
Red Hat Enterprise Linux 7

Kernel Administration Guide

Using modules, kpatch, or kdump to manage Linux kernel in RHEL

Last Updated: 2024-05-21

Red Hat Enterprise Linux 7 Kernel Administration Guide

Using modules, kpatch, or kdump to manage Linux kernel in RHEL

Jaroslav Klech
Red Hat Customer Content Services
jklech@redhat.com

Sujata Kurup
Red Hat Customer Content Services
skurup@redhat.com

Khushbu Borole
Red Hat Customer Content Services
kborole@redhat.com

Marie Dolezelova
Red Hat Customer Content Services

Mark Flitter
Red Hat Customer Content Services

Douglas Silas
Red Hat Customer Content Services

Eliska Slobodova
Red Hat Customer Content Services

Jaromir Hradilek
Red Hat Customer Content Services

Maxim Svistunov
Red Hat Customer Content Services

Robert Krátký
Red Hat Customer Content Services

Stephen Wadeley
Red Hat Customer Content Services

Florian Nadge
Red Hat Customer Content Services

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Kernel Administration Guide documents tasks for maintaining the Red Hat Enterprise Linux 7
kernel. This release, includes information on using kpatch, managing kernel modules, and manually
updating the kernel.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. WORKING WITH KERNEL MODULES
1.1. WHAT IS A KERNEL MODULE?
1.2. KERNEL MODULE DEPENDENCIES
1.3. LISTING CURRENTLY-LOADED MODULES
1.4. DISPLAYING INFORMATION ABOUT A MODULE
1.5. LOADING KERNEL MODULES AT SYSTEM RUNTIME
1.6. UNLOADING KERNEL MODULES AT SYSTEM RUNTIME
1.7. LOADING KERNEL MODULES AUTOMATICALLY AT SYSTEM BOOT TIME
1.8. PREVENTING KERNEL MODULES FROM BEING AUTOMATICALLY LOADED AT SYSTEM BOOT TIME
1.9. SIGNING KERNEL MODULES FOR SECURE BOOT

1.9.1. Prerequisites
1.9.2. Kernel module authentication

1.9.2.1. Sources for public keys used to authenticate kernel modules
1.9.2.2. Kernel module authentication requirements

1.9.3. Generating a public and private X.509 key pair
1.9.4. Enrolling public key on target system

1.9.4.1. Factory firmware image including public key
1.9.4.2. System administrator manually adding public key to the MOK list

1.9.5. Signing kernel module with the private key
1.9.6. Loading signed kernel module

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES
2.1. WHAT IS A KERNEL TUNABLE?
2.2. HOW TO WORK WITH KERNEL TUNABLES

2.2.1. Using the sysctl command
2.2.2. Modifying files in /etc/sysctl.d

2.3. WHAT TUNABLES CAN BE CONTROLLED?
2.3.1. Network interface tunables
2.3.2. Global kernel tunables

CHAPTER 3. LISTING OF KERNEL PARAMETERS AND VALUES
3.1. KERNEL COMMAND-LINE PARAMETERS

3.1.1. Setting kernel command-line parameters
3.1.2. What kernel command-line parameters can be controlled

3.1.2.1. Hardware specific kernel command-line parameters

CHAPTER 4. KERNEL FEATURES
4.1. CONTROL GROUPS

4.1.1. What is a control group?
4.1.2. What is a namespace?
4.1.3. Supported namespaces

4.2. KERNEL SOURCE CHECKER
4.2.1. Usage

4.3. DIRECT ACCESS FOR FILES (DAX)
4.4. MEMORY PROTECTION KEYS FOR USERSPACE (ALSO KNOWN AS PKU, OR PKEYS)
4.5. KERNEL ADRESS SPACE LAYOUT RANDOMIZATION
4.6. ADVANCED ERROR REPORTING (AER)

4.6.1. What is AER
4.6.2. Collecting and displaying AER messages

5

6
6
6
7
8
8
9

10
11

13
14
14
15
16
17
18
18
18
19
19

21
21
21
21
21
22
22
32

36
36
36
37
37

39
39
39
39
39
40
40
40
41
41

42
42
42

Table of Contents

1

. .

. .

. .

CHAPTER 5. MANUALLY UPGRADING THE KERNEL
5.1. OVERVIEW OF KERNEL PACKAGES
5.2. PREPARING TO UPGRADE
5.3. DOWNLOADING THE UPGRADED KERNEL
5.4. PERFORMING THE UPGRADE
5.5. VERIFYING THE INITIAL RAM FILE SYSTEM IMAGE

Verifying the initial RAM file system image and kernel on IBM eServer System i
Reversing the changes made to the initial RAM file system image
Listing the contents of the initial RAM file system image

5.6. VERIFYING THE BOOT LOADER

CHAPTER 6. APPLYING PATCHES WITH KERNEL LIVE PATCHING
6.1. LIMITATIONS OF KPATCH
6.2. SUPPORT FOR THIRD-PARTY LIVE PATCHING
6.3. ACCESS TO KERNEL LIVE PATCHES
6.4. COMPONENTS OF KERNEL LIVE PATCHING
6.5. HOW KERNEL LIVE PATCHING WORKS
6.6. ENABLING KERNEL LIVE PATCHING

6.6.1. Subscribing to the live patching stream
Prerequisites
Procedure
Additional resources

6.7. UPDATING KERNEL PATCH MODULES
Prerequisites
Procedure

Additional resources
6.8. DISABLING KERNEL LIVE PATCHING

6.8.1. Removing the live patching package
Prerequisites
Procedure
Additional resources

6.8.2. Uninstalling the kernel patch module
Prerequisites
Procedure
Additional resources

6.8.3. Disabling kpatch.service
Prerequisites
Procedure
Additional resources

CHAPTER 7. KERNEL CRASH DUMP GUIDE
7.1. INTRODUCTION TO KDUMP

7.1.1. About kdump and kexec
7.1.2. Memory requirements

7.2. INSTALLING AND CONFIGURING KDUMP
7.2.1. Installing kdump
7.2.2. Configuring kdump on the command line

7.2.2.1. Configuring the memory usage
7.2.2.2. Configuring the kdump target
7.2.2.3. Configuring the core collector
7.2.2.4. Configuring the default action
7.2.2.5. Enabling the service

7.2.3. Configuring kdump in the graphical user interface

44
44
45
46
47
47
49
49
50
50

52
52
52
53
53
53
54
54
55
55
56
56
56
56
56
56
57
57
57
57
58
58
58
59
59
59
59
60

61
61
61
61

62
62
63
63
64
66
66
66
67

Red Hat Enterprise Linux 7 Kernel Administration Guide

2

. .

. .

7.2.3.1. Configuring the memory usage
7.2.3.2. Configuring the kdump target
7.2.3.3. Configuring the core collector
7.2.3.4. Configuring the default action
7.2.3.5. Enabling the service

7.3. BLACKLISTING KERNEL DRIVERS FOR KDUMP
7.4. TESTING THE KDUMP CONFIGURATION

7.4.1. Additional resources
7.4.1.1. Installed documentation
7.4.1.2. Online documentation

7.5. FIRMWARE ASSISTED DUMP MECHANISMS
7.5.1. The case for firmware assisted dump
7.5.2. Using fadump on IBM PowerPC hardware
7.5.3. Firmware assisted dump methods on IBM Z
7.5.4. Using sadump on Fujitsu PRIMEQUEST systems

7.6. ANALYZING A CORE DUMP
7.6.1. Installing the crash utility
7.6.2. Running the crash utility
7.6.3. Displaying the message buffer
7.6.4. Displaying a backtrace
7.6.5. Displaying a process status
7.6.6. Displaying virtual memory information
7.6.7. Displaying open files
7.6.8. Exiting the utility

7.7. FREQUENTLY ASKED QUESTIONS
7.8. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS

7.8.1. Memory requirements for kdump
7.8.2. Minimum threshold for automatic memory reservation
7.8.3. Supported kdump targets
7.8.4. Supported kdump filtering levels
7.8.5. Supported default actions
7.8.6. Estimating kdump size
7.8.7. Support for architectures on kernel and kernel-alt packages

7.9. USING KEXEC TO REBOOT THE KERNEL
7.9.1. Rebooting kernel with kexec

7.10. PORTAL LABS RELEVANT TO KDUMP
7.10.1. Kdump helper
7.10.2. Kernel oops analyzer

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM
8.1. THE KERNEL INTEGRITY SUBSYSTEM
8.2. INTEGRITY MEASUREMENT ARCHITECTURE
8.3. EXTENDED VERIFICATION MODULE
8.4. TRUSTED AND ENCRYPTED KEYS
8.5. ENABLING INTEGRITY MEASUREMENT ARCHITECTURE AND EXTENDED VERIFICATION MODULE
8.6. COLLECTING FILE HASHES WITH INTEGRITY MEASUREMENT ARCHITECTURE

CHAPTER 9. REVISION HISTORY

67
68
69
70
71
72
72
73
73
73
74
74
74
75
75
76
76
76
77
78
79
79
80
80
80
82
82
83
84
85
85
86
87
88
88
89
89
89

90
90
91
91
91
91

94

96

Table of Contents

3

Red Hat Enterprise Linux 7 Kernel Administration Guide

4

PREFACE
The Kernel Administration Guide describes working with the kernel and shows several practical tasks.
Beginning with information on using kernel modules, the guide then covers interaction with the sysfs
facility, manual upgrade of the kernel and using kpatch. The guide also introduces the crash dump
mechanism, which steps through the process of setting up and testing vmcore collection in the event of
a kernel failure.

The Kernel Administration Guide also covers selected use cases of managing the kernel and includes
reference material about command line options, kernel tunables (also known as switches), and a brief
discussion of kernel features.

PREFACE

5

CHAPTER 1. WORKING WITH KERNEL MODULES
This Chapter explains:

What is a kernel module.

How to use the kmod utilities to manage modules and their dependencies.

How to configure module parameters to control behavior of the kernel modules.

How to load modules at boot time.

NOTE

In order to use the kernel module utilities described in this chapter, first ensure the kmod
package is installed on your system by running, as root:

yum install kmod

1.1. WHAT IS A KERNEL MODULE?

The Linux kernel is monolithic by design. However, it is compiled with optional or additional modules as
required by each use case. This means that you can extend the kernel’s capabilities through the use of
dynamically-loaded kernel modules. A kernel module can provide:

A device driver which adds support for new hardware.

Support for a file system such as GFS2 or NFS.

Like the kernel itself, modules can take parameters that customize their behavior. Though the default
parameters work well in most cases. In relation to kernel modules, user-space tools can do the following
operations:

Listing modules currently loaded into a running kernel.

Querying all available modules for available parameters and module-specific information.

Loading or unloading (removing) modules dynamically into or from a running kernel.

Many of these utilities, which are provided by the kmod package, take module dependencies into
account when performing operations. As a result, manual dependency-tracking is rarely necessary.

On modern systems, kernel modules are automatically loaded by various mechanisms when needed.
However, there are occasions when it is necessary to load or unload modules manually. For example,
when one module is preferred over another although either is able to provide basic functionality, or when
a module performs unexpectedly.

1.2. KERNEL MODULE DEPENDENCIES

Certain kernel modules sometimes depend on one or more other kernel modules. The
/lib/modules/<KERNEL_VERSION>/modules.dep file contains a complete list of kernel module
dependencies for the respective kernel version.

The dependency file is generated by the depmod program, which is a part of the kmod package. Many

Red Hat Enterprise Linux 7 Kernel Administration Guide

6

The dependency file is generated by the depmod program, which is a part of the kmod package. Many
of the utilities provided by kmod take module dependencies into account when performing operations
so that manual dependency-tracking is rarely necessary.

WARNING

The code of kernel modules is executed in kernel-space in the unrestricted mode.
Because of this, you should be mindful of what modules you are loading.

Additional resources

For more information about /lib/modules/<KERNEL_VERSION>/modules.dep, refer to the
modules.dep(5) manual page.

For further details including the synopsis and options of depmod, see the depmod(8) manual
page.

1.3. LISTING CURRENTLY-LOADED MODULES

You can list all kernel modules that are currently loaded into the kernel by running the lsmod command,
for example:

lsmod
Module Size Used by
tcp_lp 12663 0
bnep 19704 2
bluetooth 372662 7 bnep
rfkill 26536 3 bluetooth
fuse 87661 3
ebtable_broute 12731 0
bridge 110196 1 ebtable_broute
stp 12976 1 bridge
llc 14552 2 stp,bridge
ebtable_filter 12827 0
ebtables 30913 3 ebtable_broute,ebtable_nat,ebtable_filter
ip6table_nat 13015 1
nf_nat_ipv6 13279 1 ip6table_nat
iptable_nat 13011 1
nf_conntrack_ipv4 14862 4
nf_defrag_ipv4 12729 1 nf_conntrack_ipv4
nf_nat_ipv4 13263 1 iptable_nat
nf_nat 21798 4 nf_nat_ipv4,nf_nat_ipv6,ip6table_nat,iptable_nat
[output truncated]

The lsmod output specifies three columns:

Module

The name of a kernel module currently loaded in memory.

Size



CHAPTER 1. WORKING WITH KERNEL MODULES

7

The amount of memory the kernel module uses in kilobytes.

Used by

A decimal number representing how many dependencies there are on the Module field.

A comma separated string of dependent Module names. Using this list, you can first unload
all the modules depending on the module you want to unload.

Finally, note that lsmod output is less verbose and considerably easier to read than the content of the
/proc/modules pseudo-file.

1.4. DISPLAYING INFORMATION ABOUT A MODULE

You can display detailed information about a kernel module using the modinfo <MODULE_NAME>
command.

NOTE

When entering the name of a kernel module as an argument to one of the kmod utilities,
do not append a .ko extension to the end of the name. Kernel module names do not have
extensions; their corresponding files do.

Example 1.1. Listing information about a kernel module with lsmod

To display information about the e1000e module, which is the Intel PRO/1000 network driver, enter
the following command as root:

modinfo e1000e
filename: /lib/modules/3.10.0-
121.el7.x86_64/kernel/drivers/net/ethernet/intel/e1000e/e1000e.ko
version: 2.3.2-k
license: GPL
description: Intel(R) PRO/1000 Network Driver
author: Intel Corporation,

1.5. LOADING KERNEL MODULES AT SYSTEM RUNTIME

The optimal way to expand the functionality of the Linux kernel is by loading kernel modules. The
following procedure describes how to use the modprobe command to find and load a kernel module
into the currently running kernel.

Prerequisites

Root permissions.

The kmod package is installed.

The respective kernel module is not loaded. To ensure this is the case, see Listing Currently
Loaded Modules.

Procedure

Red Hat Enterprise Linux 7 Kernel Administration Guide

8

1. Select a kernel module you want to load.
The modules are located in the /lib/modules/$(uname -r)/kernel/<SUBSYSTEM>/ directory.

2. Load the relevant kernel module:

modprobe <MODULE_NAME>

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

3. Optionally, verify the relevant module was loaded:

$ lsmod | grep <MODULE_NAME>

If the module was loaded correctly, this command displays the relevant kernel module. For
example:

$ lsmod | grep serio_raw
serio_raw 16384 0

IMPORTANT

The changes described in this procedure will not persist after rebooting the system. For
information on how to load kernel modules to persist across system reboots, see
Loading kernel modules automatically at system boot time .

Additional resources

For further details about modprobe, see the modprobe(8) manual page.

1.6. UNLOADING KERNEL MODULES AT SYSTEM RUNTIME

At times, you find that you need to unload certain kernel modules from the running kernel. The following
procedure describes how to use the modprobe command to find and unload a kernel module at system
runtime from the currently loaded kernel.

Prerequisites

Root permissions.

The kmod package is installed.

Procedure

1. Execute the lsmod command and select a kernel module you want to unload.
If a kernel module has dependencies, unload those prior to unloading the kernel module. For
details on identifying modules with dependencies, see Listing Currently Loaded Modules and
Kernel module dependencies.

CHAPTER 1. WORKING WITH KERNEL MODULES

9

2. Unload the relevant kernel module:

modprobe -r <MODULE_NAME>

When entering the name of a kernel module, do not append the .ko.xz extension to the end of
the name. Kernel module names do not have extensions; their corresponding files do.

WARNING

Do not unload kernel modules when they are used by the running system.
Doing so can lead to an unstable or non-operational system.

3. Optionally, verify the relevant module was unloaded:

$ lsmod | grep <MODULE_NAME>

If the module was unloaded successfully, this command does not display any output.

IMPORTANT

After finishing this procedure, the kernel modules that are defined to be automatically
loaded on boot, will not stay unloaded after rebooting the system. For information on
how to counter this outcome, see Preventing kernel modules from being automatically
loaded at system boot time.

Additional resources

For further details about modprobe, see the modprobe(8) manual page.

1.7. LOADING KERNEL MODULES AUTOMATICALLY AT SYSTEM BOOT
TIME

The following procedure describes how to configure a kernel module so that it is loaded automatically
during the boot process.

Prerequisites

Root permissions.

The kmod package is installed.

Procedure

1. Select a kernel module you want to load during the boot process.
The modules are located in the /lib/modules/$(uname -r)/kernel/<SUBSYSTEM>/ directory.

2. Create a configuration file for the module:



Red Hat Enterprise Linux 7 Kernel Administration Guide

10

echo <MODULE_NAME> > /etc/modules-load.d/<MODULE_NAME>.conf

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

3. Optionally, after reboot, verify the relevant module was loaded:

$ lsmod | grep <MODULE_NAME>

The example command above should succeed and display the relevant kernel module.

IMPORTANT

The changes described in this procedure will persist after rebooting the system.

Additional resources

For further details about loading kernel modules during the boot process, see the modules-
load.d(5) manual page.

1.8. PREVENTING KERNEL MODULES FROM BEING AUTOMATICALLY
LOADED AT SYSTEM BOOT TIME

The following procedure describes how to add a kernel module to a denylist so that it will not be
automatically loaded during the boot process.

Prerequisites

Root permissions.

The kmod package is installed.

Ensure that a kernel module in a denylist is not vital for your current system configuration.

Procedure

1. Select a kernel module that you want to put in a denylist:

$ lsmod

Module Size Used by
fuse 126976 3
xt_CHECKSUM 16384 1
ipt_MASQUERADE 16384 1
uinput 20480 1
xt_conntrack 16384 1
… ​

The lsmod command displays a list of modules loaded to the currently running kernel.

CHAPTER 1. WORKING WITH KERNEL MODULES

11

Alternatively, identify an unloaded kernel module you want to prevent from potentially
loading.
All kernel modules are located in the
/lib/modules/<KERNEL_VERSION>/kernel/<SUBSYSTEM>/ directory.

2. Create a configuration file for a denylist:

vim /etc/modprobe.d/blacklist.conf

 # Blacklists <KERNEL_MODULE_1>
 blacklist <MODULE_NAME_1>
 install <MODULE_NAME_1> /bin/false

 # Blacklists <KERNEL_MODULE_2>
 blacklist <MODULE_NAME_2>
 install <MODULE_NAME_2> /bin/false

 # Blacklists <KERNEL_MODULE_n>
 blacklist <MODULE_NAME_n>
 install <MODULE_NAME_n> /bin/false
 … ​

The example shows the contents of the blacklist.conf file, edited by the vim editor. The
blacklist line ensures that the relevant kernel module will not be automatically loaded during
the boot process. The blacklist command, however, does not prevent the module from being
loaded as a dependency for another kernel module that is not in a denylist. Therefore the install
line causes the /bin/false to run instead of installing a module.

The lines starting with a hash sign are comments to make the file more readable.

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

3. Create a backup copy of the current initial ramdisk image before rebuilding:

cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).bak.$(date +%m-%d-
%H%M%S).img

The command above creates a backup initramfs image in case the new version has an
unexpected problem.

Alternatively, create a backup copy of other initial ramdisk image which corresponds to the
kernel version for which you want to put kernel modules in a denylist:

cp /boot/initramfs-<SOME_VERSION>.img /boot/initramfs-
<SOME_VERSION>.img.bak.$(date +%m-%d-%H%M%S)

4. Generate a new initial ramdisk image to reflect the changes:

dracut -f -v

Red Hat Enterprise Linux 7 Kernel Administration Guide

12

If you are building an initial ramdisk image for a different kernel version than you are
currently booted into, specify both target initramfs and kernel version:

dracut -f -v /boot/initramfs-<TARGET_VERSION>.img
<CORRESPONDING_TARGET_KERNEL_VERSION>

5. Reboot the system:

$ reboot

IMPORTANT

The changes described in this procedure will take effect and persist after rebooting the
system. If you improperly put a key kernel module in a denylist, you can face an unstable
or non-operational system.

Additional resources

For further details concerning the dracut utility, refer to the dracut(8) manual page.

For more information on preventing automatic loading of kernel modules at system boot time
on Red Hat Enterprise Linux 8 and earlier versions, see How do I prevent a kernel module from
loading automatically?

