it using the operator. Run the following command to delete the
Developer Hub deployment:

I kubectl delete deployment -l app.kubernetes.io/instance=<CR_NAME>

Verification

1. Navigate to your Developer Hub web URL and sign in using OIDC authentication, which prompts
you to authenticate through the configured AWS Cognito user pool.

2. Once logged in, access Settings and verify user details.

64

*HAPTER 9. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

CHAPTER 9. RED HAT DEVELOPER HUB INTEGRATION WITH
MICROSOFT AZURE KUBERNETES SERVICE (AKS)

You can integrate Developer Hub with Microsoft Azure Kubernetes Service (AKS), which provides a
significant advancement in development, offering a streamlined environment for building, deploying,
and managing your applications.

This integration requires the deployment of Developer Hub on AKS using one of the following methods:
® The Helm chart

® The Red Hat Developer Hub Operator

9.1. DEPLOYING RED HAT DEVELOPER HUB ON AZURE KUBERNETES
SERVICE (AKS) USING THE HELM CHART

You can deploy your Developer Hub application on Azure Kubernetes Service (AKS) to access a
comprehensive solution for building, testing, and deploying applications.

Prerequisites

® You have an Azure account with active subscription.

® You have installed the Azure CLI.

® You have installed the kubectl CLI.

® You are logged into your cluster using kubectl, and have developer or admin permissions.

® You have installed Helm 3 or the latest.

Comparison of AKS specifics with the base Developer Hub deployment

® Permissions issue: Developer Hub containers might encounter permission-related errors, such
as Permission denied when attempting certain operations. This error can be addresssed by
adjusting the fsGroup in the PodSpec.securityContext.

® Ingress configuration: In AKS, configuring ingress is essential for accessing the installed

Developer Hub instance. Accessing the Developer Hub instance requires enabling the Routing
add-on, an NGINX-based Ingress Controller, using the following command:

az aks approuting enable --resource-group <your_ResourceGroup> --name
<your_ClusterName>

TIP

You might need to install the Azure CLI extension aks-preview. If the extension is not installed
automatically, you might need to install it manually using the following command:

I az extension add --upgrade -n aks-preview --allow-preview true

65

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/reference/kubectl/

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

NOTE

After you install the Ingress Controller, the app-routing-system namespace with
the Ingress Controller will be deployed in your cluster. Note the address of your
Developer Hub application from the installed Ingress Controller (for example,
108.141.70.228) for later access to the Developer Hub application, later
referenced as <app_address>.

kubectl get svc nginx --namespace app-routing-system -o
jsonpath="{.status.loadBalancer.ingress[0].ip}'

® Namespace management You can create a dedicated namespace for Developer Hub
deployment in AKS using the following command:

I kubectl create namespace <your_namespace>

Procedure

1. Login to AKS by running the following command:

I az login [--tenant=<optional_directory_name>]

2. Create aresource group by running the following command:

I az group create --name <resource_group_name> --location <location>

TIP

You can list available regions by running the following command:

I az account list-locations -o table

3. Create an AKS cluster by running the following command:
az aks create \
--resource-group <resource_group_names \
--name <cluster_name> \

--enable-managed-identity \
--generate-ssh-keys

You can refer to --help for additional options.

4. Connect to your cluster by running the following command:
I az aks get-credentials --resource-group <resource_group_name> --name <cluster_name>

The previous command configures the Kubernetes client and sets the current context in the
kubeconfig to point to your AKS cluster.

5. Open terminal and run the following command to add the Helm chart repository:

I helm repo add openshift-helm-charts https://charts.openshift.io/

66

*HAPTER 9. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

6. Create and activate the <rhdh> namespace:

DEPLOYMENT_NAME=<redhat-developer-hub>
NAMESPACE=<rhdh>

kubectl create namespace ${NAMESPACE}

kubectl config set-context --current --namespace=${NAMESPACE}

7. Create a pull secret, which is used to pull the Developer Hub images from the Red Hat
Ecosystem, by running the following command:

kubectl -n SNAMESPACE create secret docker-registry rhdh-pull-secret \
--docker-server=registry.redhat.io \
--docker-username=<redhat_user_name> \
--docker-password=<redhat_password> \
--docker-email=<email>

8. Create a file named values.yaml using the following template:

global:
host: <app_address>
route:
enabled: false
upstream:
ingress:
enabled: true
className: webapprouting.kubernetes.azure.com
host:
backstage:
image:
pullSecrets:
- rhdh-pull-secret
podSecurityContext:
fsGroup: 3000
postgresql:
image:
pullSecrets:
- rhdh-pull-secret
primary:
podSecurityContext:
enabled: true
fsGroup: 3000
volumePermissions:
enabled: true

9. Toinstall Developer Hub by using the Helm chart, run the following command:

helm -n SNAMESPACE install -f values.yaml $DEPLOYMENT_NAME openshift-helm-
charts/redhat-developer-hub --version 1.2.1

10. Verify the deployment status:

I kubectl get deploy $DEPLOYMENT_NAME -n SNAMESPACE

67

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

1. Configure your Developer Hub Helm chart instance with the Developer Hub database password
and router base URL values from your cluster:

PASSWORD=$(kubectl get secret redhat-developer-hub-postgresql -o jsonpath="
{.data.password}" | base64 -d)
CLUSTER_ROUTER_BASE=$(kubectl get route console -n openshift-console -
o=jsonpath="{.spec.host}' | sed 's/"[".]*\.//')
helm upgrade $DEPLOYMENT_NAME -i "https://github.com/openshift-helm-
charts/charts/releases/download/redhat-redhat-developer-hub-1.2.1/redhat-developer-hub-
1.2.1.tgz" \

--set global.clusterRouterBase="$CLUSTER_ROUTER_BASE" \

--set global.postgresql.auth.password="$PASSWORD"

12. Display the running Developer Hub instance URL, by running the following command:

I echo "https://$DEPLOYMENT_NAME-$NAMESPACE.$CLUSTER_ROUTER_BASE"

Verification

® Open the running Developer Hub instance URL in your browser to use Developer Hub.

Upgrade

® To upgrade the deployment, run the following command:

helm upgrade $DEPLOYMENT_NAME -i https://github.com/openshift-helm-
charts/charts/releases/download/redhat-redhat-developer-hub-1.2.1/redhat-developer-hub-
1.2.1.1gz

Delete

® To delete the deployment, run the following command:

I helm -n SNAMESPACE delete $DEPLOYMENT_NAME

9.2. DEPLOYING THE RED HAT DEVELOPER HUB ON AZURE
KUBERNETES SERVICE (AKS) USING THE OPERATOR

You can deploy your Developer Hub on AKS using the Red Hat Developer Hub Operator.

Prerequisites

® You have an Azure account with active subscription.

® You have installed the Azure CLI.

® You have installed the kubectl CLI.

® You are logged into your cluster using kubectl, and have developer or admin permissions.

® You have installed Helm 3 or the latest.

68

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/reference/kubectl/

*HAPTER 9. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

Comparison of AKS specifics with the base Developer Hub deployment

® Permissions issue: Developer Hub containers might encounter permission-related errors, such
as Permission denied when attempting certain operations. This error can be addresssed by
adjusting the fsGroup in the PodSpec.securityContext.

® Ingress configuration: In AKS, configuring ingress is essential for accessing the installed
Developer Hub instance. Accessing the Developer Hub instance requires enabling the Routing
add-on, an NGINX-based Ingress Controller, using the following command:

az aks approuting enable --resource-group <your_ResourceGroup> --name
<your_ClusterName>

TIP

You might need to install the Azure CLI extension aks-preview. If the extension is not installed
automatically, you might need to install it manually using the following command:

I az extension add --upgrade -n aks-preview --allow-preview true

NOTE

After you install the Ingress Controller, the app-routing-system namespace with
the Ingress Controller will be deployed in your cluster. Note the address of your
Developer Hub application from the installed Ingress Controller (for example,
108.141.70.228) for later access to the Developer Hub application, later
referenced as <app_address>.

jsonpath="{.status.loadBalancer.ingress[0].ip}'

I kubectl get svc nginx --namespace app-routing-system -o

® Namespace management You can create a dedicated namespace for Developer Hub
deployment in AKS using the following command:

I kubectl create namespace <your_namespace>

Procedure

1. Login to AKS by running the following command:

I az login [--tenant=<optional_directory_name>]

2. Create aresource group by running the following command:

I az group create --name <resource_group_name> --location <location>

TIP

You can list available regions by running the following command:

I az account list-locations -o table

69

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

3. Create an AKS cluster by running the following command:

az aks create \

--resource-group <resource_group_names \
--name <cluster_name> \
--enable-managed-identity \
--generate-ssh-keys

You can refer to --help for additional options.

4. Connect to your cluster by running the following command:
I az aks get-credentials --resource-group <resource_group_names> --name <cluster_name>

The previous command configures the Kubernetes client and sets the current context in the
kubeconfig to point to your AKS cluster.

5. Obtain the Red Hat Developer Hub Operator manifest file, named rhdh-operator-
<VERSIONs>.yaml, and modify the default configuration of db-statefulset.yaml and
deployment.yaml by adding the following fragment:

securityContext:
fsGroup: 300

Following is the specified locations in the manifests:

db-statefulset.yaml: | spec.template.spec
deployment.yaml: | spec.template.spec

6. Apply the modified Operator manifest to your Kubernetes cluster:

I kubectl apply -f rhdh-operator-<VERSION>.yaml

NOTE

Execution of the previous command is cluster-scoped and requires appropriate
cluster privileges.

7. Create an ImagePull Secret named rhdh-pull-secret using your Red Hat credentials to access
images from the protected registry.redhat.io as shown in the following example:

kubectl -n <your_namespace> create secret docker-registry rhdh-pull-secret \
--docker-server=registry.redhat.io \
--docker-username=<redhat_user_name> \
--docker-password=<redhat_password> \
--docker-email=<email>

8. Create an Ingress manifest file, named rhdh-ingress.yaml, specifying your Developer Hub
service name as follows:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

70

*HAPTER 9. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

name: rhdh-ingress
namespace: <your_namespace>
spec:
ingressClassName: webapprouting.kubernetes.azure.com
rules:
- http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: backstage-<your-CR-name>
port:
name: http-backend

9. To deploy the created Ingress, run the following command:

I kubectl -n <your_namespace> apply -f rhdh-ingress.yaml

10. Create a ConfigMap named app-config-rhdh containing the Developer Hub configuration using
the following example:

apiVersion: vi
kind: ConfigMap
metadata:
name: app-config-rhdh
data:
"app-config-rhdh.yaml": |
app:
title: Red Hat Developer Hub
baseUrl: https://<app_address>
backend:
auth:
keys:

- secret: "${BACKEND_SECRET}"
baseUrl: https://<app_address>
cors:

origin: https://<app_address>

1. Create a Secret named secrets-rhdh and add a key named BACKEND_SECRET with a
Base64-encoded string value as shown in the following example:

apiVersion: vi
kind: Secret
metadata:
name: secrets-rhdh
stringData:
BACKEND_SECRET: "xxx"

12. Create a Custom Resource (CR) manifest file named rhdh.yaml and include the previously
created rhdh-pull-secret as follows:

apiVersion: rhdh.redhat.com/vialpha1l
kind: Backstage

71

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

metadata:
name: <your-rhdh-cr>
spec:
application:
imagePullSecrets:
- rhdh-pull-secret
appConfig:
configMaps:
- name: "app-config-rhdh"
extraEnvs:
secrets:
- name: "secrets-rhdh"

13. Apply the CR manifest to your namespace:

I kubectl -n <your_namespace> apply -f rhdh.yaml

14. Access the deployed Developer Hub using the URL: https://<app_address>, where
<app_address> is the Ingress address obtained earlier (for example, hitps://108.141.70.228).

