& RedHat

Red Hat Developer Tools 2019.1

Using Rust Toolset

Installing and using Rust Toolset 1.31.1

Last Updated: 2019-09-16

Red Hat Developer Tools 2019.1 Using Rust Toolset

Installing and using Rust Toolset 1.31.1
Peter Macko

pmacko@redhat.com

Kevin Owen

Vladimir Slavik

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Rust Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux platform. The
Rust Toolset User Guide provides an overview of this product, explains how to invoke and use the
Rust Toolset versions of the tools, and links to resources with more in-depth information.

Table of Contents

CHAPTER 1L RUST TOOLSET ...ttt i i it

1.1. ABOUT RUST TOOLSET

1.2. COMPATIBILITY

1.3. GETTING ACCESS TO RUST TOOLSET ON RED HAT ENTERPRISE LINUX 7
Additional Resources

1.4. INSTALLING RUST TOOLSET

1.5. ADDITIONAL RESOURCES
Installed Documentation
Online Documentation

CHAPTER 2. CARGO .. i i e i e et

2.1.INSTALLING CARGO
2.2. CREATING A NEW PROJECT
2.3. BUILDING A PROJECT
2.4. CHECKING A PROGRAM
2.5. RUNNING A PROGRAM
2.6. RUNNING PROJECT TESTS
2.7. CONFIGURING PROJECT DEPENDENCIES
Additional Resources
2.8. BUILDING PROJECT DOCUMENTATION
Additional Resources
2.9. VENDORING PROJECT DEPENDENCIES
2.10. ADDITIONAL RESOURCES
Installed Documentation
Online Documentation
See Also

CHAPTER 3. RUSTFEMT o i i i et

3.1 INSTALLING RUSTFMT

3.2. USING RUSTFMT AS A STANDALONE TOOL
3.3. USING RUSTFMT WITH CARGO

3.4. ADDITIONAL RESOURCES

CHAPTER 4. CONTAINER IMAGE WITH RUST TOOLSET FORRHEL7

4.1.IMAGE CONTENTS
4.2. ACCESS TO THE IMAGE
4.3. ADDITIONAL RESOURCES

CHAPTER 5. CHANGES IN RUST TOOLSET IN RED HAT DEVELOPER TOOLS 2019.1

5.1. RUST
5.2. CARGO

Table of Contents

U Ul oA MWW W w

(o]

O N O O

................... 20

20
20
20

21

................... 22

22
22
22

..................... 23

23
24

Red Hat Developer Tools 2019.1 Using Rust Toolset

CHAPTER 1. RUST TOOLSET

CHAPTER 1. RUST TOOLSET

1.1. ABOUT RUST TOOLSET
Rust Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux platform. It provides
the Rust programming language compiler rustc, the cargo build tool and dependency manager, the

cargo-vendor plug-in, the rustfmt tool, and required libraries.

Rust Toolset is distributed as a part of Red Hat Developer Tools for Red Hat Enterprise Linux 7 and is
available as a module in Red Hat Enterprise Linux 8.

The following components are available as a part of Rust Toolset:

Table 1.1. Rust Toolset Components

Package Version Description

rust 1.311 A Rust compiler front-end for
LLVM.
cargo 1.31.0 A build system and dependency

manager for Rust.

cargo-vendor 0.1.22 A cargo subcommand to vendor
crates.io dependencies.

rustfmt 1.0.0 A tool for automatic formatting of
Rust code.

1.2. COMPATIBILITY

Rust Toolset is available for Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux 8 on the following
architectures:

® The 64-bit Intel and AMD architectures

® The 64-bit ARM architecture

® The IBM Power Systems architecture

® The little-endian variant of IBM Power Systems architecture

® The IBM Z Systems architecture

1.3. GETTING ACCESS TO RUST TOOLSET ON RED HAT
ENTERPRISE LINUX 7

Rust Toolset is an offering that is distributed as a part of the Red Hat Developer Tools content set,
which is available to customers with deployments of Red Hat Enterprise Linux 7. In order to install Rust
Toolset, enable the Red Hat Developer Tools and Red Hat Software Collections repositories by using
the Red Hat Subscription Management and add the Red Hat Developer Tools GPG key to your system.