1.9. SIGNING KERNEL MODULES FOR SECURE BOOT

Red Hat Enterprise Linux 7 includes support for the UEFI Secure Boot feature, which means that
Red Hat Enterprise Linux 7 can be installed and run on systems where UEFI Secure Boot is enabled.
Note that Red Hat Enterprise Linux 7 does not require the use of Secure Boot on UEFI systems.

If Secure Boot is enabled, the UEFI operating system boot loaders, the Red Hat Enterprise Linux kernel,
and all kernel modules must be signed with a private key and authenticated with the corresponding
public key. If they are not signed and authenticated, the system will not be allowed to finish the booting
process.

The Red Hat Enterprise Linux 7 distribution includes:

Signed boot loaders

Signed kernels

Signed kernel modules

In addition, the signed first-stage boot loader and the signed kernel include embedded Red Hat public
keys. These signed executable binaries and embedded keys enable Red Hat Enterprise Linux 7 to install,
boot, and run with the Microsoft UEFI Secure Boot Certification Authority keys that are provided by the
UEFI firmware on systems that support UEFI Secure Boot.

NOTE

Not all UEFI-based systems include support for Secure Boot.

The information provided in the following sections describes the steps to self-sign privately built kernel
modules for use with Red Hat Enterprise Linux 7 on UEFI-based build systems where Secure Boot is

CHAPTER 1. WORKING WITH KERNEL MODULES

13

https://access.redhat.com/solutions/41278

enabled. These sections also provide an overview of available options for importing your public key into
a target system where you want to deploy your kernel modules.

To sign and load kernel modules, you need to:

1. Have the relevant utilities installed on your system .

2. Authenticate a kernel module .

3. Generate a public and private key pair .

4. Import the public key on the target system .

5. Sign the kernel module with the private key .

6. Load the signed kernel module .

1.9.1. Prerequisites

To be able to sign externally built kernel modules, install the utilities listed in the following table on the
build system.

Table 1.1. Required utilities

Utility Provided by package Used on Purpose

openssl openssl Build system Generates public and
private X.509 key pair

sign-file kernel-devel Build system Perl script used to sign
kernel modules

perl perl Build system Perl interpreter used to
run the signing script

mokutil mokutil Target system Optional utility used to
manually enroll the
public key

keyctl keyutils Target system Optional utility used to
display public keys in the
system key ring

NOTE

The build system, where you build and sign your kernel module, does not need to have
UEFI Secure Boot enabled and does not even need to be a UEFI-based system.

1.9.2. Kernel module authentication

In Red Hat Enterprise Linux 7, when a kernel module is loaded, the module’s signature is checked using
the public X.509 keys on the kernel’s system key ring, excluding keys on the kernel’s system black-list
key ring. The following sections provide an overview of sources of keys/keyrings, examples of loaded

Red Hat Enterprise Linux 7 Kernel Administration Guide

14

keys from different sources in the system. Also, the user can see what it takes to authenticate a kernel
module.

1.9.2.1. Sources for public keys used to authenticate kernel modules

During boot, the kernel loads X.509 keys into the system key ring or the system black-list key ring from
a set of persistent key stores as shown in the table below.

Table 1.2. Sources for system key rings

Source of X.509 keys User ability to add keys UEFI Secure Boot state Keys loaded during
boot

Embedded in kernel No - .system_keyring

UEFI Secure Boot "db" Limited Not enabled No

Enabled .system_keyring

UEFI Secure Boot "dbx" Limited Not enabled No

Enabled .system_keyring

Embedded in shim.efi
boot loader

No Not enabled No

Enabled .system_keyring

Machine Owner Key
(MOK) list

Yes Not enabled No

Enabled .system_keyring

If the system is not UEFI-based or if UEFI Secure Boot is not enabled, then only the keys that are
embedded in the kernel are loaded onto the system key ring. In that case you have no ability to augment
that set of keys without rebuilding the kernel.

The system black list key ring is a list of X.509 keys which have been revoked. If your module is signed by
a key on the black list then it will fail authentication even if your public key is in the system key ring.

You can display information about the keys on the system key rings using the keyctl utility. The
following is a shortened example output from a Red Hat Enterprise Linux 7 system where UEFI Secure
Boot is not enabled.

keyctl list %:.system_keyring
3 keys in keyring:
...asymmetric: Red Hat Enterprise Linux Driver Update Program (key 3): bf57f3e87...
...asymmetric: Red Hat Enterprise Linux kernel signing key: 4249689eefc77e95880b...
...asymmetric: Red Hat Enterprise Linux kpatch signing key: 4d38fd864ebe18c5f0b7...

The following is a shortened example output from a Red Hat Enterprise Linux 7 system where UEFI
Secure Boot is enabled.

CHAPTER 1. WORKING WITH KERNEL MODULES

15

keyctl list %:.system_keyring
6 keys in keyring:
...asymmetric: Red Hat Enterprise Linux Driver Update Program (key 3): bf57f3e87...
...asymmetric: Red Hat Secure Boot (CA key 1): 4016841644ce3a810408050766e8f8a29...
...asymmetric: Microsoft Corporation UEFI CA 2011: 13adbf4309bd82709c8cd54f316ed...
...asymmetric: Microsoft Windows Production PCA 2011: a92902398e16c49778cd90f99e...
...asymmetric: Red Hat Enterprise Linux kernel signing key: 4249689eefc77e95880b...
...asymmetric: Red Hat Enterprise Linux kpatch signing key: 4d38fd864ebe18c5f0b7...

The above output shows the addition of two keys from the UEFI Secure Boot "db" keys as well as the
Red Hat Secure Boot (CA key 1), which is embedded in the shim.efi boot loader. You can also look for
the kernel console messages that identify the keys with an UEFI Secure Boot related source. These
include UEFI Secure Boot db, embedded shim, and MOK list.

dmesg | grep 'EFI: Loaded cert'
[5.160660] EFI: Loaded cert 'Microsoft Windows Production PCA 2011: a9290239...
[5.160674] EFI: Loaded cert 'Microsoft Corporation UEFI CA 2011: 13adbf4309b...
[5.165794] EFI: Loaded cert 'Red Hat Secure Boot (CA key 1): 4016841644ce3a8...

1.9.2.2. Kernel module authentication requirements

This section explains what conditions have to be met for loading kernel modules on systems with
enabled UEFI Secure Boot functionality.

If UEFI Secure Boot is enabled or if the module.sig_enforce kernel parameter has been specified, you
can only load signed kernel modules that are authenticated using a key on the system key ring. In
addition, the public key must not be on the system black list key ring.

If UEFI Secure Boot is disabled and if the module.sig_enforce kernel parameter has not been
specified, you can load unsigned kernel modules and signed kernel modules without a public key. This is
summarized in the table below.

Table 1.3. Kernel module authentication requirements for loading

Module signed Public key
found and
signature valid

UEFI Secure
Boot state

sig_enforce Module load Kernel tainted

Unsigned - Not enabled Not enabled Succeeds Yes

Not enabled Enabled Fails -

Enabled - Fails -

Signed No Not enabled Not enabled Succeeds Yes

Not enabled Enabled Fails -

Enabled - Fails -

Signed Yes Not enabled Not enabled Succeeds No

Red Hat Enterprise Linux 7 Kernel Administration Guide

16

Not enabled Enabled Succeeds No

Enabled - Succeeds No

Module signed Public key
found and
signature valid

UEFI Secure
Boot state

sig_enforce Module load Kernel tainted

1.9.3. Generating a public and private X.509 key pair

You need to generate a public and private X.509 key pair to succeed in your efforts of using kernel
modules on a Secure Boot-enabled system. You will later use the private key to sign the kernel module.
You will also have to add the corresponding public key to the Machine Owner Key (MOK) for Secure
Boot to validate the signed module. For instructions to do so, see Section 1.9.4.2, “System administrator
manually adding public key to the MOK list”.

Some of the parameters for this key pair generation are best specified with a configuration file.

1. Create a configuration file with parameters for the key pair generation:

cat << EOF > configuration_file.config
[req]
default_bits = 4096
distinguished_name = req_distinguished_name
prompt = no
string_mask = utf8only
x509_extensions = myexts

[req_distinguished_name]
O = Organization
CN = Organization signing key
emailAddress = E-mail address

[myexts]
basicConstraints=critical,CA:FALSE
keyUsage=digitalSignature
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid
EOF

2. Create an X.509 public and private key pair as shown in the following example:

openssl req -x509 -new -nodes -utf8 -sha256 -days 36500 \
-batch -config configuration_file.config -outform DER \
-out my_signing_key_pub.der \
-keyout my_signing_key.priv

The public key will be written to the my_signing_key_pub.der file and the private key will be
written to the my_signing_key.priv file.

3. Enroll your public key on all systems where you want to authenticate and load your kernel
module.
For details, see Section 1.9.4, “Enrolling public key on target system”.

CHAPTER 1. WORKING WITH KERNEL MODULES

17

WARNING

Apply strong security measures and access policies to guard the contents of your
private key. In the wrong hands, the key could be used to compromise any system
which is authenticated by the corresponding public key.

1.9.4. Enrolling public key on target system

When Red Hat Enterprise Linux 7 boots on a UEFI-based system with Secure Boot enabled, the kernel
loads onto the system key ring all public keys that are in the Secure Boot db key database, but not in the
dbx database of revoked keys. The sections below describe different ways of importing a public key on a
target system so that the system key ring is able to use the public key to authenticate a kernel module.

1.9.4.1. Factory firmware image including public key

To facilitate authentication of your kernel module on your systems, consider requesting your system
vendor to incorporate your public key into the UEFI Secure Boot key database in their factory firmware
image.

1.9.4.2. System administrator manually adding public key to the MOK list

The Machine Owner Key (MOK) facility feature can be used to expand the UEFI Secure Boot key
database. When Red Hat Enterprise Linux 7 boots on a UEFI-enabled system with Secure Boot enabled,
the keys on the MOK list are also added to the system key ring in addition to the keys from the key
database. The MOK list keys are also stored persistently and securely in the same fashion as the Secure
Boot database keys, but these are two separate facilities. The MOK facility is supported by shim.efi,
MokManager.efi, grubx64.efi, and the Red Hat Enterprise Linux 7 mokutil utility.

Enrolling a MOK key requires manual interaction by a user at the UEFI system console on each target
system. Nevertheless, the MOK facility provides a convenient method for testing newly generated key
pairs and testing kernel modules signed with them.

To add your public key to the MOK list:

1. Request the addition of your public key to the MOK list:

mokutil --import my_signing_key_pub.der

You will be asked to enter and confirm a password for this MOK enrollment request.

2. Reboot the machine.
The pending MOK key enrollment request will be noticed by shim.efi and it will launch
MokManager.efi to allow you to complete the enrollment from the UEFI console.

3. Enter the password you previously associated with this request and confirm the enrollment.
Your public key is added to the MOK list, which is persistent.

Once a key is on the MOK list, it will be automatically propagated to the system key ring on this and
subsequent boots when UEFI Secure Boot is enabled.



Red Hat Enterprise Linux 7 Kernel Administration Guide

18

1.9.5. Signing kernel module with the private key

Assuming you have your kernel module ready:

Use a Perl script to sign your kernel module with your private key:

perl /usr/src/kernels/$(uname -r)/scripts/sign-file \
sha256 \
my_signing_key.priv\
my_signing_key_pub.der\
my_module.ko

NOTE

The Perl script requires that you provide both the files that contain your private
and the public key as well as the kernel module file that you want to sign.

Your kernel module is in ELF image format and the Perl script computes and appends the
signature directly to the ELF image in your kernel module file. The modinfo utility can be used
to display information about the kernel module’s signature, if it is present. For information on
using modinfo, see Section 1.4, “Displaying information about a module” .

The appended signature is not contained in an ELF image section and is not a formal part of the
ELF image. Therefore, utilities such as readelf will not be able to display the signature on your
kernel module.

Your kernel module is now ready for loading. Note that your signed kernel module is also
loadable on systems where UEFI Secure Boot is disabled or on a non-UEFI system. That means
you do not need to provide both a signed and unsigned version of your kernel module.

1.9.6. Loading signed kernel module

Once your public key is enrolled and is in the system key ring, use mokutil to add your public key to the
MOK list. Then manually load your kernel module with the modprobe command.

1. Optionally, verify that your kernel module will not load before you have enrolled your public key.
For details on how to list currently loaded kernel modules, see Section 1.3, “Listing currently-
loaded modules”.

2. Verify what keys have been added to the system key ring on the current boot:

keyctl list %:.system_keyring

Since your public key has not been enrolled yet, it should not be displayed in the output of the
command.

3. Request enrollment of your public key:

mokutil --import my_signing_key_pub.der

4. Reboot, and complete the enrollment at the UEFI console:

reboot

CHAPTER 1. WORKING WITH KERNEL MODULES

19

5. Verify the keys on the system key ring again:

keyctl list %:.system_keyring

6. Copy the module into the /extra/ directory of the kernel you want:

cp my_module.ko /lib/modules/$(uname -r)/extra/

7. Update the modular dependency list:

depmod -a

8. Load the kernel module and verify that it was successfully loaded:

modprobe -v my_module
lsmod | grep my_module

a. Optionally, to load the module on boot, add it to the /etc/modules-
loaded.d/my_module.conf file:

echo "my_module" > /etc/modules-load.d/my_module.conf

Red Hat Enterprise Linux 7 Kernel Administration Guide

20

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL
TUNABLES

2.1. WHAT IS A KERNEL TUNABLE?

Kernel tunables are used to customize the behavior of Red Hat Enterprise Linux at boot, or on demand
while the system is running. Some hardware parameters are specified at boot time only and cannot be
altered once the system is running, most however, can be altered as required and set permanent for the
next boot.

2.2. HOW TO WORK WITH KERNEL TUNABLES

There are three ways to modify kernel tunables.

1. Using the sysctl command

2. By manually modifying configuration files in the /etc/sysctl.d/ directory

3. Through a shell, interacting with the virtual file system mounted at /proc/sys

NOTE

Not all boot time parameters are under control of the sysfs subsystem, some hardware
specific option must be set on the kernel command line, the Kernel Parameters section of
this guide addresses those options

2.2.1. Using the sysctl command

The sysctl command is used to list, read, and set kernel tunables. It can filter tunables when listing or
reading and set tunables temporarily or permanently.

1. Listing variables

sysctl -a

2. Reading variables

sysctl kernel.version
kernel.version = #1 SMP Fri Jan 19 13:19:54 UTC 2018

3. Writing variables temporarily

sysctl <tunable class>.<tunable>=<value>

4. Writing variables permanently

sysctl -w <tunable class>.<tunable>=<value> >> /etc/sysctl.conf

2.2.2. Modifying files in /etc/sysctl.d

To override a default at boot, you can also manually populate files in /etc/sysctl.d.

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES

21

1. Create a new file in /etc/sysctl.d

vim /etc/sysctl.d/99-custom.conf

2. Include the variables you wish to set, one per line, in the following form

<tunable class>.<tunable> = <value> +
<tunable class>.<tunable> = <value>

3. Save the file

4. Either reboot the machine to make the changes take effect
or
Execute sysctl -p /etc/sysctl.d/99-custom.conf to apply the changes without rebooting

2.3. WHAT TUNABLES CAN BE CONTROLLED?

Tunables are divided into groups by kernel sybsystem. A Red Hat Enterprise Linux system has the
following classes of tunables:

Table 2.1. Table of sysctl interfaces

Class Subsystem

abi Execution domains and personalities

crypto Cryptographic interfaces

debug Kernel debugging interfaces

dev Device specific information

fs Global and specific filesystem tunables

kernel Global kernel tunables

net Network tunables

sunrpc Sun Remote Procedure Call (NFS)

user User Namespace limits

vm Tuning and management of memory, buffer, and
cache

2.3.1. Network interface tunables

System administrators are able to adjust the network configuration on a running system through the
networking tunables.

Networking tunables are included in the /proc/sys/net directory, which contains multiple subdirectories

Red Hat Enterprise Linux 7 Kernel Administration Guide

22

Networking tunables are included in the /proc/sys/net directory, which contains multiple subdirectories
for various networking topics. To adjust the network configuration, system administrators need to
modify the files within such subdirectories.

The most frequently used directories are:

1. /proc/sys/net/core/

2. /proc/sys/net/ipv4/

The /proc/sys/net/core/ directory contains a variety of settings that control the interaction between the
kernel and networking layers. By adjusting some of those tunables, you can improve performance of a
system, for example by increasing the size of a receive queue, increasing the maximum connections or
the memory dedicated to network interfaces. Note that the performance of a system depends on
different aspects according to the individual issues.

The /proc/sys/net/ipv4/ directory contains additional networking settings, which are useful when
preventing attacks on the system or when using the system to act as a router. The directory contains
both IP and TCP variables. For detailed explaination of those variables, see /usr/share/doc/kernel-doc-
<version>/Documentation/networking/ip-sysctl.txt.

Other directories within the /proc/sys/net/ipv4/ directory cover different aspects of the network stack:

1. /proc/sys/net/ipv4/conf/ - allows you to configure each system interface in different ways,
including the use of default settings for unconfigured devices and settings that override all
special configurations

2. /proc/sys/net/ipv4/neigh/ - contains settings for communicating with a host directly connected
to the system and also contains different settings for systems more than one step away

3. /proc/sys/net/ipv4/route/ - contains specifications that apply to routing with any interfaces on
the system

This list of network tunables is relevant to IPv4 interfaces and are accessible from the
/proc/sys/net/ipv4/{all,<interface_name>}/ directory.

Description of the following parameters have been adopted from the kernel documentation sites.[1]

log_martians

Log packets with impossible addresses to kernel log.

Type Default

Boolean 0

Enabled if one or more of conf/{all,interface}/log_martians is set to TRUE

Further Resources

What is the kernel parameter net.ipv4.conf.all.log_martians for?

Why do I see "martian source" logs in the messages file ?

accept_redirects

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES

23

https://access.redhat.com/solutions/27840
https://access.redhat.com/solutions/25157

Accept ICMP redirect messages.

Type Default

Boolean 1

accept_redirects for the interface is enabled under the following conditions:

Both conf/{all,interface}/accept_redirects are TRUE (when forwarding for the interface is
enabled)

At least one of conf/{all,interface}/accept_redirects is TRUE (forwarding for the interface
is disabled)

For more information refer to How to enable or disable ICMP redirects

forwarding

Enable IP forwarding on an interface.

Type Default

Boolean 0

Further Resources

Turning on Packet Forwarding and Nonlocal Binding

mc_forwarding

Do multicast routing.

Type Default

Boolean 0

Read only value

A multicast routing daemon is required.

conf/all/mc_forwarding must also be set to TRUE to enable multicast routing for the
interface

Further Resources

For an explanation of the read only behavior, see Why system reports "permission denied on
key" while setting the kernel parameter "net.ipv4.conf.all.mc_forwarding"?

medium_id

Arbitrary value used to differentiate the devices by the medium they are attached to.

Red Hat Enterprise Linux 7 Kernel Administration Guide

24

https://access.redhat.com/solutions/301743
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/load_balancer_administration/s1-initial-setup-forwarding-vsa
https://access.redhat.com/solutions/326983

Type Default

Integer 0

Notes

Two devices on the same medium can have different id values when the broadcast packets
are received only on one of them.

The default value 0 means that the device is the only interface to its medium

value of -1 means that medium is not known.

Currently, it is used to change the proxy_arp behavior:

the proxy_arp feature is enabled for packets forwarded between two devices attached to
different media.

Further Resources - For examples, see Using the "medium_id" feature in Linux 2.2 and 2.4

proxy_arp

Do proxy arp.

Type Default

Boolean 0

proxy_arp for the interface is enabled if at least one of conf/{all,interface}/proxy_arp is set to
TRUE, otherwise it is disabled

proxy_arp_pvlan

Private VLAN proxy arp.

Type Default

Boolean 0

Allow proxy arp replies back to the same interface, to support features like RFC 3069

shared_media

Send(router) or accept(host) RFC1620 shared media redirects.

Type Default

Boolean 1

Notes

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES

25

http://ja.ssi.bg/medium_id.txt
https://tools.ietf.org/html/rfc3069

Overrides secure_redirects.

shared_media for the interface is enabled if at least one of
conf/{all,interface}/shared_media is set to TRUE

secure_redirects

Accept ICMP redirect messages only to gateways listed in the interface’s current gateway list.

Type Default

Boolean 1

Notes

Even if disabled, RFC1122 redirect rules still apply.

Overridden by shared_media.

secure_redirects for the interface is enabled if at least one of
conf/{all,interface}/secure_redirects is set to TRUE

send_redirects

Send redirects, if router.

Type Default

Boolean 1

Notes
send_redirects for the interface is enabled if at least one of conf/{all,interface}/send_redirects is
set to TRUE

bootp_relay

Accept packets with source address 0.b.c.d destined not to this host as local ones.

