& RedHat

Red Hat Developer Hub 1.2

Authentication

Configuring authentication to external services in Red Hat Developer Hub

Last Updated: 2024-10-02

Red Hat Developer Hub 1.2 Authentication

Configuring authentication to external services in Red Hat Developer Hub

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

As a Red Hat Developer Hub platform engineer, you can manage authentication of other users to
meet the specific needs of your organization.

Table of Contents

Table of Contents

o L 3
CHAPTER 1. ENABLING THE MICROSOFT AZURE AUTHENTICATION PROVIDERcooiiiian, 4
CHAPTER 2. ENABLING THE GITHUB AUTHENTICATION PROVIDERttt 7
2.1. GITHUB APP OVERVIEW 7
2.2. REGISTERING A GITHUB APP 7
2.3. CONFIGURING A GITHUB APP IN DEVELOPER HUB 7
2.4. ADDING THE GITHUB PROVIDER TO THE DEVELOPER HUB FRONT END 8
CHAPTER 3. ENABLING THE OPENID CONNECT AUTHENTICATION PROVIDERccoiiiiiinne. 9
3.1. OVERVIEW OF USING THE OIDC AUTHENTICATION PROVIDER IN DEVELOPER HUB 9
3.2. CONFIGURING KEYCLOAK WITH THE OIDC AUTHENTICATION PROVIDER 9

3.3. MIGRATING FROM OAUTH2 PROXY WITH KEYCLOAK TO OIDC IN DEVELOPER HUB il

Red Hat Developer Hub 1.2 Authentication

PREFACE

PREFACE

Authentication within Red Hat Developer Hub facilitates user sign-in, identification, and access to
external resources. It supports multiple authentication providers.

Authentication providers are typically used in the following ways:
® One provider for sign-in and identification.
® Additional providers for accessing external resources.
The Red Hat Developer Hub supports the following authentication providers:

Microsoft Azure

microsoft
GitHub

github
Keycloak

oidc

For each provider that you want to use, follow the dedicated procedure to complete the following tasks:

1. Set up the shared secret that the authentication provider and Red Hat Developer Hub require
to communicate.

2. Configure Red Hat Developer Hub to use the authentication provider.

Red Hat Developer Hub 1.2 Authentication

CHAPTER 1. ENABLING THE MICROSOFT AZURE
AUTHENTICATION PROVIDER

Red Hat Developer Hub includes a Microsoft Azure authentication provider that can authenticate users
by using OAuth.

Procedure

1. To allow Developer Hub to authenticate with Microsoft Azure, create an OAuth Application in
Microsoft Azure.

a. Go to Azure Portal > App registrations and create an App Registration for Developer
Hub.

b. On your App registration overview page, add a new Web platform configuration, with the
configuration:
Redirect URI

Enter the backend authentication URI set in Developer Hub:
https://<APP_FQDN>/api/auth/microsoft/handler/frame

Front-channel logout URL
Leave blank.
Implicit grant and hybrid flows

Leave all checkboxes cleared.

c. On the API permissions tab, click Add Permission, then add the following Delegated
permission for the Microsoft Graph APL

® email

o offline_access
e openid

e profile

e User.Read

e Optional custom scopes of the Microsoft Graph API that you define both here and in
the Developer Hub configuration (app-config-rhdh.yaml).

NOTE

Your company might require you to grant admin consent for these
permissions. Even if your company does not require admin consent, you
might do so as it means users do not need to individually consent the first
time they access backstage. To grant admin consent, a directory admin
must go to the admin consent page and click Grant admin consent for
COMPANY NAME.

d. Go to the Certificates & Secretspage, then the Client secrets tab, and create a new client
secret. Save the Client secret for the next step.

2. Add your Microsoft Azure credentials in your Developer Hub secrets.

https://portal.azure.com/#view/Microsoft_AAD_RegisteredApps/ApplicationsListBlade
https://learn.microsoft.com/en-us/azure/active-directory/manage-apps/user-admin-consent-overview

CHAPTER 1. ENABLING THE MICROSOFT AZURE AUTHENTICATION PROVIDER

a. Edit your Developer Hub secrets, such as secrets-rhdh.

b. Add the following key/value pairs:

e AUTH_AZURE_CLIENT_ID: Enter the Application ID that you generated on Microsoft
Azure.

o AUTH_AZURE_CLIENT_SECRET: Enter the Client secret that you generated on
Microsoft Azure.

e AUTH_AZURE_TENANT_ID: Enter your Tenant ID on Microsoft Azure.