Red Hat Developer Tools 2019.1Using Rust Toolset

1. Enable the rhel-7-varianit-devtools-rpms repository:
I # subscription-manager repos --enable rhel-7-variant-devtools-rpms

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

NOTE

We recommend developers to use Red Hat Enterprise Linux Server for access to
the widest range of development tools.

2. Enable the rhel-variant-rhscl-7-rpms repository:
I # subscription-manager repos --enable rhel-variant-rhscl-7-rpms

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

3. Add the Red Hat Developer Tools key to your system:

cd /etc/pki/rpm-gpg

wget -O RPM-GPG-KEY-redhat-devel https://www.redhat.com/security/data/a5787476.ixt
rpm --import RPM-GPG-KEY-redhat-devel

Once the subscription is attached to the system and repositories enabled, you can install Red Hat Rust
Toolset as described in Section 1.4, “Installing Rust Toolset”.

Additional Resources

® For more information on how to register your system using Red Hat Subscription Management
and associate it with subscriptions, see the Red Hat Subscription Management collection of
guides.

® For detailed instructions on subscription to Red Hat Software Collections, see the Red Hat
Developer Toolset User Guide, Section 1.4. Getting Access to Red Hat Developer Toolset .

1.4.INSTALLING RUST TOOLSET

Rust Toolset is distributed as a collection of RPM packages that can be installed, updated, uninstalled,
and inspected by using the standard package management tools that are included in Red Hat
Enterprise Linux. Note that a valid subscription that provides access to the Red Hat Developer Tools
content set is required in order to install Rust Toolset on a Red Hat Enterprise Linux 7 system. For
detailed instructions on how to associate your Red Hat Enterprise Linux 7 system with an appropriate
subscription and get access to Rust Toolset, see Section 1.3, “Getting Access to Rust Toolset on

Red Hat Enterprise Linux 7”.

IMPORTANT

Before installing Rust Toolset, install all available Red Hat Enterprise Linux updates.

1. Install all of the components included in Rust Toolset for your operating system:

® On Red Hat Enterprise Linux 7, install the rust-toolset-1.31 package:

https://access.redhat.com/documentation/en-us/red_hat_subscription_management
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/7/html/user_guide/chap-red_hat_developer_toolset#sect-Red_Hat_Developer_Toolset-Subscribe

CHAPTER 1. RUST TOOLSET

I # yum install rust-toolset-1.31

® On Red Hat Enterprise Linux 8, install the rust-toolset module:
I # yum module install rust-toolset

This installs all development and debugging tools, and other dependent packages to the
system. Notably, Rust Toolset has a dependency on Clang and LLVM Toolset.

1.5. ADDITIONAL RESOURCES

A detailed description of the Rust programming language and all its features is beyond the scope of this
book. For more information, see the resources listed below.

Installed Documentation

® The package rust-toolset-1.31-rust-doc installs the The Rust Programming Language book and
AP| documentation in HTML format to /opt/rh/rust-toolset-
1.31/root/usr/share/doc/rust/html/index.html.
Online Documentation

® Rust documentation — The upstream Rust documentation.

® Rust documentation overview — An extended overview of documentation related to Rust.

https://doc.rust-lang.org/
https://www.rust-lang.org/en-US/documentation.html

Red Hat Developer Tools 2019.1Using Rust Toolset

CHAPTER 2. CARGO

cargo is a tool for development using the Rust programming language. cargo fulfills the following roles:

e Build tool and frontend for the Rust compiler rustc.
Use of cargois preferred to using the rustc compiler directly.

® Package and dependency manager.
cargo allows Rust projects to declare dependencies with specific version requirement. cargo will
resolve the full dependency graph, download packages as needed, and build and test the entire
project.

Rust Toolset is distributed with cargo 1.31.0.

2.1. INSTALLING CARGO
In Rust Toolset on Red Hat Enterprise Linux 7, cargo is provided by the rust-toolset-1.31-cargo
package and is automatically installed with the rust-toolset-1.31 package. On Red Hat

Enterprise Linux 8, cargo is provided by the rust-toolset module. See Section 1.4, “Installing Rust
Toolset”.

2.2. CREATING A NEW PROJECT

To create a Rust program on the command line, run the cargo tool as follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'cargo new --bin project_name'

® For Red Hat Enterprise Linux 8:
I $ cargo new --bin project_name

This creates a directory project_name containing a text file named Cargo.toml and a subdirectory src
containing a text file named main.rs.

