& RedHat

Red Hat Directory Server 12

Managing the directory schema

Creating and managing the custom schema

Last Updated: 2024-07-08

Red Hat Directory Server 12 Managing the directory schema

Creating and managing the custom schema

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

You can store additional data in the Directory Server by adding custom schemas, which are created
by using the dsconf utility and the web console. You can also extend the schema and validate the
syntax of existing attributes value.

Table of Contents

Table of Contents

PROVIDING FEEDBACK ON RED HAT DIRECTORY SERVER e 3
CHAPTER 1. CREATING A CUSTOM SCHEMA USING THE DSCONF UTILITY ..., 4
1.1. WORKFLOW OF A SCHEMA EXTENSION 4
1.2. HOW DIRECTORY SERVER MANAGES SCHEMA UPDATES IN A REPLICATION ENVIRONMENT 5
1.3. USING DSCONF TO CREATE A CUSTOM SCHEMA FOR AN ATTRIBUTE AND OBJECT CLASS 6
CHAPTER 2. CREATING A CUSTOM SCHEMA USING THEWEB CONSOLEoiiiiiiiiiiian, 8
2.1. WORKFLOW OF A SCHEMA EXTENSION 8
2.2. HOW DIRECTORY SERVER MANAGES SCHEMA UPDATES IN A REPLICATION ENVIRONMENT 9
2.3.USING THE WEB CONSOLE TO CREATE A CUSTOM SCHEMA FOR AN ATTRIBUTE AND OBJECT CLASS
10
CHAPTER 3. MANUALLY CREATING ACUSTOM SCHEMAFILE ... o i 13
3.1. WORKFLOW OF A SCHEMA EXTENSION 13
3.2. REQUIREMENTS FOR A SCHEMA FILE 14
3.3. THE DEFINITION OF ATTRIBUTES IN CUSTOM SCHEMA FILES 15
3.4. THE DEFINITION OF OBJECT CLASSES IN CUSTOM SCHEMA FILES 15
3.5.HOW DIRECTORY SERVER MANAGES SCHEMA UPDATES IN A REPLICATION ENVIRONMENT 16
3.6. MANUALLY CREATING A CUSTOM SCHEMA FILE FOR AN ATTRIBUTE AND OBJECT CLASS 17
CHAPTER 4. VALIDATING THE SYNTAX OF EXISTING ATTRIBUTEVALUEScoiiiiiiiiiinnn, 19
4.1. CREATING A SYNTAX VALIDATION TASK USING THE DSCONF SCHEMA VALIDATE-SYNTAX COMMAND
19

4.2. CREATING A SYNTAX VALIDATION TASK USING A CN TASK ENTRY 19

Red Hat Directory Server 12 Managing the directory schema

PROVIDING FEEDBACK ON RED HAT DIRECTORY SERVER

PROVIDING FEEDBACK ON RED HAT DIRECTORY SERVER

We appreciate your input on our documentation and products. Please let us know how we could make it
better. To do so:

® Forsubmitting feedback on the Red Hat Directory Server documentation through Jira (account
required):

1.

2.

4.

Go to the Red Hat Issue Tracker.
Enter a descriptive title in the Summary field.

Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

Click Create at the bottom of the dialogue.

® For submitting feedback on the Red Hat Directory Server product through Jira (account
required):

1.

2.

Go to the Red Hat Issue Tracker.
On the Create Issue page, click Next.

Fill in the Summary field.

. Select the component in the Component field.

Fill in the Description field including:

a. The version number of the selected component.
b. Steps to reproduce the problem or your suggestion for improvement.

Click Create.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12342725&issuetype=1&summary=%5BDoc%5D&components=12395352&priority=10300&description=%7B%2A%7DDocument link%7B%2A%7D%3A%0A%0A%7B%2A%7DSection number and name%7B%2A%7D%3A%0A%0A%7B%2A%7DDescribe the issue%7B%2A%7D%3A%0A%0A%7B%2A%7DSuggestions for improvement%7B%2A%7D%3A%0A%0A%7B%2A%7DAdditional information%7B%2A%7D%3A
https://issues.redhat.com/secure/CreateIssue.jspa?pid=12342725&issuetype=11413

Red Hat Directory Server 12 Managing the directory schema

CHAPTER 1. CREATING A CUSTOM SCHEMA USING THE

DSCONF UTILITY

You can add custom attributes and object classes to Directory Server by extending the schema. You can
extend the schema:

Using the dsconf utility on the command line. This process is described in this section.
Using the Directory Server web console.