15. Optional: To delete the CR, run the following command:

I kubectl -n <your_namespace> delete -f rhdh.yaml

9.3. MONITORING AND LOGGING WITH AZURE KUBERNETES
SERVICES (AKS) IN RED HAT DEVELOPER HUB

Monitoring and logging are integral aspects of managing and maintaining Azure Kubernetes Services
(AKS) in Red Hat Developer Hub. With features like Managed Prometheus Monitoring and Azure
Monitor integration, administrators can efficiently monitor resource utilization, diagnose issues, and
ensure the reliability of their containerized workloads.

To enable Managed Prometheus Monitoring, use the -enable-azure-monitor-metrics option within
either the az aks create or az aks update command, depending on whether you're creating a new
cluster or updating an existing one, such as:

az aks create/update --resource-group <your-ResourceGroup> --name <your-Cluster> --enable-
azure-monitor-metrics

The previous command installs the metrics add-on, which gathers Prometheus metrics. Using the
previous command, you can enable monitoring of Azure resources through both native Azure Monitor
metrics and Prometheus metrics. You can also view the results in the portal under Monitoring =
Insights. For more information, see Monitor Azure resources with Azure Monitor.

Furthermore, metrics from both the Managed Prometheus service and Azure Monitor can be accessed
through Azure Managed Grafana service. For more information, see Link a Grafana workspace section.

By default, Prometheus uses the minimum ingesting profile, which optimizes ingestion volume and sets
default configurations for scrape frequency, targets, and metrics collected. The default settings can be
customized through custom configuration. Azure offers various methods, including using different
ConfigMaps, to provide scrape configuration and other metric add-on settings. For more information
about default configuration, see Default Prometheus metrics configuration in Azure Monitor and
Customize scraping of Prometheus metrics in Azure Monitor managed service for Prometheus
documentation.

72

https:
https://108.141.70.228
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/prometheus-metrics-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/monitor-azure-resource
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/azure-monitor-workspace-manage?tabs=azure-portal#link-a-grafana-workspace
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/prometheus-metrics-scrape-default
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/prometheus-metrics-scrape-configuration?tabs=CRDConfig%2CCRDScrapeConfig

*HAPTER 9. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

9.3.1. Viewing logs with Azure Kubernetes Services (AKS)

You can access live data logs generated by Kubernetes objects and collect log data in Container
Insights within AKS.

Prerequisites

® You have deployed Developer Hub on AKS. For more information, see Section 9.1, “Deploying
Red Hat Developer Hub on Azure Kubernetes Service (AKS) using the Helm chart”.

Procedure
View live logs from your Developer Hub instance

1. Navigate to the Azure Portal.

2. Search for the resource group <your-ResourceGroup> and locate your AKS cluster <your-
Clusters.

3. Select Kubernetes resources = Workloadsfrom the menu.

4. Select the <your-rhdh-cr>-developer-hub (in case of Helm Chart installation) or <your-
rhdh-cr>-backstage (in case of Operator-backed installation) deployment.

5. Click Live Logsin the left menu.

6. Select the pod.

4 NOTE

There must be only single pod.

Live log data is collected and displayed.

View real-time log data from the Container Engine

1. Navigate to the Azure Portal.

2. Search for the resource group <your-ResourceGroup> and locate your AKS cluster <your-
Clusters.

3. Select Monitoring = Insights from the menu.
4. Go to the Containers tab.

5. Find the backend-backstage container and click it to view real-time log data as it’s
generated by the Container Engine.

9.4. USING MICROSOFT AZURE AS AN AUTHENTICATION PROVIDER
IN RED HAT DEVELOPER HUB

The core-plugin-api package in Developer Hub comes integrated with Microsoft Azure authentication
provider, authenticating signing in using Azure OAuth.

73

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Prerequisites

You have deployed Developer Hub on AKS. For more information, see Section 9.1, “Deploying
Red Hat Developer Hub on Azure Kubernetes Service (AKS) using the Helm chart”.

You have created registered your application in Azure portal. For more information, see
Register an application with the Microsoft identity platform.

9.4.1. Using Microsoft Azure as an authentication provider in Helm deployment

You can use Microsoft Azure as an authentication provider in Red Hat Developer Hub, when installed
using the Helm Chart. For more information, see Section 9.1, "“Deploying Red Hat Developer Hub on
Azure Kubernetes Service (AKS) using the Helm chart”.

Procedure

1. After the application is registered, note down the following:

e clientld: Application (client) ID, found under App Registration = Overview.

e clientSecret: Secret, found under *App Registration = Certificates & secrets (create new if
needed).

e tenantld: Directory (tenant) ID, found under App Registration = Overview.

2. Ensure the following fragment is included in your Developer Hub ConfigMap:

auth:
environment: production
providers:
microsoft:
production:
clientld: ${AZURE_CLIENT_ID}
clientSecret: ${AZURE_CLIENT_SECRET}
tenantld: ${AZURE_TENANT_ID}
domainHint: ${AZURE_TENANT_ID}
additionalScopes:
- Mail.Send

You can either create a new file or add it to an existing one.

3. Apply the ConfigMap to your Kubernetes cluster:

I kubectl -n <your_namespace> apply -f <app-config>.yaml

4. Create or reuse an existing Secret containing Azure credentials and add the following fragment:

stringData:
AZURE_CLIENT_ID: <value-of-clientld>
AZURE_CLIENT_SECRET: <value-of-clientSecret>
AZURE_TENANT_ID: <value-of-tenantld>

5. Apply the secret to your Kubernetes cluster:

74

I kubectl -n <your_namespace> apply -f <azure-secrets>.yam|

https://learn.microsoft.com/en-us/entra/identity-platform/quickstart-register-app

*HAPTER 9. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)

6. Ensure your values.yaml file references the previously created ConfigMap and Secret:

upstream:
backstage:

extraAppConfig:
- filename: ...
configMapRef: <app-config-containing-azure>
extraEnvVarsSecrets:
- <secret-containing-azure>

7. Optional: If the Helm Chart is already installed, upgrade it:

helm -n <your_namespace> upgrade -f <your-values.yaml> <your_deploy_name> redhat-
developer/backstage --version 1.2.1

8. Optional: If your rhdh.yaml file is not changed, for example, you only updated the ConfigMap
and Secret referenced from it, refresh your Developer Hub deployment by removing the
corresponding pods:

I kubectl -n <your_namespace> delete pods -1 backstage.io/app=backstage-<your-rhdh-cr>

9.4.2. Using Microsoft Azure as an authentication provider in Operator-backed
deployment

You can use Microsoft Azure as an authentication provider in Red Hat Developer Hub, when installed
using the Operator. For more information, see Section 2.2, "Deploying Red Hat Developer Hub on
OpenShift Container Platform using the Operator”.

Procedure
1. After the application is registered, note down the following:

e clientld: Application (client) ID, found under App Registration = Overview.

e clientSecret: Secret, found under *App Registration = Certificates & secrets (create new if
needed).

e tenantld: Directory (tenant) ID, found under App Registration = Overview.

2. Ensure the following fragment is included in your Developer Hub ConfigMap:

auth:
environment: production
providers:
microsoft:
production:
clientld: ${AZURE_CLIENT_ID}
clientSecret: ${AZURE_CLIENT_SECRET}
tenantld: ${AZURE_TENANT_ID}
domainHint: ${AZURE_TENANT_ID}
additionalScopes:
- Mail.Send

75

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

76

You can either create a new file or add it to an existing one.

. Apply the ConfigMap to your Kubernetes cluster:

I kubectl -n <your_namespace> apply -f <app-config>.yaml

. Create or reuse an existing Secret containing Azure credentials and add the following fragment:

stringData:
AZURE_CLIENT_ID: <value-of-clientld>
AZURE_CLIENT_SECRET: <value-of-clientSecret>
AZURE_TENANT_ID: <value-of-tenantld>

. Apply the secret to your Kubernetes cluster:

I kubectl -n <your_namespace> apply -f <azure-secrets>.yam|

. Ensure your Custom Resource manifest contains references to the previously created

ConfigMap and Secret:

apiVersion: rhdh.redhat.com/vialpha1l
kind: Backstage
metadata:
name: <your-rhdh-cr>
spec:
application:
imagePullSecrets:
- rhdh-pull-secret
route:
enabled: false
appConfig:
configMaps:
- name: <app-config-containing-azure>
extraEnvs:
secrets:
- name: <secret-containing-azure>

. Apply your Custom Resource manifest:

I kubectl -n <your_namespace> apply -f rhdh.yaml

. Optional: If your rhdh.yaml file is not changed, for example, you only updated the ConfigMap

and Secret referenced from it, refresh your Developer Hub deployment by removing the
corresponding pods:

I kubectl -n <your_namespace> delete pods - backstage.io/app=backstage-<your-rhdh-cr>

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN
RED HAT DEVELOPER HUB

Role-Based Access Control is a security paradigm that restricts access to authorized users. This feature
includes defining roles with specific permissions and then assigning those roles to the users.

The Red Hat Developer Hub uses RBAC to improve the permission system within the platform. The

RBAC feature in Developer Hub introduces an administrator role and leverages the organizational
structure including teams, groups, and users by facilitating efficient access control.

10.1. PERMISSION POLICIES IN RED HAT DEVELOPER HUB
Permission policies in Red Hat Developer Hub are a set of rules to govern access to resources or
functionalities. These policies state the authorization level that is granted to users based on their roles.
The permission policies are implemented to maintain security and confidentiality within a given
environment.
You can define the following types of permissions in Developer Hub:

® resource type

® basic

The distinction between the two permission types depend on whether a permission includes a defined
resource type.

