
Red Hat Enterprise Linux 8

Configuring device mapper multipath

Configuring and managing the Device Mapper Multipath feature

Last Updated: 2024-08-16

Red Hat Enterprise Linux 8 Configuring device mapper multipath

Configuring and managing the Device Mapper Multipath feature

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

With Device mapper multipathing (DM Multipath), you can configure multiple I/O paths between
server nodes and storage arrays into a single device. These I/O paths are physical Storage Area
Network (SAN) connections that can include separate cables, switches, and controllers.
Multipathing aggregates the I/O paths and creates a new device that consists of the aggregated
paths.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. OVERVIEW OF DEVICE MAPPER MULTIPATHING
1.1. ACTIVE/PASSIVE MULTIPATH CONFIGURATION WITH ONE RAID DEVICE
1.2. ACTIVE/PASSIVE MULTIPATH CONFIGURATION WITH TWO RAID DEVICES
1.3. ACTIVE/ACTIVE MULTIPATH CONFIGURATION WITH ONE RAID DEVICE
1.4. DM MULTIPATH COMPONENTS
1.5. THE MULTIPATH COMMAND
1.6. DISPLAYING MULTIPATH TOPOLOGY
1.7. PATH STATUS
1.8. ADDITIONAL RESOURCES

CHAPTER 2. MULTIPATH DEVICES
2.1. MULTIPATH DEVICE IDENTIFIERS
2.2. MULTIPATH DEVICES IN LOGICAL VOLUMES

CHAPTER 3. CONFIGURING DM MULTIPATH
3.1. CHECKING FOR THE DEVICE-MAPPER-MULTIPATH PACKAGE
3.2. SETTING UP BASIC FAILOVER CONFIGURATION WITH DM MULTIPATH
3.3. IGNORING LOCAL DISKS WHEN GENERATING MULTIPATH DEVICES
3.4. CONFIGURING ADDITIONAL STORAGE WITH DM MULTIPATH
3.5. CONFIGURING MULTIPATHING IN INITRAMFS

CHAPTER 4. ENABLING MULTIPATHING ON NVME DEVICES
4.1. NATIVE NVME MULTIPATHING AND DM MULTIPATH
4.2. ENABLING NATIVE NVME MULTIPATHING
4.3. ENABLING DM MULTIPATH ON NVME DEVICES

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE
5.1. CONFIGURATION FILE OVERVIEW
5.2. CONFIGURATION FILE DEFAULTS
5.3. CONFIGURATION FILE MULTIPATHS SECTION
5.4. CONFIGURATION FILE DEVICES SECTION
5.5. CONFIGURATION FILE OVERRIDES SECTION
5.6. DM MULTIPATH OVERRIDES OF THE DEVICE TIMEOUT
5.7. MODIFYING MULTIPATH CONFIGURATION FILE DEFAULTS
5.8. MODIFYING MULTIPATH SETTINGS FOR SPECIFIC DEVICES
5.9. MODIFYING THE MULTIPATH CONFIGURATION FOR SPECIFIC DEVICES WITH PROTOCOL
5.10. MODIFYING MULTIPATH SETTINGS FOR STORAGE CONTROLLERS
5.11. SETTING MULTIPATH VALUES FOR ALL DEVICES

CHAPTER 6. PREVENTING DEVICES FROM MULTIPATHING
6.1. CONDITIONS WHEN DM MULTIPATH CREATES A MULTIPATH DEVICE FOR A PATH
6.2. CRITERIA FOR DISABLING MULTIPATHING ON CERTAIN DEVICES
6.3. DISABLING MULTIPATHING BY WWID
6.4. DISABLING MULTIPATHING BY DEVICE NAME
6.5. DISABLING MULTIPATHING BY DEVICE TYPE
6.6. DISABLING MULTIPATHING BY UDEV PROPERTY
6.7. DISABLING MULTIPATHING BY DEVICE PROTOCOL
6.8. ADDING EXCEPTIONS FOR DEVICES WITH DISABLED MULTIPATHING

CHAPTER 7. MANAGING MULTIPATHED VOLUMES
7.1. RESIZING AN ONLINE MULTIPATH DEVICE

4

5
5
6
7
8
9

10
11

12

13
13
14

16
16
16
17
19

20

22
22
22
24

27
27
28
41

43
46
48
48
49
50
52
53

55
55
56
57
58
59
59
60
61

64
64

Table of Contents

1

. .

. .

. .

7.2. MOVING A ROOT FILE SYSTEM FROM A SINGLE PATH DEVICE TO A MULTIPATH DEVICE
7.3. MOVING A SWAP FILE SYSTEM FROM A SINGLE PATH DEVICE TO A MULTIPATH DEVICE
7.4. DETERMINING DEVICE MAPPER ENTRIES WITH THE DMSETUP COMMAND
7.5. ADMINISTERING THE MULTIPATHD DAEMON

CHAPTER 8. REMOVING STORAGE DEVICES
8.1. SAFE REMOVAL OF STORAGE DEVICES
8.2. REMOVING BLOCK DEVICES AND ASSOCIATED METADATA

CHAPTER 9. TROUBLESHOOTING DM MULTIPATH
9.1. TROUBLESHOOTING ISSUES WITH QUEUE_IF_NO_PATH FEATURE
9.2. TROUBLESHOOTING WITH THE MULTIPATHD INTERACTIVE CONSOLE

CHAPTER 10. CONFIGURING MAXIMUM TIME FOR STORAGE ERROR RECOVERY WITH EH_DEADLINE
10.1. THE EH_DEADLINE PARAMETER

Scenarios when eh_deadline is useful
10.2. SETTING THE EH_DEADLINE PARAMETER

64
66
67
68

70
70
70

74
74
74

76
76
76
76

Red Hat Enterprise Linux 8 Configuring device mapper multipath

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 8 Configuring device mapper multipath

4

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. OVERVIEW OF DEVICE MAPPER MULTIPATHING
DM Multipath provides:

Redundancy

DM Multipath can provide failover in an active/passive configuration. In an active/passive
configuration, only a subset of the paths is used at any time for I/O. If any element of an I/O path
such as the cable, switch, or controller fails, DM Multipath switches to an alternate path.

NOTE

The number of paths is dependent on the setup. Usually, DM Multipath setups have 2, 4,
or 8 paths to the storage, but this is a common setup and other numbers are possible for
the paths.

Improved Performance

DM Multipath can be configured in an active/active mode, where I/O is spread over the paths in a
round-robin fashion. In some configurations, DM Multipath can detect loading on the I/O paths and
dynamically rebalance the load.

1.1. ACTIVE/PASSIVE MULTIPATH CONFIGURATION WITH ONE RAID
DEVICE

In this configuration, there are two Host Bus Adapters (HBAs) on the server, two SAN switches, and two
RAID controllers. Following are the possible failure in this configuration:

HBA failure

Fibre Channel cable failure

SAN switch failure

Array controller port failure

With DM Multipath configured, a failure at any of these points causes DM Multipath to switch to the
alternate I/O path. The following image describes the configuration with two I/O paths from the server
to a RAID device. Here, there is one I/O path that goes through hba1, SAN1, and cntrlr1 and a second
I/O path that goes through hba2, SAN2, and cntrlr2.

Figure 1.1. Active/Passive multipath configuration with one RAID device

CHAPTER 1. OVERVIEW OF DEVICE MAPPER MULTIPATHING

5

Figure 1.1. Active/Passive multipath configuration with one RAID device

1.2. ACTIVE/PASSIVE MULTIPATH CONFIGURATION WITH TWO RAID
DEVICES

In this configuration, there are two HBAs on the server, two SAN switches, and two RAID devices with
two RAID controllers each. With DM Multipath configured, a failure at any of the points of the I/O path
to either of the RAID devices causes DM Multipath to switch to the alternate I/O path for that device.
The following image describes the configuration with two I/O paths to each RAID device. Here, there are
two I/O paths to each RAID device.

Figure 1.2. Active/Passive multipath configuration with two RAID device

Red Hat Enterprise Linux 8 Configuring device mapper multipath

6

Figure 1.2. Active/Passive multipath configuration with two RAID device

1.3. ACTIVE/ACTIVE MULTIPATH CONFIGURATION WITH ONE RAID
DEVICE

In this configuration, there are two HBAs on the server, two SAN switches, and two RAID controllers. The
following image describes the configuration with two I/O paths from the server to a storage device.
Here, I/O can be spread among these two paths.

Figure 1.3. Active/Active multipath configuration with one RAID device

CHAPTER 1. OVERVIEW OF DEVICE MAPPER MULTIPATHING

7

Figure 1.3. Active/Active multipath configuration with one RAID device

1.4. DM MULTIPATH COMPONENTS

The following table describes the DM Multipath components.

Table 1.1. Components of DM Multipath

Component Description

dm_multipath kernel module Reroutes I/O and supports failover for paths and
path groups.

mpathconf utility Configures and enables device mapper multipathing.

multipath command Lists and configures the multipath devices. It is also
executed by udev whenever a block device is added,
to determine if the device should be part of a
multipath device or not.

multipathd daemon Automatically creates and removes multipath
devices and monitors paths; as paths fail and come
back, it may update the multipath device. Allows
interactive changes to multipath devices. Reload the
service if there are any changes to the
/etc/multipath.conf file.

Red Hat Enterprise Linux 8 Configuring device mapper multipath

8

kpartx command Creates device mapper devices for the partitions on
a device. This command is automatically executed by
udev when multipath devices are created to create
partition devices on top of them. The kpartx
command is provided in its own package, but the
device-mapper-multipath package depends on it.

mpathpersist Sets up SCSI-3 persistent reservations on multipath
devices. This command works similarly to the way
sg_persist works for SCSI devices that are not
multipathed, but it handles setting persistent
reservations on all paths of a multipath device. It
coordinates with multipathd to ensure that the
reservations are set up correctly on paths that are
added later. To use this functionality, the
reservation_key attribute must be defined in the
/etc/multipath.conf file. Otherwise the
multipathd daemon will not check for persistent
reservations for newly discovered paths or reinstated
paths.

1.5. THE MULTIPATH COMMAND

The multipath command is used to detect and combine multiple paths to devices. It provides a variety
of options you can use to administer your multipathed devices.

The following table describes some options of the multipath command that you may find useful.

Table 1.2. Useful multipath command options

Option Description

-l Display the current multipath topology gathered
from sysfs and the device mapper.

-ll Display the current multipath topology gathered
from sysfs, the device mapper, and all other
available components on the system.

-f device Remove the named multipath device.

-F Remove all unused multipath devices.

-w device Remove the wwid of the specified device from the
wwids file.

-W Reset the wwids file to include only the current
multipath devices.

-r Force reload of the multipath device.

CHAPTER 1. OVERVIEW OF DEVICE MAPPER MULTIPATHING

9

1.6. DISPLAYING MULTIPATH TOPOLOGY

To effectively monitor paths, troubleshoot multipath issues, or check whether the multipath
configurations are set correctly, you can display the multipath topology.

Procedure

1. Display the multipath device topology:

multipath -ll
mpatha (3600d0230000000000e13954ed5f89300) dm-4 WINSYS,SF2372
size=233G features='1 queue_if_no_path' hwhandler='0' wp=rw
`-+- policy='service-time 0' prio=1 status=active
 `- 6:0:0:0 sdf 8:80 active ready running

The output can be split into three parts. Each part displays information for the following group:

Multipath device information:

mpatha (3600d0230000000000e13954ed5f89300): alias (wwid if it’s different from the
alias)

dm-4: dm device name

WINSYS,SF2372: vendor, product

size=233G: size

features='1 queue_if_no_path': features

hwhandler='0': hardware handler

wp=rw: write permissions

Path group information:

policy='service-time 0': scheduling policy

prio=1: path group priority

status=active: path group status

Path information:

6:0:0:0: host:channel:id:lun

sdf: devnode

8:80: major:minor numbers

active: dm status

ready: path status

running: online status
For more information about the dm, path and online status, see Path status.

Red Hat Enterprise Linux 8 Configuring device mapper multipath

10

Other multipath commands, which are used to list, create, or reload multipath devices, also display the
device topology. However, some information might be unknown and shown as undef in the output. This
is normal behavior. Use the multipath -ll command to view the correct state.

NOTE

In certain cases, such as creating a multipath device, the multipath topology displays a
parameter, which represents if any action was taken. For example, the following command
output shows the create: parameter to represent that a multipath device was created:

create: mpatha (3600d0230000000000e13954ed5f89300) undef WINSYS,SF2372
size=233G features='1 queue_if_no_path' hwhandler='0' wp=undef
`-+- policy='service-time 0' prio=1 status=undef
 `- 6:0:0:0 sdf 8:80 undef ready running

1.7. PATH STATUS

The path status is updated periodically by the multipathd daemon based on the polling interval defined
in the /etc/multipath.conf file. In terms of the kernel, the dm status is similar to the path status. The dm
state will retain its current status until the path checker has completed.

Path status

ready, ghost

The path is up and ready for I/O.

faulty, shaky

The path is down.

i/o pending

The checker is actively checking this path, and the state will be updated shortly.

i/o timeout

The checker did not return success/failure before the timeout period. This is treated the same
as faulty.

removed

The path has been removed from the system, and will shortly be removed from the multipath
device. This is treated the same as faulty.

wild

multipathd was unable to run the path checker, because of an internal error or configuration
issue. This is treated the same as faulty, except multipath will skip many actions on the path.

unchecked

The path checker has not run on this path, either because it has just been discovered, it does not
have an assigned path checker, or the path checker encountered an error. This is treated the
same as wild.

delayed

The path checker returns that the path is up, but multipath is delaying the reinstatement of the
path because the path has recently failed multiple times and multipath has been configured to
delay paths in this case. This is treated the same as faulty.

Dm status

Active

CHAPTER 1. OVERVIEW OF DEVICE MAPPER MULTIPATHING

11

Maps to the ready and ghost path status.

Failed

Maps to all other path status, except i/o pending that does not have an equivalent dm state.

Online status

Running

The device is enabled.