3. Set up the Microsoft Azure authentication provider in your Developer Hub custom
configuration.
Edit your custom Developer Hub config map, such as app-config-rhdh.

In the app-config-rhdh.yaml content, add the microsoft provider configuration under the root
auth configuration, and enable the microsoft provider for sign-in:

app-config-rhdh.yaml fragment

auth:
environment: production
providers:
microsoft:
production:
clientld: ${AUTH_AZURE_CLIENT_ID}
clientSecret: ${AUTH_AZURE_CLIENT_SECRET}
tenantld: ${AUTH_AZURE_TENANT_ID}
domainHint: ${AUTH_AZURE_TENANT_ID} a
additionalScopes: 9
- Mail.Send
signinPage: microsoft 6

ﬂ Optional for single-tenant applications. You can reduce login friction for users with
accounts in multiple tenants by automatically filtering out accounts from other tenants. If
you want to use this parameter for a single-tenant application, uncomment and enter the
tenant ID. If your application registration is multi-tenant, leave this parameter blank. For
more information, see Home Realm Discovery.

9 Optional for additional scopes. To add scopes for the application registration, uncomment
and enter the list of scopes that you want to add. The default and mandatory value is
['user.read'].

9 To enable the Microsoft Azure provider as default sign-in provider.

https://learn.microsoft.com/en-us/azure/active-directory/manage-apps/home-realm-discovery-policy

Red Hat Developer Hub 1.2 Authentication

NOTE

Optional for environments with restrictions on outgoing access, such as firewall rules. If
your environment has outgoing access restrictions make sure your Backstage backend
has access to the following hosts:

® |ogin.microsoftonline.com: To get and exchange authorization codes and
access tokens.

e graph.microsoft.com: To fetch user profile information (as seen in this source
code). If this host is unreachable, users might see an Authentication failed, failed
to fetch user profile error when they attempt to login.

CHAPTER 2. ENABLING THE GITHUB AUTHENTICATION PROVIDER

CHAPTER 2. ENABLING THE GITHUB AUTHENTICATION
PROVIDER

Red Hat Developer Hub uses a built-in GitHub authentication provider to authenticate users in GitHub
or GitHub Enterprise.

2.1. GITHUB APP OVERVIEW

GitHub Apps are generally preferred to OAuth apps because they use fine-grained permissions, give
more control over which repositories the application can access, and use short-lived tokens. For more
information, see GitHub Apps overview in the GitHub documentation.

2.2. REGISTERING A GITHUB APP

In a GitHub App, you configure the allowed scopes as part of that application, therefore, you must verify
the scope that your plugins require. The scope information is available in the plugin README files.

To add GitHub authentication, complete the steps in Registering a GitHub App on the GitHub website.

Use the following examples to enter the information about your production environment into the
required fields on the Register new GitHub App page:

® Application name: Red Hat Developer Hub

e Homepage URL: https://developer-hub-<NAMESPACE_NAME>.
<KUBERNETES_ROUTE_HOST>

® Authorization callback URL: https://developer-hub-<NAMESPACE_NAME->.
<KUBERNETES_ROUTE_HOST>/api/auth/github/handler/frame

NOTE

The Homepage URL points to the Developer Hub front end, while the authorization
callback URL points to the authentication provider backend.

2.3. CONFIGURING A GITHUB APP IN DEVELOPER HUB

To add GitHub authentication for Developer Hub, you must configure the GitHub App in your app-
config.yaml file.

The GitHub authentication provider uses the following configuration keys:
e clientld: the client ID that you generated on GitHub. For example: b59241722e3c3b4816e2
e clientSecret: the client secret tied to the generated client ID.

e enterpriselnstanceUrl (optional): the base URL for a GitHub Enterprise instance. For example:
https://ghe.<company>.com. The enterpriselnstanceUrl is only needed for GitHub
Enterprise.

e callbackUrl (optional): the callback URL that GitHub uses when initiating an OAuth flow. For
example: https://your-intermediate-service.com/handler. The callbackUrl is only needed if
Developer Hub is not the immediate receiver, such as in cases when you use one OAuth app for
many Developer Hub instances.

https://docs.github.com/en/apps/overview
https://docs.github.com/en/apps/creating-github-apps/registering-a-github-app/registering-a-github-app

Red Hat Developer Hub 1.2 Authentication

To configure the GitHub App, add the provider configuration to your app-config.yaml file under the
root auth configuration. For example:

auth:

environment: production

providers:

github:
production:

clientld: ${GITHUB_APP_CLIENT_ID}
clientSecret: ${GITHUB_APP_CLIENT_SECRET}
uncomment if using GitHub Enterprise
enterpriselnstanceUrl: ${GITHUB_URL}

