& RedHat

Red Hat Directory Server 12

Securing Red Hat Directory Server

Improving the security of Directory Server

Last Updated: 2024-07-09

Red Hat Directory Server 12 Securing Red Hat Directory Server

Improving the security of Directory Server

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Improve the security of your LDAP service with Red Hat Directory Server. For example, you can
encrypt the connection between a client and the Directory Server and store encrypted attributes in
the Directory Server database. You can also encrypt the replication changelog, configure
authentication, and perform other security tasks.

Table of Contents

Table of Contents
PROVIDING FEEDBACK ON RED HAT DIRECTORY SERVER .« ...ttt 5

CHAPTER 1. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER co0utt. 6
11. THE DIFFERENT OPTIONS FOR ENCRYPTED CONNECTIONS TO DIRECTORY SERVER 6
1.2. HOW DIRECTORY SERVER UNLOCKS THE NSS DATABASE 6
1.3. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER USING THE COMMAND LINE 7
1.4. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER USING THE WEB CONSOLE 9
1.5. MANAGING HOW DIRECTORY SERVER BEHAVES IF THE CERTIFICATE HAS EXPIRED il

1.6. CHANGING THE PASSWORD OF THE NSS DATABASE 12
1.7. CREATING A PASSWORD FILE TO START AN INSTANCE WITHOUT BEING PROMPTED FOR THE NSS
DATABASE PASSWORD 13
1.8. ADDING THE CA CERTIFICATE USED BY DIRECTORY SERVER TO THE TRUST STORE OF RED HAT
ENTERPRISE LINUX 14
CHAPTER 2. CONFIGURING THE SUPPORTED TLS PROTOCOL VERSIONS c.ovinirinininnnnsn. 16
2.1. SETTING THE MINIMUM AND MAXIMUM TLS PROTOCOL VERSIONS USING THE COMMAND LINE 16
2.2. SETTING THE MINIMUM AND MAXIMUM TLS PROTOCOL VERSIONS USING THE WEB CONSOLE 17
CHAPTER 3. REQUIRING LDAPS OR STARTTLS FOR ENCRYPTED CONNECTIONS 19
3.. CONFIGURING DIRECTORY SERVER USING THE COMMAND LINE TO ACCEPT ONLY CONNECTIONS
ENCRYPTED WITH LDAPS OR STARTTLS 19
3.2. CONFIGURING DIRECTORY SERVER USING THE WEB CONSOLE TO ACCEPT ONLY CONNECTIONS
ENCRYPTED WITH LDAPS OR STARTTLS 20
CHAPTER 4. UPDATING THE LIST OF CIPHERS DIRECTORY SERVER SUPPORTS couvnn... 21
4.1. THE DIFFERENCE BETWEEN DEFAULT CIPHERS AND AVAILABLE CIPHERS 21
4.2. WEAK CIPHERS 21
4.3. SETTING CIPHERS DIRECTORY SERVER SUPPORTS USING THE COMMAND LINE 21
4.4, SETTING CIPHERS DIRECTORY SERVER SUPPORTS USING THE WEB CONSOLE 22
CHAPTER 5. CHANGING THE CA TRUST FLAGS ...\ .tutututttatatatateneneneeeeeeeeeaenanenananans 24
5.. CHANGING THE CA TRUST FLAGS USING THE COMMAND LINE 24
5.2. CHANGING THE CA TRUST FLAGS USING THE WEB CONSOLE 25
CHAPTER 6. RENEWING A TLS CERTIFICATE .. 0\tututntttatetatetetetenen e et eeeeeeeaeeeeenenens 26
6.. RENEWING A TLS CERTIFICATE USING THE COMMAND LINE 26
CHAPTER 7. CONFIGURING CERTIFICATE-BASED AUTHENTICATION vuinitinininananennnss, 28
7.. SETTING UP CERTIFICATE-BASED AUTHENTICATION 28
7.2. ADDING A CERTIFICATE TO A USER 30

CHAPTER 8. CONFIGURING MULTI-SUPPLIER REPLICATION WITH CERTIFICATE-BASED

AUTHENTIC ATION oo i i e i et e et ei i 32
8.1. PREPARING ACCOUNTS AND A BIND GROUP FOR THE USE IN REPLICATION AGREEMENTS WITH
CERTIFICATE-BASED AUTHENTICATION 32
8.2. INITIALIZING A NEW SERVER USING A TEMPORARY REPLICATION MANAGER ACCOUNT 33
8.3. CONFIGURING MULTI-SUPPLIER REPLICATION WITH CERTIFICATE-BASED AUTHENTICATION 34

CHAPTER 9. ENCRYPTING THE REPLICATION CHANGELOG i 37
9.1. ENCRYPTING THE CHANGELOG USING THE COMMAND LINE 37

CHAPTER 10. ENABLING MEMBERS OF A GROUP TO BACK UP DIRECTORY SERVER AND PERFORMING
THE BACKUP AS ONE OF THE GROUP MEMBERS e 39

10.1. ENABLING A GROUP TO BACK UP DIRECTORY SERVER 39
10.2. PERFORMING A BACKUP AS A REGULAR USER 40

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

CHAPTER 13. RUNNING DIRECTORY SERVER IN FIPS MODE

CHAPTER 15. DISABLING ANONYMOUS BINDS

Red Hat Directory Server 12 Securing Red Hat Directory Server

11.1. ENABLING A GROUP TO EXPORT DATA
11.2. PERFORMING AN EXPORT AS A REGULAR USER

12.1. ACI PLACEMENT
12.2. THE STRUCTURE OF AN ACI
12.3. ACI EVALUATION
12.4. LIMITATIONS OF ACIS
12.5. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION TOPOLOGY
12.6. DISPLAYING, ADDING, DELETING, AND UPDATING ACIS
12.7. DEFINING ACI TARGETS
12.7.1. The syntax of target rules
12.7.2. Targeting a directory entry
12.7.3. Targeting attributes
12.7.4. Targeting entries and attributes using LDAP filters
12.7.5. Targeting attribute values using LDAP filters
12.7.6. Targeting source and destination DNs
12.8. ADVANCED USAGE OF TARGET RULES
12.8.1. Delegating permissions to create and maintain groups
12.8.2. Targeting both an entry and attributes
12.8.3. Targeting certain attributes of entries matching a filter
12.8.4. Targeting a single directory entry
12.9. DEFINING ACI PERMISSIONS
12.9.1. The syntax of permission rules
12.9.2. User rights in permission rules
12.9.3. Rights required for LDAP operations
12.10. DEFINING ACI BIND RULES
12.10.1. The syntax of bind rules
12.10.2. Defining user-based access
12.10.3. Defining group-based access
12.10.4. Defining access based on value matching
12.10.5. Defining access from specific IP addresses or ranges
12.10.6. Defining access from a specific host or domain
12.10.7. Requiring a certain level of security in connections
12.10.8. Defining access at a specific day of the week
12.10.9. Defining access at a specific time of day
12.10.10. Defining access based on the authentication method
12.10.11. Defining access based on roles
12.10.12. Combining bind rules using Boolean operators

13.1. ENABLING THE FIPS MODE
13.2. ADDITIONAL RESOURCES

CHAPTER 14. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY

CHAPTER 11. ENABLING MEMBERS OF A GROUP TO EXPORT DATA AND PERFORMING THE EXPORT AS
ONE OF THE GROUP MEMBERS

42
43

....................... 45

45
46
46
47
47
47
48
49
49

51
52
53
54
54
54
55
56
56
57
57
57
58
59
59
59
63
64
68
69
70

71

71
72
73
73

....................... 75

75
75

..................... 76

14.1. CONFIGURING WHETHER TO LOCK ACCOUNTS WHEN REACHING OR EXCEEDING THE CONFIGURED

MAXIMUM ATTEMPTS

76

14.2. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY USING THE COMMAND LINE 77
14.3. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY USING THE WEB CONSOLE 79

15.1. DISABLING ANONYMOUS BINDS USING THE COMMAND LINE

Table of Contents

15.2. DISABLING ANONYMOUS BINDS USING THE WEB CONSOLE 81

CHAPTER 16. SYNCHRONIZING ACCOUNT LOCKOUT ATTRIBUTES ACROSS ALL SERVERS IN A

REPLICATION ENVIRONMENT o i i i e i it 83
16.1. HOW DIRECTORY SERVER HANDLES PASSWORD AND ACCOUNT LOCKOUT POLICIES IN A
REPLICATION ENVIRONMENT 83
16.2. CONFIGURING DIRECTORY SERVER TO REPLICATE ACCOUNT LOCKOUT ATTRIBUTES 83

CHAPTER 17. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIEScccoiiiiiint. 86
17.1. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME THE LAST SUCCESSFUL
LOGIN 86
17.2. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME AFTER YOU CREATED THEM

88
17.3. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME AFTER PASSWORD EXPIRY

90
17.4. AUTOMATICALLY DISABLING ACCOUNT ON BOTH ACCOUNT INACTIVITY AND PASSWORD
EXPIRATION 92

CHAPTER 18. RE-ENABLING ACCOUNTS THAT REACHED THE INACTIVITYLIMITooiiiiiiie. 94
18.1. RE-ENABLING ACCOUNTS INACTIVATED BY THE ACCOUNT POLICY PLUG-IN 94

CHAPTER 19. TRACKING THE LAST LOGIN TIME WITHOUT SETTING A LOCKOUT POLICY 95
19.1. CONFIGURING THE ACCOUNT POLICY PLUG-IN TO RECORD THE LAST LOGIN TIME 95

CHAPTER 20. SETTING ACCESS CONTROL ON THE DIRECTORY MANAGERACCOUNT 97
20.1. ABOUT ACCESS CONTROLS ON THE DIRECTORY MANAGER ACCOUNT 97
20.2. CONFIGURING THE ROOTDN ACCESS CONTROL PLUG-IN USING THE COMMAND LINE 97
20.3. CONFIGURING THE ROOTDN ACCESS CONTROL PLUG-IN USING THE WEB CONSOLE 98

CHAPTER 21. MANAGING ATTRIBUTE ENCRYPTION ... e 100
21.1. KEYS DIRECTORY SERVER USES FOR ATTRIBUTE ENCRYPTION 100
21.2. ENABLING ATTRIBUTE ENCRYPTION USING THE COMMAND LINE 100
21.3. ENABLING ATTRIBUTE ENCRYPTION USING THE WEB CONSOLE 101
21.4. GENERAL CONSIDERATIONS AFTER ENABLING ATTRIBUTE ENCRYPTION 102
21.5. UPDATING THE TLS CERTIFICATES USED FOR ATTRIBUTE ENCRYPTION 103

Red Hat Directory Server 12 Securing Red Hat Directory Server

PROVIDING FEEDBACK ON RED HAT DIRECTORY SERVER

PROVIDING FEEDBACK ON RED HAT DIRECTORY SERVER

We appreciate your input on our documentation and products. Please let us know how we could make it
better. To do so:

® Forsubmitting feedback on the Red Hat Directory Server documentation through Jira (account
required):

1.

2.

4.

Go to the Red Hat Issue Tracker.
Enter a descriptive title in the Summary field.

Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

Click Create at the bottom of the dialogue.

® For submitting feedback on the Red Hat Directory Server product through Jira (account
required):

1.

2.

Go to the Red Hat Issue Tracker.
On the Create Issue page, click Next.

Fill in the Summary field.

. Select the component in the Component field.

Fill in the Description field including:

a. The version number of the selected component.
b. Steps to reproduce the problem or your suggestion for improvement.

Click Create.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12342725&issuetype=1&summary=%5BDoc%5D&components=12395352&priority=10300&description=%7B%2A%7DDocument link%7B%2A%7D%3A%0A%0A%7B%2A%7DSection number and name%7B%2A%7D%3A%0A%0A%7B%2A%7DDescribe the issue%7B%2A%7D%3A%0A%0A%7B%2A%7DSuggestions for improvement%7B%2A%7D%3A%0A%0A%7B%2A%7DAdditional information%7B%2A%7D%3A
https://issues.redhat.com/secure/CreateIssue.jspa?pid=12342725&issuetype=11413

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 1. ENABLING TLS-ENCRYPTED CONNECTIONS TO
DIRECTORY SERVER

By default, Red Hat Directory Server provides the LDAP service without encryption. To improve the
security, you can configure TLS in Directory Server to enable your clients or other hosts in a replication
environment to use encrypted connections. They can then use the STARTTLS command on port 389 or
the LDAPS protocol on port 636 for secure connections.

You can use TLS with simple authentication using a bind Distinguished Name (DN) and password, or
using certificate-based authentication.

Directory Server's cryptographic services are provided by Mozilla network security services (NSS), a
library of TLS and base cryptographic functions. NSS includes a software-based cryptographic token
which is Federal Information Processing Standard (FIPS) 140-2 certified.

1.1. THE DIFFERENT OPTIONS FOR ENCRYPTED CONNECTIONS TO
DIRECTORY SERVER

To connect to Directory Server with an encrypted connection, you can use the following protocols and
framework:

LDAPS

When you use the LDAPS protocol, the connection starts using encryption and either succeeds or
fails. However, no unencrypted data is ever sent over the network. For this reason, prefer LDAPS
instead of using STARTTLS over unencrypted LDAP.

STARTTLS over LDAP

Clients establish an unencrypted connection over the LDAP protocol and then send the STARTTLS
command. If the command succeeds, all further communication is encrypted.

WARNING
A If the STARTTLS command fails and the client does not cancel the connection,

all further data, including authentication information, is sent unencrypted over
the network.

SASL

The Simple Authentication and Security Layer (SASL) framework enables you to authenticate a user
using external authentication methods, such as Kerberos.

1.2. HOW DIRECTORY SERVER UNLOCKS THE NSS DATABASE

Directory Server stores certificate signing requests (CSR), private keys, and certificates in a network
security services (NSS) database. When you install a new instance, the installer automatically creates the
NSS database and protects it with a random password. The installer stores this password in the following
files:

CHAPTER 1. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER

e /etc/dirsrv/slapd-instance_name/pwdfile.txt: The dsconf tls command uses this file to access
the NSS database.

e /etc/dirsrv/slapd-instance_name/pin.txt: This file contains the token and password to
automatically unlock the NSS database when Directory Server starts.

o If you want Directory Server to prompt for the NSS database password each time you start
the instance, remove this file.

o If you want the instance to start automatically without prompting for the password, keep
this file and update it when you change the NSS database password.

If the /etc/dirsrv/slapd-instance _namelpin.txt file does not exist, you start Directory Server with
encryption enabled and set a password on the NSS database, the the behavior is as follows:

e |f the systemctl or dsctl utilities start the ns-slapd Directory Server process, the systemd
service prompts for the password and automatically passes the input to the systemd-tty-ask-
password-agent utility:

dsctl instance_name start
Enter PIN for Internal (Software) Token: (press TAB for no echo)

® Inrare cases, when the ns-slapd Directory Server process is not started by the systemctl or
dsctl utilities, and the process is detached from the terminal, ns-slapd sends a message to all
terminals using the wall command:

Broadcast message from root@server (Fri 2021-01-01 06:00:00 CET):

Password entry required for 'Enter PIN for Internal (Software) Token:' (PID 1234).
Please enter password with the systemd-tty-ask-password-agent tool!

To enter the password:

systemd-tty-ask-password-agent
Enter PIN for Internal (Software) Token:

Additional resources

® Changing the password of the NSS database

1.3. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY
SERVER USING THE COMMAND LINE

To use TLS encryption or certificate-based authentication, you must manage the certificates in a
network security services (NSS) database. When you created the instance, the dscreate utility
automatically created this database in the /etc/dirsrv/slapd-instance_name/ directory and protected it
with a strong password.

Procedure

1. Create a private key and a certificate signing request (CSR). Skip this step if you want to create
them using an external utility.

® [fyour host is reachable only by one name, enter:

Red Hat Directory Server 12 Securing Red Hat Directory Server

dsctl instance_name tls generate-server-cert-csr -s
"CN=server.example.com,0O=example_organization"

e |f your host is reachable by multiple names:

dsctl instance_name tls generate-server-cert-csr -s
"CN=server.example.com,O=example_organization" server.example.com
server.example.net

If you specify the host names as the last parameter, the command adds the Subject
Alternative Name (SAN) extension with the DNS:server.example.com,
DNS:server.example.net entries to the CSR.

The string specified in the -s subject parameter must be a valid subject name according to RFC
1485. The CN field in the subject is required, and you must set it to one of the fully-qualified
domain names (FQDN) of the server. The command stores the CSR in the
/etc/dirsrv/slapd-instance_name/Server-Cert.csr file.

2. Submit the CSR to the certificate authority (CA) to get a certificate issued. For further details,
see your CA's documentation.

3. Import the server certificate issued by the CA to the NSS database:

e |f you created the private key using the dsctl tls generate-server-cert-csr command,
enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com security certificate
add --file /root/instance_name.crt --name "server-cert" --primary-cert

Remember the name of the certificate you set in the --name _ certificate_nickname
parameter. You require it in a later step.

e |f you created the private key using an external utility, import the server certificate and the
private key:

I # dsctl instance_name tls import-server-key-cert /root/server.crt /root/server.key

Note that the command requires you to specify the path to the server certificate first and
then the path to the private key. This method always sets the nickname of the certificate to
Server-Cert.

4. Import the CA certificate to the NSS database:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ca-certificate
add --file /root/ca.crt --name "Example CA"

5. Set the trust flags of the CA certificate:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ca-certificate
set-trust-flags "Example CA" --flags "CT,,"

This configures Directory Server to trust the CA for TLS encryption and certificate-based
authentication.

6. Enable TLS and set the LDAPS port:

CHAPTER 1. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER

dsconf -D "cn=Directory Manager" Idap://server.example.com config replace
nsslapd-securePort=636 nsslapd-security=on

7. Open the LDAPS port in the firewalld service:

firewall-cmd --permanent --add-port=636/tcp
firewall-cmd --reload

8. Enable the RSA cipher family, set the NSS database security device, and the server certificate
name:

dsconf -D "cn=Directory Manager" Idap://server.example.com security rsa set --tls-
allow-rsa-certificates on --nss-token "internal (software)' --nss-cert-name Server-Cert

By default, the name of the security device in the NSS database is internal (software)

9. Optional: Disable the plain text LDAP port:
I # dsconf inst security disable_plain_port
10. Restart the instance

I # dsctl instance_name restart

Verification

® Establish a connection to Directory Server using the LDAPS protocol. For example, run a query:

|dapsearch -H Idaps://server.example.com:636 -D "cn=Directory Manager" -W -b
"dc=example,dc=com" -x -s base

If the command fails, with an Idap_sasl_bind(SIMPLE): Can’t contact LDAP server (-1) error,
re-run the command with debug level 1:

|dapsearch -H Idaps://server.example.com:636 -D "cn=Directory Manager" -W -b
"dc=example,dc=com" -x -s base -d 1

Next steps

® Add the CA certificate used by Directory Server to the trust store of Red Hat Enterprise Linux
® Optional: Change the password of the NSS database

® Optional: Updating the list of ciphers Directory Server supports

Additional resources

® Changing the CA trust flags using the command line

1.4. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY
SERVER USING THE WEB CONSOLE

Red Hat Directory Server 12 Securing Red Hat Directory Server

You can configure TLS encryption using the web console.

Prerequisites

® You are logged in to the instance in the web console.

Procedure

1. Navigate to Server = Security — Certificate Management — Certificate Signing Request,
and click Create Certificate Signing Request.

2. Set a name for certificate signing request (CSR), common name (CN), and organization (O):

Create Certificate Signing Request x
Name Server-Cert

Subject Alternative Names Type an alternative host name A
Common Name (CN) server.example.com

Organization (O) example_organization

Organizational Unit (OU)

City/Locality (L)

State/County/Region (ST)

Country Code (C)

Email Address

Create Certificate Signing Request Cancel

If your host is reachable by multiple names, set the alternative names in the Subject Alternative
Names filed.

3. Click Create Certificate Signing Request.

4. View the CSR text and copy it:

a. Click Node optionsicon for the CSR you want to view and select View CSR.
b. Copy the CSR content.

5. Submit the CSR file to the certificate authority (CA) to get a certificate issued. For further
details, see your CA’s documentation.

10

1.

12.

13.

14.

15.

CHAPTER 1. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER

When you get the certificate from your CA, navigate to Server = Security — Certificate
Management = TLS Certificates, and click Add Server Certificate.

Set a unique nickname for the server certificate, upload the issued certificate, and click Add
Certificate.

Remember the certificate nickname, because a later step requires it.

Navigate to Server = Security - Certificate Management —» Trusted Certificate
Authorities, and click Add CA Certificate.

Set a unique nickname for the CA certificate, upload the CA certificate file, and click Add
Certificate.

. Optional: If you did not enable TLS encryption during the Directory Server instance installation,

enable it:

a. Navigate to Server = Security Settings, and enable the security switch.
b. On the pop-up window, click Enable Security.
c. Click Save Configuration on the Security Setting page.

Configure the Server Certificate Name on the Security Configuration page:

a. Navigate to Server - Security = Security Configuration.

b. Select the server certificate nickname in the Server Certificate Name drop-down list, and
click Save Configuration.

c. Optional: If you do not see the certificate nickname in the drop-down list, refresh the
Security Settings page and perform the previous step again.

Optional: If you want to use an LDAPS port other than 636, navigate to the Server — Server
Settings, set the LDAPS port, and click Save.

Open the LDAPS port in the firewalld service:

firewall-cmd --permanent --add-port=636/tcp
firewall-cmd --reload

Optional: Navigate to Server - Security = Security Configuration, check Require Secure
Connections checkbox, and click Save Configuration.
Directory Server disables the plain text LDAP port.