Type Default

Boolean 0

Notes

A BOOTP daemon must be enabled to manage these packets

conf/all/bootp_relay must also be set to TRUE to enable BOOTP relay for the interface

Not implemented, see DHCP Relay Agent in the Red Hat Enterprise Linux Networking Guide

accept_source_route

Accept packets with SRR option.

Red Hat Enterprise Linux 7 Kernel Administration Guide

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/dhcp-relay-agent

Type Default

Boolean 1

Notes

conf/all/accept_source_route must also be set to TRUE to accept packets with SRR option
on the interface

accept_local

Accept packets with local source addresses.

Type Default

Boolean 0

Notes

In combination with suitable routing, this can be used to direct packets between two local
interfaces over the wire and have them accepted properly.

rp_filter must be set to a non-zero value in order for accept_local to have an effect.

route_localnet

Do not consider loopback addresses as martian source or destination while routing.

Type Default

Boolean 0

Notes

This enables the use of 127/8 for local routing purposes.

rp_filter

Enable source Validation

Type Default

Integer 0

Value Effect

0 No source validation.

1 Strict mode as defined in RFC3704 Strict Reverse Path

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES

27

2 Loose mode as defined in RFC3704 Loose Reverse Path

Value Effect

Notes

Current recommended practice in RFC3704 is to enable strict mode to prevent IP spoofing
from DDos attacks.

If using asymmetric routing or other complicated routing, then loose mode is recommended.

The highest value from conf/{all,interface}/rp_filter is used when doing source validation on
the {interface}

arp_filter

Type Default

Boolean 0

Value Effect

0 (default) The kernel can respond to arp requests with addresses from other interfaces. It
usually makes sense, because it increases the chance of successful communication.

1 Allows you to have multiple network interfaces on the samesubnet, and have the ARPs for
each interface be answered based on whether or not the kernel would route a packet from
the ARP’d IP out that interface (therefore you must use source based routing for this to
work). In other words it allows control of cards (usually 1) that respond to an arp request.

Note

IP addresses are owned by the complete host on Linux, not by particular interfaces. Only for
more complex setups like load-balancing, does this behavior cause problems.

arp_filter for the interface is enabled if at least one of conf/{all,interface}/arp_filter is set
to TRUE

arp_announce

Define different restriction levels for announcing the local source IP address from IP packets in ARP
requests sent on interface

Type Default

Integer 0

Red Hat Enterprise Linux 7 Kernel Administration Guide

28

Value Effect

0 (default) Use any local address, configured on any interface

1 Try to avoid local addresses that are not in the target’s subnet for this interface. This
mode is useful when target hosts reachable via this interface require the source IP address
in ARP requests to be part of their logical network configured on the receiving interface.
When we generate the request we check all our subnets that include the target IP and
preserve the source address if it is from such subnet. If there is no such subnet we select
source address according to the rules for level 2.

2 Always use the best local address for this target. In this mode we ignore the source address
in the IP packet and try to select local address that we prefer for talks with the target host.
Such local address is selected by looking for primary IP addresses on all our subnets on the
outgoing interface that include the target IP address. If no suitable local address is found
we select the first local address we have on the outgoing interface or on all other
interfaces, with the hope we receive reply for our request and even sometimes no matter
the source IP address we announce.

Notes

The highest value from conf/{all,interface}/arp_announce is used.

Increasing the restriction level gives more chance for receiving answer from the resolved
target while decreasing the level announces more valid sender’s information.

arp_ignore

Define different modes for sending replies in response to received ARP requests that resolve local
target IP addresses

Type Default

Integer 0

Value Effect

0 (default): reply for any local target IP address, configured on any interface

1 reply only if the target IP address is local address configured on the incoming interface

2 reply only if the target IP address is local address configured on the incoming interface and
both with the sender’s IP address are part from same subnet on this interface

3 do not reply for local addresses configured with scope host, only resolutions for global and
link addresses are replied

4-7 reserved

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES

29

8 do not reply for all local addresses The max value from conf/{all,interface}/arp_ignore is
used when ARP request is received on the {interface}

Value Effect

Notes

arp_notify

Define mode for notification of address and device changes.

Type Default

Boolean 0

Value Effect

0 do nothing

1 Generate gratuitous arp requests when device is
brought up or hardware address changes.

Notes

arp_accept

Define behavior for gratuitous ARP frames who’s IP is not already present in the ARP table

Type Default

Boolean 0

Value Effect

0 do not create new entries in the ARP table

1 create new entries in the ARP table.

Notes
Both replies and requests type gratuitous arp trigger the ARP table to be updated, if this setting is
on. If the ARP table already contains the IP address of the gratuitous arp frame, the arp table is
updated regardless if this setting is on or off.

app_solicit

The maximum number of probes to send to the user space ARP daemon via netlink before dropping
back to multicast probes (see mcast_solicit).

Red Hat Enterprise Linux 7 Kernel Administration Guide

30

Type Default

Integer 0

Notes
See mcast_solicit

disable_policy

Disable IPSEC policy (SPD) for this interface

Type Default

Boolean 0

needinfo

disable_xfrm

Disable IPSEC encryption on this interface, whatever the policy

Type Default

Boolean 0

needinfo

igmpv2_unsolicited_report_interval

The interval in milliseconds in which the next unsolicited IGMPv1 or IGMPv2 report retransmit takes
place.

Type Default

Integer 10000

Notes
Milliseconds

igmpv3_unsolicited_report_interval

The interval in milliseconds in which the next unsolicited IGMPv3 report retransmit takes place.

Type Default

Integer 1000

Notes
Milliseconds

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES

31

tag

Allows you to write a number, which can be used as required.

Type Default

Integer 0

xfrm4_gc_thresh

The threshold at which we start garbage collecting for IPv4 destination cache entries.

Type Default

Integer 1

Notes
At twice this value the system refuses new allocations.

2.3.2. Global kernel tunables

System administrators are able to configure and monitor general settings on a running system through
the global kernel tunables.

Global kernel tunables are included in the /proc/sys/kernel/ directory either directly as named control
files or grouped in further subdirectories for various configuration topics. To adjust the global kernel
tunables, system administrators need to modify the control files.

Descriptions of the following parameters have been adopted from the kernel documentation sites.[2]

dmesg_restrict

Indicates whether unprivileged users are prevented from using the dmesg command to view
messages from the kernel’s log buffer.
For further information, see Kernel sysctl documentation.

core_pattern

Specifies a core dumpfile pattern name.

Max length Default

128 characters "core"

For further information, see Kernel sysctl documentation.

hardlockup_panic

Controls the kernel panic when a hard lockup is detected.

Red Hat Enterprise Linux 7 Kernel Administration Guide

32

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

Type Value Effect

Integer 0 kernel does not panic on hard
lockup

Integer 1 kernel panics on hard lockup

In order to panic, the system needs to detect a hard lockup first. The detection is controlled by the
nmi_watchdog parameter.

Further Resources

Kernel sysctl documentation

Softlockup detector and hardlockup detector

softlockup_panic

Controls the kernel panic when a soft lockup is detected.

Type Value Effect

Integer 0 kernel does not panic on soft
lockup

Integer 1 kernel panics on soft lockup

By default, on RHEL7 this value is 0.

For more information about softlockup_panic, see kernel_parameters.

kptr_restrict

Indicates whether restrictions are placed on exposing kernel addresses via /proc and other
interfaces.

Type Default

Integer 0

Value Effect

0 hashes the kernel address before printing

1 replaces printed kernel pointers with 0’s under
certain conditions

2 replaces printed kernel pointers with 0’s
unconditionally

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES

33

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/lockup-watchdogs.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

To learn more, see Kernel sysctl documentation.

nmi_watchdog

Controls the hard lockup detector on x86 systems.

Type Default

Integer 0

Value Effect

0 disables the lockup detector

1 enables the lockup detector

The hard lockup detector monitors each CPU for its ability to respond to interrupts.

For more details, see Kernel sysctl documentation.

watchdog_thresh

Controls frequency of watchdog hrtimer, NMI events, and soft/hard lockup thresholds.

Default threshold Soft lockup threshold

10 seconds 2 * watchdog_thresh

Setting this tunable to zero disables lockup detection altogether.

For more info, consult Kernel sysctl documentation.

panic, panic_on_oops, panic_on_stackoverflow, panic_on_unrecovered_nmi, panic_on_warn,
panic_on_rcu_stall, hung_task_panic

These tunables specify under what circumstances the kernel should panic.
To see more details about a group of panic parameters, see Kernel sysctl documentation.

printk, printk_delay, printk_ratelimit, printk_ratelimit_burst, printk_devkmsg

These tunables control logging or printing of kernel error messages.
For more details about a group of printk parameters, see Kernel sysctl documentation.

shmall, shmmax, shm_rmid_forced

These tunables control limits for shared memory.
For more information about a group of shm parameters, see Kernel sysctl documentation.

threads-max

Controls the maximum number of threads created by the fork() system call.

Red Hat Enterprise Linux 7 Kernel Administration Guide

34

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

Min value Max value

20 Given by FUTEX_TID_MASK (0x3fffffff)

The threads-max value is checked against the available RAM pages. If the thread structures occupy
too much of the available RAM pages, threads-max is reduced accordingly.

For more details, see Kernel sysctl documentation.

pid_max

PID allocation wrap value.
To see more information, refer to Kernel sysctl documentation.

numa_balancing

This parameter enables or disables automatic NUMA memory balancing. On NUMA machines, there
is a performance penalty if remote memory is accessed by a CPU.
For more details, see Kernel sysctl documentation.

numa_balancing_scan_period_min_ms, numa_balancing_scan_delay_ms,
numa_balancing_scan_period_max_ms, numa_balancing_scan_size_mb

These tunables detect if pages are properly placed of if the data should be migrated to a memory
node local to where the task is running.
For more details about a group of numa_balancing_scan parameters, see Kernel sysctl
documentation.

[1] https://www.kernel.org/doc/Documentation/

[2] https://www.kernel.org/doc/Documentation/

CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES

35

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/
https://www.kernel.org/doc/Documentation/

CHAPTER 3. LISTING OF KERNEL PARAMETERS AND VALUES

3.1. KERNEL COMMAND-LINE PARAMETERS

Kernel command-line parameters, also known as kernel arguments, are used to customize the behavior
of Red Hat Enterprise Linux at boot time only.

3.1.1. Setting kernel command-line parameters

This section explains how to change a kernel command-line parameter on AMD64 and Intel 64 systems
and IBM Power Systems servers using the GRUB2 boot loader, and on IBM Z using zipl.

Kernel command-line parameters are saved in the boot/grub/grub.cfg configuration file, which is
generated by the GRUB2 boot loader. Do not edit this configuration file. Changes to this file are only
made by configuration scripts.

Changing kernel command-line parameters in GRUB2 for AMD64 and Intel 64 systems and IBM
Power Systems Hardware.

1. Open the /etc/default/grub configuration file as root using a plain text editor such as vim or
Gedit.

2. In this file, locate the line beginning with GRUB_CMDLINE_LINUX similar to the following:

GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/swap crashkernel=auto rd.lvm.lv=rhel/root rhgb
quiet"

3. Change the value of the required kernel command-line parameter. Then, save the file and exit
the editor.

4. Regenerate the GRUB2 configuration using the edited default file. If your system uses BIOS
firmware, execute the following command:

grub2-mkconfig -o /boot/grub2/grub.cfg

On a system with UEFI firmware, execute the following instead:

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

After finishing the procedure above, the boot loader is reconfigured, and the kernel command-line
parameter that you have specified in its configuration file is applied after the next reboot.

Changing kernel command-line parameters in zipl for IBM Z Hardware

1. Open the /etc/zipl.conf configuration file as root using a plain text editor such as vim or Gedit.

2. In this file, locate the parameters= section, and edit the requiremed parameter, or add it if not
present. Then, save the file and exit the editor.

3. Regenerate the zipl configuration:

zipl

NOTE

Red Hat Enterprise Linux 7 Kernel Administration Guide

36

NOTE

Executing only the zipl command with no additional options uses default values.
See the zipl(8) man page for information about available options.

After finishing the procedure above, the boot loader is reconfigured, and the kernel command-line
parameter that you have specified in its configuration file is applied after the next reboot.

3.1.2. What kernel command-line parameters can be controlled

For complete list of kernel command-line parameters, see
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt.

3.1.2.1. Hardware specific kernel command-line parameters

pci=option[,option…​]

Specify behavior of the PCI hardware subsystem

Setting Effect

earlydump [X86] Dump the PCI configuration space before
the kernel changes anything

off [X86] Do not probe for the PCI bus

noaer [PCIE] If the PCIEAER kernel parameter is enabled,
this kernel boot option can be used to disable the
use of PCIE advanced error reporting.

noacpi [X86] Do not use the Advanced Configuration and
Power Interface (ACPI) for Interrupt Request (IRQ)
routing or for PCI scanning.

bfsort Sort PCI devices into breadth-first order. This
sorting is done to get a device order compatible
with older (⇐ 2.4) kernels.

nobfsort Do not sort PCI devices into breadth-first order.

Additional PCI options are documented in the on disk documentation found in the kernel-doc-
<version>.noarch package. Where '<version>' needs to be replaced with the corresponding kernel
version.

acpi=option

Specify behavior of the Advanced Configuration and Power Interface

Setting Effect

acpi=off Disable ACPI

CHAPTER 3. LISTING OF KERNEL PARAMETERS AND VALUES

37

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

acpi=ht Use ACPI boot table parsing, but do not enable
ACPI interpreter
This disables any ACPI functionality that is not
required for Hyper Threading.

acpi=force Require the ACPI subsystem to be enabled

acpi=strict Make the ACPI layer be less tolerant of platforms
that are not fully compliant with the ACPI
specification.

acpi_sci=<value> Set up ACPI SCI interrupt, where <value> is one of
edge,level,high,low.

acpi=noirq Do not use ACPI for IRQ routing

acpi=nocmcff Disable firmware first (FF) mode for corrected
errors. This disables parsing the HEST CMC error
source to check if firmware has set the FF flag. This
can result in duplicate corrected error reports.

Setting Effect

Red Hat Enterprise Linux 7 Kernel Administration Guide

38

CHAPTER 4. KERNEL FEATURES
This chapter explains the purpose and use of kernel features that enable many user space tools and
includes resources for further investigation of those tools.

4.1. CONTROL GROUPS

4.1.1. What is a control group?

NOTE

Control Group Namespaces are a Technology Preview in Red Hat Enterprise Linux 7.5

Linux Control Groups (cgroups) enable limits on the use of system hardware, ensuring that an individual
process running inside a cgroup only utilizes as much as has been allowed in the cgroups configuration.

Control Groups restrict the volume of usage on a resource that has been enabled by a namespace. For
example, the network namespace allows a process to access a particular network card, the cgroup
ensures that the process does not exceed 50% usage of that card, ensuring bandwidth is available for
other processes.

Control Group Namespaces provide a virtualized view of individual cgroups through the
/proc/self/ns/cgroup interface.

The purpose is to prevent leakage of privileged data from the global namespaces to the cgroup and to
enable other features, such as container migration.

Because it is now much easier to associate a container with a single cgroup, containers have a much
more coherent cgroup view, it also enables tasks inside the container to have a virtualized view of the
cgroup it belongs to.

4.1.2. What is a namespace?

Namespaces are a kernel feature that allow a virtual view of isolated system resources. By isolating a
process from system resources, you can specify and control what a process is able to interact with.
Namespaces are an essential part of Control Groups.

4.1.3. Supported namespaces

The following namespaces are supported from Red Hat Enterprise Linux 7.5 and later

Mount

The mount namespace isolates file system mount points, enabling each process to have a
distinct filesystem space within wich to operate.

UTS

Hostname and NIS domain name

IPC

System V IPC, POSIX message queues

CHAPTER 4. KERNEL FEATURES

39

PID

Process IDs

Network

Network devices, stacks, ports, etc.

User

User and group IDs

Control Groups

Isolates cgroups

NOTE

Usage of Control Groups is documented in the Resource Management Guide

4.2. KERNEL SOURCE CHECKER

The Linux Kernel Module Source Checker (ksc) is a tool to check for non whitelist symbols in a given
kernel module. Red Hat Partners can also use the tool to request review of a symbol for whitelist
inclusion, by filing a bug in Red Hat bugzilla database.

4.2.1. Usage

The tool accepts the path to a module with the "-k" option

ksc -k e1000e.ko
Checking against architecture x86_64
Total symbol usage: 165 Total Non white list symbol usage: 74

ksc -k /path/to/module

Output is saved in $HOME/ksc-result.txt. If review of the symbols for whitelist addition is requested,
then the usage description for each non-whitelisted symbol must be added to the ksc-result.txt file.
The request bug can then be filed by running ksc with the "-p" option.

NOTE

KSC currently does not support xz compression The ksc tool is unable to process the xz
compression method and reports the following error:

Invalid architecture, (Only kernel object files are supported)

Until this limitation is resolved, system administrators need to manually uncompress any
third party modules using xz compression, before running the ksc tool.

4.3. DIRECT ACCESS FOR FILES (DAX)

Direct Access for files, known as 'file system dax', or 'fs dax', enables applications to read and write data
on a dax-capable storage device without using the page cache to buffer access to the device.

Red Hat Enterprise Linux 7 Kernel Administration Guide

40

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/resource_management_guide/

This functionality is available when using the 'ext4' or 'xfs' file system, and is enabled either by mounting
the file system with -o dax or by adding dax to the options section for the mount entry in /etc/fstab.

Further information, including code examples can be found in the kernel-doc package and is stored at
/usr/share/doc/kernel-doc-<version>/Documentation/filesystems/dax.txt where '<version>' is the
corresponding kernel version number.

4.4. MEMORY PROTECTION KEYS FOR USERSPACE (ALSO KNOWN
AS PKU, OR PKEYS)

Memory Protection Keys provide a mechanism for enforcing page-based protections, but without
requiring modification of the page tables when an application changes protection domains. It works by
dedicating 4 previously ignored bits in each page table entry to a "protection key", giving 16 possible
keys.

Memory Protection Keys are hardware feature of some Intel CPU chipsets. To determine if your
processor supports this feature, check for the presence of pku in /proc/cpuinfo

$ grep pku /proc/cpuinfo

To support this feature, the CPUs provide a new user-accessible register (PKRU) with two separate bits
(Access Disable and Write Disable) for each key. Two new instructions (RDPKRU and WRPKRU) exist for
reading and writing to the new register.

Further documentation, including programming examples can be found in /usr/share/doc/kernel-doc-
*/Documentation/x86/protection-keys.txt which is provided by the kernel-doc package.

4.5. KERNEL ADRESS SPACE LAYOUT RANDOMIZATION

Kernel Adress Space Layout Randomization (KASLR) consists of two parts which work together to
enhance the security of the Linux kernel:

kernel text KASLR

memory management KASLR

The physical address and virtual address of kernel text itself are randomized to a different position
separately. The physical address of the kernel can be anywhere under 64TB, while the virtual address of
the kernel is restricted between [0xffffffff80000000, 0xffffffffc0000000], the 1GB space.

Memory management KASLR has three sections whose starting address is randomized in a specific area.
KASLR can thus prevent inserting and redirecting the execution of the kernel to a malicious code if this
code relies on knowing where symbols of interest are located in the kernel address space.

Memory management KASLR sections are:

direct mapping section

vmalloc section

vmemmap section

KASLR code is now compiled into the Linux kernel, and it is enabled by default. To disable it explicitly,
add the nokaslr kernel option to the kernel command line.

CHAPTER 4. KERNEL FEATURES

41

4.6. ADVANCED ERROR REPORTING (AER)

4.6.1. What is AER

Advanced Error Reporting (AER) is a kernel feature that provides enhanced error reporting for
Peripheral Component Interconnect Express (PCIe) devices. The AER kernel driver attaches root
ports which support PCIe AER capability in order to:

Gather the comprehensive error information if errors occurred

Report error to the users

Perform error recovery actions

Example 4.1. Example AER output

Feb 5 15:41:33 hostname kernel: pcieport 10003:00:00.0: AER: Corrected error received:
id=ae00
Feb 5 15:41:33 hostname kernel: pcieport 10003:00:00.0: AER: Multiple Corrected error received:
id=ae00
Feb 5 15:41:33 hostname kernel: pcieport 10003:00:00.0: PCIe Bus Error: severity=Corrected,
type=Data Link Layer, id=0000(Receiver ID)
Feb 5 15:41:33 hostname kernel: pcieport 10003:00:00.0: device [8086:2030] error
status/mask=000000c0/00002000
Feb 5 15:41:33 hostname kernel: pcieport 10003:00:00.0: [6] Bad TLP
Feb 5 15:41:33 hostname kernel: pcieport 10003:00:00.0: [7] Bad DLLP
Feb 5 15:41:33 hostname kernel: pcieport 10003:00:00.0: AER: Multiple Corrected error received:
id=ae00
Feb 5 15:41:33 hostname kernel: pcieport 10003:00:00.0: PCIe Bus Error: severity=Corrected,
type=Data Link Layer, id=0000(Receiver ID)
Feb 5 15:41:33 hostname kernel: pcieport 10003:00:00.0: device [8086:2030] error
status/mask=00000040/00002000

When AER captures an error, it sends an error message to the console. If the error is repairable, the
console output is a warning.