Offline

The device has been disabled.

1.8. ADDITIONAL RESOURCES

multipath(8) and multipathd(8) man pages

/etc/multipath.conf file

Red Hat Enterprise Linux 8 Configuring device mapper multipath

12

CHAPTER 2. MULTIPATH DEVICES
DM Multipath provides a way of organizing the I/O paths logically, by creating a single multipath device
on top of the underlying devices. Without DM Multipath, system treats each path from a server node to
a storage controller as a separate device, even when the I/O path connects the same server node to the
same storage controller.

2.1. MULTIPATH DEVICE IDENTIFIERS

When new devices are under the control of DM Multipath, these devices are created in the
/dev/mapper/ and /dev/ directory.

NOTE

Any devices of the form /dev/dm-X are for internal use only and should never be used by
the administrator directly.

The following describes multipath device names:

When the user_friendly_names configuration option is set to no, the name of the multipath
device is set to World Wide Identifier (WWID). By default, the name of a multipath device is set
to its WWID. The device name would be /dev/mapper/WWID. It is also created in the /dev/
directory, named as /dev/dm-X.

Alternately, you can set the user_friendly_names option to yes in the /etc/multipath.conf file.
This sets the alias in the multipath section to a node-unique name of the form mpathN. The
device name would be /dev/mapper/mpathN and /dev/dm-X. But the device name is not
guaranteed to be the same on all nodes using the multipath device. Similarly, if you set the alias
option in the /etc/multipath.conf file, the name is not automatically consistent across all nodes
in the cluster.

NOTE

This should not cause any difficulties if you use LVM to create logical devices from the
multipath device. To keep your multipath device names consistent in every node, Red Hat
recommends disabling the user_friendly_names option.

For example, a node with two HBAs attached to a storage controller with two ports by means of a single
unzoned FC switch sees four devices: /dev/sda, /dev/sdb, /dev/sdc, and /dev/sdd. DM Multipath
creates a single device with a unique WWID that reroutes I/O to those four underlying devices according
to the multipath configuration.

In addition to the user_friendly_names and alias options, a multipath device also has other attributes.
You can modify these attributes for a specific multipath device by creating an entry for that device in
the multipaths section of the /etc/multipath.conf file.

Additional resources

multipath(8) and multipath.conf(8) man pages

/etc/multipath.conf file

DM Multipath components

CHAPTER 2. MULTIPATH DEVICES

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_device_mapper_multipath/overview-of-device-mapper-multipathing_configuring-device-mapper-multipath#dm-multipath-components_overview-of-device-mapper-multipathing

2.2. MULTIPATH DEVICES IN LOGICAL VOLUMES

After creating multipath devices, you can use the multipath device names as you would use a physical
device name when creating an Logical volume manager (LVM) physical volume. For example, if
/dev/mapper/mpatha is the name of a multipath device, the pvcreate /dev/mapper/mpatha command
marks /dev/mapper/mpatha as a physical volume.

You can use the resulting LVM physical device when you create an LVM volume group just as you would
use any other LVM physical device.

To filter all the sd devices in the /etc/lvm/lvm.conf file, add the filter = ["r/block/", "r/disk/", "r/sd./",
"a/./"] filter in the devices section of the file.

NOTE

If you attempt to create an LVM physical volume on a whole device on which you have
configured partitions, the pvcreate command fails. The Anaconda and Kickstart
installation programs create empty partition tables if you do not specify otherwise for
every block device. If you want to use the whole device instead of creating a partition,
remove the existing partitions from the device. You can remove existing partitions with
the kpartx -d device command and the fdisk utility. If your system has block devices that
are greater than 2Tb, use the parted utility to remove partitions.

When you create an LVM logical volume that uses active/passive multipath arrays as the underlying
physical devices, you can optionally include filters in the /etc/lvm/lvm.conf file to exclude the disks that
underline the multipath devices. This is because if the array automatically changes the active path to the
passive path when it receives I/O, multipath will failover and failback whenever LVM scans the passive
path, if these devices are not filtered.

The kernel changes the active/passive state by automatically detecting the correct hardware handler to
use. For active/passive paths that require intervention to change their state, multipath automatically
uses this hardware handler to do so as necessary. If the kernel does not automatically detect the correct
hardware handler to use, you can configure which hardware handler to use in the multipath.conf file with
the "hardware_handler" option. For active/passive arrays that require a command to make the passive
path active, LVM prints a warning message when this occurs.

Depending on your configuration, LVM may print any of the following messages:

LUN not ready:

end_request: I/O error, dev sdc, sector 0
sd 0:0:0:3: Device not ready: <6>: Current: sense key: Not Ready
 Add. Sense: Logical unit not ready, manual intervention required

Read failed:

/dev/sde: read failed after 0 of 4096 at 0: Input/output error

The following are the reasons for the mentioned errors:

Multipath is not set up on storage devices that are providing active/passive paths to a machine.

Paths are accessed directly, instead of through the multipath device.

Additional resources

Red Hat Enterprise Linux 8 Configuring device mapper multipath

14

Additional resources

lvm.conf man page

DM Multipath components

CHAPTER 2. MULTIPATH DEVICES

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_device_mapper_multipath/overview-of-device-mapper-multipathing_configuring-device-mapper-multipath#dm-multipath-components_overview-of-device-mapper-multipathing

CHAPTER 3. CONFIGURING DM MULTIPATH
You can set up DM Multipath with the mpathconf utility. This utility creates or edits the
/etc/multipath.conf multipath configuration file based on the following scenarios:

If the /etc/multipath.conf file already exists, the mpathconf utility will edit it.

If the /etc/multipath.conf file does not exist, the mpathconf utility will create the
/etc/multipath.conf file from scratch.

3.1. CHECKING FOR THE DEVICE-MAPPER-MULTIPATH PACKAGE

Before setting up DM Multipath on your system, ensure that your system is up-to-date and includes the
device-mapper-multipath package.

Procedure

1. Check if your system includes the device-mapper-multipath package:

rpm -q device-mapper-multipath
device-mapper-multipath-current-package-version

If your system does not include the package, it prints the following:

package device-mapper-multipath is not installed

2. If your system does not include the package, install it by running the following command:

yum install device-mapper-multipath

3.2. SETTING UP BASIC FAILOVER CONFIGURATION WITH DM
MULTIPATH

You can set up DM Multipath for a basic failover configuration and edit the /etc/multipath.conf file
before starting the multipathd daemon.

Prerequisites

Administrative access.

Procedure

1. Enable and initialize the multipath configuration file:

mpathconf --enable

2. Optional: Edit the /etc/multipath.conf file.
Most default settings are already configured, including path_grouping_policy which is set to
failover.

3. Optional: The default naming format of multipath devices is set to /dev/mapper/mpathn
format. If you prefer a different naming format:

Red Hat Enterprise Linux 8 Configuring device mapper multipath

16

a. Configure DM Multipath to use the multipath device WWID as its name, instead of the
mpath_n_ user-friendly naming scheme:

mpathconf --enable --user_friendly_names n

b. Reload the configuration of the DM Multipath daemon:

systemctl reload multipathd.service

4. Start the DM Multipath daemon:

systemctl start multipathd.service

Verification

Confirm that the DM Multipath daemon is running without issues:

systemctl status multipathd.service

Verify the naming format of multipath devices:

ls /dev/mapper/

3.3. IGNORING LOCAL DISKS WHEN GENERATING MULTIPATH
DEVICES

Some machines have local SCSI cards for their internal disks and DM Multipath is not recommended for
these devices. If you set the find_multipaths configuration parameter to yes, you do not have to disable
multipathing on these devices.

If you do not set the find_multipaths configuration parameter to yes, you can use the following
procedure to modify the DM Multipath configuration file to ignore the local disks when configuring
multipath.

Procedure

1. Identify the internal disk using any known parameters such as the device’s model, path or
vendor, and determine its WWID by using any one of the following options:

Display existing multipath devices:

multipath -v2 -l

mpatha (WDC_WD800JD-75MSA3_WD-WMAM9FU71040) dm-2 ATA,WDC WD800JD-
75MS
size=33 GB features="0" hwhandler="0" wp=rw
`-+- policy='round-robin 0' prio=0 status=active
 |- 0:0:0:0 sda 8:0 active undef running

Display additional multipath devices that DM Multipath could create:

multipath -v2 -d

CHAPTER 3. CONFIGURING DM MULTIPATH

17

: mpatha (WDC_WD800JD-75MSA3_WD-WMAM9FU71040) dm-2 ATA,WDC
WD800JD-75MS
size=33 GB features="0" hwhandler="0" wp=undef
`-+- policy='round-robin 0' prio=1 status=undef
 |- 0:0:0:0 sda 8:0 undef ready running

Display device information:

multipathd show paths raw format "%d %w" | grep sda
sda WDC_WD800JD-75MSA3_WD-WMAM9FU71040

In this example, /dev/sda is the internal disk and its WWID is WDC_WD800JD-
75MSA3_WD-WMAM9FU71040.

2. Edit the blacklist section of the /etc/multipath.conf file to ignore this device, using its WWID
attribute:

blacklist {
 wwid WDC_WD800JD-75MSA3_WD-WMAM9FU71040
}

WARNING

Although you could identify the device using its devnode parameter, such
as sda, it would not be a safe procedure, because /dev/sda is not
guaranteed to refer to the same device on reboot.

3. Check for any configuration errors in the /etc/multipath.conf file:

multipath -t > /dev/null

To see the full report, do not discard the command output:

multipath -t

4. If the disk is included in initramfs remake the initramfs. For more information see Configuring
multipathing in initramfs.

5. Reload the /etc/multipath.conf file by reconfiguring the multipathd daemon:

systemctl reload multipathd

NOTE

Red Hat Enterprise Linux 8 Configuring device mapper multipath

18

NOTE

Multipath devices on top of local disks cannot be removed when in use. To ignore such
device, stop all users of the device. For example, by unmounting any filesystem on top of
it and deactivating any logical volumes using it. If this is not possible, you can reboot the
system to remove the multipath device.

Verification

1. Verify that the internal disk is ignored and it is not displayed in the multipath output:

List the multipathed devices:

multipath -v2 -l

List the additional devices that DM Multipath could create:

multipath -v2 -d

Additional resources

multipath.conf(5) man page

3.4. CONFIGURING ADDITIONAL STORAGE WITH DM MULTIPATH

By default, DM Multipath includes built-in configurations for the most common storage arrays, which
support DM Multipath. If your storage array does not already have a configuration, you can add one by
editting the /etc/multipath.conf file.

NOTE

Add additional storage devices during the initial configuration to align the setup with your anticipated
needs. DM Multipath enables adding devices later for scalability or upgrades, but this approach may
require adjusting configurations to ensuring compatibility.

Prerequisites

Administrative access.

Procedure

1. View the default configuration value and supported devices:

multipathd show config

2. Edit the /etc/multipath.conf file to set up your multipath configuration.

Example 3.1. DM Multipath Configuration for HP OPEN-V Storage Device

Set default configurations for all devices managed by DM Multipath

defaults {
 # Enable user-friendly names for devices
 user_friendly_names yes
}

CHAPTER 3. CONFIGURING DM MULTIPATH

19

devices {
 # Define configuration for HP OPEN-V storage
 device {
 vendor "HP"
 pproduct "OPEN-V"
 no_path_retry 18
 }
}

3. Save your changes and close the editor.

4. Update the multipath device list by scanning for new devices:

multipath -r

Verification

Confirm that the multipath devices are recognized correctly:

multipath -ll

3.5. CONFIGURING MULTIPATHING IN INITRAMFS

Setting up multipathing in the initramfs file system is essential for seamless storage functionality,
particularly in scenarios requiring redundancy and load balancing. This setup guarantees that multipath
devices are available early in the boot process, which is crucial for maintaining the integrity of the
storage setup and preventing potential issues.

Prerequisites

Administrative access.

Configured DM multipath on your system.

Procedure

1. Rebuild the initramfs file system with the multipath configuration files:

dracut --force --add multipath

NOTE

When using multipath in the initramfs and modifying its configuration files, remember to
rebuild the initramfs for the changes to tale effect. If your root device employs multipath,
the dracut command will automatically include the multipath module in the initramfs.

2. Optional: If multipath in the initramfs is no longer necessary:

a. Remove the multipath configuration file:

rm /etc/dracut.conf.d/multipath.conf

Red Hat Enterprise Linux 8 Configuring device mapper multipath

20

b. Rebuild the initramfs with the added multipath configuration:

dracut --force --omit multipath

Verification

Check if multipath-related files and configurations are present:

lsinitrd /path/to/initramfs.img -m | grep multipath

NOTE

While verefication steps provided can give you an indication of success, a final test boot-up is
recommended to ensure that the configuration works as expected.

After the reboot, confirm that the multipath devices are recognized correctly:

multipath -ll

CHAPTER 3. CONFIGURING DM MULTIPATH

21

CHAPTER 4. ENABLING MULTIPATHING ON NVME DEVICES
You can multipath Non-volatile Memory Express™ (NVMe™) devices that are connected to your system
over a fabric transport, such as Fibre Channel (FC). You can select between multiple multipathing
solutions.

4.1. NATIVE NVME MULTIPATHING AND DM MULTIPATH

Non-volatile Memory Express™ (NVMe™) devices support a native multipathing functionality. When
configuring multipathing on NVMe, you can select between the standard DM Multipath framework and
the native NVMe multipathing.

Both DM Multipath and native NVMe multipathing support the Asymmetric Namespace Access (ANA)
multipathing scheme of NVMe devices. ANA identifies optimized paths between the controller and the
host, and improves performance.

When native NVMe multipathing is enabled, it applies globally to all NVMe devices. It can provide higher
performance, but does not contain all of the functionality that DM Multipath provides. For example,
native NVMe multipathing supports only the numa and round-robin path selection methods.

Red Hat recommends that you use DM Multipath in Red Hat Enterprise Linux 8 as your default
multipathing solution.