To configure the project and add dependencies, edit the file Cargo.toml. See Section 2.7, “Configuring
Project Dependencies”.

To edit the project code, edit the file main.rs and add new source files in the src subdirectory as
needed.

To create a project for a cargo package instead of a program, run the cargo tool on the command line
as follows:

® For Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.31 'cargo new --lib project_name'
® For Red Hat Enterprise Linux 8:

I $ cargo new --lib project_name

CHAPTER 2. CARGO

Note that you can execute any command using the scl utility on Red Hat Enterprise Linux 7, causing it
to be run with the Rust Toolset binaries available. This allows you to run a shell session with Rust Toolset
cargo command directly available:

I $ scl enable rust-toolset-1.31 'bash’

Example 2.1. Creating a Project using cargo

Create a new Rust project called helloworld:

® For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'cargo new --bin helloworld'
Created binary (application) helloworld project

® For Red Hat Enterprise Linux 8:

$ cargo new --bin helloworld
Created binary (application) helloworld project

Examine the result:

$ cd helloworld
$ tree

—— Cargo.toml
L src
L— main.rs

1 directory, 2 files
$ cat src/main.rs
fn main() {
printin!("Hello, world!");

}

A directory helloworld is created for the project, with a file Cargo.toml for tracking project
metadata, and a subdirectory src containing the main source code file main.rs.

The source code file main.rs has been initialized by cargo to a sample hello world program.

NOTE

The tree tool is available from the default Red Hat Enterprise Linux repositories. To
install it:

I # yum install tree

2.3. BUILDING A PROJECT

To build a Rust project on the command line, change to the project directory and run the cargo tool as
follows:

Red Hat Developer Tools 2019.1Using Rust Toolset

® For Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.31 'cargo build'
® For Red Hat Enterprise Linux 8:

I $ cargo build

This resolves all dependencies of the project, downloads the missing dependencies, and compiles the
project using the rustc compiler.

By default, the project is built and compiled in debug mode. To build the project in release mode, run
the cargo tool with the --release option as follows:

® For Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.31 'cargo build --release’
® For Red Hat Enterprise Linux 8:

I $ cargo build --release

Example 2.2. Building a Project using cargo

This example assumes that you have successfully created the Rust project helloworld according to
Example 2.1, “Creating a Project using cargo”.

Change to the directory helloworld and build the project:

® For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'cargo build'
Compiling helloworld v0.1.0 (file:///nome/vslavik/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 0.51 secs

® For Red Hat Enterprise Linux 8:

$ cargo build
Compiling helloworld v0.1.0 (file:///nome/vslavik/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 0.51 secs

Examine the result:

$ tree

—— Cargo.lock
—— Cargo.toml
—— Src
| L—main.rs
L— target

L— debug
—— build
—— deps

CHAPTER 2. CARGO

—— examples
—— helloworld
—— helloworld.d
—— incremental
— native

8 directories, 6 files

A subdirectory structure has been created, starting with the directory target. Since the project was
built in debug mode, the actual build output is contained in a further subdirectory debug. The actual
resulting executable file is target/debug/helloworld.

‘ | L— helloworld-b7c6fab39c2d17a7

NOTE

The tree tool is available from the default Red Hat Enterprise Linux repositories. To
install it:

I # yum install tree

2.4. CHECKING A PROGRAM

To verify that a Rust program managed by cargo can be built, on the command line change to the
project directory and run the cargo tool as follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'cargo check'’
® For Red Hat Enterprise Linux 8:

I $ cargo check

The cargo check command is faster than a full project build using the cargo build command, because
it does not generate the executable code. Therefore, prefer using cargo check for verification of Rust
program validity when you do not need the executable code.

By default, the project is checked in debug mode. To check the project in release mode, run the cargo
tool with the --release option as follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'cargo check --release’
® For Red Hat Enterprise Linux 8:

I $ cargo check --release

Example 2.3. Checking a Program with cargo

This example assumes that you have successfully built the Rust project helloworld according to
Example 2.2, “Building a Project using cargo” .