4.6.2. Collecting and displaying AER messages

In order to collect and display AER messages, use the rasdaemon program.

Procedure

1. Install the rasdaemon package.

~]# yum install rasdaemon

2. Enable and start the rasdaemon service.

~]# systemctl enable --now rasdaemon

3. Run the ras-mc-ctl command that displays a summary of the logged errors (the --summary
option) or displays the errors stored at the error database (the --errors option).

Red Hat Enterprise Linux 7 Kernel Administration Guide

42

~]# ras-mc-ctl --summary
~]# ras-mc-ctl --errors

Additional resources

For more information on the rasdaemon service, see the rasdaemon(8) manual page.

For more information on the ras-mc-ctl service, see the ras-mc-ctl(8) manual page.

CHAPTER 4. KERNEL FEATURES

43

CHAPTER 5. MANUALLY UPGRADING THE KERNEL
The Red Hat Enterprise Linux kernel is custom-built by the Red Hat Enterprise Linux kernel team to
ensure its integrity and compatibility with supported hardware. Before Red Hat releases a kernel, it must
first pass a rigorous set of quality assurance tests.

Red Hat Enterprise Linux kernels are packaged in the RPM format so that they are easy to upgrade and
verify using the Yum or PackageKit package managers. PackageKit automatically queries the Red Hat
Content Delivery Network servers and informs you of packages with available updates, including kernel
packages.

This chapter is therefore only useful for users who need to manually update a kernel package using the
rpm command instead of yum.

WARNING

Whenever possible, use either the Yum or PackageKit package manager to install a
new kernel because they always install a new kernel instead of replacing the current
one, which could potentially leave your system unable to boot.

WARNING

Custom kernels are not supported by Red Hat. However, guidance can be obtained
from the solution article.

For more information on installing kernel packages with yum, see the relevant section in the System
Administrator’s Guide.

For information on Red Hat Content Delivery Network, see the relevant section in the System
Administrator’s Guide.

5.1. OVERVIEW OF KERNEL PACKAGES

Red Hat Enterprise Linux contains the following kernel packages:

kernel — Contains the kernel for single-core, multi-core, and multi-processor systems.

kernel-debug — Contains a kernel with numerous debugging options enabled for kernel
diagnosis, at the expense of reduced performance.

kernel-devel — Contains the kernel headers and makefiles sufficient to build modules against
the kernel package.

kernel-debug-devel — Contains the development version of the kernel with numerous
debugging options enabled for kernel diagnosis, at the expense of reduced performance.





Red Hat Enterprise Linux 7 Kernel Administration Guide

44

https://access.redhat.com/solutions/25039
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-yum.html#sec-Updating_Packages
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/chap-Subscription_and_Support-Registering_a_System_and_Managing_Subscriptions.html

kernel-doc — Documentation files from the kernel source. Various portions of the Linux kernel
and the device drivers shipped with it are documented in these files. Installation of this package
provides a reference to the options that can be passed to Linux kernel modules at load time.
By default, these files are placed in the /usr/share/doc/kernel-doc-kernel_version/ directory.

kernel-headers — Includes the C header files that specify the interface between the Linux
kernel and user-space libraries and programs. The header files define structures and constants
that are needed for building most standard programs.

linux-firmware — Contains all of the firmware files that are required by various devices to
operate.

perf — This package contains the perf tool, which enables performance monitoring of the Linux
kernel.

kernel-abi-whitelists — Contains information pertaining to the Red Hat Enterprise Linux kernel
ABI, including a lists of kernel symbols that are needed by external Linux kernel modules and a
yum plug-in to aid enforcement.

kernel-tools — Contains tools for manipulating the Linux kernel and supporting documentation.

5.2. PREPARING TO UPGRADE

Before upgrading the kernel, it is recommended that you take some precautionary steps.

First, ensure that working boot media exists for the system in case a problem occurs. If the boot loader
is not configured properly to boot the new kernel, you can use this media to boot into Red Hat
Enterprise Linux

USB media often comes in the form of flash devices sometimes called pen drives, thumb disks, or keys, or
as an externally-connected hard disk device. Almost all media of this type is formatted as a VFAT file
system. You can create bootable USB media on media formatted as ext2, ext3, ext4, or VFAT.

You can transfer a distribution image file or a minimal boot media image file to USB media. Make sure
that sufficient free space is available on the device. Around 4 GB is required for a distribution DVD
image, around 700 MB for a distribution CD image, or around 10 MB for a minimal boot media image.

You must have a copy of the boot.iso file from a Red Hat Enterprise Linux installation DVD, or
installation CD-ROM #1, and you need a USB storage device formatted with the VFAT file system and
around 16 MB of free space.

For more information on using USB storage devices, review How to format a USB key and How to
manually mount a USB flash drive in a non-graphical environment solution articles.

The following procedure does not affect existing files on the USB storage device unless they have the
same path names as the files that you copy onto it. To create USB boot media, perform the following
commands as the root user:

1. Install the syslinux package if it is not installed on your system. To do so, as root, run the yum
install syslinux command.

2. Install the SYSLINUX bootloader on the USB storage device:

syslinux /dev/sdX1

…​where sdX is the device name.

CHAPTER 5. MANUALLY UPGRADING THE KERNEL

45

https://access.redhat.com/solutions/624423
https://access.redhat.com/solutions/39373

3. Create mount points for boot.iso and the USB storage device:

mkdir /mnt/isoboot /mnt/diskboot

4. Mount boot.iso:

mount -o loop boot.iso /mnt/isoboot

5. Mount the USB storage device:

mount /dev/sdX1 /mnt/diskboot

6. Copy the ISOLINUX files from the boot.iso to the USB storage device:

cp /mnt/isoboot/isolinux/* /mnt/diskboot

7. Use the isolinux.cfg file from boot.iso as the syslinux.cfg file for the USB device:

grep -v local /mnt/isoboot/isolinux/isolinux.cfg > /mnt/diskboot/syslinux.cfg

8. Unmount boot.iso and the USB storage device:

umount /mnt/isoboot /mnt/diskboot

9. Reboot the machine with the boot media and verify that you are able to boot with it before
continuing.

Alternatively, on systems with a floppy drive, you can create a boot diskette by installing the mkbootdisk
package and running the mkbootdisk command as root. See man mkbootdisk man page after
installing the package for usage information.

To determine which kernel packages are installed, execute the command yum list installed "kernel-*"
at a shell prompt. The output comprises some or all of the following packages, depending on the
system’s architecture, and the version numbers might differ:

yum list installed "kernel-*"
kernel.x86_64 3.10.0-54.0.1.el7 @rhel7/7.0
kernel-devel.x86_64 3.10.0-54.0.1.el7 @rhel7
kernel-headers.x86_64 3.10.0-54.0.1.el7 @rhel7/7.0

From the output, determine which packages need to be downloaded for the kernel upgrade. For a single
processor system, the only required package is the kernel package. See Section 5.1, “Overview of kernel
packages” for descriptions of the different packages.

5.3. DOWNLOADING THE UPGRADED KERNEL

There are several ways to determine if an updated kernel is available for the system.

Security Errata — See Customer Portal for information on security errata, including kernel
upgrades that fix security issues.

The Red Hat Content Delivery Network — For a system subscribed to the Red Hat Content
Delivery Network, the yum package manager can download the latest kernel and upgrade the

Red Hat Enterprise Linux 7 Kernel Administration Guide

46

https://access.redhat.com/site/security/updates/active/

kernel on the system. The Dracut utility creates an initial RAM file system image if needed, and
configure the boot loader to boot the new kernel. For more information on installing packages
from the Red Hat Content Delivery Network, see the relevant section of the System
Administrator’s Guide. For more information on subscribing a system to the Red Hat Content
Delivery Network, see the relevant section of the System Administrator’s Guide.

If yum was used to download and install the updated kernel from the Red Hat Network, follow the
instructions in Section 5.5, “Verifying the initial RAM file system image” and Section 5.6, “Verifying the
boot loader” only, do not change the kernel to boot by default. Red Hat Network automatically changes
the default kernel to the latest version. To install the kernel manually, continue to Section 5.4,
“Performing the upgrade”.

5.4. PERFORMING THE UPGRADE

After retrieving all of the necessary packages, it is time to upgrade the existing kernel.

IMPORTANT

It is strongly recommended that you keep the old kernel in case there are problems with
the new kernel.

At a shell prompt, change to the directory that contains the kernel RPM packages. Use -i argument with
the rpm command to keep the old kernel. Do not use the -U option, since it overwrites the currently
installed kernel, which creates boot loader problems. For example:

rpm -ivh kernel-kernel_version.arch.rpm

The next step is to verify that the initial RAM file system image has been created. See Section 5.5,
“Verifying the initial RAM file system image” for details.

5.5. VERIFYING THE INITIAL RAM FILE SYSTEM IMAGE

The job of the initial RAM file system image is to preload the block device modules, such as for IDE,
SCSI or RAID, so that the root file system, on which those modules normally reside, can then be
accessed and mounted. On Red Hat Enterprise Linux 7 systems, whenever a new kernel is installed using
either the Yum, PackageKit, or RPM package manager, the Dracut utility is always called by the
installation scripts to create an initramfs (initial RAM file system image).

If you make changes to the kernel attributes by modifying the /etc/sysctl.conf file or another sysctl
configuration file, and if the changed settings are used early in the boot process, then rebuilding the
Initial RAM File System Image by running the dracut -f command might be necessary. An example is if
you have made changes related to networking and are booting from network-attached storage.

On all architectures other than IBM eServer System i (see the section called “Verifying the initial RAM
file system image and kernel on IBM eServer System i”), you can create an initramfs by running the
dracut command. However, you usually do not need to create an initramfs manually: this step is
automatically performed if the kernel and its associated packages are installed or upgraded from RPM
packages distributed by Red Hat.

You can verify that an initramfs corresponding to your current kernel version exists and is specified
correctly in the grub.cfg configuration file by following this procedure:

Verifying the initial RAM file system image

1. As root, list the contents in the /boot directory and find the kernel (vmlinuz-kernel_version)

CHAPTER 5. MANUALLY UPGRADING THE KERNEL

47

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-yum.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/chap-Subscription_and_Support-Registering_a_System_and_Managing_Subscriptions.html

1. As root, list the contents in the /boot directory and find the kernel (vmlinuz-kernel_version)
and initramfs-kernel_version with the latest (most recent) version number:

Example 5.1. Ensuring that the kernel and initramfs versions match

ls /boot
config-3.10.0-67.el7.x86_64
config-3.10.0-78.el7.x86_64
efi
grub
grub2
initramfs-0-rescue-07f43f20a54c4ce8ada8b70d33fd001c.img
initramfs-3.10.0-67.el7.x86_64.img
initramfs-3.10.0-67.el7.x86_64kdump.img
initramfs-3.10.0-78.el7.x86_64.img
initramfs-3.10.0-78.el7.x86_64kdump.img
initrd-plymouth.img
symvers-3.10.0-67.el7.x86_64.gz
symvers-3.10.0-78.el7.x86_64.gz
System.map-3.10.0-67.el7.x86_64
System.map-3.10.0-78.el7.x86_64
vmlinuz-0-rescue-07f43f20a54c4ce8ada8b70d33fd001c
vmlinuz-3.10.0-67.el7.x86_64
vmlinuz-3.10.0-78.el7.x86_64

Example 5.1, “Ensuring that the kernel and initramfs versions match” shows that:

we have three kernels installed (or, more correctly, three kernel files are present in the /boot
directory),

the latest kernel is vmlinuz-3.10.0-78.el7.x86_64, and

an initramfs file matching our kernel version, initramfs-3.10.0-78.el7.x86_64kdump.img,
also exists.

IMPORTANT

In the /boot directory you might find several
initramfs-kernel_versionkdump.img files. These are special files created by
the Kdump mechanism for kernel debugging purposes, are not used to boot
the system, and can safely be ignored. For more information on kdump, see
the Red Hat Enterprise Linux 7 Kernel Crash Dump Guide .

2. If your initramfs-kernel_version file does not match the version of the latest kernel in the
/boot directory, or, in certain other situations, you might need to generate an initramfs file with
the Dracut utility. Simply invoking dracut as root without options causes it to generate an
initramfs file in /boot for the latest kernel present in that directory:

dracut

You must use the -f, --force option if you want dracut to overwrite an existing initramfs (for
example, if your initramfs has become corrupt). Otherwise dracut refuses to overwrite the
existing initramfs file:

Red Hat Enterprise Linux 7 Kernel Administration Guide

48

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/

dracut
 Does not override existing initramfs (/boot/initramfs-3.10.0-78.el7.x86_64.img) without -
-force

You can create an initramfs in the current directory by calling dracut
initramfs_name kernel_version :

dracut "initramfs-$(uname -r).img" $(uname -r)

If you need to specify specific kernel modules to be preloaded, add the names of those modules
(minus any file name suffixes such as .ko) inside the parentheses of the
add_dracutmodules+="module more_modules " directive of the /etc/dracut.conf
configuration file. You can list the file contents of an initramfs image file created by dracut by
using the lsinitrd initramfs_file command:

lsinitrd /boot/initramfs-3.10.0-78.el7.x86_64.img
Image: /boot/initramfs-3.10.0-78.el7.x86_64.img: 11M
==

dracut-033-68.el7
==

drwxr-xr-x 12 root root 0 Feb 5 06:35 .
drwxr-xr-x 2 root root 0 Feb 5 06:35 proc
lrwxrwxrwx 1 root root 24 Feb 5 06:35 init -> /usr/lib/systemd/systemd
drwxr-xr-x 10 root root 0 Feb 5 06:35 etc
drwxr-xr-x 2 root root 0 Feb 5 06:35 usr/lib/modprobe.d
[output truncated]

See man dracut and man dracut.conf for more information on options and usage.

3. Examine the /boot/grub2/grub.cfg configuration file to ensure that an
initramfs-kernel_version.img file exists for the kernel version you are booting. For example:

grep initramfs /boot/grub2/grub.cfg
initrd16 /initramfs-3.10.0-123.el7.x86_64.img
initrd16 /initramfs-0-rescue-6d547dbfd01c46f6a4c1baa8c4743f57.img

See Section 5.6, “Verifying the boot loader” for more information.

Verifying the initial RAM file system image and kernel on IBM eServer System i
On IBM eServer System i machines, the initial RAM file system and kernel files are combined into a single
file, which is created with the addRamDisk command. This step is performed automatically if the kernel
and its associated packages are installed or upgraded from the RPM packages distributed by Red Hat
thus, it does not need to be executed manually. To verify that it was created, run the following command
as root to make sure the /boot/vmlinitrd-kernel_version file already exists:

ls -l /boot/

The kernel_version needs to match the version of the kernel just installed.

Reversing the changes made to the initial RAM file system image

In some cases, for example, if you misconfigure the system and it no longer boots, you need to reverse

CHAPTER 5. MANUALLY UPGRADING THE KERNEL

49

In some cases, for example, if you misconfigure the system and it no longer boots, you need to reverse
the changes made to the Initial RAM File System Image by following this procedure:

Reversing Changes Made to the Initial RAM File System Image

1. Reboot the system choosing the rescue kernel in the GRUB menu.

2. Change the incorrect setting that caused the initramfs to malfunction.

3. Recreate the initramfs with the correct settings by running the following command as root:

dracut --kver kernel_version --force

The above procedure might be useful if, for example, you incorrectly set the vm.nr_hugepages in the
sysctl.conf file. Because the sysctl.conf file is included in initramfs, the new vm.nr_hugepages
setting gets applied in initramfs and causes rebuilding of the initramfs. However, because the setting is
incorrect, the new initramfs is broken and the newly built kernel does not boot, which necessitates
correcting the setting using the above procedure.

Listing the contents of the initial RAM file system image
To list the files that are included in the initramfs, run the following command as root:

lsinitrd

To only list files in the /etc directory, use the following command:

lsinitrd | grep etc/

To output the contents of a specific file stored in the initramfs for the current kernel, use the -f option:

lsinitrd -f filename

For example, to output the contents of sysctl.conf, use the following command:

lsinitrd -f /etc/sysctl.conf

To specify a kernel version, use the --kver option:

lsinitrd --kver kernel_version -f /etc/sysctl.conf

For example, to list the information about kernel version 3.10.0-327.10.1.el7.x86_64, use the following
command:

lsinitrd --kver 3.10.0-327.10.1.el7.x86_64 -f /etc/sysctl.conf

5.6. VERIFYING THE BOOT LOADER

You can install a kernel either with the yum command or with the rpm command.

When you install a kernel using rpm, the kernel package creates an entry in the boot loader configuration
file for that new kernel.

Note that both commands configure the new kernel to boot as the default kernel only when you include

Red Hat Enterprise Linux 7 Kernel Administration Guide

50

Note that both commands configure the new kernel to boot as the default kernel only when you include
the following setting in the /etc/sysconfig/kernel configuration file:

DEFAULTKERNEL=kernel
UPDATEDEFAULT=yes

The DEFAULTKERNEL option specifies the default kernel package type. The UPDATEDEFAULT
option specifies whether the new kernel package makes the new kernels the default.

CHAPTER 5. MANUALLY UPGRADING THE KERNEL

51

CHAPTER 6. APPLYING PATCHES WITH KERNEL LIVE
PATCHING

You can use the Red Hat Enterprise Linux kernel live patching solution to patch a running kernel without
rebooting or restarting any processes.

With this solution, system administrators:

Can immediately apply critical security patches to the kernel.

Do not have to wait for long-running tasks to complete, for users to log off, or for scheduled
downtime.

Control the system’s uptime more and do not sacrifice security or stability.

Note that not every critical or important CVE will be resolved using the kernel live patching solution. Our
goal is to reduce the required reboots for security-related patches, not to eliminate them entirely. For
more details about the scope of live patching, see the Customer Portal Solutions article .

WARNING

Some incompatibilities exist between kernel live patching and other kernel
subcomponents. Read the Section 6.1, “Limitations of kpatch” section carefully
before using kernel live patching.

NOTE

For details about the support cadence of kernel live patching updates, see:

Kernel Live Patch Support Cadence Update

Kernel Live Patch life cycles

6.1. LIMITATIONS OF KPATCH

The kpatch feature is not a general-purpose kernel upgrade mechanism. It is used for applying
simple security and bug fix updates when rebooting the system is not immediately possible.

Do not use the SystemTap or kprobe tools during or after loading a patch. The patch could fail
to take effect until after such probes have been removed.

6.2. SUPPORT FOR THIRD-PARTY LIVE PATCHING

The kpatch utility is the only kernel live patching utility supported by Red Hat with the RPM modules
provided by Red Hat repositories. Red Hat will not support any live patches which were not provided by
Red Hat itself.

For support of a third-party live patch, contact the vendor that provided the patch.

For any system running with third-party live patches, Red Hat reserves the right to ask for reproduction



Red Hat Enterprise Linux 7 Kernel Administration Guide

52

https://access.redhat.com/solutions/2206511
https://access.redhat.com/articles/7057149
https://access.redhat.com/articles/4499631

For any system running with third-party live patches, Red Hat reserves the right to ask for reproduction
with Red Hat shipped and supported software. In the event that this is not possible, we require a similar
system and workload be deployed on your test environment without live patches applied, to confirm if
the same behavior is observed.

For more information about third-party software support policies, see How does Red Hat Global
Support Services handle third-party software, drivers, and/or uncertified hardware/hypervisors or guest
operating systems?

6.3. ACCESS TO KERNEL LIVE PATCHES

Kernel live patching capability is implemented as a kernel module (.ko file) that is delivered as an RPM
package.

All customers have access to kernel live patches, which are delivered through the usual channels.
However, customers who do not subscribe to an extended support offering will lose access to new
patches for the current minor release once the next minor release becomes available. For example,
customers with standard subscriptions will only be able to live patch RHEL 8.2 kernels until RHEL 8.3 is
released.

6.4. COMPONENTS OF KERNEL LIVE PATCHING

The components of kernel live patching are as follows:

Kernel patch module

The delivery mechanism for kernel live patches.

A kernel module which is built specifically for the kernel being patched.

The patch module contains the code of the desired fixes for the kernel.

The patch modules register with the livepatch kernel subsystem and provide information
about original functions to be replaced, with corresponding pointers to the replacement
functions. Kernel patch modules are delivered as RPMs.

The naming convention is kpatch_<kernel version>_<kpatch version>_<kpatch release>.
The "kernel version" part of the name has dots and dashes replaced with underscores.

The kpatch utility

A command-line utility for managing patch modules.