Click Actions in the top right corner, and select Restart Instance.

Next steps

Add the CA certificate used by Directory Server to the trust store of Red Hat Enterprise Linux
Optional: Change the password of the NSS database

Optional: Updating the list of ciphers Directory Server supports

1.5. MANAGING HOW DIRECTORY SERVER BEHAVES IF THE
CERTIFICATE HAS EXPIRED

1

Red Hat Directory Server 12 Securing Red Hat Directory Server

By default, if encryption is enabled and the certificate has expired, Directory Server logs a warning and
the service starts. To change this behavior, set the nsslapd-validate-cert parameter. You can set it to
the following values:

e warn: Directory Server starts and logs a warning about the expired certificate into the
/var/log/dirsrv/slapd-instance_namel/error log file. This is the default setting.

® on: Directory Server validates the certificate. If the certificate has expired, the instance fails to
start.

e off: Directory Server does not validate the certificate expiration date. The instance starts and no
warning will be logged.

Prerequisites

® You configured TLS encryption.

Procedure

® Use the following command to change the nsslapd-validate-cert parameter:

dsconf -D "cn=Directory Manager' Idap://server.example.com config replace
nsslapd-validate-cert=<value>

1.6. CHANGING THE PASSWORD OF THE NSS DATABASE

You can change the password of the network security services (NSS) database. For example, change it
when the password becomes known to unauthorized persons.

Prerequisites

® You know the current NSS database password.

If you use a password file to automatically unlock the database when Directory Server starts, the
password is stored non-encrypted in plain text in the /etc/dirsrv/slapd-instance_name/pin.txt
file.

Procedure

1. Use the following command to change the NSS database password:

certutil -d /etc/dirsrv/slapd-instance_name/ -W

Enter Password or Pin for "NSS Certificate DB":

Enter a password which will be used to encrypt your keys.
The password should be at least 8 characters long,

and should contain at least one non-alphabetic character.

Enter new password:
Re-enter password:
Password changed successfully.

2. If you use a password file to start Directory Server automatically without prompting for the NSS
database password, replace the old password with the new one in the /etc/dirsrv/slapd-
instance_name/pin.txt:

12

CHAPTER 1. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER

e |f you use the NSS software cryptography module, which is the default:

I Internal (Software) Token:password

e |f you use a Hardware Security Module (HSM):

I name_of the_token:password

Verification

® Perform an operation on the NSS database that requires entering the password. For example,
list the private keys of your instance:

certutil -d /etc/dirsrv/slapd-instance_name/ -K
certutil: Checking token "NSS Certificate DB" in slot "NSS User Private Key and Certificate
Services"

Enter Password or Pin for "NSS Certificate DB":
<0>rsa 72cb03f87381abfbb6b9e78234e2e4502ad1bfcO NSS Certificate DB:Server-
Cert

If the command displays the expected output after you entered the new password, changing the
password was successful.

Additional resources

® How Directory Server unlocks the NSS database

1.7. CREATING A PASSWORD FILE TO START AN INSTANCE WITHOUT
BEING PROMPTED FOR THE NSS DATABASE PASSWORD

When you create a new instance, the installer automatically creates the /etc/dirsrv/slapd-
instance_name/pin.txt file to enable Directory Server to start without prompting for the network
security services (NSS) password. However, if you remove this file, you can recreate it.

' WARNING
A The password is stored in plain text. Do not use a password file if the server is

running in an unsecured environment.

Prerequisites

® You know the NSS database password.

Procedure
1. Create the /etc/dirsrv/slapd-instance_name/pin.txt file with the following content:

e |f you use the NSS software cryptography module, which is the default:

13

Red Hat Directory Server 12 Securing Red Hat Directory Server

I Internal (Software) Token:password

® |f you use a Hardware Security Module (HSM):

I name_of the_token:password

2. Set the file permissions:

chown dirsrv:root /etc/dirsrv/slapd-instance_name/pin.txt
chmod 400 /etc/dirsrv/slapd-instance_name/pin.txt

Verification

® Restart the instance:
I # dsctl instance_name restart

If the system does not prompt for the NSS database password, Directory Server uses the
password file.

Additional resources

® How Directory Server unlocks the NSS database

1.8. ADDING THE CA CERTIFICATE USED BY DIRECTORY SERVER TO
THE TRUST STORE OF RED HAT ENTERPRISE LINUX

When you enable TLS encryption in Directory Server, you configure the instance to use a certificate
issued by a CA. If a client now establishes a connection to the server using the LDAPS protocol or the
STARTTLS command over LDAP, Directory Server uses this certificate to encrypt the connection.
Client utilities use the CA certificate to verify if the server’s certificate is valid. By default, these utilities
cancel the connection if they do not trust the certificate of the server.

Example 1.1. Possible connection errors if client utilities do not use the CA certificate

o dsconf

dsconf -D "cn=Directory Manager" Idaps://server.example.com:636 config get
Error: {'desc’: "Can't contact LDAP server", 'info": 'error:1416F086:SSL
routines:tls_process_server_certificate:certificate verify failed (self signed certificate in
certificate chain)'}

e |dapsearch

|dapsearch -H Idaps://server.example.com:636 -D "cn=Directory Manager" -W -b
"dc=example,dc=com" -x

Enter LDAP Password:

Idap_sasl_bind(SIMPLE): Can't contact LDAP server (-1)

To enable client utilities on Red Hat Enterprise Linux to verify the certificate Directory Server uses, add
the CA certificate to the trust store of the operating system.

14

CHAPTER 1. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER

Prerequisites

® You know the password of the network security services (NSS) database.
If you still use the password that was generated during the installation of the Directory Server
instance, you find this password in plain text in the /etc/dirsrv/slapd-
instance_name/pwdfile.txt file.

Procedure
1. If you do not have a local copy of the CA certificate used by Directory Server:

a. List the certificates in the server’s network security services (NSS) database:

certutil -d /etc/dirsrv/slapd-instance_name/ -L

Certificate Nickname Trust Attributes
SSL,S/MIME,JAR/XPI

Example CA C,,
Server-Cert u,u,u

b. Use the nickname of the CA certificate in the NSS database to export the CA certificate:

I # certutil -d /etc/dirsrv/slapd-instance_name/ -L -n "Example CA" -a > /tmp/ds-
ca.crt

2. Copy the CA certificate to the /etc/pki/ca-trust/source/anchors/ directory:

I # cp /tmp/ds-ca.crt /etc/pki/ca-trust/source/anchors/

3. Rebuild the CA trust database:

I # update-ca-trust

Verification

® FEstablish a connection to Directory Server using the LDAPS protocol. For example, run a query:

|dapsearch -H Idaps://server.example.com:636 -D "cn=Directory Manager" -W -b
"dc=example,dc=com" -x -s base

Additional resources

® The update-ca-trust(8) man page

15

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 2. CONFIGURING THE SUPPORTED TLS
PROTOCOL VERSIONS

In Red Hat Enterprise Linux 9, all system-wide crypto policy profiles define TLS 1.2 as the minimum.
Therefore, this TLS version is also the minimum in Directory Server. However, if you only have clients
which support a newer TLS version, you can set a higher protocol version as minimum to increase the
security.

2.1.SETTING THE MINIMUM AND MAXIMUM TLS PROTOCOL
VERSIONS USING THE COMMAND LINE

You can set both the minimum and maximum TLS protocol using the command line.

' WARNING
A Do not set a maximum TLS protocol. If you do so, your clients might have to use a

weaker TLS protocol than their default standard. If you do not set a maximum TLS
version, Directory Server always uses the strongest version that is supported.

Prerequisites

® Youenabled TLS encryption in Directory Server.

Procedure

1. Optional: Display the TLS protocols that are currently enabled in Directory Server:

dsconf -D "cn=Directory Manager" Idap://server.example.com security get | egrep -i
"sslVersionMin|ssIVersionMax"

sslversionmin: TLS1.2

sslversionmax: TLS1.3

2. Set the minimum TLS protocol. For example, to set it to TLS 1.3, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com security set --tls-
protocol-min="TLS1.3"

Note that you cannot set the parameter to a value lower than TLS 1.2, which is the minimum of
all RHEL system-wide crypto policy profiles.

3. Not recommended: Set the highest supported TLS protocol:

dsconf -D "cn=Directory Manager" Idap://server.example.com security set --tls-
protocol-max="TLS1.3"

If you set --tls-protocol-max to a value lower than in --tls-protocol-min, then Directory Server
sets the maximum protocol to the same value as the minimum.

16

CHAPTER 2. CONFIGURING THE SUPPORTED TLS PROTOCOL VERSIONS

To always use the strongest supported encryption protocol as the maximum supported TLS
version, do not set --tls-protocol-max.

4. Restart the instance:

I # dsctl instance_name restart

Verification

1. Display the supported TLS protocols:

dsconf -D "cn=Directory Manager" Idap://server.example.com security get | egrep -i
"sslVersionMin|ssIVersionMax"

sslversionmin: TLS1.3

sslversionmax: TLS1.3

2. Use the openssi utility to establish a secure client connection using a specific TLS protocol:

echo | openssl s_client -connect server.example.com:636 -tis1_3

New, TLSv1.3, Cipheris TLS_AES_128_GCM_SHA256

2.2. SETTING THE MINIMUM AND MAXIMUM TLS PROTOCOL
VERSIONS USING THE WEB CONSOLE

You can set both the minimum and maximum TLS protocol using the web console

' WARNING
A Do not set a maximum TLS protocol. If you do so, your clients might have to use a

weaker TLS protocol than their default standard. If you do not set a maximum TLS
version, Directory Server always uses the strongest version that is supported.

Prerequisites

® Youenabled TLS encryption in Directory Server.

® You are logged in to the Directory Server instance in the web console.

Procedure
1. Navigate to Server — Security.
2. Set the minimum TLS protocol in the Minimum TLS Version field.

3. Not recommended: Set the highest supported TLS protocol in the Maximum TLS Version
field.

17

Red Hat Directory Server 12 Securing Red Hat Directory Server

4. Click Save Settings.

5. Click Actions in the top right corner, and select Restart Instance.

Verification

e Use the openssl utility to establish a secure client connection using a specific TLS protocol:

echo | openssl s_client -connect server.example.com:636 -tis1_3

New, TLSv1.3, Cipheris TLS_AES_128_GCM_SHA256

18

CHAPTER 3. REQUIRING LDAPS OR STARTTLS FOR ENCRYPTED CONNECTIONS

CHAPTER 3. REQUIRING LDAPS ORSTARTTLS FOR
ENCRYPTED CONNECTIONS

To prevent sending unencrypted passwords over the network, you can configure Directory Server to
require users to use LDAPS or STARTTLS encryption when connecting to the server.

3.1. CONFIGURING DIRECTORY SERVER USING THE COMMAND LINE
TO ACCEPT ONLY CONNECTIONS ENCRYPTED WITH LDAPS OR
STARTTLS

By default, Directory Server allows authentication using a bind DN and a password over unencrypted
connections, which is a security risk. Suppose you cannot use an alternative secure mechanism, such as
certificate-based authentication or SASL. In that case, you can configure Directory Server to require an
encrypted connection when authenticating to the server using TLS or STARTTLS.

NOTE

Requiring a secure connection for bind operations only applies to authenticated binds.
Bind operations without a password, such as anonymous and unauthenticated binds, can
proceed over standard connections.

Prerequisites

® You configured existing server-to-server connections, such as replication agreements, to use
secure binds.

Procedure

1. Set the nsslapd-require-secure-binds configuration parameter to on:

dsconf -D "cn=Directory Manager" Idap://server.example.com config replace
nsslapd-require-secure-binds=on
2. Optional: If you want to use LDAPS, disable the plain text LDAP port:

dsconf -D "cn=Directory Manager" Idap://server.example.com security
disable_plain_port

3. Restart the instance:

I # dsctl instance_name restart

IMPORTANT

When you enable this feature, it is required for all connections. For example, this includes
replication agreements, synchronization, and database chaining.

Additional resources

® Defining access based on the authentication method

19

Red Hat Directory Server 12 Securing Red Hat Directory Server

3.2. CONFIGURING DIRECTORY SERVER USING THE WEB CONSOLE
TO ACCEPT ONLY CONNECTIONS ENCRYPTED WITH LDAPS OR
STARTTLS

By default, Directory Server allows authentication using a bind DN and a password over unencrypted
connections, which is a security risk. Suppose you cannot use an alternative secure mechanism, such as
certificate-based authentication or SASL. In that case, you can configure Directory Server to require an
encrypted connection when authenticating to the server using TLS or STARTTLS.

NOTE

Requiring a secure connection for bind operations only applies to authenticated binds.
Bind operations without a password, such as anonymous and unauthenticated binds, can
proceed over standard connections.

Prerequisites

® You configured existing server-to-server connections, such as replication agreements, to use
secure binds.

® You are logged in to the instance in the web console.

Procedure

1. Navigate to Server = Security = Security Configuration, select the Require Secure
Connections option, and click Save Configuration.

2. Optional: If you want to use LDAPS, navigate to Server — Server Settings = General Settings,
and set LDAP Port to 0 to disable the plain text LDAP port. Click Save.

3. Click Actions in the top right corner, and select Restart Instance.

IMPORTANT

When you enable this feature, it is required for all connections. For example, this includes
replication agreements, synchronization, and database chaining.

Additional resources

® Configuring certificate-based authentication

20

https://docs.redhat.com/en/documentation/red_hat_directory_server/12/html/securing_red_hat_directory_server/assembly_configuring-certificate-based-authentication_securing-rhds

CHAPTER 4. UPDATING THE LIST OF CIPHERS DIRECTORY SERVER SUPPORTS

CHAPTER 4. UPDATING THE LIST OF CIPHERS DIRECTORY
SERVER SUPPORTS

To establish an encrypted connection, both Directory Server and the client need at least one common
cipher. For example, if a legacy application requires a cipher that is not enabled by default in
Directory Server, you can enable it.

4.1. THE DIFFERENCE BETWEEN DEFAULT CIPHERS AND AVAILABLE
CIPHERS

Instead of listing individual ciphers in the configuration, you can use one of the following keywords in the
nsSSL3Ciphers parameter:

e default: Refers to the default ciphers enabled in the network security services (NSS). To display
the list, enter:

I # /usr/lib64/nss/unsupported-tools/listsuites | grep -B1 --no-group-separator "Enabled"

The default keyword is the default value of the nsSSL3Ciphers parameter.

e all: Refers to all supported ciphers in Directory Server. To display the list, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ciphers list --
supported

Use the all keyword when you want to enable only specific ciphers. For example, setting
nsSSL3Ciphers to -all,+TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 configures
Directory Server to disable all ciphers and enable only
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384.

4.2. WEAK CIPHERS

By default, Directory Server rejects weak ciphers and you must configure Directory Server to support
them.

Ciphers are considered weak, if:

® They are exportable.
Exportable ciphers are labeled EXPORT in the cipher name. For example, in
TLS_RSA_EXPORT_WITH_RC4_40_MDS5.

® They are symmetrical and weaker than the 3DES algorithm.
Symmetrical ciphers use the same cryptographic keys for both encryption and decryption.

® The key length is shorter than 128 bits.

4.3. SETTING CIPHERS DIRECTORY SERVER SUPPORTS USING THE
COMMAND LINE

To update the list of supported ciphers in Directory Server, update the nsSSL3Ciphers parameter.

Prerequisites

21

Red Hat Directory Server 12 Securing Red Hat Directory Server

® Youenabled TLS encryption in Directory Server.

Procedure

1. Display the list of enabled ciphers:

I # dsconf -D "cn=Directory Manager" Idap://server.example.com security ciphers list --
enabled

2. If you need to enable weak ciphers, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com security set --allow-
insecure-ciphers on

3. Update the nsSSL3Ciphers parameter. For example, to enable only the
TLS_ECDHE_ECDSA_WITH_AES 256 _CBC_SHA384 and
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ciphers, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ciphers set --

all,+TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,+TLS_ECDHE_RSA_WITH_AE
S 256_GCM_SHA384"

Use -- to avoid that the shell interprets the - character in -all as an option to the command. Do
not use a\ character to escape -all because it can create an error and this results in a different
cipher selection.

4. Restart the instance:

I # dsctl instance_name restart

Verification

® Display the list of enabled ciphers:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ciphers list
default

+TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
+TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Additional resources

® The difference between default ciphers and available ciphers

® \Weak ciphers

4.4. SETTING CIPHERS DIRECTORY SERVER SUPPORTS USING THE
WEB CONSOLE

You can configure the cipher settings in the Cipher Preferences menu of the Directory Server web
console.

22

CHAPTER 4. UPDATING THE LIST OF CIPHERS DIRECTORY SERVER SUPPORTS

Prerequisites

® Youenabled TLS encryption in Directory Server.

® You are logged in to the instance in the web console.

Procedure
1. If you need to enable weak ciphers:
a. Navigate to Server - Security = Security Configuration.
b. Select Allow Weak Ciphers.
c. Click Save Settings.
2. Navigate to Server = Security - Cipher Preferences.
3. Update the cipher settings. For example, to enable only the

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 and
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ciphers:

a. Select No Ciphers in the Cipher Suite field.

b. Enter TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 in the Allow Specific
Ciphers field.

4. Click Save Settings.

5. Click Actions — Restart Instance.

Verification

® Navigate to Server - Security = Cipher Preferences. The Enabled Ciphers list displays the
ciphers that are enabled.

23

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 5. CHANGING THE CA TRUST FLAGS

The certificate authority (CA) trust flags define for which scenarios Directory Server trusts a CA
certificate. For example, you set the flags to trust the certificate for TLS connections to the server and
for certificate-based authentication.

5.1. CHANGING THE CA TRUST FLAGS USING THE COMMAND LINE

You can set the following trust flags on a certificate authority (CA) certificate:

® (C: Trusted CA

T: Trusted CA client authentication

c: Valid CA

P: Trusted peer

p: Valid peer
® Uu: Private key
You specify the trust flags comma-separated in three categories: TLS, email, object signing

For example, to trust the CA for TLS encryption and certificate-based authentication, set the trust flags
to CT,,.

Prerequisites

® Youimported a CA certificate to the network security services (NSS) database.
Procedure
1. Use the following command to change the trust flags of a CA certificate:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ca-certificate set-
trust-flags "Example CA" --flags "trust_flags"

Verification
® Display all certificates in the NSS database:
certutil -d /etc/dirsrv/slapd-instance_name/ -L

Certificate Nickname Trust Attributes
SSL,S/MIME,JAR/XPI

Example CA CT,,

Additional resources

® The certutil(1) man page

24

CHAPTER 5. CHANGING THE CA TRUST FLAGS

5.2. CHANGING THE CA TRUST FLAGS USING THE WEB CONSOLE

You can use the web console to change the CA trust flags.

Prerequisites

® Youimported a CA certificate to the network security services (NSS) database.

Procedure

1. Navigate to Server = Security = Certificate Management - Trusted Certificate
Authorities.

2. Click ... icon next to the CA certificate, and select Edit Trust Flags.

3. Select the trust flags.
Edit Certificate Trust Flags X

Flags SSL Email Object Signing

(C) - Trusted CA O O
(T) - Trusted CA Client Auth O O
(c) - Valid CA O O O
(P) - Trusted Peer O O O
(p) - Valid Peer O O O
(u) - Private Key ad ad O

Save Flags Cancel

4. Click Save

Verification

1. Navigate to Server = Security - Certificate Management - Trusted Certificate
Authorities.

2. Click > next to the CA certificate to display the trust flags.

25

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 6. RENEWING A TLS CERTIFICATE

TLS certificates have an expiration date and time. To continuously provide secure connections, renew
the server certificate in Directory Server before it expires.

6.1. RENEWING A TLS CERTIFICATE USING THE COMMAND LINE

Follow this procedure before the TLS server certificate expires to renew it.

Prerequisites
e Attribute encryption is not configured.

® The TLS certificate will expire in the near future.

Procedure

1. Create a private key and a certificate signing request (CSR). Skip this step if you want to create
them using an external utility.

® [fyour host is reachable only by one name, enter:

dsctl instance_name tls generate-server-cert-csr -s
"CN=server.example.com,0O=example_organization"

e |f your host is reachable by multiple names:

dsctl instance_name tls generate-server-cert-csr -s
"CN=server.example.com,O=example_organization" server.example.com
server.example.net

If you specify the host names as the last parameter, the command adds the Subject
Alternative Name (SAN) extension with the DNS:server.example.com,
DNS:server.example.net entries to the CSR.

The string specified in the -s subject parameter must be a valid subject name according to RFC
1485. The CN field in the subject is required, and you must set it to one of the fully-qualified
domain names (FQDN) of the server. The command stores the CSR in the
/etc/dirsrv/slapd-instance_name/Server-Cert.csr file.

2. Submit the CSR to the certificate authority (CA) to get a certificate issued. For further details,
see your CA's documentation.

3. Store both the CA certificate and the server certificate in the /root/ directory.

4. Import the server certificate issued by the CA to the NSS database, using one of the following
options:

e |f you created the private key using the dsctl tls generate-server-cert-csr command,
enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com security certificate
add --file /root/instance_name.crt --name "server-cert" --primary-cert

26

CHAPTER 6. RENEWING A TLS CERTIFICATE

Remember the name of the certificate you set in the --name _ certificate_nickname
parameter. You require it in a later step.

e |f you created the private key using an external utility, import the server certificate and the
private key:

I # dsctl instance_name tls import-server-key-cert /root/server.crt /root/server.key

Note that the command requires you to specify the path to the server certificate first and
then the path to the private key. This method always sets the nickname of the certificate to
Server-Cert.