You can define the resource type permission using either the associated resource type or the
permission name as shown in the following example:

Example resource type permission definition

p, role:default/myrole, catalog.entity.read, read, allow
g, user:default/myuser, role:default/myrole

p, role:default/another-role, catalog-entity, read, allow
g, user:default/another-user, role:default/another-role

You can define the basic permission in Developer Hub using the permission name as shown in the
following example:

Example basic permission definition

p, role:default/myrole, catalog.entity.create, create, allow
g, user:default/myuser, role:default/myrole

The following permission policies are supported in the Developer Hub:

Catalog permissions

77

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Name Resource type Policy Description

catalog.ent catalog-entity read Allows user or role to read from the catalog

ity.read

catalog.ent create Allows user or role to create catalog entities,

ity.create including registering an existing component in
the catalog

catalog.ent catalog-entity update Allows user or role to refresh a single or

ity.refresh multiple entities from the catalog

catalog.ent catalog-entity delete Allows user or role to delete a single or multiple

ity.delete entities from the catalog

catalog.loc read Allows user or role to read a single or multiple

ation.read locations from the catalog

catalog.loc create Allows user or role to create locations within the

ation.creat catalog

e

catalog.loc delete Allows user or role to delete locations from the

ation.delet catalog

e

Scaffolder permissions

Name Resource type Policy Description

scaffolder. scaffolder-action Allows the execution of an action from a
action.exec template

ute

scaffolder.t scaffolder-template read Allows user or role to read a single or multiple
emplate.pa one parameters from a template
rameter.rea

d

scaffolder.t scaffolder-template read Allows user or role to read a single or multiple
emplate.ste steps from a template

p.read

scaffolder.t create Allows the user or role to trigger software
ask.create templates which create new scaffolder tasks
scaffolder.t Allows the user or role to cancel currently
ask.cancel running scaffolder tasks

78

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

Name Resource type Policy Description
scaffolder.t read Allows user or role to read all scaffolder tasks
ask.read and their associated events and logs

RBAC permissions
Name Resource type Policy Description
policy.entit policy-entity read Allows user or role to read permission policies
y.read and roles
policy.entit policy-entity create Allows user or role to create a single or multiple
y.create permission policies and roles
policy.entit policy-entity update Allows user or role to update a single or
y.update multiple permission policies and roles
policy.entit policy-entity delete Allows user or role to delete a single or multiple
y.delete permission policies and roles

Kubernetes permissions

Name Resource type Description

kubernetes Allows user or role to access the proxy endpoint
.proxy

OCM permissions

Name Resource type Description

ocm.entity. read Allows user or role to read from the OCM plugin
read

ocm.cluste read Allows user or role to read the cluster

r.read information in the OCM plugin

Topology permissions

Name Resource type Policy Description
topology.vi read Allows user or role to view the topology plugin
ew.read

N

9

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Name Resource type Policy Description
kubernetes Allows user or role to access the proxy
.proxy endpoint, allowing them to read pod logs and

events within RHDH

10.1.1. Permission policies configuration
There are two approaches to configure the permission policies in Red Hat Developer Hub, including:
e Configuration of permission policies administrators

e Configuration of permission policies defined in an external file

10.1.1.1. Configuration of permission policies administrators

The permission policies for users and groups in the Developer Hub are managed by permission policy
administrators. Only permission policy administrators can access the Role-Based Access Control REST
API.

The purpose of configuring policy administrators is to enable a specific, restricted number of
authenticated users to access the RBAC REST API. The permission policies are defined in a policy.csv
file, which is referenced in the app-config-rhdh ConfigMap. OpenShift platform administrators or
cluster administrators can perform this task with access to the namespace where Red Hat Developer
Hub is deployed.

You can set the credentials of a permission policy administrator in the app-config.yaml file as follows:

permission:
enabled: true
rbac:
admin:
users:
- name: user:default/joeuser

The permission policy role (role:default/rbac_admin) is a default role in Developer Hub and includes
some permissions upon creation, such as creating, reading, updating, and deleting permission
policies/roles, as well as reading from the catalog.

If the default permissions are not adequate for your requirements, you can define a new administrator
role tailored to your requirements using relevant permission policies. Alternatively, you can use the
optional superUsers configuration value, which grants unrestricted permissions across Developer Hub.

You can set the superUsers in the app-config.yaml file as follows:

#...
permission:
enabled: true
rbac:
admin:

80

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

superUsers:
- name: user:default/joeuser
#...

10.1.1.2. Configuration of permission policies defined in an external file
You can configure the permission policies before starting the Red Hat Developer Hub. If permission

policies are defined in an external file, then you can import the same file in the Developer Hub. You must
define the permission policies using the following Casbin rules format:

'p, <ROLE>, <PERMISSION_NAME or PERMISSION_RESOURCE_TYPE>,
<PERMISSION_POLICY_ACTION>, <ALLOW or DENY>"

You can define roles using the following Casbin rules format:

'g, <USER or GROUP>, <ROLE>"
NOTE

For information about the Casbin rules format, see Basics of Casbin rules.

The following is an example of permission policies configuration:

I 'p, role:default/guests, catalog-entity, read, allow

p, role:default/guests, catalog.entity.create, create, allow
g, user:default/<USER_TO_ROLE>, role:default/guests
g, group:default/<GROUP_TO_ROLE>, role:default/guests ---

If a defined permission does not contain an action associated with it, then add use as a policy. See the
following example:

'p, role:default/guests, kubernetes.proxy, use, allow’

You can define the policy.csv file path in the app-config.yaml file:

permission:
enabled: true
rbac:
policies-csv-file: /some/path/rbac-policy.csv

You can use an optional configuration value that enables reloading the CSV file without restarting the
Developer Hub instance.

81

https://casbin.org/docs/category/the-basics

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Set the value of the policyFileReload option in the app-config.yaml file:

#...
permission:
enabled: true
rbac:
policies-csv-file: /some/path/rbac-policy.csv
policyFileReload: true
#...

10.1.1.2.1. Mounting policy.csv file to the Developer Hub Helm chart

When the Red Hat Developer Hub is deployed with the Helm chart, you must define the policy.csv file
by mounting it to the Developer Hub Helm chart.

You can add your policy.csv file to the Developer Hub Helm Chart by creatinga configMap and
mounting it.

Prerequisites

® You are logged in to your OpenShift Container Platform account using the OpenShift Container
Platform web console.

® Red Hat Developer Hub is installed and deployed using Helm Chart.
For more information about installing the Red Hat Developer Hub on OpenShift Container
Platform using Helm Chart, see Section 2.1, “Deploying Red Hat Developer Hub on OpenShift
Container Platform using Helm Chart".

Procedure

1. In OpenShift Container Platform, create a ConfigMap to hold the policies as shown in the
following example:

Example ConfigMap

kind: ConfigMap
apiVersion: v1
metadata:
name: rbac-policy
namespace: rhdh
data:
rbac-policy.csv: |
p, role:default/guests, catalog-entity, read, allow
p, role:default/guests, catalog.entity.create, create, allow

g, user:default/<YOUR_USERs>, role:default/guests

2. Inthe Developer Hub Helm Chart, go to Root Schema - Backstage chart schema -
Backstage parameters = Backstage container additional volume mounts.

3. Select Add Backstage container additional volume mountsand add the following values:

e mountPath: opt/app-root/src/rbac

® Name: rbac-policy

82

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

4. Add the RBAC policy to the Backstage container additional volumesin the Developer Hub
Helm Chart:

® name: rbac-policy

e configMap

o defaultMode: 420
o name: rbac-policy
5. Update the policy path in the app-config.yaml file as follows:

Example app-config.yaml file

permission:
enabled: true
rbac:
policies-csv-file: ./rbac/rbac-policy.csv

10.2. CONDITIONAL POLICIES IN RED HAT DEVELOPER HUB

The permission framework in Red Hat Developer Hub provides conditions, supported by the RBAC
backend plugin (backstage-plugin-rbac-backend). The conditions work as content filters for the
Developer Hub resources that are provided by the RBAC backend plugin.

The RBAC backend API stores conditions assigned to roles in the database. When you request to access
the frontend resources, the RBAC backend APl searches for the corresponding conditions and
delegates them to the appropriate plugin using its plugin ID. If you are assigned to multiple roles with
different conditions, then the RBAC backend merges the conditions using the anyOf criteria.

Conditional criteria

A condition in Developer Hub is a simple condition with a rule and parameters. However, a condition
can also contain a parameter or an array of parameters combined by conditional criteria. The
supported conditional criteria includes:

e allOf: Ensures that all conditions within the array must be true for the combined condition to
be satisfied.

e anyOf: Ensures that at least one of the conditions within the array must be true for the
combined condition to be satisfied.

e not: Ensures that the condition within it must not be true for the combined condition to be
satisfied.

Conditional object

The plugin specifies the parameters supported for conditions. You can access the conditional object
schema from the RBAC APl endpoint to understand how to construct a conditional JSON object,
which is then used by the RBAC backend plugin API.

A conditional object contains the following parameters:

Table 10.1. Conditional object parameters

83

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Parameter Type Description

result String Always has the value
CONDITIONAL

roleEntityRef String String entity reference

to the RBAC role, such
as role:default/dev

pluginid String Corresponding plugin
ID, such as catalog

permissionMapping String array Array permission
actions, such as ['read’,
'update’, 'delete']

resourceType String Resource type provided
by the plugin, such as
catalog-entity

conditions JSON Condition JSON with
parameters or array
parameters joined by
criteria

10.2.1. Conditional policies definition

You can access APl endpoints for conditional policies in Red Hat Developer Hub. For example, to
retrieve the available conditional rules, which can help you define these policies, you can access the GET
[api/plugins/condition-rules] endpoint.

The api/plugins/condition-rules returns the condition parameters schemas, for example:

[
{
"pluginld": "catalog",
"rules": [
{
"name": "HAS_ANNOTATION",
"description”: "Allow entities with the specified annotation”,
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"annotation™: {
"type": "string",
"description™: "Name of the annotation to match on"
b
"value": {
"type": "string",

84

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

"description™: "Value of the annotation to match on"

}
2
"required": [
"annotation”
1,
"additionalProperties": false,
"$schema": "http://json-schema.org/draft-07/schema#"

"name": "HAS LABEL",
"description”: "Allow entities with the specified label",
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"label": {
"type": "string",
"description™: "Name of the label to match on"
}
I3
"required": [
"label"

]

additionalProperties": false,
"$schema": "http:/json-schema.org/draft-07/schema#"
}
b

{
"name": "HAS_METADATA",

"description™: "Allow entities with the specified metadata subfield"
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"key": {
"type": "string",
"description™: "Property within the entities metadata to match on"
b
"value": {
"type": "string",
"description™: "Value of the given property to match on"
}
3
"required": [
"key"
1,
"additionalProperties": false,
"$schema": "http://json-schema.org/draft-07/schema#"
}
b
{
"name": "HAS SPEC",

"description”: "Allow entities with the specified spec subfield",
"resourceType": "catalog-entity",

’

85

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

"paramsSchema": {
"type": "object",
"properties": {
"key": {
"type": "string",
"description™: "Property within the entities spec to match on"
b
"value": {
"type": "string",
"description™: "Value of the given property to match on"
}
I3
"required": [
"key"
1,
"additionalProperties": false,
"$schema": "http://json-schema.org/draft-07/schema#"
}
b
{
"name": "IS_ENTITY_KIND",

"description™: "Allow entities matching a specified kind",
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"kinds": {
"type": "array"”,
"items": {
"type": "string"
}
}
I3
"required": [
"kinds"

escription": "List of kinds to match at least one of"

]

additionalProperties": false,
"$schema": "http:/json-schema.org/draft-07/schema#"
}
2

{
"name": "IS_ENTITY_OWNER",

"description”: "Allow entities owned by a specified claim",
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"claims": {
"type": "array"”,
"items": {
"type": "string"
b
"description”: "List of claims to match at least one on within ownedBy"
}
}

86

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

"required": [
"claims"
1,
"additionalProperties": false,
"$schema": "http://json-schema.org/draft-07/schema#"
}
}
]
}
... <another plugin condition parameter schemas>

]

The RBAC backend API constructs a condition JSON object based on the previous condition schema.