2.4. ADDING THE GITHUB PROVIDER TO THE DEVELOPER HUB
FRONT END

To add the provider to the front end, add the sign in configuration to your app-config.yaml file. For
example:

I signinPage: github

Additional resources

e Forinformation about authenticating Backstage access with GitHub, see GitHub Authentication
Provider in the community documentation.

e Forinformation about adding the provider to the Backstage front end, see Enabling
authentication in Showcase in the community documentation.

https://backstage.io/docs/integrations/github/github-apps/
https://github.com/janus-idp/backstage-showcase/blob/main/showcase-docs/getting-started.md

CHAPTER 3. ENABLING THE OPENID CONNECT AUTHENTICATION PROVIDER

CHAPTER 3. ENABLING THE OPENID CONNECT
AUTHENTICATION PROVIDER

Red Hat Developer Hub uses the OpenlID Connect (OIDC) authentication provider to authenticate with
third-party services that support the OIDC protocol.

3.1. OVERVIEW OF USING THE OIDC AUTHENTICATION PROVIDER IN
DEVELOPER HUB

You can configure the OIDC authentication provider in Developer Hub by updating your app-
config.yaml file under the root auth configuration. For example:

auth:
environment: production
Providing an auth.session.secret will enable session support in the auth-backend
session:
secret: ${SESSION_SECRET}
providers:
oidc:
production:
metadataUrl: ${AUTH_OIDC_METADATA_URL}
clientld: ${AUTH_OIDC_CLIENT_ID}
clientSecret: ${AUTH_OIDC_CLIENT_SECRET}
prompt: ${AUTH_OIDC_PROMPT} # Recommended to use auto
Uncomment for additional configuration options
callbackUrl: ${AUTH_OIDC_CALLBACK_URL}
tokenEndpointAuthMethod: ${AUTH_OIDC_TOKEN_ENDPOINT_METHOD}
tokenSignedResponseAlg: ${AUTH_OIDC_SIGNED RESPONSE_ALG}
scope: ${AUTH_OIDC _SCOPE}
Declarative resolvers to override the default resolver:
‘emailLocalPartMatchingUserEntityName®
The authentication provider tries each sign-in resolver until it succeeds, and fails if none
succeed. Uncomment the resolvers that you want to use.
signin:
resolvers:
- resolver: preferredUsernameMatchingUserEntityName
- resolver: emailMatchingUserEntity ProfileEmail
- resolver: emailLocalPartMatchingUserEntityName
signinPage: oidc

3.2. CONFIGURING KEYCLOAK WITH THE OIDC AUTHENTICATION
PROVIDER

Red Hat Developer Hub includes an OIDC authentication provider that can authenticate users by using
Keycloak.

IMPORTANT
The user that you create in Keycloak must also be available in the Developer Hub catalog.

Procedure

Red Hat Developer Hub 1.2 Authentication

1.

10

In Keycloak, create a new realm, for example RHDH.

Add a new user.

Username
Username for the user, for example: rhdhuser
Email
Email address of the user.
First name
First name of the user.
Last name
Last name of the user.
Email verified

Toggle to On.
Click Create.
Navigate to the Credentials tab.

Click Set password.

Enter the Password for the user account and toggle Temporary to Off.

Create a new Client ID, for example, RHDH.

Client authentication
Toggle to On.
Valid redirect URIs
Set to the OIDC handler URL, for example,

https://<RHDH_URL>/api/auth/oidc/handler/frame.
Navigate to the Credentials tab and copy the Client secret.
. Save the Client ID and the Client Secret for the next step.

. In Developer Hub, add your Keycloak credentials in your Developer Hub secrets.

a. Edit your Developer Hub secrets, such as secrets-rhdh.

b. Add the following key/value pairs:

AUTH_KEYCLOAK_CLIENT_ID

Enter the Client ID that you generated in Keycloak, such as RHDH.

AUTH_KEYCLOAK_CLIENT_SECRET

Enter the Client Secret that you generated in Keycloak.