5. Import the CA certificate to the NSS database:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ca-certificate
add --file /root/ca.crt --name "Example CA"

6. Set the trust flags of the CA certificate:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ca-certificate
set-trust-flags "Example CA" --flags "CT,,"

This configures Directory Server to trust the CA for TLS encryption and certificate-based
authentication.

7. Stop the instance:

I # dsctl instance_name stop

8. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file, and remove the following entries
including their attributes:

o cn=AES,cn=encrypted attribute keys,ch=database _name,cn=ldbm
database,cnh=plugins,cn=config

e cn=3DES,cn=encrypted attribute keys,cn=database_name,cn=ldbm
database,cn=plugins,cn=config

IMPORTANT

Remove the entries for all databases. If any entry that contains the
nsSymmetricKey attribute is left in the
/etc/dirsrv/slapd-instance_name/dse.ldif file, Directory Server will fail to start.

9. Start the instance:

I # dsctl instance_name start

27

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 7. CONFIGURING CERTIFICATE-BASED
AUTHENTICATION

Directory Server supports certificate-based authentication of LDAP clients and server-to-server
connections, such as in replication topologies.

Depending on the configuration, clients can or must authenticate using a certificate. After verifying the
certificate, based on the attributes in the subject field of the certificate, the server searches for the user
in the directory. If the search return exactly one user entry, Directory Server uses this user for all further
operations. Optionally, you can configure that the certificate used for authentication must match the
Distinguished Encoding Rules (DER)-formatted certificate stored in the userCertificate attribute of the
user entry.

Benefits of using certificate-based authentication:

Improved efficiency: Authenticating with the certificate database password and then using that
certificate for all subsequent bind or authentication operations is more efficient than repeatedly
providing a bind distinguished name (DN) and password.

Improved security: The use of certificate-based authentication is more secure than non-
certificate bind operations because certificate-based authentication uses public-key
cryptography. Attackers cannot intercept bind credentials across the network. If the certificate
or device is lost, it is useless without the PIN, so it is immune to third-party interference such as
phishing attacks.

7.1.SETTING UP CERTIFICATE-BASED AUTHENTICATION

Prerequisites

You enabled TLS encryption in Directory Server.

You set the CT flags for the certificate authority (CA) certificate in the network security
services (NSS) database.

Procedure

1.

28

Create a /etc/dirsrv/slapd-instance_name/certmap.conf file to map information from the
certificate to Directory Server users:

certmap default default
default:DNComps dc
default:FilterComps mail,cn
default:VerifyCert on

certmap example cn=Example CA
example: DNComps

With this configuration, for certificates issued by ecn=Example CA, Directory Server does not
generate a base DN from the subject of the certificate because the DNComps parameter is set
empty for this issuer. Additionally, the settings for the FilterComps and VerifyCert are inherited
from the default entry.

Certificates that have a different issuer DN than cn=Example CA will use the settings from the
default entry and generate the base DN based on the cn attributes in the subject of the

CHAPTER 7. CONFIGURING CERTIFICATE-BASED AUTHENTICATION

certificate. This enables Directory Server to start the search under a specific DN, without
searching the whole directory.

For all certificates, Directory Server generates the search filter using the mail and the cn
attribute from the certificate's subject. However, if the mail attribute does not exist in the
subject, Directory Server will automatically use the value of the certificate’s e attribute in the
subject.

2. Enable certificate-based authentication. For example, to configure certificate-based
authentication as optional, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com security set --tls-client-
auth="allowed"

Use the --tls-client-auth=required option to configure certificate-based authentication as
mandatory.

3. Optional: If you configured certificate-based authentication as required, enable the nsslapd-
require-secure-binds parameter:

dsconf -D "cn=Directory Manager' Idap://server.example.com config replace
nsslapd-require-secure-binds=on

This setting ensures that users cannot bypass the certificate-based authentication by using an
unencrypted connection.

4. Optional: If Directory Server should use the identity from the certificate instead of the

credentials in the bind request, configure Directory Server to use the EXTERNAL simple
authentication and security layer (SASL) mechanism:

dsconf -D "cn=Directory Manager" Idap://server.example.com config replace
nsslapd-force-sasl-external=on

With this setting, Directory Server ignores any other bind method than the identity in the
certificate.

5. Restart the instance:

I # dsctl instance_name restart

Next steps:

e |f you have configured Directory Server so that the authenticating certificate must match the
one stored in the userCertificate attribute of the user, add the certificates to the user entries.
For details, see Section 7.2, “Adding a certificate to a user”

Additional resources

® FEnabling TLS-encrypted connections to Directory Server
® Changing the CA trust flags

e certmap.conf(5) man page

29

Red Hat Directory Server 12 Securing Red Hat Directory Server

7.2. ADDING A CERTIFICATE TO A USER

When you set up certificate-based authentication, you can configure the server so that the certificate
used to authenticate must match the one stored in the userCertificate binary attribute of the user. If
you enabled this feature, you must add the certificate of the affected users to their directory entry.

Prerequisites
® You enabled certificate-based authentication in Directory Server.
® You have a client certificate issued by a certificate authority (CA) that is trusted by the server.
® The client certificate is in distinguished encoding rules (DER)-formatted.

® The client certificate meets the requirements set in /etc/dirsrv/slapd-
instance_name/certmap.conf on the server.

Procedure

1. If the certificate is not in DER format, convert it. For example, to convert a certificate from
privacy enhanced mail (PEM) to DER, enter:

openssl x509 -in /home/user_name/certificate.pem -out
/home/user_name/certificate.der -outform DER

2. Add the certificate to the user’s userCertificate attribute:

ldapmodify -D " cn=Directory Manager" -W -H Idaps://server.example.com -x

dn: vid=user_name,ou=People,dc=example,dc=com
changetype: modify

add: userCertificate

userCertificate:< file://home/user_name/example.der

Verification
1. Authenticate as the user using certificate-based authentication:

a. Set the following environment variables to the corresponding paths to the CA certificate,
the user key, and the user certificate:

LDAPTLS_CACERT=/home/user_name/CA.crt
LDAPTLS_KEY=/home/user_name/user.key
LDAPTLS_ CERT=/home/user_name/user.der

Alternatively, set the TLS_CACERT, TLS_KEY, and TLS_CERT parameters in the
~/.Idaprc file of the current user.

b. Connect to the server:

ldapwhoami -H Idaps://server.example.com -Y EXTERNAL
dn: uid=example,ou=people,dc=example,dc=com

Additional resources

30

CHAPTER 7. CONFIGURING CERTIFICATE-BASED AUTHENTICATION

® The TLS OPTIONS section in the ldap.conf(5) man page

31

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 8. CONFIGURING MULTI-SUPPLIER REPLICATION
WITH CERTIFICATE-BASED AUTHENTICATION

When you set up replication between two Directory Server instances, you can use certificate-based
authentication instead of using a bind DN and password to authenticate to a replication partner.

You can do so by adding a new server to the replication topology and setting up replication agreements
between the new host and the existing server using certificate-based authentication.

IMPORTANT

Certificate-based authentication requires TLS-encrypted connections.

8.1. PREPARING ACCOUNTS AND A BIND GROUP FOR THE USE IN
REPLICATION AGREEMENTS WITH CERTIFICATE-BASED
AUTHENTICATION

To use certificate-based authentication in replication agreements, first prepare the accounts and store
the client certificates in the userCertificate attributes of these accounts. Additionally, this procedure
creates a bind group that you later use in the replication agreements.

Perform this procedure on the existing host server1.example.com.

Prerequisites

® Youenabled TLS encryption in Directory Server.

® You stored the client certificates in distinguished encoding rules (DER) format in the
/root/serveri.der and /root/server2.der files.
For details about client certificates and how to request them from your certificate authority
(CA), see your CA's documentation.

Procedure

1. Create the ou=services entry if it does not exist:

|dapadd -D "cn=Directory Manager" -W -H Idaps://serveri.example.com -x

dn: ou=services,dc=example,dc=com
objectClass: organizationalunit
objectClass: top

ou: services

2. Create accounts for both servers, such as cn=serveri1,ou=services,dc=example,dc=com and
cn=server1,ou=services,dc=example,dc=com:

|dapadd -D "cn=Directory Manager" -W -H Idaps://serveri.example.com -x

dn: cn=server1,ou=services,dc=example,dc=com
objectClass: top

objectClass: person

objectClass: inetOrgPerson

sn: serveri

32

CHAPTER 8. CONFIGURING MULTI-SUPPLIER REPLICATION WITH CERTIFICATE-BASED AUTHENTICATION

cn: serveri
userPassword: password
userCertificate:< file:///root/serveri.der

adding new entry "cn=server1,ou=services,dc=example,dc=com"

dn: cn=server2,ou=services,dc=example,dc=com
objectClass: top

objectClass: person

objectClass: inetOrgPerson

sn: server2

cn: server2

userPassword: password

userCertificate:< file:///root/server2.der

adding new entry "cn=server2,ou=services,dc=example,dc=com"

3. Create a group, such as ch=repl_servers,dc=groups,dc=example,dc=com:

dsidm -D "cn=Directory Manager" Idaps://serveri.example.com -b
"dc=example,dc=com" group create --cn "repl_servers"

4. Add the two replication accounts as members to the group:

dsidm -D "cn=Directory Manager" Idaps://serveri.example.com -b
"dc=example,dc=com" group add_member repl_servers
"cn=server1,ou=services,dc=example,dc=com"

dsidm -D "cn=Directory Manager" Idaps://serveri.example.com -b
"dc=example,dc=com" group add_member repl_servers
"cn=server2,ou=services,dc=example,dc=com"

Additional resources

® Enabling TLS-encrypted connections to Directory Server

8.2. INITIALIZING A NEW SERVER USING A TEMPORARY REPLICATION
MANAGER ACCOUNT

Certificate-based authentication uses the certificates stored in the directory. However, before you
initialize a new server, the database on server2.example.com is empty and the accounts with the
associated certificates do not exist. Therefore, replication using certificates is not possible before the
database is initialized. You can overcome this problem by initializing server2.example.com with a
temporary replication manager account.

Prerequisites

® You installed the Directory Server instance on server2.example.com. For details, see Setting
up a new instance on the command line using a .inf file.

® The database for the dcz=example,dc=com suffix exists.

® You enabled TLS encryption in Directory Server on both servers, serveri.example.com and
server2.example.com.

33

https://docs.redhat.com/en/documentation/red_hat_directory_server/12/html/installing_red_hat_directory_server/assembly_setting-up-a-new-instance-on-the-command-line-using-a-inf-file_installing-rhds

Red Hat Directory Server 12 Securing Red Hat Directory Server

Procedure

1. On server2.example.com, enable replication for the dc=example,dc=com suffix:

dsconf -D "cn=Directory Manager" Idaps://server2.example.com replication enable --
suffix "dc=example,dc=com" --role "supplier” --replica-id 2 --bind-dn "cn=replication
manager,cn=config" --bind-passwd "password"

This command configures the server2.example.com host as a supplier for the
dc=example,dc=com suffix, and sets the replica ID of this host to 2. Additionally, the command
creates a temporary ch=replication manager,cn=config user with the specified password and
allows this account to replicate changes for the suffix to this host.

The replica ID must be a unique integer between 1 and 65534 for a suffix across all suppliers in
the topology.

2. On serveri.example.com:

a. Enable replication:

dsconf -D "cn=Directory Manager" Idaps://serveri.example.com replication
enable --suffix="dc=example,dc=com’ --role="supplier" --replica-id="1"

b. Create a temporary replication agreement which uses the temporary account from the
previous step for authentication:

dsconf -D "cn=Directory Manager" Idaps://serveri.example.com repl-agmt create
--suffix="dc=example,dc=com" --host="server1.example.com" --port=636 --conn-
protocol=LDAPS --bind-dn="cn=Replication Manager,cn=config" --bind-
passwd="password" --bind-method=SIMPLE --init temporary_agreement

Verification

1. Verify that the initialization was successful:

dsconf -D "cn=Directory Manager' Idaps://serveri.example.com repl-agmt init-status
--suffix "dc=example,dc=com" temporary_agreement
Agreement successfully initialized.

Additional resources

® |nstalling Red Hat Directory Server

® Enabling TLS-encrypted connections to Directory Server

8.3. CONFIGURING MULTI-SUPPLIER REPLICATION WITH
CERTIFICATE-BASED AUTHENTICATION

In a multi-supplier replication environment with certificate-based authentication, the replicas
authenticate each others using certificates.

Prerequisites

34

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/installing_red_hat_directory_server/index

CHAPTER 8. CONFIGURING MULTI-SUPPLIER REPLICATION WITH CERTIFICATE-BASED AUTHENTICATION

® You set up certificate-based authentication on both hosts, serveri.example.com and
server2.example.com.

® Directory Server trusts the certificate authority (CA) that issues the client certificates.

e The client certificates meet the requirements set in /etc/dirsrv/slapd-
instance_name/certmap.conf on the servers.

Procedure
1. On serveri.example.com:

a. Remove the temporary replication agreement:

dsconf -D "cn=Directory Manager Idaps://serveri.example.com repl-agmt delete
--suffix="dc=example,dc=com’ temporary_agreement

b. Add the cn=repl_servers,dc=groups,dc=example,dc=com bind group to the replication
settings:

dsconf -D "cn=Directory Manager Idaps://serveri.example.com replication set --
suffix="dc=example,dc=com" --repl-bind-group
"cn=repl_servers,dc=groups,dc=example,dc=com™

c. Configure Directory Server to automatically check for changes in the bind group:

dsconf -D "cn=Directory Manager" Idaps://serveri.example.com replication set --
suffix="dc=example,dc=com" --repl-bind-group-interval=0

2. On server2.example.com:

a. Remove the temporary replication manager account:

dsconf -D "cn=Directory Manager" Idaps://server2.example.com replication
delete-manager --suffix="dc=example,dc=com" --name="Replication Manager"

b. Add the cn=repl_servers,dc=groups,dc=example,dc=com bind group to the replication
settings:

dsconf -D "cn=Directory Manager" Idaps://server2.example.com replication set --
suffix="dc=example,dc=com" --repl-bind-group
"cn=repl_servers,dc=groups,dc=example,dc=com"

c. Configure Directory Server to automatically check for changes in the bind group:
dsconf -D "cn=Directory Manager" Idap://server2.example.com replication set --
suffix="dc=example,dc=com" --repl-bind-group-interval=0

d. Create the replication agreement with certificate-based authentication:

dsconf -D "cn=Directory Manager" Idaps://server2.example.com repl-agmt create --
suffix="dc=example,dc=com" --host="server1.example.com" --port=636 --conn-
protocol=LDAPS --bind-method="SSLCLIENTAUTH" --init server2-to-server1i

35

Red Hat Directory Server 12 Securing Red Hat Directory Server

3. On serveri.example.com, create the replication agreement with certificate-based
authentication:

dsconf -D "cn=Directory Manager"' Idaps://serveri.example.com repl-agmt create --
suffix="dc=example,dc=com" --host="server2.example.com" --port=636 --conn-
protocol=LDAPS --bind-method="SSLCLIENTAUTH" --init serveri-to-server2

Verification

1. Verify on each server that the initialization was successful:

dsconf -D "cn=Directory Manager" Idaps://serveri.example.com repl-agmt init-status
--suffix "dc=example,dc=com" serveri-to-server2
Agreement successfully initialized.

dsconf -D "cn=Directory Manager" Idaps://server2.example.com repl-agmt init-status

--suffix "dc=example,dc=com" server2-to-serveri
Agreement successfully initialized.

Additional resources

® Setting up certificate-based authentication

® Changing the CA trust flags

36

CHAPTER 9. ENCRYPTING THE REPLICATION CHANGELOG

CHAPTER 9. ENCRYPTING THE REPLICATION CHANGELOG

Encrypt the replication changelog to increase the security of your instance, in case that an attacker gains
access to the file system of your server.

Changelog encryption uses the server's TLS encryption key and the same PIN to unlock the key. You
must either enter the PIN manually upon server startup or use a PIN file.

Directory Server uses randomly generated symmetric cipher keys to encrypt and decrypt the
changelog. The server uses a separate key for each configured cipher. These keys are wrapped using
the public key from the server’s TLS certificate, and the resulting wrapped key is stored within the
server's configuration files. The effective strength of the attribute encryption is the same as the

strength of the server’s TLS key used for wrapping. Without access to the server's private key and the
PIN, it is not possible to recover the symmetric keys from the wrapped copies.

9.1. ENCRYPTING THE CHANGELOG USING THE COMMAND LINE

To increase the security in a replication topology, encrypt the changelog on suppliers and hubs. This
procedure describes how to enable changelog encryption for the dcz=example,dc=com suffix.

Prerequisites

® The server has TLS encryption enabled.

® The hostis a supplier or hub in a replication topology.
Procedure
1. Export the changelog, for example, to the /tmp/changelog.ldif file:

dsconf -D "cn=Directory Manager" Idap://server.example.com replication export-
changelog to-ldif -o /tmp/changelog.Idif -+ "dc=example,dc=com"

2. Enable change log encryption for the dc=example,dc=com suffix:
dsconf -D "cn=Directory Manager" Idap://server.example.com replication --suffix
"dc=example,dc=com" --encrypt

3. Import the changelog from the /tmp/changelog.ldif file:

dsconf -D "cn=Directory Manager" Idap://server.example.com replication import-
changelog from-Idif -r "dc=example,dc=com" /tmp/changelog.Idif

4. Restart the instance:

I # dsctl instance_name restart

Verification

1. Make a change in the LDAP directory, such as updating an entry.

2. Stop the instance:

37

Red Hat Directory Server 12 Securing Red Hat Directory Server

I # dsctl instance_name stop

3. List the suffixes and their corresponding databases:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend suffix list
dc=example,dc=com (userroot)

Note the name of the database for which you enabled changelog encryption.

4. Enter the following command to display parts of the changelog:

I # dbscan -f /var/lib/dirsrv/slapd-instance_name/db/userroot/replication_changelog.db |
tail -50

If the changelog is encrypted, you see only encrypted data.

5. Start the instance.

I # dsctl instance_name start

Additional resources

® FEnabling TLS-encrypted connections to Directory Server

38

GROUP TO BACK UP DIRECTORY SERVER AND PERFORMING THE BACKUP AS ONE OF THE GROUP MEMBER:!

CHAPTER 10. ENABLING MEMBERS OF A GROUP TO BACK UP
DIRECTORY SERVER AND PERFORMING THE BACKUP AS
ONE OF THE GROUP MEMBERS

You can configure that members of a group have permissions to back up an instance and perform the
backup. This increases the security because you no longer need to set the credentials of cn=Directory
Manager in your backup script or cron jobs. Additionally, you can easily grant and revoke the backup
permissions by modifying the group.

10.1. ENABLING A GROUP TO BACK UP DIRECTORY SERVER

Use this procedure to add the ch=backup_users,ou=groups,dc=example,dc=com group and enable
members of this group to create backup tasks.

Prerequisites

® The entry ou=groups,dc=example,dc=com exists in the database.

Procedure

1. Create the cn=backup_users,ou=groups,dc=example,dc=com group:

dsidm -D "cn=Directory manager" Idap://server.example.com -b
"dc=example,dc=com" group create --cn backup_users

2. Add an access control instruction (ACI) that allows members of the
cn=backup_users,ou=groups,dc=example,dc=com group to create backup tasks:

ldapadd -D "cn=Directory Manager" -W -H Idap://server.example.com

dn: cn=config

changetype: modify

add: aci

aci: (target = "ldap.///cn=backup,cn=tasks,cn=config')(targetattr="*")
(version 3.0 ; acl "permission: Allow backup_users
group to create backup tasks" ; allow (add, read, search) groupdn
= "ldap.///cn=backup_users,ou=groups,dc=example,dc=com";)

add: aci

aci: (target = "ldap:///cn=config")(targetattr = "nsslapd-bakdir ||
objectClass") (version 3.0 ; acl "permission: Allow backup_users
group to access bakdir attribute" ; allow (read,search)

groupdn = "Idap.///cn=backup_users,ou=groups,dc=example,dc=com";)

3. Create a user:

a. Create a user account:

dsidm -D "cn=Directory manager" Idap://server.example.com -b
"dc=example,dc=com" user create --uid="example" --cn="example" --
uidNumber="1000" --gidNumber="7000" --homeDirectory="/home/example/’ --
displayName="Example User"

39

Red Hat Directory Server 12 Securing Red Hat Directory Server

b. Set a password on the user account:

dsidm -D "cn=Directory manager" Idap://server.example.com -b
"dc=example,dc=com" account reset_password

"uid=example,ou=People,dc=example,dc=com" "password"

4. Add the uid=example,ou=People,dc=example,dc=com user to the
cn=backup_users,ou=groups,dc=example,dc=com group:

dsidm -D "cn=Directory manager" Idap://server.example.com -b
"dc=example,dc=com" group add_member backup_users
uid=example,ou=People,dc=example,dc=com

Verification

® Display the AClIs set on the cn=config entry:

Idapsearch -o Idif-wrap=no -LLLx -D "cn=directory manager" -W -H
Idap://server.example.com -b cn=config aci="* aci -s base

dn: cn=config

aci: (target = "ldap:///cn=backup,cn=tasks,cn=config")(targetattr="*")(version 3.0 ; acl
"permission: Allow backup_users group to create backup tasks" ; allow (add, read, search)
groupdn = "ldap:///cn=backup_users,ou=groups,dc=example,dc=com";)

aci: (target = "ldap:///cn=config")(targetattr = "nsslapd-bakdir || objectClass")(version 3.0 ; acl
"permission: Allow backup_users group to access bakdir attribute” ; allow (read,search)
groupdn = "ldap:///cn=backup_users,ou=groups,dc=example,dc=com";)

10.2. PERFORMING A BACKUP AS A REGULAR USER

You can perform backups as a regular user instead of cn=Directory Manager.