The kpatch service

A systemd service required by multiuser.target. This target loads the kernel patch module at boot
time.

6.5. HOW KERNEL LIVE PATCHING WORKS

The kpatch kernel patching solution uses the livepatch kernel subsystem to redirect old functions to
new ones. When a live kernel patch is applied to a system, the following things happen:

1. The kernel patch module is copied to the /var/lib/kpatch/ directory and registered for re-
application to the kernel by systemd on next boot.

2. The kpatch module is loaded into the running kernel and the patched functions are registered to

CHAPTER 6. APPLYING PATCHES WITH KERNEL LIVE PATCHING

53

https://access.redhat.com/articles/1067

2. The kpatch module is loaded into the running kernel and the patched functions are registered to
the ftrace mechanism with a pointer to the location in memory of the new code.

3. When the kernel accesses the patched function, it is redirected by the ftrace mechanism which
bypasses the original functions and redirects the kernel to patched version of the function.

Figure 6.1. How kernel live patching works

6.6. ENABLING KERNEL LIVE PATCHING

A kernel patch module is delivered in an RPM package, specific to the version of the kernel being
patched. Each RPM package will be cumulatively updated over time.

The following subsections describe how to ensure you receive all future cumulative live patching updates
for a given kernel.

WARNING

Red Hat does not support any third party live patches applied to a Red Hat
supported system.

6.6.1. Subscribing to the live patching stream

This procedure describes installing a particular live patching package. By doing so, you subscribe to the
live patching stream for a given kernel and ensure that you receive all future cumulative live patching
updates for that kernel.



Red Hat Enterprise Linux 7 Kernel Administration Guide

54

WARNING

Because live patches are cumulative, you cannot select which individual patches are
deployed for a given kernel.

Prerequisites

Root permissions

Procedure

1. Optionally, check your kernel version:

uname -r
3.10.0-1062.el7.x86_64

2. Search for a live patching package that corresponds to the version of your kernel:

yum search $(uname -r)

3. Install the live patching package:

yum install "kpatch-patch = $(uname -r)"

The command above installs and applies the latest cumulative live patches for that specific
kernel only.

The live patching package contains a patch module, if the package’s version is 1-1 or higher. In
that case the kernel will be automatically patched during the installation of the live patching
package.

The kernel patch module is also installed into the /var/lib/kpatch/ directory to be loaded by the
systemd system and service manager during the future reboots.

NOTE

If there are not yet any live patches available for the given kernel, an empty live
patching package will be installed. An empty live patching package will have a
kpatch_version-kpatch_release of 0-0, for example kpatch-patch-3_10_0-1062-
0-0.el7.x86_64.rpm. The installation of the empty RPM subscribes the system to
all future live patches for the given kernel.

4. Optionally, verify that the kernel is patched:

kpatch list
Loaded patch modules:
kpatch_3_10_0_1062_1_1 [enabled]



CHAPTER 6. APPLYING PATCHES WITH KERNEL LIVE PATCHING

55

Installed patch modules:
kpatch_3_10_0_1062_1_1 (3.10.0-1062.el7.x86_64)
… ​

The output shows that the kernel patch module has been loaded into the kernel, which is now
patched with the latest fixes from the kpatch-patch-3_10_0-1062-1-1.el7.x86_64.rpm
package.

Additional resources

For more information about the kpatch command-line utility, see the kpatch(1) manual page.

Refer to the relevant sections of the System Administrator’s Guide for further information about
software packages in RHEL 7.

6.7. UPDATING KERNEL PATCH MODULES

Since kernel patch modules are delivered and applied through RPM packages, updating a cumulative
kernel patch module is like updating any other RPM package.

Prerequisites

Root permissions

The system is subscribed to the live patching stream, as described in Section 6.6.1, “Subscribing
to the live patching stream”.

Procedure

Update to a new cumulative version for the current kernel:

yum update "kpatch-patch = $(uname -r)"

The command above automatically installs and applies any updates that are available for the
currently running kernel. Including any future released cumulative live patches.

Alternatively, update all installed kernel patch modules:

yum update "kpatch-patch*"

NOTE

When the system reboots into the same kernel, the kernel is automatically live patched
again by the kpatch.service service.

Additional resources

For further information about updating software packages, see the relevant sections of System
Administrator’s Guide.

6.8. DISABLING KERNEL LIVE PATCHING

In case system administrators encountered some unanticipated negative effects connected with the

Red Hat Enterprise Linux 7 Kernel Administration Guide

56

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#sec-Working_with_Packages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#sec-Checking_For_and_Updating_Packages

In case system administrators encountered some unanticipated negative effects connected with the
Red Hat Enterprise Linux kernel live patching solution they have a choice to disable the mechanism. The
following sections describe the ways how to disable the live patching solution.

IMPORTANT

Currently, Red Hat does not support reverting live patches without rebooting your
system. In case of any issues, contact our support team.

6.8.1. Removing the live patching package

The following procedure describes how to disable the Red Hat Enterprise Linux kernel live patching
solution by removing the live patching package.

Prerequisites

Root permissions

The live patching package is installed.

Procedure

1. Select the live patching package:

yum list installed | grep kpatch-patch
kpatch-patch-3_10_0-1062.x86_64 1-1.el7 @@commandline
… ​

The example output above lists live patching packages that you installed.

2. Remove the live patching package:

yum remove kpatch-patch-3_10_0-1062.x86_64

When a live patching package is removed, the kernel remains patched until the next reboot, but
the kernel patch module is removed from disk. After the next reboot, the corresponding kernel
will no longer be patched.

3. Reboot your system.

4. Verify that the live patching package has been removed:

yum list installed | grep kpatch-patch

The command displays no output if the package has been successfully removed.

5. Optionally, verify that the kernel live patching solution is disabled:

kpatch list
Loaded patch modules:

The example output shows that the kernel is not patched and the live patching solution is not
active because there are no patch modules that are currently loaded.

Additional resources

CHAPTER 6. APPLYING PATCHES WITH KERNEL LIVE PATCHING

57

For more information about the kpatch command-line utility, see the kpatch(1) manual page.

For further information about working with software packages, see the relevant sections of
System Administrator’s Guide.

6.8.2. Uninstalling the kernel patch module

The following procedure describes how to prevent the Red Hat Enterprise Linux kernel live patching
solution from applying a kernel patch module on subsequent boots.

Prerequisites

Root permissions

A live patching package is installed.

A kernel patch module is installed and loaded.

Procedure

1. Select a kernel patch module:

kpatch list
Loaded patch modules:
kpatch_3_10_0_1062_1_1 [enabled]

Installed patch modules:
kpatch_3_10_0_1062_1_1 (3.10.0-1062.el7.x86_64)
… ​

2. Uninstall the selected kernel patch module:

kpatch uninstall kpatch_3_10_0_1062_1_1
uninstalling kpatch_3_10_0_1062_1_1 (3.10.0-1062.el7.x86_64)

Note that the uninstalled kernel patch module is still loaded:

kpatch list
Loaded patch modules:
kpatch_3_10_0_1062_1_1 [enabled]

Installed patch modules:
<NO_RESULT>

When the selected module is uninstalled, the kernel remains patched until the next reboot,
but the kernel patch module is removed from disk.

3. Reboot your system.

4. Optionally, verify that the kernel patch module has been uninstalled:

kpatch list
Loaded patch modules:

The example output above shows no loaded or installed kernel patch modules, therefore the

Red Hat Enterprise Linux 7 Kernel Administration Guide

58

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#sec-Working_with_Packages

The example output above shows no loaded or installed kernel patch modules, therefore the
kernel is not patched and the kernel live patching solution is not active.

Additional resources

For more information about the kpatch command-line utility, refer to the kpatch(1) manual
page.

6.8.3. Disabling kpatch.service

The following procedure describes how to prevent the Red Hat Enterprise Linux kernel live patching
solution from applying all kernel patch modules globally on subsequent boots.

Prerequisites

Root permissions

A live patching package is installed.

A kernel patch module is installed and loaded.

Procedure

1. Verify kpatch.service is enabled:

systemctl is-enabled kpatch.service
enabled

2. Disable kpatch.service:

systemctl disable kpatch.service
Removed /etc/systemd/system/multi-user.target.wants/kpatch.service.

Note that the applied kernel patch module is still loaded:

kpatch list
Loaded patch modules:
kpatch_3_10_0_1062_1_1 [enabled]

Installed patch modules:
kpatch_3_10_0_1062_1_1 (3.10.0-1062.el7.x86_64)

3. Reboot your system.

4. Optionally, verify the status of kpatch.service:

systemctl status kpatch.service
● kpatch.service - "Apply kpatch kernel patches"
 Loaded: loaded (/usr/lib/systemd/system/kpatch.service; disabled; vendor preset: disabled)
 Active: inactive (dead)

The example output testifies that kpatch.service has been disabled and is not running.
Thereby, the kernel live patching solution is not active.

5. Verify that the kernel patch module has been unloaded:

CHAPTER 6. APPLYING PATCHES WITH KERNEL LIVE PATCHING

59

kpatch list
Loaded patch modules:

Installed patch modules:
kpatch_3_10_0_1062_1_1 (3.10.0-1062.el7.x86_64)

The example output above shows that the kernel patch module is still installed but the kernel is
not patched.

Additional resources

For more information about the kpatch command-line utility, see the kpatch(1) manual page.

For more information about the systemd system and service manager, unit configuration files,
their locations, as well as a complete list of systemd unit types, see the relevant sections in
System Administrator’s Guide.

Red Hat Enterprise Linux 7 Kernel Administration Guide

60

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#chap-Managing_Services_with_systemd

CHAPTER 7. KERNEL CRASH DUMP GUIDE

7.1. INTRODUCTION TO KDUMP

7.1.1. About kdump and kexec

kdump is a service which provides a crash dumping mechanism. The service enables you to save the
contents of the system memory for analysis.

kdump uses the kexec system call to boot into the second kernel (a capture kernel) without rebooting;
and then captures the contents of the crashed kernel’s memory (a crash dump or a vmcore) and saves it
into a file. The second kernel resides in a reserved part of the system memory.

IMPORTANT

A kernel crash dump can be the only information available in the event of a failure, the
importance of having this data in a business critical environment cannot be
underestimated. Red Hat advises that System Administrators regularly update and test
kexec-tools in your normal kernel update cycle. This is especially important when new
kernel features are implemented.

NOTE

HP Watchdog timer (hpwdt) driver is pre-loaded in HP systems running as a RHEV
hypervisor, so these systems can consume the NMI watchdog. Updated kexec-tools
packages starting with kexec-tools-2.0.15-33.el7.x86_64 have preloaded the hpwdt
driver.

If drivers bnx2x and bmx2fc are not blacklisted in the kdump kernel then the second
kernel leads to panic and the dumps will not be captured.

7.1.2. Memory requirements

In order for kdump to be able to capture a kernel crash dump and save it for further analysis, a part of
the system memory has to be permanently reserved for the capture kernel. When reserved, this part of
the system memory is not available to main kernel.

The memory requirements vary based on certain system parameters. One of the major factors is the
system’s hardware architecture. To find out the exact name of the machine architecture (such as
x86_64) and print it to standard output, type the following command at a shell prompt:

uname -m

Another factor which influences the amount of memory to be reserved is the total amount of installed
system memory. For example, on the x86_64 architecture, the amount of reserved memory is 160 MB +
2 bits for every 4 KB of RAM. On a system with 1 TB of total physical memory installed, this means
224 MB (160 MB + 64 MB). For a complete list of memory requirements for kdump based on the system
architecture and the amount of physical memory, see Section 7.8.1, “Memory requirements for kdump” .

On many systems, kdump can estimate the amount of required memory and reserve it automatically.
This behavior is enabled by default, but only works on systems that have more than a certain amount of
total available memory, which varies based on the system architecture. See Section 7.8.2, “Minimum

CHAPTER 7. KERNEL CRASH DUMP GUIDE

61

threshold for automatic memory reservation” for a list of minimum requirements for automatic memory
reservation based on the system architecture.

If the system has less than the minimum amount of memory required for the automatic allocation to
work or if your use case requires a different value, you can configure the amount of reserved memory
manually. For information on how to do so on the command line, see Section 7.2.2.1, “Configuring the
memory usage”. For information on how to configure the amount of reserved memory in the graphical
user interface, see Section 7.2.3.1, “Configuring the memory usage” .

IMPORTANT

It is highly recommended to test the configuration after setting up the kdump service,
even when using the automatic memory reservation. For instructions on how to test your
configuration, see Section 7.4, “Testing the kdump configuration” .

7.2. INSTALLING AND CONFIGURING KDUMP

7.2.1. Installing kdump

In many cases, the kdump service is installed and activated by default on new Red Hat Enterprise Linux
7 installations. The Anaconda installer provides a screen for kdump configuration when performing an
interactive installation using the graphical or text interface. The installer screen is titled Kdump and is
available from the main Installation Summary screen, and only allows limited configuration - you can
only select whether kdump is enabled and how much memory is reserved. Information about memory
requirements for kdump is available in Section 7.8.1, “Memory requirements for kdump” . The Kdump
configuration screen in the installer is documented in the Red Hat Enterprise Linux 7 Installation Guide .

NOTE

In previous releases of Red Hat Enterprise Linux, kdump configuration was available in the
Firstboot utility which was automatically executed after the installation finished and the
system rebooted for the first time. Starting with Red Hat Enterprise Linux 7.1, kdump
configuration has been moved into the installer.

Some installation options, such as custom Kickstart installations, do not have to install or enable kdump
by default. If this is the case on your system, and you want to install kdump additionally, execute the
following command as root at a shell prompt:

yum install kexec-tools

The command above secures installation of kdump and all other necessary packages, assuming your
system has an active subscription or a custom repository containing the kexec-tools package for your
system’s architecture.

NOTE

If you do not know whether kdump is installed on your system, you can check using rpm:

$ rpm -q kexec-tools

Additionally, a graphical configuration tool is available, but not installed by default if you use the

Red Hat Enterprise Linux 7 Kernel Administration Guide

62

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html

Additionally, a graphical configuration tool is available, but not installed by default if you use the
command described above. To install this utility, which is described in Section 7.2.3, “Configuring kdump
in the graphical user interface”, use the following command as root:

yum install system-config-kdump

For more information on how to install new packages in Red Hat Enterprise Linux 7 using the Yum
package manager, see the Red Hat Enterprise Linux 7 System Administrator’s Guide .

IMPORTANT

Starting with Red Hat Enterprise Linux 7.4 the Intel IOMMU driver is supported with
kdump. When running kernels from version 7.3 or earlier, it is advised that Intel IOMMU
support is disabled.

7.2.2. Configuring kdump on the command line

7.2.2.1. Configuring the memory usage

Memory reserved for the kdump kernel is always reserved during system boot, which means that the
amount of memory is specified in the system’s boot loader configuration.

To specify the memory reserved for kdump kernel, set the crashkernel= option to the required value.
For example, to reserve 128 MB of memory, use the following:

crashkernel=128M

For information about how to change the crashkernel= option on AMD64 and Intel 64 systems and IBM
Power Systems servers using the GRUB2 boot loader, and on IBM Z using zipl, see Section 3.1.1, “Setting
kernel command-line parameters”.

The crashkernel= option can be defined in multiple ways. The auto value enables automatic
configuration of reserved memory based on the total amount of memory in the system, following the
guidelines described in Section 7.8.1, “Memory requirements for kdump” . Larger memory systems, up to
the established limits of the operating system are calculated according to architecture with the
crashkernel=auto option.

Replace the auto value with a specific amount of memory to change this behavior.

The crashkernel= option can be particularly useful with smaller memory systems. For example, to
reserve 128 MB of memory, use the following:

crashkernel=128M

You can also set the amount of reserved memory to be variable, depending on the total amount of
installed memory. The syntax for variable memory reservation is
crashkernel=<range1>:<size1>,<range2>:<size2>. For example:

crashkernel=512M-2G:64M,2G-:128M

The above example reserves 64 MB of memory if the total amount of system memory is 512 MB or
higher and lower than 2 GB. If the total amount of memory is more than 2 GB, 128 MB is reserved for
kdump instead.

CHAPTER 7. KERNEL CRASH DUMP GUIDE

63

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

Some systems require to reserve memory with a certain fixed offset. If the offset is set, the reserved
memory begins there. To offset the reserved memory, use the following syntax:

crashkernel=128M@16M

The example above means that kdump reserves 128 MB of memory starting at 16 MB (physical address
0x01000000). If the offset parameter is set to 0 or omitted entirely, kdump offsets the reserved
memory automatically. This syntax can also be used when setting a variable memory reservation as
described above; in this case, the offset is always specified last (for example, crashkernel=512M-
2G:64M,2G-:128M@16M).

7.2.2.2. Configuring the kdump target

When a kernel crash is captured, the core dump can be either stored as a file in a local file system,
written directly to a device, or sent over a network using the NFS (Network File System) or SSH (Secure
Shell) protocol. Only one of these options can be set at the moment. The default option is to store the
vmcore file in the /var/crash directory of the local file system.

To store the vmcore file in /var/crash/ directory of the local file system, edit the
/etc/kdump.conf file and specify the path:

path /var/crash

The option path /var/crash represents the file system path in which the kdump saves the
vmcore file.

NOTE

When you specify a dump target in the /etc/kdump.conf file, then the path is
relative to the specified dump target.

When you do not specify a dump target in the /etc/kdump.conf file, then the
path represents the absolute path from the root directory.

Depending on what is mounted in the current system, the dump target and the adjusted dump
path are taken automatically.

Example 7.1. The kdump target configuration

grep -v ^# etc/kdump.conf | grep -v ^$
ext4 /dev/mapper/vg00-varcrashvol
path /var/crash
core_collector makedumpfile -c --message-level 1 -d 31

Here, the dump target is specified (ext4 /dev/mapper/vg00-varcrashvol), and thus
mounted at /var/crash, the path option is also set to /var/crash, so the kdump saves the
vmcore file in the /var/crash/var/crash directory.

To change the dump location, as root, open the /etc/kdump.conf configuration file in a text editor and
edit the options as described below.

To change the local directory in which the core dump is to be saved, remove the hash sign ("#") from the
beginning of the #path /var/crash line, and replace the value with a desired directory path.

Red Hat Enterprise Linux 7 Kernel Administration Guide

64

path /usr/local/cores

IMPORTANT

In Red Hat Enterprise Linux 7, the directory defined as the kdump target using the path
directive must exist when the kdump systemd service is started - otherwise the service
fails. This behavior is different from earlier releases of Red Hat Enterprise Linux, where
the directory was being created automatically if it did not exist when starting the service.

Optionally, if you wish to write the file to a different partition, follow the same procedure with the one of
the lines beginning with #ext4. Here, you can use either a device name (the #ext4 /dev/vg/lv_kdump
line), a file system label (the #ext4 LABEL=/boot line) or a UUID (the #ext4 UUID=03138356-5e61-
4ab3-b58e-27507ac41937 line). Change the file system type as well as the device name, label or UUID
to the desired values.

NOTE

The correct syntax for specifying UUID values is both UUID="correct-uuid" ̀and UUID=correct-
uuid.

For example:

ext4 UUID=03138356-5e61-4ab3-b58e-27507ac41937

IMPORTANT

Specifying storage devices using a LABEL= or UUID= is recommended. Disk device
names such as /dev/sda3 are not guaranteed to be consistent across reboot. See the Red
Hat Enterprise Linux 7 Storage Administration Guide for information about persistent disk
device naming.

IMPORTANT

When dumping to DASD on s390x hardware, it is essential that the dump devices are
correctly specified in /etc/dasd.conf before proceeding.

To write the dump directly to a device, remove the hash sign ("#") from the beginning of the #raw
/dev/vg/lv_kdump line, and replace the value with a desired device name. For example:

raw /dev/sdb1

To store the dump to a remote machine using the NFS protocol, remove the hash sign ("#") from the
beginning of the #nfs my.server.com:/export/tmp line, and replace the value with a valid hostname and
directory path. For example:

nfs penguin.example.com:/export/cores

To store the dump to a remote machine using the SSH protocol, remove the hash sign ("#") from the
beginning of the #ssh user@my.server.com line, and replace the value with a valid username and
hostname. To include your SSH key in the configuration as well, remove the hash sign from the
beginning of the #sshkey /root/.ssh/kdump_id_rsa line and change the value to the location of a key
valid on the server you are trying to dump to. For example:

CHAPTER 7. KERNEL CRASH DUMP GUIDE

65

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/index.html
mailto:user@my.server.com

ssh john@penguin.example.com
sshkey /root/.ssh/mykey

For information on how to configure an SSH server and set up a key-based authentication, see the Red
Hat Enterprise Linux 7 System Administrator’s Guide.

For a complete list of currently supported and unsupported targets sorted by type, see Table 7.3,
“Supported kdump Targets”.