Manually by creating schema files.

1.1. WORKFLOW OF A SCHEMA EXTENSION

Adding new schema elements requires:

1.

Planning and defining unique object identifiers (OID) for the new schema. Directory Server
recognizes schema elements by their OID, but you must manage the OIDs manually.

An OID is a dot-separated number that identifies the schema element to the server. OIDs can
be hierarchical with a base OID that can be expanded to accommodate different branches. For
example, the base OID could be 1, and there can be a branch for attributes at 1.1 and for object
classes at 1.2.

IMPORTANT

Even if not required, Red Hat recommends to use numeric OIDs for custom
schemas for better forward compatibility and performance.

Request OIDs from the Internet Assigned Numbers Authority (IANA). For details, see
https://pen.iana.org/pen/PenApplication.page.

Create a OID registry to track OID assignments and to ensure that no OID is used for more than
one purpose. An OID registry is a list of all OIDs used in the directory schema including
descriptions. Publish the OID registry with the custom schema.

Define the new attributes.

Define the object classes that contain the new attributes. However, never update the default
schema. If you create new attributes, always add them to a custom object class.

Directory Server loads the schema when the instance starts. To load new schema files, restart the
instance or initiate a reload task.

Keep the following rules in mind when customizing the Directory Server schema:

Keep the schema as simple as possible.

Reuse existing schema elements whenever possible.

Minimize the number of mandatory attributes defined for each object class.
Do not define more than one object class or attribute for the same purpose.

Do not modify any existing definitions of attributes or object classes.

https://pen.iana.org/pen/PenApplication.page

CHAPTER 1. CREATING A CUSTOM SCHEMA USING THE DSCONF UTILITY

' WARNING
A Do not update or delete the standard schema to avoid compatibility problems with

other directories or LDAP client applications.

1.2. HOW DIRECTORY SERVER MANAGES SCHEMA UPDATES IN A
REPLICATION ENVIRONMENT

When you update the directory schema in the cn=schema tree, Directory Server stores the changes in
the /etc/dirsrv/slapd-instance_name/schema/99user.ldif file, including a change state number (CSN).

Directory Server does not directly replicate the schema changes to other replicas. Schema replication
starts when directory content is updated in the replicated tree. For example, if you update a user after
modifying the schema, the supplier compares the CSN stored in the nsSchemaCSN attribute with the
one on the consumer. If the value of the nsSchemaCSN attribute on the consumer is lower than the
one on the supplier, Directory Server replicates the schema to the consumer. For a successful
replication, all object classes and attribute types on the supplier must be a superset of the consumer’s
definition.

Example 1.1. Schema subsets and supersets

® On serveri, the example object class allows the a1, a2, and a3 attributes.

® On server2, the example object class allows the a1 and a3 attributes.

In the previous example, the schema definition of the example object class on server1 is a superset of
the object class on server2. During the validation phase, when Directory Server replicates or accepts the
schema, the server retrieves the superset definitions. For example, if a consumer detects that an object
class in the local schema allows less attributes than the object class in the supplier schema,

Directory Server updates the local schema.

If the schema definitions are successfully replicated, the nsSchemaCSN attributes are identical on both
servers and the schema definitions, such as object classes and attributes types, are no longer compared
at the beginning of a replication session.

In the following scenarios, Directory Server does not replicate the schema:

® The schema on one host is a subset of the schema of another host.
For example, the schema definition of the example object class on server2 is a subset of the
object class on serveri. Subsets can also occur for attributes (a single-value attribute is a
subset of a multi-value attribute) and attribute syntaxes.

® When definitions in supplier schema and consumer schema need to be merged.
® Directory Server does not support merging schemas. For example, if an object class on one
server allows the a1, a2, and a3 attributes and al, a3, and a4 on the other, the schemas are not

subsets and cannot be merged.