4.2. ENABLING NATIVE NVME MULTIPATHING

The default kernel setting for the nvme_core.multipath option is set to N, which means that the native
Non-volatile Memory Express™ (NVMe™) multipathing is disabled. You can enable native NVMe
multipathing using the native NVMe multipathing solution.

Prerequisites

The NVMe devices are connected to your system. For more information, see Overview of NVMe
over fabric devices.

Procedure

1. Check if native NVMe multipathing is enabled in the kernel:

cat /sys/module/nvme_core/parameters/multipath

The command displays one of the following:

N

Native NVMe multipathing is disabled.

Y

Native NVMe multipathing is enabled.

2. If native NVMe multipathing is disabled, enable it by using one of the following methods:

Using a kernel option:

a. Add the nvme_core.multipath=Y option to the command line:

Red Hat Enterprise Linux 8 Configuring device mapper multipath

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-nvme-over-fabrics-using-nvme-rdma_managing-storage-devices#overview-of-nvme-over-fabric-devices_configuring-nvme-over-fabrics-using-nvme-rdma

grubby --update-kernel=ALL --args="nvme_core.multipath=Y"

b. On the 64-bit IBM Z architecture, update the boot menu:

zipl

c. Reboot the system.

Using a kernel module configuration file:

a. Create the /etc/modprobe.d/nvme_core.conf configuration file with the following
content:

options nvme_core multipath=Y

b. Back up the initramfs file:

cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).bak.$(date
+%m-%d-%H%M%S).img

c. Rebuild the initramfs:

dracut --force --verbose

d. Reboot the system.

3. Optional: On the running system, change the I/O policy on NVMe devices to distribute the I/O
on all available paths:

echo "round-robin" > /sys/class/nvme-subsystem/nvme-subsys0/iopolicy

4. Optional: Set the I/O policy persistently using udev rules. Create the /etc/udev/rules.d/71-
nvme-io-policy.rules file with the following content:

ACTION=="add|change", SUBSYSTEM=="nvme-subsystem", ATTR{iopolicy}="round-
robin"

Verification

1. Verify if your system recognizes the NVMe devices. The following example assumes you have a
connected NVMe over fabrics storage subsystem with two NVMe namespaces:

nvme list

Node SN Model Namespace Usage
Format FW Rev
---------------- -------------------- -- --------- -------------------------
- ---------------- --------
/dev/nvme0n1 a34c4f3a0d6f5cec Linux 1 250.06 GB /
250.06 GB 512 B + 0 B 4.18.0-2
/dev/nvme0n2 a34c4f3a0d6f5cec Linux 2 250.06 GB /
250.06 GB 512 B + 0 B 4.18.0-2

CHAPTER 4. ENABLING MULTIPATHING ON NVME DEVICES

23

2. List all connected NVMe subsystems:

nvme list-subsys

nvme-subsys0 - NQN=testnqn
\
 +- nvme0 fc traddr=nn-0x20000090fadd597a:pn-0x10000090fadd597a host_traddr=nn-
0x20000090fac7e1dd:pn-0x10000090fac7e1dd live
 +- nvme1 fc traddr=nn-0x20000090fadd5979:pn-0x10000090fadd5979 host_traddr=nn-
0x20000090fac7e1dd:pn-0x10000090fac7e1dd live
 +- nvme2 fc traddr=nn-0x20000090fadd5979:pn-0x10000090fadd5979 host_traddr=nn-
0x20000090fac7e1de:pn-0x10000090fac7e1de live
 +- nvme3 fc traddr=nn-0x20000090fadd597a:pn-0x10000090fadd597a host_traddr=nn-
0x20000090fac7e1de:pn-0x10000090fac7e1de live

Check the active transport type. For example, nvme0 fc indicates that the device is connected
over the Fibre Channel transport, and nvme tcp indicates that the device is connected over
TCP.

3. If you edited the kernel options, verify if native NVMe multipathing is enabled on the kernel
command line:

cat /proc/cmdline

BOOT_IMAGE=[...] nvme_core.multipath=Y

4. If you changed the I/O policy, verify if round-robin is the active I/O policy on NVMe devices:

cat /sys/class/nvme-subsystem/nvme-subsys0/iopolicy

round-robin

Additional resources

Configuring kernel command-line parameters

4.3. ENABLING DM MULTIPATH ON NVME DEVICES

You can enable DM Multipath on connected NVMe devices by disabling native NVMe multipathing.

Prerequisites

The NVMe devices are connected to your system. For more information, see Overview of NVMe
over fabric devices.

Procedure

1. Check if the native NVMe multipathing is disabled:

cat /sys/module/nvme_core/parameters/multipath

The command displays one of the following:

N

Red Hat Enterprise Linux 8 Configuring device mapper multipath

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-command-line-parameters_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-nvme-over-fabrics-using-nvme-rdma_managing-storage-devices#overview-of-nvme-over-fabric-devices_configuring-nvme-over-fabrics-using-nvme-rdma

Native NVMe multipathing is disabled.

Y

Native NVMe multipathing is enabled.

2. If the native NVMe multipathing is enabled, disable it by using one of the following methods:

Using a kernel option:

a. Remove the nvme_core.multipath=Y option from the kernel command line:

grubby --update-kernel=ALL --remove-args="nvme_core.multipath=Y"

b. On the 64-bit IBM Z architecture, update the boot menu:

zipl

c. Reboot the system.

Using a kernel module configuration file:

a. Remove the nvme_core multipath=Y option line from the
/etc/modprobe.d/nvme_core.conf file, if it is present.

b. Back up the initramfs file:

cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).bak.$(date
+%m%d-%H%M%S).img

c. Rebuild the initramfs:

cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).bak.$(date
+%m-%d-%H%M%S).img
dracut --force --verbose

d. Reboot the system.

3. Enable DM Multipath:

systemctl enable --now multipathd.service

4. Distribute I/O on all available paths. Add the following content in the /etc/multipath.conf file:

devices {
 device {
 vendor "NVME"
 product ".*"
 path_grouping_policy group_by_prio
 }
}

NOTE

CHAPTER 4. ENABLING MULTIPATHING ON NVME DEVICES

25

NOTE

The /sys/class/nvme-subsystem/nvme-subsys0/iopolicy configuration file has
no effect on the I/O distribution when DM Multipath manages the NVMe devices.

5. Reload the multipathd service to apply the configuration changes:

multipath -r

Verification

Verify if the native NVMe multipathing is disabled:

cat /sys/module/nvme_core/parameters/multipath
N

Verify if DM multipath recognizes the nvme devices:

multipath -l

eui.00007a8962ab241100a0980000d851c8 dm-6 NVME,NetApp E-Series
size=20G features='0' hwhandler='0' wp=rw
`-+- policy='service-time 0' prio=0 status=active
 |- 0:10:2:2 nvme0n2 259:3 active undef running
`-+- policy='service-time 0' prio=0 status=enabled
 |- 4:11:2:2 nvme4n2 259:28 active undef running
`-+- policy='service-time 0' prio=0 status=enabled
 |- 5:32778:2:2 nvme5n2 259:38 active undef running
`-+- policy='service-time 0' prio=0 status=enabled
 |- 6:32779:2:2 nvme6n2 259:44 active undef running

Additional resources

Configuring kernel command-line parameters

Configuring DM Multipath

Red Hat Enterprise Linux 8 Configuring device mapper multipath

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-command-line-parameters_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_device_mapper_multipath/configuring-dm-multipath_configuring-device-mapper-multipath

CHAPTER 5. MODIFYING THE DM MULTIPATH
CONFIGURATION FILE

By default, DM Multipath provides configuration values for the most common uses of multipathing. In
addition, DM Multipath includes support for the most common storage arrays that themselves support
DM Multipath. You can override the default configuration values for DM Multipath by editing the
/etc/multipath.conf configuration file. If necessary, you can also add an unsupported by default storage
array to the configuration file.

For information about the default configuration values, including supported devices, run either of the
following commands:

multipathd show config
multipath -t

NOTE

If you run multipath from the initramfs file system and you make any changes to the
multipath configuration files, you must rebuild the initramfs file system for the changes
to take effect

In the multipath configuration file, you need to specify only the sections that you need for your
configuration, or that you need to change from the default values. If there are sections of the file that
are not relevant to your environment or for which you do not need to override the default values, you
can leave them commented out, as they are in the initial file.

The configuration file allows regular expression description syntax.

5.1. CONFIGURATION FILE OVERVIEW

The multipath configuration file is divided into the following sections:

blacklist

Listing of specific devices that will not be considered for multipath.

blacklist_exceptions

Listing of multipath devices that would otherwise be ignored according to the parameters of the
blacklist section.

defaults

General default settings for DM Multipath.

multipaths

Settings for the characteristics of individual multipath devices. These values overwrite what is
specified in the overrides, devices, and defaults sections of the configuration file.

devices

Settings for the individual storage controllers. These values overwrite what is specified in the
defaults section of the configuration file. If you are using a storage array that is not supported by
default, you may need to create a devices subsection for your array.

overrides

Settings that are applied to all devices. These values overwrite what is specified in the devices and
defaults sections of the configuration file.

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

27

When the system determines the attributes of a multipath device, it checks the settings of the separate
sections from the multipath.conf file in the following order:

1. multipaths section

2. overrides section

3. devices section

4. defaults section

5.2. CONFIGURATION FILE DEFAULTS

The /etc/multipath.conf configuration file contains a defaults section. This section includes the default
configuration of Device Mapper (DM) Multipath. The default values might differ based on your initial
device settings.

The following are the ways to view the default configurations:

If you install your machine on a multipath device, the default multipath configuration applies
automatically. The default configuration includes the following:

For a complete list of the default configuration values, execute either multipath -t or
multipathd show config command.

For a list of configuration options with descriptions, see the multipath.conf man page.

If you did not set up multipathing during installation, execute the mpathconf --enable
command to get the default configuration.

The following table describes the attributes, set in the defaults section of the multipath.conf
configuration file. Attributes specified in the multipaths section have higher priority over values in the
devices section. Attributes specified in the devices section have higher priority over the default values.
Use the overrides section to set attribute values for all device types, even if those device types have a
builtin configuration entry in the devices section. The overrides section has no mandatory attributes.
However, any attribute set in this section takes precedence over values in the devices or defaults
sections.

Table 5.1. Multipath configuration defaults

Attribute Description

polling_interval Specifies the interval between two path checks in seconds. For properly
functioning paths, the interval between checks gradually increases to
max_polling_interval. The default value is 5.

max_polling_interval Specifies the maximum length of the interval between two path checks
in seconds.

The default value is 4 * polling_interval.

find_multipaths Defines the mode for setting up multipath devices. Available values
include:

Red Hat Enterprise Linux 8 Configuring device mapper multipath

28

no: If find_multipaths is set to no, multipath applies rules as with the
strict value and the multipathd daemon applies rules as with the
greedy value.

yes: If there are at least two devices that are not on the blacklist with
the same World Wide Identifier (WWID), or if multipath created a
multipath device with a device WWID before (even if that multipath
device is no longer present), then the device is treated as a multipath
device path.

greedy: Both multipathd and multipath treat every non-blacklisted
device as a multipath device path.

smart: Multipath automatically considers that every non-blacklisted
device is a multipath device path. If a second path, with the same WWID
does not appear within the time set for find_multipaths_timeout,
multipath releases the device and enables it for use by the rest of the
system. The multipathd daemon applies rules as with the yes value.

strict: This value only treats a device as a multipath path, if you create a
multipath device with the device WWID.

The default value is off. The default multipath.conf file sets
find_multipaths to yes.

find_multipaths_timeout This represents the timeout in seconds, to wait for additional paths after
detecting the first one, if find_multipaths smart is set. Possible values
include:

Positive value: If set with a positive value, the timeout applies for all
non-blacklisted devices.

Negative value: If set with a negative value, the timeout applies only to
known devices that have an entry in the multipath hardware table, either
in the built-in table, or in a device section. Other unknown devices use a
timeout of only 1 second to avoid booting delays.

0: The system applies the built-in default for this attribute.

The default value for known hardware is -10. This means that known
devices have a 10 second timeout. Unknown devices have a 1 second
timeout. If the find_multipaths attribute has a value other than smart,
this attribute has no effect.

uxsock_timeout Set the timeout of multipathd interactive commands in milliseconds.

Attribute Description

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

29

For systems with a large number of devices, multipathd interactive
commands might timeout and fail. If this happens, increase this timeout
to resolve the issue.

The default value is 4000.

reassign_maps Enable reassigning of device-mapper maps. With this option, the
multipathd daemon remaps existing device-mapper maps to always
point to the multipath device, not the underlying block devices. Possible
values are yes and no. The default value is no.

verbosity The default verbosity value is 2. Higher values increase the verbosity
level. Valid levels are between 0 and 4.

path_selector Specifies the default algorithm to use in determining what path to use
for the next I/O operation. Possible values include:

round-robin 0: Loop through every path in the path group, sending the
same number of I/O requests, determined by rr_min_io or
rr_min_io_rq, to each.

queue-length 0: Send the next group of I/O requests down the path
with the least number of outstanding I/O requests.

service-time 0: Send the next group of I/O requests down the path
with the shortest estimated service time. This is determined by dividing
the total size of the outstanding I/O to each path by the relative
throughput.

The default value is service-time 0.

path_grouping_policy Specifies the default path grouping policy to apply to unspecified
multipaths. Possible values include:

failover: 1 path per priority group.

multibus: All valid paths in 1 priority group.

group_by_serial: 1 priority group per detected serial number.

group_by_prio: 1 priority group per path priority value. Priorities are
determined by the prio attribute.

group_by_node_name: 1 priority group per target node name. The
/sys/class/fc_transport/target*/node_name directory includes
target node names.

Attribute Description

Red Hat Enterprise Linux 8 Configuring device mapper multipath

30

The default value is failover.

uid_attrs Set this option to activate merging uevents by WWID. This action might
improve uevent processing efficiency. It is also an alternative method to
configure the udev properties to use for determining unique path
identifiers (WWIDs).

The value of this option is a space separated list of records like
type:ATTR, where type is matched against the beginning of the device
node name, and ATTR is the name of the udev property to use for
matching devices.