10.2.1.1. Examples of conditional policies

In Red Hat Developer Hub, you can define conditional policies with or without criteria. You can use the
following examples to define the conditions based on your use case:

A condition without criteria

Consider a condition without criteria displaying catalogs only if user is a member of the owner group.
To add this condition, you can use the catalog plugin schema IS_ENTITY_OWNER as follows:

Example condition without criteria

{
"rule": "IS_ENTITY_OWNER",

"resourceType": "catalog-entity",
"params": {
"claims": ["group:default/team-a"]
}
}

In the previous example, the only conditional parameter used is claims, which contains a list of user
or group entity references.

You can apply the previous example condition to the RBAC REST API by adding additional
parameters as follows:

"result": "CONDITIONAL",
"roleEntityRef": "role:default/test",
"pluginld": "catalog",
"resourceType": "catalog-entity",
"permissionMapping": ["read"],
"conditions": {
"rule": "IS_ENTITY_OWNER",
"resourceType": "catalog-entity",
"params": {
"claims": ["group:default/team-a"]
}
}
}

87

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

A condition with criteria

Consider a condition with criteria, which displays catalogs only if user is a member of owner group OR
displays list of all catalog user groups.
To add the criteria, you can add another rule as IS_ENTITY_KIND in the condition as follows:

Example condition with criteria

{
"anyOf": [
{
"rule": "IS_ENTITY_OWNER?",
"resourceType": "catalog-entity",
"params": {
"claims": ["group:default/team-a"]
}
b
{
"rule": "IS_ENTITY_KIND",
"resourceType": "catalog-entity",
"params": {
"kinds": ["Group"]
}
}
]
}
NOTE

Running conditions in parallel during creation is not supported. Therefore, consider
defining nested conditional policies based on the available criteria.

Example of nested conditions

{
"anyOf": [
{
"rule": "IS_ENTITY_OWNER",
"resourceType": "catalog-entity",
"params": {
"claims": ["group:default/team-a"|
}
b
{
"rule": "IS_ENTITY_KIND",
"resourceType": "catalog-entity",
"params": {
"kinds": ["Group"]
}
!
],
"not": {

"rule": "IS_ENTITY_KIND",
"resourceType": "catalog-entity",

88

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

"params": { "kinds": ["Api"] }
}
1

You can apply the previous example condition to the RBAC REST API by adding additional
parameters as follows:

"result": "CONDITIONAL",
"roleEntityRef": "role:default/test",
"pluginld": "catalog",
"resourceType": "catalog-entity",
"permissionMapping": ["read"],
"conditions": {
"anyOf": [
{
"rule": "IS_ENTITY_OWNER",
"resourceType": "catalog-entity",
"params": {
"claims": ["group:default/team-a"|
}
b

{
"rule": "IS_ENTITY_KIND",

"resourceType": "catalog-entity",
"params": {
"kinds": ["Group"]

The following examples can be used with Developer Hub plugins. These examples can help you
determine how to define conditional policies:

Conditional policy defined for Keycloak plugin

"result": "CONDITIONAL",
"roleEntityRef": "role:default/developer”,
"pluginld": "catalog",
"resourceType": "catalog-entity",
"permissionMapping": ["'update”, "delete"],
"conditions": {
"not": {
"rule": "HAS_ANNOTATION",
"resourceType": "catalog-entity",
"params": { "annotation": "keycloak.org/realm", "value": "<YOUR_REALM>" }

89

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

The previous example ot Keycloak plugin prevents users in the role:default/developer from updating or
deleting users that are ingested into the catalog from the Keycloak plugin.

NOTE

In the previous example, the annotation keycloak.org/realm requires the value of
<YOUR_REALM>.

Conditional policy defined for Quay plugin

"result": "CONDITIONAL",
"roleEntityRef": "role:default/developer",
"pluginld": "scaffolder",
"resourceType": "scaffolder-action”,
"permissionMapping": ["use"],
"conditions": {
"not": {
"rule": "HAS_ACTION_ID",
"resourceType": "scaffolder-action”,
"params": { "actionld": "quay:create-repository" }

The previous example of Quay plugin prevents the role role:default/developer from using the Quay
scaffolder action. Note that permissionMapping contains use, signifying that scaffolder-action
resource type permission does not have a permission policy.

For more information about permissions in Red Hat Developer Hub, see Section 10.1, “Permission policies
in Red Hat Developer Hub”.

10.3. MANAGING ROLE-BASED ACCESS CONTROLS (RBAC) USING
THE RED HAT DEVELOPER HUB WEB Ul

Administrators can use the Developer Hub web interface (Web Ul) to allocate specific roles and
permissions to individual users or groups. Allocating roles ensures that access to resources and
functionalities is regulated across the Developer Hub.

With the administrator role in Developer Hub, you can assign permissions to users and groups, which
allow users or groups to view, create, modify, and delete the roles using the Developer Hub Web UI.

To access the RBAC features in the Web Ul, you must install and configure the @janus-idp/backstage-
plugin-rbac plugin as a dynamic plugin. For more information about installing a dynamic plugin, see
Configuring plugins in Red Hat Developer Hub .

After you install the @janus-idp/backstage-plugin-rbac plugin, the Administration option appears at
the bottom of the sidebar. When you can click Administration, the RBAC tab appears by default,
displaying all of the existing roles created in the Developer Hub. In the RBAC tab, you can also view the
total number of users, groups, and the total number of permission policies associated with a role. You
can also edit or delete a role using the Actions column.

10.3.1. Creating a role in the Red Hat Developer Hub Web Ul

90

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/configuring_plugins_in_red_hat_developer_hub/index

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

You can create arole in the Red Hat Developer Hub using the Web UI.

Prerequisites

® You have an administrator role in the Developer Hub.

® You have installed the @janus-idp/backstage-plugin-rbac plugin in Developer Hub. For more
information, see Configuring plugins in Red Hat Developer Hub .

® You have configured the required permission policies. For more information, see Section 10.1.],
“Permission policies configuration”.

Procedure

1. Go to Administration at the bottom of the sidebar in the Developer Hub.
The RBAC tab appears, displaying all the created roles in the Developer Hub.

2. (Optional) Click any role to view the role information on the OVERVIEW page.

3. Click CREATE to create arole.

4. Enter the name and description of the role in the given fields and click NEXT.

5. Add users and groups using the search field, and click NEXT.

6. Select Plugin and Permission from the drop-downs in the Add permission policies section.

7. Select or clear the Policy that you want to set in the Add permission policies section, and click
NEXT.

8. Review the added information in the Review and create section.
9. Click CREATE.

Verification

The created role appears in the list available in the RBAC tab.

10.3.2. Editing a role in the Red Hat Developer Hub Web Ul

You can edit a role in the Red Hat Developer Hub using the Web UlI.

NOTE

The policies generated from a policy.csv or ConfigMap file cannot be edited or deleted
using the Developer Hub Web Ul.

Prerequisites

® You have an administrator role in the Developer Hub.

® You have installed the @janus-idp/backstage-plugin-rbac plugin in Developer Hub. For more
information, see Configuring plugins in Red Hat Developer Hub .

® You have configured the required permission policies. For more information, see Section 10.1.],
“Permission policies configuration”.

o1

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/configuring_plugins_in_red_hat_developer_hub/index
https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/configuring_plugins_in_red_hat_developer_hub/index

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

® The role that you want to edit is created in the Developer Hub.

Procedure

1. Go to Administration at the bottom of the sidebar in the Developer Hub.
The RBAC tab appears, displaying all the created roles in the Developer Hub.

2. (Optional) Click any role to view the role information on the OVERVIEW page.
3. Select the editicon for the role that you want to edit.

4. Edit the details of the role, such as name, description, users and groups, and permission policies,
and click NEXT.

5. Review the edited details of the role and click SAVE.
After editing a role, you can view the edited details of a role on the OVERVIEW page of a role. You can

also edit a role’s users and groups or permissions by using the edit icon on the respective cards on the
OVERVIEW page.

10.3.3. Deleting a role in the Red Hat Developer Hub Web Ul

You can delete a role in the Red Hat Developer Hub using the Web UI.

NOTE

The policies generated from a policy.csv or ConfigMap file cannot be edited or deleted
using the Developer Hub Web Ul.

Prerequisites

® You have an administrator role in the Developer Hub.

® You have installed the @janus-idp/backstage-plugin-rbac plugin in Developer Hub. For more
information, see Configuring plugins in Red Hat Developer Hub .

® You have configured the required permission policies. For more information, see Section 10.1.],
“Permission policies configuration”.

® The role that you want to delete is created in the Developer Hub.

Procedure

1. Go to Administration at the bottom of the sidebar in the Developer Hub.
The RBAC tab appears, displaying all the created roles in the Developer Hub.

2. (Optional) Click any role to view the role information on the OVERVIEW page.

3. Select the delete icon from the Actions column for the role that you want to delete.
Delete this role? pop-up appears on the screen.

4. Click DELETE.

10.4. ROLE-BASED ACCESS CONTROL (RBAC) REST API

92

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/configuring_plugins_in_red_hat_developer_hub/index

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

Red Hat Developer Hub provides RBAC REST API that you can use to manage the permissions and roles
in the Developer Hub. This APl supports you to facilitate and automate the maintenance of Developer
Hub permission policies and roles.

Using the RBAC REST API, you can perform the following actions:
® Retrieve information about all permission policies or specific permission policies, or roles
® Create, update, or delete a permission policy or a role
® Retrieve permission policy information about static plugins

The RBAC REST API requires the following components:

Authorization

The RBAC REST API requires Bearer token authorization for the permitted user role. For
development purposes, you can access a web console in a browser. When you refresh a token
request in the list of network requests, you find the token in the response JSON.
Authorization: Bearer $token

For example, on the Developer Hub Homepage, navigate to the Network tab and search for the
query?term= network call. Alternatively, you can go to the Catalog page and select any Catalog API
network call to acquire the Bearer token.

HTTP methods
The RBAC REST API supports the following HTTP methods for APl requests:

® GET: Retrieves specified information from a specified resource endpoint
® POST: Creates or updates a resource
® PUT: Updates aresource

e DELETE: Deletes a resource

Base URL

The base URL for RBAC REST API requests is http://SERVER:PORT/api/permission/policies, such
as http://localhost:7007/api/permission/policies.