7.2.2.3. Configuring the core collector

To reduce the size of the vmcore dump file, kdump allows you to specify an external application (a core
collector) to compress the data, and optionally leave out all irrelevant information. Currently, the only
fully supported core collector is makedumpfile.

To enable the core collector, as root, open the /etc/kdump.conf configuration file in a text editor,
remove the hash sign ("#") from the beginning of the #core_collector makedumpfile -l --message-
level 1 -d 31 line, and edit the command line options as described below.

To enable the dump file compression, add the -l parameter. For example:

core_collector makedumpfile -l

To remove certain pages from the dump, add the -d value parameter, where value is a sum of values of
pages you want to omit as described in Table 7.4, “Supported Filtering Levels” . For example, to remove
both zero and free pages, use the following:

core_collector makedumpfile -d 17 -c

See the makedumpfile(8) man page for a complete list of available options.

7.2.2.4. Configuring the default action

By default, kdump uses the kexec system call to boot into the second kernel (a capture kernel) without
rebooting; and then captures the contents of the crashed kernel’s memory (a crash dump or a vmcore)
and saves it into a file. After the successful save, kdump reboots the machine.

However, when kdump fails to create a core dump at the target location specified in Section 7.2.2.2,
“Configuring the kdump target”, kdump reboots the system without saving the vmcore. To change this
behavior, as root, open the /etc/kdump.conf configuration file in a text editor, remove the hash sign
("#") from the beginning of the #default shell line, and replace the value with a desired action as
described in Table 7.5, “Supported Default Actions” .

For example:

default reboot

7.2.2.5. Enabling the service

To start the kdump daemon at boot time, type the following at a shell prompt as root:

systemctl enable kdump.service

This enables the service for multi-user.target. Similarly, typing systemctl disable kdump disables

Red Hat Enterprise Linux 7 Kernel Administration Guide

66

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

This enables the service for multi-user.target. Similarly, typing systemctl disable kdump disables
kdump. To start the service in the current session, use the following command as root:

systemctl start kdump.service

IMPORTANT

In Red Hat Enterprise Linux 7, the directory defined as the kdump target must exist when
the kdump systemd service is started - otherwise the service fails. This behavior is
different from earlier releases of Red Hat Enterprise Linux, where the directory was being
created automatically if it did not exist when starting the service.

For more information on systemd and configuring services in general, see the Red Hat Enterprise Linux 7
System Administrator’s Guide.

7.2.3. Configuring kdump in the graphical user interface

To start the Kernel Dump Configuration utility, select Activities → Other → Kernel crash dumps from
the panel, or type system-config-kdump at a shell prompt. As a result a window appears as shown in
Figure 7.1, “Basic Settings”.

The utility allows you to configure kdump as well as to enable or disable starting the service at boot
time. When you are done, click Apply to save the changes. Unless you are already authenticated, enter
the superuser password. The utility presents you with a reminder that you must reboot the system in
order to apply any changes you have made to the configuration.

IMPORTANT

On IBM Z or PowerPC systems with SELinux running in Enforcing mode, the
kdumpgui_run_bootloader Boolean must be enabled before launching the Kernel Dump
Configuration utility. This Boolean allows system-config-kdump to run the boot loader in
the bootloader_t SELinux domain. To permanently enable the Boolean, run the following
command as root;

setsebool -P kdumpgui_run_bootloader 1

IMPORTANT

When dumping to DASD on s390x hardware, it is essential that the dump devices are
correctly specified in /etc/dasd.conf before proceeding.

7.2.3.1. Configuring the memory usage

The Basic Settings tab enables you to configure the amount of memory that is reserved for the kdump
kernel. To do so, select the Manual settings radio button, and click the up and down arrow buttons next
to the New kdump Memory field to increase or decrease the amount of memory to be reserved. Notice
that the Usable Memory field changes accordingly showing you the remaining memory that is available
to the system. See Section 7.1.2, “Memory requirements” for more information on kdump’s memory
requirements.

Figure 7.1. Basic Settings

CHAPTER 7. KERNEL CRASH DUMP GUIDE

67

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

Figure 7.1. Basic Settings

7.2.3.2. Configuring the kdump target

The Target Settings tab allows you to specify the target location for the vmcore dump. The dump can
be either stored as a file in a local file system, written directly to a device, or sent over a network using
the NFS (Network File System) or SSH (Secure Shell) protocol.

Figure 7.2. Target Settings

Red Hat Enterprise Linux 7 Kernel Administration Guide

68

Figure 7.2. Target Settings

To save the dump to the local file system, select the Local filesystem radio button. Optionally, you can
customize the settings by choosing a different partition from the Partition drop-down list and a target
directory using the Path field.

IMPORTANT

In Red Hat Enterprise Linux 7, the directory defined as the kdump target must exist when
the kdump systemd service is started - otherwise the service fails. This behavior is
different from earlier releases of Red Hat Enterprise Linux, where the directory was being
created automatically if it did not exist when starting the service.

To write the dump directly to a device, select the Raw device radio button, and choose the desired
target device from the drop-down list next to it.

To send the dump to a remote machine over a network connection, select the Network radio button. To
use the NFS protocol, select the NFS radio button, and fill the Server name and Path to directory
fields. To use the SSH protocol, select the SSH radio button, and fill the Server name, Path to
directory, and User name fields with the remote server address, target directory, and a valid user name
respectively.

For information on how to configure an SSH server and set up a key-based authentication, see the Red
Hat Enterprise Linux 7 System Administrator’s Guide. For a complete list of currently supported targets,
see Table 7.3, “Supported kdump Targets” .

7.2.3.3. Configuring the core collector

CHAPTER 7. KERNEL CRASH DUMP GUIDE

69

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

The Filtering Settings tab enables you to select the filtering level for the vmcore dump.

Figure 7.3. Filtering Settings

To exclude the zero page, cache page, cache private, user data, or free page from the dump, select
the checkbox next to the appropriate label.

7.2.3.4. Configuring the default action

To choose which action should be performed when kdump fails to create a core dump, select an
appropriate option from the Action if dumping fails drop-down list. Available options are:

Dump to rootfs and reboot attempts to save the core locally and then reboots the system

Reboot the default action which reboots the system

Start a Shell to present a user with an inter active shell prompt

Halt to halt the system

Poweroff to power the system off

Figure 7.4. Filtering Settings

Red Hat Enterprise Linux 7 Kernel Administration Guide

70

Figure 7.4. Filtering Settings

To customize the options that are passed to the makedumpfile core collector, edit the Core collector
text field; see Section 7.2.2.3, “Configuring the core collector” for more information.

7.2.3.5. Enabling the service

To start the kdump service at boot time, click the Enable button on the toolbar and then click the
Apply button. This enables and activates the service for multi-user.target. Click the Disable button and
confirm by clicking the Apply button to disable the service immediately.

IMPORTANT

In Red Hat Enterprise Linux 7, the directory defined as the kdump target must exist when
the kdump systemd service is started - otherwise the service fails. This behavior is
different from earlier releases of Red Hat Enterprise Linux, where the directory was being
created automatically if it did not exist when starting the service.

For more information on systemd targets and configuring services in general, see the Red Hat Enterprise
Linux 7 System Administrator’s Guide.

CHAPTER 7. KERNEL CRASH DUMP GUIDE

71

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

7.3. BLACKLISTING KERNEL DRIVERS FOR KDUMP

Blacklisting the kernel drivers is a mechanism to prevent them from being loaded and used. Adding the
drivers in /etc/sysconfig/kdump file, prevents the kdump initramfs from loading the blacklisted
modules.

Blacklisting kernel drivers prevents the oom killer or other crash kernel failures. To blacklist the kernel
drivers, you can update the KDUMP_COMMANDLINE_APPEND= variable in the /etc/sysconfig/kdump
file and specify one of the following blacklisting option:

rd.driver.blacklist=<modules>

modprobe.blacklist=<modules>

Procedure

1. Select the kernel module that you intend to blacklist:

$ lsmod
Module Size Used by
fuse 126976 3
xt_CHECKSUM 16384 1
ipt_MASQUERADE 16384 1
uinput 20480 1
xt_conntrack 16384 1

The lsmod command displays the list of modules that are loaded to the currently running kernel.

2. Update the KDUMP_COMMANDLINE_APPEND= line in the /etc/sysconfig/kdump file as:

KDUMP_COMMANDLINE_APPEND="rd.driver.blacklist=hv_vmbus,hv_storvsc,hv_utils,hv_netv
sc,hid-hyperv"

3. You can also update the KDUMP_COMMANDLINE_APPEND= line in the
/etc/sysconfig/kdump file as:

KDUMP_COMMANDLINE_APPEND="modprobe.blacklist=emcp modprobe.blacklist=bnx2fc
modprobe.blacklist=libfcoe modprobe.blacklist=fcoe"

4. Restart the kdump service:

$ systemctl restart kdump

7.4. TESTING THE KDUMP CONFIGURATION

WARNING

The commands below cause the kernel to crash. Use caution when following these
steps, and by no means use them on a production system.

Red Hat Enterprise Linux 7 Kernel Administration Guide

72

To test the configuration, reboot the system with kdump enabled, and make sure that the service is
running:

~]# systemctl is-active kdump
active

Then type the following commands at a shell prompt:

echo 1 > /proc/sys/kernel/sysrq
echo c > /proc/sysrq-trigger

This forces the Linux kernel to crash, and the address-YYYY-MM-DD-HH:MM:SS/vmcore file is copied
to the location you have selected in the configuration (that is, to /var/crash/ by default).

NOTE

In addition to confirming the validity of the configuration, this action can also be used to
record how long it takes to a crash dump to complete if it is performed under a
representative test load.

7.4.1. Additional resources

7.4.1.1. Installed documentation

kdump.conf(5) — a manual page for the /etc/kdump.conf configuration file containing the full
documentation of available options.

zipl.conf(5) — a manual page for the /etc/zipl.conf configuration file.

zipl(8) — a manual page for the zipl boot loader utility for IBM Z.

makedumpfile(8) — a manual page for the makedumpfile core collector.

kexec(8) — a manual page for kexec.

crash(8) — a manual page for the crash utility.

/usr/share/doc/kexec-tools-version/kexec-kdump-howto.txt — an overview of the kdump and
kexec installation and usage.

7.4.1.2. Online documentation

https://access.redhat.com/site/solutions/6038

The Red Hat Knowledgebase article about the kexec and kdump configuration.

https://access.redhat.com/site/solutions/223773

The Red Hat Knowledgebase article about supported kdump targets.

https://github.com/crash-utility/crash

The crash utility Git repository.

https://www.gnu.org/software/grub/

The GRUB2 boot loader homepage and documentation.

CHAPTER 7. KERNEL CRASH DUMP GUIDE

73

https://access.redhat.com/site/solutions/6038
https://access.redhat.com/site/solutions/223773
https://github.com/crash-utility/crash
https://www.gnu.org/software/grub/

7.5. FIRMWARE ASSISTED DUMP MECHANISMS

7.5.1. The case for firmware assisted dump

The kexec and kdump mechanisms are a reliable and proven method of capturing a core dump on
AMD64 and Intel 64 systems. However, some hardware with a longer history, particularly mini and
mainframe systems, allows us to leverage the onboard firmware to isolate regions of memory and
prevent any accidental overwriting of data that is important to the crash analysis.

This chapter covers some of the available firmware assisted dump methods and how they integrate with
Red Hat Enterprise Linux.

7.5.2. Using fadump on IBM PowerPC hardware

Firmware-assisted dump (fadump) is a reliable alternative to kexec-kdump available on IBM PowerPC
LPARS. It captures vmcore from a fully-reset system with PCI and I/O devices reinitialized. While this
mechanism uses the firmware to preserve the memory in case of a crash, it reuses the kdump userspace
scripts to save the vmcore"

To achieve this, fadump registers the regions of memory that must be preserved in the event of a crash
with the system firmware. These regions consist of all the system memory contents, except the boot
memory, system registers and hardware Page Table Entries (PTEs).

For further details about the fadump mechanism, including PowerPC-specific methods of resetting
hardware, review /usr/share/doc/kexec-tools-X.y.z/fadump-howto.txt where "X.y.z" correspond to the
version number of kexec-tools installed on your system.

NOTE

The area of memory not preserved and known as boot memory is the amount of RAM
required to successfully boot the kernel after a crash event. By default, the boot memory
size is 256MB or 5% of total system RAM, whichever is larger.

Unlike a kexec-initiated event, the fadump process uses the production kernel to recover a crash dump.
When booting after a crash, PowerPC hardware makes the device node /proc/device-
tree/rtas/ibm,kernel-dump available to procfs, which the fadump-aware kdump scripts check for to
save the vmcore. After this has completed, the system is rebooted cleanly.

Enabling fadump

1. Install and configure kdump as described in Section 7.2, “Installing and configuring kdump” .

2. Add fadump=on to the GRUB_CMDLINE_LINUX line in /etc/default/grub:

GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/swap crashkernel=auto rd.lvm.lv=rhel/root rhgb
quiet fadump=on"

3. (optional) If you want to specify reserved boot memory instead of accepting the defaults,
configure crashkernel=xxM to GRUB_CMDLINE_LINUX in /etc/default/grub, where xx is the
amount of the memory required in megabytes:

GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/swap crashkernel=xxM rd.lvm.lv=rhel/root rhgb
quiet fadump=on"

Red Hat Enterprise Linux 7 Kernel Administration Guide

74

IMPORTANT

As with all boot configuration options, it is strongly recommended that you test the
configuration before it is needed. If you observe Out of Memory (OOM) errors when
booting from the crash kernel, increase the value specified in crashkernel= until the
crash kernel can boot cleanly. Some trial and error may be required in this case.

7.5.3. Firmware assisted dump methods on IBM Z

There are two firmware assisted dump mechanisms on IBM Z. They are Stand-alone Dump and
VMDUMP.

The kdump infrastructure is supported and utilized on these systems and configuration from
Red Hat Enterprise Linux is described in Section 7.2, “Installing and configuring kdump” . However, there
are potentially some advantages to using either of the firmware assisted methods IBM Z hardware
provides.

The Stand-alone Dump (SADMP) mechanism is initiated and controlled from the system console, and
must be stored on an IPL bootable device.

Similar to SADMP is VMDUMP. This tool is also initiated from the system console, but has a mechanism
to retrieve the resulting dump from hardware and copy it to a system for analysis.

One advantage of these methods (and similarly to other hardware based dump mechanisms), is the
ability to capture the state of a machine in the Early Boot phase (before the kdump service is started)

Although VMDUMP contains a mechanism to receive the dump file into a Red Hat Enterprise Linux
system, the configuration and control of both SADMP and VMDUMP are managed from the IBM Z
Hardware console.

IBM discuss SADMP in detail, in stand-alone dump program article and VMDUMP at VMDUMP article.

IBM also have a documentation set for using the dump tools on Red Hat Enterprise Linux 7 in Using the
Dump Tools on Red Hat Enterprise Linux article.

7.5.4. Using sadump on Fujitsu PRIMEQUEST systems

The Fujitsu sadump mechanism is designed to provide a fallback dump capture in the event kdump is
unable to complete successfully.

The sadump process is invoked manually from the system ManageMent Board (MMB) interface.

With this system, configure kdump as normal for an X86_64 server and then perform the following
additional steps to enable sadump.

Add or edit the following lines in /etc/sysctl.conf to ensure that kdump starts as expected for sadump.

kernel.panic=0
kernel.unknown_nmi_panic=1

In addition to the above, you must also add some options to /etc/kdump.conf to ensure that kdump
behaves correctly for sadump.

In particular, ensure that after kdump, the system does not reboot. If the system reboots after kdump
has failed to save core, then you have no opportunity to invoke sadump.

CHAPTER 7. KERNEL CRASH DUMP GUIDE

75

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieav100/standa.htm
http://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.lgdt/lgdt_t_vmdump.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lgdt/lgdt_t_usingdumptools.html

Set the default action in /etc/kdump.conf to be either halt or shell to achieve this.

default shell

IMPORTANT

For details on configuring your hardware for sadump, see the FUJITSU Server
PRIMEQUEST 2000 Series Installation Manual.

7.6. ANALYZING A CORE DUMP

To determine the cause of the system crash, you can use the crash utility, which provides an interactive
prompt very similar to the GNU Debugger (GDB). This utility allows you to interactively analyze a
running Linux system as well as a core dump created by netdump, diskdump, xendump, or kdump.

7.6.1. Installing the crash utility

To install the crash analyzing tool, execute the following command from a shell prompt as root:

yum install crash

In addition to crash, it is also necessary to install the kernel-debuginfo package that corresponds to
your running kernel, which provides the data necessary for dump analysis. To install kernel-debuginfo
we use the debuginfo-install command as root:

debuginfo-install kernel

For more information on how to install new packages in Red Hat Enterprise Linux using the Yum
package manager, see the Red Hat Enterprise Linux 7 System Administrator’s Guide .

7.6.2. Running the crash utility

To start the utility, type the command in the following form at a shell prompt:

crash /usr/lib/debug/lib/modules/<kernel>/vmlinux \ /var/crash/<timestamp>/vmcore

Use the same <kernel> version that was captured by kdump. To find out which kernel you are currently
running, use the uname -r command.

Example 7.2. Running the crash utility

~]# crash /usr/lib/debug/lib/modules/2.6.32-69.el6.i686/vmlinux \
/var/crash/127.0.0.1-2010-08-25-08:45:02/vmcore

crash 5.0.0-23.el6
Copyright (C) 2002-2010 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.

Red Hat Enterprise Linux 7 Kernel Administration Guide

76

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb (GDB) 7.0
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...

 KERNEL: /usr/lib/debug/lib/modules/2.6.32-69.el6.i686/vmlinux
 DUMPFILE: /var/crash/127.0.0.1-2010-08-25-08:45:02/vmcore [PARTIAL DUMP]
 CPUS: 4
 DATE: Wed Aug 25 08:44:47 2010
 UPTIME: 00:09:02
LOAD AVERAGE: 0.00, 0.01, 0.00
 TASKS: 140
 NODENAME: hp-dl320g5-02.lab.bos.redhat.com
 RELEASE: 2.6.32-69.el6.i686
 VERSION: #1 SMP Tue Aug 24 10:31:45 EDT 2010
 MACHINE: i686 (2394 Mhz)
 MEMORY: 8 GB
 PANIC: "Oops: 0002 [#1] SMP " (check log for details)
 PID: 5591
 COMMAND: "bash"
 TASK: f196d560 [THREAD_INFO: ef4da000]
 CPU: 2
 STATE: TASK_RUNNING (PANIC)

crash>

7.6.3. Displaying the message buffer

To display the kernel message buffer, type the log command at the interactive prompt.

Example 7.3. Displaying the kernel message buffer

crash> log
... several lines omitted ...
EIP: 0060:[<c068124f>] EFLAGS: 00010096 CPU: 2
EIP is at sysrq_handle_crash+0xf/0x20
EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000
ESI: c0a09ca0 EDI: 00000286 EBP: 00000000 ESP: ef4dbf24
 DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
Process bash (pid: 5591, ti=ef4da000 task=f196d560 task.ti=ef4da000)
Stack:
 c068146b c0960891 c0968653 00000003 00000000 00000002 efade5c0 c06814d0
<0> fffffffb c068150f b7776000 f2600c40 c0569ec4 ef4dbf9c 00000002 b7776000
<0> efade5c0 00000002 b7776000 c0569e60 c051de50 ef4dbf9c f196d560 ef4dbfb4
Call Trace:

CHAPTER 7. KERNEL CRASH DUMP GUIDE

77

 [<c068146b>] ? __handle_sysrq+0xfb/0x160
 [<c06814d0>] ? write_sysrq_trigger+0x0/0x50
 [<c068150f>] ? write_sysrq_trigger+0x3f/0x50
 [<c0569ec4>] ? proc_reg_write+0x64/0xa0
 [<c0569e60>] ? proc_reg_write+0x0/0xa0
 [<c051de50>] ? vfs_write+0xa0/0x190
 [<c051e8d1>] ? sys_write+0x41/0x70
 [<c0409adc>] ? syscall_call+0x7/0xb
Code: a0 c0 01 0f b6 41 03 19 d2 f7 d2 83 e2 03 83 e0 cf c1 e2 04 09 d0 88 41 03 f3 c3 90 c7 05
c8 1b 9e c0 01 00 00 00 0f ae f8 89 f6 <c6> 05 00 00 00 00 01 c3 89 f6 8d bc 27 00 00 00 00 8d 50
d0 83
EIP: [<c068124f>] sysrq_handle_crash+0xf/0x20 SS:ESP 0068:ef4dbf24
CR2: 0000000000000000

Type help log for more information on the command usage.

NOTE

The kernel message buffer includes the most essential information about the system
crash and, as such, it is always dumped first in to the vmcore-dmesg.txt file. This is useful
when an attempt to get the full vmcore file failed, for example because of lack of space
on the target location. By default, vmcore-dmesg.txt is located in the /var/crash/
directory.