If you configure this option and it matches the device node name of a
device, it overrides any other configured methods for determining the
WWID for this device.

You can enable uevent merging by setting this value to sd:ID_SERIAL
dasd:ID_UID nvme:ID_WWN.

The default is unset.

prio Specifies the default function to call to obtain a path priority value. For
example, the ALUA bits in SPC-3 provide an exploitable prio value.
Possible values include:

const: Set a priority of 1 to all paths.

emc: Generate the path priority for EMC arrays.

sysfs: Generate the path priority from sysfs. This prioritizer accepts
the optional prio_arg value exclusive_pref_bit. The sysfs value
uses the sysfs attributes access_state and preferred_path.

alua: Generate the path priority based on the SCSI-3 ALUA settings. If
you specify prio alua and prio_args exclusive_pref_bit in your
device configuration, multipath creates a path group that contains only
the path with the exclusive_pref_bit set, and assigns that path group
the highest priority. Refer to the multipath.conf(5) man page for more
information about this type of cases.

ontap: Generate the path priority for NetApp arrays.

rdac: Generate the path priority for LSI/Engenio RDAC controller.

hp_sw: Generate the path priority for Compaq/HP controller in
active/standby mode.

hds: Generate the path priority for Hitachi HDS Modular storage arrays.

Attribute Description

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

31

random: Generate a random priority between 1 and 10.

weightedpath: Generate the path priority based on the regular
expression and the provided priority as an argument. Requires a
prio_args keyword.

path_latency: Generate the path priority based on a latency algorithm.
Requires a prio_args keyword.

ana: Generate the path priority based on the NVMe ANA settings. This
priority routine is hardware dependent.

datacore: Generate the path priority for some DataCore storage
arrays. Requires a prio_args keyword. This priority routine is hardware
dependent.

iet: Generate path priority for iSCSI targets based on IP their address.
Requires a prio_args keyword. This priority routine is available only with
iSCSI.

The default value depends on the detect_prio setting. If detect_prio
is set to yes, then the default priority algorithm is sysfs. The only
exception is for NetAPP E-Series, where the default is alua. If
detect_prio is set to no, the default priority algorithm is const.

prio_args Arguments to pass to the prio function. This applies only to the
following prioritizers:

weighted: Needs a value of the form <hbtl,devname,serial,wwn>
<regex1> <prio1> <regex2> <prio2>

hbtl: The Regex value can be of SCSI H:B:T:L format. For example:
1:0:.:. , *:0:0:.

devname: The Regex value can be in device name format. For example:
sda, sd.e.

serial: The Regex value can be in serial number format. Look up serial
through sysfs, or by running the command multipathd show paths
format "%z".

wwn: The Regex value can be in the form
host_wwnn:host_wwpn:target_wwnn:target_wwpn. These
values can be looked up through sysfs or by running the command
multipathd show paths format %N:%R:%n:%r".

Attribute Description

Red Hat Enterprise Linux 8 Configuring device mapper multipath

32

path_latency: Requires a value in the form io_num= <integer>
base_num=<integer>.

io_num: The number of read IOs, continuously sent to the current path.
This value helps calculate the average path latency. Valid values include
Integer, [2, 200].

base_num: The base number value of logarithmic scale. This value
helps to partition different priority ranks. Valid values include Integer,
[2, 10]. The maximum average latency value is 100s and the minimum
average latency value is 1us.

alua: If the exclusive_pref_bit value is set, paths with the
preferred_path_bit set always create their own path group.

sysfs: If the exclusive_pref_bit value is set, paths with the
preferred_path_bit set always create their own path group.

datacore: Requires a value of the form timeout=<milliseconds>
preferredsds=<name>.

preferredsds: This value is mandatory and it represents the preferred
SDS name.

timeout: This value is optional. Set the timeout for the inquiry in
milliseconds.

iet: Requires a value of the form preferredip=<ip_address>.

preferredip: This value is mandatory. This is the preferred IP address, in
dotted decimal notation, for iSCSI targets.

The default value is unset.

features The default extra features of multipath devices, using the format:
"number_of_features_plus_arguments feature1 …".

Possible values for features include:

queue_if_no_path: The same as setting no_path_retry to queue.

pg_init_retries n: Retry path group initialization up to n times before
failing. The number must be between 1 and 50.

pg_init_delay_msecs msecs: Number of milliseconds before
pg_init retry initiates. The number must be between 0 and 60000.

Attribute Description

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

33

queue_mode mode: Select the queueing mode per multipath device.
The mode value options are bio, rq or mq. These correspond to bio-
based, request-based, and block-multiqueue request-based (blk-mq),
respectively.

By default, the value is unset. The default can also depend on the kernel
parameter dm_mod.use_blk_mq. The two options are mq if it is
already set in the parameter, or rq otherwise.

path_checker Specifies the default method to determine the state of the paths.
Possible values include:

readsector0: Read the first sector of the device.

tur: Issue a TEST UNIT READY command to the device.

emc_clariion: Query the EMC Clariion specific EVPD page 0xC0 to
determine the path.

hp_sw: Check the path state for HP storage arrays with Active/Standby
firmware.

rdac: Check the path state for LSI/Engenio RDAC storage controller.

directio: Read the first sector with direct I/O.

cciss_tur: Check the path state for HP/COMPAQ Smart Array(CCISS)
controllers. This is hardware dependent.

none: Does not check the device. Falls back to use values retrieved from
sysfs.

The default value is tur.

alias_prefix This attribute represents the user_friendly_names prefix.

The default value is mpath.

failback Manages path group failback. Possible values include:

immediate: Specifies immediate failback to the highest priority path
group that contains active paths.

manual: Specifies that there is no immediate failback, but that failback
can happen only with operator intervention.

Attribute Description

Red Hat Enterprise Linux 8 Configuring device mapper multipath

34

followover: Specifies that automatic failback can only be performed
when the first path of a path group becomes active. This keeps a node
from automatically failing back, when another node requested the
failover.

A numeric value greater than zero, specifies deferred failback, and is
expressed in seconds.

The default value is manual.

rr_min_io Specifies the number of I/O requests to route to a path before switching
to the next path in the current path group. This setting is only for
systems running kernels older than 2.6.31. Newer systems should use
rr_min_io_rq. The default value is 1000.

rr_min_io_rq Specifies the number of I/O requests to route to a path, before
switching to the next path in the current path group. Uses a request-
based device-mapper-multipath. This setting can be used on systems
running current kernels. On systems running kernels older than 2.6.31,
use rr_min_io. The default value is 1.

no_path_retry A numeric value for this attribute specifies the number of times that the
path checker must fail for all paths in a multipath device, before
disabling queuing.

A value of fail indicates immediate failure, without queuing.

A value of queue indicates that queuing should not stop until the path is
fixed.

The default value is fail.

user_friendly_names Possible values include:

yes: Specifies that the system can use the /etc/multipath/bindings
file to assign a persistent and unique alias to the multipath, in the form of
mpath<n>.

no: The system uses the WWID as the alias for the multipath. Any device-
specific alias you set in the multipaths section of the configuration file,
overrides this name.

The default value is no.

queue_without_daemon If set to no, the multipathd daemon disables queuing for all devices,
when it is shut down. The default value is no.

Attribute Description

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

35

flush_on_last_del If set to yes, the multipathd daemon disables queuing when the last
path to a device is deleted. The default value is no.

max_fds Sets the maximum number of open file descriptors that can be opened
by multipath and the multipathd daemon. This is equivalent to the
ulimit -n command. The default value is max, which sets this to the
system limit from /proc/sys/fs/nr_open.

checker_timeout The timeout to use for prioritizers and path checkers that issue SCSI
commands with an explicit timeout, in seconds. The
sys/block/sd<x>/device/timeout directory contains the default
value.

fast_io_fail_tmo The number of seconds the SCSI layer waits after a problem is detected
on an FC remote port, before failing I/O to devices on that remote port.
This value must be smaller than the value of dev_loss_tmo. Setting
this to off disables the timeout. The default value is 5. The
fast_io_fail_tmo option overrides the values of the recovery_tmo
and replacement_timeout options of the underlying path devices.

dev_loss_tmo The number of seconds the SCSI layer waits after a problem is detected
on an FC remote port, before removing it from the system. Setting this
to infinity will set this to 2147483647 seconds, or 68 years. The OS
determines the default value.

eh_deadline Specifies the maximum number of seconds the SCSI layer spends
performing error handling, when SCSI devices fail. After this timeout, the
scsi layer performs a full HBA reset. Setting this is necessary in cases
where the rport is never lost, so fast_io_fail_tmo and dev_loss_tmo
never trigger, but scsi commands still hang. When the SCSI error
handler performs the HBA reset, this affects all target paths on that
HBA. The eh_deadline value should only be set in cases where all
targets on the affected HBAs are multipathed.

The default value is unset.

detect_prio If this is set to yes, multipath detects if the device is a SCSI device that
supports Asymmetric Logical Unit Access (ALUA), or a NVMe device
that supports Asymmetric Namespace Access (ANA). If the device
supports ALUA, multipath automatically assigns it the alua prioritizer. If
the device supports ANA, multipath automatically assigns it the ana
prioritizer.

If detect_prio is set to no, or if the device does not support ALUA or
ANA, the prio attribute sets the prioritizer.

The default value is yes.

Attribute Description

Red Hat Enterprise Linux 8 Configuring device mapper multipath

36

uid_attribute Specifies the udev attribute to use for the device WWID.

The default value is device dependent: ID_SERIAL for SCSI devices,
ID_UID for DASD devices, and ID_WWN for NVMe devices.

force_sync If set to yes, this parameter prevents path checkers from running in
async mode. This means that only one checker runs at a time. This is
useful in cases where many multipathd checkers run in parallel, and can
cause significant CPU pressure.

The default value is no.

strict_timing If set to yes, the multipathd daemon starts a new path checker loop
after exactly one second, so that each path check occurs at the exactly
set seconds for polling_interval. On busy systems, path checks might
take longer than one second. The missing ticks are accounted for in the
next round. A warning prints if path checks take longer than the set
seconds for polling_interval.

The default value is no.

retrigger_tries,
retrigger_delay

Use the retrigger_tries and retrigger_delay parameters in
conjunction to make multipathd retrigger uevents. If udev fails to
completely process the original uevents, this leaves multipath unable to
use the device. The retrigger_tries parameter sets the number of
times that multipath tries to retrigger a uevent, in case a device is not
completely set up. The retrigger_delay parameter sets the number of
seconds between retries. Both of these options accept numbers greater
than or equal to 0. Setting the retrigger_tries parameter to 0 disables
retries. Setting the retrigger_delay parameter to 0 causes the uevent
to be reissued on the next loop of the path checker.

The default value of retrigger_tries is 3. The default value of
retrigger_delay is 10.

missing_uev_wait_timeout This attribute controls the number of seconds the multipathd daemon
waits to receive a change event from udev for a newly created
multipath device. After that it automatically enables device reloads. In
most cases, multipathd delays reloads on a device, until it receives a
change uevent from the initial table load.

The default value is 30.

deferred_remove If set to yes, multipathd performs a deferred remove, instead of a
regular remove, when the last path device is deleted. This ensures that if
a multipathed device is in use when a regular remove is performed and
the remove fails, the device is automatically removed, when the last user
closes the device. The default value is no.

Attribute Description

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

37

san_path_err_threshold,
san_path_err_forget_rate,
san_path_err_recovery_time

If you set all three of these attributes to integers greater than zero, they
enable the multipathd daemon to keep shaky paths from reinstating, by
monitoring how frequently the path checker fails. If a path checker fails
a path more than the value in the san_path_err_threshold attribute,
within san_path_err_forget_rate checks, then the multipathd
daemon does not reinstate the path until the value of the
san_path_err_recovery_time attribute in seconds passes, without
any path checker failures.

See the Shaky paths detection section of the multipath.conf(5) for
more information.

The default value is no.

marginal_path_double_faile
d_time,
marginal_path_err_sample_t
ime,
marginal_path_err_rate_thre
shold,
marginal_path_err_recheck_
gap_time

If marginal_path_double_failed_time,
marginal_path_err_rate_threshold, and
marginal_path_err_recheck_gap_time are set to integers greater
than 0 and marginal_path_err_sample_time is set to an integer
greater than 120, they enable the multipathd daemon to keep shaky
paths from reinstating, by testing the I/O failure rate of paths that
repeatedly fail.

If a path fails twice within the value set in the
marginal_path_double_failed_time attribute in seconds, the
multipathd daemon does not immediately reinstate it, when the path
checker determines that it is back up. Instead, multipathd issues a
steady stream of read I/Os to the path for the value set in the
marginal_path_err_sample_time attribute in seconds. If there are
more than the value set in the marginal_path_err_rate_threshold
attribute number of errors per thousand I/Os, multipathd waits for
marginal_path_err_recheck_gap_time seconds, and then starts
another cycle of testing the path with read I/Os. Otherwise, multipathd
reinstates the path.

See the Shaky paths detection section of the multipath.conf(5) for
more information.

The default value is no.

marginal_pathgroups Possible values include:

on: When one of the marginal path detecting methods determines that
a path is marginal, the system reinstates the path and places it in a
separate pathgroup. This group comes into effect only after all the non-
marginal path groups are tried first. This prevents the possibility of IO
errors occurring while the system can still use some marginal paths. The
path returns to a regular path group as soon as it passes monitoring for a
configured time.

Attribute Description

Red Hat Enterprise Linux 8 Configuring device mapper multipath

38

off: The delay_*_checks, marginal_path_*, and san_path_err_*
attributes keep the system from reinstating any marginal, or shaky
paths, until they are monitored for a configured time.

fpin: The multipathd daemon receives fpin notifications, sets path
states to marginal, and regroups paths, as described for the on value.

The marginal_path_* and san_path_err_* attributes are implicitly
set to no.

See the Shaky paths detection section of the multipath.conf(5) for
more information.