Endpoints

RBAC REST API endpoints, such as /api/permission/policies/[kind]/[namespace]/[name] for
specified kind, namespace, and hame, are the URI that you append to the base URL to access the
corresponding resource.

Example request URL for /api/permission/policies/[kind]/[namespace]/[name] endpoint is:

http://localhost:7007/api/permission/policies/user/default/johndoe

5 NOTE

If at least one permission is assigned to user:default/johndoe, then the example

? request URL mentioned previously returns a result if sent in a GET response with a
valid authorization token. However, if permission is only assigned to roles, then the
example request URL does not return an output.

93

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Request data

HTTP POST requests in the RBAC REST API may require a JSON request body with data to
accompany the request.

Example POST request URL and JSON request body data for
http://localhost:7007/api/permission/policies:

"entityReference": "role:default/test",
"permission": "catalog-entity",
"policy": "delete",

"effect": "allow"

HTTP status codes
The RBAC REST API supports the following HTTP status codes to return as responses:

® 200 OK: The request was successful.
® 201 Created: The request resulted in a new resource being successfully created.

® 204 No Content: The request was successful, but there is no additional content to send in
the response payload.

® 400 Bad Request: input error with the request

® 401 Unauthorized: lacks valid authentication for the requested resource
® 403 Forbidden: refusal to authorize request

® 404 Not Found: could not find requested resource

® 409 Conflict: request conflict with the current state and the target resource

Source

Each permission policy and role created using the RBAC plugin is associated with a source to
maintain data consistency within the plugin. You can manipulate permission policies and roles based
on the following designated source information:

e CSVile

e Configuration file
e RESTAPI

® | egacy

Managing roles and permission policies originating from CSV files and REST APl involves
straightforward modification based on their initial source information.

The Configuration file pertains to the default role:default/rbac_admin role provided by the RBAC

plugin. The default role has limited permissions to create, read, update, and delete permission
policies or roles, and to read catalog entities.

94

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

5 NOTE
In case the default permissions are insufficient for your administrative requirements,
y you can create a custom admin role with required permission policies.

The legacy source applies to policies and roles defined before RBAC backend plugin version 2.1.3,
and is the least restrictive among the source location options. You must update the permissions and
roles in legacy source to use either REST API or the CSV file sources.

You can use the GET requests to query roles and policies and determine the source information, if
required.

10.4.1. Sending requests with the RBAC REST API using a REST client or curl utility
The RBAC REST API enables you to interact with the permission policies and roles in Developer Hub

without using the user interface. You can send RBAC REST API requests using any REST client or curl
utility.

Prerequisites
® Red Hat Developer Hub is installed and running. For more information about installing Red Hat
Developer Hub, see Section 2.1, “Deploying Red Hat Developer Hub on OpenShift Container
Platform using Helm Chart”..

® You have access to the Developer Hub.

Procedure
1. Identify a relevant API endpoint to which you want to send a request, such as POST
/api/permission/policies. Adjust any request details according to your use case.
For REST client:
® Authorization: Enter the generated token from the web console.

® HTTP method: Set to POST.

® URL: Enter the RBAC REST API base URL and endpoint such as
http://localhost:7007/api/permission/policies.

For curl utility:
o -X:Setto POST

® -H:Set the following header:
Content-type: application/json

Authorization: Bearer $token
$token is the requested token from the web console in a browser.

e URL: Enter the following RBAC REST API base URL endpoint, such as
http://localhost:7007/api/permission/policies

® -d: Add arequest JSON body

95

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Example request:

curl -X POST "http://localhost:7007/api/permission/policies" -d
'{"entityReference":"role:default/test"”, "permission": "catalog-entity", "policy": "read",
"effect":"allow"}' -H "Content-Type: application/json" -H "Authorization: Bearer $token" -

\'}

2. Execute the request and review the response.

10.4.2. Supported RBAC REST API endpoints

The RBAC REST API provides endpoints for managing roles, permissions, and conditional policies in the
Developer Hub and for retrieving information about the roles and policies.

10.4.2.1. Roles

The RBAC REST API supports the following endpoints for managing roles in the Red Hat Developer
Hub.

[GET] /api/permission/roles

Returns all roles in Developer Hub.

Example response (JSON)

[
{

"memberReferences": ["user:default/username"],
"name": "role:default/guests”

b

{

"memberReferences": |
"group:default/groupname”,
"user:default/username”

1,

"name": "role:default/rbac_admin”

}
]

[GET] /api/permission/roles/{kind}/{namespace}/{name}

Returns information for a single role in Developer Hub.

Example response (JSON)

[
{

"memberReferences": |
"group:default/groupname”,
"user:default/username”

1,

"name": "role:default/rbac_admin”

}
]

96

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

[POST] /api/permission/roles/{kind}/{namespace}l/{name}

Creates arole in Developer Hub.

Table 10.2. Request parameters

Name Description Type Presence
body The memberReferences, group, Request Required
namespace, and name the new role to be body
created.

Example request body (JSON)

{

"memberReferences": ["group:default/test"],
"name": "role:default/test_admin”

}

Example response

I 201 Created
[PUT] /api/permission/roles/{kind}/{namespace}/{name}
Updates memberReferences, kind, namespace, or name for a role in Developer Hub.

Request parameters

The request body contains the oldRole and hewRole objects:

Name Description Type Presence
body The memberReferences, group, Request Required
namespace, and name the new role to be body
created.

Example request body (JSON)

{
"oldRole": {

"memberReferences": ["group:default/test"],
"name": "role:default/test_admin”

b

"newRole": {
"memberReferences": ["group:default/test”, "user:default/test2"],
"name": "role:default/test_admin”

}

}

Example response

97

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

I 200 OK

[DELETE] /api/permission/roles/{kind}/{namespace}l/{name}?memberReferences=<VALUE>

Deletes the specified user or group from a role in Developer Hub.

Table 10.3. Request parameters

Name Description Type Presence
kind Kind of the entity String Required
namespac Namespace of the entity String Required
e

hame Name of the entity String Required
memberRe Associated group information String Required
ferences

Example response

I 204

[DELETE] /api/permission/roles/{kind}/{namespace}l/{name}

Deletes a specified role from Developer Hub.

Table 10.4. Request parameters

Name Description Type Presence
kind Kind of the entity String Required
namespac Namespace of the entity String Required
e

hame Name of the entity String Required

Example response

I 204

10.4.2.2. Permission policies

The RBAC REST API supports the following endpoints for managing permission policies in the Red Hat
Developer Hub.

[GET]/api/permission/policies

98

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

Returns permission policies list for all users.

Example response (JSON)

"entityReference": "role:default/test",
"permission": "catalog-entity",
"policy™: "read",
"effect": "allow",
"metadata”: {

"source": "csv-file"

}
}
{

"entityReference": "role:default/test",
"permission": "catalog.entity.create",
"policy": "use",
"effect": "allow",
"metadata”: {

"source": "csv-file"

}
}
]

[GET] /api/permission/policies/{kind}/{namespace}l/{name}

Returns permission policies related to the specified entity reference.

Table 10.5. Request parameters

Name Description Type Presence
kind Kind of the entity String Required
namespac Namespace of the entity String Required
e

hame Name related to the entity String Required

Example response (JSON)

"entityReference": "role:default/test",
"permission”: "catalog-entity",
"policy™: "read",
"effect": "allow",
"metadata”: {

"source": "csv-file"

}
}
{

99

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

"entityReference": "role:default/test",
"permission": "catalog.entity.create",
"policy": "use",
"effect": "allow",
"metadata”: {

"source": "csv-file"

}
}
]

[POST] /api/permission/policies

Creates a permission policy for a specified entity.

Table 10.6. Request parameters

Name Description Type Presence

entityRefer Reference values of an entity including kind, String Required
ence namespace, and name

permissio Permission from a specific plugin, resource String Required
n type, or name

policy Policy action for the permission, such as String Required

create, read, update, delete, oruse

effect Indication of allowing or not allowing the String Required
policy

Example request body (JSON)

"entityReference": "role:default/test",
"permission": "catalog-entity",
"policy": "read",

"effect": "allow"

Example response

I 201 Created

[PUT] /api/permission/policies/{kind}/{namespace}/{name}

Updates a permission policy for a specified entity.

Request parameters

The request body contains the oldPolicy and newPolicy objects:

100

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

Name Description

permissio Permission from a specific plugin, resource
n type, or name

policy Policy action for the permission, such as

create, read, update, delete, oruse

effect Indication of allowing or not allowing the
policy

Example request body (JSON)

{
"oldPolicy": [
{
"permission": "catalog-entity",
"policy™: "read",
"effect": "allow"
b
{
"permission": "catalog.entity.create",
"policy": "create”,
"effect": "allow"
}
1,
"newPolicy": [
{
"permission": "catalog-entity",
"policy™: "read",
"effect": "deny"
b
{
"permission”: "policy-entity",
"policy™: "read",
"effect": "allow"
}
]
}

Example response

I 200

Type

String

String

String

Presence

Required

Required

Required

[DELETE] /api/permission/policies/{kind}/{namespace}l/{name}?permission={valuel}&policy=

{value2}&effect={value3}

Deletes a permission policy added to the specified entity.

Table 10.7. Request parameters

101

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Name Description Type Presence
kind Kind of the entity String Required
namespac Namespace of the entity String Required
e

hame Name related to the entity String Required
permissio Permission from a specific plugin, resource String Required
n type, or name

policy Policy action for the permission, such as String Required

create, read, update, delete, oruse

effect Indication of allowing or not allowing the String Required
policy

Example response

I 204 No Content

[DELETE] /api/permission/policies/{kind}/{namespace}l/{name}

Deletes all permission policies added to the specified entity.

Table 10.8. Request parameters

Name Description Presence

kind Kind of the entity String Required
namespac Namespace of the entity String Required
e

hame Name related to the entity String Required

Example response

I 204 No Content

[GET] /api/permission/plugins/policies

Returns permission policies for all static plugins.

Example response (JSON)

102

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

"pluginld": "catalog",
"policies™: [
{
"isResourced": true,
"permission": "catalog-entity",
"policy": "read"
b
{

"isResourced": false,
"permission": "catalog.entity.create",
"policy": "create”

b

{

"isResourced": true,
"permission": "catalog-entity",
"policy": "delete"

b

{

"isResourced": true,
"permission": "catalog-entity",
"policy": "update”

b

{

"isResourced": false,
"permission": "catalog.location.read",
"policy": "read"

b

{

"isResourced": false,
"permission": "catalog.location.create”,
"policy": "create”

b
{

"isResourced": false,
"permission": "catalog.location.delete",
"policy": "delete"

10.4.2.3. Conditional policies

The RBAC REST API supports the following endpoints for managing conditional policies in the Red Hat
Developer Hub.

[GET]/api/plugins/condition-rules

Returns available conditional rule parameter schemas for the available plugins that are enabled in
Developer Hub.

