
Red Hat Enterprise Linux 8

Configuring and managing logical volumes

Configuring and managing the LVM on RHEL

Last Updated: 2024-09-02





Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Configuring and managing the LVM on RHEL



Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Logical volume management (LVM) creates a layer of abstraction over physical storage to create a
logical storage volume, which is a virtual block storage device that a file system, database, or
application can use. The physical volume (PV) is either a partition or a whole disk. By using these
PVs, you can create a volume group (VG) to create a pool of disk space for the logical volumes (LV)
from the available storage. You can create a logical volume (LV) by combining physical volumes
into a volume group. LV provides more flexibility than using physical storage, and the created LVs
can be extended or reduced without repartitioning or reformatting the physical device. You can also



perform several advanced operations with the LVM, such as creating thin-provisioned logical
volumes, snapshots of the original volume, RAID volumes, cache volumes, and striped logical
volumes.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. OVERVIEW OF LOGICAL VOLUME MANAGEMENT
1.1. LVM ARCHITECTURE
1.2. ADVANTAGES OF LVM

CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE
2.1. INTRODUCTION TO THE STORAGE RHEL SYSTEM ROLE
2.2. CREATING AN XFS FILE SYSTEM ON A BLOCK DEVICE BY USING THE STORAGE RHEL SYSTEM ROLE

2.3. PERSISTENTLY MOUNTING A FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
2.4. MANAGING LOGICAL VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE
2.5. ENABLING ONLINE BLOCK DISCARD BY USING THE STORAGE RHEL SYSTEM ROLE
2.6. CREATING AND MOUNTING AN EXT4 FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
2.7. CREATING AND MOUNTING AN EXT3 FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
2.8. RESIZING AN EXISTING FILE SYSTEM ON LVM BY USING THE STORAGE RHEL SYSTEM ROLE
2.9. CREATING A SWAP VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
2.10. CONFIGURING A RAID VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
2.11. CONFIGURING AN LVM POOL WITH RAID BY USING THE STORAGE RHEL SYSTEM ROLE
2.12. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE

2.13. COMPRESSING AND DEDUPLICATING A VDO VOLUME ON LVM BY USING THE STORAGE
RHEL SYSTEM ROLE
2.14. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
2.15. EXPRESSING POOL VOLUME SIZES AS PERCENTAGE BY USING THE STORAGE RHEL SYSTEM ROLE

CHAPTER 3. MANAGING LVM PHYSICAL VOLUMES
3.1. OVERVIEW OF PHYSICAL VOLUMES
3.2. MULTIPLE PARTITIONS ON A DISK
3.3. CREATING LVM PHYSICAL VOLUME
3.4. REMOVING LVM PHYSICAL VOLUMES
3.5. CREATING LOGICAL VOLUMES IN THE WEB CONSOLE
3.6. FORMATTING LOGICAL VOLUMES IN THE WEB CONSOLE
3.7. RESIZING LOGICAL VOLUMES IN THE WEB CONSOLE
3.8. ADDITIONAL RESOURCES

CHAPTER 4. MANAGING LVM VOLUME GROUPS
4.1. CREATING LVM VOLUME GROUP
4.2. CREATING VOLUME GROUPS IN THE WEB CONSOLE
4.3. COMBINING LVM VOLUME GROUPS
4.4. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP
4.5. SPLITTING A LVM VOLUME GROUP
4.6. MOVING A VOLUME GROUP TO ANOTHER SYSTEM
4.7. REMOVING LVM VOLUME GROUPS

CHAPTER 5. MANAGING LVM LOGICAL VOLUMES
5.1. OVERVIEW OF LOGICAL VOLUMES
5.2. CREATING LVM LOGICAL VOLUME
5.3. CREATING A RAID0 STRIPED LOGICAL VOLUME
5.4. RENAMING LVM LOGICAL VOLUMES
5.5. REMOVING A DISK FROM A LOGICAL VOLUME
5.6. CHANGING PHYSICAL DRIVES IN VOLUME GROUPS USING THE WEB CONSOLE

6

7
7
8

10
10

11
12
13
14
15
16
17
18
19

20

21

22
24

25

27
27
28
29
30
30
32
36
38

39
39
40
42
42
43
44
46

47
47
48
49
50
51
52

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6.1. Adding physical drives to volume groups in the web console
5.6.2. Removing physical drives from volume groups in the web console

5.7. REMOVING LVM LOGICAL VOLUMES
5.8. MANAGING LVM LOGICAL VOLUMES BY USING RHEL SYSTEM ROLES

5.8.1. Managing logical volumes by using the storage RHEL system role
5.8.2. Additional resources

5.9. REMOVING LVM VOLUME GROUPS

CHAPTER 6. MODIFYING THE SIZE OF A LOGICAL VOLUME
6.1. EXTENDING A LOGICAL VOLUME AND FILE SYSTEM
6.2. REDUCING A LOGICAL VOLUME AND FILE SYSTEM
6.3. EXTENDING A STRIPED LOGICAL VOLUME

CHAPTER 7. CUSTOMIZING THE LVM REPORT
7.1. CONTROLLING FORMAT OF THE LVM DISPLAY
7.2. SPECIFYING THE UNITS FOR AN LVM REPORT DISPLAY
7.3. CUSTOMIZING THE LVM CONFIGURATION FILE
7.4. DEFINING LVM SELECTION CRITERIA

CHAPTER 8. CONFIGURING LVM ON SHARED STORAGE
8.1. CONFIGURING LVM FOR VM DISKS
8.2. CONFIGURING LVM TO USE SAN DISKS ON ONE MACHINE
8.3. CONFIGURING LVM TO USE SAN DISKS FOR FAILOVER
8.4. CONFIGURING LVM TO SHARE SAN DISKS AMONG MULTIPLE MACHINES
8.5. CREATING SHARED LVM DEVICES USING THE STORAGE RHEL SYSTEM ROLE

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES
9.1. RAID LOGICAL VOLUMES
9.2. RAID LEVELS AND LINEAR SUPPORT
9.3. LVM RAID SEGMENT TYPES
9.4. CREATING RAID LOGICAL VOLUMES
9.5. CREATING A RAID0 STRIPED LOGICAL VOLUME
9.6. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE

9.7. PARAMETERS FOR CREATING A RAID0
9.8. SOFT DATA CORRUPTION
9.9. CREATING A RAID LV WITH DM INTEGRITY
9.10. MINIMUM AND MAXIMUM I/O RATE OPTIONS
9.11. CONVERTING A LINEAR DEVICE TO A RAID LOGICAL VOLUME
9.12. CONVERTING AN LVM RAID1 LOGICAL VOLUME TO AN LVM LINEAR LOGICAL VOLUME
9.13. CONVERTING A MIRRORED LVM DEVICE TO A RAID1 LOGICAL VOLUME
9.14. COMMANDS TO RESIZE A RAID LOGICAL VOLUME
9.15. CHANGING THE NUMBER OF IMAGES IN AN EXISTING RAID1 DEVICE
9.16. SPLITTING OFF A RAID IMAGE AS A SEPARATE LOGICAL VOLUME
9.17. SPLITTING AND MERGING A RAID IMAGE
9.18. SETTING A RAID FAULT POLICY

9.18.1. Setting the RAID fault policy to allocate
9.18.2. Setting the RAID fault policy to warn

9.19. REPLACING A RAID DEVICE IN A LOGICAL VOLUME
9.19.1. Replacing a working RAID device
9.19.2. Replacing a failed RAID device in a logical volume

9.20. CHECKING DATA COHERENCY IN A RAID LOGICAL VOLUME
9.21. CONVERTING A RAID LOGICAL VOLUME TO ANOTHER RAID LEVEL
9.22. I/O OPERATIONS ON A RAID1 LOGICAL VOLUME

52
53
53
54
54
55
55

57
57
58
60

62
62
62
64
65

68
68
68
69
69
70

72
72
72
74
75
76

77
78
79
80
82
82
83
84
85
85
87
88
89
89
91

92
92
94
96
97
98

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.23. RESHAPING A RAID VOLUME
9.24. CHANGING THE REGION SIZE ON A RAID LOGICAL VOLUME

CHAPTER 10. SNAPSHOT OF LOGICAL VOLUMES
10.1. OVERVIEW OF SNAPSHOT VOLUMES
10.2. CREATING A SNAPSHOT OF THE ORIGINAL VOLUME
10.3. MERGING SNAPSHOT TO ITS ORIGINAL VOLUME
10.4. CREATING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE
10.5. UNMOUNTING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE
10.6. EXTENDING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE
10.7. REVERTING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE
10.8. REMOVING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE

CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED VOLUMES (THIN VOLUMES)
11.1. OVERVIEW OF THIN PROVISIONING
11.2. CREATING THINLY-PROVISIONED LOGICAL VOLUMES
11.3. CREATING POOLS FOR THINLY PROVISIONED VOLUMES IN THE WEB CONSOLE
11.4. CREATING THINLY PROVISIONED LOGICAL VOLUMES IN THE WEB CONSOLE
11.5. OVERVIEW OF CHUNK SIZE
11.6. THINLY-PROVISIONED SNAPSHOT VOLUMES
11.7. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES
11.8. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES WITH THE WEB CONSOLE

CHAPTER 12. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE
12.1. CACHING METHODS IN LVM
12.2. LVM CACHING COMPONENTS
12.3. ENABLING DM-CACHE CACHING FOR A LOGICAL VOLUME
12.4. ENABLING DM-CACHE CACHING WITH A CACHEPOOL FOR A LOGICAL VOLUME
12.5. ENABLING DM-WRITECACHE CACHING FOR A LOGICAL VOLUME
12.6. DISABLING CACHING FOR A LOGICAL VOLUME

CHAPTER 13. LOGICAL VOLUME ACTIVATION
13.1. CONTROLLING AUTOACTIVATION OF LOGICAL VOLUMES AND VOLUME GROUPS
13.2. CONTROLLING LOGICAL VOLUME ACTIVATION
13.3. ACTIVATING SHARED LOGICAL VOLUMES
13.4. ACTIVATING A LOGICAL VOLUME WITH MISSING DEVICES

CHAPTER 14. LIMITING LVM DEVICE VISIBILITY AND USAGE
14.1. PERSISTENT IDENTIFIERS FOR LVM FILTERING
14.2. THE LVM DEVICE FILTER

14.2.1. LVM device filter pattern characteristics
14.2.2. Examples of LVM device filter configurations
14.2.3. Applying an LVM device filter configuration

CHAPTER 15. CONTROLLING LVM ALLOCATION
15.1. ALLOCATING EXTENTS FROM SPECIFIED DEVICES
15.2. LVM ALLOCATION POLICIES
15.3. PREVENTING ALLOCATION ON A PHYSICAL VOLUME

CHAPTER 16. GROUPING LVM OBJECTS WITH TAGS
16.1. LVM OBJECT TAGS
16.2. LISTING LVM TAGS
16.3. ADDING TAGS TO LVM OBJECTS
16.4. REMOVING TAGS FROM LVM OBJECTS
16.5. DEFINING LVM HOST TAGS

99
101

104
104
104
107
107
109

111
112
114

117
117
118
121
123
124
124
125
127

130
130
130
131
132
134
136

138
138
139
140
141

142
142
142
142
143
144

145
145
147
148

149
149
149
149
150
150

Table of Contents

3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16.6. CONTROLLING LOGICAL VOLUME ACTIVATION WITH TAGS

CHAPTER 17. TROUBLESHOOTING LVM
17.1. GATHERING DIAGNOSTIC DATA ON LVM
17.2. DISPLAYING INFORMATION ABOUT FAILED LVM DEVICES
17.3. REMOVING LOST LVM PHYSICAL VOLUMES FROM A VOLUME GROUP
17.4. FINDING THE METADATA OF A MISSING LVM PHYSICAL VOLUME
17.5. RESTORING METADATA ON AN LVM PHYSICAL VOLUME
17.6. ROUNDING ERRORS IN LVM OUTPUT
17.7. PREVENTING THE ROUNDING ERROR WHEN CREATING AN LVM VOLUME
17.8. LVM METADATA AND THEIR LOCATION ON DISK
17.9. EXTRACTING VG METADATA FROM A DISK
17.10. SAVING EXTRACTED METADATA TO A FILE
17.11. REPAIRING A DISK WITH DAMAGED LVM HEADERS AND METADATA USING THE PVCREATE AND THE
VGCFGRESTORE COMMANDS
17.12. REPAIRING A DISK WITH DAMAGED LVM HEADERS AND METADATA USING THE PVCK COMMAND

17.13. TROUBLESHOOTING LVM RAID
17.13.1. Checking data coherency in a RAID logical volume
17.13.2. Replacing a failed RAID device in a logical volume

17.14. TROUBLESHOOTING DUPLICATE PHYSICAL VOLUME WARNINGS FOR MULTIPATHED LVM DEVICES

17.14.1. Root cause of duplicate PV warnings
17.14.2. Cases of duplicate PV warnings
17.14.3. Example LVM device filters that prevent duplicate PV warnings
17.14.4. Additional resources

151

152
152
153
154
155
156
157
158
159
159
162

162

164
165
165
166

168
169
169
170
170

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

4



Table of Contents

5



PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

6

https://issues.redhat.com/projects/RHELDOCS/issues


CHAPTER 1. OVERVIEW OF LOGICAL VOLUME MANAGEMENT
Logical volume management (LVM) creates a layer of abstraction over physical storage, which helps you
to create logical storage volumes. This provides much greater flexibility in a number of ways than using
physical storage directly.

In addition, the hardware storage configuration is hidden from the software so it can be resized and
moved without stopping applications or unmounting file systems. This can reduce operational costs.

1.1. LVM ARCHITECTURE

The following are the components of LVM:

Physical volume

A physical volume (PV) is a partition or whole disk designated for LVM use. For more information, see
Managing LVM physical volumes.

Volume group

A volume group (VG) is a collection of physical volumes (PVs), which creates a pool of disk space out
of which logical volumes can be allocated. For more information, see Managing LVM volume groups.

Logical volume

A logical volume represents a mountable storage device. For more information, see Managing LVM
logical volumes.

The following diagram illustrates the components of LVM:

Figure 1.1. LVM logical volume components

CHAPTER 1. OVERVIEW OF LOGICAL VOLUME MANAGEMENT

7

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-physical-volumes_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes


Figure 1.1. LVM logical volume components

1.2. ADVANTAGES OF LVM

Logical volumes provide the following advantages over using physical storage directly:

Flexible capacity

When using logical volumes, you can aggregate devices and partitions into a single logical volume.
With this functionality, file systems can extend across multiple devices as though they were a single,
large one.

Convenient device naming

Logical storage volumes can be managed with user-defined and custom names.

Resizeable storage volumes

You can extend logical volumes or reduce logical volumes in size with simple software commands,
without reformatting and repartitioning the underlying devices. For more information, see Modifying
the size of a logical volume.

Online data relocation

To deploy newer, faster, or more resilient storage subsystems, you can move data while your system
is active using the pvmove command. Data can be rearranged on disks while the disks are in use. For
example, you can empty a hot-swappable disk before removing it.

For more information on how to migrate the data, see the pvmove man page and Removing physical

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/modifying-the-size-of-a-logical-volume_configuring-and-managing-logical-volumes


For more information on how to migrate the data, see the pvmove man page and Removing physical
volumes from a volume group.

Striped Volumes

You can create a logical volume that stripes data across two or more devices. This can dramatically
increase throughput. For more information, see Extending a striped logical volume .

RAID volumes

Logical volumes provide a convenient way to configure RAID for your data. This provides protection
against device failure and improves performance. For more information, see Configuring RAID
logical volumes.

Volume snapshots

You can take snapshots, which is a point-in-time copy of logical volumes for consistent backups or to
test the effect of changes without affecting the real data. For more information, see Snapshot of
logical volumes.

Thin volumes

Logical volumes can be thinly provisioned. This allows you to create logical volumes that are larger
than the available physical space. For more information, see Creating and managing thin provisioned
volumes (thin volumes).

Cache volumes

A cache logical volume uses a fast block device, such as an SSD drive to improve the performance of
a larger and slower block device. For more information, see Enabling caching to improve logical
volume performance.

Additional resources

Customizing the LVM report

CHAPTER 1. OVERVIEW OF LOGICAL VOLUME MANAGEMENT

9

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes#removing-a-disk-from-a-logical-volume_managing-lvm-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/modifying-the-size-of-a-logical-volume_configuring-and-managing-logical-volumes#proc_extending-striped-volume-modifying-the-size-of-a-logical-volume
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/configuring-raid-logical-volumes_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/snapshot-of-logical-volumes_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/creating-and-managing-thin-provisioned-volumes_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/enabling-caching-to-improve-logical-volume-performance_configuring-and-managing-logical-volumes#doc-wrapper
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/customizing-the-lvm-report_configuring-and-managing-logical-volumes


CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE
RHEL SYSTEM ROLE

To manage LVM and local file systems (FS) by using Ansible, you can use the storage role, which is one
of the RHEL system roles available in RHEL 8.

Using the storage role enables you to automate administration of file systems on disks and logical
volumes on multiple machines and across all versions of RHEL starting with RHEL 7.7.

For more information about RHEL system roles and how to apply them, see Introduction to
RHEL system roles.

2.1. INTRODUCTION TO THE STORAGE RHEL SYSTEM ROLE

The storage role can manage:

File systems on disks which have not been partitioned

Complete LVM volume groups including their logical volumes and file systems

MD RAID volumes and their file systems

With the storage role, you can perform the following tasks:

Create a file system

Remove a file system

Mount a file system

Unmount a file system

Create LVM volume groups

Remove LVM volume groups

Create logical volumes

Remove logical volumes

Create RAID volumes

Remove RAID volumes

Create LVM volume groups with RAID

Remove LVM volume groups with RAID

Create encrypted LVM volume groups

Create LVM logical volumes with RAID

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/intro-to-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


/usr/share/doc/rhel-system-roles/storage/ directory

2.2. CREATING AN XFS FILE SYSTEM ON A BLOCK DEVICE BY USING
THE STORAGE RHEL SYSTEM ROLE

The example Ansible playbook applies the storage role to create an XFS file system on a block device
using the default parameters.

NOTE

The storage role can create a file system only on an unpartitioned, whole disk or a logical
volume (LV). It cannot create the file system on a partition.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

The volume name (barefs in the example) is currently arbitrary. The storage role identifies
the volume by the disk device listed under the disks: attribute.

You can omit the fs_type: xfs line because XFS is the default file system in RHEL 8.

To create the file system on an LV, provide the LVM setup under the disks: attribute,
including the enclosing volume group. For details, see Managing logical volumes by using
the storage RHEL system role.
Do not provide the path to the LV device.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

---
- hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: xfs

CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE

11

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes#an-example-playbook-to-manage-logical-volumes_managing-lvm-logical-volumes-using-rhel-system-roles


3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

2.3. PERSISTENTLY MOUNTING A FILE SYSTEM BY USING THE 
STORAGE RHEL SYSTEM ROLE

The example Ansible applies the storage role to immediately and persistently mount an XFS file system.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

This playbook adds the file system to the /etc/fstab file, and mounts the file system
immediately.

If the file system on the /dev/sdb device or the mount point directory do not exist, the
playbook creates them.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid

---
- hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: xfs
        mount_point: /mnt/data
        mount_user: somebody
        mount_group: somegroup
        mount_mode: 0755

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

2.4. MANAGING LOGICAL VOLUMES BY USING THE STORAGE RHEL
SYSTEM ROLE

The example Ansible playbook applies the storage role to create an LVM logical volume in a volume
group.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

The myvg volume group consists of the following disks: /dev/sda, /dev/sdb, and /dev/sdc.

If the myvg volume group already exists, the playbook adds the logical volume to the
volume group.

If the myvg volume group does not exist, the playbook creates it.

The playbook creates an Ext4 file system on the mylv logical volume, and persistently

- hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_pools:
      - name: myvg
        disks:
          - sda
          - sdb
          - sdc
        volumes:
          - name: mylv
            size: 2G
            fs_type: ext4
            mount_point: /mnt/dat

CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


The playbook creates an Ext4 file system on the mylv logical volume, and persistently
mounts the file system at /mnt.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

2.5. ENABLING ONLINE BLOCK DISCARD BY USING THE STORAGE RHEL
SYSTEM ROLE

The example Ansible playbook applies the storage role to mount an XFS file system with online block
discard enabled.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

2. Validate the playbook syntax:

---
- hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: xfs
        mount_point: /mnt/data
        mount_options: discard

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

14

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

2.6. CREATING AND MOUNTING AN EXT4 FILE SYSTEM BY USING THE
STORAGE RHEL SYSTEM ROLE

The example Ansible playbook applies the storage role to create and mount an Ext4 file system.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

The playbook creates the file system on the /dev/sdb disk.

The playbook persistently mounts the file system at the /mnt/data directory.

The label of the file system is label-name.

2. Validate the playbook syntax:

---
- hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: ext4
        fs_label: label-name
        mount_point: /mnt/data

CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

2.7. CREATING AND MOUNTING AN EXT3 FILE SYSTEM BY USING THE
STORAGE RHEL SYSTEM ROLE

The example Ansible playbook applies the storage role to create and mount an Ext3 file system.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

The playbook creates the file system on the /dev/sdb disk.

The playbook persistently mounts the file system at the /mnt/data directory.

The label of the file system is label-name.

---
- hosts: all
  roles:
    - rhel-system-roles.storage
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: ext3
        fs_label: label-name
        mount_point: /mnt/data
        mount_user: somebody
        mount_group: somegroup
        mount_mode: 0755

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

2.8. RESIZING AN EXISTING FILE SYSTEM ON LVM BY USING THE 
STORAGE RHEL SYSTEM ROLE

The example Ansible playbook applies the storage RHEL system role to resize an LVM logical volume
with a file system.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

---
- name: Create LVM pool over three disks
  hosts: managed-node-01.example.com
  tasks:
    - name: Resize LVM logical volume with file system
      ansible.builtin.include_role:
        name: rhel-system-roles.storage
      vars:
        storage_pools:
          - name: myvg
            disks:
              - /dev/sda
              - /dev/sdb
              - /dev/sdc
            volumes:
              - name: mylv1
                size: 10 GiB
                fs_type: ext4
                mount_point: /opt/mount1

CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


This playbook resizes the following existing file systems:

The Ext4 file system on the mylv1 volume, which is mounted at /opt/mount1, resizes to 10
GiB.

The Ext4 file system on the mylv2 volume, which is mounted at /opt/mount2, resizes to 50
GiB.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

2.9. CREATING A SWAP VOLUME BY USING THE STORAGE

RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage role to create a
swap volume, if it does not exist, or to modify the swap volume, if it already exist, on a block device by
using the default parameters.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

              - name: mylv2
                size: 50 GiB
                fs_type: ext4
                mount_point: /opt/mount2

---
- name: Create a disk device with swap
  hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


The volume name (swap_fs in the example) is currently arbitrary. The storage role identifies
the volume by the disk device listed under the disks: attribute.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

2.10. CONFIGURING A RAID VOLUME BY USING THE STORAGE RHEL
SYSTEM ROLE

With the storage system role, you can configure a RAID volume on RHEL by using Red Hat Ansible
Automation Platform and Ansible-Core. Create an Ansible playbook with the parameters to configure a
RAID volume to suit your requirements.

WARNING

Device names might change in certain circumstances, for example, when you add a
new disk to a system. Therefore, to prevent data loss, do not use specific disk
names in the playbook.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

  vars:
    storage_volumes:
      - name: swap_fs
        type: disk
        disks:
          - /dev/sdb
        size: 15 GiB
        fs_type: swap



CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

Managing RAID

2.11. CONFIGURING AN LVM POOL WITH RAID BY USING THE STORAGE

RHEL SYSTEM ROLE

With the storage system role, you can configure an LVM pool with RAID on RHEL by using Red Hat
Ansible Automation Platform. You can set up an Ansible playbook with the available parameters to
configure an LVM pool with RAID.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

---
- name: Configure the storage
  hosts: managed-node-01.example.com
  tasks:
    - name: Create a RAID on sdd, sde, sdf, and sdg
      ansible.builtin.include_role:
        name: rhel-system-roles.storage
      vars:
        storage_safe_mode: false
        storage_volumes:
          - name: data
            type: raid
            disks: [sdd, sde, sdf, sdg]
            raid_level: raid0
            raid_chunk_size: 32 KiB
            mount_point: /mnt/data
            state: present

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/managing-raid_managing-storage-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

To create an LVM pool with RAID, you must specify the RAID type by using the raid_level
parameter.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

Managing RAID

2.12. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES BY
USING THE STORAGE RHEL SYSTEM ROLE

With the storage system role, you can configure a stripe size for RAID LVM volumes on RHEL by using
Red Hat Ansible Automation Platform. You can set up an Ansible playbook with the available parameters
to configure an LVM pool with RAID.

---
- name: Configure LVM pool with RAID
  hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_safe_mode: false
    storage_pools:
      - name: my_pool
        type: lvm
        disks: [sdh, sdi]
        raid_level: raid1
        volumes:
          - name: my_volume
            size: "1 GiB"
            mount_point: "/mnt/app/shared"
            fs_type: xfs
            state: present

CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_storage_devices/index#managing-raid_managing-storage-devices


Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

Managing RAID

2.13. COMPRESSING AND DEDUPLICATING A VDO VOLUME ON LVM
BY USING THE STORAGE RHEL SYSTEM ROLE

The example Ansible playbook applies the storage RHEL system role to enable compression and

---
- name: Configure stripe size for RAID LVM volumes
  hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_safe_mode: false
    storage_pools:
      - name: my_pool
        type: lvm
        disks: [sdh, sdi]
        volumes:
          - name: my_volume
            size: "1 GiB"
            mount_point: "/mnt/app/shared"
            fs_type: xfs
            raid_level: raid1
            raid_stripe_size: "256 KiB"
            state: present

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux//8/html-single/managing_storage_devices/index#managing-raid_managing-storage-devices


The example Ansible playbook applies the storage RHEL system role to enable compression and
deduplication of Logical Volumes (LVM) by using Virtual Data Optimizer (VDO).

NOTE

Because of the storage system role use of LVM VDO, only one volume per pool can use
the compression and deduplication.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

In this example, the compression and deduplication pools are set to true, which specifies that
the VDO is used. The following describes the usage of these parameters:

The deduplication is used to deduplicate the duplicated data stored on the storage volume.

The compression is used to compress the data stored on the storage volume, which results
in more storage capacity.

The vdo_pool_size specifies the actual size the volume takes on the device. The virtual size
of VDO volume is set by the size parameter.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

- name: Create LVM VDO volume under volume group 'myvg'
  hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_pools:
      - name: myvg
        disks:
          - /dev/sdb
        volumes:
          - name: mylv1
            compression: true
            deduplication: true
            vdo_pool_size: 10 GiB
            size: 30 GiB
            mount_point: /mnt/app/shared

CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

2.14. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE

RHEL SYSTEM ROLE

You can use the storage role to create and configure a volume encrypted with LUKS by running an
Ansible playbook.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

You can also add other encryption parameters, such as encryption_key, encryption_cipher, 
encryption_key_size, and encryption_luks, to the playbook file.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

---
- name: Create and configure a volume encrypted with LUKS
  hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
         - sdb
        fs_type: xfs
        fs_label: label-name
        mount_point: /mnt/data
        encryption: true
        encryption_password: <password>

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. View the encryption status:

# cryptsetup status sdb

/dev/mapper/sdb is active and is in use.
type: LUKS2
cipher: aes-xts-plain64
keysize: 512 bits
key location: keyring
device: /dev/sdb
...

2. Verify the created LUKS encrypted volume:

# cryptsetup luksDump /dev/sdb

Version:        2
Epoch:          6
Metadata area:  16384 [bytes]
Keyslots area:  33521664 [bytes]
UUID:           a4c6be82-7347-4a91-a8ad-9479b72c9426
Label:          (no label)
Subsystem:      (no subsystem)
Flags:          allow-discards

Data segments:
  0: crypt
        offset: 33554432 [bytes]
        length: (whole device)
        cipher: aes-xts-plain64
        sector: 4096 [bytes]
...

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

Encrypting block devices by using LUKS

2.15. EXPRESSING POOL VOLUME SIZES AS PERCENTAGE BY USING
THE STORAGE RHEL SYSTEM ROLE

The example Ansible playbook applies the storage system role to enable you to express Logical
Manager Volumes (LVM) volume sizes as a percentage of the pool’s total size.

Prerequisites

CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/encrypting-block-devices-using-luks_managing-storage-devices


Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

This example specifies the size of LVM volumes as a percentage of the pool size, for example: 
60%. Alternatively, you can also specify the size of LVM volumes as a percentage of the pool
size in a human-readable size of the file system, for example, 10g or 50 GiB.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

---
- name: Express volume sizes as a percentage of the pool's total size
  hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage
  vars:
    storage_pools:
      - name: myvg
        disks:
          - /dev/sdb
        volumes:
          - name: data
            size: 60%
            mount_point: /opt/mount/data
          - name: web
            size: 30%
            mount_point: /opt/mount/web
          - name: cache
            size: 10%
            mount_point: /opt/cache/mount

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


CHAPTER 3. MANAGING LVM PHYSICAL VOLUMES
The physical volume (PV) is a partition or whole disk designated for LVM use. To use the device for an
LVM logical volume, the device must be initialized as a physical volume.

If you are using a whole disk device for your physical volume, the disk must have no partition table. For
DOS disk partitions, the partition id should be set to 0x8e using the fdisk or cfdisk command or an
equivalent. If you are using a whole disk device for your physical volume, the disk must have no partition
table. Any existing partition table must be erased, which will effectively destroy all data on that disk. You
can remove an existing partition table using the wipefs -a <PhysicalVolume>` command as root.

3.1. OVERVIEW OF PHYSICAL VOLUMES

Initializing a block device as a physical volume places a label near the start of the device. The following
describes the LVM label:

An LVM label provides correct identification and device ordering for a physical device. An
unlabeled, non-LVM device can change names across reboots depending on the order they are
discovered by the system during boot. An LVM label remains persistent across reboots and
throughout a cluster.

The LVM label identifies the device as an LVM physical volume. It contains a random unique
identifier, the UUID for the physical volume. It also stores the size of the block device in bytes,
and it records where the LVM metadata will be stored on the device.

By default, the LVM label is placed in the second 512-byte sector. You can overwrite this default
setting by placing the label on any of the first 4 sectors when you create the physical volume.
This allows LVM volumes to co-exist with other users of these sectors, if necessary.

The following describes the LVM metadata:

The LVM metadata contains the configuration details of the LVM volume groups on your
system. By default, an identical copy of the metadata is maintained in every metadata area in
every physical volume within the volume group. LVM metadata is small and stored as ASCII.

Currently LVM allows you to store 0, 1, or 2 identical copies of its metadata on each physical
volume. The default is 1 copy. Once you configure the number of metadata copies on the
physical volume, you cannot change that number at a later time. The first copy is stored at the
start of the device, shortly after the label. If there is a second copy, it is placed at the end of the
device. If you accidentally overwrite the area at the beginning of your disk by writing to a
different disk than you intend, a second copy of the metadata at the end of the device will allow
you to recover the metadata.

The following diagram illustrates the layout of an LVM physical volume. The LVM label is on the second
sector, followed by the metadata area, followed by the usable space on the device.

NOTE

In the Linux kernel and throughout this document, sectors are considered to be 512 bytes
in size.

Figure 3.1. Physical volume layout

CHAPTER 3. MANAGING LVM PHYSICAL VOLUMES

27



Figure 3.1. Physical volume layout

Additional resources

Multiple partitions on a disk

3.2. MULTIPLE PARTITIONS ON A DISK

You can create physical volumes (PV) out of disk partitions by using LVM.

Red Hat recommends that you create a single partition that covers the whole disk to label as an LVM
physical volume for the following reasons:

Administrative convenience

It is easier to keep track of the hardware in a system if each real disk only appears once. This
becomes particularly true if a disk fails.

Striping performance

LVM cannot tell that two physical volumes are on the same physical disk. If you create a striped
logical volume when two physical volumes are on the same physical disk, the stripes could be on
different partitions on the same disk. This would result in a decrease in performance rather than an
increase.

RAID redundancy

LVM cannot determine that the two physical volumes are on the same device. If you create a RAID
logical volume when two physical volumes are on the same device, performance and fault tolerance
could be lost.

Although it is not recommended, there may be specific circumstances when you will need to divide a disk
into separate LVM physical volumes. For example, on a system with few disks it may be necessary to
move data around partitions when you are migrating an existing system to LVM volumes. Additionally, if
you have a very large disk and want to have more than one volume group for administrative purposes
then it is necessary to partition the disk. If you do have a disk with more than one partition and both of
those partitions are in the same volume group, take care to specify which partitions are to be included in
a logical volume when creating volumes.

Note that although LVM supports using a non-partitioned disk as physical volume, it is recommended to

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-physical-volumes_configuring-and-managing-logical-volumes#multiple-partitions-on-a-disk_managing-lvm-physical-volumes


create a single, whole-disk partition because creating a PV without a partition can be problematic in a
mixed operating system environment. Other operating systems may interpret the device as free, and
overwrite the PV label at the beginning of the drive.

3.3. CREATING LVM PHYSICAL VOLUME

This procedure describes how to create and label LVM physical volumes (PVs).

In this procedure, replace the /dev/vdb1, /dev/vdb2, and /dev/vdb3 with the available storage devices in
your system.

Prerequisites

The lvm2 package is installed.

Procedure

1. Create multiple physical volumes by using the space-delimited device names as arguments to
the pvcreate command:

# pvcreate /dev/vdb1 /dev/vdb2 /dev/vdb3
  Physical volume "/dev/vdb1" successfully created.
  Physical volume "/dev/vdb2" successfully created.
  Physical volume "/dev/vdb3" successfully created.

This places a label on /dev/vdb1, /dev/vdb2, and /dev/vdb3, marking them as physical volumes
belonging to LVM.