Red Hat Developer Tools 2019.1Using Rust Toolset

Change to the directory helloworld and check the project:

® For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'cargo check'’
Compiling helloworld v0.1.0 (file:///nome/vslavik/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 0.5 secs

® For Red Hat Enterprise Linux 8:

$ cargo check
Compiling helloworld v0.1.0 (file:///home/vslavik/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 0.5 secs

The project is checked, with output similar to that of the cargo build command. However, the
executable file is not generated. You can verify this by comparing the current time with the time
stamp of the executable file:

$ date

Fri Oct 13 08:53:21 CEST 2017

$ Is -l target/debug/helloworld

-rwxrwxr-x. 2 vslavik vslavik 252624 Oct 13 08:48 target/debug/helloworld

2.5. RUNNING A PROGRAM

To run a Rust program managed as a project by cargo on the command line, change to the project
directory and run the cargo tool as follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'cargo run'
® For Red Hat Enterprise Linux 8:
I $ cargo run

If the program has not been built yet, cargo will run a build before running the program.

Using cargo to run a Rust program during development is preferred, because it will correctly resolve the
output path independent of the build mode.

By default, the project is built in debug mode. To build the project in release mode before running, run
the cargo tool with the --release option as follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'cargo run --release’

® For Red Hat Enterprise Linux 8:

I $ cargo run --release

10

CHAPTER 2. CARGO

Example 2.4. Running a Program with cargo

This example assumes that you have successfully built the Rust project helloworld according to
Example 2.2, “Building a Project using cargo” .

Change to the directory helloworld and run the project:

® For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'cargo run'
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running target/debug/helloworld

Hello, world!

® For Red Hat Enterprise Linux 8:

$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running target/debug/helloworld

Hello, world!

cargo first rebuilds the project, and then runs the resulting executable file.

Note that in this example, there were no changes to the source code since last build. As a result,
cargo did not have to rebuild the executable file, but merely accepted it as current.

2.6. RUNNING PROJECT TESTS

To run tests for a cargo project on the command line, change to the project directory and run the cargo
tool as follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'cargo test'
® For Red Hat Enterprise Linux 8:

I $ cargo test

By default, the project is tested in debug mode. To test the project in release mode, run the cargo tool
with the --release option as follows:

® For Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.31 'cargo test --release’
® For Red Hat Enterprise Linux 8:

I $ cargo test --release

I Example 2.5. Testing a Project with cargo

1

Red Hat Developer Tools 2019.1Using Rust Toolset

This example assumes that you have successfully built the Rust project helloworld according to
Example 2.2, “Building a Project using cargo” .

Change to the directory helloworld, and edit the file sre/main.rs so that it contains the following
source code:

fn main() {
printin!("Hello, world!");

}
#[test]

fn my_test() {
assert_eq!(21+21, 42);

}

The function my_test marked as a test has been added.
Save the file, and run the test:

® For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'cargo test'
Compiling helloworld v0.1.0 (file:///home/vslavik/Documentation/rusttest/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 0.26 secs
Running target/debug/deps/helloworld-9dd6b83647b49aec

running 1 test
test my_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

® For Red Hat Enterprise Linux 8:

$ cargo test
Compiling helloworld v0.1.0 (file:///home/vslavik/Documentation/rusttest/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 0.26 secs
Running target/debug/deps/helloworld-9dd6b83647b49aec

running 1 test
test my_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

cargo first rebuilds the project, and then runs the tests found in the project. The test my_test has
been succesfully passed.

2.7. CONFIGURING PROJECT DEPENDENCIES

To specify dependencies for a cargo project, edit the file Cargo.toml in the project directory. The
section [dependencies] contains a list of the project’s dependencies. Each dependency is listed on a
new line in the following format:

I crate_name = version

12

CHAPTER 2. CARGO

Rust code packages are called crates.

Example 2.6. Adding Dependency to a Project and Building it with cargo

This example assumes that you have successfully built the Rust project helloworld according to
Example 2.2, “Building a Project using cargo” .