Prerequisites

® You enabled members of the en=backup_users,ou=groups,dc=example,dc=com group to
perform backups.

® The user you use to perform the backup is a member of the
cn=backup_users,ou=groups,dc=example,dc=com group.

Procedure
® Create a backup task using one of the following methods:

o Using the dsconf backup create command:

dsconf -D "uid=example,ou=People,dc=example,dc=com"
Idap://server.example.com backup create

o By manually creating the task:

|dapadd -D "uid=example,ou=People,dc=example,dc=com" -W -H
Idap://server.example.com

40

GROUP TO BACK UP DIRECTORY SERVER AND PERFORMING THE BACKUP AS ONE OF THE GROUP MEMBER:!

dn: cn=backup-2021_07_23_12:55_00,cn=backup,cn=tasks,cn=config
changetype: add
objectClass: extensibleObject

nsarchivedir: /var/lib/dirsrv/slapd-instance _name/bak/backup-2021_07_23 12:55_00
nsdatabasetype: Idbm database
cn: backup-2021_07_23 12:55 00

Verification

e Verify that the backup was created:

Is -l /var/lib/dirsrv/slapd-instance_name/bak/
total 0

drwx------ . 3 dirsrv dirsrv 108 Jul 23 12:55 backup-2021_07_23_12_55_00

Additional resources

® FEnabling a group to back up Directory Server

41

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 1. ENABLING MEMBERS OF A GROUP TO EXPORT
DATA AND PERFORMING THE EXPORT AS ONE OF THE
GROUP MEMBERS

You can configure that members of a group have permissions to export data. This increases the security
because you no longer need to set the credentials of cn=Directory Manager in your scripts.
Additionally, you can easily grant and revoke the export permissions by modifying the group.

11.1. ENABLING A GROUP TO EXPORT DATA

Use this procedure to add the ch=export_users,ou=groups,dc=example,dc=com group and enable
members of this group to create export tasks.

Procedure

1. Create the cn=export_users,ou=groups,dc=example,dc=com group:

dsidm -D "cn=Directory manager" Idap://server.example.com -b
"dc=example,dc=com" group create --cn export_users

2. Add an access control instruction (ACI) that allows members of the
cn=export_users,ou=groups,dc=example,dc=com group to create export tasks:

ldapadd -D "cn=Directory Manager" -W -H Idap://server.example.com

dn: cn=config
changetype: modify
add: aci
aci: (target = "ldap.///cn=export,cn=tasks,cn=config")
(targetattr=""") (version 3.0 ; acl "permission:
Allow export_users group to export data" ;
allow (add, read, search) groupdn
= "ldap.///cn=export_users,ou=groups,dc=example,dc=com";)
add: aci
aci: (target = "ldap:///cn=config")(targetattr =
"objectclass || cn || nsslapd-suffix || nsslapd-Idifdir")
(version 3.0 ; acl "permission: Allow export_users
group to access Idifdir attribute" ; allow
(read,search) groupdn = "Idap.///cn=export_users,ou=groups,dc=example,dc=com";)

3. Create a user:

a. Create a user account:

dsidm -D "cn=Directory manager" Idap://server.example.com -b
"dc=example,dc=com" user create --uid="example" --cn="example" --
uidNumber="1000" --gidNumber="17000" --homeDirectory="/home/example/’ --
displayName="Example User"

b. Set a password on the user account:

42

MEMBERS OF A GROUP TO EXPORT DATA AND PERFORMING THE EXPORT AS ONE OF THE GROUP MEMBER

dsidm -D "cn=Directory manager" Idap://server.example.com -b
"dc=example,dc=com" account reset_password
"uid=example,ou=People,dc=example,dc=com" "password"

4. Add the uid=example,ou=People,dc=example,dc=com user to the
ch=export_users,ou=groups,dc=example,dc=com group:

dsidm -D "cn=Directory manager" Idap://server.example.com -b
"dc=example,dc=com" group add_member export_users
uid=example,ou=People,dc=example,dc=com

Verification

® Display the AClIs set on the cn=config entry:

Idapsearch -o Idif-wrap=no -LLLx -D "cn=directory manager" -W -H
Idap://server.example.com -b cn=config aci="* aci -s base

dn: cn=config

aci: (target = "ldap:///cn=export,cn=tasks,cn=config")(targetattr="")(version 3.0 ; acl
"permission: Allow export_users group to export data" ; allow (add, read, search) groupdn =
"ldap:///cn=export_users,ou=groups,dc=example,dc=com";)

aci: (target = "ldap:///cn=config")(targetattr = "objectclass || cn || nsslapd-suffix || nsslapd-
Idifdir")(version 3.0 ; acl "permission: Allow export_users group to access Idifdir attribute" ;
allow (read,search) groupdn = "ldap:///cn=export_users,ou=groups,dc=example,dc=com";)

11.2. PERFORMING AN EXPORT AS A REGULAR USER

You can perform exports as a regular user instead of cn=Directory Manager.

Prerequisites

® You enabled members of the cn=export_users,ou=groups,dc=example,dc=com group to
export data.

® The user you use to perform the export is a member of the
ch=export_users,ou=groups,dc=example,dc=com group.

Procedure
® Create a export task using one of the following methods:

o Using the dsconf backend export command:

dsconf -D "uid=example,ou=People,dc=example,dc=com"
Idap://server.example.com backend export userRoot

o By manually creating the task:

|dapadd -D "uid=example,ou=People,dc=example,dc=com" -W -H
Idap://server.example.com

dn: cn=userRoot-2021_07_23 12:55_00,cn=export,cn=tasks,cn=config

43

Red Hat Directory Server 12 Securing Red Hat Directory Server

changetype: add

objectClass: extensibleObject

nsFilename: /var/lib/dirsrv/slapd-instance _name/Idif/None-userroot-
2021_07_23 12:55_00.Idif

nsinstance: userRoot

cn: export-2021_07_23_12:55_00

Verification

e Verify that the backup was created:
Is -l /var/lib/dirsrv/slapd-instance_name/Idif/*.Idif

total 0
-fW------- . 1 dirsrv dirsrv 10306 Jul 23 12:55 None-userroot-2021_07_23 12 55 00.ldif

Additional resources

® Enabling a group to export data

44

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

When Directory Server receives a request, it uses the authentication information provided by the user in
the bind operation and the access control instructions (ACI) defined in the directory to allow or deny
access to the requested entry or attribute. The server can allow or deny permissions for actions, such as
read, write, search, and compare. The permission level granted to a user depends on the
authentication information provided.

Access control in Directory Server enables you to set precise rules on when the ACIs are applicable:
® For the entire directory, a subtree, or specific entries
® Foraspecific user, all users belonging to a specific group or role, or all users in the directory

® For aspecific location, such as an IP address, an IP range, or a DNS name.
Note that load balancers can affect location-specific rules.

IMPORTANT

Complex ACls are difficult to read and understand. Instead of one complex ACI, you can
write multiple simple rules to achieve the same effect. However, a higher number of ACls
also increases the costs of ACI processing.

12.1. ACI PLACEMENT

Directory Server stores access control instruction (ACI) in the multi-valued aci operational attribute in
directory entries. To set an ACI, add the aci attribute to the corresponding directory entry.
Directory Server applies the ACls:

e Only to the entry that contains the ACI, if it does not have any child entries. For example, if a

client requires access to the uid=user_name,ou=People,dc=example,dc=com object, and an
AClis only set on dc=example,dc=com and not on any child entries, only this ACl is applied.

NOTE

ACls with add permissions also apply to child entries created in future.

® To the entry that contains the ACI and to all entries below it, if it has child entries. As a direct
consequence, when the server evaluates access permissions to any given entry, it verifies the
ACls for every entry between the one requested and the directory suffix, as well as the ACls on
the entry itself.
For example, ACls are set on the dc=example,dc=com and the
ou=People,dc=example,dc=com entry: If a client wants to access the
uid=user_name,ou=People,dc=example,dc=com object, which has no ACl set,
Directory Server first validates the ACI on the ou=People,dc=example,dc=com entry. If this
ACI grants access, evaluation stops and grants access. If not, Directory Server verifies the ACI
on ou=People,dc=example,dc=com. If this ACI successfully authorizes the client, it can access
the object.

NOTE

ACls set in the rootDSE entry apply only to this entry.

45

Red Hat Directory Server 12 Securing Red Hat Directory Server

An ACl created on an entry can be set not to apply directly to that entry but rather to some or all of the
entries in the subtree below. The advantage of this approach is that general ACls can be placed higher
in the directory tree to have effect on entries located lower in the tree. For example, an ACI that targets
entries that include the inetOrgPerson object class can be created at the level of an
organizationalUnit entry or a locality entry.

NOTE
Minimize the number of ACls in the directory tree by placing general rules at high level

branch points. To limit the scope of more specific rules, place them to leaf entries as
closely as possible.

12.2. THE STRUCTURE OF AN ACI

The aci attribute uses the following syntax:

I (target_rule) (version 3.0; acl "ACL_name"; permission_rule bind_rules;)

e target_rule specifies the entry, attributes, or set of entries and attributes for which to control
access.

e version 3.0is a required string which identifies the access control instructions (ACI) version.
® acl "ACL name" sets a name or string that describes the ACI.
® permission_rule sets what rights, such as read or write, are allowed or denied.
e bind_rules specifies which rules must match during the bind to allow or deny access.
The permission and the bind rule pair are called an access control rule.

To efficiently set multiple access controls for a given target, you can set multiple access control rules for
each target:

(target_rule)(version 3.0; acl "ACL_name"; permission_rule bind_rules; permission_rule bind_rules;

-5)

12.3. ACI EVALUATION

To evaluate the access rights to a particular entry, the server creates a list of the access control
instructions (ACI) present on the entry itself and on the parent entries back up to the top level entry
stored in Directory Server. ACls are evaluated across all databases for a particular instance but not
across different instances.

Directory Server evaluates this list of ACls based on the semantics of the ACls, not on their placement
in the directory tree. This means that ACls that are close to the root of the directory tree do not take
precedence over ACls that are closer to the leaves of the directory tree.

In Directory Server, the deny permission in ACls take precedence over the allow permission. For
example, if you deny write permission at the directory’s root level, none of the users can write to the
directory, regardless if an other ACI grants this permission. To grant a specific user write permissions to
the directory, you have to add an exception to the original denying rule to allow the user to write in that
directory.

46

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

NOTE

Forimproved ACls, use fine-grained allow rules instead of deny rules.

12.4. LIMITATIONS OF ACIS
When you set access control instructions (ACl), the following restrictions apply:

® |f your directory database is distributed over multiple servers, the following restrictions apply to
the keywords you can use in ACls:

o ACIs depending on group entries using the groupdn keyword must be located on the same
server as the group entry.
If the group is dynamic, all members of the group must have an entry on the server. Member
entries of static groups can be located on the remote server.

o ACIs depending on role definitions using the roledn keyword, must be located on the same
server as the role definition entry. Every entry that is intended to have the role must also be
located on the same server.

However, you can match values stored in the target entry with values stored in the entry of the
bind user by, for example, using the userattr keyword. In this case, access is evaluated normally

even if the bind user does not have an entry on the server that stores the ACI.

® You cannot use virtual attributes, such as Class of Service (CoS) attributes, in the following ACI
keywords:

o targetfilter
o targattrfilters
o userattr

® Access control rules are evaluated only on the local server. For example, if you specify the host
name of a server in LDAP URLs in ACI keywords, the URL will be ignored.

12.5. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION
TOPOLOGY

Access control instructions (ACI) are stored in aci attributes of entries. Therefore, if an entry containing
ACls is part of a replicated database, the ACls are replicated.

ACls are always evaluated on the server that resolves the incoming LDAP requests. When a consumer

server receives an update request, it returns a referral to the supplier server before evaluating whether
the request can be serviced on the supplier.

12.6. DISPLAYING, ADDING, DELETING, AND UPDATING ACIS

You can use the ldapsearch utility to search, and the Idapmodify utility to add, delete, and update
Access Control Instructions (ACI).

Displaying ACls:

For example, to display the ACls set on dc=example,dc=com and sub-entries, enter:

47

Red Hat Directory Server 12 Securing Red Hat Directory Server

ldapsearch -D "cn=Directory Manager" -W -H Idap://server.example.com -x -b
"dc=example,dc=com" -s sub '(aci=*)" aci

Adding an ACI
For example, to add an ACI to the ou=People,dc=example,dc=com entry, enter:
Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="userPassword") (version 3.0; acl

"Allow users updating their password";
allow (write) userdn= "ldap:///self";)

Deleting an ACI
To delete an ACI:

e [f only one aci attribute is set on the entry or you want to remove all ACls from the entry:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
dn: ou=People,dc=example,dc=com

changetype: delete
delete: aci

e |f multiple ACls exist on the entry and you want to delete a specific ACI, specify the exact ACI:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
dn: ou=People,dc=example,dc=com

changetype: modify

delete: aci

aci: (targetattr="userPassword") (version 3.0; acl "Allow users
updating their password"; allow (write) userdn= "ldap:///self";)

Updating an ACI
To update an ACI:
® Delete the existing ACI.

® Add anew ACl with the updated settings.

12.7. DEFINING ACI TARGETS

Target rules in an access control instruction (ACI) define to which entries Directory Server applies the
ACL. If you do not set a target, the ACl applies to the entry containing the aci attribute and to entries
below.

In an ACI, the following highlighted part is the target rule:

I (target_rule)(version 3.0; acl "ACL_name"; permission_rule bind_rules;)

48

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

For complex ACls, Directory Server supports multiple target rules with different keywords in an ACI:

I (target_rule_1)(target_rule_2)(...)(version 3.0; acl "ACL_name"; permission_rule bind_rules;)

If you specify multiple target rules, the order is not relevant. Note that you can use each of the following
keywords only once in an ACI:

e target

e targetattr

o targetattrfilters
o targetfilter

e target_from

e target_to

12.7.1. The syntax of target rules

The general syntax of a target rule is:

I (keyword comparison_operator "expression")

e keyword: Sets the type of the target.

® comparison_operator: Valid values are = and != and indicate whether or not the target is the
object specified in the expression.

WARNING
AA For security reasons, Red Hat recommends not using the 1= operator,

because it allows the specified operation on all other entries or attributes.
For example:

(targetattr |= "userPassword");(version 3.0; acl "example"); allow (write)

-);

The previous example allows users to set, update, or delete any attribute
except the userPassword attribute under the Distinguished Name (DN)
you set the ACI. However, also this enables users, for example, to add an
additional aci attribute that allows write access to this attribute as well.

® expression: Sets the target and must be surrounded by quotation marks. The expression itself
depends on the keyword you use.

12.7.2. Targeting a directory entry

49

Red Hat Directory Server 12 Securing Red Hat Directory Server

To control access based on a Distinguished Name (DN) and the entries below it, use the target keyword
in the access control instruction (ACI). A target rule which uses the target keyword takes a DN as
expression:

I (target comparison_operator "ldap:///distinguished_name")

NOTE

You must set the ACI with the target keyword on the DN you are targeting or a higher-
level DN of it. For example, if you target ou=People,dc=example,dc=com, you must either
set the ACI on ou=People,dc=example,dc=com or dc=example,dc=com.

attributes in their own entry:

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (target = "ldap:///ou=People,dc=example,dc=com") (version 3.0;

acl "Allow users to read and search attributes of own entry"; allow (search, read)

ldapmodify -D "cn=Directory Manager" -W -H Idap://server.example.com -x
(userdn = "ldap:///self");)

Example 12.1. Using the target keyword
To enable users that are stored in the ou=People,dc=example,dc=com entry to search and display all

Using wildcards with the target keyword

You can use the * wildcard character target multiple entries.

The following target rule example matches all entries in ou=People,dc=example,dc=com whose uid
attribute is set to a value that starts with the letter a:

I (target = "ldap:///uid=a*,ou=People,dc=example,dc=com")

Depending on the position of the wildcard, the rule not only applies to attribute values, but also to the
full DN. Therefore, you can use the wildcard as a substitute for portions of the DN.

Example 12.2. Targeting a directory entries using wildcards

The following rule targets all entries in the dc=example,dc=com tree with a matching uid attribute
and not only entries which are stored in the dc=example,dc=com entry itself:

I (target = "ldap:///uid=user_name*,dc=example,dc=com")

The previous target rule matches multiple entries, such as:
® uid=user_name,dc=example,dc=com
® uid=user_name,ou=People,dc=example,dc=com

® uid=user_name2,dc=example,dc=com

50

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

IMPORTANT

Directory Serverdoes not support wildcards in the suffix part of a DN. For example, if your
directory’s suffix is dc=example,dc=com, you cannot use a target with a wildcard in this
suffix, such as (target = "ldap:///dc=*.com").

12.7.3. Targeting attributes

To limit access in an access control instruction (ACI) to certain attributes, use the targetattr keyword.
For example, this keyword defines:

® |n aread operation, what attributes will be returned to a client

® |nasearch operation, what attributes will be searched

® |n a write operation, what attributes can be written to an object

® |nan add operation, what attributes can be added when creating a new object

In certain situations, you can use the targetattr keyword to secure ACls by combining other target
keywords with targetattr. See Advanced usage of target rules.

IMPORTANT

In read and search operations, the default targets no attribute. An ACI without a
targetattr keyword is only useful for ACls with rights affecting a complete entry, such as
add or delete.

To separate multiple attributes in a target rule that uses the targetattr keyword, use ||:

I (targetattr comparison_operator "attribute 1 || attribute_2 | ...")

The attributes set in the expression must be defined in the schema.

The attributes specified in the expression apply to the entry on which you create the ACl and to all
entries below it if not restricted by further target rules.

To enable users stored in dc=example,dc=com and all subentries to update the userPassword
attribute in their own entry, enter:

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "userPassword") (version 3.0;
acl "Allow users updating own userPassword";

Idapmodify -D " cn=Directory Manager" -W -H Idap::server.example.com -x
allow (write) (userdn = "ldap:///self");)

| Example 12.3. Using the targetattr keyword

51

Red Hat Directory Server 12 Securing Red Hat Directory Server

Using wildcards with the targetattr keyword

Using the * wildcard character, you can, for example, target all attributes:

I (targetattr = "*")

' WARNING
A For security reasons, do not use wildcards with the targetattr, because it allows

access to all attributes, including operational attributes. For example, if users can
add or modify all attributes, users might create additional ACls and increase their
own permissions.

12.7.4. Targeting entries and attributes using LDAP filters

To target a group of entries that match a certain criteria, use the targetfilter keyword with an LDAP
filter:

I (targetfilter comparison_operator "LDAP_filter")

The filter expression is a standard LDAP search filter.

To grant permissions to members of the ecn=Human Resources,dc=example,dc.com group to
modify all entries having the department attribute set to Engineering or Sales:

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetfilter = "(|(department=Engineering)(department=Sales)")
(version 3.0; acl "Allow HR updating engineering and sales entries";

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
allow (write) (groupdn = "ldap:///cn=Human Resources,dc=example,dc.com");)

| Example 12.4. Using the targetfilter keyword

The targetfilter keyword targets whole entries. If you combine it with the targetattr keyword, the access
control instruction (ACI) applies only to a subset of attributes of the targeted entries. See Targeting
certain attributes of entries matching a filter.

NOTE

Using LDAP filters is useful when targeting entries and attributes that are spread across
the directory. However, the results are sometimes unpredictable because filters do not
directly name the object for which you are managing access. The set of entries targeted
by a filtered ACl is likely to change as attributes are added or deleted. Therefore, if you
use LDAP filters in ACls, verify that they target the correct entries and attributes by using
the same filter, for example, in an Idapsearch operation.

52

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

Using wildcards with the targetfilter keyword

The targetfilter keyword supports wildcards similarly to standard LDAP filters. For example, to target all
uid attributes whose value starts with adm, use:

I (targetfilter = "(uid=adm*) ...)

12.7.5. Targeting attribute values using LDAP filters

You can use access control to target specific values of attributes. This means that you can grant or deny
permissions on an attribute if that attribute’s value meets the criteria that is defined in the access
control instruction (ACI). An ACI that grants or denies access based on an attribute’s value is called a
value-based ACI. This applies only to ADD and DEL operations. You cannot limit search rights by
specific values.

To create a value-based ACI, use the targattrfilters keyword with the following syntax:

® For one operation with one attribute and filter combination:

I (targattrfilters="operation=attribute:filter")

® For one operation with multiple attribute and filter combinations:

(targattrfilters="operation=attribute_1:filter_1 && attribute 2:filter 2 ... &&
attribute_m:filter_m")

® For two operations, each with multiple attribute and filter combinations:

(targattrfilters="operation_1=attribute_1_1:filter_1_1 && attribute_1_2:filter_1_2 ... &&
attribute_1_m:filter_1_m , operation_2=attribute_2 1:filter 2 1 && attribute_2 2:filter 2 2 ...
& attribute_2_n:filter 2 n")

In the previous syntax examples, you can set the operations either to add or del. The attribute:filter
combination sets the filter and the attribute the filter is applied to.

The following describes how filter must match:

® When creating an entry and a filter applies to an attribute in the new entry, then each instance of
that attribute must match the filter.

® When deleting an entry and a filter applies to an attribute in the entry, then each instance of
that attribute must also match the filter.

® When modifying an entry and the operation adds an attribute, then the add filter that applies to
that attribute must match.

e |f the operation deletes an attribute, then the del filter that applies to that attribute must
match. If the individual values of an attribute already present in the entry are replaced, then both
the add and del filters must match.