7.6.4. Displaying a backtrace

To display the kernel stack trace, type the bt command at the interactive prompt. You can use bt <pid>
to display the backtrace of a single process.

Example 7.4. Displaying the kernel stack trace

crash> bt
PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"
 #0 [ef4dbdcc] crash_kexec at c0494922
 #1 [ef4dbe20] oops_end at c080e402
 #2 [ef4dbe34] no_context at c043089d
 #3 [ef4dbe58] bad_area at c0430b26
 #4 [ef4dbe6c] do_page_fault at c080fb9b
 #5 [ef4dbee4] error_code (via page_fault) at c080d809
 EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000 EBP: 00000000
 DS: 007b ESI: c0a09ca0 ES: 007b EDI: 00000286 GS: 00e0
 CS: 0060 EIP: c068124f ERR: ffffffff EFLAGS: 00010096
 #6 [ef4dbf18] sysrq_handle_crash at c068124f
 #7 [ef4dbf24] __handle_sysrq at c0681469
 #8 [ef4dbf48] write_sysrq_trigger at c068150a
 #9 [ef4dbf54] proc_reg_write at c0569ec2
#10 [ef4dbf74] vfs_write at c051de4e
#11 [ef4dbf94] sys_write at c051e8cc
#12 [ef4dbfb0] system_call at c0409ad5
 EAX: ffffffda EBX: 00000001 ECX: b7776000 EDX: 00000002
 DS: 007b ESI: 00000002 ES: 007b EDI: b7776000
 SS: 007b ESP: bfcb2088 EBP: bfcb20b4 GS: 0033
 CS: 0073 EIP: 00edc416 ERR: 00000004 EFLAGS: 00000246

Red Hat Enterprise Linux 7 Kernel Administration Guide

78

Type help bt for more information on the command usage.

7.6.5. Displaying a process status

To display status of processes in the system, type the ps command at the interactive prompt. You can
use ps <pid> to display the status of a single process.

Example 7.5. Displaying the status of processes in the system

crash> ps
 PID PPID CPU TASK ST %MEM VSZ RSS COMM
> 0 0 0 c09dc560 RU 0.0 0 0 [swapper]
> 0 0 1 f7072030 RU 0.0 0 0 [swapper]
 0 0 2 f70a3a90 RU 0.0 0 0 [swapper]
> 0 0 3 f70ac560 RU 0.0 0 0 [swapper]
 1 0 1 f705ba90 IN 0.0 2828 1424 init
... several lines omitted ...
 5566 1 1 f2592560 IN 0.0 12876 784 auditd
 5567 1 2 ef427560 IN 0.0 12876 784 auditd
 5587 5132 0 f196d030 IN 0.0 11064 3184 sshd
> 5591 5587 2 f196d560 RU 0.0 5084 1648 bash

Type help ps for more information on the command usage.

7.6.6. Displaying virtual memory information

To display basic virtual memory information, type the vm command at the interactive prompt. You can
use vm <pid> to display information on a single process.

Example 7.6. Displaying virtual memory information of the current context

crash> vm
PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"
 MM PGD RSS TOTAL_VM
f19b5900 ef9c6000 1648k 5084k
 VMA START END FLAGS FILE
f1bb0310 242000 260000 8000875 /lib/ld-2.12.so
f26af0b8 260000 261000 8100871 /lib/ld-2.12.so
efbc275c 261000 262000 8100873 /lib/ld-2.12.so
efbc2a18 268000 3ed000 8000075 /lib/libc-2.12.so
efbc23d8 3ed000 3ee000 8000070 /lib/libc-2.12.so
efbc2888 3ee000 3f0000 8100071 /lib/libc-2.12.so
efbc2cd4 3f0000 3f1000 8100073 /lib/libc-2.12.so
efbc243c 3f1000 3f4000 100073
efbc28ec 3f6000 3f9000 8000075 /lib/libdl-2.12.so
efbc2568 3f9000 3fa000 8100071 /lib/libdl-2.12.so
efbc2f2c 3fa000 3fb000 8100073 /lib/libdl-2.12.so
f26af888 7e6000 7fc000 8000075 /lib/libtinfo.so.5.7
f26aff2c 7fc000 7ff000 8100073 /lib/libtinfo.so.5.7
efbc211c d83000 d8f000 8000075 /lib/libnss_files-2.12.so
efbc2504 d8f000 d90000 8100071 /lib/libnss_files-2.12.so

CHAPTER 7. KERNEL CRASH DUMP GUIDE

79

efbc2950 d90000 d91000 8100073 /lib/libnss_files-2.12.so
f26afe00 edc000 edd000 4040075
f1bb0a18 8047000 8118000 8001875 /bin/bash
f1bb01e4 8118000 811d000 8101873 /bin/bash
f1bb0c70 811d000 8122000 100073
f26afae0 9fd9000 9ffa000 100073
... several lines omitted ...

Type help vm for more information on the command usage.

7.6.7. Displaying open files

To display information about open files, type the files command at the interactive prompt. You can use
files <pid> to display files opened by only one selected process.

Example 7.7. Displaying information about open files of the current context

crash> files
PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"
ROOT: / CWD: /root
 FD FILE DENTRY INODE TYPE PATH
 0 f734f640 eedc2c6c eecd6048 CHR /pts/0
 1 efade5c0 eee14090 f00431d4 REG /proc/sysrq-trigger
 2 f734f640 eedc2c6c eecd6048 CHR /pts/0
 10 f734f640 eedc2c6c eecd6048 CHR /pts/0
255 f734f640 eedc2c6c eecd6048 CHR /pts/0

Type help files for more information on the command usage.

7.6.8. Exiting the utility

To exit the interactive prompt and terminate crash, type exit or q.

Example 7.8. Exiting the crash utility

crash> exit
~]#

7.7. FREQUENTLY ASKED QUESTIONS

What considerations need to be made for using Kdump in a clustered environment?

How do I configure kdump for use with the RHEL 6, 7 High Availability Add-On? shows the options
available to system administrators using the High Availability Add-On.

Kdump fails during early boot, How do I capture the boot log?

If there is a problem booting the second kernel, it is necessary to review the early boot logs, these can be
obtained by enabling a serial console to the affected machine.

Red Hat Enterprise Linux 7 Kernel Administration Guide

80

https://access.redhat.com/articles/67570

How do I setup serial console in RHEL7? shows the configuration needed to enable access to the early
boot messages.

How do I increase the messaging from makedumpfile for debugging?

In the event that makedumpfile fails, then it is necessary to increase the log level to understand what is
going wrong. This is different from setting the dump level and is achieved by editing /etc/kdump.conf
and increasing the message_level option to makedumpfile on the core_collector line entry.

By default makedumpfile is set to level 1, which restricts the output prints to progress indicator. Enable
all the debugging information by setting this message level to 31. Message level 31 will print details about
progress indicator, common message, error message, debug message and report message.

NOTE

For more information about the message level options, see the makedumpfile (8) manual
page.

Ensure that your core_collector config line looks similar to this when set:

core_collector makedumpfile -l --message-level 1 -d 31

How do I debug Dracut?

Sometimes dracut can fail to build an initramfs. If this happens, increase the log level in dracut to isolate
the issue.

Edit /etc/kdump.conf and change the dracut_args line to include the option -L 5 in addition to any
other dracut arguments you require.

If you have no other options configured in dracut_args, the result looks similar to this:

dracut_args -L 5

What methods of dumping are available for virtual machines?

In most cases, the kdump mechanism is sufficient for obtaining a memory dump from a machine after a
crash or panic. This can be set up in the same manner as installations to bare metal.

However, in some cases, it is necessary to work directly with the hypervisor to obtain a crash dump.
There are two mechanisms available with libvirt to achieve this; pvpanic and virsh dump. Both of these
methods are described in the Virtualization Deployment and Administration Guide .

The pvpanic mechanism can be found at Virtualization Deployment and Administration Guide - Setting
a Panic Device.

The virsh dump command is discussed in Virtualization Deployment and Administration Guide -
Creating a Dump File of a Domain’s Core.

How do I upload a large dump file to Red Hat Support Services?

In some cases, it might be necessary to send a kernel crash dump file to Red Hat Global Support
Services for analysis. However, the dump file can be very large, even after being filtered. Since files
larger than 250 MB cannot be uploaded directly through the Red Hat Customer Portal when opening a
new support case, an FTP server is provided by Red Hat for uploading large files.

CHAPTER 7. KERNEL CRASH DUMP GUIDE

81

https://access.redhat.com/solutions/1300623
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Virtualization_Deployment_and_Administration_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/sect-Manipulating_the_domain_xml-Devices.html#sect-Devices-Setting_a_panic_device
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/sect-Domain_Commands-Creating_a_dump_file_of_a_domains_core.html

The FTP server’s address is dropbox.redhat.com and the files are to be uploaded in the /incoming/
directory. Your FTP client needs to be set into passive mode; if your firewall does not allow this mode,
use the origin-dropbox.redhat.com server using active mode.

Make sure that the uploaded files are compressed using a program such as gzip and properly and
descriptively named. Using your support case number in the file name is recommended. After
successfully uploading all necessary files, provide the engineer in charge of your support case with the
exact file name and its SHA1 or MD5 checksum.

For more specific instructions and additional information, see How to provide files to Red Hat Support .

How much time is needed for a crash dump to complete?

It is often necessary, for the purposes of disaster recovery planning, to know how long a dump takes to
complete. However, the length of time it takes is highly dependent on the amount of memory being
copied to disk and the speed of the interfaces between RAM and storage.

For any test of timings, the system must be operating under a representative load, otherwise the page
exclusion choices can present a false view of kdump behavior with a fully loaded production system. This
discrepancy is present especially when working with very large quantities of RAM.

Also consider storage interfaces in your planning when assessing time to dump. Because of network
constraints, a connection dumping over ssh for example, can take longer to complete than a locally
attached SATA disk.

How is Kdump configured during installation?

You can configure kdump during installation with a limited set of options in kickstart or the interactive
GUI.

The kdump configuration using the anaconda installation GUI is documented in the KDUMP section of
the Installation Guide.

The kickstart syntax is:

%addon com_redhat_kdump [--disable,enable] [--reserve-mb=[auto,value]]
%end

With this add-on to Kickstart, you can disable or enable kdump functionality, optionally defining the
reserved memory size, either by explicitly invoking the default option of auto (which is also the case if
the entire switch is omitted) or specifying a numeric value in megabytes.

To learn how Kickstart can be used to automate system deployments, read Kickstart Installations in the
Installation Guide.

For further details about Kickstart add-on syntax, review the Kickstart Syntax Reference in the
Installation Guide.

7.8. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS

7.8.1. Memory requirements for kdump

In order for kdump to be able to capture a kernel crash dump and save it for further analysis, a part of
the system memory has to be permanently reserved for the capture kernel.

For information on how to change memory settings on the command line, see Section 7.2.2.1,

Red Hat Enterprise Linux 7 Kernel Administration Guide

82

https://access.redhat.com/site/solutions/2112
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kdump-x86.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-kickstart-installations.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html

For information on how to change memory settings on the command line, see Section 7.2.2.1,
“Configuring the memory usage”. For instructions on how to set up the amount of reserved memory in
the graphical user interface, see Section 7.2.3.1, “Configuring the memory usage” .

Table 7.1 lists memory reserved automatically by kdump on kernel and kernel-alt packages. kdump
auto reserves memory based on the CPU architecture, and total available physical memory.

Table 7.1. Total crash memory reserved automatically by kdump

CPU architecture Available memory Crash memory automatically
reserved

AMD64 and Intel 64 (x86_64) 2 GB and more 161 MB + 64 MB per 1 TB

64-bit ARM architecture (arm64) 2 GB and more 512 MB

IBM POWER ppc64/ppc64le 2 GB to 4 GB 384 MB

4 GB to 16 GB 512 MB

16 GB to 64 GB 1 GB

64 GB to 128 GB 2 GB

128 GB and more 4 GB

IBM Z (s390x) 4 GB and more 161 MB + 64 MB per 1 TB
[1] 160 MB on RHEL-ALT-7.6

For more information about various Red Hat Enterprise Linux technology capabilities and limits, see
https://access.redhat.com/articles/rhel-limits.

7.8.2. Minimum threshold for automatic memory reservation

On some systems, it is possible to allocate memory for kdump automatically, either by using the
crashkernel=auto parameter in the bootloader’s configuration file, or by enabling this option in the
graphical configuration utility. For this automatic reservation to work, however, a certain amount of total
memory needs to be available in the system. This amount differs based on the system’s architecture.

The table below lists the thresholds for automatic memory allocation for kernel and kernel-alt
packages. If the system has less memory than specified in the table, memory needs to be reserved
manually.

For information on how to change these settings on the command line, see Section 7.2.2.1, “Configuring
the memory usage”. For instructions on how to change the amount of reserved memory in the graphical
user interface, see Section 7.2.3.1, “Configuring the memory usage” .

Table 7.2. Minimum amount of memory required for automatic memory reservation

CHAPTER 7. KERNEL CRASH DUMP GUIDE

83

https://access.redhat.com/articles/rhel-limits

Architecture Required Memory

AMD64 and Intel 64 (x86_64) 2 GB

IBM POWER (ppc64) 2 GB

IBM Z (s390x) 4 GB

64-bit ARM architecture (arm64) 2 GB

7.8.3. Supported kdump targets

When a kernel crash is captured, the core dump can be either written directly to a device, stored as a file
on a local file system, or sent over a network. The table below contains a complete list of dump targets
that are currently supported or explicitly unsupported by kdump.

For information on how to configure the target type on the command line, see Section 7.2.2.2,
“Configuring the kdump target”. For information on how to do so in the graphical user interface, see
Section 7.2.3.2, “Configuring the kdump target” .

Table 7.3. Supported kdump Targets

Type Supported Targets Unsupported Targets

Raw device All locally attached raw disks and
partitions.

Local file system ext2, ext3, ext4, and xfs file
systems on directly attached disk
drives, hardware RAID logical
drives, LVM devices, and mdraid
arrays.

Any local file system not explicitly
listed as supported in this table,
including the auto type
(automatic file system detection).

Remote directory Remote directories accessed
using the NFS or SSH protocol
over IPv4.

Remote directories on the rootfs
file system accessed using the
NFS protocol.

Remote directories accessed
using the FCoE (Fibre Channel
over Ethernet) protocol.

qla2xxx, lpfc and bfa hardware
FCoE targets. bnx2fc and
ixgbe software FCoE targets.

Remote directories accessed
using the iSCSI protocol over
both hardware and software
initiators.

Remote directories accessed
using the iSCSI protocol on
be2iscsi hardware.

Multipath-based storages.

 Remote directories accessed over
IPv6.

Red Hat Enterprise Linux 7 Kernel Administration Guide

84

 Remote directories accessed
using the SMB or CIFS protocol.

 Remote directories accessed
using wireless network interfaces.

Type Supported Targets Unsupported Targets

NOTE

When dumping to a software FCoE target, you can encounter Out of Memory (OOM)
issue. In such cases, increase the default crashkernel=auto parameter value. For more
information on how to set up this kernel boot parameter, see Section 7.2.2.1, “Configuring
the memory usage”.

7.8.4. Supported kdump filtering levels

To reduce the size of the dump file, kdump uses the makedumpfile core collector to compress the data
and optionally leave out irrelevant information. The table below contains a complete list of filtering
levels that are currently supported by the makedumpfile utility.

For instructions on how to configure the core collector on the command line, see Section 7.2.2.3,
“Configuring the core collector”. For information on how to do so in the graphical user interface, see
Section 7.2.3.3, “Configuring the core collector” .

Table 7.4. Supported Filtering Levels

Option Description

1 Zero pages

2 Cache pages

4 Cache private

8 User pages

16 Free pages

NOTE

The makedumpfile command supports removal of transparent huge pages and hugetlbfs
pages on Red Hat Enterprise Linux 7.3 and later. Consider both these types of
hugepages User Pages and remove them using the -8 level.

7.8.5. Supported default actions

By default, when kdump fails to create a core dump, the operating system reboots. You can, however,
configure kdump to perform a different operation in case it fails to save the core dump to the primary
target. The table below lists all default actions that are currently supported by kdump.

CHAPTER 7. KERNEL CRASH DUMP GUIDE

85

For detailed information on how to set up the default action on the command line, see Section 7.2.2.4,
“Configuring the default action”. For information on how to do so in the graphical user interface, see
Section 7.2.3.4, “Configuring the default action” .

Table 7.5. Supported Default Actions

Option Description

dump_to_rootfs Attempt to save the core dump to the root file
system. This option is especially useful in
combination with a network target: if the network
target is unreachable, this option configures kdump
to save the core dump locally. The system is
rebooted afterwards.

reboot Reboot the system, losing the core dump in the
process.

halt Halt the system, losing the core dump in the process.

poweroff Power off the system, losing the core dump in the
process.

shell Run a shell session from within the initramfs, allowing
the user to record the core dump manually.

7.8.6. Estimating kdump size

When planning and building your kdump environment it is necessary to know how much space is
required for the dump file before one is produced. The makedumpfile command can help with this.

Estimate the space required for the dump file using the --mem-usage functionality as:

makedumpfile -f --mem-usage /proc/kcore

NOTE

The --mem-usage functionality using -f option, works with the Kernel version v4.11 and
later.

For Kernel versions earlier than v4.11, before using --mem-usage with option -f , ensure
that the Kernel is patched with upstream commit 464920104bf7.

The --mem-usage option provides a useful report about excludable pages, that can be used to
determine which dump level you want to assign. Run this command when the system is under
representative load, otherwise makedumpfile returns a smaller value than is expected in your
production environment.

[root@hostname ~]# makedumpfile -f --mem-usage /proc/kcore

TYPE PAGES EXCLUDABLE DESCRIPTION
--

Red Hat Enterprise Linux 7 Kernel Administration Guide

86

ZERO 501635 yes Pages filled with zero
CACHE 51657 yes Cache pages
CACHE_PRIVATE 5442 yes Cache pages + private
USER 16301 yes User process pages
FREE 77738211 yes Free pages
KERN_DATA 1333192 no Dumpable kernel data

IMPORTANT

The makedumpfile command reports in pages. This means that you must calculate the
size of memory in use against the kernel page size, which in the Red Hat Enterprise Linux
kernel, is 4 kilobytes for AMD64 and Intel 64 architectures, and 64 kilobytes for IBM
POWER architecture.

7.8.7. Support for architectures on kernel and kernel-alt packages

The following table provides an overview of architectures and available memory support on kernel and
kernel-alt packages.

Table 7.6. Architectures supported on kernel and kernel-alt packages

CPU
architecture

Available
memory

RHEL 7.5 and
earlier

RHEL 7.6 and
later

RHEL-ALT-
7.4

RHEL-ALT-
7.5 and later

AMD64 and
Intel 64
(x86_64)

2GB and more 161MB + 64MB
per 1TB

161MB +
64MB/1TB

2GB to 160MB 2GB to 160MB

64-bit ARM
architecture
(arm64)

2GB and more N/A N/A 2GB to 512MB 2GB to 512MB

IBM POWER
ppc64/ppc64
le (Upto
POWER8)

2GB to 4GB 384MB 384MB N/A N/A

4GB to 16GB 512MB 512MB N/A N/A

16GB to 64GB 1GB 1GB N/A N/A

64GB to
128GB

2GB 2GB N/A N/A

128GB and
more

4GB 4GB N/A N/A

IBM POWER
ppc64/ppc64
le (Upto
POWER9)

2GB to 4GB 384MB 384MB 384MB 384MB

4GB to 16GB 512MB 512MB 512MB 512MB

16GB to 64GB 1GB 1GB 1GB 1GB

CHAPTER 7. KERNEL CRASH DUMP GUIDE

87

64GB to
128GB

2GB 2GB 2GB 2GB

128GB and
more

4GB 4GB 4GB 4GB

IBM POWER
ppc64le
(POWER9)

2GB to 4GB N/A N/A 384MB 384MB

4GB to 16GB N/A N/A 512MB 512MB

16GB to 64GB N/A N/A 1GB 1GB

64GB to
128GB

N/A N/A 2GB 2GB

128GB and
more

N/A N/A 4GB 4GB

IBM Z
(s390x)

4GB and more 161MB + 64MB
per 1TB

161MB + 64MB
per 1TB

161MB + 64MB
per 1TB

160MB

CPU
architecture

Available
memory

RHEL 7.5 and
earlier

RHEL 7.6 and
later

RHEL-ALT-
7.4

RHEL-ALT-
7.5 and later

7.9. USING KEXEC TO REBOOT THE KERNEL

7.9.1. Rebooting kernel with kexec

The kexec system call enables loading and booting into another kernel from the currently running
kernel, thus performing a function of a boot loader from within the kernel.

The kexec utility loads the kernel and the initramfs image for the kexec system call to boot into
another kernel.

The following section describes how to manually invoke the kexec system call when using the`kexec`
utility to reboot into another kernel.