2. View the created physical volumes by using any one of the following commands as per your
requirement:

a. The pvdisplay command, which provides a verbose multi-line output for each physical
volume. It displays physical properties, such as size, extents, volume group, and other
options in a fixed format:

# pvdisplay
--- NEW Physical volume ---
  PV Name               /dev/vdb1
  VG Name
  PV Size               1.00 GiB
[..]
--- NEW Physical volume ---
  PV Name               /dev/vdb2
  VG Name
  PV Size               1.00 GiB
[..]
--- NEW Physical volume ---
  PV Name               /dev/vdb3
  VG Name
  PV Size               1.00 GiB
[..]

b. The pvs command provides physical volume information in a configurable form, displaying
one line per physical volume:

CHAPTER 3. MANAGING LVM PHYSICAL VOLUMES

29



# pvs
  PV         VG  Fmt    Attr    PSize      PFree
/dev/vdb1        lvm2           1020.00m   0
/dev/vdb2        lvm2           1020.00m   0
/dev/vdb3        lvm2           1020.00m   0

c. The pvscan command scans all supported LVM block devices in the system for physical
volumes. You can define a filter in the lvm.conf file so that this command avoids scanning
specific physical volumes:

# pvscan
  PV  /dev/vdb1                      lvm2 [1.00 GiB]
  PV  /dev/vdb2                      lvm2 [1.00 GiB]
  PV  /dev/vdb3                      lvm2 [1.00 GiB]

Additional resources

pvcreate(8), pvdisplay(8), pvs(8), pvscan(8), and lvm(8) man pages

3.4. REMOVING LVM PHYSICAL VOLUMES

If a device is no longer required for use by LVM, you can remove the LVM label by using the pvremove
command. Executing the pvremove command zeroes the LVM metadata on an empty physical volume.

Procedure

1. Remove a physical volume:

# pvremove /dev/vdb3
Labels on physical volume "/dev/vdb3" successfully wiped.

2. View the existing physical volumes and verify if the required volume is removed:

# pvs
  PV         VG   Fmt    Attr    PSize      PFree
/dev/vdb1       lvm2           1020.00m   0
/dev/vdb2       lvm2           1020.00m   0

If the physical volume you want to remove is currently part of a volume group, you must remove it from
the volume group with the vgreduce command. For more information, see Removing physical volumes
from a volume group

Additional resources

pvremove(8) man page

3.5. CREATING LOGICAL VOLUMES IN THE WEB CONSOLE

Logical volumes act as physical drives. You can use the RHEL 8 web console to create LVM logical
volumes in a volume group.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

30

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#removing-physical-volumes-from-a-volume-group_managing-lvm-volume-groups


You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

The volume group is created.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the volume group in which you want to create logical volumes.

4. On the Logical volume group page, scroll to the LVM2 logical volumes section and click 
Create new logical volume.

5. In the Name field, enter a name for the new logical volume. Do not include spaces in the name.

6. In the Purpose drop-down menu, select Block device for filesystems.
This configuration enables you to create a logical volume with the maximum volume size which is
equal to the sum of the capacities of all drives included in the volume group.

7. Define the size of the logical volume. Consider:

How much space the system using this logical volume will need.

How many logical volumes you want to create.

You do not have to use the whole space. If necessary, you can grow the logical volume later.

CHAPTER 3. MANAGING LVM PHYSICAL VOLUMES

31

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console


8. Click Create.
The logical volume is created. To use the logical volume you must format and mount the
volume.

Verification

On the Logical volume page, scroll to the LVM2 logical volumes section and verify whether
the new logical volume is listed.

3.6. FORMATTING LOGICAL VOLUMES IN THE WEB CONSOLE

Logical volumes act as physical drives. To use them, you must format them with a file system.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

32



WARNING

Formatting logical volumes erases all data on the volume.

The file system you select determines the configuration parameters you can use for logical volumes. For
example, the XFS file system does not support shrinking volumes.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

The logical volume created.

You have root access privileges to the system.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the volume group in the logical volumes is created.

4. On the Logical volume group page, scroll to the LVM2 logical volumes section.

5. Click the menu button, ⋮, next to the volume group you want to format.

6. From the drop-down menu, select Format.



CHAPTER 3. MANAGING LVM PHYSICAL VOLUMES

33

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console


7. In the Name field, enter a name for the file system.

8. In the Mount Point field, add the mount path.

9. In the Type drop-down menu, select a file system:

XFS file system supports large logical volumes, switching physical drives online without
outage, and growing an existing file system. Leave this file system selected if you do not
have a different strong preference.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

34



XFS does not support reducing the size of a volume formatted with an XFS file system

ext4 file system supports:

Logical volumes

Switching physical drives online without an outage

Growing a file system

Shrinking a file system

10. Select the Overwrite existing data with zeros checkbox if you want the RHEL web console to
rewrite the whole disk with zeros. This option is slower because the program has to go through
the whole disk, but it is more secure. Use this option if the disk includes any data and you need to
overwrite it.
If you do not select the Overwrite existing data with zeros checkbox, the RHEL web console
rewrites only the disk header. This increases the speed of formatting.

11. From the Encryption drop-down menu, select the type of encryption if you want to enable it on
the logical volume.
You can select a version with either the LUKS1 (Linux Unified Key Setup) or LUKS2 encryption,
which allows you to encrypt the volume with a passphrase.

12. In the At boot drop-down menu, select when you want the logical volume to mount after the
system boots.

13. Select the required Mount options.

14. Format the logical volume:

If you want to format the volume and immediately mount it, click Format and mount.

If you want to format the volume without mounting it, click Format only.
Formatting can take several minutes depending on the volume size and which formatting
options are selected.

Verification

1. On the Logical volume group page, scroll to the LVM2 logical volumes section and click the
logical volume to check the details and additional options.

CHAPTER 3. MANAGING LVM PHYSICAL VOLUMES

35



2. If you selected the Format only option, click the menu button at the end of the line of the
logical volume, and select Mount to use the logical volume.

3.7. RESIZING LOGICAL VOLUMES IN THE WEB CONSOLE

You can extend or reduce logical volumes in the RHEL 8 web console. The example procedure
demonstrates how to grow and shrink the size of a logical volume without taking the volume offline.

WARNING

You cannot reduce volumes that contains GFS2 or XFS filesystem.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

An existing logical volume containing a file system that supports resizing logical volumes.

Procedure

1. Log in to the RHEL web console.

2. Click Storage.



Red Hat Enterprise Linux 8 Configuring and managing logical volumes

36

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console


3. In the Storage table, click the volume group in the logical volumes is created.

4. On the Logical volume group page, scroll to the LVM2 logical volumes section and click the
menu button, ⋮, next to volume group you want to resize.

5. From the menu, select Grow or Shrink to resize the volume:

Growing the Volume:

a. Select Grow to increase the size of the volume.

b. In the Grow logical volume dialog box, adjust the size of the logical volume.

c. Click Grow.
LVM grows the logical volume without causing a system outage.

Shrinking the Volume:

a. Select Shrink to reduce the size of the volume.

b. In the Shrink logical volume dialog box, adjust the size of the logical volume.

CHAPTER 3. MANAGING LVM PHYSICAL VOLUMES

37



c. Click Shrink.
LVM shrinks the logical volume without causing a system outage.

3.8. ADDITIONAL RESOURCES

Creating a partition table on a disk with parted .

parted(8) man page.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

38

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_creating-a-partition-table-on-a-disk-with-parted_partition-operations-with-parted


CHAPTER 4. MANAGING LVM VOLUME GROUPS
A volume group (VG) is a collection of physical volumes (PVs), which creates a pool of disk space out of
which logical volumes (LVs) can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size called
extents. An extent is the smallest unit of space that can be allocated. Within a physical volume, extents
are referred to as physical extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The extent size
is therefore the same for all logical volumes in the volume group. The volume group maps the logical
extents to physical extents.

4.1. CREATING LVM VOLUME GROUP

You can create an LVM volume group (VG) myvg using the /dev/vdb1 and /dev/vdb2 physical volumes
(PVs). By default, when physical volumes are used to create a volume group, its disk space is divided into
4MB extents. This extent size is the minimum amount by which the logical volume can be increased or
decreased in size. The extent size can be modified using the -s argument of the vgcreate command and
large numbers of extents have no impact on I/O performance of the logical volume. You can put limits
on the number of physical or logical volumes the volume group can have using the -p and -l arguments
of the vgcreate command.

Prerequisites

The lvm2 package is installed.

One or more physical volumes are created. For more information about creating physical
volumes, see Creating LVM physical volume.

Procedure

1. Create a myvg VG using any of the following methods:

Without specifying any options:

# vgcreate myvg /dev/vdb1 /dev/vdb2
 Volume group "myvg" successfully created.

By specifying the volume group extent size using the -s argument:

# vgcreate -s 2 /dev/myvg /dev/vdb1 /dev/vdb2
Volume group "myvg" successfully created.

By limiting the number of physical or logical volumes the VG can have using the -p and -l
arguments:

# vgcreate -l 1 /dev/myvg /dev/vdb1 /dev/vdb2
Volume group "myvg" successfully created.

2. View the created volume groups by using any one of the following commands according to your
requirement:

The vgs command provides volume group information in a configurable form, displaying

CHAPTER 4. MANAGING LVM VOLUME GROUPS

39

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-physical-volumes_configuring-and-managing-logical-volumes#creating-lvm-physical-volume_managing-lvm-physical-volumes


The vgs command provides volume group information in a configurable form, displaying
one line per volume group:

# vgs
  VG    #PV #LV #SN  Attr  VSize   VFree
 myvg   2    0   0   wz-n  159.99g 159.99g

The vgdisplay command displays volume group properties such as size, extents, number of
physical volumes, and other options in a fixed form. The following example shows the
output of the vgdisplay command for the volume group myvg. To display all existing
volume groups, do not specify a volume group:

# vgdisplay myvg
  --- Volume group ---
  VG Name               myvg
  System ID
  Format                lvm2
  Metadata Areas        4
  Metadata Sequence No  6
  VG Access             read/write
[..]

The vgscan command scans all supported LVM block devices in the system for volume
group:

# vgscan
  Found volume group "myvg" using metadata type lvm2

3. Optional: Increase a volume group’s capacity by adding one or more free physical volumes:

# vgextend myvg /dev/vdb3
Physical volume "/dev/vdb3" successfully created.
Volume group "myvg" successfully extended

4. Optional: Rename an existing volume group:

# vgrename myvg myvg1
Volume group "myvg" successfully renamed to "myvg1"

Additional resources

vgcreate(8), vgextend(8), vgdisplay(8), vgs(8), vgscan(8), vgrename(8), and lvm(8) man
pages

4.2. CREATING VOLUME GROUPS IN THE WEB CONSOLE

Create volume groups from one or more physical drives or other storage devices.

Logical volumes are created from volume groups. Each volume group can include multiple logical
volumes.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

40



You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

Physical drives or other types of storage devices from which you want to create volume groups.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the menu button.

4. From the drop-down menu, select Create LVM2 volume group.

5. In the Name field, enter a name for the volume group. The name must not include spaces.

6. Select the drives you want to combine to create the volume group.

The RHEL web console displays only unused block devices. If you do not see your device in the
list, make sure that it is not being used by your system, or format it to be empty and unused.
Used devices include, for example:

CHAPTER 4. MANAGING LVM VOLUME GROUPS

41

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console


Devices formatted with a file system

Physical volumes in another volume group

Physical volumes being a member of another software RAID device

7. Click Create.
The volume group is created.

Verification

On the Storage page, check whether the new volume group is listed in the Storage table.

4.3. COMBINING LVM VOLUME GROUPS

To combine two volume groups into a single volume group, use the vgmerge command. You can merge
an inactive "source" volume with an active or an inactive "destination" volume if the physical extent sizes
of the volume are equal and the physical and logical volume summaries of both volume groups fit into
the destination volume groups limits.

Procedure

Merge the inactive volume group databases into the active or inactive volume group myvg
giving verbose runtime information:

# vgmerge -v myvg databases

Additional resources

vgmerge(8) man page

4.4. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP

To remove unused physical volumes (PVs) from a volume group (VG), use the vgreduce command. The
vgreduce command shrinks a volume group’s capacity by removing one or more empty physical
volumes. This frees those physical volumes to be used in different volume groups or to be removed from
the system.

Procedure

1. If the physical volume is still being used, migrate the data to another physical volume from the
same volume group :

# pvmove /dev/vdb3
  /dev/vdb3: Moved: 2.0%
 ...
  /dev/vdb3: Moved: 79.2%
 ...
  /dev/vdb3: Moved: 100.0%

2. If there are not enough free extents on the other physical volumes in the existing volume group:

a. Create a new physical volume from /dev/vdb4:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

42



# pvcreate /dev/vdb4
  Physical volume "/dev/vdb4" successfully created

b. Add the newly created physical volume to the myvg volume group:

# vgextend myvg /dev/vdb4
  Volume group "myvg" successfully extended

c. Move the data from /dev/vdb3 to /dev/vdb4:

# pvmove /dev/vdb3 /dev/vdb4
  /dev/vdb3: Moved: 33.33%
  /dev/vdb3: Moved: 100.00%

3. Remove the physical volume /dev/vdb3 from the volume group:

# vgreduce myvg /dev/vdb3
Removed "/dev/vdb3" from volume group "myvg"

Verification

Verify that the /dev/vdb3 physical volume is removed from the myvg volume group:

# pvs
  PV           VG    Fmt   Attr   PSize        PFree      Used
  /dev/vdb1 myvg  lvm2   a--    1020.00m    0          1020.00m
  /dev/vdb2 myvg  lvm2   a--    1020.00m    0          1020.00m
  /dev/vdb3        lvm2   a--    1020.00m   1008.00m    12.00m

Additional resources

vgreduce(8), pvmove(8), and pvs(8) man pages

4.5. SPLITTING A LVM VOLUME GROUP

If there is enough unused space on the physical volumes, a new volume group can be created without
adding new disks.

In the initial setup, the volume group myvg consists of /dev/vdb1, /dev/vdb2, and /dev/vdb3. After
completing this procedure, the volume group myvg will consist of /dev/vdb1 and /dev/vdb2, and the
second volume group, yourvg, will consist of /dev/vdb3.

Prerequisites

You have sufficient space in the volume group. Use the vgscan command to determine how
much free space is currently available in the volume group.

Depending on the free capacity in the existing physical volume, move all the used physical
extents to other physical volume using the pvmove command. For more information, see
Removing physical volumes from a volume group .

Procedure

CHAPTER 4. MANAGING LVM VOLUME GROUPS

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#removing-physical-volumes-from-a-volume-group_managing-lvm-volume-groups


1. Split the existing volume group myvg to the new volume group yourvg:

# vgsplit myvg yourvg /dev/vdb3
  Volume group "yourvg" successfully split from "myvg"

NOTE

If you have created a logical volume using the existing volume group, use the
following command to deactivate the logical volume:

# lvchange -a n /dev/myvg/mylv

For more information about creating logical volumes, see Managing LVM logical
volumes.

2. View the attributes of the two volume groups:

# vgs
  VG     #PV #LV #SN Attr   VSize  VFree
  myvg     2   1   0 wz--n- 34.30G 10.80G
  yourvg   1   0   0 wz--n- 17.15G 17.15G

Verification

Verify that the newly created volume group yourvg consists of /dev/vdb3 physical volume:

# pvs
  PV           VG      Fmt   Attr   PSize        PFree      Used
  /dev/vdb1 myvg   lvm2   a--    1020.00m    0          1020.00m
  /dev/vdb2 myvg   lvm2   a--    1020.00m    0          1020.00m
  /dev/vdb3 yourvg lvm2   a--    1020.00m   1008.00m    12.00m

Additional resources

vgsplit(8), vgs(8), and pvs(8) man pages

4.6. MOVING A VOLUME GROUP TO ANOTHER SYSTEM

You can move an entire LVM volume group (VG) to another system using the following commands:

vgexport

Use this command on an existing system to make an inactive VG inaccessible to the system. Once
the VG is inaccessible, you can detach its physical volumes (PV).

vgimport

Use this command on the other system to make the VG, which was inactive in the old system,
accessible in the new system.

Prerequisites

No users are accessing files on the active volumes in the volume group that you are moving.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes


Procedure

1. Unmount the mylv logical volume:

# umount /dev/mnt/mylv

2. Deactivate all logical volumes in the volume group, which prevents any further activity on the
volume group:

# vgchange -an myvg
vgchange -- volume group "myvg" successfully deactivated

3. Export the volume group to prevent it from being accessed by the system from which you are
removing it.

# vgexport myvg
vgexport -- volume group "myvg" successfully exported

4. View the exported volume group:

# pvscan
  PV /dev/sda1    is in exported VG myvg [17.15 GB / 7.15 GB free]
  PV /dev/sdc1    is in exported VG myvg [17.15 GB / 15.15 GB free]
  PV /dev/sdd1   is in exported VG myvg [17.15 GB / 15.15 GB free]
  ...

5. Shut down your system and unplug the disks that make up the volume group and connect them
to the new system.

6. Plug the disks into the new system and import the volume group to make it accessible to the
new system:

# vgimport myvg

NOTE

You can use the --force argument of the vgimport command to import volume
groups that are missing physical volumes and subsequently run the vgreduce --
removemissing command.

7. Activate the volume group:

# vgchange -ay myvg

8. Mount the file system to make it available for use:

# mkdir -p /mnt/myvg/users
# mount /dev/myvg/users /mnt/myvg/users

Additional resources

vgimport(8), vgexport(8), and vgchange(8) man pages

CHAPTER 4. MANAGING LVM VOLUME GROUPS

45



4.7. REMOVING LVM VOLUME GROUPS

You can remove an existing volume group using the vgremove command.

Prerequisites

The volume group contains no logical volumes. To remove logical volumes from a volume group,
see Removing LVM logical volumes.

Procedure

1. If the volume group exists in a clustered environment, stop the lockspace of the volume group
on all other nodes. Use the following command on all nodes except the node where you are
performing the removal:

# vgchange --lockstop vg-name

Wait for the lock to stop.

2. Remove the volume group:

# vgremove vg-name
  Volume group "vg-name" successfully removed

Additional resources

vgremove(8) man page

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

46

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes#removing-lvm-logical-volumes_managing-lvm-logical-volumes


CHAPTER 5. MANAGING LVM LOGICAL VOLUMES
A logical volume is a virtual, block storage device that a file system, database, or application can use. To
create an LVM logical volume, the physical volumes (PVs) are combined into a volume group (VG). This
creates a pool of disk space out of which LVM logical volumes (LVs) can be allocated.

5.1. OVERVIEW OF LOGICAL VOLUMES

An administrator can grow or shrink logical volumes without destroying data, unlike standard disk
partitions. If the physical volumes in a volume group are on separate drives or RAID arrays, then
administrators can also spread a logical volume across the storage devices.

You can lose data if you shrink a logical volume to a smaller capacity than the data on the volume
requires. Further, some file systems are not capable of shrinking. To ensure maximum flexibility, create
logical volumes to meet your current needs, and leave excess storage capacity unallocated. You can
safely extend logical volumes to use unallocated space, depending on your needs.

IMPORTANT

On AMD, Intel, ARM systems, and IBM Power Systems servers, the boot loader cannot
read LVM volumes. You must make a standard, non-LVM disk partition for your /boot
partition. On IBM Z, the zipl boot loader supports /boot on LVM logical volumes with
linear mapping. By default, the installation process always creates the / and swap
partitions within LVM volumes, with a separate /boot partition on a physical volume.

The following are the different types of logical volumes:

Linear volumes

A linear volume aggregates space from one or more physical volumes into one logical volume. For
example, if you have two 60GB disks, you can create a 120GB logical volume. The physical storage is
concatenated.

Striped logical volumes

When you write data to an LVM logical volume, the file system lays the data out across the
underlying physical volumes. You can control the way the data is written to the physical volumes by
creating a striped logical volume. For large sequential reads and writes, this can improve the
efficiency of the data I/O.
Striping enhances performance by writing data to a predetermined number of physical volumes in
round-robin fashion. With striping, I/O can be done in parallel. In some situations, this can result in
near-linear performance gain for each additional physical volume in the stripe.

RAID logical volumes

LVM supports RAID levels 0, 1, 4, 5, 6, and 10. RAID logical volumes are not cluster-aware. When you
create a RAID logical volume, LVM creates a metadata subvolume that is one extent in size for every
data or parity subvolume in the array.

Thin-provisioned logical volumes (thin volumes)

Using thin-provisioned logical volumes, you can create logical volumes that are larger than the
available physical storage. Creating a thinly provisioned set of volumes allows the system to allocate
what you use instead of allocating the full amount of storage that is requested

Snapshot volumes

The LVM snapshot feature provides the ability to create virtual images of a device at a particular
instant without causing a service interruption. When a change is made to the original device (the

CHAPTER 5. MANAGING LVM LOGICAL VOLUMES

47



origin) after a snapshot is taken, the snapshot feature makes a copy of the changed data area as it
was prior to the change so that it can reconstruct the state of the device.

Thin-provisioned snapshot volumes

Using thin-provisioned snapshot volumes, you can have more virtual devices to be stored on the
same data volume. Thinly provisioned snapshots are useful because you are not copying all of the
data that you are looking to capture at a given time.

Cache volumes

LVM supports the use of fast block devices, such as SSD drives as write-back or write-through
caches for larger slower block devices. Users can create cache logical volumes to improve the
performance of their existing logical volumes or create new cache logical volumes composed of a
small and fast device coupled with a large and slow device.

5.2. CREATING LVM LOGICAL VOLUME

Prerequisites

The lvm2 package is installed.

The volume group is created. For more information, see Creating LVM volume group.

Procedure

1. Create a logical volume:

# lvcreate -n mylv -L 500M myvg
Logical volume "mylv" successfully created.

Use the -n option to set the LV name to mylv, and the -L option to set the size of LV in units of
Mb, but it is possible to use any other units. The LV type is linear by default, but the user can
specify the desired type by using the --type option.

IMPORTANT

The command fails if the VG does not have a sufficient number of free physical
extents for the requested size and type.

2. View the created logical volumes by using any one of the following commands as per your
requirement:

a. The lvs command provides logical volume information in a configurable form, displaying one
line per logical volume:

# lvs
  LV   VG   Attr         LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync Convert
 mylv myvg -wi-ao----   500.00m

b. The lvdisplay command displays logical volume properties, such as size, layout, and
mapping in a fixed format:

# lvdisplay -v /dev/myvg/mylv
  --- Logical volume ---
  LV Path                /dev/myvg/mylv

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

48

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups


  LV Name                mylv
  VG Name                myvg
  LV UUID                YTnAk6-kMlT-c4pG-HBFZ-Bx7t-ePMk-7YjhaM
  LV Write Access        read/write
[..]

c. The lvscan command scans for all logical volumes in the system and lists them:

# lvscan
 ACTIVE                   '/dev/myvg/mylv' [500.00 MiB] inherit

3. Create a file system on the logical volume. The following command creates an xfs file system
on the logical volume:

# mkfs.xfs /dev/myvg/mylv
meta-data=/dev/myvg/mylv       isize=512    agcount=4, agsize=32000 blks
         =                       sectsz=512   attr=2, projid32bit=1
         =                       crc=1        finobt=1, sparse=1, rmapbt=0
         =                       reflink=1
data     =                       bsize=4096   blocks=128000, imaxpct=25
         =                       sunit=0      swidth=0 blks
naming   =version 2              bsize=4096   ascii-ci=0, ftype=1
log      =internal log           bsize=4096   blocks=1368, version=2
         =                       sectsz=512   sunit=0 blks, lazy-count=1
realtime =none                   extsz=4096   blocks=0, rtextents=0
Discarding blocks...Done.

4. Mount the logical volume and report the file system disk space usage:

# mount /dev/myvg/mylv /mnt

# df -h
Filesystem               1K-blocks  Used   Available Use% Mounted on

/dev/mapper/myvg-mylv   506528    29388  477140     6%   /mnt

Additional resources

lvcreate(8), lvdisplay(8), lvs(8), lvscan(8), lvm(8) and mkfs.xfs(8) man pages

5.3. CREATING A RAID0 STRIPED LOGICAL VOLUME

A RAID0 logical volume spreads logical volume data across multiple data subvolumes in units of stripe
size. The following procedure creates an LVM RAID0 logical volume called mylv that stripes data across
the disks.

Prerequisites

1. You have created three or more physical volumes. For more information about creating physical
volumes, see Creating LVM physical volume.

2. You have created the volume group. For more information, see Creating LVM volume group.

CHAPTER 5. MANAGING LVM LOGICAL VOLUMES

49

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-physical-volumes_configuring-and-managing-logical-volumes#creating-lvm-physical-volume_managing-lvm-physical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups


Procedure

1. Create a RAID0 logical volume from the existing volume group. The following command creates
the RAID0 volume mylv from the volume group myvg, which is 2G in size, with three stripes and a
stripe size of 4kB:

# lvcreate --type raid0 -L 2G --stripes 3 --stripesize 4 -n mylv my_vg
  Rounding size 2.00 GiB (512 extents) up to stripe boundary size 2.00 GiB(513 extents).
  Logical volume "mylv" created.

2. Create a file system on the RAID0 logical volume. The following command creates an ext4 file
system on the logical volume:

# mkfs.ext4 /dev/my_vg/mylv

3. Mount the logical volume and report the file system disk space usage:

# mount /dev/my_vg/mylv /mnt

# df
Filesystem             1K-blocks     Used  Available  Use% Mounted on
/dev/mapper/my_vg-mylv   2002684     6168  1875072    1%   /mnt

Verification

View the created RAID0 stripped logical volume:

# lvs -a -o +devices,segtype my_vg
  LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert Devices Type
  mylv my_vg rwi-a-r--- 2.00g mylv_rimage_0(0),mylv_rimage_1(0),mylv_rimage_2(0) raid0
  [mylv_rimage_0] my_vg iwi-aor--- 684.00m /dev/sdf1(0) linear
  [mylv_rimage_1] my_vg iwi-aor--- 684.00m /dev/sdg1(0) linear
  [mylv_rimage_2] my_vg iwi-aor--- 684.00m /dev/sdh1(0) linear

5.4. RENAMING LVM LOGICAL VOLUMES

This procedure describes how to rename an existing logical volume mylv to mylv1.

Procedure

1. If the logical volume is currently mounted, unmount the volume:

# umount /mnt

Replace /mnt with the mount point.

2. Rename an existing logical volume:

# lvrename myvg mylv mylv1
Renamed "mylv" to "mylv1" in volume group "myvg"

You can also rename the logical volume by specifying the full paths to the devices:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

50



# lvrename /dev/myvg/mylv /dev/myvg/mylv1

Additional resources

lvrename(8) man page

5.5. REMOVING A DISK FROM A LOGICAL VOLUME

This procedure describes how to remove a disk from an existing logical volume, either to replace the disk
or to use the disk as part of a different volume.

In order to remove a disk, you must first move the extents on the LVM physical volume to a different
disk or set of disks.

Procedure

1. View the used and free space of physical volumes when using the LV:

# pvs -o+pv_used
  PV          VG    Fmt    Attr   PSize      PFree     Used
 /dev/vdb1 myvg  lvm2   a--    1020.00m    0         1020.00m
 /dev/vdb2 myvg  lvm2   a--    1020.00m    0         1020.00m
 /dev/vdb3 myvg  lvm2   a--    1020.00m   1008.00m   12.00m

2. Move the data to other physical volume:

a. If there are enough free extents on the other physical volumes in the existing volume group,
use the following command to move the data:

# pvmove /dev/vdb3
  /dev/vdb3: Moved: 2.0%
 ...
  /dev/vdb3: Moved: 79.2%
 ...
  /dev/vdb3: Moved: 100.0%

b. If there are no enough free extents on the other physical volumes in the existing volume
group, use the following commands to add a new physical volume, extend the volume group
using the newly created physical volume, and move the data to this physical volume:

# pvcreate /dev/vdb4
  Physical volume "/dev/vdb4" successfully created

# vgextend myvg /dev/vdb4
  Volume group "myvg" successfully extended

# pvmove /dev/vdb3 /dev/vdb4
  /dev/vdb3: Moved: 33.33%
  /dev/vdb3: Moved: 100.00%

3. Remove the physical volume:

CHAPTER 5. MANAGING LVM LOGICAL VOLUMES

51



# vgreduce myvg /dev/vdb3
Removed "/dev/vdb3" from volume group "myvg"

If a logical volume contains a physical volume that fails, you cannot use that logical volume. To
remove missing physical volumes from a volume group, you can use the --removemissing
parameter of the vgreduce command, if there are no logical volumes that are allocated on the
missing physical volumes:

# vgreduce --removemissing myvg

Additional resources

pvmove(8), vgextend(8), vereduce(8), and pvs(8) man pages

5.6. CHANGING PHYSICAL DRIVES IN VOLUME GROUPS USING THE
WEB CONSOLE

You can change the drive in a volume group using the RHEL 8 web console.

Prerequisites

A new physical drive for replacing the old or broken one.

The configuration expects that physical drives are organized in a volume group.

5.6.1. Adding physical drives to volume groups in the web console

You can add a new physical drive or other type of volume to the existing logical volume by using the
RHEL 8 web console.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

A volume group must be created.

A new drive connected to the machine.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the volume group to which you want to add physical drives.

4. On the LVM2 volume group page, click Add physical volume.

5. In the Add Disks dialog box, select the preferred drives and click Add.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

52

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console


Verification

On the LVM2 volume group page, check the Physical volumes section to verify whether the
new physical drives are available in the volume group.

5.6.2. Removing physical drives from volume groups in the web console

If a logical volume includes multiple physical drives, you can remove one of the physical drives online.

The system moves automatically all data from the drive to be removed to other drives during the
removal process. Notice that it can take some time.

The web console also verifies, if there is enough space for removing the physical drive.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

A volume group with more than one physical drive connected.

Procedure

1. Log in to the RHEL 8 web console.

2. Click Storage.

3. In the Storage table, click the volume group to which you want to add physical drives.

4. On the LVM2 volume group page, scroll to the Physical volumes section.

5. Click the menu button, ⋮, next to the physical volume you want to remove.

6. From the drop-down menu, select Remove.
The RHEL 8 web console verifies whether the logical volume has enough free space to
removing the disk. If there is no free space to transfer the data, you cannot remove the disk and
you must first add another disk to increase the capacity of the volume group. For details, see
Adding physical drives to logical volumes in the web console .

5.7. REMOVING LVM LOGICAL VOLUMES

This procedure describes how to remove an existing logical volume /dev/myvg/mylv1 from the volume
group myvg.

Procedure

1. If the logical volume is currently mounted, unmount the volume:

# umount /mnt

2. If the logical volume exists in a clustered environment, deactivate the logical volume on all
nodes where it is active. Use the following command on each such node:

CHAPTER 5. MANAGING LVM LOGICAL VOLUMES

53

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/using-the-web-console-for-changing-physical-drives-in-volume-groups_system-management-using-the-rhel-8-web-console#adding-physical-drives-to-volume-groups-in-the-web-console_changing-physical-drives-in-volume-groups-using-the-web-console


# lvchange --activate n vg-name/lv-name

3. Remove the logical volume using the lvremove utility:

# lvremove /dev/myvg/mylv1

Do you really want to remove active logical volume "mylv1"? [y/n]: y
Logical volume "mylv1" successfully removed

NOTE

In this case, the logical volume has not been deactivated. If you explicitly
deactivated the logical volume before removing it, you would not see the prompt
verifying whether you want to remove an active logical volume.

Additional resources

lvremove(8) man page

5.8. MANAGING LVM LOGICAL VOLUMES BY USING RHEL SYSTEM
ROLES

Use the storage role to perform the following tasks:

Create an LVM logical volume in a volume group consisting of multiple disks.

Create an ext4 file system with a given label on the logical volume.

Persistently mount the ext4 file system.

Prerequisites

An Ansible playbook including the storage role

5.8.1. Managing logical volumes by using the storage RHEL system role

The example Ansible playbook applies the storage role to create an LVM logical volume in a volume
group.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- hosts: managed-node-01.example.com
  roles:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

54

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


The myvg volume group consists of the following disks: /dev/sda, /dev/sdb, and /dev/sdc.

If the myvg volume group already exists, the playbook adds the logical volume to the
volume group.

If the myvg volume group does not exist, the playbook creates it.

The playbook creates an Ext4 file system on the mylv logical volume, and persistently
mounts the file system at /mnt.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

5.8.2. Additional resources

For more information about the storage role, see Managing local storage by using RHEL system
roles.

5.9. REMOVING LVM VOLUME GROUPS

You can remove an existing volume group using the vgremove command.

Prerequisites

The volume group contains no logical volumes. To remove logical volumes from a volume group,
see Removing LVM logical volumes.

    - rhel-system-roles.storage
  vars:
    storage_pools:
      - name: myvg
        disks:
          - sda
          - sdb
          - sdc
        volumes:
          - name: mylv
            size: 2G
            fs_type: ext4
            mount_point: /mnt/dat

CHAPTER 5. MANAGING LVM LOGICAL VOLUMES

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/managing-local-storage-using-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes#removing-lvm-logical-volumes_managing-lvm-logical-volumes


Procedure

1. If the volume group exists in a clustered environment, stop the lockspace of the volume group
on all other nodes. Use the following command on all nodes except the node where you are
performing the removal:

# vgchange --lockstop vg-name

Wait for the lock to stop.

2. Remove the volume group:

# vgremove vg-name
  Volume group "vg-name" successfully removed

Additional resources

vgremove(8) man page

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

56



CHAPTER 6. MODIFYING THE SIZE OF A LOGICAL VOLUME
After you have created a logical volume, you can modify the size of the volume.

6.1. EXTENDING A LOGICAL VOLUME AND FILE SYSTEM

You can extend a logical volume (LV) using the lvextend command. You can specify by how much you
want to extend the LV, or how large you want the LV to be after you extend it. Use the -r option of the 
lvextend command to grow the underlying file system along with the LV.

WARNING

You can also extend logical volumes using the lvresize command, but this command
does not guarantee against accidental shrinkage.

Prerequisites

You have an existing logical volume (LV) with a file system on it. Determine the file system type
and size using the df -Th command. For more information about creating a logical volume and a
file system, see Creating LVM logical volume.

You have sufficient space in the volume group to grow your LV and file system. Use the vgs -o 
name,vgfree command to determine the available space. For more information about creating
volume groups, see Creating LVM volume group.

Procedure

1. Optional: If the volume group has insufficient space to grow your LV, add a new physical volume
to the volume group:

# vgextend myvg /dev/vdb3
Physical volume "/dev/vdb3" successfully created.
Volume group "myvg" successfully extended.

2. Extend the LV and the file system:

NOTE

Using the lvextend command without the -r argument extends the LV only. To
extend an underlying XFS file system, see Increasing the size of an XFS file
system, for a GFS2 file system, see Growing a GFS2 filesystem  and for an ext4
file system, see Resizing an ext4 file system .