Example 12.5. Using the targattrfilters keyword

To create an ACI that enables users to add any role to their own entry, except the Admin role, and to
add the telephone attribute, as long as the value begins with the 123 prefix, enter:

53

Red Hat Directory Server 12 Securing Red Hat Directory Server

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targattrfilters="add=nsroledn:(!(nsroledn=cn=Admin)) &&
telephoneNumber:(telephoneNumber=123*)") (version 3.0;
acl "Allow adding roles and telephone”;

ldapmodify -D "cn=Directory Manager" -W -H Idap::server.example.com -x
allow (add) (userdn = "ldap:///self");)

12.7.6. Targeting source and destination DNs

In certain situations, administrators want to allow users to move directory entries. Using the target_from
and target_to keywords in an access control instruction (ACI), you can specify the source and
destination of the operation, however, without enabling the user:

® To move entries from a different source as set in the ACI.

® To move entries to a different destination as set in the ACI.

® To delete existing entries from the source Distinguished Name (DN).

® To add new entries to the destination DN.

Example 12.6. Using the target_from and target_to keywords

To enable the uid=user,dc=example,dc=com account to move user accounts from the
cn=staging,dc=example,dc=com entry to ch=people,dc=example,dc=com, enter:

Idapmodify -D " cn=Directory Manager" -W -H Idap:server.example.com -x

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (target_from="Idap:///uid=*,cn=staging,dc=example,dc=com")
(target_to="Idap:///cn=People,dc=example,dc=com")

(version 3.0; acl "MODDN from"; allow (moddn))
userdn="ldap:///uid=user,dc=example,dc=com";)

ACls apply only to the subtree where they are defined. In the previous example, the ACl is applied only to
the dc=example,dc=com subtree.

If the target_from or target_to keyword is not set, the ACI matches any source or destination.

12.8. ADVANCED USAGE OF TARGET RULES

By combining multiple keywords, you can create complex target rules. This section provides examples of
the advanced usage of target rules.

12.8.1. Delegating permissions to create and maintain groups

54

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

In certain situations, administrators want to delegate permissions to other accounts or groups. By
combining target keywords, you can create secure access control instructions (ACI) that solve this
request.

Example 12.7. Delegating permissions to create and maintain groups

To enable the uid=user,ou=People,dc=example,dc=com" account to create and update groups in the
ou=groups,dc=example,dc=com entry:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (target = "ldap:///cn=",ou=Groups,dc=example,dc=com")
(targattrfilters="add=0objectclass:(|(objectclas=top)(objectclass=groupOfUniqueNames)))
(targetattr="cn || uniqueMember || objectClass")

(version 3.0; acl "example"; allow (read, search, write, add)

(userdn = "ldap:///uid=test,ou=People,dc=example,dc=com");)

For security reasons, the previous example adds certain limitations. The
uid=test,ou=People,dc=example,dc=com user:

® Can create objects that must contain the top and groupOfUniqueNames object classes.

e Cannot add additional object classes, such as account. For example, this prevents if you use
Directory Server accounts for local authentication, to create new users with an invalid user
ID, such as 0 for the root user.

The targetfilter rule ensures that the ACI entry applies only to entries with the
groupofuniquenames object class and the targetattrfilter rule ensures that no other object class
can be added.

12.8.2. Targeting both an entry and attributes

The target controls access based on a distinguished name (DN). However, if you use it in combination
with a wildcard and the targetattr keyword, you can target both entries and attributes.

To enable the uid=user,ou=People,dc=example,dc.com user to read and search members of
groups in all organizational units in the dc=example,dc=com subtree:

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (target="Idap:///cn=",dc=example,dc=com")(targetattr="member" || "cn") (version 3.0;
acl "Allow uid=user to search and read members of groups";

ldapmodify -D "cn=Directory Manager" -W -H Idap://server.example.com -x
allow (read, search) (userdn = "ldap:///uid=user,ou=People,dc=example,dc.com");)

| Example 12.8. Targeting both an entry and attributes

55

Red Hat Directory Server 12 Securing Red Hat Directory Server

12.8.3. Targeting certain attributes of entries matching a filter

If you combine the targetattr and targetfilter keywords in two target rules, you can target certain
attributes in entries that match a filter.

Example 12.9. Targeting certain attributes of entries matching a filter

To allow members of the en=Engineering Admins,dc=example,dc=com group to modify the
jpegPhoto and manager attributes of all entries having the department attribute set to
Engineering, enter:

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "jpegPhoto || manager")

(targeffilter = "(department=Engineering)") (version 3.0;

acl "Allow engineering admins updating jpegPhoto and manager of department members";

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
allow (write) (groupdn = "ldap:///cn=Engineering Admins,dc=example,dc.com");)

12.8.4. Targeting a single directory entry

To target a single directory entry, combine the targetattr and targetfilter keywords.

Example 12.10. Targeting a single directory entry

To enable the uid=user,ou=People,dc=example,dc=com user to read and search the ou and cn
attributes in the ou=Engineering,dc=example,dc=com entry:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: ou=Engineering,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "ou || cn")

(targeffilter = "(ou=Engineering)") (version 3.0;

acl "Allow uid=user to search and read engineering attributes";

allow (read, search) (userdn = "ldap:///uid=user,ou=People,dc=example,dc.com");)

To enable the previous example to target only the ou=Engineering,dc=example,dc=com entry,
sub-entries in ou=Engineering,dc=example,dc=com must not have the ou attribute set to
Engineering.

IMPORTANT

These kinds of ACls can fail if the structure of your directory changes.

Alternatively, you can create a bind rule that matches the user input in the bind request with an attribute
value that is stored in the targeted entry. See Defining access based on value matching .

56

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

12.9. DEFINING ACI PERMISSIONS

Permission rules define the rights that are associated with the access control instruction (ACI) and
whether access is allowed or denied.

In an ACI, the following highlighted part is the permission rule:

I (target _rule) (version 3.0; acl "ACL_name"; permission_rule bind_rules;)

12.9.1. The syntax of permission rules

The general syntax of a permission rule is:
I permission (rights)

® permission: Sets if the access control instruction (ACI) allows or denies permission.

® rights: Sets the rights which the ACl allows or denies. See User rights in permission rules..

attributes in their own entry:

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (target = "ldap:///ou=People,dc=example,dc=com") (version 3.0;

acl "Allow users to read and search attributes of own entry"; allow (search, read)

ldapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
(userdn = "ldap:///self");)

Example 12.11. Defining permissions
To enable users stored in the ou=People,dc=example,dc=com entry to search and display all

12.9.2. User rights in permission rules

The rights in a permission rule define what operations are granted or denied. In an ACI, you can set one
or multiple of the following rights:

Table 12.1. User rights

Right Description

read Sets whether users can read directory data. This permission applies only to search
operations in LDAP.

write Sets whether users can modify an entry by adding, modifying, or deleting attributes.
This permission applies to the modify and modrdn operations in LDAP.

add Sets whether users can create an entry. This permission applies only to the add
operation in LDAP.

57

Red Hat Directory Server 12 Securing Red Hat Directory Server

Right Description

delete Sets whether users can delete an entry. This permission applies only to the delete
operation in LDAP.

search Sets whether users can search for directory data. To view data returned as part of a
search result, assign search and read rights. This permission applies only to search
operations in LDAP.

compare Sets whether the users can compare data they supply with data stored in the directory.
With compare rights, the directory returns a success or failure message in response to
an inquiry, but the user cannot see the value of the entry or attribute. This permission
applies only to the compare operation in LDAP.

selfwrite Sets whether users can add or delete their own distinguished name (DN) from a group.
This right is used only for group management.

proxy Sets whether the specified DN can access the target with the rights of another entry.
The proxy right is granted within the scope of the ACL, and the user or group who as
the right granted can run commands as any Directory Server user. You cannot restrict
the proxy rights to certain users. For security reasons, set ACls that use the proxy right
at the most targeted level of the directory.

all Sets all of the rights, except proxy.

12.9.3. Rights required for LDAP operations

This section describes the rights you must grant to users depending on the type of LDAP operation
you want to authorize them to perform.

® Adding an entry:
o Grantadd permission on the entry that you want to add.

o Grant write permission on the value of each attribute in the entry. This right is granted by
default but can be restricted using the targattrfilters keyword.

® Deleting an entry:

o Grant delete permission on the entry that you want to delete.

o Grant write permission on the value of each attribute in the entry. This right is granted by
default but can be restricted using the targattrfilters keyword.

® Modifying an attribute in an entry:

o Grant write permission on the attribute type.

o Grant write permission on the value of each attribute type. This right is granted by default
but can be restricted using the targattrfilters keyword.

® Modifying the RDN of an entry:

58

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

o Grant write permission on the entry.
o Grant write permission on the attribute type that is used in the new RDN.

o Grant write permission on the attribute type that is used in the old RDN, if you want to
grant the right to delete the old RDN.

o Grant write permission on the value of attribute type that is used in the new RDN. This right
is granted by default but can be restricted using the targattrfilters keyword.

® Comparing the value of an attribute:

o Grant compare permission on the attribute type.

® Searching for entries:

o Grant search permission on each attribute type used in the search filter.

o Grant read permission on attribute types used in the entry.

12.10. DEFINING ACI BIND RULES

The bind rules in an access control instruction (ACI) define the required bind parameters that must meet
so that Directory Server applies the ACI. For example, you can set bind rules based on:

® DNs

® Group memberships or assigned roles

® | ocations from which an entry must bind

® Types of authentication that must be in use during the bind
® Times or days on which the bind occurs

In an ACI, the following highlighted part is the bind rule:

I (target_rule) (version 3.0; acl "ACL_name"; permission_rule bind_rules;)

12.10.1. The syntax of bind rules

The general syntax of a bind rule is:

I keyword comparison_operator "expression"

e keyword: Sets the type of the bind operation.
® comparison_operator: Valid values are = and != and indicate whether or not the target is the
object specified in the expression. If a keyword supports additional comparison operators, it is

mentioned in the corresponding section.

® expression: Sets the expression and must be surrounded by quotation marks. The expression
itself depends on the keyword you use.

12.10.2. Defining user-based access

59

Red Hat Directory Server 12 Securing Red Hat Directory Server

The userdn keyword enables you to grant or deny access based on one or multiple DNs and uses the
following syntax:

I userdn comparison_operator "ldap:///distinguished_name || Idap.///distinguished _name || ..."

Set the DN in the expression to:
® A DN: See Using a DN with the userdn keyword.
® An LDAP filter: See Using the userdn keyword with an LDAP filter.
® The anyone alias: See Granting anonymous access.
® The all alias: See Granting access to authenticated users.
® The self alias: See Enabling users to access their own entries .

® The parent alias: See Setting access for child entries of a user .

NOTE

Do not specify a host name or port number within the LDAP URL. The URL always applies
to the local server.

Using a DN with the userdn keyword

Set the userdn keyword to a distinguished name (DN) to apply the ACI only to the matching entry. To
match multiple entries, use the * wildcard in the DN.

Using the userdn keyword with a DN must match the following syntax:

I userdn comparison_operator Idap:///distinguished_name

Example 12.12. Using a DN with the userdn keyword

To enable the uid=admin,ou=People,dc=example,dc=com user to read the manager attribute of
all other users in the ou=People,dc=example,dc=com entry:

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr="manager") (version 3.0; acl "Allow uid=admin reading manager attribute";

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
allow (search, read) userdn = "ldap:///uid=admin,ou=People,dc=example,dc=com";)

Using the userdn keyword with an LDAP filter

If you want to dynamically allow or deny permissions to users, use the userdn keyword with an LDAP
filter:

I userdn comparison_operator "ldap.///distinguished_name??scope ?(filter)"

60

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

NOTE

The LDAP filter supports the * wildcard.

Example 12.13. Using the userdn keyword with an LDAP filter

To enable users who have the department attribute set to Human Resources to update the
homePostalAddress attribute of users in the ou=People,dc=example,dc=com entry:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr="homePostalAddress") (version 3.0;

acl "Allow HR setting homePostalAddress"; allow (write)

userdn = "ldap:///ou=People,dc=example,dc=com??sub?(department=Human Resources)";)

Granting anonymous access

In certain situations, administrators want to configure anonymous access to data in the directory.
Anonymous access means that it is possible to bind to the directory by providing:

® No bind DN and password
® Avalid bind DN and password

To configure anonymous access, use the Idap:///anyone expression with the userdn keyword in a bind
rule:

I userdn comparison_operator "ldap:///anyone"

Example 12.14. Granting anonymous access

To enable anyone without authentication to read and search the sn, givenName, and
telephoneNumber attributes in the ou=People,dc=example,dc=com entry:

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr="sn" || targetattr="givenName" || targetattr = "telephoneNumber")
(version 3.0; acl "Anonymous read, search for names and phone numbers";

ldapmodify -D " cn=Directory Manager" -W -H __ldap://server.example.com -x’
allow (read, search) userdn = "ldap:///anyone")

Granting access to authenticated users

In certain situations, administrators want to grant permission to any user who is able to successfully bind
to Directory Server, except anonymous binds. To configure this feature, use the Idap:///all expression
with the userdn keyword in a bind rule:

61

Red Hat Directory Server 12 Securing Red Hat Directory Server

userdn comparison_operator "ldap:///all"

To enable authenticated users to add and remove themselves as a member to or from the
ou=example,ou=groups,dc=example,dc=com group:

dn: ou=example,ou=Groups,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr="member") (version 3.0;

acl "Allow users to add/remove themselves from example group”;

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
allow (selfwrite) userdn = "ldap:///all")

| Example 12.15. Granting access to authenticated users

Enabling users to access their own entries

To set ACl which allow or deny access to users to their own entry, use the ldap:///self expression with
the userdn keyword in a bind rule:

userdn comparison_operator "ldap:///self"

To enable users in the ou=People,dc=example,dc=com entry to update their own userPassword
attribute:

dn: ou=People,dc=example,dc=com
changetype: modify

add: aci

aci: (targetattr="userPassword") (version 3.0;
acl "Allow users updating their password";

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
allow (write) userdn = "ldap:///self")

| Example 12.16. Enabling users to access their own entries

Setting access for child entries of a user

To specify that users are granted or denied access to an entry only if their bind DN is the parent of the
targeted entry, use the self:///parent expression with the userdn keyword in a bind rule:

I userdn comparison_operator "ldap:///parent”

Example 12.17. Setting access for child entries of a user

To enable the cn=user,ou=People,dc=example,dc=com user to update the manager attribute of
its own sub-entries, such as cn=example,cn=user,ou=People,dc=example,dc=com:

I # ldapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

62

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

changetype: modify

add: aci

aci: (targetattr="manager") (version 3.0;

acl "Allow cn=user to update manager attributes”;

dn: cn=user,ou=People,dc=example,dc=com
allow (write) userdn = "ldap:///parent")

12.10.3. Defining group-based access

Group-based access control instructions (ACI) enable you to manage access by adding or removing
users to or from a group. To configure an ACI that is based on a group membership, use the groupdn
keyword. If the user is a member of one or multiple of the specified groups, the ACI matches.

When using the groupdn keyword, Directory Server verifies the group membership based on the
following attributes:

® member

® uniqueMember

® memberURL

e memberCertificateDescription

Bind rules with the groupdn keyword use the following syntax:
I groupdn comparison_operator "ldap:///distinguished_name || Idap.///distinguished_name || ..."
Set the distinguished name (DN) in the expression to:
® ADN. See Using a DN with the groupdn keyword .
® An LDAP filter. See Using the groupdn keyword with an LDAP filter
If you set multiple DNs in one bind rule, Directory Server applies the ACI if the authenticated user is a
member of one of these groups. To set the user as a member of multiple groups, use multiple groupdn

keywords and combine them using the Boolean and operator. For details, see Combining Bind Rules
Using Boolean Operators.

NOTE

Do not specify a host name or port number within the LDAP URL. The URL always applies
to the local server.

Using a DN with the groupdn keyword
To apply an ACIl to members of a group, set the groupdn keyword to the group’s DN.

The groupdn keyword set to a DN uses the following syntax:

I groupdn comparison_operator Idap:///distinguished_name

I Example 12.18. Using a DN with the groupdn Keyword

63

Red Hat Directory Server 12 Securing Red Hat Directory Server

read the manager attribute of entries in ou=People,dc=example,dc=com:

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr="manager") (version 3.0;

acl "Allow example group to read manager attribute";

Idapmodify -D "cn=Directory Manager" -W -H Idap://server.example.com -x
allow (search, read) groupdn = "ldap:///cn=example,ou=Groups,dc=example,dc=com";)

‘ To enable members of the cn=example,ou=Groups,dc=example,dc=com group to search and

Using The groupdn keyword with an LDAP filter

Using an LDAP filter with the groupdn keyword, you can define that the authenticated user must be a
member of at least one of the groups that the filter search returns, to match the ACI.

The groupdn keyword with an LDAP filter uses the following syntax:

I groupdn comparison_operator "ldap:///distinguished_name??scope?(filter)"

NOTE

The LDAP filter supports the * wildcard.

Example 12.19. Using the groupdn keyword with an LDAP filter

To enable members of groups in dcz=example,dc=com and subtrees, which have the manager
attribute set to example, update the homePostalAddress of entries in
ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -H Idap:/server.example.com -x
dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr="homePostalAddress") (version 3.0;

acl "Allow manager=example setting homePostalAddress"; allow (write)
userdn = "ldap:///dc=example,dc=com??sub?(manager=example)";)

12.10.4. Defining access based on value matching

Use the userattr keyword in a bind rule to specify which attribute must match between the entry used to
bind to the directory and the targeted entry.

The userattr keyword uses the following syntax:

I userattr comparison_operator "attribute_nameitbind_type_or_attribute value

For further details, see:

® Using the USERDN bind type

64

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

® Using the GROUPDN bind type
® Using the ROLEDN bind type

® Using the SELFDN bind type

® Using the LDAPURL bind type

® Using the userattr keyword with inheritance

IMPORTANT

By default, Directory Server evaluates access rights on the entry they are created.
However, to prevent user objects on the same level, Directory Server does not grant add
permissions to the entry where you set the access control instructions (ACI), when using
the userattr keyword. To configure this behavior, use the userattr keyword in
conjunction with the parent keyword and grant the permission additionally on level O.

For details about inheritance, see Defining access based on value matching .

Using the USERDN bind type

To apply an ACI when the binding user distinguished name (DN) matches the DN stored in an attribute,
use the USERDN bind type.

The userattr keyword with the USERDN bind type requires the following syntax:

I userattr comparison_operator "attribute_name#USERDN"

Example 12.20. Using the USERDN bind type

To grant a manager all permissions to the telephoneNumber attribute of its own associates:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "telephoneNumber")

(version 3.0; acl "Manager: telephoneNumber";

allow (all) userattr = "manager#USERDN";)

The previous ACl is evaluated to be true if the DN of the user who performs the operation on an
entry in ou=People,dc=example,dc=com, matches the DN stored in the manager attribute of this
entry.

Using the GROUPDN bind type

To apply an ACIl when the binding user DN is a member of a group set in an attribute, use the
GROUPDN bind type.

The userattr keyword with the GROUPDN bind type requires the following syntax:

I userattr comparison_operator "attribute_name#GROUPDN"

65

Red Hat Directory Server 12 Securing Red Hat Directory Server

Example 12.21. Using the GROUPDN bind type

To grant users the permission to delete a group entry which they own under the ou=Social
Committee,ou=Groups,dc=example,dc=com entry:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: ou=Social Committee,ou=Groups,dc=example,dc=com
changetype: modify

add: aci

aci: (target="ou=Social Committee,ou=Groups,dc=example,dc=com)
(targattrfilters="del=0objectClass:(objectClass=groupOfNames)")
(version 3.0; acl "Delete Group";

allow (delete) userattr = "owner#GROUPDN";)

The previous ACl is evaluated to be true if the DN of the user who performs the operation is a
member of the group specified in the owner attribute.

The specified group can be a dynamic group, and the DN of the group can be under any suffix in the
database. However, the evaluation of this type of ACI by the server is very resource-intensive.

If you are using static groups that are under the same suffix as the targeted entry, use the following
expression for better performance:

I userattr comparison_operator "Idap.///distinguished_name?attribute_name#GROUPDN"

Using the ROLEDN bind type

To apply an ACIl when the binding user belongs to a role specified in an attribute, use the ROLEDN bind
type.

The userattr keyword with the ROLEDN bind type requires the following syntax:

I userattr comparison_operator "attribute_name#ROLEDN"

Example 12.22. Using the ROLEDN bind type

To enable users with the cn=Administrators,dc=example,dc=com role to search and read the
manager attribute of entries in ou=People,dc=example,dc=com:

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (version 3.0; acl "Allow example role owners to read manager attribute";

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
allow (search, read) userattr = manager#ROLEDN;)

The specified role can be under any suffix in the database. If you are also using filtered roles, the
evaluation of this type of ACl uses a lot of resources on the server.

66

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

If you are using a static role definition and the role entry is under the same suffix as the targeted entry,
use the following expression for better performance:

Using the SELFDN bind type

The SELFDN bind type enables you to grant permissions, when the bound user’'s DN is set in a single-
value attribute of the entry.

The userattr keyword with the SELFDN bind type requires the following syntax:

userattr comparison_operator "attribute_name#SELFDN"

To enable a user to add ipatokenuniqueid=*,cn=0otp,dc=example,dc=com entries that have the
bind user's DN set in the ipatokenOwner attribute:

dn: ou=otp,dc=example,dc=com

changetype: modify

add: aci

aci: (target = "ldap:///ipatokenuniqueid=",cn=otp,dc=example,dc=com")
(targetfilter = "(objectClass=ipaToken)")(version 3.0;

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
acl "token-add-delete"; allow (add) userattr = "ipatokenOwner#SELFDN";)

| Example 12.23. Using the SELFDN bind type

Using the LDAPURL bind type

To apply an ACL when the bind DN matches the filter specified in an attribute of the targeted entry, use
the LDAPURL bind type.