® You use schema files other than /etc/dirsrv/slapd-instance_name/schema/99user.ldif.
Directory Server enables you to add additional schema files to the /etc/dirsrv/slapd-

Red Hat Directory Server 12 Managing the directory schema

instance_name/schemal/ directory. However, only the CSN in the /etc/dirsrv/slapd-
instance_name/schema/99user.ldif file is updated. For this reasons, other schema file are used
only locally and not automatically transferred to replication partners.

IMPORTANT

To enable Directory Server to automatically replicate the schema and to avoid
duplicate schema definitions, store the custom schema in the
/etc/dirsrv/slapd-instance_name/schema/99user.ldif file.

1.3. USING DSCONF TO CREATE A CUSTOM SCHEMA FOR AN
ATTRIBUTE AND OBJECT CLASS

This procedure demonstrates how to use the dsconf utility to create a custom schema with:

® Asingle-valued attribute named dateOfBirth with OID 2.16.840.1.1133730.2.1.123 and syntax
Directory String (OID 1.3.6.1.4.1.1466.115.121.1.15)

® An object class named exampleperson without parent object class (SUP top), OID
2.16.840.1.1133730.2.1.99 that must contain the dateOfBirth attribute.

Procedure

1. Create the dateOfBirth attribute:

dsconf -D "cn=Directory Manager"' Idap://server.example.com schema attributetypes
add --0id="2.16.840.1.1133730.2.1.123" --desc="For employee birthdays" --
syntax="1.3.6.1.4.1.1466.115.121.1.15" --single-value --x-origin="Example defined"
dateOfBirth

2. Create the exampleperson object class:

dsconf -D "cn=Directory Manager" Idap://server.example.com schema objectclasses
add --0id="2.16.840.1.1133730.2.1.99" --desc="An example person object class" --
sup="top" --must="dateOfBirth" examplePerson

3. Run a schema reload task:

I # dsconf -D "cn=Directory Manager" Idap://server.example.com schema reload

Verification
® Monitor the /var/log/dirsrv/slapd-instance_name/errors file:

o If the build succeeds, Directory Server logs:

[23/Sep/2021:13:47:33.334241406 +0200] - INFO - schemareload -
schemareload_thread - Schema reload task starts (schema dir: default) ...
[23/Sep/2021:13:47:33.415692558 +0200] - INFO - schemareload -
schemareload_thread - Schema validation passed.
[23/Sep/2021:13:47:33.454768148 +0200] - INFO - schemareload -
schemareload_thread - Schema reload task finished.

CHAPTER 1. CREATING A CUSTOM SCHEMA USING THE DSCONF UTILITY

o If the build fails, Directory Server logs which step failed and why.

Red Hat Directory Server 12 Managing the directory schema

CHAPTER 2. CREATING A CUSTOM SCHEMA USING THE WEB

CONSOLE

You can add custom attributes and object classes to Directory Server by extending the schema. You can
extend the schema:

Using the Directory Server web console. This process is described in this section.
Using the dsconf utility on the command line.

Manually by creating schema files.

2.1. WORKFLOW OF A SCHEMA EXTENSION

Adding new schema elements requires:

1.

Planning and defining unique object identifiers (OID) for the new schema. Directory Server
recognizes schema elements by their OID, but you must manage the OIDs manually.

An OID is a dot-separated number that identifies the schema element to the server. OIDs can
be hierarchical with a base OID that can be expanded to accommodate different branches. For
example, the base OID could be 1, and there can be a branch for attributes at 1.1 and for object
classes at 1.2.

IMPORTANT

Even if not required, Red Hat recommends to use numeric OIDs for custom
schemas for better forward compatibility and performance.

Request OIDs from the Internet Assigned Numbers Authority (IANA). For details, see
https://pen.iana.org/pen/PenApplication.page.

Create a OID registry to track OID assignments and to ensure that no OID is used for more than
one purpose. An OID registry is a list of all OIDs used in the directory schema including
descriptions. Publish the OID registry with the custom schema.

Define the new attributes.

Define the object classes that contain the new attributes. However, never update the default
schema. If you create new attributes, always add them to a custom object class.

Directory Server loads the schema when the instance starts. To load new schema files, restart the
instance or initiate a reload task.

Keep the following rules in mind when customizing the Directory Server schema:

Keep the schema as simple as possible.

Reuse existing schema elements whenever possible.

Minimize the number of mandatory attributes defined for each object class.
Do not define more than one object class or attribute for the same purpose.