NOTE

Use the -L option to extend the LV to a new size and the -l option to specify the
number of extents depending on the size of the logical volume that you want to
increase.



CHAPTER 6. MODIFYING THE SIZE OF A LOGICAL VOLUME

57

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes#creating-lvm-logical-volume_managing-lvm-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/increasing-the-size-of-an-xfs-file-system_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_gfs2_file_systems/assembly_creating-mounting-gfs2-configuring-gfs2-file-systems#proc_growing-gfs2-filesystem-creating-mounting-gfs2
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/getting-started-with-an-ext4-file-system_managing-file-systems#resizing-an-ext4-file-system_getting-started-with-an-ext4-file-system


# lvextend -r -L 3G /dev/myvg/mylv
fsck from util-linux 2.32.1
/dev/mapper/myvg-mylv: clean, 11/131072 files, 26156/524288 blocks
  Size of logical volume myvg/mylv changed from 2.00 GiB (512 extents) to 3.00 GiB (768 
extents).
  Logical volume myvg/mylv successfully resized.
resize2fs 1.45.6 (20-Mar-2020)
Resizing the filesystem on /dev/mapper/myvg-mylv to 786432 (4k) blocks.
The filesystem on /dev/mapper/myvg-mylv is now 786432 (4k) blocks long.

You can also extend the mylv logical volume to fill all of the unallocated space in the myvg
volume group:

# lvextend -l +100%FREE /dev/myvg/mylv
 Size of logical volume myvg/mylv changed from 10.00 GiB (2560 extents) to 6.35 TiB 
(1665465 extents).
 Logical volume myvg/mylv successfully resized.

Verification

Verify that the file system and the LV has grown:

# df -Th
Filesystem            Type      Size  Used Avail Use% Mounted on
devtmpfs              devtmpfs  1.9G     0  1.9G   0% /dev
tmpfs                 tmpfs     1.9G     0  1.9G   0% /dev/shm
tmpfs                 tmpfs     1.9G  8.6M  1.9G   1% /run
tmpfs                 tmpfs     1.9G     0  1.9G   0% /sys/fs/cgroup
/dev/mapper/rhel-root xfs        45G  3.7G   42G   9% /
/dev/vda1             xfs      1014M  369M  646M  37% /boot
tmpfs                 tmpfs     374M     0  374M   0% /run/user/0
/dev/mapper/myvg-mylv xfs       2.0G   47M  2.0G   3% /mnt/mnt1

Additional resources

vgextend(8), lvextend(8), and xfs_growfs(8) man pages

6.2. REDUCING A LOGICAL VOLUME AND FILE SYSTEM

You can reduce a logical volume and its file system by using the lvreduce command and the resizefs
option.

If the logical volume you are reducing contains a file system, to prevent data loss you must ensure that
the file system is not using the space in the logical volume that is being reduced. For this reason, use the
--resizefs option of the lvreduce command when the logical volume contains a file system.

When you use --resizefs, lvreduce attempts to reduce the file system before shrinking the logical
volume. If shrinking the file system fails because it is full or does not support shrinking, then the 
lvreduce command fails and does not attempt to reduce the logical volume.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

58



WARNING

In most cases, the lvreduce command warns about possible data loss and asks for
confirmation. However, you should not rely on these confirmation prompts to
prevent data loss because in some cases you will not see these prompts, such as
when the logical volume is inactive or the --resizefs option is not used.

Note that using the --test option of the lvreduce command does not indicate if the
operation is safe because this option does not check the file system or test the file
system resize.

Prerequisites

File system of the logical volume supports shrinking. Determine the file system type and size
using the df -Th command.

NOTE

For example, the GFS2 and XFS filesystems do not support shrinking.

Underlying file system is not using the space in the LV that is being reduced.

Procedure

1. Shrink the mylv logical volume and its filesystem in the myvg volume group using one of the
following options:

Reduce the LV and its file system to a desired value:

# lvreduce --resizefs -L 500M myvg/mylv
File system ext4 found on myvg/mylv.
File system size (2.00 GiB) is larger than the requested size (500.00 MiB).
File system reduce is required using resize2fs.
...
Logical volume myvg/mylv successfully resized.

Reduce 64 megabytes from the logical volume and filesystem:

# lvreduce --resizefs -L -64M myvg/mylv
File system ext4 found on myvg/mylv.
File system size (500.00 MiB) is larger than the requested size (436.00 MiB).
File system reduce is required using resize2fs.
...
Logical volume myvg/mylv successfully resized

Additional resources

lvreduce(8) man page



CHAPTER 6. MODIFYING THE SIZE OF A LOGICAL VOLUME

59



6.3. EXTENDING A STRIPED LOGICAL VOLUME

You can extend a striped logical volume (LV) by using the lvextend command with the required size.

Prerequisites

1. You have enough free space on the underlying physical volumes (PVs) that make up the volume
group (VG) to support the stripe.

Procedure

1. Optional: Display your volume group:

# vgs
  VG      #PV #LV #SN Attr   VSize   VFree
  myvg     2   1   0 wz--n- 271.31G 271.31G

2. Optional: Create a stripe using the entire amount of space in the volume group:

# lvcreate -n stripe1 -L 271.31G -i 2 myvg
  Using default stripesize 64.00 KB
  Rounding up size to full physical extent 271.31 GiB

3. Optional: Extend the myvg volume group by adding new physical volumes:

# vgextend myvg /dev/sdc1
  Volume group "myvg" successfully extended

Repeat this step to add sufficient physical volumes depending on your stripe type and the
amount of space used. For example, for a two-way stripe that uses up the entire volume group,
you need to add at least two physical volumes.

4. Extend the striped logical volume stripe1 that is a part of the myvg VG:

# lvextend myvg/stripe1 -L 542G
  Using stripesize of last segment 64.00 KB
  Extending logical volume stripe1 to 542.00 GB
  Logical volume stripe1 successfully resized

You can also extend the stripe1 logical volume to fill all of the unallocated space in the myvg
volume group:

# lvextend -l+100%FREE myvg/stripe1
  Size of logical volume myvg/stripe1 changed from 1020.00 MiB (255 extents) to <2.00 GiB 
(511 extents).
  Logical volume myvg/stripe1 successfully resized.

Verification

Verify the new size of the extended striped LV:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

60



# lvs
  LV          VG       Attr     LSize      Pool       Origin Data%  Move Log Copy%  Convert
  stripe1    myvg     wi-ao---- 542.00 GB

CHAPTER 6. MODIFYING THE SIZE OF A LOGICAL VOLUME

61



CHAPTER 7. CUSTOMIZING THE LVM REPORT
LVM provides a wide range of configuration and command line options to produce customized reports
and to filter the report’s output. You can sort the output, specify units, use selection criteria, and update
the lvm.conf file to customize the LVM report.

7.1. CONTROLLING FORMAT OF THE LVM DISPLAY

Whether you use pvs, lvs, or vgs, these commands determine the default set of fields displayed and the
sort order. You can control the output of these commands by executing the following commands.

Procedure

Change the default fields in the LVM display using the -o option:

# pvs -o pv_name,pv_size,pv_free
  PV         PSize  PFree
  /dev/vdb1  17.14G 17.14G
  /dev/vdb2  17.14G 17.09G
  /dev/vdb3  17.14G 17.14G

Sort LVM display by using the -O option:

# pvs -o pv_name,pv_size,pv_free -O pv_free
  PV         PSize  PFree
  /dev/vdb2 17.14G 17.09G
  /dev/vdb1  17.14G 17.14G
  /dev/vdb3  17.14G 17.14G

Display a reverse sort by using the -O argument along with the - character:

# pvs -o pv_name,pv_size,pv_free -O -pv_free
  PV         PSize  PFree
  /dev/vdb1  17.14G 17.14G
  /dev/vdb3  17.14G 17.14G
  /dev/vdb2  17.14G 17.09G

Additional resources

lvmreport(7), lvs(8), vgs(8), and pvs(8) man page

Specifying the units for an LVM report display

Customizing the LVM configuration file

7.2. SPECIFYING THE UNITS FOR AN LVM REPORT DISPLAY

You can view the size of the LVM devices in base 2 or base 10 units by specifying the --units argument
of the report command.

Base 2 units

The default units are displayed in powers of 2, which is multiples of 1024. You can specify it using

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

62



The default units are displayed in powers of 2, which is multiples of 1024. You can specify it using
human-readable (r) with < and > rounding indicator, bytes ( b), sectors (s), kilobytes (k), megabytes
(m), gigabytes (g), terabytes (t), petabytes (p), exabytes (e), and human-readable (h).
The default display is r, when --units is not specified. You can override the default by setting the
units parameter in the global section of the /etc/lvm/lvm.conf file.

Base 10 units

You can specify the units to be displayed in multiples of 1000 by capitalizing the unit specification (R,
B, S, K, M, G, T, P, E, H).

Procedure

Specify the units for the LVM for base 2 gigabytes units:

# pvs --units g /dev/vdb
  PV        VG    Fmt  Attr PSize   PFree
  /dev/vdb  myvg  lvm2 a--  931.00g 930.00g

# vgs --units g myvg
  VG   #PV #LV #SN Attr VSize   VFree
  myvg   1   1   0 wz-n 931.00g 931.00g

# lvs --units g myvg
  LV    VG   Attr     LSize Pool Origin Data%  Meta%  Move Log Cpy%Sync Convert
  mylv myvg  wi-a---- 1.OOg

Indicate the actual size of LVM by using the r option with the < or > prefix in the output:

# vgs --units g myvg
  VG   #PV #LV #SN Attr VSize   VFree
  myvg   1   1   0 wz-n 931.00g 930.00g

# vgs --units r myvg
  VG   #PV #LV #SN Attr VSize    VFree
  myvg   1   1   0 wz-n <931.00g <930.00

# vgs myvg
  VG   #PV #LV #SN Attr VSize    VFree
  myvg   1   1   0 wz-n <931.00g <930.00g

The r unit works similarly to h (human-readable), but in addition, the reported value gets a prefix
of < or > to indicate that the actual size is slightly more or less than the displayed size. LVM
rounds the decimal value, causing non-exact sizes to be reported.

It also shows how --units g or other --units do not always display exactly correct sizes. It also
shows the primary purpose of r, which is the < to indicate that the displayed size is not exact. In
this example, the value is not exact because the VG size is not an exact multiple of gigabytes,
and .01 is also not an exact representation of the fraction.

Specify the units for the LVM for base 10 gigabytes units:

# pvs --units G /dev/vdb
  PV        VG   Fmt  Attr  PSize   PFree
  /dev/vdb  myvg lvm2 a--   999.65G 998.58G

CHAPTER 7. CUSTOMIZING THE LVM REPORT

63



# vgs --units G myvg
  VG   #PV #LV #SN Attr VSize   VFree
  myvg   1   1   0 wz-n 999.65G 998.58G

# lvs --units G myvg
  LV    VG   Attr     LSize Pool Origin Data%  Meta%  Move Log Cpy%Sync Convert
  mylv myvg wi-a---- 1.07G

Specify sectors (s), defined as 512 bytes, or custom units. The following example displays the
output of the pvs command as several sectors:

# pvs --units s
  PV         VG     Fmt  Attr PSize       PFree
  /dev/vdb   myvg   lvm2 a--  1952440320S 1950343168S

Specify megabytes (m). The following example displays the output of the pvs command in units
of 4 MB:

# pvs --units 4m
  PV         VG     Fmt  Attr PSize      PFree
  /dev/vdb   myvg   lvm2 a--  238335.00U 238079.00U

7.3. CUSTOMIZING THE LVM CONFIGURATION FILE

By editing the lvm.conf file, you can customize the LVM according to your specific storage and system
requirements. For example, you can use lvm.conf to modify filter settings, configure volume group auto
activation, manage thin pool, or automatically extend a snapshot.

Procedure:

1. Display the default lvm.conf file:

# lvmconfig --typeconfig default --withcomments

By default, the lvm.conf file contains only comments to display possible settings.

2. Customize the lvm.conf file according to your requirements by uncommenting the setting in 
lvm.conf. The following setting focuses on changing the default display of certain commands:

In the lvm.conf file, adjust the lvs_cols parameter to only print the specified fields:

{
  ...
  lvs_cols="lv_name,vg_name,lv_attr"
  ...
}

Use this option instead of the lvs -o lv_name,vg_name,lv_attr command to avoid
unnecessary frequent use of the -o option.

In the lvm.conf file, use the compact_output=1 setting to avoid printing empty fields for
the pvs, vgs, and lvs commands:

{

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

64



  ...
  compact_output = 1
  ...
}

3. View the default values after modifying the lvm.conf file:

# lvmconfig --typeconfig diff

Additional resources

lvm.conf(5) man page

7.4. DEFINING LVM SELECTION CRITERIA

Selection criteria are a set of statements in the form of <field> <operator> <value>, which use
comparison operators to define values for specific fields. Objects that match the selection criteria are
then processed or displayed. Statements are combined by logical and grouping operators. To define
selection criteria use the -S or --select option followed by one or multiple statements.

Some LVM commands support the -S option to select which objects to process based on certain
attributes. These objects can be physical volumes (PVs), volume groups (VGs), or logical volumes (LVs).

The -S option works by describing the objects to process, rather than naming each object. This is helpful
when processing many objects and it would be difficult to find and name each object separately or when
searching objects that have a complex set of characteristics. The select option can also be used as a
shortcut to avoid typing many names.

Use the lvs -S help command to see full sets of fields and possible operators. Replace lvs with any
reporting or processing command to see the details of that command.

Use selection criteria with LVM reporting and processing commands to only display or process the
objects that satisfy chosen criteria:

Reporting commands include pvs, vgs, lvs, pvdisplay, vgdisplay, lvdisplay, and dmsetup info 
-c.

Processing commands include pvchange, vgchange, lvchange, vgimport, vgexport, 
vgremove, and lvremove.

Procedure

Examples of selection criteria using the pvs command:

# pvs
  PV           VG   Fmt  Attr PSize    PFree
  /dev/nvme2n1       lvm2 ---     1.00g   1.00g
  /dev/vdb1     myvg lvm2 a--  1020.00m 396.00m
  /dev/vdb2     myvg lvm2 a--  1020.00m 896.00m

# pvs -S name=~nvme
  PV           Fmt  Attr PSize PFree
  /dev/nvme2n1 lvm2 ---  1.00g 1.00g

CHAPTER 7. CUSTOMIZING THE LVM REPORT

65



# pvs -S vg_name=myvg
  PV         VG   Fmt  Attr PSize    PFree
  /dev/vdb1   myvg lvm2 a--  1020.00m 396.00m
  /dev/vdb2   myvg lvm2 a--  1020.00m 896.00m

Examples of selection criteria using the lvs commands:

# lvs
  LV    VG   Attr       LSize   Cpy%Sync
  mylv  myvg -wi-a----- 200.00m
  lvol0 myvg -wi-a----- 100.00m
  lvol1 myvg -wi-a----- 100.00m
  lvol2 myvg -wi------- 100.00m
  rr    myvg rwi-a-r--- 120.00m 100.00

# lvs -S 'size > 100m && size < 200m'
  LV   VG   Attr       LSize   Cpy%Sync
  rr   myvg rwi-a-r--- 120.00m 100.00

# lvs -S name=~lvol[02]
  LV    VG   Attr       LSize
  lvol0 myvg -wi-a----- 100.00m
  lvol2 myvg -wi------- 100.00m

# lvs -S segtype=raid1
  LV   VG   Attr       LSize   Cpy%Sync
  rr   myvg rwi-a-r--- 120.00m 100.00

More advanced examples:

# lvchange --addtag mytag -S active=1
  Logical volume myvg/mylv changed.
  Logical volume myvg/lvol0 changed.
  Logical volume myvg/lvol1 changed.
  Logical volume myvg/rr changed.

# lvs -a -o lv_name,vg_name,attr,size,pool_lv,origin,role -S 'name!~_pmspare'
  LV         VG      Attr       LSize Pool Origin Role
  thin1      example Vwi-a-tz-- 2.00g tp          public,origin,thinorigin
  thin1s     example Vwi---tz-- 2.00g tp   thin1  public,snapshot,thinsnapshot
  thin2      example Vwi-a-tz-- 3.00g tp          public
  tp         example twi-aotz-- 1.00g             private
  [tp_tdata] example Twi-ao---- 1.00g             private,thin,pool,data
  [tp_tmeta] example ewi-ao---- 4.00m             private,thin,pool,metadata

# lvchange --setactivationskip n -S 'role=thinsnapshot && origin=thin1'
  Logical volume myvg/thin1s changed.

# lvs -a -S 'name=~_tmeta && role=metadata && size <= 4m'
  LV         VG      Attr       LSize
  [tp_tmeta] myvg   ewi-ao---- 4.00m

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

66



Additional resources

lvmreport(7) man page

CHAPTER 7. CUSTOMIZING THE LVM REPORT

67



CHAPTER 8. CONFIGURING LVM ON SHARED STORAGE
Shared storage is storage that can be accessed by multiple nodes at the same time. You can use LVM to
manage shared storage. Shared storage is commonly used in cluster and high-availability setups and
there are two common scenarios for how shared storage appears on the system:

LVM devices are attached to a host and passed to a guest VM to use. In this case, the device is
never intended to be used by the host, only by the guest VM.

Machines are attached to a storage area network (SAN), for example using Fiber Channel, and
the SAN LUNs are visible to multiple machines:

8.1. CONFIGURING LVM FOR VM DISKS

To prevent VM storage from being exposed to the host, you can configure LVM device access and LVM 
system ID. You can do this by excluding the devices in question from the host, which ensures that the
LVM on the host doesn’t see or use the devices passed to the guest VM. You can protect against
accidental usage of the VM’s VG on the host by setting the LVM system ID in the VG to match the
guest VM.

Procedure

1. In the lvm.conf file, filter the path to exclude the device:

filter = [ "r|^path_to_device$|" ]

2. Optional: You can further protect LVM devices:

a. Set the LVM system ID feature in both the host and the VM in the lvm.conf file:

system_id_source = "uname"

b. Set the VG’s system ID to match the VM system ID. This ensures that only the guest VM is
capable of activating the VG:

$ vgchange --systemid <VM_system_id> <VM_vg_name>

8.2. CONFIGURING LVM TO USE SAN DISKS ON ONE MACHINE

To prevent the SAN LUNs from being used by the wrong machine, exclude those disks in the lvm.conf
filter on all machines except the one machine which is meant to use them.

You can also protect the VG from being used by the wrong machine by configuring a system ID on all
machines, and setting the system ID in the VG to match the machine using it.

Procedure

1. In the lvm.conf file filter the path to the device to exclude it:

filter = [ "r|^path_to_device$|" ]

2. Set the LVM system ID feature in the lvm.conf file:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

68



system_id_source = "uname"

3. Set the VG’s system ID to match the system ID of the machine using this VG:

$ vgchange --systemid <system_id> <vg_name>

8.3. CONFIGURING LVM TO USE SAN DISKS FOR FAILOVER

You can configure LUNs to be moved between machines, for example for failover purposes. You can set
up the LVM by configuring the lvm.conf filter to include the LUNs on all machines that may use them
and by configuring the LVM system ID on each machine.

The following procedure describes the initial LVM configuration, to finish setting up LVM for failover and
move the VG between machines, you need to configure pacemaker and LVM-activate resource agent
that will automatically modify the VG’s system ID to match the system ID of the machine where the VG
can be used. For more information see Configuring and managing high availability clusters .

Procedure

1. In the lvm.conf file, filter the path to exclude the device:

filter = [ "a|^path_to_device$|" ]

2. Set the LVM system ID feature in all machines in the lvm.conf file:

system_id_source = "uname"

8.4. CONFIGURING LVM TO SHARE SAN DISKS AMONG MULTIPLE
MACHINES

Using the lvmlockd daemon and a lock manager such as dlm or sanlock, you can enable access to a
shared VG on the SAN disks from multiple machines. The specific commands may differ based on the
lock manager and operating system used. The following procedure describes the overview of the
required steps to configure LVM to share SAN disks among multiple machines.

WARNING

When using pacemaker, the system must be configured and started using the
pacemaker steps shown in Configuring and managing high availability clusters
instead.

Procedure

1. Configure the lvm.conf filter to include the LUNs of all machines that will use them:

filter = ["a|^path_to_device$|" ]



CHAPTER 8. CONFIGURING LVM ON SHARED STORAGE

69

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_high_availability_clusters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_high_availability_clusters


2. Configure the lvm.conf file to use the lvmlockd daemon on all machines:

use_lvmlockd=1

3. Start the lvmlockd daemon file on all machines.

4. Start a lock manager to use with lvmlockd, such as dlm or sanlock on all machines.

5. Create a new shared VG using the command vgcreate --shared.

6. Start and stop access to existing shared VGs using the commands vgchange --lockstart and 
vgchange --lockstop on all machines.

Additional resources

lvmlockd(8) man page

8.5. CREATING SHARED LVM DEVICES USING THE STORAGE

RHEL SYSTEM ROLE

You can use the storage RHEL system role to create shared LVM devices if you want your multiple
systems to access the same storage at the same time.

This can bring the following notable benefits:

Resource sharing

Flexibility in managing storage resources

Simplification of storage management tasks

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

lvmlockd is configured. For more information, see Configuring LVM to share SAN disks among
multiple machines.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

---
- name: Create shared LVM device
  hosts: managed-node-01.example.com
  become: true
  tasks:
    - name: Create shared LVM device
      ansible.builtin.include_role:
        name: rhel-system-roles.storage
      vars:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

70

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

        storage_pools:
          - name: vg1
            disks: /dev/vdb
            type: lvm
            shared: true
            state: present
            volumes:
              - name: lv1
                size: 4g
                mount_point: /opt/test1
        storage_safe_mode: false
        storage_use_partitions: true

CHAPTER 8. CONFIGURING LVM ON SHARED STORAGE

71



CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES
You can create and manage Redundant Array of Independent Disks (RAID) volumes by using logical
volume manager (LVM).

9.1. RAID LOGICAL VOLUMES

Logical volume manager (LVM) supports Redundant Array of Independent Disks (RAID) levels 0, 1, 4, 5,
6, and 10. An LVM RAID volume has the following characteristics:

LVM creates and manages RAID logical volumes that leverage the Multiple Devices (MD) kernel
drivers.

You can temporarily split RAID1 images from the array and merge them back into the array later.

LVM RAID volumes support snapshots.

Other characteristics include:

Clusters

RAID logical volumes are not cluster-aware.
Although you can create and activate RAID logical volumes exclusively on one machine, you cannot
activate them simultaneously on more than one machine.

Subvolumes

When you create a RAID logical volume (LV), LVM creates a metadata subvolume that is one extent
in size for every data or parity subvolume in the array.
For example, creating a 2-way RAID1 array results in two metadata subvolumes (lv_rmeta_0 and 
lv_rmeta_1) and two data subvolumes (lv_rimage_0 and lv_rimage_1). Similarly, creating a 3-way
stripe and one implicit parity device, RAID4 results in four metadata subvolumes (lv_rmeta_0, 
lv_rmeta_1, lv_rmeta_2, and lv_rmeta_3) and four data subvolumes (lv_rimage_0, lv_rimage_1, 
lv_rimage_2, and lv_rimage_3).

Integrity

You can lose data when a RAID device fails or when soft corruption occurs. Soft corruption in data
storage implies that the data retrieved from a storage device is different from the data written to
that device. Adding integrity to a RAID LV reduces or prevent soft corruption. For more information,
see Creating a RAID LV with DM integrity .

9.2. RAID LEVELS AND LINEAR SUPPORT

The following are the supported configurations by RAID, including levels 0, 1, 4, 5, 6, 10, and linear:

Level 0

RAID level 0, often called striping, is a performance-oriented striped data mapping technique. This
means the data being written to the array is broken down into stripes and written across the member
disks of the array, allowing high I/O performance at low inherent cost but provides no redundancy.
RAID level 0 implementations only stripe the data across the member devices up to the size of the
smallest device in the array. This means that if you have multiple devices with slightly different sizes,
each device gets treated as though it was the same size as the smallest drive. Therefore, the
common storage capacity of a level 0 array is the total capacity of all disks. If the member disks have
a different size, then the RAID0 uses all the space of those disks using the available zones.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

72



Level 1

RAID level 1, or mirroring, provides redundancy by writing identical data to each member disk of the
array, leaving a mirrored copy on each disk. Mirroring remains popular due to its simplicity and high
level of data availability. Level 1 operates with two or more disks, and provides very good data
reliability and improves performance for read-intensive applications but at relatively high costs.
RAID level 1 is costly because you write the same information to all of the disks in the array, which
provides data reliability, but in a much less space-efficient manner than parity based RAID levels such
as level 5. However, this space inefficiency comes with a performance benefit, which is parity-based
RAID levels that consume considerably more CPU power in order to generate the parity while RAID
level 1 simply writes the same data more than once to the multiple RAID members with very little
CPU overhead. As such, RAID level 1 can outperform the parity-based RAID levels on machines
where software RAID is employed and CPU resources on the machine are consistently taxed with
operations other than RAID activities.

The storage capacity of the level 1 array is equal to the capacity of the smallest mirrored hard disk in
a hardware RAID or the smallest mirrored partition in a software RAID. Level 1 redundancy is the
highest possible among all RAID types, with the array being able to operate with only a single disk
present.

Level 4

Level 4 uses parity concentrated on a single disk drive to protect data. Parity information is
calculated based on the content of the rest of the member disks in the array. This information can
then be used to reconstruct data when one disk in the array fails. The reconstructed data can then be
used to satisfy I/O requests to the failed disk before it is replaced and to repopulate the failed disk
after it has been replaced.
Since the dedicated parity disk represents an inherent bottleneck on all write transactions to the
RAID array, level 4 is seldom used without accompanying technologies such as write-back caching.
Or it is used in specific circumstances where the system administrator is intentionally designing the
software RAID device with this bottleneck in mind such as an array that has little to no write
transactions once the array is populated with data. RAID level 4 is so rarely used that it is not
available as an option in Anaconda. However, it could be created manually by the user if needed.

The storage capacity of hardware RAID level 4 is equal to the capacity of the smallest member
partition multiplied by the number of partitions minus one. The performance of a RAID level 4 array is
always asymmetrical, which means reads outperform writes. This is because write operations
consume extra CPU resources and main memory bandwidth when generating parity, and then also
consume extra bus bandwidth when writing the actual data to disks because you are not only writing
the data, but also the parity. Read operations need only read the data and not the parity unless the
array is in a degraded state. As a result, read operations generate less traffic to the drives and across
the buses of the computer for the same amount of data transfer under normal operating conditions.

Level 5

This is the most common type of RAID. By distributing parity across all the member disk drives of an
array, RAID level 5 eliminates the write bottleneck inherent in level 4. The only performance
bottleneck is the parity calculation process itself. Modern CPUs can calculate parity very fast.
However, if you have a large number of disks in a RAID 5 array such that the combined aggregate
data transfer speed across all devices is high enough, parity calculation can be a bottleneck.
Level 5 has asymmetrical performance, and reads substantially outperforming writes. The storage
capacity of RAID level 5 is calculated the same way as with level 4.

Level 6

This is a common level of RAID when data redundancy and preservation, and not performance, are
the paramount concerns, but where the space inefficiency of level 1 is not acceptable. Level 6 uses a
complex parity scheme to be able to recover from the loss of any two drives in the array. This

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

73



complex parity scheme creates a significantly higher CPU burden on software RAID devices and also
imposes an increased burden during write transactions. As such, level 6 is considerably more
asymmetrical in performance than levels 4 and 5.
The total capacity of a RAID level 6 array is calculated similarly to RAID level 5 and 4, except that you
must subtract two devices instead of one from the device count for the extra parity storage space.

Level 10

This RAID level attempts to combine the performance advantages of level 0 with the redundancy of
level 1. It also reduces some of the space wasted in level 1 arrays with more than two devices. With
level 10, it is possible, for example, to create a 3-drive array configured to store only two copies of
each piece of data, which then allows the overall array size to be 1.5 times the size of the smallest
devices instead of only equal to the smallest device, similar to a 3-device, level 1 array. This avoids
CPU process usage to calculate parity similar to RAID level 6, but it is less space efficient.
The creation of RAID level 10 is not supported during installation. It is possible to create one manually
after installation.

Linear RAID

Linear RAID is a grouping of drives to create a larger virtual drive.
In linear RAID, the chunks are allocated sequentially from one member drive, going to the next drive
only when the first is completely filled. This grouping provides no performance benefit, as it is unlikely
that any I/O operations split between member drives. Linear RAID also offers no redundancy and
decreases reliability. If any one member drive fails, the entire array cannot be used and data can be
lost. The capacity is the total of all member disks.

9.3. LVM RAID SEGMENT TYPES

To create a RAID logical volume, you can specify a RAID type by using the --type argument of the 
lvcreate command. For most users, specifying one of the five available primary types, which are raid1, 
raid4, raid5, raid6, and raid10, should be sufficient.

The following table describes the possible RAID segment types.

Table 9.1. LVM RAID segment types

Segment type Description

raid1 RAID1 mirroring. This is the default value for the --type argument of the 
lvcreate command, when you specify the -m argument without
specifying striping.

raid4 RAID4 dedicated parity disk.

raid5_la
RAID5 left asymmetric.

Rotating parity 0 with data continuation.

raid5_ra
RAID5 right asymmetric.

Rotating parity N with data continuation.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

74



raid5_ls
RAID5 left symmetric.

It is same as raid5.

Rotating parity 0 with data restart.

raid5_rs
RAID5 right symmetric.

Rotating parity N with data restart.

raid6_zr
RAID6 zero restart.

It is same as raid6.

Rotating parity zero (left-to-right) with data restart.

raid6_nr
RAID6 N restart.

Rotating parity N (left-to-right) with data restart.

raid6_nc
RAID6 N continue.

Rotating parity N (left-to-right) with data continuation.

raid10
Striped mirrors. This is the default value for the --type
argument of the lvcreate command if you specify the -m
argument along with the number of stripes that is greater than
1.

Striping of mirror sets.

raid0/raid0_meta Striping. RAID0 spreads logical volume data across multiple data
subvolumes in units of stripe size. This is used to increase performance.
Logical volume data is lost if any of the data subvolumes fail.

Segment type Description

9.4. CREATING RAID LOGICAL VOLUMES

You can create RAID1 arrays with multiple numbers of copies, according to the value you specify for the -
m argument. Similarly, you can specify the number of stripes for a RAID 0, 4, 5, 6, and 10 logical volume
with the -i argument. You can also specify the stripe size with the -I argument. The following procedure
describes different ways to create different types of RAID logical volume.

Procedure

Create a 2-way RAID. The following command creates a 2-way RAID1 array, named my_lv, in the

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

75



Create a 2-way RAID. The following command creates a 2-way RAID1 array, named my_lv, in the
volume group my_vg, that is 1G in size:

# lvcreate --type raid1 -m 1 -L 1G -n my_lv my_vg
Logical volume "my_lv" created.

Create a RAID5 array with stripes. The following command creates a RAID5 array with three
stripes and one implicit parity drive, named my_lv, in the volume group my_vg, that is 1G in size.
Note that you can specify the number of stripes similar to an LVM striped volume. The correct
number of parity drives is added automatically.

# lvcreate --type raid5 -i 3 -L 1G -n my_lv my_vg

Create a RAID6 array with stripes. The following command creates a RAID6 array with three 3
stripes and two implicit parity drives, named my_lv, in the volume group my_vg, that is 1G one
gigabyte in size:

# lvcreate --type raid6 -i 3 -L 1G -n my_lv my_vg

Verification

Display the LVM device my_vg/my_lv, which is a 2-way RAID1 array:

# lvs -a -o name,copy_percent,devices _my_vg_
  LV                Copy%  Devices
  my_lv             6.25    my_lv_rimage_0(0),my_lv_rimage_1(0)
  [my_lv_rimage_0]         /dev/sde1(0)
  [my_lv_rimage_1]         /dev/sdf1(1)
  [my_lv_rmeta_0]          /dev/sde1(256)
  [my_lv_rmeta_1]          /dev/sdf1(0)

Additional resources

lvcreate(8) and lvmraid(7) man pages

9.5. CREATING A RAID0 STRIPED LOGICAL VOLUME

A RAID0 logical volume spreads logical volume data across multiple data subvolumes in units of stripe
size. The following procedure creates an LVM RAID0 logical volume called mylv that stripes data across
the disks.

Prerequisites

1. You have created three or more physical volumes. For more information about creating physical
volumes, see Creating LVM physical volume.

2. You have created the volume group. For more information, see Creating LVM volume group.

Procedure

1. Create a RAID0 logical volume from the existing volume group. The following command creates
the RAID0 volume mylv from the volume group myvg, which is 2G in size, with three stripes and a
stripe size of 4kB:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

76

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-physical-volumes_configuring-and-managing-logical-volumes#creating-lvm-physical-volume_managing-lvm-physical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups


# lvcreate --type raid0 -L 2G --stripes 3 --stripesize 4 -n mylv my_vg
  Rounding size 2.00 GiB (512 extents) up to stripe boundary size 2.00 GiB(513 extents).
  Logical volume "mylv" created.

2. Create a file system on the RAID0 logical volume. The following command creates an ext4 file
system on the logical volume:

# mkfs.ext4 /dev/my_vg/mylv

3. Mount the logical volume and report the file system disk space usage:

# mount /dev/my_vg/mylv /mnt

# df
Filesystem             1K-blocks     Used  Available  Use% Mounted on
/dev/mapper/my_vg-mylv   2002684     6168  1875072    1%   /mnt

Verification

View the created RAID0 stripped logical volume:

# lvs -a -o +devices,segtype my_vg
  LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert Devices Type
  mylv my_vg rwi-a-r--- 2.00g mylv_rimage_0(0),mylv_rimage_1(0),mylv_rimage_2(0) raid0
  [mylv_rimage_0] my_vg iwi-aor--- 684.00m /dev/sdf1(0) linear
  [mylv_rimage_1] my_vg iwi-aor--- 684.00m /dev/sdg1(0) linear
  [mylv_rimage_2] my_vg iwi-aor--- 684.00m /dev/sdh1(0) linear

9.6. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES BY
USING THE STORAGE RHEL SYSTEM ROLE

With the storage system role, you can configure a stripe size for RAID LVM volumes on RHEL by using
Red Hat Ansible Automation Platform. You can set up an Ansible playbook with the available parameters
to configure an LVM pool with RAID.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

---
- name: Configure stripe size for RAID LVM volumes
  hosts: managed-node-01.example.com
  roles:
    - rhel-system-roles.storage

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

77

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

Managing RAID

9.7. PARAMETERS FOR CREATING A RAID0

You can create a RAID0 striped logical volume using the lvcreate --type raid0[meta] --stripes _Stripes 
--stripesize StripeSize VolumeGroup [PhysicalVolumePath] command.