The userattr keyword with the LDAPURL bind type requires the following syntax:

I userattr comparison_operator "attribute_name#LDAPURL"

Example 12.24. Using the LDAPURL bind type

To grant read and search permissions to user objects which contain the aciurl attribute set to
Idap:///ou=People,dc=example,dc=com??one?(uid=user*):

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "*")

(version 3.0; acl "Allow read,search "; allow (read,search)

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
(userattr = "aciurl#LDAPURL);)

Using the userattr keyword with inheritance

When you use the userattr keyword to associate the entry used to bind with the target entry, the ACI
applies only to the target specified and not to the entries below it. In certain situations, administrators
want to extend the application of the ACl several levels below the targeted entry. This is possible by

67

Red Hat Directory Server 12 Securing Red Hat Directory Server

using the parent keyword and specifying the number of levels below the target that should inherit the
ACI.

When using the userattr keyword with the parent keyword, the syntax is as follows:

userattr comparison_operator
"parent[inheritance_level|.attribute_nameitbind_type or_attribute_value

e inheritance_level: Comma-separated list that indicates how many levels below the target
inherit the ACI. You can include five levels (0, 1, 2, 3, 4) below the targeted entry. Zero (0)
indicates the targeted entry.

e attribute_name: The attribute targeted by the userattr or groupattr keyword.

e bind_type_or_attribute_value: Sets the attribute value or a bind type, such as USERDN.

For example:

I userattr = "parent[0,1].manager#USERDN"

This bind rule is evaluated to be true if the bind DN matches the manager attribute of the targeted
entry. The permissions granted when the bind rule is evaluated to be true apply to the target entry and
to all entries immediately below it.

Example 12.25. Using the userattr keyword with inheritance

To enable a user to read and search the cn=Profiles,dcz=example,dc=com entry where the user’s
DN is set in the owner attribute, as well as the first level of child entries which includes
cn=mail,cn=Profiles,dc=example,dc=com and ch=news,cn=Profiles,dc=example,dc=com:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x’
dn: cn=Profiles,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr="*") (version 3.0; acl "Profile access",
allow (read,search) userattr="parent[0,1].owner#USERDN" ;)

12.10.5. Defining access from specific IP addresses or ranges

The ip keyword in a bind rule enables you to grant or deny access from a specific IP address or a range
of IP addresses.

Bind rules with the ip keyword use the following syntax:

I ip comparison_operator "IP_address_or_range"

Example 12.26. Using IPv4 address ranges in bind rules

To deny access from the 192.0.2.0/24 network to the dc=example,dc=com entry:

I # ldapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

68

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

add: aci
aci: (targetattr = "*") (version 3.0;acl "Deny 192.0.2.0/24"; deny (all)

dn: dc=example,dc=com
changetype: modify
(userdn = "ldap:///anyone") and (ip != "192.0.2.");)

To deny access from the 2001:db8::/64 network to the dc=example,dc=com entry:

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "*") (version 3.0;acl "Deny 2001:db8::/64"; deny (all)

ldapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
(userdn = "ldap:///anyone") and (ip != "2001:db8::");)

‘ Example 12.27. Using IPv6 address ranges in bind rules

12.10.6. Defining access from a specific host or domain

The dns keyword in a bind rule enables you to grant or deny access from a specific host or domain.

' WARNING
A If Directory Server cannot resolve a connecting IP address to its fully qualified

domain name (FQDN) using DNS, the server does not apply access control
instructions (ACI) with the dns bind rule for this client.

If client IP addresses are not resolvable using DNS, use the ip keyword and IP
addresses instead. See Defining access from specific IP addresses or ranges .

Bind rules with the dns keyword use the following syntax:

I dns comparison_operator "host_name_or_domain_name"

Example 12.28. Defining access from a specific host

To deny access from the client.example.com host to the dc=example,dc=com entry:

ldapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: dc=example,dc=com
changetype: modify

69

Red Hat Directory Server 12 Securing Red Hat Directory Server

add: aci
aci: (targetattr = "") (version 3.0;acl "Deny client.example.com"; deny (all)
(userdn = "ldap:///anyone") and (dns != "client.example.com");)

To deny access from all hosts within the example.com domain to the dc=example,dc=com entry:

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = ™') (version 3.0;acl "Deny example.com"; deny (all) (userdn =

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
"ldap:///anyone™) and (dns != ".example.com");)

‘ Example 12.29. Defining access from a specific domain

12.10.7. Requiring a certain level of security in connections

The security of a connection is determined by its security strength factor (SSF), which sets the minimum
key strength required to process operations. Using the ssf keyword in a bind rule, you can set that a
connection must use a certain level of security. This enables you to force operations, for example
password changes, to be performed over an encrypted connection.

The value for the SSF for any operation is the higher of the values between a TLS connection and a
SASL bind. This means that if a server is configured to run over TLS and a replication agreement is
configured for SASL/GSSAPI, the SSF for the operation is whichever available encryption type is more
secure.

Bind rules with the ssf keyword use the following syntax:

I ssf comparison_operator key_strength

You can use the following comparison operators:
® =(equal to)
® ! (notequal to)
® < (lessthan)

® > (greater than)

< (less than or equal to)
® >= (greater than or equal to)

If the key_strength parameter is set to 0, no secure operation is required for the LDAP operation.

Example 12.30. Requiring a certain level of security in connections

To configure that users in the dc=example,dc=com entry can only update their userPassword
attribute when the SSF is 128 or higher:

70

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "userPassword") (version 3.0;
acl "Allow users updating own userPassword";

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x
allow (write) (userdn = "ldap:///self") and (ssf >= "128");)

12.10.8. Defining access at a specific day of the week

The dayofweek keyword in a bind rule enables you to grant or deny access based on the day of the
week.

NOTE

Directory Server uses the time on the server to evaluate the access control instruction
(ACI); not the time on the client.

Bind rules with the dayofweek keyword use the following syntax:

I dayofweek comparison_operator "comma-separated_list of days"

Example 12.31. Granting access on specific days of the week

To deny access for the uid=user,ou=People,dc=example,dc=com user entry to bind to the server
on Saturdays and Sundays:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (version 3.0; acl "Deny access on Saturdays and Sundays";
deny (all)

(userdn = "ldap:///uid=user,ou=People,dc=example,dc=com") and
(dayofweek = "Sun,Sat");)

12.10.9. Defining access at a specific time of day

The timeofday keyword in a bind rule enables you to grant or deny access based on the time of day.

NOTE

Directory Server uses the time on the server to evaluate the access control instructions
(ACI); not the time on the client.

Bind rules with the timeofday keyword use the following syntax:

71

Red Hat Directory Server 12 Securing Red Hat Directory Server

I timeofday comparison_operator "time"

You can use the following comparison operators:
® =(equal to)
® ! (notequal to)
® < (lessthan)
® > (greater than)
® « (less than or equal to)

® >=(greater than or equal to)

IMPORTANT

The timeofday keyword requires that you specify the time in 24-hour format.

Example 12.32. Defining access at a specific time of a day

To deny access for the uid=user,ou=People,dc=example,dc=com user entry to bind to the server
between 6pm and Oam:

ldapmodify -D "cn=Directory Manager" -W -H Idap://server.example.com -x
dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (version 3.0; acl "Deny access between 6pm and Oam";

deny (all)

(userdn = "ldap:///uid=user,ou=People,dc=example,dc=com") and
(timeofday >= "1800" and timeofday < "2400");)

12.10.10. Defining access based on the authentication method

The authmethod keyword in a bind rule sets what authentication method a client must use when
connecting to the server, to apply the access control instruction (ACI).

Bind rules with the authmethod keyword use the following syntax:

I authmethod comparison_operator "authentication _method"

You can set the following authentication methods:
® none: Authentication is not required and represents anonymous access. This is the default.
e simple: The client must provide a user name and password to bind to the directory.
® SSL: The client must bind to the directory using a TLS certificate either in a database, smart

card, or other device. For details about certificate-based authentication, see Defining access
based on the authentication method.

72

CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS

® SASL: The client must bind to the directory over a Simple Authentication and Security Layer
(SASL) connection. When you use this authentication method in a bind rule, additionally specify
the SASL mechanism, such as EXTERNAL.

Example 12.33. Enabling access only for connections using the EXTERNAL SASL authentication
method

To deny access to the server if the connection does not use a certificate-based authentication
method or SASL:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (version 3.0; acl "Deny all access without certificate"; deny (all)
(authmethod = "none" or authmethod = "simple");)

12.10.11. Defining access based on roles

The roledn keyword in a bind rule enables you to grant or deny access to users having one or multiple
role sets.

NOTE

Red Hat recommends using groups instead of roles.

Bind rules with the roledn keyword use the following syntax:

I roledn comparison_operator "ldap:///distinguished_name || Idap.///distinguished_name || ..."

If a distinguished name (DN) contains a comma, escape the comma with a backslash.

Example 12.34. Defining access based on roles

To enable users that have the cn=Human Resources,ou=People,dc=example,dc=com role set in
the nsRole attribute to search and read the manager attribute of entries in
ou=People,dc=example,dc=com:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr="manager") (version 3.0;

acl "Allow manager role to update manager attribute";

allow (search, read) roledn = "ldap:///cn=Human Resources,ou=People,dc=example,dc=com";)

12.10.12. Combining bind rules using Boolean operators

73

Red Hat Directory Server 12 Securing Red Hat Directory Server
When creating complex bind rules, the AND, OR, and NOT Boolean operators enable you to combine
multiple keywords.

Bind rules combined with Boolean operators have the following syntax:

I bind_rule_1 boolean_operator bind_rule_2...

Example 12.35. Combining bind rules using Boolean operators

To configure that users which are member of both the
cn=Administrators,ou=Groups,dc=example,com and
cn=0Operators,ou=Groups,dc=example,com] group can [command] read, search, add, update,
and delete entries in ou=People,dc=example,dc=com:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (target="Idap:///ou=People,dc=example,dc=com") (version 3.0;

acl "Allow members of administrators and operators group to manage users";
allow (read, search, add, write, delete)

groupdn = "ldap:///cn=Administrators,ou=Groups,dc=example,com" AND
groupdn = "ldap:///cn=0Operators,ou=Groups,dc=example,com";)

How Directory Server evaluates boolean operators

Directory Server evaluates Boolean operators by using the following rules:

® All expressions from left to right.
In the following example, bind_rule_1 is evaluated first:

I (bind_rule_1) OR (bind_rule_2)

® From innermost to outermost parenthetical expressions first.
In the following example, bind_rule_2 is evaluated first and bind_rule_3 second:

I (bind_rule_1) OR ((bind_rule_2) AND (bind_rule_3))

e NOT before AND or OR operators.
In the following example, bind_rule_2 is evaluated first:

I (bind_rule_1) AND NOT (bind_rule_2)

The AND and OR operators have no order of precedence.

74

CHAPTER 13. RUNNING DIRECTORY SERVER IN FIPS MODE

CHAPTER 13. RUNNING DIRECTORY SERVER IN FIPS MODE

Directory Server fully supports the Federal Information Processing Standard (FIPS) 140-2. When you
run Directory Server run in FIPS mode, security-related settings change. For example, SSL is
automatically disabled and only TLS 1.2 and 1.3 encryption is used.

13.1. ENABLING THE FIPS MODE

To use Directory Server in Federal Information Processing Standard (FIPS) mode, enable the mode in
RHEL and Directory Server.

Prerequisites

® You enabled the FIPS mode in RHEL.

Procedure

1. Enable the FIPS mode for the network security services (NSS) database:

I # modutil -dbdir /etc/dirsrv/slapd-instance_name/ -fips true

2. Restart the instance:

I # dsctl instance_name restart

Verification

e Verify that FIPS mode is enabled for the NSS database:

modutil -dbdir /etc/dirsrv/slapd-instance_name/ -chkfips true
FIPS mode enabled.

The command returns FIPS mode enabled, if the module is in FIPS mode.

13.2. ADDITIONAL RESOURCES
® Federal Information Processing Standard (FIPS)

® Switching the system to FIPS mode

75

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/assembly_installing-a-rhel-8-system-with-fips-mode-enabled_security-hardening#con_federal-information-processing-standard-fips_assembly_installing-a-rhel-8-system-with-fips-mode-enabled
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 14. CONFIGURING A PASSWORD-BASED ACCOUNT
LOCKOUT POLICY

A password-based account lockout policy prevents attackers from repeatedly trying to guess a user’s
password. You can configure the account lockout policy to lock a user account after a specified number
of failed attempts to bind.

If a password-based account lockout policy is configured, Directory Server maintains the lockout
information in the following attributes of the user entries:

e passwordRetryCount: Stores the number of failed bind attempts. Directory Server resets the
value if the user successfully binds to the directory later than the time in retryCountResetTime.
This attribute is present after a user fails to bind for the first time.

e retryCountResetTime: Stores the time after which the passwordRetryCount attribute is reset.
This attribute is present after a user fails to bind for the first time.

e accountUnlockTime: Stores the time after which the user account is unlocked. This attribute is
present after the account was locked for the first time.

14.1. CONFIGURING WHETHER TO LOCK ACCOUNTS WHEN
REACHING OR EXCEEDING THE CONFIGURED MAXIMUM ATTEMPTS

Administrators can configure one of the following behaviors when Directory Server locks accounts on
failed login attempts:

® The server locks accounts if the limit has been exceeded. For example, if the limit is set to 3
attempts, the lockout happens after the fourth failed attempt (n+1). This also means that, if the
fourth attempt succeeds, Directory Server does not lock the account.

By default, Directory Server uses this legacy password policy that is often expected by
traditional LDAP clients.

® The server locks accounts if the limit has been reached. For example, if the limit is set to 3
attempts, the server locks the account after the third failed attempt (n).
Modern LDAP clients often expect this behavior.

This procedure describes how to disable the legacy password policy. After changing the policy,
Directory Server blocks login attempts for a user that reached the configured limit.

Prerequisites

® You configured an account lockout policy.

Procedure

® To disable the legacy password policy and lock accounts if the limit has been reached, enter:

dsconf -D "cn=Directory Manager' Idap://server.example.com config replace
passwordLegacyPolicy=off

Verification

1. Display the value of the passwordmaxfailure setting:

76

CHAPTER 14. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY

dsconf -D "cn=Directory Manager" Idap://server.example.com pwpolicy get
passwordmaxfailure
passwordmaxfailure: 2

2. Attempt to bind using an invalid password one more time than the value set in
passwordmaxfailure:

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x

Idap_bind: Invalid credentials (49)

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x

Idap_bind: Invalid credentials (49)

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x

Idap_bind: Constraint violation (19)

additional info: Exceed password retry limit. Please try later.

With legacy passwords disabled, Directory Server locked the account after the second attempt,
and further tries are blocked with an Idap_bind: Constraint violation (19) error.

Additional resources

® Configuring a password-based account lockout policy using the command line

14.2. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT
POLICY USING THE COMMAND LINE

To block login recurring bind attempts with invalid passwords, configure a password-based account
lockout policy.

IMPORTANT

The behavior whether Directory Server locks accounts when reaching or exceeding the
configured maximum attempts depends on the legacy password policy setting.

Procedure

1. Optional: Identify whether the legacy password policy is enabled or disabled:

dsconf -D "cn=Directory Manager" Idap://server.example.com config get
passwordLegacyPolicy
passwordLegacyPolicy: on

2. Enable the password lockout policy and set the maximum number of failures to 2:

[command] dsconf -D "cn=Directory Manager" Idap://server.example.com pwpolicy
set --pwdlockout on --pwdmaxfailures=2

77

Red Hat Directory Server 12 Securing Red Hat Directory Server

With the legacy password policy enabled, Directory Server will lock accounts after the third
failed attempt to bind (value of the --pwdmaxfailures parameter +1).

The dsconf pwpolicy set command supports the following parameters:
e --pwdlockout: Enables or disables the account lockout feature. Default: off.

e --pwdmaxfailures: Sets the maximum number of allowed failed bind attempts before
Directory Server locks the account. Default: 3.
Note that this lockout happens one attempt later if the legacy password policy setting is
enabled. Default: 3.

e --pwdresetfailcount: Sets the time in seconds before Directory Server resets the
passwordRetryCount attribute in the user's entry. Default: 600 seconds (10 minutes).

e --pwdlockoutduration: Sets the time of accounts being locked in seconds. This parameter
is ignored if you set the --pwdunlock parameter to off. Default: 3600 seconds (1 hour).

e --pwdunlock: Enables or disables whether locked accounts should be unlocked after a
certain amount of time or stay disabled until an administrator manually unlocks them.
Default: on.

Verification

® Attempt to bind using an invalid password two more times than the value you set in the --
pwdmaxfailures parameter:

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x

Idap_bind: Invalid credentials (49)

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x

Idap_bind: Invalid credentials (49)

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x

Idap_bind: Invalid credentials (49)

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
Idap_bind: Constraint violation (19)

additional info: Exceed password retry limit. Please try later.

With legacy passwords enabled, Directory Server locked the account after the limit has
exceeded, and further tries are blocked with an Idap_bind: Constraint violation (19) error.

Additional resources

® Configuring the legacy password policy

78

CHAPTER 14. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY

14.3. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT
POLICY USING THE WEB CONSOLE

To block login recurring bind attempts with invalid passwords, configure a password-based account
lockout policy.

IMPORTANT

The behavior whether Directory Server locks accounts when reaching or exceeding the
configured maximum attempts depends on the legacy password policy setting.

Prerequisites

® You are logged in to the instance in the web console.

Procedure

1. Optional: Identify whether the legacy password policy is enabled or disabled:

dsconf -D "cn=Directory Manager" Idap://server.example.com config get
passwordLegacyPolicy
passwordLegacyPolicy: on

This setting is not available in the web console.
2. Navigate to Database — Password Policies — Global Policy - Account Lockout.
3. Select Enable Account Lockout.

4. Configure the lockout settings:

e Number of Failed Logins That Locks out Account: Sets the maximum number of allowed
failed bind attempts before Directory Server locks the account.

e Time Until Failure Count Resets: Sets the time in seconds before Directory Server resets
the passwordRetryCount attribute in the user’s entry.

e Time Until Account Unlocked: Sets the time of accounts beging locked in seconds. This
parameter is ignored if you disable Do Not Lockout Account Forever.

o Do Not Lockout Account Forever: Enables or disables whether locked accounts should be
unlocked after a certain amount of time or stay disabled until an administrator manually
unlocks them.

5. Click Save.

Verification

® Attempt to bind using an invalid password two more times than the value you set in Number of
Failed Logins That Locks out Account:

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x

Idap_bind: Invalid credentials (49)

79

Red Hat Directory Server 12 Securing Red Hat Directory Server

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x

Idap_bind: Invalid credentials (49)

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x

Idap_bind: Invalid credentials (49)

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
Idap_bind: Constraint violation (19)

additional info: Exceed password retry limit. Please try later.

With legacy passwords enabled, Directory Server locked the account after the limit has
exceeded, and further tries are blocked with an Idap_bind: Constraint violation (19) error.

Additional resources

80

® Configuring the legacy password policy

CHAPTER 15. DISABLING ANONYMOUS BINDS

CHAPTER 15. DISABLING ANONYMOUS BINDS

If a user attempts to connect to Directory Server without supplying any credentials, this operation is
called anonymous bind. Anonymous binds simplify searches and read operations, such as finding a
phone number in the directory by not requiring users to authenticate first. However, anonymous binds
can also be a security risk, because users without an account are able to access the data.

' WARNING
A By default, anonymous binds are enabled in Directory Server for search and read

operations. This allows unauthorized access to user entries as well as configuration
entries, such as the root directory server entry (DSE).

15.1. DISABLING ANONYMOUS BINDS USING THE COMMAND LINE

To increase the security, you can disable anonymous binds.

Procedure

® Set the nsslapd-allow-anonymous-access configuration parameter to off:

dsconf -D "cn=Directory Manager' Idap://server.example.com config replace
nsslapd-allow-anonymous-access=off
Verification

® Run a search without specifying a user account:

|dapsearch -H Idap://server.example.com -b " dc=example,dc=com" -x
Idap_bind: Inappropriate authentication (48)
additional info: Anonymous access is not allowed

15.2. DISABLING ANONYMOUS BINDS USING THE WEB CONSOLE

To increase the security, you can disable anonymous binds.

Prerequisites

® You are logged in to the instance in the web console.

Procedure
1. Navigate to Server = Server Settings - Advanced Settings.
2. Set the Allow Anonymous Access parameter to off.

3. Click Save.

81

Red Hat Directory Server 12 Securing Red Hat Directory Server
Verification
® Run a search without specifying a user account:

|dapsearch -H Idap://server.example.com -b " dc=example,dc=com" -x
Idap_bind: Inappropriate authentication (48)
additional info: Anonymous access is not allowed

82

'YNCHRONIZING ACCOUNT LOCKOUT ATTRIBUTES ACROSS ALL SERVERS IN A REPLICATION ENVIRONMEN1

CHAPTER 16. SYNCHRONIZING ACCOUNT LOCKOUT
ATTRIBUTES ACROSS ALL SERVERS IN A REPLICATION
ENVIRONMENT

Directory Server stores account lockout attributes locally. In an environment with multiple servers,
configure replication for these attributes to prevent attackers from attempting to log in to one server
until the account lockout count is reached and then continue on other servers.

