
Red Hat Enterprise Linux 8

Managing smart card authentication

Configuring and using smart card authentication

Last Updated: 2024-08-29

Red Hat Enterprise Linux 8 Managing smart card authentication

Configuring and using smart card authentication

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

With Red Hat Identity Management (IdM), you can store credentials in the form of a private key and
a certificate on a smart card. You can then use this smart card instead of passwords to authenticate
to services. Administrators can configure mapping rules to reduce the administrative overhead.

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. UNDERSTANDING SMART CARD AUTHENTICATION
1.1. WHAT IS A SMART CARD
1.2. WHAT IS SMART CARD AUTHENTICATION

1.2.1. Examples of smart card authentication in IdM
1.2.1.1. Logging in to your system with a smart card
1.2.1.2. Logging in to GDM with lock on removal

1.3. SMART CARD AUTHENTICATION OPTIONS IN RHEL
1.4. TOOLS FOR MANAGING SMART CARDS AND THEIR CONTENTS
1.5. CERTIFICATES AND SMART CARD AUTHENTICATION
1.6. REQUIRED STEPS FOR SMART CARD AUTHENTICATION IN IDM
1.7. REQUIRED STEPS FOR SMART CARD AUTHENTICATION WITH CERTIFICATES ISSUED BY ACTIVE
DIRECTORY

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION
2.1. CONFIGURING THE IDM SERVER FOR SMART CARD AUTHENTICATION
2.2. USING ANSIBLE TO CONFIGURE THE IDM SERVER FOR SMART CARD AUTHENTICATION
2.3. CONFIGURING THE IDM CLIENT FOR SMART CARD AUTHENTICATION
2.4. USING ANSIBLE TO CONFIGURE IDM CLIENTS FOR SMART CARD AUTHENTICATION
2.5. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM WEB UI
2.6. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM CLI
2.7. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
2.8. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART
CARD
2.9. LOGGING IN TO IDM WITH SMART CARDS
2.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION ON AN IDM CLIENT
2.11. USING SMART CARD AUTHENTICATION WITH THE SU COMMAND

CHAPTER 3. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

3.1. WINDOWS SERVER SETTINGS REQUIRED FOR TRUST CONFIGURATION AND CERTIFICATE USAGE
3.2. COPYING CERTIFICATES FROM ACTIVE DIRECTORY USING SFTP
3.3. CONFIGURING THE IDM SERVER AND CLIENTS FOR SMART CARD AUTHENTICATION USING ADCS
CERTIFICATES
3.4. CONVERTING THE PFX FILE
3.5. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
3.6. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART
CARD
3.7. CONFIGURING TIMEOUTS IN SSSD.CONF
3.8. CREATING CERTIFICATE MAPPING RULES FOR SMART CARD AUTHENTICATION

CHAPTER 4. CERTIFICATE MAPPING RULES FOR CONFIGURING AUTHENTICATION

CHAPTER 5. CONFIGURING SMART CARD AUTHENTICATION WITH THE WEB CONSOLE FOR CENTRALLY
MANAGED USERS

5.1. SMART CARD AUTHENTICATION FOR CENTRALLY MANAGED USERS
5.2. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
5.3. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART
CARD
5.4. ENABLING SMART CARD AUTHENTICATION FOR THE WEB CONSOLE
5.5. LOGGING IN TO THE WEB CONSOLE WITH SMART CARDS
5.6. LIMITING USER SESSIONS AND MEMORY TO PREVENT A DOS ATTACK

4

5
5
5
5
5
6
6
6
8
8

8

10
10
13
16
18

20
22
23

24
25
27
27

29
29
30

30
32
32

33
35
36

37

38
38
39

39
41

42
43

Table of Contents

1

. .

. .

. .

. .

. .