The following table describes different parameters, which you can use while creating a RAID0 striped
logical volume.

Table 9.2. Parameters for creating a RAID0 striped logical volume

Parameter Description

  vars:
    storage_safe_mode: false
    storage_pools:
      - name: my_pool
        type: lvm
        disks: [sdh, sdi]
        volumes:
          - name: my_volume
            size: "1 GiB"
            mount_point: "/mnt/app/shared"
            fs_type: xfs
            raid_level: raid1
            raid_stripe_size: "256 KiB"
            state: present

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

78

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux//8/html-single/managing_storage_devices/index#managing-raid_managing-storage-devices


--type raid0[_meta] Specifying raid0 creates a RAID0 volume without metadata volumes.
Specifying raid0_meta creates a RAID0 volume with metadata
volumes. Since RAID0 is non-resilient, it does not store any mirrored data
blocks as RAID1/10 or calculate and store any parity blocks as RAID4/5/6
do. Hence, it does not need metadata volumes to keep state about
resynchronization progress of mirrored or parity blocks. Metadata
volumes become mandatory on a conversion from RAID0 to
RAID4/5/6/10. Specifying raid0_meta preallocates those metadata
volumes to prevent a respective allocation failure.

--stripes Stripes Specifies the number of devices to spread the logical volume across.

--stripesize StripeSize Specifies the size of each stripe in kilobytes. This is the amount of data
that is written to one device before moving to the next device.

VolumeGroup Specifies the volume group to use.

PhysicalVolumePath Specifies the devices to use. If this is not specified, LVM will choose the
number of devices specified by the Stripes option, one for each stripe.

Parameter Description

9.8. SOFT DATA CORRUPTION

Soft corruption in data storage implies that the data retrieved from a storage device is different from
the data written to that device. The corrupted data can exist indefinitely on storage devices. You might
not discover this corrupted data until you retrieve and attempt to use this data.

Depending on the type of configuration, a Redundant Array of Independent Disks (RAID) logical
volume(LV) prevents data loss when a device fails. If a device consisting of a RAID array fails, the data
can be recovered from other devices that are part of that RAID LV. However, a RAID configuration does
not ensure the integrity of the data itself. Soft corruption, silent corruption, soft errors, and silent errors
are terms that describe data that has become corrupted, even if the system design and software
continues to function as expected.

Device mapper (DM) integrity is used with RAID levels 1, 4, 5, 6, and 10 to mitigate or prevent data loss
due to soft corruption. The RAID layer ensures that a non-corrupted copy of the data can fix the soft
corruption errors. The integrity layer sits above each RAID image while an extra sub LV stores the
integrity metadata or data checksums for each RAID image. When you retrieve data from an RAID LV
with integrity, the integrity data checksums analyze the data for corruption. If corruption is detected, the
integrity layer returns an error message, and the RAID layer retrieves a non-corrupted copy of the data
from another RAID image. The RAID layer automatically rewrites non-corrupted data over the corrupted
data to repair the soft corruption.

When creating a new RAID LV with DM integrity or adding integrity to an existing RAID LV, consider the
following points:

The integrity metadata requires additional storage space. For each RAID image, every 500MB
data requires 4MB of additional storage space because of the checksums that get added to the
data.

While some RAID configurations are impacted more than others, adding DM integrity impacts

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

79



While some RAID configurations are impacted more than others, adding DM integrity impacts
performance due to latency when accessing the data. A RAID1 configuration typically offers
better performance than RAID5 or its variants.

The RAID integrity block size also impacts performance. Configuring a larger RAID integrity
block size offers better performance. However, a smaller RAID integrity block size offers greater
backward compatibility.

There are two integrity modes available: bitmap or journal. The bitmap integrity mode typically
offers better performance than journal mode.

TIP

If you experience performance issues, either use RAID1 with integrity or test the performance of a
particular RAID configuration to ensure that it meets your requirements.

9.9. CREATING A RAID LV WITH DM INTEGRITY

When you create a RAID LV with device mapper (DM) integrity or add integrity to an existing RAID LV, it
mitigates the risk of losing data due to soft corruption. Wait for the integrity synchronization and the
RAID metadata to complete before using the LV. Otherwise, the background initialization might impact
the LV’s performance.

Procedure

1. Create a RAID LV with DM integrity. The following example creates a new RAID LV with integrity
named test-lv in the my_vg volume group, with a usable size of 256M and RAID level 1:

# lvcreate --type raid1 --raidintegrity y -L 256M -n test-lv my_vg
Creating integrity metadata LV test-lv_rimage_0_imeta with size 8.00 MiB.
Logical volume "test-lv_rimage_0_imeta" created.
Creating integrity metadata LV test-lv_rimage_1_imeta with size 8.00 MiB.
Logical volume "test-lv_rimage_1_imeta" created.
Logical volume "test-lv" created.

NOTE

To add DM integrity to an existing RAID LV, use the following command:

# lvconvert --raidintegrity y my_vg/test-lv

Adding integrity to a RAID LV limits the number of operations that you can perform on that
RAID LV.

2. Optional: Remove the integrity before performing certain operations.

# lvconvert --raidintegrity n my_vg/test-lv
Logical volume my_vg/test-lv has removed integrity.

Verification

View information about the added DM integrity:

View information about the test-lv RAID LV that was created in the my_vg volume group:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

80



View information about the test-lv RAID LV that was created in the my_vg volume group:

# lvs -a my_vg
  LV                        VG      Attr       LSize   Origin                 Cpy%Sync
  test-lv                   my_vg rwi-a-r--- 256.00m                          2.10
  [test-lv_rimage_0]        my_vg gwi-aor--- 256.00m [test-lv_rimage_0_iorig] 93.75
  [test-lv_rimage_0_imeta]  my_vg ewi-ao----   8.00m
  [test-lv_rimage_0_iorig]  my_vg -wi-ao---- 256.00m
  [test-lv_rimage_1]        my_vg gwi-aor--- 256.00m [test-lv_rimage_1_iorig] 85.94
 [...]

The following describes different options from this output:

g attribute

It is the list of attributes under the Attr column indicates that the RAID image is using
integrity. The integrity stores the checksums in the _imeta RAID LV.

Cpy%Sync column

It indicates the synchronization progress for both the top level RAID LV and for each
RAID image.

RAID image

It is is indicated in the LV column by raid_image_N.

LV column

It ensures that the synchronization progress displays 100% for the top level RAID LV and
for each RAID image.

Display the type for each RAID LV:

# lvs -a my-vg -o+segtype
  LV                       VG      Attr       LSize   Origin                 Cpy%Sync Type
  test-lv                  my_vg rwi-a-r--- 256.00m                          87.96    raid1
  [test-lv_rimage_0]       my_vg gwi-aor--- 256.00m [test-lv_rimage_0_iorig] 100.00   
integrity
  [test-lv_rimage_0_imeta] my_vg ewi-ao----   8.00m                                   linear
  [test-lv_rimage_0_iorig] my_vg -wi-ao---- 256.00m                                   linear
  [test-lv_rimage_1]       my_vg gwi-aor--- 256.00m [test-lv_rimage_1_iorig] 100.00   
integrity
 [...]

There is an incremental counter that counts the number of mismatches detected on each
RAID image. View the data mismatches detected by integrity from rimage_0 under
my_vg/test-lv:

# lvs -o+integritymismatches my_vg/test-lv_rimage_0
  LV                 VG      Attr       LSize   Origin                    Cpy%Sync IntegMismatches
  [test-lv_rimage_0] my_vg gwi-aor--- 256.00m [test-lv_rimage_0_iorig]    100.00                 
0

In this example, the integrity has not detected any data mismatches and thus the 
IntegMismatches counter shows zero (0).

View the data integrity information in the /var/log/messages log files, as shown in the
following examples:

Example 9.1. Example of dm-integrity mismatches from the kernel message logs

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

81



device-mapper: integrity: dm-12: Checksum failed at sector 0x24e7

Example 9.2. Example of dm-integrity data corrections from the kernel message
logs

md/raid1:mdX: read error corrected (8 sectors at 9448 on dm-16)

Additional resources

lvcreate(8) and lvmraid(7) man pages

9.10. MINIMUM AND MAXIMUM I/O RATE OPTIONS

When you create a RAID logical volumes, the background I/O required to initialize the logical volumes
with the sync operation can expel other I/O operations to LVM devices, such as updates to volume
group metadata, particularly when you are creating many RAID logical volumes. This can cause the other
LVM operations to slow down.

You can control the rate at which a RAID logical volume is initialized by implementing recovery throttling.
To control the rate at which sync operations are performed, set the minimum and maximum I/O rate for
those operations with the --minrecoveryrate and --maxrecoveryrate options of the lvcreate
command.

You can specify these options as follows:

--maxrecoveryrate Rate[bBsSkKmMgG]

Sets the maximum recovery rate for a RAID logical volume so that it will not expel nominal I/O
operations. Specify the Rate as an amount per second for each device in the array. If you do not
provide a suffix, then it assumes kiB/sec/device. Setting the recovery rate to 0 means it will be
unbounded.

--minrecoveryrate Rate[bBsSkKmMgG]

Sets the minimum recovery rate for a RAID logical volume to ensure that I/O for sync operations
achieves a minimum throughput, even when heavy nominal I/O is present. Specify the Rate as an
amount per second for each device in the array. If you do not give a suffix, then it assumes
kiB/sec/device.

For example, use the lvcreate --type raid10 -i 2 -m 1 -L 10G --maxrecoveryrate 128 -n my_lv my_vg
command to create a 2-way RAID10 array my_lv, which is in the volume group my_vg with 3 stripes that is
10G in size with a maximum recovery rate of 128 kiB/sec/device. You can also specify minimum and
maximum recovery rates for a RAID scrubbing operation.

9.11. CONVERTING A LINEAR DEVICE TO A RAID LOGICAL VOLUME

You can convert an existing linear logical volume to a RAID logical volume. To perform this operation,
use the --type argument of the lvconvert command.

RAID logical volumes are composed of metadata and data subvolume pairs. When you convert a linear
device to a RAID1 array, it creates a new metadata subvolume and associates it with the original logical
volume on one of the same physical volumes that the linear volume is on. The additional images are
added in a metadata/data subvolume pair. If the metadata image that pairs with the original logical
volume cannot be placed on the same physical volume, the lvconvert fails.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

82



Procedure

1. View the logical volume device that needs to be converted:

# lvs -a -o name,copy_percent,devices my_vg
  LV     Copy%  Devices
  my_lv         /dev/sde1(0)

2. Convert the linear logical volume to a RAID device. The following command converts the linear
logical volume my_lv in volume group __my_vg, to a 2-way RAID1 array:

# lvconvert --type raid1 -m 1 my_vg/my_lv
  Are you sure you want to convert linear LV my_vg/my_lv to raid1 with 2 images enhancing 
resilience? [y/n]: y
  Logical volume my_vg/my_lv successfully converted.

Verification

Ensure if the logical volume is converted to a RAID device:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv            6.25   my_lv_rimage_0(0),my_lv_rimage_1(0)
  [my_lv_rimage_0]        /dev/sde1(0)
  [my_lv_rimage_1]        /dev/sdf1(1)
  [my_lv_rmeta_0]         /dev/sde1(256)
  [my_lv_rmeta_1]         /dev/sdf1(0)

Additional resources

The lvconvert(8) man page

9.12. CONVERTING AN LVM RAID1 LOGICAL VOLUME TO AN LVM
LINEAR LOGICAL VOLUME

You can convert an existing RAID1 LVM logical volume to an LVM linear logical volume. To perform this
operation, use the lvconvert command and specify the -m0 argument. This removes all the RAID data
subvolumes and all the RAID metadata subvolumes that make up the RAID array, leaving the top-level
RAID1 image as the linear logical volume.

Procedure

1. Display an existing LVM RAID1 logical volume:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv            100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
  [my_lv_rimage_0]        /dev/sde1(1)
  [my_lv_rimage_1]        /dev/sdf1(1)
  [my_lv_rmeta_0]         /dev/sde1(0)
  [my_lv_rmeta_1]         /dev/sdf1(0)

2. Convert an existing RAID1 LVM logical volume to an LVM linear logical volume. The following

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

83



2. Convert an existing RAID1 LVM logical volume to an LVM linear logical volume. The following
command converts the LVM RAID1 logical volume my_vg/my_lv to an LVM linear device:

# lvconvert -m0 my_vg/my_lv
  Are you sure you want to convert raid1 LV my_vg/my_lv to type linear losing all resilience? 
[y/n]: y
  Logical volume my_vg/my_lv successfully converted.

When you convert an LVM RAID1 logical volume to an LVM linear volume, you can also specify
which physical volumes to remove. In the following example, the lvconvert command specifies
that you want to remove /dev/sde1, leaving /dev/sdf1 as the physical volume that makes up the
linear device:

# lvconvert -m0 my_vg/my_lv /dev/sde1

Verification

Verify if the RAID1 logical volume was converted to an LVM linear device:

# lvs -a -o name,copy_percent,devices my_vg
  LV    Copy%  Devices
  my_lv        /dev/sdf1(1)

Additional resources

The lvconvert(8) man page

9.13. CONVERTING A MIRRORED LVM DEVICE TO A RAID1 LOGICAL
VOLUME

You can convert an existing mirrored LVM device with a segment type mirror to a RAID1 LVM device. To
perform this operation, use the lvconvert command with the --type raid1 argument. This renames the
mirror subvolumes named mimage to RAID subvolumes named rimage.

In addition, it also removes the mirror log and creates metadata subvolumes named rmeta for the data
subvolumes on the same physical volumes as the corresponding data subvolumes.

Procedure

1. View the layout of a mirrored logical volume my_vg/my_lv:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv             15.20 my_lv_mimage_0(0),my_lv_mimage_1(0)
  [my_lv_mimage_0]        /dev/sde1(0)
  [my_lv_mimage_1]        /dev/sdf1(0)
  [my_lv_mlog]            /dev/sdd1(0)

2. Convert the mirrored logical volume my_vg/my_lv to a RAID1 logical volume:

# lvconvert --type raid1 my_vg/my_lv
Are you sure you want to convert mirror LV my_vg/my_lv to raid1 type? [y/n]: y
Logical volume my_vg/my_lv successfully converted.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

84



Verification

Verify if the mirrored logical volume is converted to a RAID1 logical volume:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv            100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
  [my_lv_rimage_0]        /dev/sde1(0)
  [my_lv_rimage_1]        /dev/sdf1(0)
  [my_lv_rmeta_0]         /dev/sde1(125)
  [my_lv_rmeta_1]         /dev/sdf1(125)

Additional resources

The lvconvert(8) man page

9.14. COMMANDS TO RESIZE A RAID LOGICAL VOLUME

You can resize a RAID logical volume in the following ways:

You can increase the size of a RAID logical volume of any type with the lvresize or lvextend
command. This does not change the number of RAID images. For striped RAID logical volumes,
the same stripe rounding constraints apply when you create a striped RAID logical volume.

You can reduce the size of a RAID logical volume of any type with the lvresize or lvreduce
command. This does not change the number of RAID images. As with the lvextend command,
the same stripe rounding constraints apply when you create a striped RAID logical volume.

You can change the number of stripes on a striped RAID logical volume such as RAID4, RAID5,
RAID6, or RAID10 with the --stripes N parameter of the lvconvert command. This increases or
reduces the size of the RAID logical volume by the capacity of the stripes added or removed.
Note that raid10 volumes are capable only of adding stripes. This capability is part of the RAID
reshaping feature and with this feature, you can change attributes of a RAID logical volume
while keeping the same RAID level.

9.15. CHANGING THE NUMBER OF IMAGES IN AN EXISTING RAID1
DEVICE

You can change the number of images in an existing RAID1 array, similar to the way you can change the
number of images in the implementation of LVM mirroring.

When you add images to a RAID1 logical volume with the lvconvert command, you can perform the
following operations:

specify the total number of images for the resulting device,

how many images to add to the device, and

can optionally specify on which physical volumes the new metadata/data image pairs reside.

Procedure

1. Display the LVM device my_vg/my_lv, which is a 2-way RAID1 array:

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

85



# lvs -a -o name,copy_percent,devices my_vg
  LV                Copy%  Devices
  my_lv             6.25    my_lv_rimage_0(0),my_lv_rimage_1(0)
  [my_lv_rimage_0]         /dev/sde1(0)
  [my_lv_rimage_1]         /dev/sdf1(1)
  [my_lv_rmeta_0]          /dev/sde1(256)
  [my_lv_rmeta_1]          /dev/sdf1(0)

Metadata subvolumes named rmeta always exist on the same physical devices as their data
subvolume counterparts rimage. The metadata/data subvolume pairs will not be created on the
same physical volumes as those from another metadata/data subvolume pair in the RAID array
unless you specify --alloc anywhere.

2. Convert the 2-way RAID1 logical volume my_vg/my_lv to a 3-way RAID1 logical volume:

# lvconvert -m 2 my_vg/my_lv
Are you sure you want to convert raid1 LV my_vg/my_lv to 3 images enhancing resilience? 
[y/n]: y
Logical volume my_vg/my_lv successfully converted.

The following are a few examples of changing the number of images in an existing RAID1 device:

You can also specify which physical volumes to use while adding an image to RAID. The
following command converts the 2-way RAID1 logical volume my_vg/my_lv to a 3-way RAID1
logical volume by specifying the physical volume /dev/sdd1 to use for the array:

# lvconvert -m 2 my_vg/my_lv /dev/sdd1

Convert the 3-way RAID1 logical volume into a 2-way RAID1 logical volume:

# lvconvert -m1 my_vg/my_lv
Are you sure you want to convert raid1 LV my_vg/my_lv to 2 images reducing resilience? 
[y/n]: y
Logical volume my_vg/my_lv successfully converted.

Convert the 3-way RAID1 logical volume into a 2-way RAID1 logical volume by specifying the
physical volume /dev/sde1, which contains the image to remove:

# lvconvert -m1 my_vg/my_lv /dev/sde1

Additionally, when you remove an image and its associated metadata subvolume volume,
any higher-numbered images will be shifted down to fill the slot. Removing lv_rimage_1
from a 3-way RAID1 array that consists of lv_rimage_0, lv_rimage_1, and lv_rimage_2
results in a RAID1 array that consists of lv_rimage_0 and lv_rimage_1. The subvolume 
lv_rimage_2 will be renamed and take over the empty slot, becoming lv_rimage_1.

Verification

View the RAID1 device after changing the number of images in an existing RAID1 device:

# lvs -a -o name,copy_percent,devices my_vg
  LV Cpy%Sync Devices
  my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0] /dev/sdd1(1)

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

86



  [my_lv_rimage_1] /dev/sde1(1)
  [my_lv_rimage_2] /dev/sdf1(1)
  [my_lv_rmeta_0] /dev/sdd1(0)
  [my_lv_rmeta_1] /dev/sde1(0)
  [my_lv_rmeta_2] /dev/sdf1(0)

Additional resources

The lvconvert(8) man page

9.16. SPLITTING OFF A RAID IMAGE AS A SEPARATE LOGICAL
VOLUME

You can split off an image of a RAID logical volume to form a new logical volume. When you are
removing a RAID image from an existing RAID1 logical volume or removing a RAID data subvolume and
its associated metadata subvolume from the middle of the device, any higher numbered images will be
shifted down to fill the slot. The index numbers on the logical volumes that make up a RAID array will
thus be an unbroken sequence of integers.

NOTE

You cannot split off a RAID image if the RAID1 array is not yet in sync.

Procedure

1. Display the LVM device my_vg/my_lv, which is a 2-way RAID1 array:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv             12.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
  [my_lv_rimage_0]        /dev/sde1(1)
  [my_lv_rimage_1]        /dev/sdf1(1)
  [my_lv_rmeta_0]         /dev/sde1(0)
  [my_lv_rmeta_1]         /dev/sdf1(0)

2. Split the RAID image into a separate logical volume:

The following example splits a 2-way RAID1 logical volume, my_lv, into two linear logical
volumes, my_lv and new:

# lvconvert --splitmirror 1 -n new my_vg/my_lv
Are you sure you want to split raid1 LV my_vg/my_lv losing all resilience? [y/n]: y

The following example splits a 3-way RAID1 logical volume, my_lv, into a 2-way RAID1 logical
volume, my_lv, and a linear logical volume, new:

# lvconvert --splitmirror 1 -n new my_vg/my_lv

Verification

View the logical volume after you split off an image of a RAID logical volume:

# lvs -a -o name,copy_percent,devices my_vg

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

87



  LV      Copy%  Devices
  my_lv          /dev/sde1(1)
  new            /dev/sdf1(1)

Additional resources

The lvconvert(8) man page

9.17. SPLITTING AND MERGING A RAID IMAGE

You can temporarily split off an image of a RAID1 array for read-only use while tracking any changes by
using the --trackchanges argument with the --splitmirrors argument of the lvconvert command. Using
this feature, you can merge the image into an array at a later time while resyncing only those portions of
the array that have changed since the image was split.

When you split off a RAID image with the --trackchanges argument, you can specify which image to
split but you cannot change the name of the volume being split. In addition, the resulting volumes have
the following constraints:

The new volume you create is read-only.

You cannot resize the new volume.

You cannot rename the remaining array.

You cannot resize the remaining array.

You can activate the new volume and the remaining array independently.

You can merge an image that was split off. When you merge the image, only the portions of the array
that have changed since the image was split are resynced.

Procedure

1. Create a RAID logical volume:

# lvcreate --type raid1 -m 2 -L 1G -n my_lv my_vg
  Logical volume "my_lv" created

2. Optional: View the created RAID logical volume:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv          100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]        /dev/sdb1(1)
  [my_lv_rimage_1]        /dev/sdc1(1)
  [my_lv_rimage_2]        /dev/sdd1(1)
  [my_lv_rmeta_0]         /dev/sdb1(0)
  [my_lv_rmeta_1]         /dev/sdc1(0)
  [my_lv_rmeta_2]         /dev/sdd1(0)

3. Split an image from the created RAID logical volume and track the changes to the remaining
array:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

88



# lvconvert --splitmirrors 1 --trackchanges my_vg/my_lv
  my_lv_rimage_2 split from my_lv for read-only purposes.
  Use 'lvconvert --merge my_vg/my_lv_rimage_2' to merge back into my_lv

4. Optional: View the logical volume after splitting the image:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv            100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
  [my_lv_rimage_0]        /dev/sdc1(1)
  [my_lv_rimage_1]          /dev/sdd1(1)
  [my_lv_rmeta_0]         /dev/sdc1(0)
  [my_lv_rmeta_1]         /dev/sdd1(0)

5. Merge the volume back into the array:

# lvconvert --merge my_vg/my_lv_rimage_1
  my_vg/my_lv_rimage_1 successfully merged back into my_vg/my_lv

Verification

View the merged logical volume:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv            100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
  [my_lv_rimage_0]        /dev/sdc1(1)
  [my_lv_rimage_1]        /dev/sdd1(1)
  [my_lv_rmeta_0]         /dev/sdc1(0)
  [my_lv_rmeta_1]         /dev/sdd1(0)

Additional resources

The lvconvert(8) man page

9.18. SETTING A RAID FAULT POLICY

Based on the raid_fault_policy field preferences in the /etc/lvm/lvm.conf file, LVM RAID automatically
handles device failures. You can set raid_fault_policy field to any one of the following parameter
depending on the requirement:

warn

You can this parameter to manually repair the failed device and display warnings by using system
logs.
By default, the value of the raid_fault_policy field is warn in lvm.conf. If enough devices are
operational, the RAID logical volume continues to operate.

allocate

You can use this parameter to automatically replace the failed device.

9.18.1. Setting the RAID fault policy to allocate

You can set the raid_fault_policy field to the allocate parameter in the /etc/lvm/lvm.conf file. With this

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

89



You can set the raid_fault_policy field to the allocate parameter in the /etc/lvm/lvm.conf file. With this
preference, the system attempts to replace the failed device with a spare device from the volume
group. If there is no spare device, the system log includes this information.

Procedure

1. View the RAID logical volume:

# lvs -a -o name,copy_percent,devices my_vg

  LV               Copy%  Devices
  my_lv            100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]        /dev/sdb1(1)
  [my_lv_rimage_1]        /dev/sdc1(1)
  [my_lv_rimage_2]        /dev/sdd1(1)
  [my_lv_rmeta_0]         /dev/sdb1(0)
  [my_lv_rmeta_1]         /dev/sdc1(0)
  [my_lv_rmeta_2]         /dev/sdd1(0)

2. View the RAID logical volume if the /dev/sdb device fails:

# lvs --all --options name,copy_percent,devices my_vg

  /dev/sdb: open failed: No such device or address
  Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rimage_1 while checking used and 
assumed devices.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rmeta_1 while checking used and 
assumed devices.
  LV               Copy%  Devices
  my_lv            100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]        [unknown](1)
  [my_lv_rimage_1]        /dev/sdc1(1)
  [...]

You can also view the system log for the error messages if the /dev/sdb device fails.

3. Set the raid_fault_policy field to allocate in the lvm.conf file:

 # vi /etc/lvm/lvm.conf
 raid_fault_policy = "allocate"

NOTE

If you set raid_fault_policy to allocate but there are no spare devices, the
allocation fails, leaving the logical volume as it is. If the allocation fails, you can fix
and replace the failed device by using the lvconvert --repair command. For
more information, see Replacing a failed RAID device in a logical volume .

Verification

Verify if the failed device is now replaced with a new device from the volume group:

# lvs -a -o name,copy_percent,devices my_vg

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

90

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/configuring-raid-logical-volumes_configuring-and-managing-logical-volumes#replacing-a-failed-raid-device-in-a-logical-volume_replacing-a-raid-device-in-a-logical-volume


  Couldn't find device with uuid 3lugiV-3eSP-AFAR-sdrP-H20O-wM2M-qdMANy.
  LV            Copy%  Devices
  lv            100.00 lv_rimage_0(0),lv_rimage_1(0),lv_rimage_2(0)
  [lv_rimage_0]        /dev/sdh1(1)
  [lv_rimage_1]        /dev/sdc1(1)
  [lv_rimage_2]        /dev/sdd1(1)
  [lv_rmeta_0]         /dev/sdh1(0)
  [lv_rmeta_1]         /dev/sdc1(0)
  [lv_rmeta_2]         /dev/sdd1(0)

NOTE

Even though the failed device is now replaced, the display still indicates that LVM
could not find the failed device because the device is not yet removed from the
volume group. You can remove the failed device from the volume group by
executing the vgreduce --removemissing my_vg command.

Additional resources

lvm.conf(5) man page

9.18.2. Setting the RAID fault policy to warn

You can set the raid_fault_policy field to the warn parameter in the lvm.conf file. With this preference,
the system adds a warning to the system log that indicates a failed device. Based on the warning, you
can determine the further steps.

Procedure

1. View the RAID logical volume:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv            100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]        /dev/sdb1(1)
  [my_lv_rimage_1]        /dev/sdc1(1)
  [my_lv_rimage_2]        /dev/sdd1(1)
  [my_lv_rmeta_0]         /dev/sdb1(0)
  [my_lv_rmeta_1]         /dev/sdc1(0)
  [my_lv_rmeta_2]         /dev/sdd1(0)

2. Set the raid_fault_policy field to warn in the lvm.conf file:

# vi /etc/lvm/lvm.conf
 # This configuration option has an automatic default value.
 raid_fault_policy = "warn"

3. View the system log to display error messages if the /dev/sdb device fails:

# grep lvm /var/log/messages

Apr 14 18:48:59 virt-506 kernel: sd 25:0:0:0: rejecting I/O to offline device
Apr 14 18:48:59 virt-506 kernel: I/O error, dev sdb, sector 8200 op 0x1:(WRITE) flags 
0x20800 phys_seg 0 prio class 2

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

91



[...]
Apr 14 18:48:59 virt-506 dmeventd[91060]: WARNING: VG my_vg is missing PV 9R2TVV-
bwfn-Bdyj-Gucu-1p4F-qJ2Q-82kCAF (last written to /dev/sdb).
Apr 14 18:48:59 virt-506 dmeventd[91060]: WARNING: Couldn't find device with uuid 
9R2TVV-bwfn-Bdyj-Gucu-1p4F-qJ2Q-82kCAF.
Apr 14 18:48:59 virt-506 dmeventd[91060]: Use 'lvconvert --repair my_vg/ly_lv' to replace 
failed device.

If the /dev/sdb device fails, the system log displays error messages. In this case, however, LVM
will not automatically attempt to repair the RAID device by replacing one of the images. Instead,
if the device has failed you can replace the device with the --repair argument of the lvconvert
command. For more information, see Replacing a failed RAID device in a logical volume .

Additional resources

lvm.conf(5) man page

9.19. REPLACING A RAID DEVICE IN A LOGICAL VOLUME

You can replace a RAID device in a logical volume depending on the following scenarios:

Replacing a working RAID device.

Replacing a failed RAID device in a logical volume.

9.19.1. Replacing a working RAID device

You can replace a working RAID device in a logical volume by using the --replace argument of the 
lvconvert command.

WARNING

In the case of RAID device failure, the following commands do not work.

Prerequisites

The RAID device has not failed.

Procedure

1. Create a RAID1 array:

# lvcreate --type raid1 -m 2 -L 1G -n my_lv my_vg
  Logical volume "my_lv" created

2. Examine the created RAID1 array:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices



Red Hat Enterprise Linux 8 Configuring and managing logical volumes

92

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/configuring-raid-logical-volumes_configuring-and-managing-logical-volumes#replacing-a-failed-raid-device-in-a-logical-volume_replacing-a-raid-device-in-a-logical-volume


  my_lv            100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]        /dev/sdb1(1)
  [my_lv_rimage_1]        /dev/sdb2(1)
  [my_lv_rimage_2]        /dev/sdc1(1)
  [my_lv_rmeta_0]         /dev/sdb1(0)
  [my_lv_rmeta_1]         /dev/sdb2(0)
  [my_lv_rmeta_2]         /dev/sdc1(0)

3. Replace the RAID device with any of the following methods depending on your requirements:

a. Replace a RAID1 device by specifying the physical volume that you want to replace:

# lvconvert --replace /dev/sdb2 my_vg/my_lv

b. Replace a RAID1 device by specifying the physical volume to use for the replacement:

# lvconvert --replace /dev/sdb1 my_vg/my_lv /dev/sdd1

c. Replace multiple RAID devices at a time by specifying multiple replace arguments:

# lvconvert --replace /dev/sdb1 --replace /dev/sdc1 my_vg/my_lv

Verification

1. Examine the RAID1 array after specifying the physical volume that you wanted to replace:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv             37.50 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]        /dev/sdb1(1)
  [my_lv_rimage_1]        /dev/sdc2(1)
  [my_lv_rimage_2]        /dev/sdc1(1)
  [my_lv_rmeta_0]         /dev/sdb1(0)
  [my_lv_rmeta_1]         /dev/sdc2(0)
  [my_lv_rmeta_2]         /dev/sdc1(0)

2. Examine the RAID1 array after specifying the physical volume to use for the replacement:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv             28.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
  [my_lv_rimage_0]        /dev/sda1(1)
  [my_lv_rimage_1]        /dev/sdd1(1)
  [my_lv_rmeta_0]         /dev/sda1(0)
  [my_lv_rmeta_1]         /dev/sdd1(0)

3. Examine the RAID1 array after replacing multiple RAID devices at a time:

# lvs -a -o name,copy_percent,devices my_vg
  LV               Copy%  Devices
  my_lv             60.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]        /dev/sda1(1)
  [my_lv_rimage_1]        /dev/sdd1(1)
  [my_lv_rimage_2]        /dev/sde1(1)

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

93



  [my_lv_rmeta_0]         /dev/sda1(0)
  [my_lv_rmeta_1]         /dev/sdd1(0)
  [my_lv_rmeta_2]         /dev/sde1(0)

Additional resources

lvconvert(8) man page

9.19.2. Replacing a failed RAID device in a logical volume

RAID is not similar to traditional LVM mirroring. In case of LVM mirroring, remove the failed devices.
Otherwise, the mirrored logical volume would hang while RAID arrays continue running with failed
devices. For RAID levels other than RAID1, removing a device would mean converting to a lower RAID
level, for example, from RAID6 to RAID5, or from RAID4 or RAID5 to RAID0.

Instead of removing a failed device and allocating a replacement, with LVM, you can replace a failed
device that serves as a physical volume in a RAID logical volume by using the --repair argument of the 
lvconvert command.

Prerequisites

The volume group includes a physical volume that provides enough free capacity to replace the
failed device.
If no physical volume with enough free extents is available on the volume group, add a new,
sufficiently large physical volume by using the vgextend utility.

Procedure

1. View the RAID logical volume:

# lvs --all --options name,copy_percent,devices my_vg
  LV               Cpy%Sync Devices
  my_lv            100.00   my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]          /dev/sde1(1)
  [my_lv_rimage_1]          /dev/sdc1(1)
  [my_lv_rimage_2]          /dev/sdd1(1)
  [my_lv_rmeta_0]           /dev/sde1(0)
  [my_lv_rmeta_1]           /dev/sdc1(0)
  [my_lv_rmeta_2]           /dev/sdd1(0)

2. View the RAID logical volume after the /dev/sdc device fails:

# lvs --all --options name,copy_percent,devices my_vg
  /dev/sdc: open failed: No such device or address
  Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rimage_1 while checking used and 
assumed devices.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rmeta_1 while checking used and 
assumed devices.
  LV               Cpy%Sync Devices
  my_lv            100.00   my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]          /dev/sde1(1)
  [my_lv_rimage_1]          [unknown](1)
  [my_lv_rimage_2]          /dev/sdd1(1)

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

94



  [my_lv_rmeta_0]           /dev/sde1(0)
  [my_lv_rmeta_1]           [unknown](0)
  [my_lv_rmeta_2]           /dev/sdd1(0)

3. Replace the failed device:

# lvconvert --repair my_vg/my_lv
  /dev/sdc: open failed: No such device or address
  Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rimage_1 while checking used and 
assumed devices.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rmeta_1 while checking used and 
assumed devices.
Attempt to replace failed RAID images (requires full device resync)? [y/n]: y
Faulty devices in my_vg/my_lv successfully replaced.