Example response (JSON)

I [

103

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

{
"pluginld": "catalog",
"rules": [
{
"name": "HAS_ANNOTATION",
"description”: "Allow entities with the specified annotation”,
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"annotation™: {
"type": "string",
"description™": "Name of the annotation to match on"
b
"value": {
"type": "string",
"description™: "Value of the annotation to match on"
}
I3
"required": [
"annotation”

]

additionalProperties": false,
"$schema": "http:/json-schema.org/draft-07/schema#"

"name": "HAS LABEL",
"description”: "Allow entities with the specified label",
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"label": {
"type": "string",
"description™: "Name of the label to match on"
}
3
"required": [
"label"
1,
"additionalProperties": false,
"$schema": "http:/json-schema.org/draft-07/schema#"

"name": "HAS_METADATA",
"description”: "Allow entities with the specified metadata subfield",
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"key": {
"type": "string",
"description™: "Property within the entities metadata to match on"

b

104

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

"value": {
"type": "string",
"description™: "Value of the given property to match on"
}
I3
"required": [
"key"
1,
"additionalProperties": false,
"$schema": "http://json-schema.org/draft-07/schema#"

"name": "HAS SPEC",
"description”: "Allow entities with the specified spec subfield",
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"key": {
"type": "string",
"description™: "Property within the entities spec to match on"
b
"value": {
"type": "string",
"description”: "Value of the given property to match on"
}
}
"required": [
"key"
]

additionalProperties": false,
"$schema": "http:/json-schema.org/draft-07/schema#"

"name": "IS_ENTITY_KIND",
"description™: "Allow entities matching a specified kind",
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"kinds": {
"type": "array"”,
"items": {
"type": "string"
I3
"description™: "List of kinds to match at least one of"
}
3
"required": [
"kinds"
1,
"additionalProperties": false,
"$schema": "http:/json-schema.org/draft-07/schema#"

105

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

"name": "IS_ENTITY_OWNER",
"description”: "Allow entities owned by a specified claim",
"resourceType": "catalog-entity",
"paramsSchema": {
"type": "object",
"properties": {
"claims": {
"type": "array",
"items": {
"type": "string"
}
}
},
"required": [
"claims”

]

additionalProperties": false,
"$schema": "http://json-schema.org/draft-07/schema#"
}
}
]
}
... <another plugin condition parameter schemas>

]

[GET] /api/permission/roles/conditions/:id

Returns conditions for the specified ID.

Example response (JSON)

"id": 1,
"result": "CONDITIONAL",
"roleEntityRef": "role:default/test",
"pluginld": "catalog",
"resourceType": "catalog-entity",
"permissionMapping": ["read"],
"conditions": {
"anyOf": [
{
"rule": "IS_ENTITY_OWNER",
"resourceType": "catalog-entity",
"params": {
"claims": ["group:default/team-a"]
}
b
{
"rule": "IS_ENTITY_KIND",

"resourceType": "catalog-entity",
"params": {

"kinds": ["Group"]
}

106

escription": "List of claims to match at least one on within ownedBy"

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

[GET] /api/permission/roles/conditions

Returns list of all conditions for all roles.

Example response (JSON)

"id": 1,
"result": "CONDITIONAL",
"roleEntityRef": "role:default/test",
"pluginld": "catalog",
"resourceType": "catalog-entity",
"permissionMapping": ["read"],
"conditions": {
"anyOf": [
{
"rule": "IS_ENTITY_OWNER?",
"resourceType": "catalog-entity",
"params": {
"claims": ["group:default/team-a"]
}
b

{
"rule": "IS_ENTITY_KIND",

"resourceType": "catalog-entity",
"params": {
"kinds": ["Group"]

[POST]/api/permission/roles/conditions

Creates a conditional policy for the specified role.

Table 10.9. Request parameters

Name Description Type Presence
result Always has the value CONDITIONAL String Required
roleEntity String entity reference to the RBAC role, such String Required
Ref as role:default/dev

pluginid Corresponding plugin ID, such as catalog String Required

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

Name Description Type Presence

permissio Array permission action, such as ['read’, String array Required
nMapping 'update’, 'delete’]

resourceT Resource type provided by the plugin, such as String Required
ype catalog-entity
conditions Condition JSON with parameters or array JSON Required

parameters joined by criteria

hame Name of the role String Required
metadata. The description of the role String Optional
descriptio

n

Example request body (JSON)

"result": "CONDITIONAL",
"roleEntityRef": "role:default/test",
"pluginld": "catalog",
"resourceType": "catalog-entity",
"permissionMapping": ["read"],
"conditions": {

"rule": "IS_ENTITY_OWNER",

"resourceType": "catalog-entity",

"params": {

"claims": ["group:default/team-a"]

}
}
}

Example response (JSON)

"id": 1

[PUT] /permission/roles/conditions/:id

Updates a condition policy for a specified ID.

Table 10.10. Request parameters

Name Description Type Presence

result Always has the value CONDITIONAL String Required

108

CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUE

Name Description Type Presence
roleEntity String entity reference to the RBAC role, such String Required
Ref as role:default/dev

pluginid Corresponding plugin ID, such as catalog String Required
permissio Array permission action, such as ['read’, String array Required

nMapping 'update’, 'delete’]

resourceT Resource type provided by the plugin, such as String Required
ype catalog-entity
conditions Condition JSON with parameters or array JSON Required

parameters joined by criteria

hame Name of the role String Required
metadata. The description of the role String Optional
descriptio

n

Example request body (JSON)

"result": "CONDITIONAL",
"roleEntityRef": "role:default/test",
"pluginld": "catalog",
"resourceType": "catalog-entity",
"permissionMapping": ["read"],
"conditions": {
"anyOf": [
{
"rule": "IS_ENTITY_OWNER",
"resourceType": "catalog-entity",
"params": {
"claims": ["group:default/team-a"]
}
b

{
"rule": "IS_ENTITY_KIND",

"resourceType": "catalog-entity",
"params": {
"kinds": ["Group"]

Example response

109

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

I 200

[DELETE] /api/permission/roles/conditions/:id

Deletes a conditional policy for the specified ID.

Example response

I 204

110

CHAPTER 11. MANAGING TEMPLATES

CHAPTER 1. MANAGING TEMPLATES

A template is a form composed of different Ul fields that is defined in a YAML file. Templates include
actions, which are steps that are executed in sequential order and can be executed conditionally.

You can use templates to easily create Red Hat Developer Hub components, and then publish these
components to different locations, such as the Red Hat Developer Hub software catalog, or repositories

in GitHub or GitLab.

11.1. CREATING A TEMPLATE BY USING THE TEMPLATE EDITOR

You can create a template by using the Template Editor.

Procedure

1. Access the Template Editor by using one of the following options:

Get started by choosing one of the options below

Load Template Edit Template Form Custom Field Explorer

Directo ry Preview and edit a template form, either View and play around with available
using a sample template or by loading a installed custom field extensions.
template from the catalog.

Load a local template directory. allowing
you to both edit and try executing your own
template.

Open the URL https://<rhdh_url>/create/edit for your Red Hat Developer Hub instance.

Click Create... in the navigation menu of the Red Hat Developer Hub console, then click the
overflow menu button and select Template editor.

. Click Edit Template Form

. Optional: Modify the YAML definition for the parameters of your template. For more
information about these parameters, see Section 11.2, “Creating a template as a YAML file" .

. In the Name *field, enter a unique name for your template.

. From the Owner drop-down menu, choose an owner for the template.

. Click Next.

. In the Repository Locationview, enter the following information about the hosted repository
that you want to publish the template to:

a. Select an available Host from the drop-down menu.

m

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

NOTE

Available hosts are defined in the YAML parameters by the allowedHosts
field:

Example YAML

#...
ui:options:
allowedHosts:
- github.com
#...

b. Inthe Owner * field, enter an organization, user or project that the hosted repository
belongs to.

c. Inthe Repository *field, enter the name of the hosted repository.
d. Click Review.

8. Review the information for accuracy, then click Create.

Verification

1. Click the Catalog tab in the navigation panel.
2. In the Kind drop-down menu, select Template.

3. Confirm that your template is shown in the list of existing templates.

11.2. CREATING A TEMPLATE AS AYAML FILE
You can create a template by defining a Template object as a YAML file.

The Template object describes the template and its metadata. It also contains required input variables
and a list of actions that are executed by the scaffolding service.

Template object example

apiVersion: scaffolder.backstage.io/vibeta3
kind: Template
metadata:
name: template-name ﬂ
title: Example template 9
description: An example template for vibeta3 scaffolder. 6
spec:
owner: backstage/techdocs-core ﬂ
type: service
parameters:
- title: Fill in some steps
required:
- name
properties:
name:

12

o ® 90

®

CHAPTER 11. MANAGING TEMPLATES

title: Name
type: string
description: Unique name of the component
owner:
title: Owner
type: string
description: Owner of the component
- title: Choose a location
required:
- repoUrl
properties:
repoUrl:
title: Repository Location
type: string
steps:
- id: fetch-base
name: Fetch Base
action: fetch:template
#...
output: @
links:
- title: Repository Q
url: ${{ steps['publish'].output.remoteUrl }}
- title: Open in catalog
icon: catalog
entityRef: ${{ steps['register'].output.entityRef }}
#...

Specify a name for the template.

Specify a title for the template. This is the title that is visible on the template tile in the Create...
view.

Specify a description for the template. This is the description that is visible on the template tile in
the Create... view.

Specify the ownership of the template. The owner field provides information about who is
responsible for maintaining or overseeing the template within the system or organization. In the
provided example, the owner field is set to backstage/techdocs-core. This means that this
template belongs to the techdocs-core project in the backstage namespace.

Specify the component type. Any string value is accepted for this required field, but your
organization should establish a proper taxonomy for these. Red Hat Developer Hub instances may
read this field and behave differently depending on its value. For example, a website type
component may present tooling in the Red Hat Developer Hub interface that is specific to just
websites.

The following values are common for this field:

service
A backend service, typically exposing an API.
website
A website.
library
A software library, such as an npm module or a Java library.

13

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

6 Use the parameters section to specify parameters for user input that are shown in a form view
when a user creates a component by using the template in the Red Hat Developer Hub console.

Use the steps section to specify steps that are executed in the backend. These steps must be
defined by using a unique step ID, a name, and an action. You can view actions that are available on
your Red Hat Developer Hub instance by visiting the URL https://<rhdh_url>/create/actions.

@ Use the output section to specify the structure of output data that is created when the template is
used. The output section, particularly the links subsection, provides valuable references and URLs
that users can utilize to access and interact with components that are created from the template.

Provides a reference or URL to the repository associated with the generated component.

Provides a reference or URL that allows users to open the generated component in a catalog or
directory where various components are listed.

Additional resources

® Backstage documentation - Writing Templates
® Backstage documentation - Builtin actions

® Backstage documentation - Writing Custom Actions

11.3. IMPORTING AN EXISTING TEMPLATE TO RED HAT DEVELOPER
HUB

You can add an existing template to your Red Hat Developer Hub instance by using the Catalog
Processor.