Change to the directory helloworld and edit the file sre/main.rs so that it contains the following
source code:

extern crate time;

fn main() {
printin!("Hello, world!");
printin!("Time is: {}", time::now().rfc822());

}

The code now requires an external crate time. Add this dependency to project configuration by
editing the file Cargo.toml so that it contains the following code:

[package]

name = "helloworld"

version = "0.1.0"

authors = ["Your Name <yourname@example.com>"]

[dependencies]
time = "0.1"

Finally, run the cargo run command to build the project and run the resulting executable file:

® For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'cargo run'
Updating registry "https://github.com/rust-lang/crates.io-index’
Downloading time v0.1.38
Downloading libc v0.2.32
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running “target/debug/helloworld’
Hello, world!
Time is: Fri, 13 Oct 2017 11:08:57

® For Red Hat Enterprise Linux 8:

$ cargo run
Updating registry "https://github.com/rust-lang/crates.io-index’
Downloading time v0.1.38
Downloading libc v0.2.32
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running “target/debug/helloworld’
Hello, world!
Time is: Fri, 13 Oct 2017 11:08:57

cargo downloads the time crate and its dependencies (crate libc), stores them locally, builds all of
the project source code including the dependency crates, and finally runs the resulting executable.

13

Red Hat Developer Tools 2019.1Using Rust Toolset

[|
Additional Resources

e Specifying Dependencies — official cargo documentation.

2.8. BUILDING PROJECT DOCUMENTATION

Rust code can contain comments marked for extraction into documentation. These comments support
the Markdown language. To build project documentation using the cargo tool, change to the project
directory and run the cargo tool as follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'cargo doc --no-deps'
® For Red Hat Enterprise Linux 8:

I $ cargo doc --no-deps

This extracts documentation stored from the special comments in the source code of your project and
writes the documentation in HTML format.

Note that the cargo doc command extracts documentation comments only for public functions,
variables and members.

® Toinclude dependencies in the generated documentation, including third party libraries, omit
the --no-deps option.

® To show the generated documentation in your browser, add the --open option.

The command cargo doc uses the rustdoc utility. Using cargo doc is preferred to rustdoc.

Example 2.7. Building Project Documentation

This example assumes that you have successfully built the Rust project helloworld with
dependencies, according to Example 2.6, “Adding Dependency to a Project and Building it with
cargo”.

Change to the directory helloworld and edit the file sre/main.rs so that it contains the following
source code:

//I This is a hello-world program.
extern crate time;

/// Prints a greeting to “stdout'.
pub fn print_output() {

printin!("Hello, world!");

printin!("Time is: {}", time::now().rfc822());
}

/// The program entry point.
fn main() {

print_output();
}

14

http://doc.crates.io/specifying-dependencies.html

CHAPTER 2. CARGO

The code now contains a public function print_output(). The whole helloworld program, the
print_output() function, and the main() function have documentation comments.

Run the cargo doc command to build the project documentation:

® For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'cargo doc --no-deps'
Documenting helloworld v0.1.0 (file:///nome/vslavik/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 0.31 secs

® For Red Hat Enterprise Linux 8:

$ cargo doc --no-deps
Documenting helloworld v0.1.0 (file:///nome/vslavik/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 0.31 secs

Examine the result:

$ tree

—— Cargo.lock
—— Cargo.toml
—— src
| L—main.rs
L— target

L— doc

— helloworld

— fn.print_output.html
—— index.html

— print_output.v.html
—— sidebar-items.js

L—src

L— helloworld
L— main.rs.html

12 directories, 32 files

cargo builds the project documentation. To actually view the documentation, open the file
target/doc/helloworld/index.html in your browser.

Note that the generated documentation does not contain any mention of the main() function,
because it is not public.

Finally, run the cargo doc command without the --no-deps option to build the project
documentation, including the dependency libraries time and libc:

® For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'cargo doc'
Documenting libc v0.2.32
Documenting time v0.1.38

15

Red Hat Developer Tools 2019.1Using Rust Toolset

Documenting helloworld v0.1.0 (file:///nome/vslavik/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 3.41 secs

® For Red Hat Enterprise Linux 8:

$ cargo doc

Documenting libc v0.2.32

Documenting time v0.1.38

Documenting helloworld v0.1.0 (file:///nome/vslavik/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 3.41 secs

Examine the result:

$ tree
92 directories, 11804 files

$ Is -d target/doc/*/
target/doc/helloworld/ target/doc/implementors/ target/doc/libc/ target/doc/src/ target/doc/time/

The resulting documentation now covers also the dependency libraries time and libc, with each
present as another subdirectory in the target/doc/ directory.