Do not modify any existing definitions of attributes or object classes.

https://pen.iana.org/pen/PenApplication.page

CHAPTER 2. CREATING A CUSTOM SCHEMA USING THE WEB CONSOLE

' WARNING
A Do not update or delete the standard schema to avoid compatibility problems with

other directories or LDAP client applications.

2.2. HOW DIRECTORY SERVER MANAGES SCHEMA UPDATES IN A
REPLICATION ENVIRONMENT

When you update the directory schema in the cn=schema tree, Directory Server stores the changes in
the /etc/dirsrv/slapd-instance_name/schema/99user.ldif file, including a change state number (CSN).

Directory Server does not directly replicate the schema changes to other replicas. Schema replication
starts when directory content is updated in the replicated tree. For example, if you update a user after
modifying the schema, the supplier compares the CSN stored in the nsSchemaCSN attribute with the
one on the consumer. If the value of the nsSchemaCSN attribute on the consumer is lower than the
one on the supplier, Directory Server replicates the schema to the consumer. For a successful
replication, all object classes and attribute types on the supplier must be a superset of the consumer’s
definition.

Example 2.1. Schema subsets and supersets

® On serveri, the example object class allows the a1, a2, and a3 attributes.

® On server2, the example object class allows the a1 and a3 attributes.

In the previous example, the schema definition of the example object class on server1 is a superset of
the object class on server2. During the validation phase, when Directory Server replicates or accepts the
schema, the server retrieves the superset definitions. For example, if a consumer detects that an object
class in the local schema allows less attributes than the object class in the supplier schema,

Directory Server updates the local schema.

If the schema definitions are successfully replicated, the nsSchemaCSN attributes are identical on both
servers and the schema definitions, such as object classes and attributes types, are no longer compared
at the beginning of a replication session.

In the following scenarios, Directory Server does not replicate the schema:

® The schema on one host is a subset of the schema of another host.
For example, the schema definition of the example object class on server2 is a subset of the
object class on serveri. Subsets can also occur for attributes (a single-value attribute is a
subset of a multi-value attribute) and attribute syntaxes.

® When definitions in supplier schema and consumer schema need to be merged.
® Directory Server does not support merging schemas. For example, if an object class on one
server allows the a1, a2, and a3 attributes and al, a3, and a4 on the other, the schemas are not

subsets and cannot be merged.

® You use schema files other than /etc/dirsrv/slapd-instance_name/schema/99user.ldif.
Directory Server enables you to add additional schema files to the /etc/dirsrv/slapd-

Red Hat Directory Server 12 Managing the directory schema

instance_name/schemal/ directory. However, only the CSN in the /etc/dirsrv/slapd-
instance_name/schema/99user.ldif file is updated. For this reasons, other schema file are used
only locally and not automatically transferred to replication partners.

IMPORTANT

To enable Directory Server to automatically replicate the schema and to avoid
duplicate schema definitions, store the custom schema in the
/etc/dirsrv/slapd-instance_name/schema/99user.ldif file.

2.3. USING THE WEB CONSOLE TO CREATE A CUSTOM SCHEMA FOR
AN ATTRIBUTE AND OBJECT CLASS

This procedure demonstrates how to use the web console to create a custom schema with:

® Asingle-valued attribute named dateOfBirth with OID 2.16.840.1.1133730.2.1.123 and syntax
Directory String (OID 1.3.6.1.4.1.1466.115.121.1.15)

® An object class named exampleperson without parent object class (SUP top), OID
2.16.840.1.1133730.2.1.99 that must contain the dateOfBirth attribute

If you use the web console to update the schema, Directory Server automatically reloads the schema.

Prerequisites

® You are logged in to the instance in the web console.