Prerequisites

® You have created a directory or repository that contains at least one template YAML file.

e |fyou want to use a template that is stored in a repository such as GitHub or GitLab, you must
configure a Red Hat Developer Hub integration for your provider.

Procedure

® |n the app-config.yaml configuration file, modify the catalog.rules section to include a rule for
templates, and configure the catalog.locations section to point to the template that you want
to add, as shown in the following example:

#...
catalog:
rules:
- allow: [Template] ﬂ
locations:
- type: url 9
target: https://<repository_url>/example-template.yaml 6
#...

ﬂ To allow new templates to be added to the catalog, you must add a Template rule.

14

https://backstage.io/docs/features/software-templates/writing-templates
https://backstage.io/docs/features/software-templates/builtin-actions
https://backstage.io/docs/features/software-templates/writing-custom-actions

CHAPTER 11. MANAGING TEMPLATES

9 If you are importing templates from a repository, such as GitHub or GitLab, use the url
type.

9 Specify the URL for the template.

Verification

1. Click the Catalog tab in the navigation panel.
2. In the Kind drop-down menu, select Template.

3. Confirm that your template is shown in the list of existing templates.

Additional resources

® Configuring a GitHub App in Developer Hub

® Enabling the GitLab OAuth authentication provider

115

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/getting_started_with_red_hat_developer_hub/index
https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/getting_started_with_red_hat_developer_hub/index

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

CHAPTER 12. CONFIGURING THE TECHDOCS PLUGIN IN RED
HAT DEVELOPER HUB

The Red Hat Developer Hub TechDocs plugin helps your organization create, find, and use
documentation in a central location and in a standardized way. For example:

Docs-like-code approach

Write your technical documentation in Markdown files that are stored inside your project repository
along with your code.

Documentation site generation

Use MkDocs to create a full-featured, Markdown-based, static HTML site for your documentation
that is rendered centrally in Developer Hub.

Documentation site metadata and integrations

See additional metadata about the documentation site alongside the static documentation, such as
the date of the last update, the site owner, top contributors, open GitHub issues, Slack support
channels, and Stack Overflow Enterprise tags.

Built-in navigation and search

Find the information that you want from a document more quickly and easily.
Add-ons

Customize your TechDocs experience with Add-ons to address higher-order documentation needs.
The TechDocs plugin is preinstalled and enabled on a Developer Hub instance by default. You can

disable or enable the TechDocs plugin, and change other parameters, by configuring the Red Hat
Developer Hub Helm chart or the Red Hat Developer Hub Operator config map.

IMPORTANT

Red Hat Developer Hub includes a built-in TechDocs builder that generates static HTML
documentation from your codebase. However, the default basic setup of the local builder
is not intended for production.

You can use a Cl/CD pipeline with the repository that has a dedicated job to generate docs for
TechDocs. The generated static files are stored in OpenShift Data Foundation or in a cloud storage
solution of your choice and published to a static HTML documentation site.

After you configure OpenShift Data Foundation to store the files that TechDocs generates, you can
configure the TechDocs plugin to use the OpenShift Data Foundation for cloud storage.

Additional resources

® For more information, see Configuring plugins in Red Hat Developer Hub .

12.1. CONFIGURING STORAGE FOR TECHDOCS FILES

The TechDocs publisher stores generated files in local storage or in cloud storage, such as OpenShift
Data Foundation, Google GCS, AWS S3, or Azure Blob Storage.

12.1.1. Using OpenShift Data Foundation for file storage

16

https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.2/html-single/configuring_plugins_in_red_hat_developer_hub/index

CHAPTER 12. CONFIGURING THE TECHDOCS PLUGIN IN RED HAT DEVELOPER HUE

You can configure OpenShift Data Foundation to store the files that TechDocs generates instead of
relying on other cloud storage solutions.

OpenShift Data Foundation provides an ObjectBucketClaim custom resource (CR) that you can use to
request an S3 compatible bucket backend. You must install the OpenShift Data Foundation Operator to
use this feature.

Prerequisites

® An OpenShift Container Platform administrator has installed the OpenShift Data Foundation
Operator in Red Hat OpenShift Container Platform. For more information, see OpenShift
Container Platform - Installing Red Hat OpenShift Data Foundation Operator.

® An OpenShift Container Platform administrator has created an OpenShift Data Foundation
cluster and configured the StorageSystem schema. For more information, see OpenShift
Container Platform - Creating an OpenShift Data Foundation cluster.

Procedure

e Create an ObjectBucketClaim CR where the generated TechDocs files are stored. For
example:

apiVersion: objectbucket.io/vialpha1l

kind: ObjectBucketClaim

metadata:
name: <rhdh_bucket_claim_name>

spec:
generateBucketName: <rhdh_bucket_claim_name>
storageClassName: openshift-storage.noobaa.io

NOTE

Creating the Developer Hub ObjectBucketClaim CR automatically creates both
the Developer Hub ObjectBucketClaim config map and secret. The config map
and secret have the same name as the ObjetBucketClaim CR.

After you create the ObjectBucketClaim CR, you can use the information stored in the config map and
secret to make the information accessible to the Developer Hub container as environment variables.
Depending on the method that you used to install Developer Hub, you add the access information to
either the Red Hat Developer Hub Helm chart or Operator configuration.

Additional resources
® For more information about the Object Bucket Claim, see OpenShift Container Platform -
Object Bucket Claim.
12.1.2. Making object storage accessible to containers by using the Helm chart

Creating a ObjectBucketClaim custom resource (CR) automatically generates both the Developer Hub
ObjectBucketClaim config map and secret. The config map and secret contain ObjectBucket access
information. Adding the access information to the Helm chart configuration makes it accessible to the
Developer Hub container by adding the following environment variables to the container:

e BUCKET_NAME

17

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.15/html/deploying_openshift_data_foundation_using_amazon_web_services/deploy-using-dynamic-storage-devices-aws#installing-openshift-data-foundation-operator-using-the-operator-hub_cloud-storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/latest/html/deploying_openshift_data_foundation_using_amazon_web_services/deploy-using-dynamic-storage-devices-aws#creating-an-openshift-data-foundation-service_cloud-storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/managing_hybrid_and_multicloud_resources/object-bucket-claim#doc-wrapper

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

e BUCKET HOST
e BUCKET PORT

e BUCKET REGION

e BUCKET SUBREGION

e AWS_ACCESS_KEY_ID

e AWS_SECRET ACCESS_KEY

These variables are then used in the TechDocs plugin configuration.

Prerequisites

® You have installed Red Hat Developer Hub on OpenShift Container Platform using the Helm
chart.

® You have created an ObjectBucketClaim CR for storing files generated by TechDocs. For
more information see Using OpenShift Data Foundation for file storage

Procedure

e |n the upstream.backstage key in the Helm chart values, enter the name of the Developer Hub
ObjectBucketClaim secret as the value for the extraEnvVarsSecrets field and the
extraEnvVarsCM field. For example:

upstream:
backstage:
extraEnvVarsSecrets:
- <rhdh_bucket_claim_name>
extraEnvVarsCM:
- <rhdh_bucket_claim_name>

12.1.2.1. Example TechDocs Plugin configuration for the Helm chart

The following example shows a Developer Hub Helm chart configuration for the TechDocs plugin:

global:
dynamic:
includes:
- 'dynamic-plugins.default.yaml'
plugins:
- disabled: false
package: ./dynamic-plugins/dist/backstage-plugin-techdocs-backend-dynamic
pluginConfig:
techdocs:
builder: external
generator:
runin: local
publisher:
awsS3:
bucketName: '${BUCKET_NAME}'
credentials:

18

CHAPTER 12. CONFIGURING THE TECHDOCS PLUGIN IN RED HAT DEVELOPER HUE

accessKeyld: '${AWS_ACCESS_KEY_ID}'
secretAccessKey: '${AWS_SECRET_ACCESS_KEY}
endpoint: 'https://${BUCKET_HOSTY}'
regions: '${BUCKET_REGION}'
s3ForcePathStyle: true
type: awsS3

12.1.3. Making object storage accessible to containers by using the Operator

Creating a ObjectBucketClaim Custom Resource (CR) automatically generates both the Developer
Hub ObjectBucketClaim config map and secret. The config map and secret contain ObjectBucket
access information. Adding the access information to the Operator configuration makes it accessible to
the Developer Hub container by adding the following environment variables to the container:

e BUCKET NAME
e BUCKET HOST

e BUCKET PORT

e BUCKET_REGION

e BUCKET SUBREGION

e AWS_ACCESS _KEY_ID

e AWS_SECRET ACCESS _KEY

These variables are then used in the TechDocs plugin configuration.

Prerequisites

® You have installed Red Hat Developer Hub on OpenShift Container Platform using the
Operator.

® You have created an ObjectBucketClaim CR for storing files generated by TechDocs.

Procedure

® |nthe Developer Hub ObjectBucketClaim CR, enter the name of the Developer Hub
ObjectBucketClaim config map as the value for the spec.application.extraEnvs.configMaps
field and enter the Developer Hub ObjectBucketClaim secret name as the value for the
spec.application.extraEnvs.secrets field. For example:

spec:
application:
extraEnvs:
configMaps:
- name: <rhdh_bucket_claim_name>
secrets:
- name: <rhdh_bucket_claim_name>

12.1.3.1. Example TechDocs Plugin configuration for the Operator

19

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

The following example shows a Red Hat Developer Hub Operator config map configuration for the
TechDocs plugin:

kind: ConfigMap
apiVersion: v1
metadata:
name: dynamic-plugins-rhdh
data:
dynamic-plugins.yaml: |
includes:
- dynamic-plugins.default.yaml
plugins:
- disabled: false
package: ./dynamic-plugins/dist/backstage-plugin-techdocs-backend-dynamic
pluginConfig:
techdocs:
builder: external
generator:
runin: local
publisher:
awsS3:
bucketName: '${BUCKET_NAMEY}'
credentials:
accessKeyld: '${AWS_ACCESS_KEY_ID}'
secretAccessKey: '${AWS_SECRET_ACCESS_KEY}'
endpoint: 'https://${BUCKET_HOSTY}'
regions: '${BUCKET_REGION}'
s3ForcePathStyle: true
type: awsS3

12.2. CONFIGURING CI/CD TO GENERATE AND PUBLISH TECDOCS
SITES

TechDocs reads the static generated documentation files from a cloud storage bucket, such as
OpenShift Data Foundation. The documentation site is generated on the Cl/CD workflow associated
with the repository containing the documentation files. You can generate docs on Cl and publish to a
cloud storage using the techdocs-cli CLI tool.