5.7. ADDITIONAL RESOURCES

CHAPTER 6. CONFIGURING SMART CARD AUTHENTICATION WITH LOCAL CERTIFICATES
6.1. CREATING LOCAL CERTIFICATES
6.2. COPYING CERTIFICATES TO THE SSSD DIRECTORY
6.3. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
6.4. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART
CARD
6.5. CONFIGURING SSH ACCESS USING SMART CARD AUTHENTICATION

CHAPTER 7. CONFIGURING SMART CARD AUTHENTICATION USING AUTHSELECT
7.1. CERTIFICATES ELIGIBLE FOR SMART CARDS
7.2. CONFIGURE YOUR SYSTEM TO ENABLE BOTH SMART CARD AND PASSWORD AUTHENTICATION
7.3. CONFIGURING YOUR SYSTEM TO ENFORCE SMART CARD AUTHENTICATION
7.4. CONFIGURING SMART CARD AUTHENTICATION WITH LOCK ON REMOVAL

CHAPTER 8. AUTHENTICATING TO SUDO REMOTELY USING SMART CARDS
8.1. CREATING SUDO RULES IN IDM
8.2. SETTING UP THE PAM MODULE FOR SUDO
8.3. CONNECTING TO SUDO REMOTELY USING A SMART CARD

CHAPTER 9. AUTHENTICATING AS AN ACTIVE DIRECTORY USER USING PKINIT WITH A SMART CARD

CHAPTER 10. TROUBLESHOOTING AUTHENTICATION WITH SMART CARDS
10.1. TESTING SMART CARD ACCESS ON THE SYSTEM
10.2. TROUBLESHOOTING SMART CARD AUTHENTICATION WITH SSSD
10.3. VERIFYING THAT IDM KERBEROS KDC CAN USE PKINIT AND THAT THE CA CERTIFICATES ARE
CORRECTLY LOCATED
10.4. INCREASING SSSD TIMEOUTS
10.5. TROUBLESHOOTING CERTIFICATE MAPPING AND MATCHING RULES

10.5.1. Checking how the certificates are mapped to users
10.5.2. Checking the user associated with a smart card certificate

43

44
44
47
48

49
50

52
52
52
53
53

55
55
56
56

58

60
60
63

65
67
68
68
70

Red Hat Enterprise Linux 8 Managing smart card authentication

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 8 Managing smart card authentication

4

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. UNDERSTANDING SMART CARD
AUTHENTICATION

Authentication based on smart cards is an alternative to passwords. You can store user credentials on a
smart card in the form of a private key and a certificate, and special software and hardware is used to
access them. Place the smart card into a reader or a USB port and supply the PIN code for the smart
card instead of providing your password.

This section describes what a smart card is and how smart card authentication works. It describes the
tools that you can use to read and manipulate smart card content. It also provides sample use cases and
describes the setup of both the IdM server and IdM client for smart card authentication.

NOTE

If you want to start to use smart card authentication, see the hardware requirements:
Smart Card support in RHEL8 .

1.1. WHAT IS A SMART CARD

A smart card is a physical device, usually a plastic card with a microprocessor, that can provide personal
authentication using certificates stored on the card. Personal authentication means that you can use
smart cards in the same way as user passwords.

You can store user credentials on the smart card in the form of a private key and a certificate, and
special software and hardware is used to access them. You place the smart card into a reader or a USB
socket and supply the PIN code for the smart card instead of providing your password.

1.2. WHAT IS SMART CARD AUTHENTICATION

Public-key based authentication and certificate based authentication are two widely used alternatives to
password based authentication. Your identity is confirmed by using public and private keys instead of
your password. A certificate is an electronic document used to identify an individual, a server, a company,
or other entity and to associate that identity with a public key. Like a driver’s license or passport, a
certificate provides generally recognized proof of a person’s identity. Public-key cryptography uses
certificates to address the problem of impersonation.

In the case of smart card authentication, your user credentials, that is your public and private keys and
certificate, are stored on a smart card and can only be used after the smart card is inserted into the
reader and a PIN is provided. As you need to possess a physical device, the smart card, and know its PIN,
smart card authentication is considered as a type of two factor authentication.

1.2.1. Examples of smart card authentication in IdM

The following examples describe two simple scenarios on how you can use smart cards in IdM.