4. Optional: Manually specify the physical volume that replaces the failed device:

# lvconvert --repair my_vg/my_lv replacement_pv

5. Examine the logical volume with the replacement:

# lvs --all --options name,copy_percent,devices my_vg

  /dev/sdc: open failed: No such device or address
  /dev/sdc1: open failed: No such device or address
  Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
  LV               Cpy%Sync Devices
  my_lv            43.79    my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]          /dev/sde1(1)
  [my_lv_rimage_1]          /dev/sdb1(1)
  [my_lv_rimage_2]          /dev/sdd1(1)
  [my_lv_rmeta_0]           /dev/sde1(0)
  [my_lv_rmeta_1]           /dev/sdb1(0)
  [my_lv_rmeta_2]           /dev/sdd1(0)

Until you remove the failed device from the volume group, LVM utilities still indicate that LVM
cannot find the failed device.

6. Remove the failed device from the volume group:

# vgreduce --removemissing my_vg

Verification

1. View the available physical volumes after removing the failed device:

# pvscan
PV /dev/sde1 VG rhel_virt-506 lvm2 [<7.00 GiB / 0 free]
PV /dev/sdb1 VG my_vg lvm2 [<60.00 GiB / 59.50 GiB free]
PV /dev/sdd1 VG my_vg lvm2 [<60.00 GiB / 59.50 GiB free]
PV /dev/sdd1 VG my_vg lvm2 [<60.00 GiB / 59.50 GiB free]

2. Examine the logical volume after the replacing the failed device:

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

95



# lvs --all --options name,copy_percent,devices my_vg
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]          /dev/sde1(1)
  [my_lv_rimage_1]          /dev/sdb1(1)
  [my_lv_rimage_2]          /dev/sdd1(1)
  [my_lv_rmeta_0]           /dev/sde1(0)
  [my_lv_rmeta_1]           /dev/sdb1(0)
  [my_lv_rmeta_2]           /dev/sdd1(0)

Additional resources

lvconvert(8) and vgreduce(8) man pages

9.20. CHECKING DATA COHERENCY IN A RAID LOGICAL VOLUME

LVM provides scrubbing support for RAID logical volumes. RAID scrubbing is the process of reading all
the data and parity blocks in an array and checking to see whether they are coherent. The lvchange --
syncaction repair command initiates a background synchronization action on the array. The following
attributes provide details about data coherency:

The raid_sync_action field displays the current synchronization action that the RAID logical
volume is performing. It can be one of the following values:

idle

Completed all sync actions (doing nothing).

resync

Initializing or resynchronizing an array after an unclean machine shutdown.

recover

Replacing a device in the array.

check

Looking for array inconsistencies.

repair

Looking for and repairing inconsistencies.

The raid_mismatch_count field displays the number of discrepancies found during a check
action.

The Cpy%Sync field displays the progress of the sync actions.

The lv_attr field provides additional indicators. Bit 9 of this field displays the health of the
logical volume, and it supports the following indicators:

m or mismatches

Indicates that there are discrepancies in a RAID logical volume. You can see this character
after the scrubbing operation detects the portions of the RAID, which are not coherent.

r or refresh

Indicates a failed device in a RAID array, even though LVM can read the device label and
considers the device to be operational. Refresh the logical volume to notify the kernel that
the device is now available, or replace the device if you suspect that it failed.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

96



1. Optional: Limit the I/O bandwidth that the scrubbing process uses. When you perform a RAID
scrubbing operation, the background I/O required by the sync actions can crowd out other I/O
to LVM devices, such as updates to volume group metadata. This might cause the other LVM
operations to slow down.
You can control the rate of the scrubbing operation by implementing recovery throttling. You
can set the recovery rate using --maxrecoveryrate Rate[bBsSkKmMgG] or --minrecoveryrate 
Rate[bBsSkKmMgG] with the lvchange --syncaction commands. For more information, see
Minimum and maximum I/O rate options .

Specify the Rate value as an amount per second for each device in the array. If you provide no
suffix, the options assume kiB per second per device.

2. Display the number of discrepancies in the array, without repairing them:

# lvchange --syncaction check my_vg/my_lv

This command initiates a background synchronization action on the array.

3. Optional: View the var/log/syslog file for the kernel messages.

4. Correct the discrepancies in the array:

# lvchange --syncaction repair my_vg/my_lv

This command repairs or replaces failed devices in a RAID logical volume. You can view the 
var/log/syslog file for the kernel messages after executing this command.

Verification

1. Display information about the scrubbing operation:

# lvs -o +raid_sync_action,raid_mismatch_count my_vg/my_lv
LV    VG    Attr       LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync Convert 
SyncAction Mismatches
my_lv my_vg rwi-a-r--- 500.00m                                    100.00           idle        0

Additional resources

lvchange(8) and lvmraid(7) man pages

Minimum and maximum I/O rate options

9.21. CONVERTING A RAID LOGICAL VOLUME TO ANOTHER RAID
LEVEL

LVM supports RAID takeover, which means converting a RAID logical volume from one RAID level to
another, for example, from RAID 5 to RAID 6. You can change the RAID level to increase or decrease
resilience to device failures.

Procedure

1. Create a RAID logical volume:

# lvcreate --type raid5 -i 3 -L 500M -n my_lv my_vg

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

97

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/configuring-raid-logical-volumes_configuring-and-managing-logical-volumes#minimum-and-maximum-i-o-rate-options_configuring-raid-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/configuring-raid-logical-volumes_configuring-and-managing-logical-volumes#minimum-and-maximum-i-o-rate-options_configuring-raid-logical-volumes


Using default stripesize 64.00 KiB.
Rounding size 500.00 MiB (125 extents) up to stripe boundary size 504.00 MiB (126 
extents).
Logical volume "my_lv" created.

2. View the RAID logical volume:

# lvs -a -o +devices,segtype
  LV               VG            Attr       LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync 
Convert Devices                                                                 Type
  my_lv            my_vg         rwi-a-r--- 504.00m                                    100.00           
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0),my_lv_rimage_3(0) raid5
  [my_lv_rimage_0] my_vg         iwi-aor--- 168.00m                                                     
/dev/sda(1)                                                             linear

3. Convert the RAID logical volume to another RAID level:

# lvconvert --type raid6 my_vg/my_lv
Using default stripesize 64.00 KiB.
Replaced LV type raid6 (same as raid6_zr) with possible type raid6_ls_6.
Repeat this command to convert to raid6 after an interim conversion has finished.
Are you sure you want to convert raid5 LV my_vg/my_lv to raid6_ls_6 type? [y/n]: y
Logical volume my_vg/my_lv successfully converted.

4. Optional: If this command prompts to repeat the conversion, run:

# lvconvert --type raid6 my_vg/my_lv

Verification

1. View the RAID logical volume with the converted RAID level:

# lvs -a -o +devices,segtype
  LV               VG            Attr       LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync 
Convert Devices                                                                                   Type
  my_lv            my_vg         rwi-a-r--- 504.00m                                    100.00           
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0),my_lv_rimage_3(0),my_lv_rimage_
4(0) raid6
  [my_lv_rimage_0] my_vg         iwi-aor--- 172.00m                                                     
/dev/sda(1)                                                                               linear

Additional resources

lvconvert(8) and lvmraid(8) man pages

9.22. I/O OPERATIONS ON A RAID1 LOGICAL VOLUME

You can control the I/O operations for a device in a RAID1 logical volume by using the --writemostly and 
--writebehind parameters of the lvchange command. The following is the format for using these
parameters:

--[raid]writemostly PhysicalVolume[:{t|y|n}]

Marks a device in a RAID1 logical volume as write-mostly and avoids all read actions to these drives

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

98



Marks a device in a RAID1 logical volume as write-mostly and avoids all read actions to these drives
unless necessary. Setting this parameter keeps the number of I/O operations to the drive to a
minimum. Use the lvchange --writemostly /dev/sdb my_vg/ly_lv command to set this parameter.
You can set the writemostly attribute in the following ways:

:y

By default, the value of the writemostly attribute is yes for the specified physical volume in the
logical volume.

:n

To remove the writemostly flag, append :n to the physical volume.

:t

To toggle the value of the writemostly attribute, specify the --writemostly argument. You can
use this argument more than one time in a single command, to toggle the writemostly attributes
for all the physical volumes in a logical volume at once.

--[raid]writebehind IOCount

Specifies the maximum number of pending writes marked as writemostly. These are the number of
write operations applicable to devices in a RAID1 logical volume. After the value of this parameter
exceeds, all write actions to the constituent devices complete synchronously before the RAID array
notifies for completion of all write actions.
You can set this parameter by using the lvchange --writebehind 100 my_vg/ly_lv command.
Setting the writemostly attribute’s value to zero clears the preference. With this setting, the system
chooses the value arbitrarily.

9.23. RESHAPING A RAID VOLUME

RAID reshaping means changing attributes of a RAID logical volume without changing the RAID level.
Some attributes that you can change include RAID layout, stripe size, and number of stripes.

Procedure

1. Create a RAID logical volume:

# lvcreate --type raid5 -i 2 -L 500M -n my_lv my_vg

Using default stripesize 64.00 KiB.
Rounding size 500.00 MiB (125 extents) up to stripe boundary size 504.00 MiB (126 
extents).
Logical volume "my_lv" created.

2. View the RAID logical volume:

# lvs -a -o +devices

LV               VG    Attr       LSize   Pool   Origin Data% Meta% Move Log Cpy%Sync Convert 
Devices
my_lv            my_vg rwi-a-r--- 504.00m                                    100.00            
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] my_vg iwi-aor--- 252.00m                                                      /dev/sda(1)
[my_lv_rimage_1] my_vg iwi-aor--- 252.00m                                                      /dev/sdb(1)
[my_lv_rimage_2] my_vg iwi-aor--- 252.00m                                                      /dev/sdc(1)

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

99



[my_lv_rmeta_0]  my_vg ewi-aor---   4.00m                                                      /dev/sda(0)
[my_lv_rmeta_1]  my_vg ewi-aor---   4.00m                                                      /dev/sdb(0)
[my_lv_rmeta_2]  my_vg ewi-aor---   4.00m                                                      /dev/sdc(0)

3. Optional: View the stripes images and stripesize of the RAID logical volume:

# lvs -o stripes my_vg/my_lv
  #Str
     3

# lvs -o stripesize my_vg/my_lv
  Stripe
  64.00k

4. Modify the attributes of the RAID logical volume by using the following ways depending on your
requirement:

a. Modify the stripes images of the RAID logical volume:

# lvconvert --stripes 3 my_vg/my_lv
Using default stripesize 64.00 KiB.
WARNING: Adding stripes to active logical volume my_vg/my_lv will grow it from 126 to 
189 extents!
Run "lvresize -l126 my_vg/my_lv" to shrink it or use the additional capacity.
Are you sure you want to add 1 images to raid5 LV my_vg/my_lv? [y/n]: y
Logical volume my_vg/my_lv successfully converted.

b. Modify the stripesize of the RAID logical volume:

# lvconvert --stripesize 128k my_vg/my_lv
  Converting stripesize 64.00 KiB of raid5 LV my_vg/my_lv to 128.00 KiB.
Are you sure you want to convert raid5 LV my_vg/my_lv? [y/n]: y
  Logical volume my_vg/my_lv successfully converted.

c. Modify the maxrecoveryrate and minrecoveryrate attributes:

# lvchange --maxrecoveryrate 4M my_vg/my_lv
  Logical volume my_vg/my_lv changed.

# lvchange --minrecoveryrate 1M my_vg/my_lv
  Logical volume my_vg/my_lv changed.

d. Modify the syncaction attribute:

# lvchange --syncaction check my_vg/my_lv

e. Modify the writemostly and writebehind attributes:

# lvchange --writemostly /dev/sdb my_vg/my_lv
  Logical volume my_vg/my_lv changed.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

100



# lvchange --writebehind 100 my_vg/my_lv
  Logical volume my_vg/my_lv changed.

Verification

1. View the stripes images and stripesize of the RAID logical volume:

# lvs -o stripes my_vg/my_lv
  #Str
     4

# lvs -o stripesize my_vg/my_lv
  Stripe
  128.00k

2. View the RAID logical volume after modifying the maxrecoveryrate attribute:

# lvs -a -o +raid_max_recovery_rate
  LV               VG       Attr        LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync 
Convert MaxSync
  my_lv            my_vg    rwi-a-r---  10.00g                                     100.00           4096
  [my_lv_rimage_0] my_vg    iwi-aor---  10.00g
 [...]

3. View the RAID logical volume after modifying the minrecoveryrate attribute:

# lvs -a -o +raid_min_recovery_rate
  LV               VG     Attr        LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync 
Convert MinSync
  my_lv            my_vg  rwi-a-r---  10.00g                                     100.00           1024
  [my_lv_rimage_0] my_vg  iwi-aor---  10.00g
  [...]

4. View the RAID logical volume after modifying the syncaction attribute:

# lvs -a
  LV               VG      Attr        LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync 
Convert
  my_lv            my_vg   rwi-a-r---  10.00g                                     2.66
  [my_lv_rimage_0] my_vg   iwi-aor---  10.00g
  [...]

Additional resources

lvconvert(8) and lvmraid(8) man pages

9.24. CHANGING THE REGION SIZE ON A RAID LOGICAL VOLUME

When you create a RAID logical volume, the raid_region_size parameter from the /etc/lvm/lvm.conf
file represents the region size for the RAID logical volume. After you created a RAID logical volume, you
can change the region size of the volume. This parameter defines the granularity to keep track of the

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

101



dirty or clean state. Dirty bits in the bitmap define the work set to synchronize after a dirty shutdown of
a RAID volume, for example, a system failure.

If you set raid_region_size to a higher value, it reduces the size of bitmap as well as the congestion. But
it impacts the write operation during resynchronizing the region because writes to RAID are postponed
until synchronizing the region finishes.

Procedure

1. Create a RAID logical volume:

# lvcreate --type raid1 -m 1 -L 10G test
  Logical volume "lvol0" created.

2. View the RAID logical volume:

# lvs -a -o +devices,region_size

LV                VG      Attr     LSize Pool Origin Data% Meta% Move Log   Cpy%Sync Convert 
Devices                              Region
lvol0             test rwi-a-r--- 10.00g                                    100.00           
lvol0_rimage_0(0),lvol0_rimage_1(0)  2.00m
[lvol0_rimage_0]  test iwi-aor--- 10.00g                                                     /dev/sde1(1)                            
0
[lvol0_rimage_1]  test iwi-aor--- 10.00g                                                     /dev/sdf1(1)                            
0
[lvol0_rmeta_0]   test ewi-aor---  4.00m                                                     /dev/sde1(0)                            
0
[lvol0_rmeta_1]   test ewi-aor---  4.00m

The Region column indicates the raid_region_size parameter’s value.

3. Optional: View the raid_region_size parameter’s value:

# cat /etc/lvm/lvm.conf | grep raid_region_size

# Configuration option activation/raid_region_size.
 # raid_region_size = 2048

4. Change the region size of a RAID logical volume:

# lvconvert -R 4096K my_vg/my_lv

Do you really want to change the region_size 512.00 KiB of LV my_vg/my_lv to 4.00 MiB? 
[y/n]: y
  Changed region size on RAID LV my_vg/my_lv to 4.00 MiB.

5. Resynchronize the RAID logical volume:

# lvchange --resync my_vg/my_lv

Do you really want to deactivate logical volume my_vg/my_lv to resync it? [y/n]: y

Verification

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

102



1. View the RAID logical volume:

# lvs -a -o +devices,region_size

LV               VG   Attr        LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert 
Devices                              Region
lvol0            test rwi-a-r--- 10.00g                                    6.25           
lvol0_rimage_0(0),lvol0_rimage_1(0)  4.00m
[lvol0_rimage_0] test iwi-aor--- 10.00g                                                   /dev/sde1(1)                            
0
[lvol0_rimage_1] test iwi-aor--- 10.00g                                                   /dev/sdf1(1)                            
0
[lvol0_rmeta_0]  test ewi-aor---  4.00m                                                   /dev/sde1(0)                            
0

The Region column indicates the changed value of the raid_region_size parameter.

2. View the raid_region_size parameter’s value in the lvm.conf file:

# cat /etc/lvm/lvm.conf | grep raid_region_size

# Configuration option activation/raid_region_size.
 # raid_region_size = 4096

Additional resources

lvconvert(8) man page

CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES

103



CHAPTER 10. SNAPSHOT OF LOGICAL VOLUMES
Using the LVM snapshot feature, you can create virtual images of a volume, for example, /dev/sda, at a
particular instant without causing a service interruption.

10.1. OVERVIEW OF SNAPSHOT VOLUMES

When you modify the original volume (the origin) after you take a snapshot, the snapshot feature makes
a copy of the modified data area as it was prior to the change so that it can reconstruct the state of the
volume. When you create a snapshot, full read and write access to the origin stays possible.

Since a snapshot copies only the data areas that change after the snapshot is created, the snapshot
feature requires a minimal amount of storage. For example, with a rarely updated origin, 3-5 % of the
origin’s capacity is sufficient to maintain the snapshot. It does not provide a substitute for a backup
procedure. Snapshot copies are virtual copies and are not an actual media backup.

The size of the snapshot controls the amount of space set aside for storing the changes to the origin
volume. For example, if you create a snapshot and then completely overwrite the origin, the snapshot
should be at least as big as the origin volume to hold the changes. You should regularly monitor the size
of the snapshot. For example, a short-lived snapshot of a read-mostly volume, such as /usr, would need
less space than a long-lived snapshot of a volume because it contains many writes, such as /home.

If a snapshot is full, the snapshot becomes invalid because it can no longer track changes on the origin
volume. But you can configure LVM to automatically extend a snapshot whenever its usage exceeds the 
snapshot_autoextend_threshold value to avoid snapshot becoming invalid. Snapshots are fully
resizable and you can perform the following operations:

If you have the storage capacity, you can increase the size of the snapshot volume to prevent it
from getting dropped.

If the snapshot volume is larger than you need, you can reduce the size of the volume to free up
space that is needed by other logical volumes.

The snapshot volume provide the following benefits:

Most typically, you take a snapshot when you need to perform a backup on a logical volume
without halting the live system that is continuously updating the data.

You can execute the fsck command on a snapshot file system to check the file system integrity
and determine if the original file system requires file system repair.

Since the snapshot is read/write, you can test applications against production data by taking a
snapshot and running tests against the snapshot without touching the real data.

You can create LVM volumes for use with Red Hat Virtualization. You can use LVM snapshots to
create snapshots of virtual guest images. These snapshots can provide a convenient way to
modify existing guests or create new guests with minimal additional storage.

10.2. CREATING A SNAPSHOT OF THE ORIGINAL VOLUME

Use the lvcreate command to create a snapshot of the original volume (the origin). A snapshot of a
volume is writable. By default, a snapshot volume is activated with the origin during normal activation
commands as compared to the thinly-provisioned snapshots. LVM does not support creating a snapshot

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

104



volume that is larger than the sum of the origin volume’s size and the required metadata size for the
volume. If you specify a snapshot volume that is larger than this, LVM creates a snapshot volume that is
required for the size of the origin.

NOTE

The nodes in a cluster do not support LVM snapshots. You cannot create a snapshot
volume in a shared volume group. However, if you need to create a consistent backup of
data on a shared logical volume you can activate the volume exclusively and then create
the snapshot.

The following procedure creates an origin logical volume named origin and a snapshot volume of this
original volume named snap.

Prerequisites

You have created volume group vg001. For more information, see Creating LVM volume group.

Procedure

1. Create a logical volume named origin from the volume group vg001:

# lvcreate -L 1G -n origin vg001
Logical volume "origin" created.

2. Create a snapshot logical volume named snap of /dev/vg001/origin that is 100 MB in size:

# lvcreate --size 100M --name snap --snapshot /dev/vg001/origin
  Logical volume "snap" created.

You can also use the -L argument instead of using --size, -n instead of using --name, and -s
instead of using --snapshot to create a snapshot.

If the original logical volume contains a file system, you can mount the snapshot logical volume
on an arbitrary directory in to access the contents of the file system to run a backup while the
original file system continues to get updated.

3. Display the origin volume and the current percentage of the snapshot volume being used:

# lvs -a -o +devices
  LV      VG    Attr       LSize  Pool Origin Data% Meta% Move Log Cpy%Sync Convert 
Devices
 origin vg001  owi-a-s---  1.00g                                                  /dev/sde1(0)
  snap vg001  swi-a-s--- 100.00m     origin 0.00                                 /dev/sde1(256)

You can also display the status of logical volume /dev/vg001/origin with all the snapshot logical
volumes and their status, such as active or inactive by using the lvdisplay /dev/vg001/origin
command.

CHAPTER 10. SNAPSHOT OF LOGICAL VOLUMES

105

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups


WARNING

Space in the snapshot LV is consumed after the origin LV is written to. The 
lvs command reports the current snapshot space usage in the Data%
data_percent field value. If the snapshot space reaches 100%, the snapshot
becomes invalid and unusable.

An invalid snapshot is reported with I in the fifth position of the Attr
column, or the lv_snapshot_invalid reporting field in lvs. You can remove
the invalid snapshot by using the lvremove command.

4. Optional: Extend the snapshot before its space becomes 100% full and becomes invalid by using
any one of the following options:

Configure LVM to automatically extend the snapshot by using the following parameters in
the /etc/lvm.conf file:

snapshot_autoextend_threshold

Extends the snapshot after its usage exceeds the value set for this parameter. By
default, it is set to 100, which disables automatic extension. The minimum value of this
parameter is 50.

snapshot_autoextend_percent

Adds an additional space to the snapshot, which is the percent of its current size. By
default, it is set to 20.

In the following example, after setting the following parameters, the created 1G snapshot
extends to 1.2G when its usage exceeds 700M:

Example 10.1. Automatically extend the snapshot

# vi /etc/lvm.conf
snapshot_autoextend_threshold = 70
snapshot_autoextend_percent = 20

NOTE

This feature requires unallocated space in the volume group. An automatic
extension of a snapshot does not increase the size of a snapshot volume
beyond the maximum calculated size that is necessary for the snapshot.
Once a snapshot has grown large enough to cover the origin, it is no longer
monitored for automatic extension.

Extend this snapshot manually by using the lvextend command:

# lvextend -L+100M /dev/vg001/snap

Additional resources



Red Hat Enterprise Linux 8 Configuring and managing logical volumes

106



lvcreate(8), lvextend(8), and lvs(8) man pages

/etc/lvm/lvm.conf file

10.3. MERGING SNAPSHOT TO ITS ORIGINAL VOLUME

Use the lvconvert command with the --merge option to merge a snapshot into its original (the origin)
volume. You can perform a system rollback if you have lost data or files, or otherwise you have to restore
your system to a previous state. After you merge the snapshot volume, the resulting logical volume has
the origin volume’s name, minor number, and UUID. While the merge is in progress, reads or writes to the
origin appear as they were directed to the snapshot being merged. When the merge finishes, the
merged snapshot is removed.

If both the origin and snapshot volume are not open and active, the merge starts immediately.
Otherwise, the merge starts after either the origin or snapshot are activated and both are closed. You
can merge a snapshot into an origin that cannot be closed, for example a root file system, after the
origin volume is activated.

Procedure

1. Merge the snapshot volume. The following command merges snapshot volume vg001/snap into
its origin:

# lvconvert --merge vg001/snap
Merging of volume vg001/snap started.
  vg001/origin: Merged: 100.00%

2. View the origin volume:

# lvs -a -o +devices
  LV      VG    Attr       LSize  Pool Origin Data% Meta% Move Log Cpy%Sync Convert 
Devices
  origin vg001  owi-a-s---  1.00g                                                  /dev/sde1(0)

Additional resources

lvconvert(8) man page

10.4. CREATING LVM SNAPSHOTS USING THE SNAPSHOT RHEL
SYSTEM ROLE

With the new snapshot RHEL system role, you can now create LVM snapshots. This system role also
checks if there is sufficient space for the created snapshots and no conflict with its name by setting the 
snapshot_lvm_action parameter to check. To mount the created snapshot, set snapshot_lvm_action
to mount.

In the following example, the nouuid option is set and only required when working with the XFS file
system. XFS does not support mounting multiple file systems at the same time with the same UUID.

Prerequisites

You have prepared the control node and the managed nodes

CHAPTER 10. SNAPSHOT OF LOGICAL VOLUMES

107

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Here, the snapshot_lvm_set parameter describes specific logical volumes (LV) from the same
volume group (VG). You can also specify LVs from different VGs while setting this parameter.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid

---
- name: Run the snapshot system role
  hosts: managed-node-01.example.com
  vars:
    snapshot_lvm_set:
      name: snapset1
      volumes:
        - name: data1 snapshot
          vg: data_vg
          lv: data1
          percent_space_required: 25
          mountpoint: /data1_snapshot
          options: nouuid
          mountpoint_create: true
        - name: data2 snapshot
          vg: data_vg
          lv: data2
          percent_space_required: 25
          mountpoint: /data2_snapshot
          options: nouuid
          mountpoint_create: true
  tasks:
    - name: Create a snapshot set
      ansible.builtin.include_role:
        name: rhel-system-roles.snapshot
      vars:
        snapshot_lvm_action: snapshot
    - name: Verify the set of snapshots for the LVs
      ansible.builtin.include_role:
        name: rhel-system-roles.snapshot
      vars:
        snapshot_lvm_action: check
        snapshot_lvm_verify_only: true
    - name: Mount the snapshot set
      ansible.builtin.include_role:
        name: rhel-system-roles.snapshot
      vars:
        snapshot_lvm_action: mount

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

108



Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

On the managed node, view the created snapshots:

# lvs
  LV             VG       Attr       LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync Convert
  data1          data_vg owi-a-s---   1.00g
  data1_snapset1 data_vg swi-a-s--- 208.00m      data1  0.00
  data2          data_vg owi-a-s---   1.00g
  data2_snapset1 data_vg swi-a-s--- 208.00m      data2  0.00

On the managed node, verify if the mount operation was successful by checking the existence
of /data1_snapshot and /data2_snapshot:

# ls -al /data1_snapshot
# ls -al /data2_snapshot

Additional resources

/usr/share/ansible/roles/rhel-system-roles.snapshot/README.md file

/usr/share/doc/rhel-system-roles/snapshot/ directory

10.5. UNMOUNTING LVM SNAPSHOTS USING THE SNAPSHOT RHEL
SYSTEM ROLE

You can unmount a specific snapshot or all snapshots by setting the snapshot_lvm_action parameter
to umount.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

You have created snapshots using the name <_snapset1_> for the set of snapshots.

You have mounted the snapshots by setting snapshot_lvm_action to mount or otherwise
mounted them manually.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Unmount a specific LVM snapshot:

CHAPTER 10. SNAPSHOT OF LOGICAL VOLUMES

109

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


Here, the snapshot_lvm_lv parameter describes a specific logical volume (LV) and the 
snapshot_lvm_vg parameter describes a specific volume group (VG).

Unmount a set of LVM snapshots:

Here, the snapshot_lvm_set parameter describes specific LVs from the same VG. You can
also specify LVs from different VGs while setting this parameter.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.snapshot/README.md file

/usr/share/doc/rhel-system-roles/snapshot/ directory

---
- name: Unmount the snapshot specified by the snapset
  hosts: managed-node-01.example.com
  vars:
    snapshot_lvm_snapset_name: snapset1
    snapshot_lvm_action: umount
    snapshot_lvm_vg: data_vg
    snapshot_lvm_lv: data2
    snapshot_lvm_mountpoint: /data2_snapshot
  roles:
    - rhel-system-roles.snapshot

---
- name: Unmount a set of snapshots
  hosts: managed-node-01.example.com
  vars:
    snapshot_lvm_action: umount
    snapshot_lvm_set:
      name: snapset1
      volumes:
        - name: data1 snapshot
          vg: data_vg
          lv: data1
          mountpoint: /data1_snapshot
        - name: data2 snapshot
          vg: data_vg
          lv: data2
          mountpoint: /data2_snapshot
  roles:
    - rhel-system-roles.snapshot

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

110



10.6. EXTENDING LVM SNAPSHOTS USING THE SNAPSHOT RHEL
SYSTEM ROLE

With the new snapshot RHEL system role, you can now extend LVM snapshots by setting the 
snapshot_lvm_action parameter to extend. You can set the snapshot_lvm_percent_space_required
parameter to the required space that should be allocated to the snapshot after extending it.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

You have created snapshots for the given volume groups and logical volumes.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Extend all LVM snapshots by specifying the value for the percent_space_required
parameter:

Here, the snapshot_lvm_set parameter describes specific LVs from the same VG. You can
also specify LVs from different VGs while setting this parameter.

Extend a LVM snapshot set by setting percent_space_required to different value for each
VG and LV pair in a set:

---
- name: Extend all snapshots
  hosts: managed-node-01.example.com
  vars:
    snapshot_lvm_action: extend
    snapshot_lvm_set:
      name: snapset1
      volumes:
        - name: data1 snapshot
          vg: data_vg
          lv: data1
          percent_space_required: 40
        - name: data2 snapshot
          vg: data_vg
          lv: data2
          percent_space_required: 40
  roles:
    - rhel-system-roles.snapshot

---
- name: Extend the snapshot
  hosts: managed-node-01.example.com
  vars:
    snapshot_extend_set:
      name: snapset1

CHAPTER 10. SNAPSHOT OF LOGICAL VOLUMES

111

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

On the managed node, view the extended snapshot by 30%:

# lvs
  LV             VG       Attr        LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync 
Convert
  data1          data_vg  owi-a-s---   1.00g
  data1_snapset1 data_vg  swi-a-s--- 308.00m       data1  0.00
  data2          data_vg  owi-a-s---   1.00g
  data2_snapset1 data_vg1 swi-a-s--- 408.00m       data2  0.00

Additional resources

/usr/share/ansible/roles/rhel-system-roles.snapshot/README.md file

/usr/share/doc/rhel-system-roles/snapshot/ directory

10.7. REVERTING LVM SNAPSHOTS USING THE SNAPSHOT RHEL
SYSTEM ROLE

With the new snapshot RHEL system role, you can now revert LVM snapshots to its original volume by
setting the snapshot_lvm_action parameter to revert.

NOTE

      volumes:
        - name: data1 snapshot
          vg: data_vg
          lv: data1
          percent_space_required: 30
        - name: data2 snapshot
          vg: data_vg
          lv: data2
          percent_space_required: 40
  tasks:
    - name: Extend data1 to 30% and data2 to 40%
      vars:
        snapshot_lvm_set: "{{ snapshot_extend_set }}"
        snapshot_lvm_action: extend
      ansible.builtin.include_role:
        name: rhel-system-roles.snapshot

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

112



NOTE

If both the logical volume and snapshot volume are not open and active, the revert
operation starts immediately. Otherwise, it starts either after the origin or snapshot are
activated and both are closed.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

You have created snapshots for the given volume groups and logical volumes by using
<_snapset1_> as the snapset name.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Revert a specific LVM snapshot to its original volume:

Here, the snapshot_lvm_lv parameter describes a specific logical volume (LV) and the 
snapshot_lvm_vg parameter describes a specific volume group (VG).

Revert a set of LVM snapshots to its original volume:

Here, the snapshot_lvm_set parameter describes specific LVs from the same VG. You can

---
- name: Revert a snapshot to its original volume
  hosts: managed-node-01.example.com
  vars:
    snapshot_lvm_snapset_name: snapset1
    snapshot_lvm_action: revert
    snapshot_lvm_vg: data_vg
    snapshot_lvm_lv: data2
  roles:
    - rhel-system-roles.snapshot

---
- name: Revert a set of snapshot
  hosts: managed-node-01.example.com
  vars:
    snapshot_lvm_action: revert
    snapshot_lvm_set:
      name: snapset1
      volumes:
        - name: data1 snapshot
          vg: data_vg
          lv: data1
        - name: data2 snapshot
          vg: data_vg
          lv: data2
  roles:
    - rhel-system-roles.snapshot

CHAPTER 10. SNAPSHOT OF LOGICAL VOLUMES

113

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


Here, the snapshot_lvm_set parameter describes specific LVs from the same VG. You can
also specify LVs from different VGs while setting this parameter.

NOTE

The revert operation might take some time to complete.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

4. Reboot the host, or deactivate and reactivate the logical volume using the following steps:

$ umount /data1; umount /data2

$ lvchange -an data_vg/data1 data_vg/data2

$ lvchange -ay data_vg/data1 data_vg/data2

$ mount /data1; mount /data2

Verification

On the managed node, view the reverted snapshots:

# lvs
  LV    VG       Attr       LSize Pool Origin Data%  Meta%  Move Log Cpy%Sync Convert
  data1 data_vg -wi-a----- 1.00g
  data2 data_vg -wi-a----- 1.00g

Additional resources

/usr/share/ansible/roles/rhel-system-roles.snapshot/README.md file

/usr/share/doc/rhel-system-roles/snapshot/ directory

10.8. REMOVING LVM SNAPSHOTS USING THE SNAPSHOT RHEL
SYSTEM ROLE

With the new snapshot RHEL system role, you can now remove all LVM snapshots by specifying the
prefix or pattern of the snapshot, and by setting the snapshot_lvm_action parameter to remove.

Prerequisites

You have prepared the control node and the managed nodes

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

114

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles


You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

You have created the specified snapshots by using <_snapset1_> as the snapset name.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Remove a specific LVM snapshot:

Here, the snapshot_lvm_vg parameter describes a specific logical volume (LV) from the
volume group (VG).

Remove a set of LVM snapshots:

Here, the snapshot_lvm_set parameter describes specific LVs from the same VG. You can
also specify LVs from different VGs while setting this parameter.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

---
- name: Remove a snapshot
  hosts: managed-node-01.example.com
  vars:
    snapshot_lvm_snapset_name: snapset1
    snapshot_lvm_action: remove
    snapshot_lvm_vg: data_vg
  roles:
    - rhel-system-roles.snapshot

---
- name: Remove a set of snapshots
  hosts: managed-node-01.example.com
  vars:
    snapshot_lvm_action: remove
    snapshot_lvm_set:
      name: snapset1
      volumes:
        - name: data1 snapshot
          vg: data_vg
          lv: data1
        - name: data2 snapshot
          vg: data_vg
          lv: data2
  roles:
    - rhel-system-roles.snapshot

CHAPTER 10. SNAPSHOT OF LOGICAL VOLUMES

115



$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.snapshot/README.md file

/usr/share/doc/rhel-system-roles/snapshot/ directory

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

116



CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED
VOLUMES (THIN VOLUMES)

Red Hat Enterprise Linux supports thin-provisioned snapshot volumes and logical volumes:

Using thin-provisioned logical volumes, you can create logical volumes that are larger than the
available physical storage.