Procedure

1. Navigate to Schema — Attributes, and click Add Attribute.

2. Enter the settings of the attribute you want to add:

10

CHAPTER 2. CREATING A CUSTOM SCHEMA USING THE WEB CONSOLE

Add Attribute - dateofbirth x
Attribute Name dateofbirth

Description For employee birthdays

OID (optional) 2.16.840.11133730.2.1123

Parent Attribute -
Syntax Name Directory String v
Attribute Usage userApplications hd
Multivalued Attribute O

Mot Modifiable By A User O

Alias Names -
Equality Matching Rules -
Order Matching Rule -
Substring Matching Rule -
Close

3. Click Save

4. Navigate to Schema — Objectclasses, and click Add ObjectClass.

5. Enter the settings of the object class you want to add:

1

Red Hat Directory Server 12 Managing the directory schema

Add ObjectClass - exampleperson

Objectclass Name exampleperson

Description An example person object class
OID (optional) 216.8401N133730.21.99

Parent Objectclass top

Objectclass Kind STRUCTURAL

Required Attributes dateofbirth X

Allowed Attributes

Save Close

6. Click Save

Verification

12

® Navigate to Monitoring = Logging — Errors Log.

o If the build succeeds, Directory Server logs:

[23/Sep/2021:13:47:33.334241406 +0200] - INFO - schemareload -

schemareload_thread - Schema reload task starts (schema dir: default) ...

[23/Sep/2021:13:47:33.415692558 +0200] - INFO - schemareload -
schemareload_thread - Schema validation passed.
[23/Sep/2021:13:47:33.454768148 +0200] - INFO - schemareload -
schemareload_thread - Schema reload task finished.

o If the build fails, Directory Server logs which step failed and why.

CHAPTER 3. MANUALLY CREATING A CUSTOM SCHEMA FILE

CHAPTER 3. MANUALLY CREATING A CUSTOM SCHEMA FILE

You can add custom attributes and object classes to Directory Server by extending the schema. You can
extend the schema:

Manually by creating schema files. The process is described in this section.
Using the dsconf utility on the command line.

Using the Directory Server web console.

3.1. WORKFLOW OF A SCHEMA EXTENSION

Adding new schema elements requires:

1.

Planning and defining unique object identifiers (OID) for the new schema. Directory Server
recognizes schema elements by their OID, but you must manage the OIDs manually.

An OID is a dot-separated number that identifies the schema element to the server. OIDs can
be hierarchical with a base OID that can be expanded to accommodate different branches. For
example, the base OID could be 1, and there can be a branch for attributes at 1.1 and for object
classes at 1.2.

IMPORTANT

Even if not required, Red Hat recommends to use numeric OIDs for custom
schemas for better forward compatibility and performance.

Request OIDs from the Internet Assigned Numbers Authority (IANA). For details, see
https://pen.iana.org/pen/PenApplication.page.

Create a OID registry to track OID assignments and to ensure that no OID is used for more than
one purpose. An OID registry is a list of all OIDs used in the directory schema including
descriptions. Publish the OID registry with the custom schema.

Define the new attributes.

Define the object classes that contain the new attributes. However, never update the default
schema. If you create new attributes, always add them to a custom object class.

Directory Server loads the schema when the instance starts. To load new schema files, restart the
instance or initiate a reload task.

Keep the following rules in mind when customizing the Directory Server schema:

Keep the schema as simple as possible.

Reuse existing schema elements whenever possible.

Minimize the number of mandatory attributes defined for each object class.
Do not define more than one object class or attribute for the same purpose.

Do not modify any existing definitions of attributes or object classes.

13

https://pen.iana.org/pen/PenApplication.page

Red Hat Directory Server 12 Managing the directory schema

' WARNING
A Do not update or delete the standard schema to avoid compatibility problems with

other directories or LDAP client applications.

3.2. REQUIREMENTS FOR A SCHEMAFILE

Schema files use the LDIF format that define the cn=schema entry. Each attribute type and object
class is added to this entry.

The following are the requirements for a schema file:

® The file must start with the following entry:

I dn: cn=schema

® A schema file can include attribute types or object classes or both of them.
® Object class definitions can use attributes defined in other schema files.

® Depending on which instances should use a custom schema file, store it in one of the following
locations:

o /etc/dirsrv/slapd-instance_name/schema/ to make the schema file available to this
specific instance

o /usr/share/dirsrv/ischema/ to make the schema file available to all instances running on this
host

e By default, Directory Server expects the custom schema in the 99user.ldif file. If you use a
different file name:

o The name must be alphabetically lower than 99user.ldif. For example, 99aaa.ldif is ok, but
99zzz.1dif is not.

o The name must start with two digits and be higher than 01 because custom schema files
must be loaded after the core schema files, which begin with 00 up to 98
Directory Server reads schema files in alphabetical order. Therefore, for example, if you
store a definition 99user.ldif, it will override definitions from standard files whose name
begins with 00 and 01.

e |f you want to use a standard schema file from the /usr/share/dirsrv/data/ directory, copy the
file to /etc/dirsrv/slapd-instance_name/schemal/ or /usr/share/dirsrv/schema/ depending on
which instances should use the file. However, use a different file name in the destination
directory. Otherwise, Directory Server renames the file during an upgrade and appends the .bak
suffix.