1.2.1.1. Logging in to your system with a smart card

You can use a smart card to authenticate to a RHEL system as a local user. If your system is configured
to enforce smart card login, you are prompted to insert your smart card and enter its PIN and, if that
fails, you cannot log in to your system. Alternatively, you can configure your system to authenticate
using either smart card authentication or your user name and password. In this case, if you do not have
your smart card inserted, you are prompted for your user name and password.

CHAPTER 1. UNDERSTANDING SMART CARD AUTHENTICATION

5

https://access.redhat.com/articles/4253861

1.2.1.2. Logging in to GDM with lock on removal

You can activate the lock on removal function if you have configured smart card authentication on your
RHEL system. If you are logged in to the GNOME Display Manager (GDM) and you remove your smart
card, screen lock is enabled and you must reinsert your smart card and authenticate with the PIN to
unlock the screen. You cannot use your user name and password to authenticate.

NOTE

If you are logged in to GDM and you remove your smart card, screen lock is enabled and
you must reinsert your smart card and authenticate with the PIN to unlock the screen.

1.3. SMART CARD AUTHENTICATION OPTIONS IN RHEL

You can configure how you want smart card authentication to work in a particular Identity Management
(IdM) client by using the authselect command, authselect enable-feature <smartcardoption>. The
following smart card options are available:

with-smartcard: Users can authenticate with the user name and password or with their smart
card.

with-smartcard-required: Users can authenticate with their smart cards, and password
authentication is disabled. You cannot access the system without your smart card. Once you
have authenticated with your smart card, you can stay logged in even if your smart card is
removed from its reader.

NOTE

The with-smartcard-required option only enforces exclusive smart card
authentication for login services, such as login, gdm, xdm, xscreensaver, and
gnome-screensaver. For other services, such as su or sudo for switching users,
smart card authentication is not enforced and if your smart card is not inserted,
you are prompted for a password.

with-smartcard-lock-on-removal: Users can authenticate with their smart card. However, if you
remove your smart card from its reader, you are automatically locked out of the system. You
cannot use password authentication.

NOTE

The with-smartcard-lock-on-removal option only works on systems with the
GNOME desktop environment. If you are using a system that is tty or console
based and you remove your smart card from its reader, you are not automatically
locked out of the system.

For more information, see Configuring smart cards using authselect .

1.4. TOOLS FOR MANAGING SMART CARDS AND THEIR CONTENTS

You can use many different tools to manage the keys and certificates stored on your smart cards. You
can use these tools to do the following:

List available smart card readers connected to a system.

Red Hat Enterprise Linux 8 Managing smart card authentication

6

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-smart-cards-using-authselect_managing-smart-card-authentication

List available smart cards and view their contents.

Manipulate the smart card content, that is the keys and certificates.

There are many tools that provide similar functionality but some work at different layers of your system.
Smart cards are managed on multiple layers by multiple components. On the lower level, the operating
system communicates with the smart card reader using the PC/SC protocol, and this communication is
handled by the pcsc-lite daemon. The daemon forwards the commands received to the smart card
reader typically over USB, which is handled by low-level CCID driver. The PC/SC low level
communication is rarely seen on the application level. The main method in RHEL for applications to
access smart cards is via a higher level application programming interface (API), the OASIS PKCS#11
API, which abstracts the card communication to specific commands that operate on cryptographic
objects, for example, private keys. Smart card vendors provide a shared module, such as an .so file,
which follows the PKCS#11 API and serves as a driver for the smart card.

You can use the following tools to manage your smart cards and their contents:

OpenSC tools: work with the drivers implemented in opensc.

opensc-tool: perform smart card operations.

pkcs15-tool: manage the PKCS#15 data structures on smart cards, such as listing and
reading PINs, keys, and certificates stored on the token.

pkcs11-tool: manage the PKCS#11 data objects on smart cards, such as listing and reading
PINs, keys, and certificates stored on the token.

GnuTLS utils: an API for applications to enable secure communication over the network
transport layer, as well as interfaces to access X.509, PKCS#12, OpenPGP, and other
structures.

p11tool: perform operations on PKCS#11 smart cards and security modules.

certtool: parse and generate X.509 certificates, requests, and private keys.