Using thin-provisioned snapshot volumes, you can store more virtual devices on the same data
volume.

11.1. OVERVIEW OF THIN PROVISIONING

Many modern storage stacks now provide the ability to choose between thick provisioning and thin
provisioning:

Thick provisioning provides the traditional behavior of block storage where blocks are allocated
regardless of their actual usage.

Thin provisioning grants the ability to provision a larger pool of block storage that may be larger
in size than the physical device storing the data, resulting in over-provisioning. Over-
provisioning is possible because individual blocks are not allocated until they are actually used. If
you have multiple thin-provisioned devices that share the same pool, then these devices can be
over-provisioned.

By using thin provisioning, you can over-commit the physical storage, and instead can manage a pool of
free space known as a thin pool. You can allocate this thin pool to an arbitrary number of devices when
needed by applications. You can expand the thin pool dynamically when needed for cost-effective
allocation of storage space.

For example, if ten users each request a 100GB file system for their application, then you can create
what appears to be a 100GB file system for each user but which is backed by less actual storage that is
used only when needed.

NOTE

When using thin provisioning, it is important that you monitor the storage pool and add
more capacity as the available physical space runs out.

The following are a few advantages of using thin-provisioned devices:

You can create logical volumes that are larger than the available physical storage.

You can have more virtual devices to be stored on the same data volume.

You can create file systems that can grow logically and automatically to support the data
requirements and the unused blocks are returned to the pool for use by any file system in the
pool

The following are the potential drawbacks of using thin-provisioned devices:

Thin-provisioned volumes have an inherent risk of running out of available physical storage. If
you have over-provisioned your underlying storage, it could possibly result in an outage due to
the lack of available physical storage. For example, if you create 10T of thinly provisioned

CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED VOLUMES (THIN VOLUMES)

117



storage with only 1T physical storage for backing, the volumes will become unavailable or
unwritable after the 1T is exhausted.

If volumes are not sending discards to the layers after thin-provisioned devices, then the
accounting for usage will not be accurate. For example, placing a file system without the -o 
discard mount option and not running fstrim periodically on top of thin-provisioned devices
will never unallocate previously used storage. In such cases, you end up using the full provisioned
amount over time even if you are not really using it.

You must monitor the logical and physical usage so as to not run out of available physical space.

Copy on Write (CoW) operation can be slower on file systems with snapshots.

Data blocks can be intermixed between multiple file systems leading to random access
limitations of the underlying storage even when it does not appear that way to the end user.

11.2. CREATING THINLY-PROVISIONED LOGICAL VOLUMES

Using thin-provisioned logical volumes, you can create logical volumes that are larger than the available
physical storage. Creating a thinly provisioned set of volumes allows the system to allocate what you use
instead of allocating the full amount of storage that is requested.

Using the -T or --thin option of the lvcreate command, you can create either a thin pool or a thin
volume. You can also use the -T option of the lvcreate command to create both a thin pool and a thin
volume at the same time with a single command. This procedure describes how to create and grow
thinly-provisioned logical volumes.

Prerequisites

You have created a volume group. For more information, see Creating LVM volume group.

Procedure

1. Create a thin pool:

# lvcreate -L 100M -T vg001/mythinpool
  Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
  Logical volume "mythinpool" created.

Note that since you are creating a pool of physical space, you must specify the size of the pool.
The -T option of the lvcreate command does not take an argument; it determines what type of
device is to be created from the other options that are added with the command. You can also
create thin pool using additional parameters as shown in the following examples:

You can also create a thin pool using the --thinpool parameter of the lvcreate command.
Unlike the -T option, the --thinpool parameter requires that you specify the name of the
thin pool logical volume you are creating. The following example uses the --thinpool
parameter to create a thin pool named mythinpool in the volume group vg001 that is 100M
in size:

# lvcreate -L 100M --thinpool mythinpool vg001
  Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
  Logical volume "mythinpool" created.

As striping is supported for pool creation, you can use the -i and -I options to create stripes.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

118

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups


The following command creates a 100M thin pool named as thinpool in volume group vg001
with two 64 kB stripes and a chunk size of 256 kB. It also creates a 1T thin volume named
vg001/thinvolume.

NOTE

Ensure that there are two physical volumes with sufficient free space in the
volume group or you cannot create the thin pool.

# lvcreate -i 2 -I 64 -c 256 -L 100M -T vg001/thinpool -V 1T --name thinvolume

2. Create a thin volume:

# lvcreate -V 1G -T vg001/mythinpool -n thinvolume
  WARNING: Sum of all thin volume sizes (1.00 GiB) exceeds the size of thin pool 
vg001/mythinpool (100.00 MiB).
  WARNING: You have not turned on protection against thin pools running out of space.
  WARNING: Set activation/thin_pool_autoextend_threshold below 100 to trigger automatic 
extension of thin pools before they get full.
  Logical volume "thinvolume" created.

In this case, you are specifying virtual size for the volume that is greater than the pool that
contains it. You can also create thin volumes using additional parameters as shown in the
following examples:

To create both a thin volume and a thin pool, use the -T option of the lvcreate command
and specify both the size and virtual size argument:

# lvcreate -L 100M -T vg001/mythinpool -V 1G -n thinvolume
  Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
  WARNING: Sum of all thin volume sizes (1.00 GiB) exceeds the size of thin pool 
vg001/mythinpool (100.00 MiB).
  WARNING: You have not turned on protection against thin pools running out of space.
  WARNING: Set activation/thin_pool_autoextend_threshold below 100 to trigger 
automatic extension of thin pools before they get full.
  Logical volume "thinvolume" created.

To use the remaining free space to create a thin volume and thin pool, use the 100%FREE
option:

# lvcreate -V 1G -l 100%FREE -T vg001/mythinpool -n thinvolume
Thin pool volume with chunk size 64.00 KiB can address at most <15.88 TiB of data.
  Logical volume "thinvolume" created.

To convert an existing logical volume to a thin pool volume, use the --thinpool parameter of
the lvconvert command. You must also use the --poolmetadata parameter in conjunction
with the --thinpool parameter to convert an existing logical volume to a thin pool volume’s
metadata volume.
The following example converts the existing logical volume lv1 in volume group vg001 to a
thin pool volume and converts the existing logical volume lv2 in volume group vg001 to the
metadata volume for that thin pool volume:

CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED VOLUMES (THIN VOLUMES)

119



# lvconvert --thinpool vg001/lv1 --poolmetadata vg001/lv2
  Converted vg001/lv1 to thin pool.

NOTE

Converting a logical volume to a thin pool volume or a thin pool metadata
volume destroys the content of the logical volume, as lvconvert does not
preserve the content of the devices but instead overwrites the content.

By default, the lvcreate command approximately sets the size of the thin pool metadata
logical volume by using the following formula:

Pool_LV_size / Pool_LV_chunk_size * 64

If you have large numbers of snapshots or if you have have small chunk sizes for your thin
pool and therefore expect significant growth of the size of the thin pool at a later time, you
may need to increase the default value of the thin pool’s metadata volume using the --
poolmetadatasize parameter of the lvcreate command. The supported value for the thin
pool’s metadata logical volume is in the range between 2MiB and 16GiB.

The following example illustrates how to increase the default value of the thin pools’
metadata volume:

# lvcreate -V 1G -l 100%FREE -T vg001/mythinpool --poolmetadatasize 16M -n 
thinvolume
Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
   Logical volume "thinvolume" created.

3. View the created thin pool and thin volume:

# lvs -a -o +devices
  LV                 VG    Attr       LSize   Pool       Origin Data%  Meta%  Move Log Cpy%Sync 
Convert Devices
  [lvol0_pmspare]    vg001 ewi-------   4.00m                                                           /dev/sda(0)
  mythinpool         vg001 twi-aotz-- 100.00m                   0.00   10.94                            
mythinpool_tdata(0)
  [mythinpool_tdata] vg001 Twi-ao---- 100.00m                                                           
/dev/sda(1)
  [mythinpool_tmeta] vg001 ewi-ao----   4.00m                                                           
/dev/sda(26)
  thinvolume         vg001 Vwi-a-tz--   1.00g mythinpool        0.00

4. Optional: Extend the size of a thin pool with the lvextend command. You cannot, however,
reduce the size of a thin pool.

NOTE

This command fails if you use -l 100%FREE argument while creating a thin pool
and thin volume.

The following command resizes an existing thin pool that is 100M in size by extending it another
100M:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

120



# lvextend -L+100M vg001/mythinpool
  Size of logical volume vg001/mythinpool_tdata changed from 100.00 MiB (25 extents) to 
200.00 MiB (50 extents).
  WARNING: Sum of all thin volume sizes (1.00 GiB) exceeds the size of thin pool 
vg001/mythinpool (200.00 MiB).
  WARNING: You have not turned on protection against thin pools running out of space.
  WARNING: Set activation/thin_pool_autoextend_threshold below 100 to trigger automatic 
extension of thin pools before they get full.

  Logical volume vg001/mythinpool successfully resized

# lvs -a -o +devices
  LV                 VG    Attr       LSize   Pool       Origin Data%  Meta%  Move Log Cpy%Sync 
Convert Devices
  [lvol0_pmspare]    vg001 ewi-------   4.00m                                                           /dev/sda(0)
  mythinpool         vg001 twi-aotz-- 200.00m                   0.00   10.94                            
mythinpool_tdata(0)
  [mythinpool_tdata] vg001 Twi-ao---- 200.00m                                                           
/dev/sda(1)
  [mythinpool_tdata] vg001 Twi-ao---- 200.00m                                                           
/dev/sda(27)
  [mythinpool_tmeta] vg001 ewi-ao----   4.00m                                                           
/dev/sda(26)
  thinvolume         vg001 Vwi-a-tz--   1.00g mythinpool        0.00

5. Optional: To rename the thin pool and thin volume, use the following command:

# lvrename vg001/mythinpool vg001/mythinpool1
  Renamed "mythinpool" to "mythinpool1" in volume group "vg001"

# lvrename vg001/thinvolume vg001/thinvolume1
  Renamed "thinvolume" to "thinvolume1" in volume group "vg001"

View the thin pool and thin volume after renaming:

# lvs
  LV          VG       Attr     LSize   Pool       Origin Data%  Move Log Copy%  Convert
mythinpool1 vg001   twi-a-tz 100.00m                     0.00
thinvolume1 vg001   Vwi-a-tz   1.00g mythinpool1         0.00

6. Optional: To remove the thin pool, use the following command:

# lvremove -f vg001/mythinpool1
  Logical volume "thinvolume1" successfully removed.
  Logical volume "mythinpool1" successfully removed.

Additional resources

lvcreate(8), lvrename(8), lvs(8), and lvconvert(8) man pages

11.3. CREATING POOLS FOR THINLY PROVISIONED VOLUMES IN THE
WEB CONSOLE

CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED VOLUMES (THIN VOLUMES)

121



Create a pool for thinly-provisioned volumes.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

A volume group is created.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the volume group in which you want to create thin volumes.

4. On the Logical volume group page, scroll to the LVM2 logical volumes section and click 
Create new logical volume.

5. In the Name field, enter a name for the new logical volume. Do not include spaces in the name.

6. In the Purpose drop-down menu, select Pool for thinly provisioned volumes.
This configuration enables you to create a logical volume with the maximum volume size which is
equal to the sum of the capacities of all drives included in the volume group.

7. Define the size of the logical volume. Consider:

How much space the system using this logical volume needs.

How many logical volumes you want to create.

You do not have to use the whole space. If necessary, you can grow the logical volume later.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

122

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console


8. Click Create.
The pool for thin volumes is created and you can now add thin volumes to the pool.

11.4. CREATING THINLY PROVISIONED LOGICAL VOLUMES IN THE
WEB CONSOLE

You can use the web console to create a thin-provisioned logical volume in the pool. The pool can
include multiple thin volumes and each thin volume can be as large as the pool for thin volumes itself.

IMPORTANT

Using thin volumes requires regular checkup of the actual free physical space of the
logical volume.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

A pool for thin volumes created.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the menu button volume group in which you want to create thin
volumes.

4. On the Logical volume group page, scroll to the LVM2 logical volumes section and click the
pool in which you want to create the thin logical volumes.

5. On the Pool for thinly provisioned LVM2 logical volumes page, scroll to the Thinly
provisioned LVM2 logical volumes section and click Create new thinly provisioned logical
volume.

6. In the Create thin volume dialog box, enter a name for the thin volume. Do not use spaces in

CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED VOLUMES (THIN VOLUMES)

123

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console


6. In the Create thin volume dialog box, enter a name for the thin volume. Do not use spaces in
the name.

7. Define the size of the thin volume.

8. Click Create.
The thin logical volume is created. You must format the volume before you can use it.

11.5. OVERVIEW OF CHUNK SIZE

A chunk is the largest unit of physical disk dedicated to snapshot storage.

Use the following criteria for using the chunk size:

A smaller chunk size requires more metadata and hinders performance, but provides better
space utilization with snapshots.

A bigger chunk size requires less metadata manipulation, but makes the snapshot less space
efficient.

Be default, lvm2 starts with a 64KiB chunk size and estimates good metadata size for such chunk size.
The minimal metadata size lvm2 can create and use is 2 MiB. If the metadata size needs to be larger
than 128 MiB it begins to increase the chunk size, so the metadata size stays compact. However, this
may result in some big chunk size values, which are less space efficient for snapshot usage. In such cases,
a smaller chunk size and bigger metadata size is a better option.

To specify the chunk size according to your requirement, use the -c or --chunksize parameter to
overrule lvm2 estimated chunk size. Be aware that you cannot change the chunk size once the thinpool
is created.

If the volume data size is in the range of TiB, use ~15.8GiB as the metadata size, which is the maximum
supported size, and set the chunk size according to your requirement. But, note that it is not possible to
increase the metadata size if you need to extend the volume’s data size and have a small chunk size.

NOTE

Using the inappropriate combination of chunk size and metadata size may result in
potentially problematic situation, when user runs out of space in metadata or they may
not further grow their thin-pool size because of limited maximum addressable thin-pool
data size.

Additional resources

lvmthin(7) man page

11.6. THINLY-PROVISIONED SNAPSHOT VOLUMES

Red Hat Enterprise Linux supports thinly-provisioned snapshot volumes. A snapshot of a thin logical
volume also creates a thin logical volume (LV). A thin snapshot volume has the same characteristics as
any other thin volume. You can independently activate the volume, extend the volume, rename the
volume, remove the volume, and even snapshot the volume.

NOTE

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

124



NOTE

Similarly to all LVM snapshot volumes, and all thin volumes, thin snapshot volumes are not
supported across the nodes in a cluster. The snapshot volume must be exclusively
activated on only one cluster node.

Traditional snapshots must allocate new space for each snapshot created, where data is preserved as
changes are made to the origin. But thin-provisioning snapshots share the same space with the origin.
Snapshots of thin LVs are efficient because the data blocks common to a thin LV and any of its
snapshots are shared. You can create snapshots of thin LVs or from the other thin snapshots. Blocks
common to recursive snapshots are also shared in the thin pool.

Thin snapshot volumes provide the following benefits:

Increasing the number of snapshots of the origin has a negligible impact on performance.

A thin snapshot volume can reduce disk usage because only the new data is written and is not
copied to each snapshot.

There is no need to simultaneously activate the thin snapshot volume with the origin, which is a
requirement of traditional snapshots.

When restoring an origin from a snapshot, it is not required to merge the thin snapshot. You can
remove the origin and instead use the snapshot. Traditional snapshots have a separate volume
where they store changes that must be copied back, that is, merged to the origin to reset it.

There is a significantly higher limit on the number of allowed snapshots as compared to the
traditional snapshots.

Although there are many advantages for using thin snapshot volumes, there are some use cases for
which the traditional LVM snapshot volume feature might be more appropriate to your needs. You can
use traditional snapshots with all types of volumes. However, to use thin-snapshots requires you to use
thin-provisioning.

NOTE

You cannot limit the size of a thin snapshot volume; the snapshot uses all of the space in
the thin pool, if necessary. In general, you should consider the specific requirements of
your site when deciding which snapshot format to use.

By default, a thin snapshot volume is skipped during normal activation commands.

11.7. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES

Using thin-provisioned snapshot volumes, you can have more virtual devices stored on the same data
volume.

IMPORTANT

When creating a thin snapshot volume, do not specify the size of the volume. If you
specify a size parameter, the snapshot that will be created will not be a thin snapshot
volume and will not use the thin pool for storing data. For example, the command 
lvcreate -s vg/thinvolume -L10M will not create a thin snapshot, even though the origin
volume is a thin volume.

CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED VOLUMES (THIN VOLUMES)

125



Thin snapshots can be created for thinly-provisioned origin volumes, or for origin volumes that are not
thinly-provisioned. The following procedure describes different ways to create a thinly-provisioned
snapshot volume.

Prerequisites

You have created a thinly-provisioned logical volume. For more information, see Overview of
thin provisioning.

Procedure

Create a thinly-provisioned snapshot volume. The following command creates a thinly-
provisioned snapshot volume named as mysnapshot1 of the thinly-provisioned logical volume
vg001/thinvolume:

# lvcreate -s --name mysnapshot1 vg001/thinvolume
  Logical volume "mysnapshot1" created

# lvs
  LV          VG       Attr     LSize   Pool       Origin     Data%  Move Log Copy%  Convert
  mysnapshot1 vg001    Vwi-a-tz   1.00g mythinpool thinvolume   0.00
  mythinpool  vg001    twi-a-tz 100.00m                         0.00
  thinvolume  vg001    Vwi-a-tz   1.00g mythinpool              0.00

NOTE

When using thin provisioning, it is important that the storage administrator
monitor the storage pool and add more capacity if it starts to become full. For
information about extending the size of a thin volume, see Creating thinly-
provisioned logical volumes .

You can also create a thinly-provisioned snapshot of a non-thinly-provisioned logical volume.
Since the non-thinly-provisioned logical volume is not contained within a thin pool, it is referred
to as an external origin. External origin volumes can be used and shared by many thinly-
provisioned snapshot volumes, even from different thin pools. The external origin must be
inactive and read-only at the time the thinly-provisioned snapshot is created.
The following example creates a thin snapshot volume of the read-only, inactive logical volume
named origin_volume. The thin snapshot volume is named mythinsnap. The logical volume
origin_volume then becomes the thin external origin for the thin snapshot volume mythinsnap in
volume group vg001 that uses the existing thin pool vg001/pool. The origin volume must be in
the same volume group as the snapshot volume. Do not specify the volume group when
specifying the origin logical volume.

# lvcreate -s --thinpool vg001/pool origin_volume --name mythinsnap

You can create a second thinly-provisioned snapshot volume of the first snapshot volume by
executing the following command.

# lvcreate -s vg001/mysnapshot1 --name mysnapshot2
Logical volume "mysnapshot2" created.

To create a third thinly-provisioned snapshot volume, use the following command:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

126



# lvcreate -s vg001/mysnapshot2 --name mysnapshot3
Logical volume "mysnapshot3" created.

Verification

Display a list of all ancestors and descendants of a thin snapshot logical volume:

$ lvs -o name,lv_ancestors,lv_descendants vg001
  LV           Ancestors                           Descendants
  mysnapshot2  mysnapshot1,thinvolume              mysnapshot3
  mysnapshot1  thinvolume              mysnapshot2,mysnapshot3
  mysnapshot3  mysnapshot2,mysnapshot1,thinvolume
  mythinpool
  thinvolume                             mysnapshot1,mysnapshot2,mysnapshot3

Here,

thinvolume is an origin volume in volume group vg001.

mysnapshot1 is a snapshot of thinvolume

mysnapshot2 is a snapshot of mysnapshot1

mysnapshot3 is a snapshot of mysnapshot2

NOTE

The lv_ancestors and lv_descendants fields display existing dependencies.
However, they do not track removed entries which can break a dependency chain
if the entry was removed from the middle of the chain.

Additional resources

lvcreate(8) man page

11.8. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES WITH
THE WEB CONSOLE

You can create snapshots of thin logical volumes in the RHEL web console to backup changes recorded
on the disk from the last snapshot.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

A thin-provisioned volume is created.

Procedure

1. Log in to the RHEL 8 web console.

CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED VOLUMES (THIN VOLUMES)

127

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console


2. Click Storage.

3. In the Storage table, click the volume group in which you want to create thin volumes.

4. On the Logical volume group page, scroll to the LVM2 logical volumes section and click the
pool in which you want to create the thin logical volumes.

5. On the Pool for thinly provisioned LVM2 logical volumes page, scroll to the Thinly
provisioned LVM2 logical volumes section and click the menu button, ⋮, next to the logical
volume.

6. From the drop-down menu, select Create snapshot.

7. In the Name field, enter a snapshot name.

8. Click Create.

9. On the Pool for thinly provisioned LVM2 logical volumes page, scroll to the Thinly
provisioned LVM2 logical volumes section and click the menu button, ⋮, next to the newly
created snapshot.

10. From the drop-down menu, select Activate to activate the volume.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

128



CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED VOLUMES (THIN VOLUMES)

129



CHAPTER 12. ENABLING CACHING TO IMPROVE LOGICAL
VOLUME PERFORMANCE

You can add caching to an LVM logical volume to improve performance. LVM then caches I/O
operations to the logical volume using a fast device, such as an SSD.

The following procedures create a special LV from the fast device, and attach this special LV to the
original LV to improve the performance.

12.1. CACHING METHODS IN LVM

LVM provides the following kinds of caching. Each one is suitable for different kinds of I/O patterns on
the logical volume.

dm-cache

This method speeds up access to frequently used data by caching it on the faster volume. The
method caches both read and write operations.
The dm-cache method creates logical volumes of the type cache.

dm-writecache

This method caches only write operations. The faster volume stores the write operations and then
migrates them to the slower disk in the background. The faster volume is usually an SSD or a
persistent memory (PMEM) disk.
The dm-writecache method creates logical volumes of the type writecache.

Additional resources

lvmcache(7) man page

12.2. LVM CACHING COMPONENTS

LVM provides support for adding a cache to LVM logical volumes. LVM caching uses the following LVM
logical volume types:

Main LV

The larger, slower, and original volume.

Cache pool LV

A composite LV that you can use for caching data from the main LV. It has two sub-LVs: data for
holding cache data and metadata for managing the cache data. You can configure specific disks for
data and metadata. You can use the cache pool only with dm-cache.

Cachevol LV

A linear LV that you can use for caching data from the main LV. You cannot configure separate disks
for data and metadata. cachevol can be only used with either dm-cache or dm-writecache.

All of these associated LVs must be in the same volume group.

You can combine a main logical volume (LV) with a faster, usually smaller, LV that holds the cached data.
The fast LV is created from fast block devices, such as SSD drives. When you enable caching for a logical
volume, LVM renames and hides the original volumes, and presents a new logical volume that is

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

130



composed of the original logical volumes. The composition of the new logical volume depends on the
caching method and whether you are using the cachevol or cachepool option.

The cachevol and cachepool options expose different levels of control over the placement of the
caching components:

With the cachevol option, the faster device stores both the cached copies of data blocks and
the metadata for managing the cache.

With the cachepool option, separate devices can store the cached copies of data blocks and
the metadata for managing the cache.
The dm-writecache method is not compatible with cachepool.

In all configurations, LVM exposes a single resulting device, which groups together all the caching
components. The resulting device has the same name as the original slow logical volume.

Additional resources

lvmcache(7) man page

Creating and managing thin provisioned volumes (thin volumes)

12.3. ENABLING DM-CACHE CACHING FOR A LOGICAL VOLUME

This procedure enables caching of commonly used data on a logical volume using the dm-cache method.

Prerequisites

A slow logical volume that you want to speed up using dm-cache exists on your system.

The volume group that contains the slow logical volume also contains an unused physical volume
on a fast block device.

Procedure

1. Create a cachevol volume on the fast device:

# lvcreate --size cachevol-size --name <fastvol> <vg> </dev/fast-pv>

Replace the following values:

cachevol-size

The size of the cachevol volume, such as 5G

fastvol

A name for the cachevol volume

vg

The volume group name

/dev/fast-pv

The path to the fast block device, such as /dev/sdf

Example 12.1. Creating a cachevol volume

CHAPTER 12. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

131

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_logical_volumes/index#creating-and-managing-thin-provisioned-volumes_configuring-and-managing-logical-volumes


# lvcreate --size 5G --name fastvol vg /dev/sdf
Logical volume "fastvol" created.

2. Attach the cachevol volume to the main logical volume to begin caching:

# lvconvert --type cache --cachevol <fastvol> <vg/main-lv>

Replace the following values:

fastvol

The name of the cachevol volume

vg

The volume group name

main-lv

The name of the slow logical volume

Example 12.2. Attaching the cachevol volume to the main LV

# lvconvert --type cache --cachevol fastvol vg/main-lv
Erase all existing data on vg/fastvol? [y/n]: y
Logical volume vg/main-lv is now cached.

Verification

Verify if the newly created logical volume has dm-cache enabled:

# lvs --all --options +devices <vg>

LV              Pool           Type   Devices
main-lv         [fastvol_cvol] cache  main-lv_corig(0)
[fastvol_cvol]                 linear /dev/fast-pv
[main-lv_corig]                linear /dev/slow-pv

Additional resources

lvmcache(7) man page

12.4. ENABLING DM-CACHE CACHING WITH A CACHEPOOL FOR A
LOGICAL VOLUME

This procedure enables you to create the cache data and the cache metadata logical volumes
individually and then combine the volumes into a cache pool.

Prerequisites

A slow logical volume that you want to speed up using dm-cache exists on your system.

The volume group that contains the slow logical volume also contains an unused physical volume

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

132



The volume group that contains the slow logical volume also contains an unused physical volume
on a fast block device.

Procedure

1. Create a cachepool volume on the fast device:

# lvcreate --type cache-pool --size <cachepool-size> --name <fastpool> <vg /dev/fast>

Replace the following values:

cachepool-size

The size of the cachepool, such as 5G

fastpool

A name for the cachepool volume

vg

The volume group name

/dev/fast

The path to the fast block device, such as /dev/sdf1

NOTE

You can use --poolmetadata option to specify the location of the pool
metadata when creating the cache-pool.

Example 12.3. Creating a cachepool volume

# lvcreate --type cache-pool --size 5G --name fastpool vg /dev/sde
Logical volume "fastpool" created.

2. Attach the cachepool to the main logical volume to begin caching:

# lvconvert --type cache --cachepool <fastpool> <vg/main>

Replace the following values:

fastpool

The name of the cachepool volume

vg

The volume group name

main

The name of the slow logical volume

Example 12.4. Attaching the cachepool to the main LV

# lvconvert --type cache --cachepool fastpool vg/main
Do you want wipe existing metadata of cache pool vg/fastpool? [y/n]: y
Logical volume vg/main is now cached.

CHAPTER 12. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

133



Verification

Examine the newly created devicevolume with the cache-pool type:

# lvs --all --options +devices <vg>

LV                      Pool               Type        Devices
[fastpool_cpool]                           cache-pool  fastpool_pool_cdata(0)
[fastpool_cpool_cdata]                     linear      /dev/sdf1(4)
[fastpool_cpool_cmeta]                     linear      /dev/sdf1(2)
[lvol0_pmspare]                            linear      /dev/sdf1(0)
main                    [fastpoool_cpool]  cache       main_corig(0)
[main_corig]                               linear      /dev/sdf1(O)

Additional resources

lvcreate(8) man page

lvmcache(7) man page

lvconvert(8) man page

12.5. ENABLING DM-WRITECACHE CACHING FOR A LOGICAL
VOLUME

This procedure enables caching of write I/O operations to a logical volume using the dm-writecache
method.

Prerequisites

A slow logical volume that you want to speed up using dm-writecache exists on your system.

The volume group that contains the slow logical volume also contains an unused physical volume
on a fast block device.

If the slow logical volume is active, deactivate it.

Procedure

1. If the slow logical volume is active, deactivate it:

# lvchange --activate n <vg>/<main-lv>

Replace the following values:

vg

The volume group name

main-lv

The name of the slow logical volume

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

134



2. Create a deactivated cachevol volume on the fast device:

# lvcreate --activate n --size <cachevol-size> --name <fastvol> <vg> </dev/fast-pv>

Replace the following values:

cachevol-size

The size of the cachevol volume, such as 5G

fastvol

A name for the cachevol volume

vg

The volume group name

/dev/fast-pv

The path to the fast block device, such as /dev/sdf

Example 12.5. Creating a deactivated cachevol volume

# lvcreate --activate n --size 5G --name fastvol vg /dev/sdf
WARNING: Logical volume vg/fastvol not zeroed.
Logical volume "fastvol" created.

3. Attach the cachevol volume to the main logical volume to begin caching:

# lvconvert --type writecache --cachevol <fastvol> <vg/main-lv>

Replace the following values:

fastvol

The name of the cachevol volume

vg

The volume group name

main-lv

The name of the slow logical volume

Example 12.6. Attaching the cachevol volume to the main LV

# lvconvert --type writecache --cachevol fastvol vg/main-lv
Erase all existing data on vg/fastvol? [y/n]?: y
Using writecache block size 4096 for unknown file system block size, logical block 
size 512, physical block size 512.
WARNING: unable to detect a file system block size on vg/main-lv
WARNING: using a writecache block size larger than the file system block size may 
corrupt the file system.
Use writecache block size 4096? [y/n]: y
Logical volume vg/main-lv now has writecache.

4. Activate the resulting logical volume:

CHAPTER 12. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

135



# lvchange --activate y <vg/main-lv>

Replace the following values:

vg

The volume group name

main-lv

The name of the slow logical volume

Verification

Examine the newly created devices:

# lvs --all --options +devices vg

LV                VG Attr       LSize   Pool           Origin           Data%  Meta%  Move Log 
Cpy%Sync Convert Devices
 main-lv          vg Cwi-a-C--- 500.00m [fastvol_cvol] [main-lv_wcorig] 0.00                                    
main-lv_wcorig(0)
 [fastvol_cvol]   vg Cwi-aoC--- 252.00m                                                                         
/dev/sdc1(0)
 [main-lv_wcorig] vg owi-aoC--- 500.00m                                                                         
/dev/sdb1(0)

Additional resources

lvmcache(7) man page

12.6. DISABLING CACHING FOR A LOGICAL VOLUME

This procedure disables dm-cache or dm-writecache caching that is currently enabled on a logical
volume.

Prerequisites

Caching is enabled on a logical volume.

Procedure

1. Deactivate the logical volume:

# lvchange --activate n <vg>/<main-lv>

Replace vg with the volume group name, and main-lv with the name of the logical volume where
caching is enabled.

2. Detach the cachevol or cachepool volume:

# lvconvert --splitcache <vg>/<main-lv>

Replace the following values:

Replace vg with the volume group name, and main-lv with the name of the logical volume where

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

136



Replace vg with the volume group name, and main-lv with the name of the logical volume where
caching is enabled.

Example 12.7. Detaching the cachevol or cachepool volume

# lvconvert --splitcache vg/main-lv
Detaching writecache already clean.
Logical volume vg/main-lv writecache has been detached.

Verification

Check that the logical volumes are no longer attached together:

# lvs --all --options +devices <vg>

LV      Attr       Type   Devices
fastvol -wi------- linear /dev/fast-pv
main-lv -wi------- linear /dev/slow-pv

Additional resources

The lvmcache(7) man page

CHAPTER 12. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

137



CHAPTER 13. LOGICAL VOLUME ACTIVATION
By default, when you create a logical volume, it is in an active state. A logical volume that is an active
state can be used through a block device. An activated logical volume is accessible and is subject to
change.

There are various circumstances, where you need to make an individual logical volume inactive and
therefore unknown to the kernel. You can activate or deactivate individual logical volume with the -a
option of the lvchange command.

The following is the format to deactivate an individual logical volume:

# lvchange -an vg/lv

The following is the format to activate an individual logical volume:

# lvchange -ay vg/lv

You can activate or deactivate all of the logical volumes in a volume group with the -a option of the 
vgchange command. This is the equivalent of running the lvchange -a command on each individual
logical volume in the volume group.

The following is the format to deactivate all of the logical volumes in a volume group:

# vgchange -an vg

The following is the format to activate all of the logical volumes in a volume group:

# vgchange -ay vg

NOTE

During manual activation, the systemd automatically mounts LVM volumes with the
corresponding mount point from the /etc/fstab file unless the systemd-mount unit is
masked.

13.1. CONTROLLING AUTOACTIVATION OF LOGICAL VOLUMES AND
VOLUME GROUPS

Autoactivation of a logical volume refers to the event-based automatic activation of a logical volume
during system startup. As devices become available on the system (device online events), 
systemd/udev runs the lvm2-pvscan service for each device. This service runs the pvscan --cache -
aay device command, which reads the named device. If the device belongs to a volume group, the 
pvscan command will check if all of the physical volumes for that volume group are present on the
system. If so, the command will activate logical volumes in that volume group.

You can set the autoactivation property on a VG or LV. When the autoactivation property is disabled,
the VG or LV will not be activated by a command doing autoactivation, such as vgchange, lvchange, or 
pvscan using -aay option. If autoactivation is disabled on a VG, no LVs will be autoactivated in that VG,
and the autoactivation property has no effect. If autoactivation is enabled on a VG, autoactivation can
be disabled for individual LVs.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

138



Procedure

You can update the autoactivation settings in one of the following ways:

Control autoactivation of a VG using the command line:

# vgchange --setautoactivation <y|n>

Control autoactivation of a LV using the command line:

# lvchange --setautoactivation <y|n>

Control autoactivation of a LV in the /etc/lvm/lvm.conf configuration file using one of the
following configuration options:

global/event_activation
When event_activation is disabled, systemd/udev will autoactivate logical volume only
on whichever physical volumes are present during system startup. If all physical volumes
have not appeared yet, then some logical volumes may not be autoactivated.

activation/auto_activation_volume_list
Setting auto_activation_volume_list to an empty list disables autoactivation entirely.
Setting auto_activation_volume_list to specific logical volumes and volume groups
limits autoactivation to those logical volumes.