NOTE

The tree tool is available from the default Red Hat Enterprise Linux repositories. To
install it:

I # yum install tree

Additional Resources
A detailed description of the cargo doc tool and its features is beyond the scope of this book. For more
information, see the resources listed below.

® Documentation — The official book The Rust Programming Language has a section on
documentationin the first edition.

2.9. VENDORING PROJECT DEPENDENCIES
Vendoring project dependencies means creating a local copy of the dependencies for offline
redistribution and reuse. Vendored dependencies can be used by the cargo build tool without any

connection to the internet.

The cargo vendor command for vendoring dependencies is supplied by the cargo plug-in cargo-
vendor.

To install cargo-vendor 0.1.22:

® For Red Hat Enterprise Linux 7:

I # yum install rust-toolset-1.31-cargo-vendor

® For Red Hat Enterprise Linux 8:

16

https://doc.rust-lang.org/book/first-edition/documentation.html

CHAPTER 2. CARGO

I # dnf install cargo-vendor

To vendor dependencies for a cargo project, change to the project directory and run the cargo tool as
follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'cargo vendor'
® For Red Hat Enterprise Linux 8:

I $ cargo vendor

This creates a directory vendor and downloads sources of all dependencies to this directory. Additional
configuration steps are printed to command line.

The cargo vendor command gathers the dependencies for a platform-independent result. Dependency
crates for all potential target platforms are downloaded.

IMPORTANT

The cargo vendor command is an experimental, unofficial plug-in for the cargo tool.

Example 2.8. Vendoring Project Dependencies

This example assumes that you have successfully built the Rust project helloworld with
dependencies, according to Example 2.6, “Adding Dependency to a Project and Building it with
cargo”.

Change to the directory helloworld and run the cargo vendor command to vendor the project with
dependencies:

® For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'cargo vendor'
Downloading kernel32-sys v0.2.2
Downloading redox_syscall v0.1.31
Downloading winapi-build v0.1.1
Downloading winapi v0.2.8

Vendoring kernel32-sys v0.2.2 (/home/vslavik/.cargo/registry/src/github.com-
1ecc6299db9ec823/kernel32-sys-0.2.2) to vendor/kernel32-sys

Vendoring libc v0.2.32 (/home/vslavik/.cargo/registry/src/github.com-
1ecc6299db9ec823/libc-0.2.32) to vendor/libc

Vendoring redox_syscall v0.1.31 (/home/vslavik/.cargo/registry/src/github.com-
1ecc6299db9ec823/redox_syscall-0.1.31) to vendor/redox_syscall

Vendoring time v0.1.38 (/home/vslavik/.cargo/registry/src/github.com-
1ecc6299db9ec823/time-0.1.38) to vendor/time

Vendoring winapi v0.2.8 (/home/vslavik/.cargo/registry/src/github.com-
1ecc6299db9ec823/winapi-0.2.8) to vendor/winapi

Vendoring winapi-build v0.1.1 (/home/vslavik/.cargo/registry/src/github.com-
1ecc6299db9ec823/winapi-build-0.1.1) to vendor/winapi-build
To use vendored sources, add this to your .cargo/config for this project:

[source.crates-io]

17

Red Hat Developer Tools 2019.1Using Rust Toolset

replace-with = "vendored-sources"

[source.vendored-sources]
directory = "/home/vslavik/helloworld/vendor"

® For Red Hat Enterprise Linux 8:
I $ cargo vendor

Examine the result:

$lIs

Cargo.lock Cargo.toml src target vendor
$ tree vendor

vendor

— kernel32-sys

—— build.rs

—— Cargo.toml

—— README.md

L src
L—lib.rs

— libc
—— appveyor.yml
—— Cargo.toml

75 directories, 319 files

The vendor directory contains copies of all the dependency crates needed to build the helloworld
program. Note that the crates for building the project on the Windows operating system have been
vendored, too, despite running this command on Red Hat Enterprise Linux.