Network Security Services (NSS) Tools: a set of libraries designed to support the cross-platform
development of security-enabled client and server applications. Applications built with NSS can
support SSL v3, TLS, PKCS #5, PKCS #7, PKCS #11, PKCS #12, S/MIME, X.509 v3 certificates,
and other security standards.

modutil: manage PKCS#11 module information with the security module database.

certutil: manage keys and certificates in both NSS databases and other NSS tokens.

For more information about using these tools to troubleshoot issues with authenticating using a smart
card, see Troubleshooting authentication with smart cards .

Additional resources

opensc-tool man page

pkcs15-tool man page

pkcs11-tool man page

p11tool man page

certtool man page

CHAPTER 1. UNDERSTANDING SMART CARD AUTHENTICATION

7

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_troubleshooting-authentication-with-smart-cards_managing-smart-card-authentication

modutil man page

certutil man page

1.5. CERTIFICATES AND SMART CARD AUTHENTICATION

If you use Identity Management (IdM) or Active Directory (AD) to manage identity stores,
authentication, policies, and authorization policies in your domain, the certificates used for
authentication are generated by IdM or AD, respectively. You can also use certificates provided by an
external certificate authority and in this case you must configure Active Directory or IdM to accept
certificates from the external provider. If the user is not part of a domain, you can use a certificate
generated by a local certificate authority. For details, refer to the following sections:

Configuring Identity Management for smart card authentication

Configuring certificates issued by ADCS for smart card authentication in IdM

Managing externally signed certificates for IdM users, hosts, and services

Configuring and importing local certificates to a smart card

For a full list of certificates eligible for smart card authentication, see Certificates eligible for smart
cards.

1.6. REQUIRED STEPS FOR SMART CARD AUTHENTICATION IN IDM

You must ensure the following steps have been followed before you can authenticate with a smart card
in Identity Management (IdM):

Configure your IdM server for smart card authentication. See Configuring the IdM server for
smart card authentication

Configure your IdM client for smart card authentication. See Configuring the IdM client for
smart card authentication

Add the certificate to the user entry in IdM. See Adding a certificate to a user entry in the IdM
Web UI

Store your keys and certificates on the smart card. See Storing a certificate on a smart card

1.7. REQUIRED STEPS FOR SMART CARD AUTHENTICATION WITH
CERTIFICATES ISSUED BY ACTIVE DIRECTORY

You must ensure the following steps have been followed before you can authenticate with a smart card
with certificates issued by Active Directory (AD):

Copy the CA and user certificates from Active Directory to the IdM server and client .

Configure the IdM server and clients for smart card authentication using ADCS certificates .

Convert the PFX (PKCS#12) file to be able to store the certificate and private key on the smart
card.

Configure timeouts in the sssd.conf file .

Red Hat Enterprise Linux 8 Managing smart card authentication

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_certificates_in_idm/managing-externally-signed-certificates-for-idm-users-hosts-and-services_working-with-idm-certificates
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-smart-cards-using-authselect_managing-smart-card-authentication#certificates-eligible-for-smart-cards_configuring-smart-cards-using-authselect
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-webui_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#storing-a-certificate-on-the-smart-card_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#copying-certificates-from-active-directory-using-sftp_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#configuring-the-idm-server-and-clients-for-smart-card-authentication-using-adcs-certificates_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#converting-the-pfx-file_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#configuring-timeouts-in-sssd-conf_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm

Create certificate mapping rules for smart card authentication .

CHAPTER 1. UNDERSTANDING SMART CARD AUTHENTICATION

9

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#certificate-mapping-rules-for-smart-card-authentication_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR
SMART CARD AUTHENTICATION

Identity Management (IdM) supports smart card authentication with:

User certificates issued by the IdM certificate authority

User certificates issued by an external certificate authority

You can configure smart card authentication in IdM for both types of certificates. In this scenario, the
rootca.pem CA certificate is the file containing the certificate of a trusted external certificate authority.

For information about smart card authentication in IdM, see Understanding smart card authentication .