16.1. HOW DIRECTORY SERVER HANDLES PASSWORD AND ACCOUNT
LOCKOUT POLICIES IN A REPLICATION ENVIRONMENT

Directory Server enforces password and account lockout policies as follows:
® Password policies are enforced on the data supplier
® Account lockout policies are enforced on all servers in a replication topology
Directory Server replicates the following password policy attributes:
e passwordMinAge
e passwordMaxAge
e passwordExp
e passwordWarning
However, by default, Directory Server does not replicate the general account lockout attributes:
® passwordRetryCount
e retryCountResetTime
e accountUnlockTime

To prevent attackers from attempting to log in to one server until the account lockout count is reached
and then continue on other servers, replicate these account lockout attributes.

Additional resources

® Configuring Directory Server to replicate account lockout attributes

16.2. CONFIGURING DIRECTORY SERVER TO REPLICATE ACCOUNT
LOCKOUT ATTRIBUTES

If you use an account lockout policy or password policy that updates the passwordRetryCount,
retryCountResetTime, or accountUnlockTime attributes, configure Directory Server to replicate these
attributes so that their values are the same across all servers.

Perform this procedure on all suppliers in the replication topology.

Prerequisites

83

Red Hat Directory Server 12 Securing Red Hat Directory Server

® You configured an account lockout policy or a password policy that updates one or more of the
mentioned attributes.

® You use Directory Server in a replication environment.

Procedure

1. Enable replication of password policy attributes:

dsconf -D "cn=Directory Manager" Idap://server.example.com pwpolicy set --
pwdisglobal="on"

2. If you use fractional replication, display the list of attributes that are excluded from replication:

dsconf -D "cn=Directory Manager" Idap://server.example.com repl-agmt get --suffix
"dc=example,dc=com" example-agreement | grep "nsDS5ReplicatedAttributeList"

Using the default settings, no output is shown, and Directory Server replicates the account
lockout attributes. However, if the command returns a list of excluded attributes, such as in the
following example, verify the attribute list:

nsDS5ReplicatedAttributeList: (objectclass=*) $ EXCLUDE accountUnlockTime
passwordRetryCount retryCountResetTime example1 example2

In this example, the accountUnlockTime, passwordRetryCount, and retryCountResetTime
lockout policy attributes are excluded from replication, along with two other attributes.

3. If the output of the previous command lists any of the account lockout attributes, update the
fractional replication settings to only include attributes other than the lockout policy attributes:

dsconf -D "cn=Directory Manager" Idap://server.example.com repl-agmt set --suffix
"dc=example,dc=com" --frac-list "example1 example2' example-agreement

Verification

1. Attempt to perform a search as a user using an invalid password:

|dapsearch -H Idap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w "invalid-password" -b
"dc=example,dc=com" -x

Idap_bind: Invalid credentials (49)

2. Display the passwordRetryCount attribute of the user:

|dapsearch -H Idap://server.example.com -D " cn=Directory Manager" -W -b
"uid=example,ou=People,dc=example,dc=com" -x passwordRetryCount

dn: uid=example,ou=People,dc=example,dc=com
passwordRetryCount: 1

3. Run the previous command on a different server in the replication topology. If the value of the
passwordRetryCount attribute is the same, Directory Server replicated the attribute.

AAA+ iAnAl racAlircace

84

'YNCHRONIZING ACCOUNT LOCKOUT ATTRIBUTES ACROSS ALL SERVERS IN A REPLICATION ENVIRONMEN1

nudiIiLuviIial 1 ©ovuil LTo

e Configuring a password-based account lockout policy

85

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 17. CONFIGURING TIME-BASED ACCOUNT

LOCKOUT POLICIES

You can use the Account Policy plug-in to configure different time-based lockout policies, such as:

® Automatically disabling accounts a certain amount of time the last successful login
® Automatically disabling accounts a certain amount of time after you created them
® Automatically disabling accounts a certain amount of time after password expiry

® Automatically disabling account on both account inactivity and password expiration

17.1. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT
OF TIME THE LAST SUCCESSFUL LOGIN

Follow this procedure to configure a time-based lockout policy that inactivates users under the
dc=example,dc=com entry who do not log in for more than 21 days.

This the account inactivity feature to ensure, for example if an employee left the company and the
administrator forgets to delete the account, that Directory Server inactivates the account after a
certain amount of time.

Procedure

86

1. Enable the Account Policy plug-in:

dsconf -D "cn=Directory Manager" Idap://server.example.com plugin account-policy
enable

2. Configure the plug-in configuration entry:

dsconf -D "cn=Directory Manager" Idap://server.example.com plugin account-policy
config-entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-
record-login yes --state-attr lastLoginTime --alt-state-attr 1.1 --spec-attr
acctPolicySubentry --limit-attr accountinactivityLimit

This command uses the following options:

e --always-record-login yes: Enables logging of the login time. This is required to use Class

of Service (CoS) or roles with account policies, even if it does not have the
acctPolicySubentry attribute set.

--state-attr lastLoginTime: Configures that the Account Policy plug-in stores the last login
time in the lastLoginTime attribute of users.

--alt-state-attr 1.1: Disables using an alternative attribute to check if the primary one does
not exist. By default, Directory Server uses the createTimestamp attribute as alternative.
However, this causes that Directory Server logs out existing users automatically if their
account do not have the lastLoginTime attribute set and createTimestamp is older than
the configured inactivity period. Disabling the alternative attribute causes that

Directory Server automatically adds the lastLoginTime attribute to user entries when they
log in the next time.

CHAPTER 17. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

e --spec-attr acctPolicySubentry: Configures Directory Server to apply the policy to entries
that have the acctPolicySubentry attribute set. You configure this attribute in the CoS
entry.

e --Jimit-attr accountlnactivityLimit: Configures that the accountinactivityLimit attribute in
the account inactivation policy entry stores the inactivity time.

3. Restart the instance:

I # dsctl instance_name restart

4. Create the account inactivation policy entry:

|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=Account Inactivation Policy,dc=example,dc=com
objectClass: top

objectClass: Idapsubentry

objectClass: extensibleObject

objectClass: accountpolicy

accountlnactivityLimit: 7874400

cn: Account Inactivation Policy

The value in the accountlnactivityLimit attribute configures that Directory Server inactivates
accounts 1814400 seconds (21 days) after the last log in.

5. Create the CoS template entry:

|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=TemplateCoS,dc=example,dc=com

objectClass: top

objectClass: Idapsubentry

objectClass: extensibleObject

objectClass: cosTemplate

acctPolicySubentry: cn=Account Inactivation Policy,dc=example,dc=com

This template entry references the account inactivation policy.

6. Create the CoS definition entry:

|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=DefinitionCoS,dc=example,dc=com

objectClass: top

objectClass: Idapsubentry

objectclass: cosSuperDefinition

objectclass: cosPointerDefinition

cosTemplateDn: cn=TemplateCoS,dc=example,dc=com
cosAttribute: acctPolicySubentry default operational-default

This definition entry references the CoS template entry and causes that the
acctPolicySubentry attribute appears in each user entry with a value set to cn=Account
Inactivation Policy,dc=example,dc=com.

87

Red Hat Directory Server 12 Securing Red Hat Directory Server

Verification

1. Set the lastLoginTime attribute of a user to a value that is older than the inactivity time you
configured:

ldapmodify -H Idap://server.example.com -x -D "cn=Directory Manager" -W

dn: uid=example,ou=People,dc=example,dc=com
changetype: modify

replace: lastLoginTime

lastLoginTime: 20210101000000Z

2. Try to connect to the directory as a this user:

|dapsearch -H Idap://server.example.com -x -D
"uid=example,ou=People,dc=example,dc=com" -W -b "dc=example,dc=com"
Idap_bind: Constraint violation (19)

additional info: Account inactivity limit exceeded. Contact system administrator to reset.

If Directory Server denies access and returns this error, account inactivity works.

Additional resources

® Re-enabling accounts that reached the inactivity limit

17.2. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT
OF TIME AFTER YOU CREATED THEM

Follow this procedure to configure that accounts in the dec=example,dc=com entry expire 60 days after
the administrator created them.

Use the account expiration feature, for example, to ensure that accounts for external workers are locked
a certain amount of time after they have been created.

Procedure

1. Enable the Account Policy plug-in:

I # dsconf -D "cn=Directory Manager" Idap://server.example.com plugin account-policy
enable

2. Configure the plug-in configuration entry:

dsconf -D "cn=Directory Manager" Idap://server.example.com plugin account-policy
config-entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-
record-login yes --state-attr createTimestamp --alt-state-attr 1.1 --spec-attr
acctPolicySubentry --limit-attr accountinactivityLimit

This command uses the following options:
e --always-record-login yes: Enables logging of the login time. This is required to use Class

of Service (CoS) or roles with account policies, even if it does not have the
acctPolicySubentry attribute set.

88

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/managing_access_control/assembly_re-enabling-accounts-that-reached-the-inactivity-limit_managing-access-control

CHAPTER 17. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

e --state-attr createTimestamp: Configures that the Account Policy plug-in uses the value of
the createTimestamp attribute to calculate whether an account is expired.

e --alt-state-attr 1.1: Disables using an alternative attribute to check if the primary one does
not exist.

e --spec-attr acctPolicySubentry: Configures Directory Server to apply the policy to entries
that have the acctPolicySubentry attribute set. You configure this attribute in the CoS
entry.

e --Jimit-attr accountlnactivityLimit: Configures that the accountlnactivityLimit attribute in
the account expiration policy entry stores the maximum age.

3. Restart the instance:

I # dsctl instance_name restart

4. Create the account expiration policy entry:

|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=Account Expiration Policy,dc=example,dc=com
objectClass: top

objectClass: Idapsubentry

objectClass: extensibleObject

objectClass: accountpolicy

accountlnactivityLimit: 5784000

cn: Account Expiration Policy

The value in the accountlnactivityLimit attribute configures that accounts expire 5184000
seconds (60 days) after they have been created.

5. Create the CoS template entry:

|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=TemplateCoS,dc=example,dc=com

objectClass: top

objectClass: Idapsubentry

objectClass: extensibleObject

objectClass: cosTemplate

acctPolicySubentry: cn=Account Expiration Policy,dc=example,dc=com

This template entry references the account expiration policy.

6. Create the CoS definition entry:
|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x
dn: cn=DefinitionCoS,dc=example,dc=com
objectClass: top

objectClass: Idapsubentry
objectclass: cosSuperDefinition

89

Red Hat Directory Server 12 Securing Red Hat Directory Server

objectclass: cosPointerDefinition
cosTemplateDn: cn=TemplateCoS,dc=example,dc=com
cosAttribute: acctPolicySubentry default operational-default

This definition entry references the CoS template entry and causes that the
acctPolicySubentry attribute appears in each user entry with a value set to cn=Account
Expiration Policy,dc=example,dc=com.

Verification

® Tryto connect to the directory as a user stored in the dc=example,dc=com entry whose
createTimestamp attribute is set to a value more than 60 days ago:

|dapsearch -H Idap://server.example.com -x -D "uid=example,dc=example,dc=com’ -
W -b "dc=example,dc=com"

Idap_bind: Constraint violation (19)

additional info: Account inactivity limit exceeded. Contact system administrator to reset.

If Directory Server denies access and returns this error, account expiration works.

Additional resources

® Re-enabling accounts that reached the inactivity limit

17.3. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT
OF TIME AFTER PASSWORD EXPIRY

Follow this procedure to configure a time-based lockout policy that inactivates users under the
dc=example,dc=com entry who do not change their password for more than 28 days.

Prerequisites

® Users must have the passwordExpirationTime attribute set in their entry.

Procedure

1. Enable the password expiration feature:

dsconf -D "cn=Directory Manager' Idap://server.example.com config replace
passwordExp=on

2. Enable the Account Policy plug-in:

I # dsconf -D "cn=Directory Manager" Idap://server.example.com plugin account-policy
enable

3. Configure the plug-in configuration entry:

dsconf -D "cn=Directory Manager" Idap://server.example.com plugin account-policy
config-entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-
record-login yes --always-record-login-attr lastLoginTime --state-attr
non_existent_attribute --alt-state-attr passwordExpirationTime --spec-attr
acctPolicySubentry --limit-attr accountinactivityLimit

90

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/managing_access_control/assembly_re-enabling-accounts-that-reached-the-inactivity-limit_managing-access-control

CHAPTER 17. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

This command uses the following options:

e --always-record-login yes: Enables logging of the login time. This is required to use Class
of Service (CoS) or roles with account policies, even if it does not have the
acctPolicySubentry attribute set.

e --always-record-login-attr lastLoginTime: Configures that the Account Policy plug-in
stores the last login time in the lastLoginTime attribute of users.

o --state-attr non_existent_attribute: Sets the primary time attribute used to evaluate an
account policy to a non-existent dummy attribute name.

e --alt-state-attr ‘passwordExpirationTime: Configures the plug-in to use the
passwordExpirationTime attribute as the alternative attribute to check.

e --spec-attr acctPolicySubentry: Configures Directory Server to apply the policy to entries
that have the acctPolicySubentry attribute set. You configure this attribute in the CoS
entry.

e --Jimit-attr accountlnactivityLimit: Configures that the accountlnactivityLimit attribute in
the account policy entry stores the time when accounts are inactivated after their last
password change.

4. Restart the instance:

I # dsctl instance_name restart

5. Create the account inactivation policy entry:

|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=Account Inactivation Policy,dc=example,dc=com
objectClass: top

objectClass: Idapsubentry

objectClass: extensibleObject

objectClass: accountpolicy

accountlnactivityLimit: 2479200

cn: Account Inactivation Policy

The value in the accountlnactivityLimit attribute configures that Directory Server inactivates
accounts 2419200 seconds (28 days) after the password was changed.

6. Create the CoS template entry:

|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=TemplateCoS,dc=example,dc=com

objectClass: top

objectClass: Idapsubentry

objectClass: extensibleObject

objectClass: cosTemplate

acctPolicySubentry: cn=Account Inactivation Policy,dc=example,dc=com

This template entry references the account inactivation policy.

7. Create the CoS definition entry:

o1

Red Hat Directory Server 12 Securing Red Hat Directory Server

|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=DefinitionCoS,dc=example,dc=com

objectClass: top

objectClass: Idapsubentry

objectclass: cosSuperDefinition

objectclass: cosPointerDefinition

cosTemplateDn: cn=TemplateCoS,dc=example,dc=com
cosAttribute: acctPolicySubentry default operational-default

This definition entry references the CoS template entry and causes that the
acctPolicySubentry attribute appears in each user entry with a value set to cn=Account
Inactivation Policy,dc=example,dc=com.

Verification

1. Set the passwordExpirationTime attribute of a user to a value that is older than the inactivity
time you configured:

ldapmodify -H Idap://server.example.com -x -D "cn=Directory Manager" -W

dn: uid=example,ou=People,dc=example,dc=com
changetype: modify

replace: passwordExpirationTime
passwordExpirationTime: 20210101000000Z

2. Try to connect to the directory as a this user:

|dapsearch -H Idap://server.example.com -x -D
"uid=example,ou=People,dc=example,dc=com" -W -b "dc=example,dc=com"
Idap_bind: Constraint violation (19)

additional info: Account inactivity limit exceeded. Contact system administrator to reset.

If Directory Server denies access and returns this error, account inactivity works.

Additional resources

® Re-enabling accounts that reached the inactivity limit

17.4. AUTOMATICALLY DISABLING ACCOUNT ON BOTH ACCOUNT
INACTIVITY AND PASSWORD EXPIRATION

You can apply both account inactivity and password expiration when a user authenticates by using the
checkAlIStateAttrs setting. By default, when checkAllStateAttrs is not present in the plug-in
configuration entry, or when you set this parameter to no, the plug-in checks for the state attribute
lastLoginTime. If the attribute is not present in the entry, the plug-in checks the alternate state
attribute.

You can set the main state attribute to a non-existent attribute and set the alternate state attribute to
passwordExpirationtime when you want the plug-in to handle expiration based on the
passwordExpirationtime attribute. When you enable this parameter it check’s the main state attribute
and if the account is fine it then check’s the alternate state attribute.

This differs from the password policy’s password expiration, in that the account policy plug-in

92

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/managing_access_control/assembly_re-enabling-accounts-that-reached-the-inactivity-limit_managing-access-control

CHAPTER 17. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

completely disables the account if the passwordExpirationtime exceeds the inactivity limit. While with
the password policy expiration the user can still log in and change their password. The account policy
plug-in completely blocks the user from doing anything and an administrator must reset the account.

Procedure
1. Create the plug-in configuration entry and enable the setting:
dsconf -D "cn=Directory Manager" Idap://server.example.com plugin account-policy
config-entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --

always-record-login yes --state-attr lastLoginTime --alt-state-attr 1.1 --spec-attr
acctPolicySubentry --limit-attr accountlnactivityLimit --check-all-state-attrs yes

2. Restart the server to load the new plug-in configuration:

I # dsctl instance_name restart

' WARNING
A The checkAllStateAttrs setting is designed to only work when the alternate

state attribute is set to passwordExpiratontime. Setting it to
createTimestamp can cause undesired results and entries might get locked
out.

93

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 18. RE-ENABLING ACCOUNTS THAT REACHED THE
INACTIVITY LIMIT

If Directory Server inactivated an account because it reached the inactivity limit, an administrator can
re-enable the account.

18.1. RE-ENABLING ACCOUNTS INACTIVATED BY THE ACCOUNT
POLICY PLUG-IN

You can re-enable accounts using the dsconf account unlock command or by manually updating the
lastLoginTime attribute of the inactivated user.

Prerequisites

® Aninactivated user account.

Procedure
® Reactivate the account using one of the following methods:

o Using the dsconf account unlock command:
dsidm -D "cn=Directory manager" Idap://server.example.com -b

"dc=example,dc=com" account unlock
"uid=example,ou=People,dc=example,dc=com"

o By setting the lastLoginTime attribute of the user to a recent time stamp:

ldapmodify -H Idap://server.example.com -x -D "cn=Directory Manager" -W
dn: uid=example,ou=People,dc=example,dc=com
changetype: modify

replace: lastLoginTime
lastLoginTime: 20210901000000Z2

Verification

® Authenticate as the user that you have reactivated. For example, perform a search:

|dapsearch -H Idap://server.example.com -x -D
"uid=example,ou=People,dc=example,dc=com" -W -b "dc=example,dc=com -s base"

If the user can successfully authenticate, the account was reactivated.

94

CHAPTER 19. TRACKING THE LAST LOGIN TIME WITHOUT SETTING A LOCKOUT POLICY

CHAPTER 19. TRACKING THE LAST LOGIN TIME WITHOUT
SETTING A LOCKOUT POLICY

You can use the Account Policy plug-in to track user login times without setting an expiration time or
inactivity period. In this case, the plug-in adds the lastLoginTime attribute to user entries.

19.1. CONFIGURING THE ACCOUNT POLICY PLUG-IN TO RECORD THE
LAST LOGIN TIME

Follow this procedure to record the last login time of users in the lastLoginTime attribute of user
entries.

Procedure

1. Enable the Account Policy plug-in:

I # dsconf -D "cn=Directory Manager" Idap://server.example.com plugin account-policy
enable

2. Create the plug-in configuration entry to record login times:

dsconf -D "cn=Directory Manager" Idap://server.example.com plugin account-policy
config-entry set " cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-
record-login yes --state-attr lastLoginTime

This command uses the following options:
e --always-record-login yes: Enables logging of the log in time.

e --state-attr lastLoginTime: Configures that the Account Policy plug-in stores the last log in
time in the lastLoginTime attribute of users.

3. Restart the instance:

I # dsctl instance_name restart

Verification

1. Login to Directory Server as a user. For example, run a search:

|dapsearch -H Idap://server.example.com -x -D
"uid=example,ou=People,dc=example,dc=com" -W -b "dc=example,dc=com"
2. Display the lastLoginTime attribute of the user you used in the previous step:

|dapsearch -H Idap://server.example.com -x -D "cn=Directory Manager" -W -b
"uid=example,ou=people,dc=example,dc=com’ lastLoginTime

dn: uid=example,ou=People,dc=example,dc=com
lastLoginTime: 20210913091435Z7

95

Red Hat Directory Server 12 Securing Red Hat Directory Server

If the lastLoginTime attribute exists and Directory Server updated its value, recording of the
last login time works.

96

CHAPTER 20. SETTING ACCESS CONTROL ON THE DIRECTORY MANAGER ACCOUNT

CHAPTER 20. SETTING ACCESS CONTROL ON THE
DIRECTORY MANAGER ACCOUNT

Having an unconstrained administrative user makes sense from a maintenance perspective. The
Directory Manager requires a high level of access in order to perform maintenance tasks and to respond
to incidents.

However, because of the power of the Directory Manager user, a certain level of access control can be
advisable to prevent damages from attacks being performed as the administrative user.

20.1. ABOUT ACCESS CONTROLS ON THE DIRECTORY MANAGER
ACCOUNT

Directory Server applies regular access control instructions only to the directory tree. The privileges of
the Directory Manager account are hard-coded, and you cannot use this account in bind rules. To limit
access to the Directory Manager account, use the RootDN Access Control plug-in.

This plug-in’s features are different from standard access control instructions (ACI). For example,
certain information, such as the target (the Directory Manager entry) and the allowed permissions (all of
them) is implied. The purpose of the RootDN Access Control plug-in is to provide a level of security by
limiting who can log in as Directory Manager based on their location or time, not to restrict what this user
can do.
For this reason, the settings of the plug-in only support:

® Time-based access controls, to allow or deny access on certain days and specific time ranges

® |P address rules, to allow or deny access from defined IP addresses, subnets, and domains

® Host access rules, to allow or deny access from specific hosts, domains, and subdomains

There is only one access control rule you can set for the Directory Manager. It is in the plug-in entry, and
it applies to the entire directory.

Same as in regular ACls, deny rules have a higher priority than allow rules.