Additional resources

/etc/lvm/lvm.conf configuration file

lvmautoactivation(7) man page

13.2. CONTROLLING LOGICAL VOLUME ACTIVATION

You can control the activation of logical volume in the following ways:

Through the activation/volume_list setting in the /etc/lvm/conf file. This allows you to specify
which logical volumes are activated. For information about using this option, see the 
/etc/lvm/lvm.conf configuration file.

By means of the activation skip flag for a logical volume. When this flag is set for a logical
volume, the volume is skipped during normal activation commands.

Alternatively, you can use the --setactivationskip y|n option with the lvcreate or the lvchange
commands to enable or disable the activation skip flag.

Procedure

You can set the activation skip flag on a logical volume in the following ways:

To determine whether the activation skip flag is set for a logical volume run the lvs
command, which displays the k attribute as in the following example:

# lvs vg/thin1s1
  LV         VG  Attr       LSize Pool  Origin
  thin1s1    vg  Vwi---tz-k 1.00t pool0 thin1

You can activate a logical volume with the k attribute set by using the -K or --

CHAPTER 13. LOGICAL VOLUME ACTIVATION

139



You can activate a logical volume with the k attribute set by using the -K or --
ignoreactivationskip option in addition to the standard -ay or --activate y option.

By default, thin snapshot volumes are flagged for activation skip when they are created. You
can control the default activation skip setting on new thin snapshot volumes with the 
auto_set_activation_skip setting in the /etc/lvm/lvm.conf file.

The following command activates a thin snapshot logical volume that has the activation skip
flag set:

# lvchange -ay -K VG/SnapLV

The following command creates a thin snapshot without the activation skip flag:

# lvcreate -n SnapLV -kn -s vg/ThinLV --thinpool vg/ThinPoolLV

The following command removes the activation skip flag from a snapshot logical volume:

# lvchange -kn VG/SnapLV

Verification

Verify if a thin snapshot without the activation skip flag has been created:

# lvs -a -o +devices,segtype
  LV                 VG            Attr       LSize    Pool       Origin Data%  Meta%  Move Log 
Cpy%Sync Convert Devices             Type
  SnapLV             vg            Vwi-a-tz--  100.00m ThinPoolLV ThinLV 0.00                                                        
thin
  ThinLV             vg            Vwi-a-tz--  100.00m ThinPoolLV        0.00                                                        
thin
  ThinPoolLV         vg            twi-aotz--  100.00m                   0.00   10.94                            
ThinPoolLV_tdata(0) thin-pool
  [ThinPoolLV_tdata] vg            Twi-ao----  100.00m                                                           
/dev/sdc1(1)        linear
  [ThinPoolLV_tmeta] vg            ewi-ao----    4.00m                                                           
/dev/sdd1(0)        linear
  [lvol0_pmspare]    vg            ewi-------    4.00m                                                           
/dev/sdc1(0)        linear

13.3. ACTIVATING SHARED LOGICAL VOLUMES

You can control logical volume activation of a shared logical volume with the -a option of the lvchange
and vgchange commands, as follows:

Command Activation

lvchange -ay|-aey Activate the shared logical volume in exclusive mode, allowing only a
single host to activate the logical volume. If the activation fails, as would
happen if the logical volume is active on another host, an error is
reported.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

140



lvchange -asy Activate the shared logical volume in shared mode, allowing multiple
hosts to activate the logical volume concurrently. If the activation fails,
as would happen if the logical volume is active exclusively on another
host, an error is reported. If the logical type prohibits shared access,
such as a snapshot, the command will report an error and fail. Logical
volume types that cannot be used concurrently from multiple hosts
include thin, cache, raid, and snapshot.

lvchange -an Deactivate the logical volume.

Command Activation

13.4. ACTIVATING A LOGICAL VOLUME WITH MISSING DEVICES

You can control whether LVs that are missing devices can be activated by using the lvchange command
with the --activationmode partial|degraded|complete option. The values are described below:

Activation Mode Meaning

complete Allows only logical volumes with no missing physical volumes to be
activated. This is the most restrictive mode.

degraded Allows RAID logical volumes with missing physical volumes to be
activated.

partial Allows any logical volume with missing physical volumes to be activated.
This option should be used for recovery or repair only.

The default value of activationmode is determined by the activationmode setting in the 
/etc/lvm/lvm.conf file. It is used if no command line option is given.

Additional resources

lvmraid(7) man page

CHAPTER 13. LOGICAL VOLUME ACTIVATION

141



CHAPTER 14. LIMITING LVM DEVICE VISIBILITY AND USAGE
You can limit the devices that are visible and usable to Logical Volume Manager (LVM) by controlling
the devices that LVM can scan.

To adjust the configuration of LVM device scanning, edit the LVM device filter settings in the 
/etc/lvm/lvm.conf file. The filters in the lvm.conf file consist of a series of simple regular expressions.
The system applies these expressions to each device name in the /dev directory to decide whether to
accept or reject each detected block device.

14.1. PERSISTENT IDENTIFIERS FOR LVM FILTERING

Traditional Linux device names, such as /dev/sda, are subject to changes during system modifications
and reboots. Persistent Naming Attributes (PNAs) like World Wide Identifier (WWID), Universally Unique
Identifier (UUID), and path names are based on unique characteristics of the storage devices and are
resilient to changes in hardware configurations. This makes them more stable and predictable across
system reboots.

Implementation of persistent device identifiers in LVM filtering enhances the stability and reliability of
LVM configurations. It also reduces the risk of system boot failures associated with the dynamic nature
of device names.

Additional resources

Persistent naming attributes

How to configure lvm filter, when local disk name is not persistent?

14.2. THE LVM DEVICE FILTER

The Logical Volume Manager (LVM) device filter is a list of device name patterns. You can use it to
specify a set of mandatory criteria by which the system can evaluate devices and consider them as valid
for use with LVM. The LVM device filter enables you control over which devices LVM uses. This can help
to prevent accidental data loss or unauthorized access to storage devices.

14.2.1. LVM device filter pattern characteristics

The patterns of LVM device filter are in the form of regular expression. A regular expression delimits
with a character and precedes with either a for acceptance, or r for rejection. The first regular expression
in the list that matches a device determines if LVM accepts or rejects (ignores) a specific device. Then,
LVM looks for the initial regular expression in the list that matches the path of a device. LVM uses this
regular expression to determine whether the device should be approved with an a outcome or rejected
with an r outcome.

If a single device has multiple path names, LVM accesses these path names according to their order of
listing. Before any r pattern, if at least one path name matches an a pattern, LVM approves the device.
However, if all path names are consistent with an r pattern before an a pattern is found, the device is
rejected.

Path names that do not match the pattern do not affect the approval status of the device. If no path
names correspond to a pattern for a device, LVM still approves the device.

For each device on the system, the udev rules generate multiple symlinks. Directories contain symlinks,

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

142

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_storage_devices/persistent-naming-attributes_managing-storage-devices
https://access.redhat.com/solutions/655463


For each device on the system, the udev rules generate multiple symlinks. Directories contain symlinks,
such as /dev/disk/by-id/, /dev/disk/by-uuid/, /dev/disk/by-path/ to ensure that each device on the
system is accessible through multiple path names.

To reject a device in the filter, all of the path names associated with that particular device must match
the corresponding reject r expressions. However, identifying all possible path names to reject can be
challenging. This is why it is better to create filters that specifically accept certain paths and reject all
others, using a series of specific a expressions followed by a single r|.*| expression that rejects
everything else.

While defining a specific device in the filter, use a symlink name for that device instead of the kernel
name. The kernel name for a device can change, such as /dev/sda while certain symlink names do not
change such as /dev/disk/by-id/wwn-*.

The default device filter accepts all devices connected to the system. An ideal user configured device
filter accepts one or more patterns and rejects everything else. For example, the pattern list ending with
r|.*|.

You can find the LVM devices filter configuration in the devices/filter and devices/global_filter
configuration fields in the lvm.conf file. The devices/filter and devices/global_filter configuration
fields are equivalent.

Additional resources

lvm.conf(5) man page

14.2.2. Examples of LVM device filter configurations

The following examples display the filter configurations to control the devices that LVM scans and uses
later. To configure the device filter in the lvm.conf file, see Applying an LVM device filter configuration

NOTE

You might encounter duplicate Physical Volume (PV) warnings when dealing with copied
or cloned PVs. You can set up filters to resolve this. See the example filter configurations
in Example LVM device filters that prevent duplicate PV warnings .

To scan all the devices, enter:

filter = [ "a|.*|" ]

To remove the cdrom device to avoid delays if the drive contains no media, enter:

filter = [ "r|^/dev/cdrom$|" ]

To add all loop devices and remove all other devices, enter:

filter = [ "a|loop|", "r|.*|" ]

To add all loop and SCSI devices and remove all other block devices, enter:

filter = [ "a|loop|", "a|/dev/sd.*|", "r|.*|" ]

CHAPTER 14. LIMITING LVM DEVICE VISIBILITY AND USAGE

143



To add only partition 8 on the first SCSI drive and remove all other block devices, enter:

filter = [ "a|^/dev/sda8$|", "r|.*|" ]

To add all partitions from a specific device identified by WWID along with all multipath devices,
enter:

filter = [ "a|/dev/disk/by-id/<disk-id>.|", "a|/dev/mapper/mpath.|", "r|.*|" ]

The command also removes any other block devices.

Additional resources

lvm.conf(5) man page

Applying an LVM device filter configuration

Example LVM device filters that prevent duplicate PV warnings

14.2.3. Applying an LVM device filter configuration

You can control which devices LVM scans by setting up filters in the lvm.conf configuration file.

Prerequisites

You have prepared the device filter pattern that you want to use.

Procedure

1. Use the following command to test the device filter pattern, without actually modifying the 
/etc/lvm/lvm.conf file. The following includes an example filter configuration.

# lvs --config 'devices{ filter = [ "a|/dev/emcpower.*|", "r|*.|" ] }'

2. Add the device filter pattern in the configuration section devices of the /etc/lvm/lvm.conf file:

filter = [ "a|/dev/emcpower.*|", "r|*.|" ]

3. Scan only necessary devices on reboot:

# dracut --force --verbose

This command rebuilds the initramfs file system so that LVM scans only the necessary devices
at the time of reboot.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

144



CHAPTER 15. CONTROLLING LVM ALLOCATION
By default, a volume group uses the normal allocation policy. This allocates physical extents according
to common-sense rules such as not placing parallel stripes on the same physical volume. You can
specify a different allocation policy (contiguous, anywhere, or cling) by using the --alloc argument of
the vgcreate command. In general, allocation policies other than normal are required only in special
cases where you need to specify unusual or nonstandard extent allocation.

15.1. ALLOCATING EXTENTS FROM SPECIFIED DEVICES

You can restrict the allocation from specific devices by using the device arguments at the end of the
command line with the lvcreate and the lvconvert commands. You can specify the actual extent ranges
for each device for more control. The command only allocates extents for the new logical volume (LV)
by using the specified physical volume (PV) as arguments. It takes available extents from each PV until
they run out and then takes extents from the next PV listed. If there is not enough space on all the listed
PVs for the requested LV size, then command fails. Note that the command only allocates from the
named PVs. Raid LVs use sequential PVs for separate raid images or separate stripes. If the PVs are not
large enough for an entire raid image, then the resulting device use is not entirely predictable.

Procedure

1. Create a volume group (VG):

# vgcreate <vg_name> <PV> ...

Where:

<vg_name> is the name of the VG.

<PV> are the PVs.

2. You can allocate PV to create different volume types, such as linear or raid:

a. Allocate extents to create a linear volume:

# lvcreate -n <lv_name> -L <lv_size> <vg_name> [ <PV> ... ]

Where:

<lv_name> is the name of the LV.

<lv_size> is the size of the LV. Default unit is megabytes.

<vg_name> is the name of the VG.

[ <PV … > ] are the PVs.
You can specify one of the PVs, all of them, or none on the command line:

If you specify one PV, extents for that LV will be allocated from it.

NOTE

If the PV does not have sufficient free extents for the entire LV, then
the lvcreate fails.

If you specify two PVs, extents for that LV will be allocated from one of them, or a

CHAPTER 15. CONTROLLING LVM ALLOCATION

145



If you specify two PVs, extents for that LV will be allocated from one of them, or a
combination of both.

If you do not specify any PV, extents will be allocated from one of the PVs in the
VG, or any combination of all PVs in the VG.

NOTE

In these cases, LVM might not use all of the named or available PVs.
If the first PV has sufficient free extents for the entire LV, then the
other PV will probably not be used. However, if the first PV does not
have a set allocation size of free extents, then LV might be allocated
partly from the first PV and partly from the second PV.

Example 15.1. Allocating extents from one PV

In this example, lv1 extents will be allocated from sda.

# lvcreate -n lv1 -L1G vg /dev/sda

Example 15.2. Allocating extents from two PVs

In this example, lv2 extents will be allocated from either sda, or sdb, or a
combination of both.

# lvcreate -n lv2 L1G vg /dev/sda /dev/sdb

Example 15.3. Allocating extents without specifying PV

In this example, lv3 extents will be allocated from one of the PVs in the VG, or
any combination of all PVs in the VG.

# lvcreate -n lv3 -L1G vg

or

b. Allocate extents to create a raid volume:

# lvcreate --type <segment_type> -m <mirror_images> -n <lv_name> -L <lv_size> 
<vg_name> [ <PV> ... ]

Where:

<segment_type> is the specified segment type (for example raid5, mirror, snapshot).

<mirror_images> creates a raid1 or a mirrored LV with the specified number of images.
For example, -m 1 would result in a raid1 LV with two images.

<lv_name> is the name of the LV.

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

146



<lv_size> is the size of the LV. Default unit is megabytes.

<vg_name> is the name of the VG.

<[PV … ]> are the PVs.
The first raid image will be allocated from the first PV, the second raid image from the
second PV, and so on.

Example 15.4. Allocating raid images from two PVs

In this example, lv4 first raid image will be allocated from sda and second image will
be allocated from sdb.

# lvcreate --type raid1 -m 1 -n lv4 -L1G vg /dev/sda /dev/sdb

Example 15.5. Allocating raid images from three PVs

In this example, lv5 first raid image will be allocated from sda, second image will be
allocated from sdb, and third image will be allocated from sdc.

# lvcreate --type raid1 -m 2 -n lv5 -L1G vg /dev/sda /dev/sdb /dev/sdc

Additional resources

lvcreate(8) man page

lvconvert(8) man page

lvmraid(7) man page

15.2. LVM ALLOCATION POLICIES

When an LVM operation must allocate physical extents for one or more logical volumes (LVs), the
allocation proceeds as follows:

The complete set of unallocated physical extents in the volume group is generated for
consideration. If you supply any ranges of physical extents at the end of the command line, only
unallocated physical extents within those ranges on the specified physical volumes (PVs) are
considered.

Each allocation policy is tried in turn, starting with the strictest policy (contiguous) and ending
with the allocation policy specified using the --alloc option or set as the default for the
particular LV or volume group (VG). For each policy, working from the lowest-numbered logical
extent of the empty LV space that needs to be filled, as much space as possible is allocated,
according to the restrictions imposed by the allocation policy. If more space is needed, LVM
moves on to the next policy.

The allocation policy restrictions are as follows:

The contiguous policy requires that the physical location of any logical extent is adjacent to the
physical location of the immediately preceding logical extent, with the exception of the first
logical extent of a LV.

CHAPTER 15. CONTROLLING LVM ALLOCATION

147



When a LV is striped or mirrored, the contiguous allocation restriction is applied independently
to each stripe or raid image that needs space.

The cling allocation policy requires that the PV used for any logical extent be added to an
existing LV that is already in use by at least one logical extent earlier in that LV.

An allocation policy of normal will not choose a physical extent that shares the same PV as a
logical extent already allocated to a parallel LV (that is, a different stripe or raid image) at the
same offset within that parallel LV.

If there are sufficient free extents to satisfy an allocation request but a normal allocation policy
would not use them, the anywhere allocation policy will, even if that reduces performance by
placing two stripes on the same PV.

You can change the allocation policy by using the vgchange command.

NOTE

Future updates can bring code changes in layout behavior according to the defined
allocation policies. For example, if you supply on the command line two empty physical
volumes that have an identical number of free physical extents available for allocation,
LVM currently considers using each of them in the order they are listed; there is no
guarantee that future releases will maintain that property. If you need a specific layout for
a particular LV, build it up through a sequence of lvcreate and lvconvert steps such that
the allocation policies applied to each step leave LVM no discretion over the layout.

15.3. PREVENTING ALLOCATION ON A PHYSICAL VOLUME

You can prevent allocation of physical extents on the free space of one or more physical volumes with
the pvchange command. This might be necessary if there are disk errors, or if you will be removing the
physical volume.

Procedure

Use the following command to disallow the allocation of physical extents on device_name:

# pvchange -x n /dev/sdk1

You can also allow allocation where it had previously been disallowed by using the -xy arguments
of the pvchange command.

Additional resources

pvchange(8) man page

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

148



CHAPTER 16. GROUPING LVM OBJECTS WITH TAGS
You can assign tags to logical volume management (LVM) objects to group them. With this feature, you
can automate the control of LVM behavior, such as activation, by a group. You can also use tags on LVM
objects as a command.

16.1. LVM OBJECT TAGS

A logical volume management (LVM) tag is a word that is used to group LVM2 objects of the same type.
You can attach tags to objects such as physical volumes, volume groups, and logical volumes , as well as
to hosts in a cluster configuration .

To avoid ambiguity, prefix each tag with @. Each tag is expanded by replacing it with all the objects that
possess that tag and that are of the type expected by its position on the command line.

LVM tags are strings of up to 1024 characters. LVM tags cannot start with a hyphen.

A valid tag consists of a limited range of characters only. The allowed characters are A-Z a-z 0-9 _ + . - / 
= ! : # &.

Only objects in a volume group can be tagged. Physical volumes lose their tags if they are removed from
a volume group; this is because tags are stored as part of the volume group metadata and that is
deleted when a physical volume is removed.

You can apply some commands to all volume groups (VG), logical volumes (LV), or physical volumes
(PV) that have the same tag. The man page of the given command shows the syntax, such as VG|Tag, 
LV|Tag, or PV|Tag when you can substitute a tag name for a VG, LV, or PV name.

16.2. LISTING LVM TAGS

The following example shows how to list LVM tags.

Procedure

Use the following command to list all the logical volumes with the database tag:

# lvs @database

Use the following command to list the currently active host tags:

# lvm tags

16.3. ADDING TAGS TO LVM OBJECTS

You can add tags to LVM objects to group them by using the --addtag option with various volume
management commands.

Prerequisites

The lvm2 package is installed.

Procedure

CHAPTER 16. GROUPING LVM OBJECTS WITH TAGS

149



To add a tag to an existing PV, use:

# pvchange --addtag <@tag> <PV>

To add a tag to an existing VG, use:

# vgchange --addtag <@tag> <VG>

To add a tag to a VG during creation, use:

# vgcreate --addtag <@tag> <VG>

To add a tag to an existing LV, use:

# lvchange --addtag <@tag> <LV>

To add a tag to a LV during creation, use:

# lvcreate --addtag <@tag> ...

16.4. REMOVING TAGS FROM LVM OBJECTS

If you no longer want to keep your LVM objects grouped, you can remove tags from the objects by using
the --deltag option with various volume management commands.

Prerequisites

The lvm2 package is installed.

You have created tags on physical volumes (PV), volume groups (VG), or logical volumes (LV).

Procedure

To remove a tag from an existing PV, use:

# pvchange --deltag @tag PV

To remove a tag from an existing VG, use:

# vgchange --deltag @tag VG

To remove a tag from an existing LV, use:

# lvchange --deltag @tag LV

16.5. DEFINING LVM HOST TAGS

This procedure describes how to define LVM host tags in a cluster configuration. You can define host
tags in the configuration files.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

150



Set hosttags = 1 in the tags section to automatically define host tag using the machine’s host
name.
This allows you to use a common configuration file which can be replicated on all your machines
so they hold identical copies of the file, but the behavior can differ between machines according
to the host name.

For each host tag, an extra configuration file is read if it exists: lvm_hosttag.conf. If that file defines new
tags, then further configuration files will be appended to the list of files to read in.

For example, the following entry in the configuration file always defines tag1, and defines tag2 if the
host name is host1:

tags { tag1 { }  tag2 { host_list = ["host1"] } }

16.6. CONTROLLING LOGICAL VOLUME ACTIVATION WITH TAGS

This procedure describes how to specify in the configuration file that only certain logical volumes should
be activated on that host.

Procedure

For example, the following entry acts as a filter for activation requests (such as vgchange -ay) and only
activates vg1/lvol0 and any logical volumes or volume groups with the database tag in the metadata on
that host:

activation { volume_list = ["vg1/lvol0", "@database" ] }

The special match @* that causes a match only if any metadata tag matches any host tag on that
machine.

As another example, consider a situation where every machine in the cluster has the following entry in
the configuration file:

tags { hosttags = 1 }

If you want to activate vg1/lvol2 only on host db2, do the following:

1. Run lvchange --addtag @db2 vg1/lvol2 from any host in the cluster.

2. Run lvchange -ay vg1/lvol2.

This solution involves storing host names inside the volume group metadata.

CHAPTER 16. GROUPING LVM OBJECTS WITH TAGS

151



CHAPTER 17. TROUBLESHOOTING LVM
You can use Logical Volume Manager (LVM) tools to troubleshoot a variety of issues in LVM volumes
and groups.

17.1. GATHERING DIAGNOSTIC DATA ON LVM

If an LVM command is not working as expected, you can gather diagnostics in the following ways.

Procedure

Use the following methods to gather different kinds of diagnostic data:

Add the -v argument to any LVM command to increase the verbosity level of the command
output. Verbosity can be further increased by adding additional v’s. A maximum of four
such v’s is allowed, for example, -vvvv.

In the log section of the /etc/lvm/lvm.conf configuration file, increase the value of the level
option. This causes LVM to provide more details in the system log.

If the problem is related to the logical volume activation, enable LVM to log messages
during the activation:

i. Set the activation = 1 option in the log section of the /etc/lvm/lvm.conf configuration
file.

ii. Execute the LVM command with the -vvvv option.

iii. Examine the command output.

iv. Reset the activation option to 0.
If you do not reset the option to 0, the system might become unresponsive during low
memory situations.

Display an information dump for diagnostic purposes:

# lvmdump

Display additional system information:

# lvs -v

# pvs --all

# dmsetup info --columns

Examine the last backup of the LVM metadata in the /etc/lvm/backup/ directory and
archived versions in the /etc/lvm/archive/ directory.

Check the current configuration information:

# lvmconfig

Check the /run/lvm/hints cache file for a record of which devices have physical volumes on

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

152



Check the /run/lvm/hints cache file for a record of which devices have physical volumes on
them.

Additional resources

lvmdump(8) man page

17.2. DISPLAYING INFORMATION ABOUT FAILED LVM DEVICES

Troubleshooting information about a failed Logical Volume Manager (LVM) volume can help you
determine the reason of the failure. You can check the following examples of the most common LVM
volume failures.

Example 17.1. Failed volume groups

In this example, one of the devices that made up the volume group myvg failed. The volume group
usability then depends on the type of failure. For example, the volume group is still usable if RAID
volumes are also involved. You can also see information about the failed device.

# vgs --options +devices
 /dev/vdb1: open failed: No such device or address
 /dev/vdb1: open failed: No such device or address
  WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s.
  WARNING: VG myvg is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s (last written to 
/dev/sdb1).
  WARNING: Couldn't find all devices for LV myvg/mylv while checking used and assumed 
devices.

VG    #PV #LV #SN Attr   VSize  VFree  Devices
myvg   2   2   0 wz-pn- <3.64t <3.60t [unknown](0)
myvg   2   2   0 wz-pn- <3.64t <3.60t [unknown](5120),/dev/vdb1(0)

Example 17.2. Failed logical volume

In this example, one of the devices failed. This can be a reason for the logical volume in the volume
group to fail. The command output shows the failed logical volumes.

# lvs --all --options +devices

  /dev/vdb1: open failed: No such device or address
  /dev/vdb1: open failed: No such device or address
  WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s.
  WARNING: VG myvg is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s (last written to 
/dev/sdb1).
  WARNING: Couldn't find all devices for LV myvg/mylv while checking used and assumed 
devices.

  LV    VG  Attr       LSize  Pool Origin Data%  Meta%  Move Log Cpy%Sync Convert Devices
  mylv myvg -wi-a---p- 20.00g                                                     [unknown](0)                                                 
[unknown](5120),/dev/sdc1(0)

CHAPTER 17. TROUBLESHOOTING LVM

153



Example 17.3. Failed image of a RAID logical volume

The following examples show the command output from the pvs and lvs utilities when an image of a
RAID logical volume has failed. The logical volume is still usable.

# pvs

  Error reading device /dev/sdc1 at 0 length 4.

  Error reading device /dev/sdc1 at 4096 length 4.

  Couldn't find device with uuid b2J8oD-vdjw-tGCA-ema3-iXob-Jc6M-TC07Rn.

  WARNING: Couldn't find all devices for LV myvg/my_raid1_rimage_1 while checking used and 
assumed devices.

  WARNING: Couldn't find all devices for LV myvg/my_raid1_rmeta_1 while checking used and 
assumed devices.

  PV           VG         Fmt  Attr PSize    PFree
  /dev/sda2    rhel_bp-01 lvm2 a--  <464.76g    4.00m
  /dev/sdb1    myvg       lvm2 a--  <836.69g  736.68g
  /dev/sdd1    myvg       lvm2 a--  <836.69g <836.69g
  /dev/sde1    myvg       lvm2 a--  <836.69g <836.69g
  [unknown]    myvg       lvm2 a-m  <836.69g  736.68g

# lvs -a --options name,vgname,attr,size,devices myvg

  Couldn't find device with uuid b2J8oD-vdjw-tGCA-ema3-iXob-Jc6M-TC07Rn.

  WARNING: Couldn't find all devices for LV myvg/my_raid1_rimage_1 while checking used and 
assumed devices.

  WARNING: Couldn't find all devices for LV myvg/my_raid1_rmeta_1 while checking used and 
assumed devices.

  LV                  VG   Attr       LSize   Devices
  my_raid1            myvg rwi-a-r-p- 100.00g my_raid1_rimage_0(0),my_raid1_rimage_1(0)
  [my_raid1_rimage_0] myvg iwi-aor--- 100.00g /dev/sdb1(1)
  [my_raid1_rimage_1] myvg Iwi-aor-p- 100.00g [unknown](1)
  [my_raid1_rmeta_0]  myvg ewi-aor---   4.00m /dev/sdb1(0)
  [my_raid1_rmeta_1]  myvg ewi-aor-p-   4.00m [unknown](0)

17.3. REMOVING LOST LVM PHYSICAL VOLUMES FROM A VOLUME
GROUP

If a physical volume fails, you can activate the remaining physical volumes in the volume group and
remove all the logical volumes that used that physical volume from the volume group.

Procedure

1. Activate the remaining physical volumes in the volume group:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

154



# vgchange --activate y --partial myvg

2. Check which logical volumes will be removed:

# vgreduce --removemissing --test myvg

3. Remove all the logical volumes that used the lost physical volume from the volume group:

# vgreduce --removemissing --force myvg

4. Optional: If you accidentally removed logical volumes that you wanted to keep, you can reverse
the vgreduce operation:

# vgcfgrestore myvg

WARNING

If you remove a thin pool, LVM cannot reverse the operation.

17.4. FINDING THE METADATA OF A MISSING LVM PHYSICAL
VOLUME

If the volume group’s metadata area of a physical volume is accidentally overwritten or otherwise
destroyed, you get an error message indicating that the metadata area is incorrect, or that the system
was unable to find a physical volume with a particular UUID.

This procedure finds the latest archived metadata of a physical volume that is missing or corrupted.

Procedure

1. Find the archived metadata file of the volume group that contains the physical volume. The
archived metadata files are located at the /etc/lvm/archive/volume-group-name_backup-
number.vg path:

# cat /etc/lvm/archive/myvg_00000-1248998876.vg

Replace 00000-1248998876 with the backup-number. Select the last known valid metadata
file, which has the highest number for the volume group.

2. Find the UUID of the physical volume. Use one of the following methods.

List the logical volumes:

# lvs --all --options +devices

  Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.

Examine the archived metadata file. Find the UUID as the value labeled id = in the 



CHAPTER 17. TROUBLESHOOTING LVM

155



Examine the archived metadata file. Find the UUID as the value labeled id = in the 
physical_volumes section of the volume group configuration.

Deactivate the volume group using the --partial option:

# vgchange --activate n --partial myvg

  PARTIAL MODE. Incomplete logical volumes will be processed.
  WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-
z1lf4s.
  WARNING: VG myvg is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s (last 
written to /dev/vdb1).
  0 logical volume(s) in volume group "myvg" now active

17.5. RESTORING METADATA ON AN LVM PHYSICAL VOLUME

This procedure restores metadata on a physical volume that is either corrupted or replaced with a new
device. You might be able to recover the data from the physical volume by rewriting the metadata area
on the physical volume.

WARNING

Do not attempt this procedure on a working LVM logical volume. You will lose your
data if you specify the incorrect UUID.

Prerequisites

You have identified the metadata of the missing physical volume. For details, see Finding the
metadata of a missing LVM physical volume.

Procedure

1. Restore the metadata on the physical volume:

# pvcreate --uuid physical-volume-uuid \
           --restorefile /etc/lvm/archive/volume-group-name_backup-number.vg \
           block-device

NOTE

The command overwrites only the LVM metadata areas and does not affect the
existing data areas.

Example 17.4. Restoring a physical volume on /dev/vdb1

The following example labels the /dev/vdb1 device as a physical volume with the following
properties:

The UUID of FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk



Red Hat Enterprise Linux 8 Configuring and managing logical volumes

156

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/troubleshooting-lvm_configuring-and-managing-logical-volumes#finding-the-metadata-of-a-missing-lvm-physical-volume_troubleshooting-lvm


The metadata information contained in VG_00050.vg, which is the most recent good
archived metadata for the volume group

# pvcreate --uuid "FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk" \
           --restorefile /etc/lvm/archive/VG_00050.vg \
           /dev/vdb1

  ...
  Physical volume "/dev/vdb1" successfully created

2. Restore the metadata of the volume group:

# vgcfgrestore myvg

  Restored volume group myvg

3. Display the logical volumes on the volume group:

# lvs --all --options +devices myvg

The logical volumes are currently inactive. For example:

  LV     VG   Attr   LSize   Origin Snap%  Move Log Copy%  Devices
  mylv myvg   -wi--- 300.00G                               /dev/vdb1 (0),/dev/vdb1(0)
  mylv myvg   -wi--- 300.00G                               /dev/vdb1 (34728),/dev/vdb1(0)

4. If the segment type of the logical volumes is RAID, resynchronize the logical volumes:

# lvchange --resync myvg/mylv

5. Activate the logical volumes:

# lvchange --activate y myvg/mylv

6. If the on-disk LVM metadata takes at least as much space as what overrode it, this procedure
can recover the physical volume. If what overrode the metadata went past the metadata area,
the data on the volume may have been affected. You might be able to use the fsck command to
recover that data.

Verification

Display the active logical volumes:

# lvs --all --options +devices

  LV     VG   Attr   LSize   Origin Snap%  Move Log Copy%  Devices
 mylv myvg   -wi--- 300.00G                               /dev/vdb1 (0),/dev/vdb1(0)
 mylv myvg   -wi--- 300.00G                               /dev/vdb1 (34728),/dev/vdb1(0)

17.6. ROUNDING ERRORS IN LVM OUTPUT

CHAPTER 17. TROUBLESHOOTING LVM

157



LVM commands that report the space usage in volume groups round the reported number to 2 decimal
places to provide human-readable output. This includes the vgdisplay and vgs utilities.

As a result of the rounding, the reported value of free space might be larger than what the physical
extents on the volume group provide. If you attempt to create a logical volume the size of the reported
free space, you might get the following error:

Insufficient free extents

To work around the error, you must examine the number of free physical extents on the volume group,
which is the accurate value of free space. You can then use the number of extents to create the logical
volume successfully.

17.7. PREVENTING THE ROUNDING ERROR WHEN CREATING AN LVM
VOLUME

When creating an LVM logical volume, you can specify the number of logical extents of the logical
volume to avoid rounding error.

Procedure

1. Find the number of free physical extents in the volume group:

# vgdisplay myvg

Example 17.5. Free extents in a volume group

For example, the following volume group has 8780 free physical extents:

--- Volume group ---
 VG Name               myvg
 System ID
 Format                lvm2
 Metadata Areas        4
 Metadata Sequence No  6
 VG Access             read/write
[...]
Free  PE / Size       8780 / 34.30 GB

2. Create the logical volume. Enter the volume size in extents rather than bytes.

Example 17.6. Creating a logical volume by specifying the number of extents

# lvcreate --extents 8780 --name mylv myvg

Example 17.7. Creating a logical volume to occupy all the remaining space

Alternatively, you can extend the logical volume to use a percentage of the remaining free
space in the volume group. For example:

# lvcreate --extents 100%FREE --name mylv myvg

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

158



Verification

Check the number of extents that the volume group now uses:

# vgs --options +vg_free_count,vg_extent_count

  VG     #PV #LV #SN  Attr   VSize   VFree  Free  #Ext
  myvg   2   1   0   wz--n- 34.30G    0    0     8780

17.8. LVM METADATA AND THEIR LOCATION ON DISK

LVM headers and metadata areas are available in different offsets and sizes.

The default LVM disk header:

Is found in label_header and pv_header structures.

Is in the second 512-byte sector of the disk. Note that if a non-default location was specified
when creating the physical volume (PV), the header can also be in the first or third sector.

The standard LVM metadata area:

Begins 4096 bytes from the start of the disk.

Ends 1 MiB from the start of the disk.

Begins with a 512 byte sector containing the mda_header structure.

A metadata text area begins after the mda_header sector and goes to the end of the metadata area.
LVM VG metadata text is written in a circular fashion into the metadata text area. The mda_header
points to the location of the latest VG metadata within the text area.

You can print LVM headers from a disk by using the # pvck --dump headers /dev/sda command. This
command prints label_header, pv_header, mda_header, and the location of metadata text if found.
Bad fields are printed with the CHECK prefix.

The LVM metadata area offset will match the page size of the machine that created the PV, so the
metadata area can also begin 8K, 16K or 64K from the start of the disk.

Larger or smaller metadata areas can be specified when creating the PV, in which case the metadata
area may end at locations other than 1 MiB. The pv_header specifies the size of the metadata area.