NOTE

The tree tool is available from the default Red Hat Enterprise Linux repositories. To
install it:

I # yum install tree

2.10. ADDITIONAL RESOURCES

A detailed description of the cargo tool and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentation

® cargo(1) — The manual page for the cargo tool provides detailed information on its usage. To
display the manual page for the version included in Rust Toolset:

o For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'man cargo'

18

CHAPTER 2. CARGO

o For Red Hat Enterprise Linux 8:
I $ man cargo
® Cargo, Rust's Package Manager — Documentation on the cargo tool can be optionally installed:
I # yum install rust-toolset-1.31-cargo-doc

Once installed, HTML documentation is available at /opt/rh/rust-toolset-
1.31/root/usr/share/doc/cargo/html/index.html.

Online Documentation

® Cargo Guide — The cargo tool documentation provides detailed information on cargo's usage.

See Also

® Chapter 1, Rust Toolset — An overview of Rust Toolset and more information on how to install it
on your system.

19

http://doc.crates.io/guide.html

Red Hat Developer Tools 2019.1Using Rust Toolset

CHAPTER 3. RUSTFMT

The rustfmt tool provides automatic formatting of Rust source code.

Rust Toolset is distributed with rustfmt 1.0.0.

3.1. INSTALLING RUSTFMT

On Red Hat Enterprise Linux 7, the rustfmt tool is provided by the rust-toolset-1.31-rustfmt-preview
package. To install it:

I # yum install rust-toolset-1.31-rustfmt-preview

3.2. USING RUSTFMT AS A STANDALONE TOOL

To format a rust source file and all its dependencies with the rustfmt tool:

® For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.31 'rustfmt source-file'
® For Red Hat Enterprise Linux 8:

I $ rustfmt source-file

Replace source-file with path to the source file.

By default, rustfmt modifies the affected files in place without displaying details or creating backups.
To change the behavior, use the --write-mode value option. For further details see the help mesage of
rustfmt:

® For Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.31 'rustfmt --help’
® For Red Hat Enterprise Linux 8:
I $ rustfmt --help
Additionally, rustfmt accepts standard input instead of a file and provides its output in standard output.

3.3. USING RUSTFMT WITH CARGO

To format all source files in a cargo crate:

® For Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.31 'cargo fmt'

® For Red Hat Enterprise Linux 8:

20

CHAPTER 3. RUSTFMT

I $ cargo fmt

To change the rustfmt formatting options, create the configuration file rustfmt.toml in the project
directory and supply the configuration there. For further details see the help message of rustfmt:

® For Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.31 'rustfmt --config-help'
® For Red Hat Enterprise Linux 8:

I $ rustfmt --config-help

3.4. ADDITIONAL RESOURCES

® Help messages of rustfmt:

o For Red Hat Enterprise Linux 7:

$ scl enable rust-toolset-1.31 'rustfmt --help’
$ scl enable rust-toolset-1.31 'rustfmt --config-help'

o For Red Hat Enterprise Linux 8:

$ rustfmt --help
$ rustfmt --config-help

® The file Configurations.md installed under /opt/rh/rust-toolset-1.31/root/usr/share/doc/rust-
toolset-1.31-rustfmt-preview-0.8.2/Configurations.md

21

Red Hat Developer Tools 2019.1Using Rust Toolset

CHAPTER 4. CONTAINER IMAGE WITH RUST TOOLSET FOR
RHEL 7

The Rust Toolset is available as a container image which can be downloaded from Red Hat Container
Registry.

4.1. IMAGE CONTENTS

The devtools/rust-toolset-1.31-rhel7 image provides content corresponding to the following
packages:

Component Version Package

Rust 1.311 rust-toolset-1.31-rust

Cargo 1.31.0 rust-toolset-1.31-cargo

Vendor plug-in for Cargo 0.1.22 rust-toolset-1.31-cargo-vendor
4.2. ACCESS TO THE IMAGE

To pull the devtools/rust-toolset-1.31-rhel7 image, run the following command as root:

I # podman pull registry.access.redhat.com/devtools/rust-toolset-1.31-rhel7

4.3. ADDITIONAL RESOURCES
® Rust Toolset 1.31.1 — entry in the Red Hat Container Catalog

® Using Red Hat Software Collections Container Images

22

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/devtools/rust-toolset-1.31-rhel7
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/using_red_hat_software_collections_container_images/index

CHAPTER 5. CHANGES IN RUST TOOLSET IN RED HAT DEVELOPER TOOLS 2019.