IMPORTANT

Ensure that the Directory Manager account has an appropriate level of access. This
administrative user might need to perform maintenance operations in off-hours or to
respond to failures. In this case, setting a too restrictive time or day rule can prevent the
Directory Manager user from adequately manage the directory.

20.2. CONFIGURING THE ROOTDN ACCESS CONTROL PLUG-IN
USING THE COMMAND LINE

By default, the RootDN Access Control plug-in is disabled. To limit permissions of the Directory
Manager account, enable and configure the plug-in.

Procedure

1. Enable the RootDN Access Control plug-in:

97

Red Hat Directory Server 12 Securing Red Hat Directory Server

I # dsconf -D "cn=Directory Manager" Idap://server.example.com plugin root-dn enable

2. Set the bind rules. For example, to allow the Directory Manager account to only log in between
6am and 9pm from the host with IP address 192.0.2.1, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com plugin root-dn set --
open-time=0600 --close-time=2100 --allow-ip="192.0.2.1"

For the full list of parameters you can set and their descriptions, enter:

I # dsconf -D "cn=Directory Manager" Idap://server.example.com plugin root-dn set --
help

3. Restart the instance:

I # dsctl instance_name restart

Verification

® Perform a query as cn=Directory Manager from a host that is not allowed or outside of the
allowed time range:

[user@192.0.2.2]$ Idapsearch -D "cn=Directory Manager" -W -H
Idap://server.example.com -x -b "dc=example,dc=com"

Enter LDAP Password:

Idap_bind: Server is unwilling to perform (53)

additional info: RootDN access control violation

If Directory Server denies access, the plug-in works as expected.

20.3. CONFIGURING THE ROOTDN ACCESS CONTROL PLUG-IN
USING THE WEB CONSOLE

By default, the RootDN Access Control plug-in is disabled. To limit permissions of the Directory
Manager account, enable and configure the plug-in.

Prerequisites

® You are logged in to the instance in the web console.

Procedure
1. Navigate to Plugins = RootDN Access Control.
2. Enable the plug-in.

3. Fill the fields according to your requirements.

98

CHAPTER 20. SETTING ACCESS CONTROL ON THE DIRECTORY MANAGER ACCOUNT

RootDN Access Control Plugin

o Plugin is enabled

Allow Host

Deny Host

Allow IP address

Deny IP address

Open Time

Close Time

192,021 X

0600

2100 ®

Days To Allow Access

Monday Friday
Tuesday Saturday
Wednesday Sunday
Thursday

Save

4. Click Save.

5. Click Actions in the top right corner, and select Restart Instance.

Verification

e Perform a query as cn=Directory Manager from a host that is not allowed or outside of the
allowed time range:

[user@192.0.2.2]$ Idapsearch -D "cn=Directory Manager" -W -H
Idap://server.example.com -x -b "dc=example,dc=com"
Enter LDAP Password:
Idap_bind: Server is unwilling to perform (53)
additional info: RootDN access control violation

If Directory Server denies access, the plug-in works as expected.

99

Red Hat Directory Server 12 Securing Red Hat Directory Server

CHAPTER 21. MANAGING ATTRIBUTE ENCRYPTION

Directory Server offers a number of mechanisms to secure access to sensitive data in the directory.
However, by default, the server stores data unencrypted in the database. For highly sensitive
information, the potential risk that an attacker could gain access to the database, can be a significant
risk.

The attribute encryption feature enables administrators to store specific attributes with sensitive data,
such as government identification numbers, encrypted in the database. When enabled for a suffix, every
instance of these attributes, even the index data, is encrypted for every entry stored in this attribute in
the database. Note that you can enable attribute encryption for suffixes. To enable this feature for the
whole server, you must enable attribute encryption for each suffix on the server. Attribute encryption is
fully compatible with eq and pres indexing.

IMPORTANT

Any attribute you use within the entry distinguished name (DN) cannot be efficiently
encrypted. For example, if you have configured to encrypt the uid attribute, the value is
encrypted in the entry, but not in the DN:

dn: uid=demo_user,ou=People,dc=example,dc=com

uid::Sf04P9nJWGU1qiW9JJCGRg==

21.1. KEYS DIRECTORY SERVER USES FOR ATTRIBUTE ENCRYPTION

To use attribute encryption, you must configure encrypted connections using TLS. Directory Server
uses the server’s TLS encryption key and the same PIN input methods for attribute encryption.

The server uses randomly generated symmetric cipher keys to encrypt and decrypt attribute data. The
server wraps these keys using the public key from the server’s TLS certificate. As a consequence, the
effective strength of the attribute encryption cannot be higher than the strength of the server's TLS
key.

' WARNING
A Without access to the server’s private key, it is not possible to recover the

symmetric keys from the wrapped copies. Therefore, back up the server’s certificate
database regularly. If you lose the key, you will no longer be able to decrypt and
encrypt data stored in the database.

21.2. ENABLING ATTRIBUTE ENCRYPTION USING THE COMMAND
LINE

This procedure demonstrates how to enable attribute encryption for the telephoneNumber attribute in
the userRoot database using the command line. After you perform the procedure, the server stores
existing and new values of this attribute AES-encrypted.

Praraniiicitac

100

CHAPTER 21. MANAGING ATTRIBUTE ENCRYPTION

I e D

® You have enabled TLS encryption in Directory Server.

Procedure

1. Export the userRoot database:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend export -E
userRoot

The server stores the export in an LDIF file in the /var/lib/dirsrv/slapd-instance_name/ldif/
directory. The -E option decrypts attributes that are already encrypted during the export.

2. Enable AES encryption for the telephoneNumber attribute:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend attr-encrypt --
add-attr telephoneNumber dc=example,dc=com

3. Stop the instance:

I # dsctl instance_name stop

4. Import the LDIF file:

dsctl instance_name Idif2db --encrypted userRoot /var/lib/dirsrv/slapd-
instance_name/ldif/ None-userroot-2022_01_24 10_28 27.Idif

The --encrypted parameter enables the script to encrypt attributes configured for encryption
during the import.

5. Start the instance:

I # dsctl instance_name start

Additional resources

® Enabling TLS-encrypted connections to Directory Server

21.3. ENABLING ATTRIBUTE ENCRYPTION USING THE WEB CONSOLE
This procedure demonstrates how to enable attribute encryption for the telephoneNumber attribute in
the userRoot database using the web console. After you perform the procedure, the server stores

existing and new values of this attribute AES-encrypted.

Note that the export and import features in the web console do not support encrypted attributes.
Therefore, you must perform these steps on the command line.

Prerequisites

® You have enabled TLS encryption in Directory Server.

® You are logged in to the instance in the web console.

101

https://docs.redhat.com/en/documentation/red_hat_directory_server/12/html/securing_red_hat_directory_server/assembly_enabling-tls-encrypted-connections-to-directory-server_securing-rhds

Red Hat Directory Server 12 Securing Red Hat Directory Server

Procedure

1. Export the userRoot database:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend export -E
userRoot

The server stores the export in an LDIF file in the /var/lib/dirsrv/slapd-instance_name/ldif/
directory. The -E option decrypts attributes that are already encrypted during the export.

2. Inthe web console, navigate to Database — Suffixes — suffix_entry - Encrypted Attributes.
3. Enter the attribute to encrypt, and click Add Attribute.
4. In the Actions menu, select Stop Instance.

5. On the command line, import the LDIF file:

dsctl instance_name Idif2db --encrypted userRoot /var/lib/dirsrv/slapd-
instance_name/ldif/ None-userroot-2022_01_24 10_28 27.Idif

The --encrypted parameter enables the script to encrypt attributes configured for encryption
during the import.

6. Inthe web console, open the Actions menu, and select Start Instance.

Additional resources

® Enabling TLS-encrypted connections to Directory Server

21.4. GENERAL CONSIDERATIONS AFTER ENABLING ATTRIBUTE
ENCRYPTION

Consider the following points after you have enabled encryption for data that is already in the database:

e Unencrypted data can persist in the server’'s database page pool backing file. To remove this
data:

a. Stop the instance:

I # dsctl instance_name stop

b. Remove the /var/lib/dirsrv/slapd-instance_name/db/guardian file:
I # **rm /var/lib/dirsrv/slapd-instance_name/db/guardian’
c. Start the instance:

I # dsctl instance_name start

® After you enabled have encryption and successfully imported the data, delete the LDIF file with
the unencrypted data.

102

https://docs.redhat.com/en/documentation/red_hat_directory_server/12/html/securing_red_hat_directory_server/assembly_enabling-tls-encrypted-connections-to-directory-server_securing-rhds

CHAPTER 21. MANAGING ATTRIBUTE ENCRYPTION

® Directory Server does not encrypt the replication log file. To protect this data, store the
replication log on an encrypted disk.

® Datain the server's memory (RAM) is unencrypted and can be temporarily stored in swap
partitions. To protect this data, configure encrypted swap space.

IMPORTANT

Even if you delete files that contain unencrypted data, this data can be restored under
certain circumstances.

21.5. UPDATING THE TLS CERTIFICATES USED FOR ATTRIBUTE
ENCRYPTION

Attribute encryption is based on the TLS certificate of the server. Follow this procedure to prevent that
attribute encryption fails after renewing or replacing the TLS certificate.

Prerequisites
® You configured attribute encryption.

® The TLS certificate will expire in the near future.

Procedure

1. Export the userRoot database:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend export -E
userRoot

The server stores the export in an LDIF file in the /var/lib/dirsrv/slapd-instance_name/ldif/
directory. The -E option decrypts attributes that are already encrypted during the export.

2. Create a private key and a certificate signing request (CSR). Skip this step if you want to create
them using an external utility.

® [fyour host is reachable only by one name, enter:

dsctl instance_name tls generate-server-cert-csr -s
"CN=server.example.com,0O=example_organization"

e |f your host is reachable by multiple names:

dsctl instance_name tls generate-server-cert-csr -s

"CN=server.example.com,O=example_organization" server.example.com
server.example.net

If you specify the host names as the last parameter, the command adds the Subject
Alternative Name (SAN) extension with the DNS:server.example.com,
DNS:server.example.net entries to the CSR.

The string specified in the -s subject parameter must be a valid subject name according to RFC

1485. The CN field in the subject is required, and you must set it to one of the fully-qualified
domain names (FQDN) of the server. The command stores the CSR in the

103

Red Hat Directory Server 12 Securing Red Hat Directory Server

/etc/dirsrv/slapd-instance_name/Server-Cert.csr file.

3. Submit the CSR to the certificate authority (CA) to get a certificate issued. For further details,
see your CA's documentation.

4. Import the server certificate issued by the CA to the NSS database:

e |f you created the private key using the dsctl tls generate-server-cert-csr command,
enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com security certificate
add --file /root/instance_name.crt --name "server-cert" --primary-cert

Remember the name of the certificate you set in the --name _ certificate_nickname
parameter. You require it in a later step.

e |f you created the private key using an external utility, import the server certificate and the
private key:

I # dsctl instance_name tls import-server-key-cert /root/server.crt /root/server.key

Note that the command requires you to specify the path to the server certificate first and
then the path to the private key. This method always sets the nickname of the certificate to
Server-Cert.

5. Import the CA certificate to the NSS database:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ca-certificate
add --file /root/ca.crt --name "Example CA"

6. Set the trust flags of the CA certificate:

dsconf -D "cn=Directory Manager" Idap://server.example.com security ca-certificate
set-trust-flags "Example CA" --flags "CT,,"

This configures Directory Server to trust the CA for TLS encryption and certificate-based
authentication.

7. Stop the instance:

I # dsctl instance_name stop

8. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file, and remove the following entries
including their attributes:

o cn=AES,cn=encrypted attribute keys,cn=database _name,cn=ldbm
database,cn=plugins,cn=config

e cn=3DES,cn=encrypted attribute keys,cn=database_name,cn=ldbm
database,cn=plugins,cn=config

104

CHAPTER 21. MANAGING ATTRIBUTE ENCRYPTION

IMPORTANT
Remove the entries for all databases. If any entry that contains the

nsSymmetricKey attribute is left in the
*/etc/dirsrv/slapd-instance_name/dse.ldif file, Directory Server will fail to start.

Import the LDIF file:

dsctl instance_name Idif2db --encrypted userRoot /var/lib/dirsrv/slapd-
instance_name/ldif/ None-userroot-2022_01_24 10_28 27.Idif

The --encrypted parameter enables the script to encrypt attributes configured for encryption
during the import.

. Start the instance:

I # dsctl instance_name start

105

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DIRECTORY SERVER
	CHAPTER 1. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER
	1.1. THE DIFFERENT OPTIONS FOR ENCRYPTED CONNECTIONS TO DIRECTORY SERVER
	1.2. HOW DIRECTORY SERVER UNLOCKS THE NSS DATABASE
	1.3. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER USING THE COMMAND LINE
	1.4. ENABLING TLS-ENCRYPTED CONNECTIONS TO DIRECTORY SERVER USING THE WEB CONSOLE
	1.5. MANAGING HOW DIRECTORY SERVER BEHAVES IF THE CERTIFICATE HAS EXPIRED
	1.6. CHANGING THE PASSWORD OF THE NSS DATABASE
	1.7. CREATING A PASSWORD FILE TO START AN INSTANCE WITHOUT BEING PROMPTED FOR THE NSS DATABASE PASSWORD
	1.8. ADDING THE CA CERTIFICATE USED BY DIRECTORY SERVER TO THE TRUST STORE OF RED HAT ENTERPRISE LINUX

	CHAPTER 2. CONFIGURING THE SUPPORTED TLS PROTOCOL VERSIONS
	2.1. SETTING THE MINIMUM AND MAXIMUM TLS PROTOCOL VERSIONS USING THE COMMAND LINE
	2.2. SETTING THE MINIMUM AND MAXIMUM TLS PROTOCOL VERSIONS USING THE WEB CONSOLE

	CHAPTER 3. REQUIRING LDAPS OR STARTTLS FOR ENCRYPTED CONNECTIONS
	3.1. CONFIGURING DIRECTORY SERVER USING THE COMMAND LINE TO ACCEPT ONLY CONNECTIONS ENCRYPTED WITH LDAPS OR STARTTLS
	3.2. CONFIGURING DIRECTORY SERVER USING THE WEB CONSOLE TO ACCEPT ONLY CONNECTIONS ENCRYPTED WITH LDAPS OR STARTTLS

	CHAPTER 4. UPDATING THE LIST OF CIPHERS DIRECTORY SERVER SUPPORTS
	4.1. THE DIFFERENCE BETWEEN DEFAULT CIPHERS AND AVAILABLE CIPHERS
	4.2. WEAK CIPHERS
	4.3. SETTING CIPHERS DIRECTORY SERVER SUPPORTS USING THE COMMAND LINE
	4.4. SETTING CIPHERS DIRECTORY SERVER SUPPORTS USING THE WEB CONSOLE

	CHAPTER 5. CHANGING THE CA TRUST FLAGS
	5.1. CHANGING THE CA TRUST FLAGS USING THE COMMAND LINE
	5.2. CHANGING THE CA TRUST FLAGS USING THE WEB CONSOLE

	CHAPTER 6. RENEWING A TLS CERTIFICATE
	6.1. RENEWING A TLS CERTIFICATE USING THE COMMAND LINE

	CHAPTER 7. CONFIGURING CERTIFICATE-BASED AUTHENTICATION
	7.1. SETTING UP CERTIFICATE-BASED AUTHENTICATION
	7.2. ADDING A CERTIFICATE TO A USER

	CHAPTER 8. CONFIGURING MULTI-SUPPLIER REPLICATION WITH CERTIFICATE-BASED AUTHENTICATION
	8.1. PREPARING ACCOUNTS AND A BIND GROUP FOR THE USE IN REPLICATION AGREEMENTS WITH CERTIFICATE-BASED AUTHENTICATION
	8.2. INITIALIZING A NEW SERVER USING A TEMPORARY REPLICATION MANAGER ACCOUNT
	8.3. CONFIGURING MULTI-SUPPLIER REPLICATION WITH CERTIFICATE-BASED AUTHENTICATION

	CHAPTER 9. ENCRYPTING THE REPLICATION CHANGELOG
	9.1. ENCRYPTING THE CHANGELOG USING THE COMMAND LINE

	CHAPTER 10. ENABLING MEMBERS OF A GROUP TO BACK UP DIRECTORY SERVER AND PERFORMING THE BACKUP AS ONE OF THE GROUP MEMBERS
	10.1. ENABLING A GROUP TO BACK UP DIRECTORY SERVER
	10.2. PERFORMING A BACKUP AS A REGULAR USER

	CHAPTER 11. ENABLING MEMBERS OF A GROUP TO EXPORT DATA AND PERFORMING THE EXPORT AS ONE OF THE GROUP MEMBERS
	11.1. ENABLING A GROUP TO EXPORT DATA
	11.2. PERFORMING AN EXPORT AS A REGULAR USER

	CHAPTER 12. MANAGING ACCESS CONTROL INSTRUCTIONS
	12.1. ACI PLACEMENT
	12.2. THE STRUCTURE OF AN ACI
	12.3. ACI EVALUATION
	12.4. LIMITATIONS OF ACIS
	12.5. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION TOPOLOGY
	12.6. DISPLAYING, ADDING, DELETING, AND UPDATING ACIS
	12.7. DEFINING ACI TARGETS
	12.7.1. The syntax of target rules
	12.7.2. Targeting a directory entry
	12.7.3. Targeting attributes
	12.7.4. Targeting entries and attributes using LDAP filters
	12.7.5. Targeting attribute values using LDAP filters
	12.7.6. Targeting source and destination DNs

	12.8. ADVANCED USAGE OF TARGET RULES
	12.8.1. Delegating permissions to create and maintain groups
	12.8.2. Targeting both an entry and attributes
	12.8.3. Targeting certain attributes of entries matching a filter
	12.8.4. Targeting a single directory entry

	12.9. DEFINING ACI PERMISSIONS
	12.9.1. The syntax of permission rules
	12.9.2. User rights in permission rules
	12.9.3. Rights required for LDAP operations

	12.10. DEFINING ACI BIND RULES
	12.10.1. The syntax of bind rules
	12.10.2. Defining user-based access
	12.10.3. Defining group-based access
	12.10.4. Defining access based on value matching
	12.10.5. Defining access from specific IP addresses or ranges
	12.10.6. Defining access from a specific host or domain
	12.10.7. Requiring a certain level of security in connections
	12.10.8. Defining access at a specific day of the week
	12.10.9. Defining access at a specific time of day
	12.10.10. Defining access based on the authentication method
	12.10.11. Defining access based on roles
	12.10.12. Combining bind rules using Boolean operators

	CHAPTER 13. RUNNING DIRECTORY SERVER IN FIPS MODE
	13.1. ENABLING THE FIPS MODE
	13.2. ADDITIONAL RESOURCES

	CHAPTER 14. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY
	14.1. CONFIGURING WHETHER TO LOCK ACCOUNTS WHEN REACHING OR EXCEEDING THE CONFIGURED MAXIMUM ATTEMPTS
	14.2. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY USING THE COMMAND LINE
	14.3. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY USING THE WEB CONSOLE

	CHAPTER 15. DISABLING ANONYMOUS BINDS
	15.1. DISABLING ANONYMOUS BINDS USING THE COMMAND LINE
	15.2. DISABLING ANONYMOUS BINDS USING THE WEB CONSOLE

	CHAPTER 16. SYNCHRONIZING ACCOUNT LOCKOUT ATTRIBUTES ACROSS ALL SERVERS IN A REPLICATION ENVIRONMENT
	16.1. HOW DIRECTORY SERVER HANDLES PASSWORD AND ACCOUNT LOCKOUT POLICIES IN A REPLICATION ENVIRONMENT
	16.2. CONFIGURING DIRECTORY SERVER TO REPLICATE ACCOUNT LOCKOUT ATTRIBUTES

	CHAPTER 17. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES
	17.1. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME THE LAST SUCCESSFUL LOGIN
	17.2. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME AFTER YOU CREATED THEM
	17.3. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME AFTER PASSWORD EXPIRY
	17.4. AUTOMATICALLY DISABLING ACCOUNT ON BOTH ACCOUNT INACTIVITY AND PASSWORD EXPIRATION

	CHAPTER 18. RE-ENABLING ACCOUNTS THAT REACHED THE INACTIVITY LIMIT
	18.1. RE-ENABLING ACCOUNTS INACTIVATED BY THE ACCOUNT POLICY PLUG-IN

	CHAPTER 19. TRACKING THE LAST LOGIN TIME WITHOUT SETTING A LOCKOUT POLICY
	19.1. CONFIGURING THE ACCOUNT POLICY PLUG-IN TO RECORD THE LAST LOGIN TIME

	CHAPTER 20. SETTING ACCESS CONTROL ON THE DIRECTORY MANAGER ACCOUNT
	20.1. ABOUT ACCESS CONTROLS ON THE DIRECTORY MANAGER ACCOUNT
	20.2. CONFIGURING THE ROOTDN ACCESS CONTROL PLUG-IN USING THE COMMAND LINE
	20.3. CONFIGURING THE ROOTDN ACCESS CONTROL PLUG-IN USING THE WEB CONSOLE

	CHAPTER 21. MANAGING ATTRIBUTE ENCRYPTION
	21.1. KEYS DIRECTORY SERVER USES FOR ATTRIBUTE ENCRYPTION
	21.2. ENABLING ATTRIBUTE ENCRYPTION USING THE COMMAND LINE
	21.3. ENABLING ATTRIBUTE ENCRYPTION USING THE WEB CONSOLE
	21.4. GENERAL CONSIDERATIONS AFTER ENABLING ATTRIBUTE ENCRYPTION
	21.5. UPDATING THE TLS CERTIFICATES USED FOR ATTRIBUTE ENCRYPTION