You can use the following example to create a script for TechDocs publication:

Prepare
REPOSITORY_URL="https://github.com/org/repo’
git clone $REPOSITORY_URL

cd repo

Install @techdocs/cli, mkdocs and mkdocs plugins
npm install -g @techdocs/cli
pip install "mkdocs-techdocs-core==1.*"

Generate
techdocs-cli generate --no-docker

120

CHAPTER 12. CONFIGURING THE TECHDOCS PLUGIN IN RED HAT DEVELOPER HUE

Publish
techdocs-cli publish --publisher-type awsS3 --storage-name <bucket/container> --entity
<Namespace/Kind/Name>

The TechDocs workflow starts the Cl when a user makes changes in the repository containing the
documentation files. You can configure the workflow to start only when files inside the docs/ directory
or mkdocs.yml are changed.

12.2.1. Preparing your repository for Ci

The first step on the Clis to clone your documentation source repository in a working directory.

Procedure

® To clone your documentation source repository in a working directory, enter the following
command:

I git clone <https://path/to/docs-repository/>

12.2.2. Generating the TechDocs site

Procedure

To configure Cl/CD to generate your techdocs, complete the following steps:

1. Install the npx package to run techdocs-cli using the following command:
I npm install -g npx
2. Install the techdocs-cli tool using the following command:
I npm install -g @techdocs/cli
3. Install the mkdocs plugins using the following command:
I pip install "mkdocs-techdocs-core==1.*"
4. Generate your techdocs site using the following command:
I npx @techdocs/cli generate --no-docker --source-dir <path_to_repo> --output-dir ./site

Where <path_to_repos is the location in the file path that you used to clone your repository.

12.2.3. Publishing the TechDocs site

Procedure

To publish your techdocs site, complete the following steps:
1. Set the necessary authentication environment variables for your cloud storage provider.

2. Publish your techdocs using the following command:

121

Red Hat Developer Hub 1.2 Administration guide for Red Hat Developer Hub

npx @techdocs/cli publish --publisher-type <awsS3|googleGces> --storage-name
<bucket/container> --entity <namespace/kind/name> --directory ./site

3. Add a .github/workflows/techdocs.yml file in your Software Template(s). For example:
name: Publish TechDocs Site

on:
push:
branches: [main]
You can even set it to run only when TechDocs related files are updated.
paths:
-"docs/*™"
-"mkdocs.yml"

jobs:
publish-techdocs-site:
runs-on: ubuntu-latest

The following secrets are required in your Cl environment for publishing files to AWS S83.
e.g. You can use GitHub Organization secrets to set them for all existing and new
repositories.
env:
TECHDOCS_S3_BUCKET_NAME: ${{ secrets. TECHDOCS_S3_BUCKET_NAME }}
AWS_ACCESS_KEY_ID: ${{ secrets. AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets. AWS_SECRET_ACCESS_KEY }}
AWS_REGION: ${{ secrets. AWS_REGION }}
ENTITY_NAMESPACE: 'default'
ENTITY_KIND: 'Component'
ENTITY_NAME: 'my-doc-entity’'
In a Software template, Scaffolder will replace {{cookiecutter.component_id | jsonify}}
with the correct entity name. This is same as metadata.name in the entity's catalog-
info.yaml
ENTITY_NAME: '{{ cookiecutter.component_id | jsonify }}'

steps:
- name: Checkout code
uses: actions/checkout@v3

- uses: actions/setup-node@v3
- uses: actions/setup-python@v4
with:
python-version: '3.9'

- name: Install techdocs-cli
run: sudo npm install -g @techdocs/cli

- name: Install mkdocs and mkdocs plugins
run: python -m pip install mkdocs-techdocs-core==1.*

- name: Generate docs site
run: techdocs-cli generate --no-docker --verbose

- name: Publish docs site

122

CHAPTER 12. CONFIGURING THE TECHDOCS PLUGIN IN RED HAT DEVELOPER HUE

run: techdocs-cli publish --publisher-type awsS83 --storage-name
$TECHDOCS_S3_BUCKET_NAME --entity
$ENTITY_NAMESPACE/$SENTITY_KIND/$SENTITY_NAME

123

	Table of Contents
	PREFACE
	RED HAT DEVELOPER HUB SUPPORT
	CHAPTER 1. INSTALLING THE RED HAT DEVELOPER HUB OPERATOR
	CHAPTER 2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM
	2.1. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM USING HELM CHART
	2.1.1. Installing Red Hat Developer Hub on Red Hat OpenShift Container Platform with Helm CLI
	2.1.2. Adding a custom application configuration file to OpenShift Container Platform using the Helm chart
	2.1.3. Installing Red Hat Developer Hub using the Helm Chart in an air-gapped environment

	2.2. DEPLOYING RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM USING THE OPERATOR
	2.2.1. Adding a custom application configuration file to OpenShift Container Platform using the Operator
	2.2.2. Configuring dynamic plugins with the Red Hat Developer Hub Operator
	2.2.3. Installing Red Hat Developer Hub using the Operator in an air-gapped environment

	CHAPTER 3. CONFIGURING EXTERNAL POSTGRESQL DATABASES
	3.1. CONFIGURING AN EXTERNAL POSTGRESQL INSTANCE USING THE OPERATOR
	3.2. CONFIGURING AN EXTERNAL POSTGRESQL INSTANCE USING THE HELM CHART
	3.3. MIGRATING LOCAL DATABASES TO AN EXTERNAL DATABASE SERVER USING THE OPERATOR

	CHAPTER 4. ENABLING AUTHENTICATION IN RED HAT DEVELOPER HUB
	4.1. ENABLING THE MICROSOFT AZURE AUTHENTICATION PROVIDER
	4.2. ENABLING THE GITLAB OAUTH AUTHENTICATION PROVIDER

	CHAPTER 5. TELEMETRY DATA COLLECTION
	5.1. DISABLING TELEMETRY DATA COLLECTION IN RHDH
	5.2. ENABLING TELEMETRY DATA COLLECTION IN RHDH
	5.3. CUSTOMIZING TELEMETRY SEGMENT SOURCE

	CHAPTER 6. ENABLING OBSERVABILITY FOR RED HAT DEVELOPER HUB ON OPENSHIFT CONTAINER PLATFORM
	6.1. ENABLING METRICS MONITORING IN A HELM CHART INSTALLATION ON AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	6.2. ENABLING METRICS MONITORING IN A RED HAT DEVELOPER HUB OPERATOR INSTALLATION ON AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	6.3. ADDITIONAL RESOURCES

	CHAPTER 7. RUNNING THE RHDH APPLICATION BEHIND A CORPORATE PROXY
	7.1. CONFIGURING PROXY INFORMATION IN HELM DEPLOYMENT
	7.2. CONFIGURING PROXY INFORMATION IN OPERATOR DEPLOYMENT

	CHAPTER 8. RED HAT DEVELOPER HUB INTEGRATION WITH AMAZON WEB SERVICES (AWS)
	8.1. DEPLOYING RED HAT DEVELOPER HUB ON ELASTIC KUBERNETES SERVICE (EKS) USING HELM CHART
	8.2. DEPLOYING RED HAT DEVELOPER HUB ON ELASTIC KUBERNETES SERVICE (EKS) USING THE OPERATOR
	8.2.1. Installing the Red Hat Developer Hub Operator with the OLM framework
	8.2.2. Installing the Red Hat Developer Hub Operator without the OLM framework
	8.2.3. Installing the Developer Hub instance in EKS

	8.3. MONITORING AND LOGGING WITH AMAZON WEB SERVICES (AWS) IN RED HAT DEVELOPER HUB
	8.3.1. Monitoring with Amazon Prometheus
	8.3.1.1. Configuring annotations for monitoring

	8.3.2. Logging with Amazon CloudWatch logs
	8.3.2.1. Configuring the application log level
	8.3.2.2. Retrieving logs from Amazon CloudWatch

	8.4. USING AMAZON COGNITO AS AN AUTHENTICATION PROVIDER IN RED HAT DEVELOPER HUB

	CHAPTER 9. RED HAT DEVELOPER HUB INTEGRATION WITH MICROSOFT AZURE KUBERNETES SERVICE (AKS)
	9.1. DEPLOYING RED HAT DEVELOPER HUB ON AZURE KUBERNETES SERVICE (AKS) USING THE HELM CHART
	9.2. DEPLOYING THE RED HAT DEVELOPER HUB ON AZURE KUBERNETES SERVICE (AKS) USING THE OPERATOR
	9.3. MONITORING AND LOGGING WITH AZURE KUBERNETES SERVICES (AKS) IN RED HAT DEVELOPER HUB
	9.3.1. Viewing logs with Azure Kubernetes Services (AKS)

	9.4. USING MICROSOFT AZURE AS AN AUTHENTICATION PROVIDER IN RED HAT DEVELOPER HUB
	9.4.1. Using Microsoft Azure as an authentication provider in Helm deployment
	9.4.2. Using Microsoft Azure as an authentication provider in Operator-backed deployment

	CHAPTER 10. ROLE-BASED ACCESS CONTROL (RBAC) IN RED HAT DEVELOPER HUB
	10.1. PERMISSION POLICIES IN RED HAT DEVELOPER HUB
	10.1.1. Permission policies configuration
	10.1.1.1. Configuration of permission policies administrators
	10.1.1.2. Configuration of permission policies defined in an external file

	10.2. CONDITIONAL POLICIES IN RED HAT DEVELOPER HUB
	10.2.1. Conditional policies definition
	10.2.1.1. Examples of conditional policies

	10.3. MANAGING ROLE-BASED ACCESS CONTROLS (RBAC) USING THE RED HAT DEVELOPER HUB WEB UI
	10.3.1. Creating a role in the Red Hat Developer Hub Web UI
	10.3.2. Editing a role in the Red Hat Developer Hub Web UI
	10.3.3. Deleting a role in the Red Hat Developer Hub Web UI

	10.4. ROLE-BASED ACCESS CONTROL (RBAC) REST API
	10.4.1. Sending requests with the RBAC REST API using a REST client or curl utility
	10.4.2. Supported RBAC REST API endpoints
	10.4.2.1. Roles
	10.4.2.2. Permission policies
	10.4.2.3. Conditional policies

	CHAPTER 11. MANAGING TEMPLATES
	11.1. CREATING A TEMPLATE BY USING THE TEMPLATE EDITOR
	11.2. CREATING A TEMPLATE AS A YAML FILE
	11.3. IMPORTING AN EXISTING TEMPLATE TO RED HAT DEVELOPER HUB

	CHAPTER 12. CONFIGURING THE TECHDOCS PLUGIN IN RED HAT DEVELOPER HUB
	12.1. CONFIGURING STORAGE FOR TECHDOCS FILES
	12.1.1. Using OpenShift Data Foundation for file storage
	12.1.2. Making object storage accessible to containers by using the Helm chart
	12.1.2.1. Example TechDocs Plugin configuration for the Helm chart

	12.1.3. Making object storage accessible to containers by using the Operator
	12.1.3.1. Example TechDocs Plugin configuration for the Operator

	12.2. CONFIGURING CI/CD TO GENERATE AND PUBLISH TECDOCS SITES
	12.2.1. Preparing your repository for CI
	12.2.2. Generating the TechDocs site
	12.2.3. Publishing the TechDocs site