The default value is no.

log_checker_err If set to once, multipathd logs the first path checker error at verbosity
level 2. The system logs any further errors at verbosity level 3, until the
device is restored. If the log_checker_err parameter is set to always,
multipathd always logs the path checker error at verbosity level 2. The
default value is always.

skip_kpartx If set to yes, kpartx does not automatically create partitions on the
device. This enables you to create a multipath device, without creating
partitions, even if the device has a partition table. The default value of
this option is no.

max_sectors_kb Using this option, you can set the max_sectors_kb device queue
parameter to the specified value on all underlying paths of a multipath
device, before the first activation of a multipath device. Whenever the
system creates a new multipath device, the device inherits the
max_sectors_kb value from the path devices. Manually raising this
value for the multipath device, or lowering this value for the path
devices, can cause multipath to create I/O operations larger than the
path devices allow. Using the max_sectors_kb parameter is an easy
way to set these values, before the creation of a multipath device on top
of the path devices, and prevent passing any invalid-sized I/O
operations. If you do not set this parameter, the path devices driver sets
it automatically, and the multipath device inherits it from the path
devices.

ghost_delay This attribute sets the number of seconds that multipath waits after
creating a device with only ghost paths, before marking it ready for use
in systemd. This gives the active paths time to appear before the
multipath runs the hardware handler to switch the ghost paths to active
ones.

Setting this to 0 or no makes multipath immediately mark a device with
only ghost paths as ready.

Attribute Description

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

39

The default value is no.

enable_foreign This attribute enables or disables foreign libraries.

The value is a regular expression. Foreign libraries are loaded if their
name matches the expression.

By default, all libraries are enabled. However, the default configuration
file also sets this attribute to "^$", which disables all foreign libraries.

recheck_wwid If set to yes, when a failed path is restored, the multipathd daemon
rechecks the path WWID. If there is a change in the WWID, the path is
removed from the current multipath device, and added again as a new
path. The multipathd daemon also checks the path WWID again if it is
manually re-added.

This option only works for SCSI devices with configuration to use the
default uid_attribute, ID_SERIAL, or sysfs, for getting their WWID.

The default value is no.

remove_retries This option sets the number of times multipath retries removing a device
that is in use. Between each attempt, multipath becomes inactive for 1
second. The default value is 0, which means that multipath does not
retry the remove.

detect_checker If set to yes, multipath checks if the device supports ALUA or
Redundant Disk Array Controller (RDAC). If the device supports ALUA,
multipath assigns it the tur path_checker. If the device supports
RDAC, the multipathd daemon assigns it the rdac path_checker. If
the device does not support ALUA or RDAC, or the detect_checker is
set to no, the path_checker attribute sets the path checker.

The default value is yes.

reservation_key The mpathpersist parameter uses this service action reservation key. It
must be set for all multipath devices using persistent reservations, and it
must be the same as the RESERVATION KEY field of the
PERSISTENT RESERVE OUT parameter list, which contains an 8-
byte value provided by the application client to the device server to
identify the I_T nexus. If you use the --param-aptpl option when
registering the key with mpathpersist, you must append :aptpl to the
end of the reservation key.

Attribute Description

Red Hat Enterprise Linux 8 Configuring device mapper multipath

40

This parameter can also be set to file, which causes mpathpersist to
automatically store the RESERVATION KEY used to register the
multipath device in the prkeys file. The multipathd daemon then uses
this key to register additional paths as they appear. When you remove
the registration, this automatically removes the RESERVATION KEY
from the prkeys file. It is unset by default. If persistent reservations are
necessary, it is recommended to set this attribute to file.

all_tg_pt If this option is set to yes when mpathpersist registers keys, it treats a
registered key from one host to one target port, as going from one host
to all target ports. This must be set to yes to successfully use
mpathpersist on arrays that automatically set and clear registration
keys on all target ports from a host, instead of per target port per host.
The default value is no.

Attribute Description

Additional resources

multipath.conf(5) man page

5.3. CONFIGURATION FILE MULTIPATHS SECTION

Set attributes of individual multipath devices by using the multipaths section of the multipath.conf
configuration file. Device Mapper (DM) Multipath uses these attributes to override all other
configuration settings, including those from the overrides section. Refer to Configuration file overrides
section for a list of attributes from the overrides section.

The multipaths section recognizes only the multipath subsection as an attribute. The following table
shows the attributes that you can set in the multipath subsection, for each specific multipath device.
These attributes apply only to one specified multipath. If several multipath subsections match a specific
device World Wide Identifier (WWID), the contents of those subsections merge. The settings from latest
entries have priority over any previous versions.

Table 5.2. Multipath subsection attributes

Attribute Description

wwid Specifies the WWID of the multipath device, to which the multipath
attributes apply. This parameter is mandatory for this section of the
multipath.conf file.

alias Specifies the symbolic name for the multipath device, to which the
multipath attributes apply. If you are using user_friendly_names, do
not set this value to mpath <n>. This might cause conflicts with an
automatically assigned user friendly name, and give you incorrect device
node names.

The attributes in the following list are optional. If you do not set them, default values from the overrides,
devices, or defaults sections apply. Refer to Configuration file defaults for a full description of these
attributes.

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

41

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_device_mapper_multipath/modifying-the-dm-multipath-configuration-file_configuring-device-mapper-multipath#configuration-file-overrides-section_modifying-the-dm-multipath-configuration-file
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_device_mapper_multipath/index#configuration-file-defaults_modifying-the-dm-multipath-configuration-file

path_grouping_policy

path_selector

prio

prio_args

failback

no_path_retry

rr_min_io

rr_min_io_rq

flush_on_last_del

features

reservation_key

user_friendly_names

deferred_remove

san_path_err_threshold

san_path_err_forget_rate

san_path_err_recovery_time

marginal_path_err_sample_time

marginal_path_err_rate_threshold

marginal_path_err_recheck_gap_time

marginal_path_double_failed_time

delay_watch_checks

delay_wait_checks

skip_kpartx

max_sectors_kb

ghost_delay

The following example shows multipath attributes specified in the configuration file for two specific
multipath devices. The first device has a WWID of 3600508b4000156d70001200000b0000 and a
symbolic name of yellow.

The second multipath device in the example has a WWID of 1DEC_321816758474 and a symbolic name
of red.

Example 5.1. Multipath attributes specification

Red Hat Enterprise Linux 8 Configuring device mapper multipath

42

multipaths {
 multipath {
 wwid 3600508b4000156d70001200000b0000
 alias yellow
 path_grouping_policy multibus
 path_selector "round-robin 0"
 failback manual
 no_path_retry 5
 }
 multipath {
 wwid 1DEC_321816758474
 alias red
 }
}

Additional resources

multipath.conf(5) man page

Configuration file defaults

Configuration file overrides section

5.4. CONFIGURATION FILE DEVICES SECTION

Use the devices section of the multipath.conf configuration file to define settings for individual
storage controller types. Values set in this section overwrite specified values in the defaults section.

The system identifies the storage controller types by the vendor, product, and revision keywords.
These keywords are regular expressions and must match the sysfs information about the specific
device.

The devices section recognizes only the device subsection as an attribute. If there are multiple keyword
matches for a device, the attributes of all matching entries apply to it. If an attribute is specified in
several matching device subsections, later versions of entries have priority over any previous entries.

IMPORTANT

Configuration attributes in the latest version of the device subsections override
attributes in any previous devices subsections and from the defaults section.

The following table shows the attributes that you can set in the device subsection.

Table 5.3. Devices section attributes

Attribute Description

vendor Specifies the regular expression to match the device vendor name. This
is a mandatory attribute.

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_device_mapper_multipath/index#configuration-file-defaults_modifying-the-dm-multipath-configuration-file
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_device_mapper_multipath/modifying-the-dm-multipath-configuration-file_configuring-device-mapper-multipath#configuration-file-overrides-section_modifying-the-dm-multipath-configuration-file

product Specifies the regular expression to match the device product name. This
is a mandatory attribute.

revision Specifies the regular expression to match the device product revision. If
the revision attribute is missing, all device revisions match.

product_blacklist Multipath uses this attribute to create a device blacklist entry that has
a vendor attribute that matches the vendor attribute of this device
entry, and a product attribute that matches this product_blacklist
attribute.

vpd_vendor Shows the vendor specific Vital Product Data (VPD) page information,
using the VPD page abbreviation.

The multipathd daemon uses this information to gather device specific
information. Currently only the hp3par VPD page is supported.

hardware_handler Specifies the hardware handler to use for a particular device type. All
possible values are hardware dependent and include:

emc: Hardware handler for DGC class arrays, as CLARiiON CX/AX and
EMC VNX and Unity families.

rdac: Hardware handler for LSI/Engenio/NetApp RDAC class, as
NetApp SANtricity E/EF Series, and OEM arrays from IBM DELL SGI
STK and SUN.

hp_sw: Hardware handler for HP/COMPAQ/DEC HSG80 and
MSA/HSV arrays with Active/Standby mode exclusively.

alua: Hardware handler for SCSI-3 ALUA compatible arrays.

ana: Hardware handler for NVMe ANA compatible arrays.

The default value is unset.

Attribute Description

IMPORTANT

Linux kernels, versions 4.3 and newer, automatically attach a device handler to known
devices. This includes all devices supporting SCSI-3 ALUA). The kernel does not enable
changing the handler later on. Setting the hardware_handler attribute for such devices on
these kernels takes no effect.

The attributes in the following list are optional. If you do not set them, the default values from the
defaults sections apply. Refer to Configuration file defaults for a full description of these attributes.

path_grouping_policy

Red Hat Enterprise Linux 8 Configuring device mapper multipath

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_device_mapper_multipath/index#configuration-file-defaults_modifying-the-dm-multipath-configuration-file

uid_attribute

getuid_callout

path_selector

path_checker

prio

prio_args

failback

alias_prefix

no_path_retry

rr_min_io

rr_min_io_rq

flush_on_last_del

features

reservation_key

user_friendly_names

deferred_remove

san_path_err_threshold

san_path_err_forget_rate

san_path_err_recovery_time

marginal_path_err_sample_time

marginal_path_err_rate_threshold

marginal_path_err_recheck_gap_time

marginal_path_double_failed_time

delay_watch_checks

delay_wait_checks

skip_kpartx

max_sectors_kb

ghost_delay

all_tg_pt

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

45

Additional resources

multipath.conf(5) man page

Configuration file defaults

5.5. CONFIGURATION FILE OVERRIDES SECTION

The overrides section recognizes the optional protocol subsection, and can contain multiple protocol
subsections. The system matches path devices against the protocol subsection, using the mandatory
type attribute. Attributes in a matching protocol subsection have priority over attributes in the rest of
the overrides section. If there are multiple matching protocol subsections, later entries have higher
priority.

The attributes in the following list are optional. If you do not set them, default values from the devices
or defaults sections apply.

path_grouping_policy

uid_attribute

getuid_callout

path_selector

path_checker

alias_prefix

features

prio

prio_args

failback

no_path_retry

rr_min_io

rr_min_io_rq

flush_on_last_del

fast_io_fail_tmo

dev_loss_tmo

eh_deadline

user_friendly_names

retain_attached_hw_handler

detect_prio

Red Hat Enterprise Linux 8 Configuring device mapper multipath

46

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_device_mapper_multipath/index#configuration-file-defaults_modifying-the-dm-multipath-configuration-file

detect_checker

deferred_remove

san_path_err_threshold

san_path_err_forget_rate

san_path_err_recovery_time

marginal_path_err_sample_time

marginal_path_err_rate_threshold

marginal_path_err_recheck_gap_time

marginal_path_double_failed_time

delay_watch_checks

delay_wait_checks

skip_kpartx

max_sectors_kb

ghost_delay

all_tg_pt

The protocol subsection recognizes the following mandatory attribute:

Table 5.4. Protocol subsection attribute

Attribute Description

type Specifies the protocol string of the path device. Possible values include:

scsi:fcp, scsi:spi, scsi:ssa, scsi:sbp, scsi:srp, scsi:iscsi,
scsi:sas, scsi:adt, scsi:ata, scsi:unspec, ccw, cciss, nvme,
undef

This attribute is not a regular expression. The path device protocol string
must match exactly.

The attributes in the following list are optional for the protocol subsection. If you do not set them,
default values from the overrides, devices or defaults sections apply.

fast_io_fail_tmo

dev_loss_tmo

eh_deadline

Additional resources

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

47

multipath.conf(5) man page

Configuration file defaults

5.6. DM MULTIPATH OVERRIDES OF THE DEVICE TIMEOUT

The recovery_tmo sysfs option controls the timeout for a particular iSCSI device. The following options
globally override the recovery_tmo values:

The replacement_timeout configuration option globally overrides the recovery_tmo value for
all iSCSI devices.

For all iSCSI devices that are managed by DM Multipath, the fast_io_fail_tmo option in DM
Multipath globally overrides the recovery_tmo value.
The fast_io_fail_tmo option in DM Multipath also overrides the fast_io_fail_tmo option in
Fibre Channel devices.

The DM Multipath fast_io_fail_tmo option takes precedence over replacement_timeout. Red Hat does
not recommend using replacement_timeout to override recovery_tmo in devices managed by DM
Multipath because DM Multipath always resets recovery_tmo, when the multipathd service reloads.

5.7. MODIFYING MULTIPATH CONFIGURATION FILE DEFAULTS

The /etc/multipath.conf configuration file includes a defaults section that sets the
user_friendly_names parameter to yes, as follows.

defaults {
 user_friendly_names yes
}

This overwrites the default value of the user_friendly_names parameter. The default values that are
set in the defaults section on the multipath.conf file, are used by DM Multipath unless they are
overwritten by the attributes specified in the devices, multipath, or overrides sections of the
multipath.conf file.