Example 3.1. Example of a custom schema file
objectClasses: (2.16.840.1.1133730.2.1.123 NAME 'exampleperson' DESC 'An example

| dn: cn=schema

14

CHAPTER 3. MANUALLY CREATING A CUSTOM SCHEMA FILE

attributeTypes: (2.16.840.1.1133730.2.1.99 NAME 'dateOfBirth' DESC 'For employee

person object class' SUP top STRUCTURAL MUST dateOfBirth X-ORIGIN 'user defined')
birthday' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'user defined')

3.3. THE DEFINITION OF ATTRIBUTES IN CUSTOM SCHEMA FILES

You define attributes in schema files as values of attributeTypes attributes.

Example 3.2. Definition of an attribute

attributeTypes: (2.16.840.1.1133730.2.1.123 NAME 'dateOfBirth' DESC 'For employee birthday'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'user defined")

The attribute definition contains the following components:
® A unique object identifier (OID) specified as a dot-separated number.
® A unique name in the form of NAME attribute_name.
® A description in the form of DESC description.

® The OID for the syntax of the attribute values in the form SYNTAX OID. For details about the
LDAP attribute syntaxes, see RFC 4517.

e Optional: The source where the attribute is defined.

3.4. THE DEFINITION OF OBJECT CLASSES IN CUSTOM SCHEMA
FILES

You define object classes in schema files as values of objectClasses attributes.

Example 3.3. Definition of an object class

objectClasses: (2.16.840.1.1133730.2.1.99 NAME 'exampleperson' DESC 'An example person
object class' SUP top STRUCTURAL MUST dateOfBirth X-ORIGIN 'user defined')

The object class definition contains the following components:
® A unique object identifier (OID) specified as a dot-separated number.
® Aunique name in the form of NAME attribute_name.
® A description in the form of DESC description.

® The superior (parent) object class for this object class in the form SUP object_class. If there is
no related parent, use SUP top.

® The word STRUCTURAL defines the type of entry to which the object class applies. Any entry

must belong to at least one STRUCTURAL object class. AUXILIARY means that it can apply to
any entry.

15

https://datatracker.ietf.org/doc/html/rfc4517

Red Hat Directory Server 12 Managing the directory schema

e Alist of required attributes, preceded by the MUST keyword. To include multiple attributes,
enclose the group in parentheses and separate the attributes with a [command]™$ ~ (dollar sign
and space).

e Alist of optional attributes, preceded by the MAY keyword. To include multiple attributes,
enclose the group in parentheses and separate the attributes with a [command]™$ ~ (dollar sign
and space).

Only the name and OID is required, and other settings depend on the needs of the object class.

Additional resources

® Section4.2in RFC 4512

3.5.HOW DIRECTORY SERVER MANAGES SCHEMA UPDATES IN A
REPLICATION ENVIRONMENT

When you update the directory schema in the cn=schema tree, Directory Server stores the changes in
the /etc/dirsrv/slapd-instance_name/schema/99user.ldif file, including a change state number (CSN).

Directory Server does not directly replicate the schema changes to other replicas. Schema replication
starts when directory content is updated in the replicated tree. For example, if you update a user after
modifying the schema, the supplier compares the CSN stored in the nsSchemaCSN attribute with the
one on the consumer. If the value of the nsSchemaCSN attribute on the consumer is lower than the
one on the supplier, Directory Server replicates the schema to the consumer. For a successful
replication, all object classes and attribute types on the supplier must be a superset of the consumer’s
definition.

Example 3.4. Schema subsets and supersets

® On serveri, the example object class allows the a1, a2, and a3 attributes.

® On server2, the example object class allows the a1 and a3 attributes.