When creating a PV, a second metadata area can be optionally enabled at the end of the disk. The 
pv_header contains the locations of the metadata areas.

17.9. EXTRACTING VG METADATA FROM A DISK

Choose one of the following procedures to extract VG metadata from a disk, depending on your
situation. For information about how to save extracted metadata, see Saving extracted metadata to a
file.

NOTE

CHAPTER 17. TROUBLESHOOTING LVM

159

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/troubleshooting-lvm_configuring-and-managing-logical-volumes#saving-extracted-metadata-to-a-file_troubleshooting-lvm


NOTE

For repair, you can use backup files in /etc/lvm/backup/ without extracting metadata
from disk.

Procedure

Print current metadata text as referenced from valid mda_header:

# pvck --dump metadata <disk>

Example 17.8. Metadata text from valid mda_header

# pvck --dump metadata /dev/sdb
  metadata text at 172032 crc Oxc627522f # vgname test segno 59
  ---
  <raw metadata from disk>
  ---

Print the locations of all metadata copies found in the metadata area, based on finding a valid 
mda_header:

# pvck --dump metadata_all <disk>

Example 17.9. Locations of metadata copies in the metadata area

# pvck --dump metadata_all /dev/sdb
  metadata at 4608 length 815 crc 29fcd7ab vg test seqno 1 id FaCsSz-1ZZn-mTO4-Xl4i-
zb6G-BYat-u53Fxv
  metadata at 5632 length 1144 crc 50ea61c3 vg test seqno 2 id FaCsSz-1ZZn-mTO4-
Xl4i-zb6G-BYat-u53Fxv
  metadata at 7168 length 1450 crc 5652ea55 vg test seqno 3 id FaCsSz-1ZZn-mTO4-
Xl4i-zb6G-BYat-u53Fxv

Search for all copies of metadata in the metadata area without using an mda_header, for
example, if headers are missing or damaged:

# pvck --dump metadata_search <disk>

Example 17.10. Copies of metadata in the metadata area without using an mda_header

# pvck --dump metadata_search /dev/sdb
  Searching for metadata at offset 4096 size 1044480
  metadata at 4608 length 815 crc 29fcd7ab vg test seqno 1 id FaCsSz-1ZZn-mTO4-Xl4i-
zb6G-BYat-u53Fxv
  metadata at 5632 length 1144 crc 50ea61c3 vg test seqno 2 id FaCsSz-1ZZn-mTO4-
Xl4i-zb6G-BYat-u53Fxv
  metadata at 7168 length 1450 crc 5652ea55 vg test seqno 3 id FaCsSz-1ZZn-mTO4-
Xl4i-zb6G-BYat-u53Fxv

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

160



Include the -v option in the dump command to show the description from each copy of
metadata:

# pvck --dump metadata -v <disk>

Example 17.11. Showing description from each copy of metadata

# pvck --dump metadata -v /dev/sdb
  metadata text at 199680 crc 0x628cf243 # vgname my_vg seqno 40
  ---
my_vg {
id = "dmEbPi-gsgx-VbvS-Uaia-HczM-iu32-Rb7iOf"
seqno = 40
format = "lvm2"
status = ["RESIZEABLE", "READ", "WRITE"]
flags = []
extent_size = 8192
max_lv = 0
max_pv = 0
metadata_copies = 0

physical_volumes {

pv0 {
id = "8gn0is-Hj8p-njgs-NM19-wuL9-mcB3-kUDiOQ"
device = "/dev/sda"

device_id_type = "sys_wwid"
device_id = "naa.6001405e635dbaab125476d88030a196"
status = ["ALLOCATABLE"]
flags = []
dev_size = 125829120
pe_start = 8192
pe_count = 15359
}

pv1 {
id = "E9qChJ-5ElL-HVEp-rc7d-U5Fg-fHxL-2QLyID"
device = "/dev/sdb"

device_id_type = "sys_wwid"
device_id = "naa.6001405f3f9396fddcd4012a50029a90"
status = ["ALLOCATABLE"]
flags = []
dev_size = 125829120
pe_start = 8192
pe_count = 15359
}

This file can be used for repair. The first metadata area is used by default for dump metadata. If the disk
has a second metadata area at the end of the disk, you can use the --settings "mda_num=2" option to
use the second metadata area for dump metadata instead.

CHAPTER 17. TROUBLESHOOTING LVM

161



17.10. SAVING EXTRACTED METADATA TO A FILE

If you need to use dumped metadata for repair, it is required to save extracted metadata to a file with
the -f option and the --setings option.

Procedure

If -f <filename> is added to --dump metadata, the raw metadata is written to the named file.
You can use this file for repair.

If -f <filename> is added to --dump metadata_all or --dump metadata_search, then raw
metadata from all locations is written to the named file.

To save one instance of metadata text from --dump metadata_all|metadata_search add --
settings "metadata_offset=<offset>" where <offset> is from the listing output "metadata at
<offset>".

Example 17.12. Output of the command

# pvck --dump metadata_search --settings metadata_offset=5632 -f meta.txt /dev/sdb
  Searching for metadata at offset 4096 size 1044480
  metadata at 5632 length 1144 crc 50ea61c3 vg test seqno 2 id FaCsSz-1ZZn-mTO4-
Xl4i-zb6G-BYat-u53Fxv
# head -2 meta.txt
test {
id = "FaCsSz-1ZZn-mTO4-Xl4i-zb6G-BYat-u53Fxv"

17.11. REPAIRING A DISK WITH DAMAGED LVM HEADERS AND
METADATA USING THE PVCREATE AND THE VGCFGRESTORE
COMMANDS

You can restore metadata and headers on a physical volume that is either corrupted or replaced with a
new device. You might be able to recover the data from the physical volume by rewriting the metadata
area on the physical volume.

WARNING

These instructions should be used with extreme caution, and only if you are familiar
with the implications of each command, the current layout of the volumes, the
layout that you need to achieve, and the contents of the backup metadata file.
These commands have the potential to corrupt data, and as such, it is
recommended that you contact Red Hat Global Support Services for assistance in
troubleshooting.

Prerequisites

You have identified the metadata of the missing physical volume. For details, see Finding the
metadata of a missing LVM physical volume.



Red Hat Enterprise Linux 8 Configuring and managing logical volumes

162

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/troubleshooting-lvm_configuring-and-managing-logical-volumes#finding-the-metadata-of-a-missing-lvm-physical-volume_troubleshooting-lvm


Procedure

1. Collect the following information needed for the pvcreate and vgcfgrestore commands. You
can collect the information about your disk and UUID by running the # pvs -o+uuid command.

metadata-file is the path to the most recent metadata backup file for the VG, for example, 
/etc/lvm/backup/<vg-name>

vg-name is the name of the VG that has the damaged or missing PV.

UUID of the PV that was damaged on this device is the value taken from the output of the # 
pvs -i+uuid command.

disk is the name of the disk where the PV is supposed to be, for example, /dev/sdb. Be
certain this is the correct disk, or seek help, otherwise following these steps may lead to data
loss.

2. Recreate LVM headers on the disk:

# pvcreate --restorefile <metadata-file> --uuid <UUID> <disk>

Optionally, verify that the headers are valid:

# pvck --dump headers <disk>

3. Restore the VG metadata on the disk:

# vgcfgrestore --file <metadata-file> <vg-name>

Optionally, verify the metadata is restored:

# pvck --dump metadata <disk>

If there is no metadata backup file for the VG, you can get one by using the procedure in Saving
extracted metadata to a file.

Verification

To verify that the new physical volume is intact and the volume group is functioning correctly,
check the output of the following command:

# vgs

Additional resources

pvck(8) man page

Extracting LVM metadata backups from a physical volume

How to repair metadata on physical volume online?

How do I restore a volume group in Red Hat Enterprise Linux if one of the physical volumes that
constitute the volume group has failed?

CHAPTER 17. TROUBLESHOOTING LVM

163

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/troubleshooting-lvm_configuring-and-managing-logical-volumes#saving-extracted-metadata-to-a-file_troubleshooting-lvm
https://access.redhat.com/articles/5807021
https://access.redhat.com/solutions/6211372
https://access.redhat.com/solutions/3334


17.12. REPAIRING A DISK WITH DAMAGED LVM HEADERS AND
METADATA USING THE PVCK COMMAND

This is an alternative to the Repairing a disk with damaged LVM headers and metadata using the
pvcreate and the vgcfgrestore commands. There may be cases where the pvcreate and the 
vgcfgrestore commands do not work. This method is more targeted at the damaged disk.

This method uses a metadata input file that was extracted by pvck --dump, or a backup file from 
/etc/lvm/backup. When possible, use metadata saved by pvck --dump from another PV in the same VG,
or from a second metadata area on the PV. For more information, see Saving extracted metadata to a
file.

Procedure

Repair the headers and metadata on the disk:

# pvck --repair -f <metadata-file> <disk>

where

<metadata-file> is a file containing the most recent metadata for the VG. This can be 
/etc/lvm/backup/vg-name, or it can be a file containing raw metadata text from the pvck --
dump metadata_search command output.

<disk> is the name of the disk where the PV is supposed to be, for example, /dev/sdb. To
prevent data loss, verify that is the correct disk. If you are not certain the disk is correct,
contact Red Hat Support.

NOTE

If the metadata file is a backup file, the pvck --repair should be run on each PV that
holds metadata in VG. If the metadata file is raw metadata that has been extracted from
another PV, the pvck --repair needs to be run only on the damaged PV.

Verification

To check that the new physical volume is intact and the volume group is functioning correctly,
check outputs of the following commands:

# vgs <vgname>

# pvs <pvname>

# lvs <lvname>

Additional resources

pvck(8) man page

Extracting LVM metadata backups from a physical volume .

How to repair metadata on physical volume online?.

How do I restore a volume group in Red Hat Enterprise Linux if one of the physical volumes that

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

164

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/troubleshooting-lvm_configuring-and-managing-logical-volumes#repairing-a-disk-with-damaged-lvm-headers-and-metadata-using-the-pvcreate-and-the-vgcfgrestore-commands_troubleshooting-lvm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/troubleshooting-lvm_configuring-and-managing-logical-volumes#saving-extracted-metadata-to-a-file_troubleshooting-lvm
https://access.redhat.com/articles/5807021
https://access.redhat.com/solutions/6211372


How do I restore a volume group in Red Hat Enterprise Linux if one of the physical volumes that
constitute the volume group has failed?.

17.13. TROUBLESHOOTING LVM RAID

You can troubleshoot various issues in LVM RAID devices to correct data errors, recover devices, or
replace failed devices.

17.13.1. Checking data coherency in a RAID logical volume

LVM provides scrubbing support for RAID logical volumes. RAID scrubbing is the process of reading all
the data and parity blocks in an array and checking to see whether they are coherent. The lvchange --
syncaction repair command initiates a background synchronization action on the array. The following
attributes provide details about data coherency:

The raid_sync_action field displays the current synchronization action that the RAID logical
volume is performing. It can be one of the following values:

idle

Completed all sync actions (doing nothing).

resync

Initializing or resynchronizing an array after an unclean machine shutdown.

recover

Replacing a device in the array.

check

Looking for array inconsistencies.

repair

Looking for and repairing inconsistencies.

The raid_mismatch_count field displays the number of discrepancies found during a check
action.

The Cpy%Sync field displays the progress of the sync actions.

The lv_attr field provides additional indicators. Bit 9 of this field displays the health of the
logical volume, and it supports the following indicators:

m or mismatches

Indicates that there are discrepancies in a RAID logical volume. You can see this character
after the scrubbing operation detects the portions of the RAID, which are not coherent.

r or refresh

Indicates a failed device in a RAID array, even though LVM can read the device label and
considers the device to be operational. Refresh the logical volume to notify the kernel that
the device is now available, or replace the device if you suspect that it failed.

Procedure

1. Optional: Limit the I/O bandwidth that the scrubbing process uses. When you perform a RAID
scrubbing operation, the background I/O required by the sync actions can crowd out other I/O
to LVM devices, such as updates to volume group metadata. This might cause the other LVM
operations to slow down.

CHAPTER 17. TROUBLESHOOTING LVM

165

https://access.redhat.com/solutions/3334


You can control the rate of the scrubbing operation by implementing recovery throttling. You
can set the recovery rate using --maxrecoveryrate Rate[bBsSkKmMgG] or --minrecoveryrate 
Rate[bBsSkKmMgG] with the lvchange --syncaction commands. For more information, see
Minimum and maximum I/O rate options .

Specify the Rate value as an amount per second for each device in the array. If you provide no
suffix, the options assume kiB per second per device.

2. Display the number of discrepancies in the array, without repairing them:

# lvchange --syncaction check my_vg/my_lv

This command initiates a background synchronization action on the array.

3. Optional: View the var/log/syslog file for the kernel messages.

4. Correct the discrepancies in the array:

# lvchange --syncaction repair my_vg/my_lv

This command repairs or replaces failed devices in a RAID logical volume. You can view the 
var/log/syslog file for the kernel messages after executing this command.

Verification

1. Display information about the scrubbing operation:

# lvs -o +raid_sync_action,raid_mismatch_count my_vg/my_lv
LV    VG    Attr       LSize   Pool Origin Data%  Meta%  Move Log Cpy%Sync Convert 
SyncAction Mismatches
my_lv my_vg rwi-a-r--- 500.00m                                    100.00           idle        0

Additional resources

lvchange(8) and lvmraid(7) man pages

Minimum and maximum I/O rate options

17.13.2. Replacing a failed RAID device in a logical volume

RAID is not similar to traditional LVM mirroring. In case of LVM mirroring, remove the failed devices.
Otherwise, the mirrored logical volume would hang while RAID arrays continue running with failed
devices. For RAID levels other than RAID1, removing a device would mean converting to a lower RAID
level, for example, from RAID6 to RAID5, or from RAID4 or RAID5 to RAID0.

Instead of removing a failed device and allocating a replacement, with LVM, you can replace a failed
device that serves as a physical volume in a RAID logical volume by using the --repair argument of the 
lvconvert command.

Prerequisites

The volume group includes a physical volume that provides enough free capacity to replace the
failed device.

If no physical volume with enough free extents is available on the volume group, add a new,

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

166

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/configuring-raid-logical-volumes_configuring-and-managing-logical-volumes#minimum-and-maximum-i-o-rate-options_configuring-raid-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/configuring-raid-logical-volumes_configuring-and-managing-logical-volumes#minimum-and-maximum-i-o-rate-options_configuring-raid-logical-volumes


If no physical volume with enough free extents is available on the volume group, add a new,
sufficiently large physical volume by using the vgextend utility.

Procedure

1. View the RAID logical volume:

# lvs --all --options name,copy_percent,devices my_vg
  LV               Cpy%Sync Devices
  my_lv            100.00   my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]          /dev/sde1(1)
  [my_lv_rimage_1]          /dev/sdc1(1)
  [my_lv_rimage_2]          /dev/sdd1(1)
  [my_lv_rmeta_0]           /dev/sde1(0)
  [my_lv_rmeta_1]           /dev/sdc1(0)
  [my_lv_rmeta_2]           /dev/sdd1(0)

2. View the RAID logical volume after the /dev/sdc device fails:

# lvs --all --options name,copy_percent,devices my_vg
  /dev/sdc: open failed: No such device or address
  Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rimage_1 while checking used and 
assumed devices.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rmeta_1 while checking used and 
assumed devices.
  LV               Cpy%Sync Devices
  my_lv            100.00   my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]          /dev/sde1(1)
  [my_lv_rimage_1]          [unknown](1)
  [my_lv_rimage_2]          /dev/sdd1(1)
  [my_lv_rmeta_0]           /dev/sde1(0)
  [my_lv_rmeta_1]           [unknown](0)
  [my_lv_rmeta_2]           /dev/sdd1(0)

3. Replace the failed device:

# lvconvert --repair my_vg/my_lv
  /dev/sdc: open failed: No such device or address
  Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rimage_1 while checking used and 
assumed devices.
  WARNING: Couldn't find all devices for LV my_vg/my_lv_rmeta_1 while checking used and 
assumed devices.
Attempt to replace failed RAID images (requires full device resync)? [y/n]: y
Faulty devices in my_vg/my_lv successfully replaced.

4. Optional: Manually specify the physical volume that replaces the failed device:

# lvconvert --repair my_vg/my_lv replacement_pv

5. Examine the logical volume with the replacement:

# lvs --all --options name,copy_percent,devices my_vg

CHAPTER 17. TROUBLESHOOTING LVM

167



  /dev/sdc: open failed: No such device or address
  /dev/sdc1: open failed: No such device or address
  Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
  LV               Cpy%Sync Devices
  my_lv            43.79    my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]          /dev/sde1(1)
  [my_lv_rimage_1]          /dev/sdb1(1)
  [my_lv_rimage_2]          /dev/sdd1(1)
  [my_lv_rmeta_0]           /dev/sde1(0)
  [my_lv_rmeta_1]           /dev/sdb1(0)
  [my_lv_rmeta_2]           /dev/sdd1(0)

Until you remove the failed device from the volume group, LVM utilities still indicate that LVM
cannot find the failed device.

6. Remove the failed device from the volume group:

# vgreduce --removemissing my_vg

Verification

1. View the available physical volumes after removing the failed device:

# pvscan
PV /dev/sde1 VG rhel_virt-506 lvm2 [<7.00 GiB / 0 free]
PV /dev/sdb1 VG my_vg lvm2 [<60.00 GiB / 59.50 GiB free]
PV /dev/sdd1 VG my_vg lvm2 [<60.00 GiB / 59.50 GiB free]
PV /dev/sdd1 VG my_vg lvm2 [<60.00 GiB / 59.50 GiB free]

2. Examine the logical volume after the replacing the failed device:

# lvs --all --options name,copy_percent,devices my_vg
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
  [my_lv_rimage_0]          /dev/sde1(1)
  [my_lv_rimage_1]          /dev/sdb1(1)
  [my_lv_rimage_2]          /dev/sdd1(1)
  [my_lv_rmeta_0]           /dev/sde1(0)
  [my_lv_rmeta_1]           /dev/sdb1(0)
  [my_lv_rmeta_2]           /dev/sdd1(0)

Additional resources

lvconvert(8) and vgreduce(8) man pages

17.14. TROUBLESHOOTING DUPLICATE PHYSICAL VOLUME
WARNINGS FOR MULTIPATHED LVM DEVICES

When using LVM with multipathed storage, LVM commands that list a volume group or logical volume
might display messages such as the following:

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

168



Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/dm-5 not /dev/sdd
Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/emcpowerb not /dev/sde
Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/sddlmab not /dev/sdf

You can troubleshoot these warnings to understand why LVM displays them, or to hide the warnings.

17.14.1. Root cause of duplicate PV warnings

When a multipath software such as Device Mapper Multipath (DM Multipath), EMC PowerPath, or
Hitachi Dynamic Link Manager (HDLM) manages storage devices on the system, each path to a
particular logical unit (LUN) is registered as a different SCSI device.

The multipath software then creates a new device that maps to those individual paths. Because each
LUN has multiple device nodes in the /dev directory that point to the same underlying data, all the
device nodes contain the same LVM metadata.

Table 17.1. Example device mappings in different multipath software

Multipath software SCSI paths to a LUN Multipath device mapping to
paths

DM Multipath /dev/sdb and /dev/sdc /dev/mapper/mpath1 or 
/dev/mapper/mpatha

EMC PowerPath /dev/emcpowera

HDLM /dev/sddlmab

As a result of the multiple device nodes, LVM tools find the same metadata multiple times and report
them as duplicates.

17.14.2. Cases of duplicate PV warnings

LVM displays the duplicate PV warnings in either of the following cases:

Single paths to the same device

The two devices displayed in the output are both single paths to the same device.
The following example shows a duplicate PV warning in which the duplicate devices are both single
paths to the same device.

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/sdd not /dev/sdf

If you list the current DM Multipath topology using the multipath -ll command, you can find both 
/dev/sdd and /dev/sdf under the same multipath map.

These duplicate messages are only warnings and do not mean that the LVM operation has failed.
Rather, they are alerting you that LVM uses only one of the devices as a physical volume and ignores
the others.

If the messages indicate that LVM chooses the incorrect device or if the warnings are disruptive to
users, you can apply a filter. The filter configures LVM to search only the necessary devices for
physical volumes, and to leave out any underlying paths to multipath devices. As a result, the

CHAPTER 17. TROUBLESHOOTING LVM

169



warnings no longer appear.

Multipath maps

The two devices displayed in the output are both multipath maps.
The following examples show a duplicate PV warning for two devices that are both multipath maps.
The duplicate physical volumes are located on two different devices rather than on two different
paths to the same device.

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/mapper/mpatha not 
/dev/mapper/mpathc

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/emcpowera not 
/dev/emcpowerh

This situation is more serious than duplicate warnings for devices that are both single paths to the
same device. These warnings often mean that the machine is accessing devices that it should not
access: for example, LUN clones or mirrors.

Unless you clearly know which devices you should remove from the machine, this situation might be
unrecoverable. Red Hat recommends that you contact Red Hat Technical Support to address this
issue.

17.14.3. Example LVM device filters that prevent duplicate PV warnings

The following examples show LVM device filters that avoid the duplicate physical volume warnings that
are caused by multiple storage paths to a single logical unit (LUN).

You can configure the filter for logical volume manager (LVM) to check metadata for all devices.
Metadata includes local hard disk drive with the root volume group on it and any multipath devices. By
rejecting the underlying paths to a multipath device (such as /dev/sdb, /dev/sdd), you can avoid these
duplicate PV warnings, because LVM finds each unique metadata area once on the multipath device
itself.

To accept the second partition on the first hard disk drive and any device mapper (DM)
Multipath devices and reject everything else, enter:

filter = [ "a|/dev/sda2$|", "a|/dev/mapper/mpath.*|", "r|.*|" ]

To accept all HP SmartArray controllers and any EMC PowerPath devices, enter:

filter = [ "a|/dev/cciss/.*|", "a|/dev/emcpower.*|", "r|.*|" ]

To accept any partitions on the first IDE drive and any multipath devices, enter:

filter = [ "a|/dev/hda.*|", "a|/dev/mapper/mpath.*|", "r|.*|" ]

Additional resources

Examples of LVM device filter configurations

17.14.4. Additional resources

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

170



Limiting LVM device visibility and usage

The LVM device filter

CHAPTER 17. TROUBLESHOOTING LVM

171

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/limiting-lvm-device-visibility-and-usage_configuring-and-managing-logical-volumes#the-lvm-device-filter_limiting-lvm-device-visibility-and-usage

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. OVERVIEW OF LOGICAL VOLUME MANAGEMENT
	1.1. LVM ARCHITECTURE
	1.2. ADVANTAGES OF LVM

	CHAPTER 2. MANAGING LOCAL STORAGE BY USING THE RHEL SYSTEM ROLE
	2.1. INTRODUCTION TO THE STORAGE RHEL SYSTEM ROLE
	2.2. CREATING AN XFS FILE SYSTEM ON A BLOCK DEVICE BY USING THE STORAGE RHEL SYSTEM ROLE
	2.3. PERSISTENTLY MOUNTING A FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
	2.4. MANAGING LOGICAL VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE
	2.5. ENABLING ONLINE BLOCK DISCARD BY USING THE STORAGE RHEL SYSTEM ROLE
	2.6. CREATING AND MOUNTING AN EXT4 FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
	2.7. CREATING AND MOUNTING AN EXT3 FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
	2.8. RESIZING AN EXISTING FILE SYSTEM ON LVM BY USING THE STORAGE RHEL SYSTEM ROLE
	2.9. CREATING A SWAP VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
	2.10. CONFIGURING A RAID VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
	2.11. CONFIGURING AN LVM POOL WITH RAID BY USING THE STORAGE RHEL SYSTEM ROLE
	2.12. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE
	2.13. COMPRESSING AND DEDUPLICATING A VDO VOLUME ON LVM BY USING THE STORAGE RHEL SYSTEM ROLE
	2.14. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
	2.15. EXPRESSING POOL VOLUME SIZES AS PERCENTAGE BY USING THE STORAGE RHEL SYSTEM ROLE

	CHAPTER 3. MANAGING LVM PHYSICAL VOLUMES
	3.1. OVERVIEW OF PHYSICAL VOLUMES
	3.2. MULTIPLE PARTITIONS ON A DISK
	3.3. CREATING LVM PHYSICAL VOLUME
	3.4. REMOVING LVM PHYSICAL VOLUMES
	3.5. CREATING LOGICAL VOLUMES IN THE WEB CONSOLE
	3.6. FORMATTING LOGICAL VOLUMES IN THE WEB CONSOLE
	3.7. RESIZING LOGICAL VOLUMES IN THE WEB CONSOLE
	3.8. ADDITIONAL RESOURCES

	CHAPTER 4. MANAGING LVM VOLUME GROUPS
	4.1. CREATING LVM VOLUME GROUP
	4.2. CREATING VOLUME GROUPS IN THE WEB CONSOLE
	4.3. COMBINING LVM VOLUME GROUPS
	4.4. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP
	4.5. SPLITTING A LVM VOLUME GROUP
	4.6. MOVING A VOLUME GROUP TO ANOTHER SYSTEM
	4.7. REMOVING LVM VOLUME GROUPS

	CHAPTER 5. MANAGING LVM LOGICAL VOLUMES
	5.1. OVERVIEW OF LOGICAL VOLUMES
	5.2. CREATING LVM LOGICAL VOLUME
	5.3. CREATING A RAID0 STRIPED LOGICAL VOLUME
	5.4. RENAMING LVM LOGICAL VOLUMES
	5.5. REMOVING A DISK FROM A LOGICAL VOLUME
	5.6. CHANGING PHYSICAL DRIVES IN VOLUME GROUPS USING THE WEB CONSOLE
	5.6.1. Adding physical drives to volume groups in the web console
	5.6.2. Removing physical drives from volume groups in the web console

	5.7. REMOVING LVM LOGICAL VOLUMES
	5.8. MANAGING LVM LOGICAL VOLUMES BY USING RHEL SYSTEM ROLES
	5.8.1. Managing logical volumes by using the storage RHEL system role
	5.8.2. Additional resources

	5.9. REMOVING LVM VOLUME GROUPS

	CHAPTER 6. MODIFYING THE SIZE OF A LOGICAL VOLUME
	6.1. EXTENDING A LOGICAL VOLUME AND FILE SYSTEM
	6.2. REDUCING A LOGICAL VOLUME AND FILE SYSTEM
	6.3. EXTENDING A STRIPED LOGICAL VOLUME

	CHAPTER 7. CUSTOMIZING THE LVM REPORT
	7.1. CONTROLLING FORMAT OF THE LVM DISPLAY
	7.2. SPECIFYING THE UNITS FOR AN LVM REPORT DISPLAY
	7.3. CUSTOMIZING THE LVM CONFIGURATION FILE
	7.4. DEFINING LVM SELECTION CRITERIA

	CHAPTER 8. CONFIGURING LVM ON SHARED STORAGE
	8.1. CONFIGURING LVM FOR VM DISKS
	8.2. CONFIGURING LVM TO USE SAN DISKS ON ONE MACHINE
	8.3. CONFIGURING LVM TO USE SAN DISKS FOR FAILOVER
	8.4. CONFIGURING LVM TO SHARE SAN DISKS AMONG MULTIPLE MACHINES
	8.5. CREATING SHARED LVM DEVICES USING THE STORAGE RHEL SYSTEM ROLE

	CHAPTER 9. CONFIGURING RAID LOGICAL VOLUMES
	9.1. RAID LOGICAL VOLUMES
	9.2. RAID LEVELS AND LINEAR SUPPORT
	9.3. LVM RAID SEGMENT TYPES
	9.4. CREATING RAID LOGICAL VOLUMES
	9.5. CREATING A RAID0 STRIPED LOGICAL VOLUME
	9.6. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE
	9.7. PARAMETERS FOR CREATING A RAID0
	9.8. SOFT DATA CORRUPTION
	9.9. CREATING A RAID LV WITH DM INTEGRITY
	9.10. MINIMUM AND MAXIMUM I/O RATE OPTIONS
	9.11. CONVERTING A LINEAR DEVICE TO A RAID LOGICAL VOLUME
	9.12. CONVERTING AN LVM RAID1 LOGICAL VOLUME TO AN LVM LINEAR LOGICAL VOLUME
	9.13. CONVERTING A MIRRORED LVM DEVICE TO A RAID1 LOGICAL VOLUME
	9.14. COMMANDS TO RESIZE A RAID LOGICAL VOLUME
	9.15. CHANGING THE NUMBER OF IMAGES IN AN EXISTING RAID1 DEVICE
	9.16. SPLITTING OFF A RAID IMAGE AS A SEPARATE LOGICAL VOLUME
	9.17. SPLITTING AND MERGING A RAID IMAGE
	9.18. SETTING A RAID FAULT POLICY
	9.18.1. Setting the RAID fault policy to allocate
	9.18.2. Setting the RAID fault policy to warn

	9.19. REPLACING A RAID DEVICE IN A LOGICAL VOLUME
	9.19.1. Replacing a working RAID device
	9.19.2. Replacing a failed RAID device in a logical volume

	9.20. CHECKING DATA COHERENCY IN A RAID LOGICAL VOLUME
	9.21. CONVERTING A RAID LOGICAL VOLUME TO ANOTHER RAID LEVEL
	9.22. I/O OPERATIONS ON A RAID1 LOGICAL VOLUME
	9.23. RESHAPING A RAID VOLUME
	9.24. CHANGING THE REGION SIZE ON A RAID LOGICAL VOLUME

	CHAPTER 10. SNAPSHOT OF LOGICAL VOLUMES
	10.1. OVERVIEW OF SNAPSHOT VOLUMES
	10.2. CREATING A SNAPSHOT OF THE ORIGINAL VOLUME
	10.3. MERGING SNAPSHOT TO ITS ORIGINAL VOLUME
	10.4. CREATING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE
	10.5. UNMOUNTING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE
	10.6. EXTENDING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE
	10.7. REVERTING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE
	10.8. REMOVING LVM SNAPSHOTS USING THE SNAPSHOT RHEL SYSTEM ROLE

	CHAPTER 11. CREATING AND MANAGING THIN-PROVISIONED VOLUMES (THIN VOLUMES)
	11.1. OVERVIEW OF THIN PROVISIONING
	11.2. CREATING THINLY-PROVISIONED LOGICAL VOLUMES
	11.3. CREATING POOLS FOR THINLY PROVISIONED VOLUMES IN THE WEB CONSOLE
	11.4. CREATING THINLY PROVISIONED LOGICAL VOLUMES IN THE WEB CONSOLE
	11.5. OVERVIEW OF CHUNK SIZE
	11.6. THINLY-PROVISIONED SNAPSHOT VOLUMES
	11.7. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES
	11.8. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES WITH THE WEB CONSOLE

	CHAPTER 12. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE
	12.1. CACHING METHODS IN LVM
	12.2. LVM CACHING COMPONENTS
	12.3. ENABLING DM-CACHE CACHING FOR A LOGICAL VOLUME
	12.4. ENABLING DM-CACHE CACHING WITH A CACHEPOOL FOR A LOGICAL VOLUME
	12.5. ENABLING DM-WRITECACHE CACHING FOR A LOGICAL VOLUME
	12.6. DISABLING CACHING FOR A LOGICAL VOLUME

	CHAPTER 13. LOGICAL VOLUME ACTIVATION
	13.1. CONTROLLING AUTOACTIVATION OF LOGICAL VOLUMES AND VOLUME GROUPS
	13.2. CONTROLLING LOGICAL VOLUME ACTIVATION
	13.3. ACTIVATING SHARED LOGICAL VOLUMES
	13.4. ACTIVATING A LOGICAL VOLUME WITH MISSING DEVICES

	CHAPTER 14. LIMITING LVM DEVICE VISIBILITY AND USAGE
	14.1. PERSISTENT IDENTIFIERS FOR LVM FILTERING
	14.2. THE LVM DEVICE FILTER
	14.2.1. LVM device filter pattern characteristics
	14.2.2. Examples of LVM device filter configurations
	14.2.3. Applying an LVM device filter configuration


	CHAPTER 15. CONTROLLING LVM ALLOCATION
	15.1. ALLOCATING EXTENTS FROM SPECIFIED DEVICES
	15.2. LVM ALLOCATION POLICIES
	15.3. PREVENTING ALLOCATION ON A PHYSICAL VOLUME

	CHAPTER 16. GROUPING LVM OBJECTS WITH TAGS
	16.1. LVM OBJECT TAGS
	16.2. LISTING LVM TAGS
	16.3. ADDING TAGS TO LVM OBJECTS
	16.4. REMOVING TAGS FROM LVM OBJECTS
	16.5. DEFINING LVM HOST TAGS
	16.6. CONTROLLING LOGICAL VOLUME ACTIVATION WITH TAGS

	CHAPTER 17. TROUBLESHOOTING LVM
	17.1. GATHERING DIAGNOSTIC DATA ON LVM
	17.2. DISPLAYING INFORMATION ABOUT FAILED LVM DEVICES
	17.3. REMOVING LOST LVM PHYSICAL VOLUMES FROM A VOLUME GROUP
	17.4. FINDING THE METADATA OF A MISSING LVM PHYSICAL VOLUME
	17.5. RESTORING METADATA ON AN LVM PHYSICAL VOLUME
	17.6. ROUNDING ERRORS IN LVM OUTPUT
	17.7. PREVENTING THE ROUNDING ERROR WHEN CREATING AN LVM VOLUME
	17.8. LVM METADATA AND THEIR LOCATION ON DISK
	17.9. EXTRACTING VG METADATA FROM A DISK
	17.10. SAVING EXTRACTED METADATA TO A FILE
	17.11. REPAIRING A DISK WITH DAMAGED LVM HEADERS AND METADATA USING THE PVCREATE AND THE VGCFGRESTORE COMMANDS
	17.12. REPAIRING A DISK WITH DAMAGED LVM HEADERS AND METADATA USING THE PVCK COMMAND
	17.13. TROUBLESHOOTING LVM RAID
	17.13.1. Checking data coherency in a RAID logical volume
	17.13.2. Replacing a failed RAID device in a logical volume

	17.14. TROUBLESHOOTING DUPLICATE PHYSICAL VOLUME WARNINGS FOR MULTIPATHED LVM DEVICES
	17.14.1. Root cause of duplicate PV warnings
	17.14.2. Cases of duplicate PV warnings
	17.14.3. Example LVM device filters that prevent duplicate PV warnings
	17.14.4. Additional resources