Procedure

1. View the /etc/multipath.conf configuration file, which includes a template of configuration
defaults:

#defaults {
polling_interval 10
path_selector "round-robin 0"
path_grouping_policy multibus
uid_attribute ID_SERIAL
prio alua
path_checker readsector0
rr_min_io 100
max_fds 8192
rr_weight priorities
failback immediate
no_path_retry fail
user_friendly_names yes
#}

Red Hat Enterprise Linux 8 Configuring device mapper multipath

48

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_device_mapper_multipath/index#configuration-file-defaults_modifying-the-dm-multipath-configuration-file

2. Overwrite the default value for any of the configuration parameters. You can copy the relevant
line from this template into the defaults section and uncomment it.
For example, to overwrite the path_grouping_policy parameter to multibus instead of the
default value of failover, copy the appropriate line from the template to the initial defaults
section of the configuration file, and uncomment it, as follows:

defaults {
 user_friendly_names yes
 path_grouping_policy multibus
}

3. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

4. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

Additional resources

multipath.conf(5) and multipathd(8) man pages

5.8. MODIFYING MULTIPATH SETTINGS FOR SPECIFIC DEVICES

In the multipaths section of the multipath.conf configuration file, you can add configurations that are
specific to an individual multipath device, referenced by the mandatory WWID parameter.

These defaults are used by DM Multipath and override attributes set in the overrides, defaults, and
devices sections of the multipath.conf file. There can be any number of multipath subsections in the
multipaths section.

Procedure

1. Modify the multipaths section for specific multipath device. The following example shows
multipath attributes specified in the configuration file for two specific multipath devices:

The first device has a WWID of 3600508b4000156d70001200000b0000 and a symbolic
name of yellow.

The second multipath device in the example has a WWID of 1DEC_321816758474 and a
symbolic name of red.

In this example, the rr_weight attribute is set to priorities.

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

49

multipaths {
 multipath {
 wwid 3600508b4000156d70001200000b0000
 alias yellow
 path_grouping_policy multibus
 path_selector "round-robin 0"
 failback manual
 rr_weight priorities
 no_path_retry 5
 }
 multipath {
 wwid 1DEC_321816758474
 alias red
 rr_weight priorities
 }
}

2. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

3. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

Additional resources

multipath.conf(5) man page

5.9. MODIFYING THE MULTIPATH CONFIGURATION FOR SPECIFIC
DEVICES WITH PROTOCOL

You can configure multipath device paths, based on their transport protocol. By using the protocol
subsection of the overrides section in the /etc/multipath.conf file, you can override the multipath
configuration settings on certain paths. This enables access to multipath devices over multiple transport
protocols, like Fiber Channel (FC) or Internet Small Computer Systems Interface (iSCSI).

Options set in the protocol subsection override values in the overrides, devices and defaults sections.
These options apply only to devices using a transport protocol which matches the type parameter of the
subsection.

Prerequisites

You have configured Device Mapper (DM) multipath in your system.

Red Hat Enterprise Linux 8 Configuring device mapper multipath

50

You have multipath devices where not all paths use the same transport protocol.

Procedure

1. View the specific path protocol by running the following:

multipathd show paths format "%d %P"
dev protocol
sda scsi:ata
sdb scsi:fcp
sdc scsi:fcp

2. Edit the overrides section of the /etc/multipath.conf file, by adding protocol subsections for
each multipath type.

Settings for path devices, which use the scsi:fcp protocol:

overrides {
 dev_loss_tmo 60
 fast_io_fail_tmo 8
 protocol {
 type "scsi:fcp"
 dev_loss_tmo 70
 fast_io_fail_tmo 10
 eh_deadline 360
 }
}

Settings for path devices, which use the scsi:iscsi protocol:

overrides {
 dev_loss_tmo 60
 fast_io_fail_tmo 8
 protocol {
 type "scsi:iscsi"
 dev_loss_tmo 60
 fast_io_fail_tmo 120
 }
}

Settings for path devices, which use all other protocols:

overrides {
 dev_loss_tmo 60
 fast_io_fail_tmo 8
 protocol {
 type "<type of protocol>"
 dev_loss_tmo 60
 fast_io_fail_tmo 8
 }
}

The overrides section can include multiple protocol subsections.

IMPORTANT

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

51

IMPORTANT

The protocol subsection must include a type parameter. The configuration of all paths
with a matching type parameter is then updated with the rest of the parameters listed in
the protocol subsection.

Additional resources

multipath.conf(5) man page

5.10. MODIFYING MULTIPATH SETTINGS FOR STORAGE
CONTROLLERS

The devices section of the multipath.conf configuration file sets attributes for individual storage
devices. These attributes are used by DM Multipath unless they are overwritten by the attributes
specified in the multipaths or overrides sections of the multipath.conf file for paths that contain the
device. These attributes override the attributes set in the defaults section of the multipath.conf file.

Procedure

1. View the information about the default configuration value, including supported devices:

multipathd show config
multipath -t

Many devices that support multipathing are included by default in a multipath configuration.

2. Optional: If you need to modify the default configuration values, you can overwrite the default
values by including an entry in the configuration file for the device that overwrites those values.
You can copy the device configuration defaults for the device that the multipathd show
config command displays and override the values that you want to change.

3. Add a device that is not configured automatically by default to the devices section of the
configuration file by setting the vendor and product parameters. Find these values by opening
the /sys/block/device_name/device/vendor and /sys/block/device_name/device/model files
where device_name is the device to be multipathed, as mentioned in the following example:

cat /sys/block/sda/device/vendor
WINSYS
cat /sys/block/sda/device/model
SF2372

4. Optional: Specify the additional parameters depending on your specific device:

active/active device

Usually there is no need to set additional parameters in this case. If required, you might set
path_grouping_policy to multibus. Other parameters you may need to set are
no_path_retry and rr_min_io.

active/passive device

If it automatically switches paths with I/O to the passive path, you need to change the
checker function to one that does not send I/O to the path to test if it is working, otherwise,
your device will keep failing over. This means that you have set the path_checker to tur,
which works for all SCSI devices that support the Test Unit Ready command, which most do.

If the device needs a special command to switch paths, then configuring this device for

Red Hat Enterprise Linux 8 Configuring device mapper multipath

52

If the device needs a special command to switch paths, then configuring this device for
multipath requires a hardware handler kernel module. The current available hardware handler is
emc. If this is not sufficient for your device, you might not be able to configure the device for
multipath.

The following example shows a device entry in the multipath configuration file:

}
device {
vendor "COMPAQ "
product "MSA1000 "
path_grouping_policy multibus
path_checker tur
rr_weight priorities
}
#}

5. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

6. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

Additional resources

multipath.conf(5) and multipathd(8) man pages

5.11. SETTING MULTIPATH VALUES FOR ALL DEVICES

Using the overrides section of the multipath.conf configuration file, you can set a configuration value
for all of your devices. This section supports all attributes that are supported by both the devices and
defaults section of the multipath.conf configuration file, which is all of the devices section attributes
except vendor, product, and revision.

DM Multipath uses these attributes for all devices unless they are overwritten by the attributes specified
in the multipaths section of the multipath.conf file for paths that contain the device. These attributes
override the attributes set in the devices and defaults sections of the multipath.conf file.

Procedure

1. Override device specific settings. For example, you might want all devices to set no_path_retry
to fail. Use the following command to turn off queueing, when all paths have failed. This
overrides any device specific settings.

CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE

53

overrides {
 no_path_retry fail
}

2. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

3. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

Additional resources

multipath.conf(5) man page

Red Hat Enterprise Linux 8 Configuring device mapper multipath

54

CHAPTER 6. PREVENTING DEVICES FROM MULTIPATHING
You can configure DM Multipath to ignore selected devices when it configures multipath devices. DM
Multipath does not group these ignored devices into a multipath device.

6.1. CONDITIONS WHEN DM MULTIPATH CREATES A MULTIPATH
DEVICE FOR A PATH

DM Multipath has a set of default rules to determine whether to create a multipath device for a path or
whether to ignore the path. You can configure the behavior.

If the find_multipaths configuration parameter is set to off, multipath always tries to create a multipath
device for every path that is not explicitly disabled. If the find_multipaths configuration parameter is
set to on, then multipath creates a device, only if one of following conditions is met:

There are at least two paths with the same World-Wide Identification (WWID) that are not
disabled.

You manually force the creation of the device by specifying a device with the multipath
command.

A path has the same WWID as a multipath device that was previously created even if that
multipath device does not currently exist. Whenever a multipath device is created, multipath
remembers the WWID of the device so that it automatically creates the device again as soon as
it sees a path with that WWID. This allows you to have multipath automatically choose the
correct paths to make into multipath devices, without having to disable multipathing on other
devices.

If you have previously created a multipath device without using the find_multipaths parameter and
then you later set the parameter to on, you might need to remove the WWIDs of any device you do not
want created as a multipath device from the /etc/multipath/wwids file. The following example shows a
sample /etc/multipath/wwids file. The WWIDs are enclosed by slashes (/):

Multipath wwids, Version : 1.0
NOTE: This file is automatically maintained by multipath and multipathd.
You should not need to edit this file in normal circumstances.
#
Valid WWIDs:
/3600d0230000000000e13955cc3757802/
/3600d0230000000000e13955cc3757801/
/3600d0230000000000e13955cc3757800/
/3600d02300069c9ce09d41c31f29d4c00/
/SWINSYS SF2372 0E13955CC3757802/
/3600d0230000000000e13955cc3757803/

In addition to on and off, you can also set find_multipaths to the following values:

strict

Multipath never accepts paths that have not previously been multipathed and are therefore not in
the /etc/multipath/wwids file.

smart

Multipath always accepts non-disabled devices in udev as soon as they appear. If multipathd does
not create the device within a timeout set with the find_multipaths_timeout parameter, it will
release its claim on the device.

CHAPTER 6. PREVENTING DEVICES FROM MULTIPATHING

55

The built-in default value of find_multipaths is off. The default multipath.conf file created by
mpathconf, however, will set the value of find_multipaths to on.

When the find_multipaths parameter is set to on, disable multipathing only on the devices with multiple
paths that you do not want to be multipathed. Because of this, it will generally not be necessary to
disable multipathing on devices.

If you add a previously created multipath device to blacklist, removing the WWID of that device from
the /etc/multipath/wwids file by using the -w option can help avoid issues with other programs. For
example, to remove the device /dev/sdb with WWID 3600d0230000000000e13954ed5f89300 from the
/etc/multipath/wwids file, you can use either of the following methods.

Removing a multipath device by using the device name.

multipath -w /dev/sdb
wwid '3600d0230000000000e13954ed5f89300' removed

Removing a multipath device by using the WWID of the device.

multipath -w 3600d0230000000000e13954ed5f89300
wwid '3600d0230000000000e13954ed5f89300' removed

You can also use the -W option to update the /etc/multipath/wwids file. This would reset the
/etc/multipath/wwids file to only include the WWIDs of the current multipath devices. To reset the file,
run the following:

multipath -W
successfully reset wwids

Additional resources

multipath.conf(5) man page

6.2. CRITERIA FOR DISABLING MULTIPATHING ON CERTAIN DEVICES

You can disable multipathing on devices by any of the following criteria:

WWID

device name

device type

property

protocol

For every device, DM Multipath evaluates these criteria in the following order:

1. property

2. devnode

3. device

Red Hat Enterprise Linux 8 Configuring device mapper multipath

56

4. protocol

5. wwid

If a device turns out to be disabled by any of the mentioned criteria, DM Multipath excludes it from
handling by multipathd, and does not evaluate the later criteria. For each criteria, the exception list
takes precedence over the list of disabled devices, if a device matches both.

NOTE

By default, a variety of device types are disabled, even after you comment out the initial
blacklist section of the configuration file.

Additional resources

Adding exceptions for devices with disabled multipathing

6.3. DISABLING MULTIPATHING BY WWID

You can disable multipathing on individual devices by their World-Wide Identification (WWID).

Procedure

1. Find WWID of a device:

multipathd show paths raw format "%d %w" | grep sdb
sdb 3600508b4001080520001e00011700000

2. Disable devices in the /etc/multipath.conf configuration file using the wwid entry.
The following example shows the lines in the DM Multipath configuration file that disable a
device with a WWID of 3600508b4001080520001e00011700000:

blacklist {
 wwid 3600508b4001080520001e00011700000
}

3. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

4. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

CHAPTER 6. PREVENTING DEVICES FROM MULTIPATHING

57

6.4. DISABLING MULTIPATHING BY DEVICE NAME

You can disable multipathing on device types by device name, so that DM Multipath will not group them
into a multipath device.

Procedure

1. Display device information:

udevadm info --query=all -n /dev/mapper/sd*

2. Disable devices in the /etc/multipath.conf configuration file using the devnode entry.
The following example shows the lines in the DM Multipath configuration file that disable all
SCSI devices, because it disables all sd* devices as well:

blacklist {
 devnode "^sd[a-z]"
}

You can use a devnode entry to disable individual devices rather than all devices of a specific
type. However, this is not recommended because unless it is statically mapped by udev rules,
there is no guarantee that a specific device will have the same name on reboot. For example, a
device name could change from /dev/sda to /dev/sdb on reboot.

By default, DM Multipath disables all devices that are not SCSI, NVMe, or DASD, using the
following devnode entry:

blacklist {
 devnode "!^(sd[a-z]|dasd[a-z]|nvme[0-9])"
}

The devices that this entry disables do not generally support DM Multipath.

3. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

4. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

Additional resources

Adding exceptions for devices with disabled multipathing

Red Hat Enterprise Linux 8 Configuring device mapper multipath

58

6.5. DISABLING MULTIPATHING BY DEVICE TYPE

You can disable multipathing on devices by using the device section.

Procedure

1. Display device type:

multipathd show paths raw format "%d %s" | grep sdb
sdb HP,HSV210

2. Disable devices in the /etc/multipath.conf configuration file using the device section.
The following example disables multipathing on all IBM DS4200 and HP devices:

blacklist {
 device {
 vendor "IBM"
 product "3S42" #DS4200 Product 10
 }
 device {
 vendor "HP"
 product ".*"
 }
}

3. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

4. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

6.6. DISABLING MULTIPATHING BY UDEV PROPERTY

You can disable multipathing on devices by their udev property parameter.