CHAPTER 5. CHANGES IN RUST TOOLSET IN RED HAT
DEVELOPER TOOLS 2019.1

This chapter lists some notable changes in Rust Toolset since its previous release.

5.1. RUST
Rust has been updated from version 1.29.0 to 1.31.1. Notable changes include:
® New capabilities with defining procedural macros
o Attribute macros let you define custom #[name] annotations.

o Function macros work like those defined by macro_rules!, but have more flexibility being
implemented in Rust.

o Macros can now be imported in use statements, removing the need for the #[macro_use]
crate attribute.

o The proc_macro crate is now stable, to help write these new macros.
® Module improvements

o External crates are now in the prelude, which allows a crate name to serve as the root of a
path from anywhere.

o The crate keyword now serves as the root of your own crate in paths and use statements.
® 2018 edition

o The new 2018 edition marks a collective milestone of the last 3 years of Rust development,
while also making a few opt-in breaking changes. Existing code will default to 2015 edition,
with no breaking changes, and crates from different editions are fully interoperable. cargo
new will specify edition = "2018" in Cargo.toml for new projects.

o async, await, and try are reserved keywords in 2018, and dyn is now a strict keyword.

o Non-lexical lifetimes are a refinement of the previous block-based lifetime system, allowing
borrowed values to be released sooner in many cases to be reused elsewhere. This is initially
exclusive to the 2018 edition, but planned for 2015 as well.

o Module changes: Explicit extern crate declarations are unnecessary in most cases in 2018.
use paths can now be relative from the current scope, rather than always starting from the
root scope as in 2015.

e |ifetimes can now be left implicit in more cases, especially using the new '_ placeholder.

® const fn — Functions can be declared constant, which allows them to be used in restricted
contexts, like the initialization of a const or static value.

® Stable tools: clippy, rls, and rustfmt. We have been shipping these tools as preview already, but
now they are officially supported.

o clippy adds extra lints for code/style issues.

o rlsimplements the Language Server protocol for IDE integration.

23

Red Hat Developer Tools 2019.1Using Rust Toolset

o rustfmt formats your code, also integrated with the cargo fmt subcommand.
® Tool lints allow you to add warning annotations for custom lints, especially for those added by

clippy. For example, #[allow(clippy::bool_comparison)] will silence that warning on an item
for which you deem it acceptable.

5.2. CARGO
The cargo tool has been updated from version 1.29.0 to 1.31.0. Notable changes include:
® Cargo now shows a progress bar as it builds your crates and dependencies.
e Cargo now allows renaming dependencies in Cargo.toml, affecting how they are referenced in

your sources. Previously, you could only rename in source like extern crate published_name as
new_name;.

24

	Table of Contents
	CHAPTER 1. RUST TOOLSET
	1.1. ABOUT RUST TOOLSET
	1.2. COMPATIBILITY
	1.3. GETTING ACCESS TO RUST TOOLSET ON RED HAT ENTERPRISE LINUX 7
	Additional Resources

	1.4. INSTALLING RUST TOOLSET
	1.5. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation

	CHAPTER 2. CARGO
	2.1. INSTALLING CARGO
	2.2. CREATING A NEW PROJECT
	2.3. BUILDING A PROJECT
	2.4. CHECKING A PROGRAM
	2.5. RUNNING A PROGRAM
	2.6. RUNNING PROJECT TESTS
	2.7. CONFIGURING PROJECT DEPENDENCIES
	Additional Resources

	2.8. BUILDING PROJECT DOCUMENTATION
	Additional Resources

	2.9. VENDORING PROJECT DEPENDENCIES
	2.10. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 3. RUSTFMT
	3.1. INSTALLING RUSTFMT
	3.2. USING RUSTFMT AS A STANDALONE TOOL
	3.3. USING RUSTFMT WITH CARGO
	3.4. ADDITIONAL RESOURCES

	CHAPTER 4. CONTAINER IMAGE WITH RUST TOOLSET FOR RHEL 7
	4.1. IMAGE CONTENTS
	4.2. ACCESS TO THE IMAGE
	4.3. ADDITIONAL RESOURCES

	CHAPTER 5. CHANGES IN RUST TOOLSET IN RED HAT DEVELOPER TOOLS 2019.1
	5.1. RUST
	5.2. CARGO