1. Execute the kexec utility:

kexec -l /boot/vmlinuz-3.10.0-1040.el7.x86_64 --initrd=/boot/initramfs-3.10.0-
1040.el7.x86_64.img --reuse-cmdline

The command manually loads the kernel and the initramfs image for the kexec system call.

2. Reboot the system:

reboot

The command detects the kernel, shuts down all services and then calls the kexec system call

Red Hat Enterprise Linux 7 Kernel Administration Guide

88

The command detects the kernel, shuts down all services and then calls the kexec system call
to reboot into the kernel you provided in the previous step.

WARNING

When you use the kexec -e command to reboot the kernel, the system does not go
through the standard shutdown sequence before starting the next kernel, which
may cause data loss or an unresponsive system.

7.10. PORTAL LABS RELEVANT TO KDUMP

The Portal Labs are small web applications that can help system administrators perform several system
tasks. There are currently two labs focused on Kdump. The Kdump Helper and the Kernel Oops Analyzer.

7.10.1. Kdump helper

The Kdump Helper is a series of questions and actions that assist in preparing the configuration files for
kdump.

The Lab’s workflow includes steps for both clustered and standalone environments.

7.10.2. Kernel oops analyzer

The Kernel Oops Analyzer is a tool to process Oops messages and search for known solutions without
having to unwind the crash dump stack.

The Kernel Oops Analyzer uses information from makedumpfile to compare the oops message from a
crashed machine with known issues in the knowledge base. This can enable System Administrators to
rule out known issues quickly after an unexpected outage, and before opening a support ticket for a
further analysis.



CHAPTER 7. KERNEL CRASH DUMP GUIDE

89

https://access.redhat.com/labs
https://access.redhat.com/labs/kdumphelper/
https://access.redhat.com/labs/kerneloopsanalyzer/

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL
INTEGRITY SUBSYSTEM

8.1. THE KERNEL INTEGRITY SUBSYSTEM

The integrity subsystem is a part of the kernel which is responsible for maintaining the system’s data
integrity. This subsystem helps to keep the system in its initial state by preventing users from making
undesired modification to specific system files.

The kernel integrity subsystem consists of two major components:

Integrity Measurement Architecture (IMA)

Measures files' content whenever it is executed or opened. Users can change this behavior by
applying custom policies.

Places the measured values within the kernel’s memory space, thereby it prevents any
modification by the users of the system.

Allows local and remote parties to verify the measured values.

Extended Verification Module (EVM)

Protects files' extended attributes (also known as xattr) that are related to the system’s
security, like IMA measurements and SELinux attributes, by cryptographically hashing their
corresponding values.

Both IMA and EVM also contain numerous feature extensions that bring additional functionality. For
example:

IMA-Appraisal

Locally validates the current file’s content against the values previously stored in the
measurement file within the kernel memory. This extension forbids any operation to be
performed over a specific file in case the current measurement does not match the previous
measurement.

EVM Digital Signatures

Allows the use of digital signatures through cryptographic keys stored into the kernel’s
keyring. EVM Digital Signatures ensures the origin and integrity of xattr values of those files
which have the content hash (security.ima) included.

NOTE

The feature extensions complement each other, but you can configure and use them
independently of one another.

The kernel integrity subsystem can use the Trusted Platform Module (TPM) to further harden system
security. TPM is a specification by the Trusted Computing Group (TCG) for important cryptographic
functions. TPM is usually implemented as dedicated hardware that is attached to the platform’s

Red Hat Enterprise Linux 7 Kernel Administration Guide

90

motherboard and prevents software-based attacks by providing cryptographic functions from a
protected and tamper-proof area of the hardware chip. Some of TPM features are:

Random-number generator

Generator and secure storage for cryptographic keys

Hashing generator

Remote attestation

8.2. INTEGRITY MEASUREMENT ARCHITECTURE

Integrity Measurement Architecture (IMA) is a component of the kernel integrity subsystem. IMA aims
to maintain the contents of local files by measuring, storing, and appraising files' hashes before they are
accessed. This prevents the reading and execution of unreliable data and enhances system security.

8.3. EXTENDED VERIFICATION MODULE

Extended Verification Module (EVM) is a component of the kernel integrity subsystem that monitors
changes in files' extended attributes (xattr). Many security-oriented technologies, including Integrity
Measurement Architecture (IMA), store sensitive file information, such as content hashes, in extended
attributes. EVM creates another hash from these extended attributes and from a special key, which is
loaded at boot time. The resulting hash is validated every time the extended attribute is used. For
example, when IMA appraises the file.

8.4. TRUSTED AND ENCRYPTED KEYS

Trusted and encrypted keys are variable-length symmetric keys generated by the kernel that are used
by the kernel keyring service. This type of keys never appears in the user space in an unencrypted form,
which means that their integrity can be verified. They can therefore be used, for example, by the
extended verification module (EVM) to verify and confirm the integrity of a running system. User-level
programs can only access the keys in the form of encrypted blobs.

Trusted keys need a hardware component: the Trusted Platform Module (TPM) chip, which is used to
both create and encrypt (seal) the keys. The TPM seals the keys using a 2048-bit RSA key called the
storage root key (SRK).

For more information about trusted and encrypted keys see the Trusted and Encrypted Keys section of
RHEL 7 Security Guide.

8.5. ENABLING INTEGRITY MEASUREMENT ARCHITECTURE AND
EXTENDED VERIFICATION MODULE

Integrity measurement architecture (IMA) and extended verification module (EVM) are components of
the kernel integrity subsystem that enhance system security in various ways. Configuring IMA and EVM
enables you to sign files and thereby to enhance system security.

Prerequisites

The ima-evm-utils, and keyutils packages are installed on your system.

The securityfs filesystem is mounted on the /sys/kernel/security/ directory.

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

91

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-encryption#sec-Trusted_and_Encrypted_Keys

The /sys/kernel/security/ima/ directory exists.

mount
… ​
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
… ​

Procedure

1. Prepare your system to enable IMA and EVM:

a. Add the following kernel command line parameters:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --args="ima_appraise=fix
ima_appraise_tcb evm=fix"

The command enables IMA and EVM in the fix mode for the current boot entry and allows
users to gather and update IMA measurements.

The ima_appraise_tcb kernel command line parameter ensures that the kernel uses the
default Trusted Computing Base (TCB) measurement policy and the appraisal step. The
appraisal step forbids access to files whose prior and current measurements do not match.

b. Reboot for the changes to take effect.

c. Optionally, verify that the kernel command line includes the new parameters:

cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-3.10.0-1136.el7.x86_64 root=/dev/mapper/rhel-root ro
crashkernel=auto spectre_v2=retpoline rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet
LANG=en_US.UTF-8 ima_appraise=fix ima_appraise_tcb evm=fix

2. Create and set a public and private keypair for EVM:

a. Create a new keyring for EVM:

evm_kr_id=$(keyctl newring _evm @u)

The command creates the _evm keyring and attaches it to the @u system user keyring.
Then, the keyring ID of _evm is assigned to the evm_kr_id variable for more convenient
handling in the future.

b. Optionally, view the newly created keyring:

keyctl show
Session Keyring
1025767139 --alswrv 0 0 keyring: _ses
548660789 --alswrv 0 65534 _ keyring: _uid.0
456142548 --alswrv 0 0 _ keyring: _evm

c. Create a directory for keys:

mkdir -p /etc/keys/

Red Hat Enterprise Linux 7 Kernel Administration Guide

92

d. Generate a 1024-bit RSA private key into the /etc/keys/privkey.pem file:

openssl genrsa -out /etc/keys/privkey.pem 1024
Generating RSA private key, 1024 bit long modulus
.......++++++
...++++++
e is 65537 (0x10001)

e. Use the previously created /etc/keys/privkey.pem private key to derive a corresponding
RSA public key into the /etc/keys/pubkey.pem file:

openssl rsa -pubout -in /etc/keys/privkey.pem -out /etc/keys/pubkey.pem
writing RSA key

f. Import the public key into the dedicated EVM keyring:

evmctl import --rsa /etc/keys/pubkey.pem $evm_kr_id
1054989579

The command imports the /etc/keys/pubkey.pem public key into the _evm keyring. The
_evm keyring is then attached to the kernel keyring. The key serial number is on the second
line of the previous example.

g. Optionally, view the newly imported key:

keyctl show
Session Keyring
1025767139 --alswrv 0 0 keyring: _ses
548660789 --alswrv 0 65534 _ keyring: _uid.0
456142548 --alswrv 0 0 _ keyring: _evm
1054989579 --alswrv 0 0 _ user: FA0EF80BF06F80AC

NOTE

This asymmetric key pair can be used to digitally sign the contents of an
extended attribute of a file using the evmctl sign command. The extended
attribute is later verified by the kernel.

h. Create a kernel master key to protect the EVM key:

dd if=/dev/urandom bs=1 count=32 2>/dev/null | keyctl padd user kmk-user @u

The kernel master key (kmk) is kept entirely in the kernel space memory. The 32-byte long
value of the kernel master key kmk is generated from random bytes from the
/dev/urandom file and placed in the user (@u) keyring.

3. Create an encrypted EVM key based on the kmk key:

keyctl add encrypted evm-key "new user:kmk 64" @u
351426499

The command uses kmk to generate and encrypt a 64-byte user key (named evm-key) and

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

93

The command uses kmk to generate and encrypt a 64-byte user key (named evm-key) and
places it in the user (@u) keyring. The key serial number is on the second line of the previous
example.

IMPORTANT

It is necessary to name the user key evm-key because that is the name the EVM
subsystem expects and works with.

4. Activate EVM:

echo 1 > /sys/kernel/security/evm

5. Verify that EVM has been initialized:

dmesg | tail -1
[… ​] EVM: initialized

8.6. COLLECTING FILE HASHES WITH INTEGRITY MEASUREMENT
ARCHITECTURE

The first level of operation of integrity measurement architecture (IMA) is the measurement phase,
which allows to create file hashes and store them as extended attributes (xattrs) of those files. The
following section describes how to create and inspect the files' hashes.

Prerequisites

The ima-evm-utils, attr, and keyutils packages are installed on your system.

Integrity measurement architecture (IMA) and extended verification module (EVM) are enabled
as described in Section 8.5, “Enabling integrity measurement architecture and extended
verification module”.

Procedure

1. Create a test file:

echo <Test_text> > test_file

2. Sign the file with the private key:

evmctl sign --imahash --key /etc/keys/privkey.pem test_file

By creating a hash of the test_file file, IMA verifies that the file remains is uncorrupted. EVM
ensures that the IMA hash is genuine by signing the hash content that is stored in the extended
attribute of test_file.

3. Optionally, check the extended attributes of the signed file:

getfattr -m . -d test_file
file: test_file
security.evm=0sAwICztVdCQCAZLtD7qAezGl8nGLgqFZzMzQp7Fm1svUet2Hy7TyI2vtT9/9Zf
BTKMK6Mjoyk0VX+DciS85XOCYX6WnV1LF2P/pmPRfputSEq9fVD4SWfKKj2rI7qwpndC1UqR

Red Hat Enterprise Linux 7 Kernel Administration Guide

94

X1BbN3aRUYeoKQdPdl6Cz+cX4d7vS56FJkFhPGlhq/UQbBnd80=
security.ima=0sAfgqQ5/05X4w/ltZEfbogdI9+KM5
security.selinux="unconfined_u:object_r:admin_home_t:s0"

This example output shows extended attributes related to SELinux and the IMA and EVM hash
values. EVM actively adds a security.evm extended attribute and detects any offline tampering
to xattrs of other files such as security.ima that are directly related to file content integrity. The
value of the security.evm field is in Hash-based Message Authentication Code (HMAC-SHA1),
which was generated with the private key.

Additional resources

For details about the kernel integrity subsystem, see the official upstream wiki page .

For further information about TPM, see the Trusted Computing Group resources .

For more information about creating encrypted keys, see the Trusted and Encrypted Keys
section of RHEL 7 Security Guide.

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

95

https://sourceforge.net/p/linux-ima/wiki/Home/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-encryption#sec-Trusted_and_Encrypted_Keys

CHAPTER 9. REVISION HISTORY
0.1-8

Tue Sep 29 2020, Jaroslav Klech (jklech@redhat.com)

Document version for 7.9 GA publication.

0.1-7

Tue Mar 31 2020, Jaroslav Klech (jklech@redhat.com)

Document version for 7.8 GA publication.

0.1-6

Tue Aug 6 2019, Jaroslav Klech (jklech@redhat.com)

Document version for 7.7 GA publication.

0.1-5

Fri Oct 19 2018, Jaroslav Klech (jklech@redhat.com)

Document version for 7.6 GA publication.

0.1-4

Mon Mar 26 2018, Marie Doleželová (mdolezel@redhat.com)

Document version for 7.5 GA publication.

0.1-3

Mon Jan 5 2018, Mark Flitter (mflitter@redhat.com)

Document version for 7.5 Beta publication.

0.1-2

Mon Jul 31 2017, Mark Flitter (mflitter@redhat.com)

Document version for 7.4 GA publication.

0.1-0

Thu Apr 20 2017, Mark Flitter (mflitter@redhat.com)

Initial build for review

Red Hat Enterprise Linux 7 Kernel Administration Guide

96

mailto:jklech@redhat.com
mailto:jklech@redhat.com
mailto:jklech@redhat.com
mailto:jklech@redhat.com
mailto:mdolezel@redhat.com
mailto:mflitter@redhat.com
mailto:mflitter@redhat.com
mailto:mflitter@redhat.com

	Table of Contents
	PREFACE
	CHAPTER 1. WORKING WITH KERNEL MODULES
	1.1. WHAT IS A KERNEL MODULE?
	1.2. KERNEL MODULE DEPENDENCIES
	1.3. LISTING CURRENTLY-LOADED MODULES
	1.4. DISPLAYING INFORMATION ABOUT A MODULE
	1.5. LOADING KERNEL MODULES AT SYSTEM RUNTIME
	1.6. UNLOADING KERNEL MODULES AT SYSTEM RUNTIME
	1.7. LOADING KERNEL MODULES AUTOMATICALLY AT SYSTEM BOOT TIME
	1.8. PREVENTING KERNEL MODULES FROM BEING AUTOMATICALLY LOADED AT SYSTEM BOOT TIME
	1.9. SIGNING KERNEL MODULES FOR SECURE BOOT
	1.9.1. Prerequisites
	1.9.2. Kernel module authentication
	1.9.2.1. Sources for public keys used to authenticate kernel modules
	1.9.2.2. Kernel module authentication requirements

	1.9.3. Generating a public and private X.509 key pair
	1.9.4. Enrolling public key on target system
	1.9.4.1. Factory firmware image including public key
	1.9.4.2. System administrator manually adding public key to the MOK list

	1.9.5. Signing kernel module with the private key
	1.9.6. Loading signed kernel module

	CHAPTER 2. WORKING WITH SYSCTL AND KERNEL TUNABLES
	2.1. WHAT IS A KERNEL TUNABLE?
	2.2. HOW TO WORK WITH KERNEL TUNABLES
	2.2.1. Using the sysctl command
	2.2.2. Modifying files in /etc/sysctl.d

	2.3. WHAT TUNABLES CAN BE CONTROLLED?
	2.3.1. Network interface tunables
	2.3.2. Global kernel tunables

	CHAPTER 3. LISTING OF KERNEL PARAMETERS AND VALUES
	3.1. KERNEL COMMAND-LINE PARAMETERS
	3.1.1. Setting kernel command-line parameters
	3.1.2. What kernel command-line parameters can be controlled
	3.1.2.1. Hardware specific kernel command-line parameters

	CHAPTER 4. KERNEL FEATURES
	4.1. CONTROL GROUPS
	4.1.1. What is a control group?
	4.1.2. What is a namespace?
	4.1.3. Supported namespaces

	4.2. KERNEL SOURCE CHECKER
	4.2.1. Usage

	4.3. DIRECT ACCESS FOR FILES (DAX)
	4.4. MEMORY PROTECTION KEYS FOR USERSPACE (ALSO KNOWN AS PKU, OR PKEYS)
	4.5. KERNEL ADRESS SPACE LAYOUT RANDOMIZATION
	4.6. ADVANCED ERROR REPORTING (AER)
	4.6.1. What is AER
	4.6.2. Collecting and displaying AER messages

	CHAPTER 5. MANUALLY UPGRADING THE KERNEL
	5.1. OVERVIEW OF KERNEL PACKAGES
	5.2. PREPARING TO UPGRADE
	5.3. DOWNLOADING THE UPGRADED KERNEL
	5.4. PERFORMING THE UPGRADE
	5.5. VERIFYING THE INITIAL RAM FILE SYSTEM IMAGE
	Verifying the initial RAM file system image and kernel on IBM eServer System i
	Reversing the changes made to the initial RAM file system image
	Listing the contents of the initial RAM file system image

	5.6. VERIFYING THE BOOT LOADER

	CHAPTER 6. APPLYING PATCHES WITH KERNEL LIVE PATCHING
	6.1. LIMITATIONS OF KPATCH
	6.2. SUPPORT FOR THIRD-PARTY LIVE PATCHING
	6.3. ACCESS TO KERNEL LIVE PATCHES
	6.4. COMPONENTS OF KERNEL LIVE PATCHING
	6.5. HOW KERNEL LIVE PATCHING WORKS
	6.6. ENABLING KERNEL LIVE PATCHING
	6.6.1. Subscribing to the live patching stream
	Prerequisites
	Procedure
	Additional resources

	6.7. UPDATING KERNEL PATCH MODULES
	Prerequisites
	Procedure
	Additional resources

	6.8. DISABLING KERNEL LIVE PATCHING
	6.8.1. Removing the live patching package
	Prerequisites
	Procedure
	Additional resources

	6.8.2. Uninstalling the kernel patch module
	Prerequisites
	Procedure
	Additional resources

	6.8.3. Disabling kpatch.service
	Prerequisites
	Procedure
	Additional resources

	CHAPTER 7. KERNEL CRASH DUMP GUIDE
	7.1. INTRODUCTION TO KDUMP
	7.1.1. About kdump and kexec
	7.1.2. Memory requirements

	7.2. INSTALLING AND CONFIGURING KDUMP
	7.2.1. Installing kdump
	7.2.2. Configuring kdump on the command line
	7.2.2.1. Configuring the memory usage
	7.2.2.2. Configuring the kdump target
	7.2.2.3. Configuring the core collector
	7.2.2.4. Configuring the default action
	7.2.2.5. Enabling the service

	7.2.3. Configuring kdump in the graphical user interface
	7.2.3.1. Configuring the memory usage
	7.2.3.2. Configuring the kdump target
	7.2.3.3. Configuring the core collector
	7.2.3.4. Configuring the default action
	7.2.3.5. Enabling the service

	7.3. BLACKLISTING KERNEL DRIVERS FOR KDUMP
	7.4. TESTING THE KDUMP CONFIGURATION
	7.4.1. Additional resources
	7.4.1.1. Installed documentation
	7.4.1.2. Online documentation

	7.5. FIRMWARE ASSISTED DUMP MECHANISMS
	7.5.1. The case for firmware assisted dump
	7.5.2. Using fadump on IBM PowerPC hardware
	7.5.3. Firmware assisted dump methods on IBM Z
	7.5.4. Using sadump on Fujitsu PRIMEQUEST systems

	7.6. ANALYZING A CORE DUMP
	7.6.1. Installing the crash utility
	7.6.2. Running the crash utility
	7.6.3. Displaying the message buffer
	7.6.4. Displaying a backtrace
	7.6.5. Displaying a process status
	7.6.6. Displaying virtual memory information
	7.6.7. Displaying open files
	7.6.8. Exiting the utility

	7.7. FREQUENTLY ASKED QUESTIONS
	7.8. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS
	7.8.1. Memory requirements for kdump
	7.8.2. Minimum threshold for automatic memory reservation
	7.8.3. Supported kdump targets
	7.8.4. Supported kdump filtering levels
	7.8.5. Supported default actions
	7.8.6. Estimating kdump size
	7.8.7. Support for architectures on kernel and kernel-alt packages

	7.9. USING KEXEC TO REBOOT THE KERNEL
	7.9.1. Rebooting kernel with kexec

	7.10. PORTAL LABS RELEVANT TO KDUMP
	7.10.1. Kdump helper
	7.10.2. Kernel oops analyzer

	CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM
	8.1. THE KERNEL INTEGRITY SUBSYSTEM
	8.2. INTEGRITY MEASUREMENT ARCHITECTURE
	8.3. EXTENDED VERIFICATION MODULE
	8.4. TRUSTED AND ENCRYPTED KEYS
	8.5. ENABLING INTEGRITY MEASUREMENT ARCHITECTURE AND EXTENDED VERIFICATION MODULE
	8.6. COLLECTING FILE HASHES WITH INTEGRITY MEASUREMENT ARCHITECTURE

	CHAPTER 9. REVISION HISTORY