Procedure

1. Display the udev variables for a device:

udevadm info --query=all -n /dev/sdb

2. Disable devices in the /etc/multipath.conf configuration file using the property parameter. This

CHAPTER 6. PREVENTING DEVICES FROM MULTIPATHING

59

2. Disable devices in the /etc/multipath.conf configuration file using the property parameter. This
parameter is a regular expression string that matches against the udev environment variable
name for the devices.
The following example disables multipathing on all devices with the udev property ID_ATA:

blacklist {
 property "ID_ATA"
}

3. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

4. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

6.7. DISABLING MULTIPATHING BY DEVICE PROTOCOL

You can disable multipathing on devices by using device protocol.

Procedure

1. Optional: View the protocol that a path is using:

multipathd show paths raw format "%d %P" | grep sdb
sdb scsi:fcp

2. Disable devices in the /etc/multipath.conf configuration file using the protocol parameter.
The protocol parameter takes a regular expression and blacklists all devices with matching
protocol strings. For example, to disable multipathing on all nvme devices, use the following:

blacklist {
 protocol "nvme"
}

DM Multipath recognizes the following protocol strings:

scsi:fcp

scsi:spi

scsi:ssa

scsi:sbp

Red Hat Enterprise Linux 8 Configuring device mapper multipath

60

scsi:srp

scsi:iscsi

scsi:sas

scsi:adt

scsi:ata

scsi:unspec

ccw

cciss

nvme:pcie

nvme:rdma

nvme:fc

nvme:tcp

nvme:loop

nvme:apple-nvme

nvme:unspec

undef

3. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

4. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

6.8. ADDING EXCEPTIONS FOR DEVICES WITH DISABLED
MULTIPATHING

You can enable multipathing by adding exceptions on devices where multipathing is currently disabled.

Prerequisites

CHAPTER 6. PREVENTING DEVICES FROM MULTIPATHING

61

Multipathing is disabled on certain devices.

Procedure

1. Enable multipathing on the devices using the blacklist_exceptions section of the
/etc/multipath.conf configuration file.
When specifying devices in the blacklist_exceptions section of the configuration file, you must
specify the exceptions using the same criteria as they were specified in the blacklist section.
For example, a WWID exception does not apply to devices disabled by a devnode entry, even if
the disabled device is associated with that WWID. Similarly, devnode exceptions apply only to
devnode entries, and device exceptions apply only to device entries.

Example 6.1. An exception by WWID

If you have a large number of devices and want to multipath only one of them with the WWID
of 3600d0230000000000e13955cc3757803, instead of individually disabling each of the
devices except the one you want, you could disable all of them, and then enable only the one
you want by adding the following lines to the /etc/multipath.conf file:

blacklist {
 wwid ".*"
}

blacklist_exceptions {
 wwid "3600d0230000000000e13955cc3757803"
}

Alternatively, you could use an exclamation mark (!) to invert the blacklist entry, which
disables all devices except the specified WWID:

blacklist {
 wwid "!3600d0230000000000e13955cc3757803"
}

Example 6.2. An exception by udev property

The property parameter works differently than the other blacklist_exception parameters.
The value of the property parameter must match the name of a variable in the udev
database. Otherwise, the device is disabled. Using this parameter, you can disable
multipathing on certain SCSI devices, such as USB sticks and local hard drives.

To enable multipathing only on SCSI devices that could reasonably be multipathed, set this
parameter to (SCSI_IDENT_|ID_WWN) as in the following example:

blacklist_exceptions {
 property "(SCSI_IDENT_|ID_WWN)"
}

2. Validate the /etc/multipath.conf file after modifying the multipath configuration file by running
one of the following commands:

To display any configuration errors, run:

Red Hat Enterprise Linux 8 Configuring device mapper multipath

62

multipath -t > /dev/null

To display the new configuration with the changes added, run:

multipath -t

3. Reload the /etc/multipath.conf file and reconfigure the multipathd daemon for changes to
take effect:

service multipathd reload

CHAPTER 6. PREVENTING DEVICES FROM MULTIPATHING

63

CHAPTER 7. MANAGING MULTIPATHED VOLUMES
The following are a few commands provided by DM Multipath, which you can use to manage multipath
volumes:

multipath

dmsetup

multipathd

7.1. RESIZING AN ONLINE MULTIPATH DEVICE

If you need to resize an online multipath device, use the following procedure.

Procedure

1. Resize your physical device.

2. Execute the following command to find the paths to the logical unit number (LUN):

multipath -l

3. Resize your paths. For SCSI devices, writing a 1 to the rescan file for the device causes the SCSI
driver to rescan, as in the following command:

echo 1 > /sys/block/path_device/device/rescan

Ensure that you run this command for each of the path devices. For example, if your path
devices are sda, sdb, sde, and sdf, you would run the following commands:

echo 1 > /sys/block/sda/device/rescan
echo 1 > /sys/block/sdb/device/rescan
echo 1 > /sys/block/sde/device/rescan
echo 1 > /sys/block/sdf/device/rescan

4. Resize your multipath device:

multipathd resize map multipath_device

5. Resize the file system (assuming no LVM or DOS partitions are used):

resize2fs /dev/mapper/mpatha

7.2. MOVING A ROOT FILE SYSTEM FROM A SINGLE PATH DEVICE TO
A MULTIPATH DEVICE

If you have installed your system on a single-path device and later add another path to the root file
system, you will need to move your root file system to a multipathed device. See the following procedure
for moving from a single-path to a multipathed device.

Prerequisites

Red Hat Enterprise Linux 8 Configuring device mapper multipath

64

You have installed the device-mapper-multipath package.

Procedure

1. Create the /etc/multipath.conf configuration file, load the multipath module, and enable the
multipathd systemd service:

yum install device-mapper-multipath

2. Execute the following command to create the /etc/multipath.conf configuration file, load the
multipath module, and set chkconfig for the multipathd to on:

mpathconf --enable

3. If the find_multipaths configuration parameter is not set to yes, edit the blacklist and
blacklist_exceptions sections of the /etc/multipath.conf file, as described in Preventing
devices from multipathing.

4. In order for multipath to build a multipath device on top of the root device as soon as it is
discovered, enter the following command. This command also ensures that find_multipaths
allows the device, even if it only has one path.

multipath -a root_devname

For example, if the root device is /dev/sdb, enter the following command.

multipath -a /dev/sdb
wwid '3600d02300069c9ce09d41c4ac9c53200' added

5. Confirm that your configuration file is set up correctly by executing the multipath command
and search the output for a line of the following format. This indicates that the command failed
to create the multipath device.

date wwid: ignoring map

For example, if the WWID of the device is 3600d02300069c9ce09d41c4ac9c53200, you would
see a line in the output such as the following:

multipath
Oct 21 09:37:19 | 3600d02300069c9ce09d41c4ac9c53200: ignoring map

6. Rebuild the initramfs file system with multipath:

dracut --force -H --add multipath

7. Shut the machine down.

8. Boot the machine.

9. Make the other paths visible to the machine.

Verification

CHAPTER 7. MANAGING MULTIPATHED VOLUMES

65

Check whether the multipath device is created by running the following command:

multipath -l | grep 3600d02300069c9ce09d41c4ac9c53200
mpatha (3600d02300069c9ce09d41c4ac9c53200) dm-0 3PARdata,VV

7.3. MOVING A SWAP FILE SYSTEM FROM A SINGLE PATH DEVICE TO
A MULTIPATH DEVICE

By default, swap devices are set up as logical volumes. This does not require any special procedure for
configuring them as multipath devices as long as you set up multipathing on the physical volumes that
constitute the logical volume group. If your swap device is not an LVM volume, however, and it is
mounted by device name, you might need to edit the /etc/fstab file to switch to the appropriate
multipath device name.

Procedure

1. Add the WWID of the device to the /etc/multipath/wwids file:

multipath -a swap_devname

For example, if the root device is /dev/sdb, enter the following command.

multipath -a /dev/sdb
wwid '3600d02300069c9ce09d41c4ac9c53200' added

2. Confirm that your configuration file is set up correctly by executing the multipath command
and search the output for a line of the following format:

date wwid: ignoring map

This indicates that the command failed to create the multipath device.

For example, if the WWID of the device is 3600d02300069c9ce09d41c4ac9c53200, you
would see a line in the output such as the following:

multipath
Oct 21 09:37:19 | 3600d02300069c9ce09d41c4ac9c53200: ignoring map

3. Set up an alias for the swap device in the /etc/multipath.conf file:

multipaths {
 multipath {
 wwid WWID_of_swap_device
 alias swapdev
 }
}

4. Edit the /etc/fstab file and replace the old device path to the root device with the multipath
device.
For example, if you had the following entry in the /etc/fstab file:

/dev/sdb2 swap swap defaults 0 0

Red Hat Enterprise Linux 8 Configuring device mapper multipath

66

Change the entry to the following:

/dev/mapper/swapdev swap swap defaults 0 0

5. Rebuild the initramfs file system with multipath:

dracut --force -H --add multipath

6. Shut the machine down.

7. Boot the machine.

8. Make the other paths visible to the machine.

Verification

Verify if the swap device is on the multipath device:

swapon -s

For example:

swapon -s

Filename Type Size Used Priority
/dev/dm-3 partition 4169724 0 -2

The file name should match the multipath swap device.

readlink -f /dev/mapper/swapdev
/dev/dm-3

7.4. DETERMINING DEVICE MAPPER ENTRIES WITH THE DMSETUP
COMMAND

You can use the dmsetup command to find out which device mapper entries match the multipathed
devices.

Procedure

Display all the device mapper devices and their major and minor numbers. The minor numbers
determine the name of the dm device. For example, a minor number of 3 corresponds to the
multipathed device /dev/dm-3.

dmsetup ls
mpathd (253:4)
mpathep1 (253:12)
mpathfp1 (253:11)
mpathb (253:3)
mpathgp1 (253:14)
mpathhp1 (253:13)
mpatha (253:2)

CHAPTER 7. MANAGING MULTIPATHED VOLUMES

67

mpathh (253:9)
mpathg (253:8)
VolGroup00-LogVol01 (253:1)
mpathf (253:7)
VolGroup00-LogVol00 (253:0)
mpathe (253:6)
mpathbp1 (253:10)
mpathd (253:5)

7.5. ADMINISTERING THE MULTIPATHD DAEMON

The multipathd commands can be used to administer the multipathd daemon.

Procedure

View the default format for the output of the multipathd show maps command:

multipathd show maps
name sysfs uuid
mpathc dm-0 360a98000324669436c2b45666c567942

Some multipathd commands include a format option followed by a wildcard. Display a list of
available wildcards with the following command:

multipathd show wildcards
multipath format wildcards:
%n name
%w uuid
%d sysfs
...

Display the multipath devices that multipathd is monitoring. Use wildcards to specify the shown
fields:

multipathd show maps format "%n %w %d %s"
name uuid sysfs vend/prod/rev
mpathc 360a98000324669436c2b45666c567942 dm-0 NETAPP,LUN

Display the paths that multipathd is monitoring. Use wildcards to specify the shown fields:

multipathd show paths format "%n %w %d %s"
target WWNN uuid dev vend/prod/rev
0x50001fe1500d2250 3600508b4001080520001e00011700000 sdb HP,HSV210

Display data in a raw format:

multipathd show maps raw format "%n %w %d %s"
mpathc 360a98000324669436c2b45666c567942 dm-0 NETAPP,LUN

In raw format, no headers are printed and the fields are not padded to align the columns with
the headers. This output can be more easily used for scripting.

Additional resources

Red Hat Enterprise Linux 8 Configuring device mapper multipath

68

multipathd(8) man page

CHAPTER 7. MANAGING MULTIPATHED VOLUMES

69

CHAPTER 8. REMOVING STORAGE DEVICES
You can safely remove a storage device from a running system, which helps prevent system memory
overload and data loss.

Prerequisites

Before you remove a storage device, you must ensure that you have enough free system
memory due to the increased system memory load during an I/O flush. Use the following
commands to view the current memory load and free memory of the system:

vmstat 1 100
free

Red Hat does not recommend removing a storage device on a system where:

Free memory is less than 5% of the total memory in more than 10 samples per 100.

Swapping is active (non-zero si and so columns in the vmstat command output).

8.1. SAFE REMOVAL OF STORAGE DEVICES

Safely removing a storage device from a running system requires a top-to-bottom approach. Start from
the top layer, which typically is an application or a file system, and work towards the bottom layer, which
is the physical device.

You can use storage devices in multiple ways, and they can have different virtual configurations on top
of physical devices. For example, you can group multiple instances of a device into a multipath device,
make it part of a RAID, or you can make it part of an LVM group. Additionally, devices can be accessed
via a file system, or they can be accessed directly such as a “raw” device.

While using the top-to-bottom approach, you must ensure that:

the device that you want to remove is not in use

all pending I/O to the device is flushed

the operating system is not referencing the storage device

8.2. REMOVING BLOCK DEVICES AND ASSOCIATED METADATA

To safely remove a block device from a running system, to help prevent system memory overload and
data loss you need to first remove metadata from them. Address each layer in the stack, starting with
the file system, and proceed to the disk. These actions prevent putting your system into an inconsistent
state.

Use specific commands that may vary depending on what type of devices you are removing:

lvremove, vgremove and pvremove are specific to LVM.

For software RAID, run mdadm to remove the array. For more information, see Managing RAID.

For block devices encrypted using LUKS, there are specific additional steps. The following
procedure will not work for the block devices encrypted using LUKS. For more information, see
Encrypting block devices using LUKS.

Red Hat Enterprise Linux 8 Configuring device mapper multipath

70

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_storage_devices/index#managing-raid_managing-storage-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening

WARNING

Rescanning the SCSI bus or performing any other action that changes the state of
the operating system, without following the procedure documented here can cause
delays due to I/O timeouts, devices to be removed unexpectedly, or data loss.

Prerequisites

You have an existing block device stack containing the file system, the logical volume, and the
volume group.

You ensured that no other applications or services are using the device that you want to remove.

You backed up the data from the device that you want to remove.