In the previous example, the schema definition of the example object class on server1 is a superset of
the object class on server2. During the validation phase, when Directory Server replicates or accepts the
schema, the server retrieves the superset definitions. For example, if a consumer detects that an object
class in the local schema allows less attributes than the object class in the supplier schema,

Directory Server updates the local schema.

If the schema definitions are successfully replicated, the nsSchemaCSN attributes are identical on both
servers and the schema definitions, such as object classes and attributes types, are no longer compared
at the beginning of a replication session.

In the following scenarios, Directory Server does not replicate the schema:

® The schema on one host is a subset of the schema of another host.
For example, the schema definition of the example object class on server2 is a subset of the
object class on serveri. Subsets can also occur for attributes (a single-value attribute is a
subset of a multi-value attribute) and attribute syntaxes.

® When definitions in supplier schema and consumer schema need to be merged.

16

https://datatracker.ietf.org/doc/html/rfc4512#section-2.4

CHAPTER 3. MANUALLY CREATING A CUSTOM SCHEMA FILE

® Directory Server does not support merging schemas. For example, if an object class on one
server allows the al, a2, and a3 attributes and al, a3, and a4 on the other, the schemas are not
subsets and cannot be merged.

® You use schema files other than /etc/dirsrv/slapd-instance_name/schema/99user.ldif.
Directory Server enables you to add additional schema files to the /etc/dirsrv/slapd-
instance_name/schemal/ directory. However, only the CSN in the /etc/dirsrv/slapd-
instance_name/schema/99user.ldif file is updated. For this reasons, other schema file are used
only locally and not automatically transferred to replication partners.

IMPORTANT

To enable Directory Server to automatically replicate the schema and to avoid
duplicate schema definitions, store the custom schema in the
/etc/dirsrv/slapd-instance_name/schema/99user.ldif file.

3.6. MANUALLY CREATING A CUSTOM SCHEMAFILE FOR AN
ATTRIBUTE AND OBJECT CLASS

If you want to manually create a custom schema, store it in the
/etc/dirsrv/slapd-instance_name/schema/99user.ldif file. Using a different file name is possible, but
causes drawbacks, such as schema definitions stored in other files are replicated, but then stored in
/etc/dirsrv/slapd-instance_name/schema/99user.ldif on the replica. See How Directory Server
manages schema updates in a replication environment.

This procedure adds:

® Asingle-valued attribute named dateOfBirth with OID 2.16.840.1.1133730.2.1.123 and syntax
Directory String (OID 1.3.6.1.4.1.1466.115.121.1.15)

® An object class named exampleperson without parent object class (SUP top) that must
contain the dateOfBirth attribute.

Procedure

1. Add the following content below the dn: cn=schema entry in the
/etc/dirsrv/slapd-instance_name/schema/99user.ldif file:

attributeTypes: (2.16.840.1.1133730.2.1.123 NAME 'dateOfBirth' DESC 'For employee
birthday' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'user defined'

)
objectClasses: (2.16.840.1.1133730.2.1.99 NAME 'exampleperson' DESC 'An example

person object class' SUP top STRUCTURAL MUST dateOfBirth X-ORIGIN 'user defined')

2. Run a schema reload task:

I # dsconf -D "cn=Directory Manager" Idap://server.example.com schema reload

Verification steps:
® Monitor the /var/log/dirsrv/slapd-instance_namel/errors file:

o If the build succeeds, Directory Server logs:

17

Red Hat Directory Server 12 Managing the directory schema

[23/Sep/2021:13:47:33.334241406 +0200] - INFO - schemareload -
schemareload_thread - Schema reload task starts (schema dir: default) ...
[23/Sep/2021:13:47:33.415692558 +0200] - INFO - schemareload -
schemareload_thread - Schema validation passed.
[23/Sep/2021:13:47:33.454768148 +0200] - INFO - schemareload -
schemareload_thread - Schema reload task finished.

o If the build fails, Directory Server logs which step failed and why.

18

CHAPTER 4. VALIDATING THE SYNTAX OF EXISTING ATTRIBUTE VALUE

CHAPTER 4. VALIDATING THE SYNTAX OF EXISTING
ATTRIBUTE VALUES

With syntax validation, the Directory Server checks if an attribute value follows the rules of the syntax
provided in the definition of that attribute. The Directory Server records the results of syntax validation
tasks in the /var/log/dirsrv/slapd-instance_name/errors file.