Set up the OIDC authentication provider in your Developer Hub custom configuration.

a. Edit your custom Developer Hub ConfigMap, such as app-config-rhdh.

b. In the app-config-rhdh.yaml content, add the oidc provider configuration under the root
auth configuration, and enable the oidc provider for sign-in:

https:/api/auth/oidc/handler/frame

CHAPTER 3. ENABLING THE OPENID CONNECT AUTHENTICATION PROVIDER

app-config-rhdh.yaml fragment

auth:
environment: production
providers:
oidc:
production:
clientld: ${AUTH_KEYCLOAK_CLIENT_ID}
clientSecret: ${AUTH_KEYCLOAK_CLIENT_SECRET}
metadataUrl: ${KEYCLOAK_BASE_URL}/auth/realms/${KEYCLOAK_REALM}
prompt: ${KEYCLOAK_PROMPT} # recommended to use auto
Uncomment for additional configuration options #callbackUrl:
${KEYCLOAK_CALLBACK_URL} #tokenEndpointAuthMethod:
${KEYCLOAK_TOKEN_ENDPOINT_METHOD} #tokenSignedResponseAlg:
${KEYCLOAK_SIGNED_RESPONSE_ALG} #scope: ${KEYCLOAK_SCOPE} If you are
using the keycloak-backend plugin, use the
preferredUsernameMatchingUserEntityName resolver to avoid a login error.
signin:
resolvers:
- resolver: preferredUsernameMatchingUserEntityName
signinPage: oidc

Verification

1. Restart your backstage-developer-hub application to apply the changes.

2. Your Developer Hub sign-in page displays Sign in using OIDC.

3.3. MIGRATING FROM OAUTH2 PROXY WITH KEYCLOAK TO OIDC IN
DEVELOPER HUB

If you are using OAuth2 Proxy as an authentication provider with Keycloak, and you want to migrate to
OIDC, you can update your authentication provider configuration to use OIDC.

Procedure

1. In Keycloak, update the valid redirect URI to https://<rhdh_url>/api/auth/oidc/handler/frame.
Make sure to replace <rhdh_url> with your Developer Hub application URL, such as,
my.rhdh.example.com.

2. Replace the oauth2Proxy configuration values in the auth section of your app-config.yaml file
with the oidec configuration values.

3. Update the signinPage configuration value from oauth2Proxy to oidc.
The following example shows the auth.providers and signinPage configuration for
oauth2Proxy prior to migrating the authentication provider to oidc:

auth:
environment: production
session:
secret: ${SESSION_SECRET}
providers:
oauth2Proxy: {}
signinPage: oauth2Proxy

1

https:/api/auth/oidc/handler/frame

Red Hat Developer Hub 1.2 Authentication

The following example shows the auth.providers and signinPage configuration after migrating
the authentication provider to oidc:

auth:
environment: production
session:
secret: ${SESSION_SECRET}
providers:
oidc:
production:
metadataUrl: ${KEYCLOAK_METADATA_URL}
clientld: ${KEYCLOAK_CLIENT_ID}
clientSecret: ${KEYCLOAK_CLIENT_SECRET}
prompt: ${KEYCLOAK_PROMPT} # recommended to use auto
signinPage: oidc

4. Remove the OAuth2 Proxy sidecar container and update the upstream.service section of your
Helm chart’s values.yaml file as follows:

® service.ports.backend: 7007

® service.ports.targetPort: backend
The following example shows the service configuration for oauth2Proxy prior to migrating
the authentication provider to oidc:

service:
ports:
name: http-backend
backend: 4180
targetPort: oauth2Proxy

The following example shows the service configuration after migrating the authentication
provider to oidc:

service:
ports:
name: http-backend
backend: 7007
targetPort: backend

5. Upgrade the Developer Hub Helm chart.

12

	Table of Contents
	PREFACE
	CHAPTER 1. ENABLING THE MICROSOFT AZURE AUTHENTICATION PROVIDER
	CHAPTER 2. ENABLING THE GITHUB AUTHENTICATION PROVIDER
	2.1. GITHUB APP​ OVERVIEW
	2.2. REGISTERING A GITHUB​ APP
	2.3. CONFIGURING A GITHUB APP IN DEVELOPER HUB
	2.4. ADDING THE GITHUB PROVIDER TO THE DEVELOPER HUB FRONT END​

	CHAPTER 3. ENABLING THE OPENID CONNECT AUTHENTICATION PROVIDER
	3.1. OVERVIEW OF USING THE OIDC AUTHENTICATION PROVIDER IN DEVELOPER HUB
	3.2. CONFIGURING KEYCLOAK WITH THE OIDC AUTHENTICATION PROVIDER
	3.3. MIGRATING FROM OAUTH2 PROXY WITH KEYCLOAK TO OIDC IN DEVELOPER HUB