Optional: If you want to remove a multipath device, and you are unable to access its path
devices, disable queueing of the multipath device by running the following command:

multipathd disablequeueing map multipath-device

This enables the I/O of the device to fail, allowing the applications that are using the device to
shut down.

NOTE

Removing devices with their metadata one layer at a time ensures no stale signatures
remain on the disk.

Procedure

1. Unmount the file system:

umount /mnt/mount-point

2. Remove the file system:

wipefs -a /dev/vg0/myvol

NOTE

If you have added an entry into /etc/fstab file to make a persistent association
between the file system and a mount point you should also edit /etc/fstab at this
point to remove that entry.

Continue with the following steps, depending on the type of the device you want to remove:

3. Remove the logical volume (LV) that contained the file system:

lvremove vg0/myvol

CHAPTER 8. REMOVING STORAGE DEVICES

71

4. If there are no other logical volumes remaining in the volume group (VG), you can safely remove
the VG that contained the device:

vgremove vg0

5. Remove the physical volume (PV) metadata from the PV device(s):

pvremove /dev/sdc1

wipefs -a /dev/sdc1

6. Remove the partitions that contained the PVs:

parted /dev/sdc rm 1

NOTE

Follow the next steps only if you want to fully wipe the device.

7. Remove the partition table:

wipefs -a /dev/sdc

NOTE

Follow the next steps only if you want to physically remove the device.

If you are removing a multipath device, execute the following commands:

a. View all the paths to the device:

multipath -l

The output of this command is required in a later step.

i. Flush the I/O and remove the multipath device:

multipath -f multipath-device

If the device is not configured as a multipath device, or if the device is configured as a multipath
device and you have previously passed I/O to the individual paths, flush any outstanding I/O to
all device paths that are used:

blockdev --flushbufs device

This is important for devices accessed directly where the umount or vgreduce commands do
not flush the I/O.

If you are removing a SCSI device, execute the following commands:

a. Remove any reference to the path-based name of the device, such as /dev/sd,
/dev/disk/by-path, or the major:minor number, in applications, scripts, or utilities on the

Red Hat Enterprise Linux 8 Configuring device mapper multipath

72

system. This ensures that different devices added in the future are not mistaken for the
current device.

b. Remove each path to the device from the SCSI subsystem:

echo 1 > /sys/block/device-name/device/delete

Here the device-name is retrieved from the output of the multipath -l command, if the
device was previously used as a multipath device.

8. Remove the physical device from a running system. Note that the I/O to other devices does not
stop when you remove this device.

Verification

Verify that the devices you intended to remove are not displaying on the output of lsblk
command. The following is an example output:

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 5G 0 disk
sr0 11:0 1 1024M 0 rom
vda 252:0 0 10G 0 disk
|-vda1 252:1 0 1M 0 part
|-vda2 252:2 0 100M 0 part /boot/efi
`-vda3 252:3 0 9.9G 0 part /

Additional resources

The multipath(8), pvremove(8), vgremove(8), lvremove(8), wipefs(8), parted(8), blockdev(8)
and umount(8) man pages.

CHAPTER 8. REMOVING STORAGE DEVICES

73

CHAPTER 9. TROUBLESHOOTING DM MULTIPATH
If you have trouble implementing a multipath configuration, there are a variety of issues you can check
for. The following issues may result in a slow or non-functioning multipath configuration:

The multipath daemon is not running

If you find you have trouble implementing a multipath configuration, ensure that the multipathd
daemon is running, as described in Configuring DM Multipath. The multipathd daemon must be
running to use multipathed devices.

Issues with queue_if_no_path feature

If a multipath device is configured with the features "1 queue_if_no_path" option, then any process
that issues I/O hangs until one or more paths are restored.

9.1. TROUBLESHOOTING ISSUES WITH QUEUE_IF_NO_PATH FEATURE

If a multipath device is configured with the features "1 queue_if_no_path" option, then any process
that issues I/O hangs until one or more paths are restored. To avoid this, set the no_path_retry N
parameter in the /etc/multipath.conf file, where N is the number of times the system should retry a
path.

To use the features "1 queue_if_no_path" option without the described problem, you can disable the
queueing policy at runtime for a particular LUN, for which all paths are unavailable.

Procedure

1. Disable queueing:

For a specific device:

multipathd disablequeueing map device

For all devices:

multipathd disablequeueing maps

After you disable queueing, it will remain disabled until you restart or reload multipathd.

2. Reset queueing to a previous value:

For a specific device:

multipathd restorequeueing map device

For all devices:

multipathd restorequeueing maps

9.2. TROUBLESHOOTING WITH THE MULTIPATHD INTERACTIVE
CONSOLE

The multipathd -k command is an interactive interface to the multipathd daemon. Entering this

Red Hat Enterprise Linux 8 Configuring device mapper multipath

74

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_device_mapper_multipath/configuring-dm-multipath_configuring-device-mapper-multipath

The multipathd -k command is an interactive interface to the multipathd daemon. Entering this
command brings up an interactive multipath console. After executing this command, you can enter help
to get a list of available commands and Ctrl+D to quit.

Use the multipathd interactive console to troubleshoot problems you might have with your system.

Procedure

1. Display the multipath configuration, including the default values, before exiting the console:

multipathd -k
multipathd> show config
multipathd> Ctrl+D

2. Ensure that multipath picked up all changes to the multipath.conf file:

multipathd -k
multipathd> reconfigure
multipathd> Ctrl+D

3. Ensure that the path checker is working properly:

multipathd -k
multipathd> show paths
multipathd> Ctrl+D

4. You can also run a single multipathd interactive command directly from the command line,
without starting the interactive console. For example, to check that multipath picks up all
changes to the multipath.conf file, run the following command:

multipathd reconfigure

CHAPTER 9. TROUBLESHOOTING DM MULTIPATH

75

CHAPTER 10. CONFIGURING MAXIMUM TIME FOR STORAGE
ERROR RECOVERY WITH EH_DEADLINE

You can configure the maximum allowed time to recover failed SCSI devices. This configuration
guarantees an I/O response time even when storage hardware becomes unresponsive due to a failure.

10.1. THE EH_DEADLINE PARAMETER

The SCSI error handling (EH) mechanism attempts to perform error recovery on failed SCSI devices.
The SCSI host object eh_deadline parameter enables you to configure the maximum amount of time
for the recovery. After the configured time expires, SCSI EH stops and resets the entire host bus
adapter (HBA).

Using eh_deadline can reduce the time:

to shut off a failed path,

to switch a path, or

to disable a RAID slice.

WARNING

When eh_deadline expires, SCSI EH resets the HBA, which affects all target paths
on that HBA, not only the failing one. If some of the redundant paths are not
available for other reasons, I/O errors might occur. Enable eh_deadline only if you
have multipath configured on all targets. Also, if your multipath devices are not fully
redundant, you should verify that no_path_retry is set large enough to allow paths
to recover.

The value of the eh_deadline parameter is specified in seconds. The default setting is off, which
disables the time limit and allows all of the error recovery to take place.

Scenarios when eh_deadline is useful
In most scenarios, you do not need to enable eh_deadline. Using eh_deadline can be useful in certain
specific scenarios. For example if a link loss occurs between a Fibre Channel (FC) switch and a target
port, and the HBA does not receive Registered State Change Notifications (RSCNs). In such a case, I/O
requests and error recovery commands all time out rather than encounter an error. Setting eh_deadline
in this environment puts an upper limit on the recovery time. That enables the failed I/O to be retried on
another available path by DM Multipath.

Under the following conditions, the eh_deadline parameter provides no additional benefit, because the
I/O and error recovery commands fail immediately, which enables DM Multipath to retry:

If RSCNs are enabled

If the HBA does not register the link becoming unavailable

10.2. SETTING THE EH_DEADLINE PARAMETER

Red Hat Enterprise Linux 8 Configuring device mapper multipath

76

This procedure configures the value of the eh_deadline parameter to limit the maximum SCSI recovery
time.

Procedure

You can configure eh_deadline using either of the following methods:

defaults section of the multpath.conf file
From the defaults section of the multpath.conf file, set the eh_deadline parameter to the
required number of seconds:

eh_deadline 300

NOTE

From RHEL 8.4, setting the eh_deadline parameter using the defaults
section of the multpath.conf file is the preferred method.

To turn off the eh_deadline parameter with this method, set eh_deadline to off.

sysfs
Write the number of seconds into the /sys/class/scsi_host/host<host-
number>/eh_deadline files. For example, to set the eh_deadline parameter through sysfs
on SCSI host 6:

echo 300 > /sys/class/scsi_host/host6/eh_deadline

To turn off the eh_deadline parameter with this method, use echo off.

Kernel parameter
Set a default value for all SCSI HBAs using the scsi_mod.eh_deadline kernel parameter.

echo 300 > /sys/module/scsi_mod/parameters/eh_deadline

To turn off the eh_deadline parameter with this method, use echo -1.

Additional resources

How to set eh_deadline and eh_timeout persistently, using a udev rule

CHAPTER 10. CONFIGURING MAXIMUM TIME FOR STORAGE ERROR RECOVERY WITH EH_DEADLINE

77

https://access.redhat.com/solutions/3209481

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. OVERVIEW OF DEVICE MAPPER MULTIPATHING
	1.1. ACTIVE/PASSIVE MULTIPATH CONFIGURATION WITH ONE RAID DEVICE
	1.2. ACTIVE/PASSIVE MULTIPATH CONFIGURATION WITH TWO RAID DEVICES
	1.3. ACTIVE/ACTIVE MULTIPATH CONFIGURATION WITH ONE RAID DEVICE
	1.4. DM MULTIPATH COMPONENTS
	1.5. THE MULTIPATH COMMAND
	1.6. DISPLAYING MULTIPATH TOPOLOGY
	1.7. PATH STATUS
	1.8. ADDITIONAL RESOURCES

	CHAPTER 2. MULTIPATH DEVICES
	2.1. MULTIPATH DEVICE IDENTIFIERS
	2.2. MULTIPATH DEVICES IN LOGICAL VOLUMES

	CHAPTER 3. CONFIGURING DM MULTIPATH
	3.1. CHECKING FOR THE DEVICE-MAPPER-MULTIPATH PACKAGE
	3.2. SETTING UP BASIC FAILOVER CONFIGURATION WITH DM MULTIPATH
	3.3. IGNORING LOCAL DISKS WHEN GENERATING MULTIPATH DEVICES
	3.4. CONFIGURING ADDITIONAL STORAGE WITH DM MULTIPATH
	3.5. CONFIGURING MULTIPATHING IN INITRAMFS

	CHAPTER 4. ENABLING MULTIPATHING ON NVME DEVICES
	4.1. NATIVE NVME MULTIPATHING AND DM MULTIPATH
	4.2. ENABLING NATIVE NVME MULTIPATHING
	4.3. ENABLING DM MULTIPATH ON NVME DEVICES

	CHAPTER 5. MODIFYING THE DM MULTIPATH CONFIGURATION FILE
	5.1. CONFIGURATION FILE OVERVIEW
	5.2. CONFIGURATION FILE DEFAULTS
	5.3. CONFIGURATION FILE MULTIPATHS SECTION
	5.4. CONFIGURATION FILE DEVICES SECTION
	5.5. CONFIGURATION FILE OVERRIDES SECTION
	5.6. DM MULTIPATH OVERRIDES OF THE DEVICE TIMEOUT
	5.7. MODIFYING MULTIPATH CONFIGURATION FILE DEFAULTS
	5.8. MODIFYING MULTIPATH SETTINGS FOR SPECIFIC DEVICES
	5.9. MODIFYING THE MULTIPATH CONFIGURATION FOR SPECIFIC DEVICES WITH PROTOCOL
	5.10. MODIFYING MULTIPATH SETTINGS FOR STORAGE CONTROLLERS
	5.11. SETTING MULTIPATH VALUES FOR ALL DEVICES

	CHAPTER 6. PREVENTING DEVICES FROM MULTIPATHING
	6.1. CONDITIONS WHEN DM MULTIPATH CREATES A MULTIPATH DEVICE FOR A PATH
	6.2. CRITERIA FOR DISABLING MULTIPATHING ON CERTAIN DEVICES
	6.3. DISABLING MULTIPATHING BY WWID
	6.4. DISABLING MULTIPATHING BY DEVICE NAME
	6.5. DISABLING MULTIPATHING BY DEVICE TYPE
	6.6. DISABLING MULTIPATHING BY UDEV PROPERTY
	6.7. DISABLING MULTIPATHING BY DEVICE PROTOCOL
	6.8. ADDING EXCEPTIONS FOR DEVICES WITH DISABLED MULTIPATHING

	CHAPTER 7. MANAGING MULTIPATHED VOLUMES
	7.1. RESIZING AN ONLINE MULTIPATH DEVICE
	7.2. MOVING A ROOT FILE SYSTEM FROM A SINGLE PATH DEVICE TO A MULTIPATH DEVICE
	7.3. MOVING A SWAP FILE SYSTEM FROM A SINGLE PATH DEVICE TO A MULTIPATH DEVICE
	7.4. DETERMINING DEVICE MAPPER ENTRIES WITH THE DMSETUP COMMAND
	7.5. ADMINISTERING THE MULTIPATHD DAEMON

	CHAPTER 8. REMOVING STORAGE DEVICES
	8.1. SAFE REMOVAL OF STORAGE DEVICES
	8.2. REMOVING BLOCK DEVICES AND ASSOCIATED METADATA

	CHAPTER 9. TROUBLESHOOTING DM MULTIPATH
	9.1. TROUBLESHOOTING ISSUES WITH QUEUE_IF_NO_PATH FEATURE
	9.2. TROUBLESHOOTING WITH THE MULTIPATHD INTERACTIVE CONSOLE

	CHAPTER 10. CONFIGURING MAXIMUM TIME FOR STORAGE ERROR RECOVERY WITH EH_DEADLINE
	10.1. THE EH_DEADLINE PARAMETER
	Scenarios when eh_deadline is useful

	10.2. SETTING THE EH_DEADLINE PARAMETER