Manual syntax validation is required if:

® You have the syntax validation disabled in the nsslapd-syntaxcheck parameter.

NOTE

Red Hat recommends that syntax validation should not be disabled.

® You migrate data from a server with disabled or without syntax validation.

4.1. CREATING A SYNTAX VALIDATION TASK USING THE DSCONF
SCHEMA VALIDATE-SYNTAX COMMAND

With the dsconf schema validate-syntax command, you can create a syntax validation task to check
every modified attribute and ensure that the new value has the required syntax.

Procedure

® To create a syntax validation task, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com schema validate-syntax -f
'(objectclass=inetorgperson)' ou=People,dc=example,dc=com
In the example output, the command creates a task that validates the syntax of all values in the

ou=People,dc=example,dc=com sub-tree which match the (objectclass=inetorgperson)
filter.

4.2. CREATING ASYNTAX VALIDATION TASK USING Acn TASK ENTRY

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries used by the server for managing tasks. You can initiate a syntax validation operation by creating a
task in the cn=syntax validate,cn=tasks,cn=config entry.

Procedure

® Toinitiate a syntax validation operation, create a task in the ch=syntax
validate,cn=tasks,cn=config entry as follows:

ldapadd -D "cn=Directory Manager" -W -p 389 -H Idap://server.example.com -x

dn: cn=example_syntax_validate,cn=syntax validate,cn=tasks,cn=config
objectclass: extensibleObject

cn: cn=example_syntax_validate

basedn: ou=People,dc=example,dc=com

filter: (objectclass=inetorgperson)

19

Red Hat Directory Server 12 Managing the directory schema

In the example output, the command creates a task that validates the syntax of all values in the
ou=People,dc=example,dc=com sub-tree that is similar to the (objectclass=inetorgperson)
filter. When the task completes, Directory Server deletes the entry from the directory

configuration.

Additional resources

® Configuration and schema reference

20

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/configuration_and_schema_reference/assembly_core-server-configuration-attributes_config-schema-reference-title#assembly_cn-task_name-cn-syntax-validate-cn-tasks-cn-config_assembly_core-server-configuration-attributes

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DIRECTORY SERVER
	CHAPTER 1. CREATING A CUSTOM SCHEMA USING THE DSCONF UTILITY
	1.1. WORKFLOW OF A SCHEMA EXTENSION
	1.2. HOW DIRECTORY SERVER MANAGES SCHEMA UPDATES IN A REPLICATION ENVIRONMENT
	1.3. USING DSCONF TO CREATE A CUSTOM SCHEMA FOR AN ATTRIBUTE AND OBJECT CLASS

	CHAPTER 2. CREATING A CUSTOM SCHEMA USING THE WEB CONSOLE
	2.1. WORKFLOW OF A SCHEMA EXTENSION
	2.2. HOW DIRECTORY SERVER MANAGES SCHEMA UPDATES IN A REPLICATION ENVIRONMENT
	2.3. USING THE WEB CONSOLE TO CREATE A CUSTOM SCHEMA FOR AN ATTRIBUTE AND OBJECT CLASS

	CHAPTER 3. MANUALLY CREATING A CUSTOM SCHEMA FILE
	3.1. WORKFLOW OF A SCHEMA EXTENSION
	3.2. REQUIREMENTS FOR A SCHEMA FILE
	3.3. THE DEFINITION OF ATTRIBUTES IN CUSTOM SCHEMA FILES
	3.4. THE DEFINITION OF OBJECT CLASSES IN CUSTOM SCHEMA FILES
	3.5. HOW DIRECTORY SERVER MANAGES SCHEMA UPDATES IN A REPLICATION ENVIRONMENT
	3.6. MANUALLY CREATING A CUSTOM SCHEMA FILE FOR AN ATTRIBUTE AND OBJECT CLASS

	CHAPTER 4. VALIDATING THE SYNTAX OF EXISTING ATTRIBUTE VALUES
	4.1. CREATING A SYNTAX VALIDATION TASK USING THE DSCONF SCHEMA VALIDATE-SYNTAX COMMAND
	4.2. CREATING A SYNTAX VALIDATION TASK USING A CN TASK ENTRY