For more details on configuring smart card authentication:

Configuring the IdM server for smart card authentication

Configuring the IdM client for smart card authentication

Adding a certificate to a user entry in the IdM Web UI

Adding a certificate to a user entry in the IdM CLI

Installing tools for managing and using smart cards

Storing a certificate on a smart card

Logging in to IdM with smart cards

Configuring GDM access using smart card authentication

Configuring su access using smart card authentication

2.1. CONFIGURING THE IDM SERVER FOR SMART CARD
AUTHENTICATION

If you want to enable smart card authentication for users whose certificates have been issued by the
certificate authority (CA) of the <EXAMPLE.ORG> domain that your Identity Management (IdM) CA
trusts, you must obtain the following certificates so that you can add them when running the ipa-advise
script that configures the IdM server:

The certificate of the root CA that has either issued the certificate for the <EXAMPLE.ORG> CA
directly, or through one or more of its sub-CAs. You can download the certificate chain from a
web page whose certificate has been issued by the authority. For details, see Steps 1 - 4a in
Configuring a browser to enable certificate authentication .

The IdM CA certificate. You can obtain the CA certificate from the /etc/ipa/ca.crt file on the
IdM server on which an IdM CA instance is running.

The certificates of all of the intermediate CAs; that is, intermediate between the
<EXAMPLE.ORG> CA and the IdM CA.

To configure an IdM server for smart card authentication:

1. Obtain files with the CA certificates in the PEM format.

Red Hat Enterprise Linux 8 Managing smart card authentication

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-webui_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-cli_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#storing-a-certificate-on-the-smart-card_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#logging-in-to-idm-with-smart-cards_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#configuring-gdm-access-using-smart-card-authentication_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#configuring-su-access-using-smart-card-authentication_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/dc-web-ui-auth_configuring-and-managing-idm#configuring-browser-for-cert-auth_dc-web-ui-auth

2. Run the built-in ipa-advise script.

3. Reload the system configuration.

Prerequisites

You have root access to the IdM server.

You have the root CA certificate and all the intermediate CA certificates.

Procedure

1. Create a directory in which you will do the configuration:

[root@server]# mkdir ~/SmartCard/

2. Navigate to the directory:

[root@server]# cd ~/SmartCard/

3. Obtain the relevant CA certificates stored in files in PEM format. If your CA certificate is stored
in a file of a different format, such as DER, convert it to PEM format. The IdM Certificate
Authority certificate is in PEM format and is located in the /etc/ipa/ca.crt file.
Convert a DER file to a PEM file:

openssl x509 -in <filename>.der -inform DER -out <filename>.pem -outform PEM

4. For convenience, copy the certificates to the directory in which you want to do the
configuration:

[root@server SmartCard]# cp /tmp/rootca.pem ~/SmartCard/
[root@server SmartCard]# cp /tmp/subca.pem ~/SmartCard/
[root@server SmartCard]# cp /tmp/issuingca.pem ~/SmartCard/

5. Optional: If you use certificates of external certificate authorities, use the openssl x509 utility
to view the contents of the files in the PEM format to check that the Issuer and Subject values
are correct:

[root@server SmartCard]# openssl x509 -noout -text -in rootca.pem | more

6. Generate a configuration script with the in-built ipa-advise utility, using the administrator’s
privileges:

[root@server SmartCard]# kinit admin
[root@server SmartCard]# ipa-advise config-server-for-smart-card-auth > config-server-
for-smart-card-auth.sh

The config-server-for-smart-card-auth.sh script performs the following actions:

It configures the IdM Apache HTTP Server.

It enables Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) on the
Key Distribution Center (KDC).

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

11

It configures the IdM Web UI to accept smart card authorization requests.

7. Execute the script, adding the PEM files containing the root CA and sub CA certificates as
arguments:

[root@server SmartCard]# chmod +x config-server-for-smart-card-auth.sh
[root@server SmartCard]# ./config-server-for-smart-card-auth.sh rootca.pem subca.pem
issuingca.pem
Ticket cache:KEYRING:persistent:0:0
Default principal: admin@IDM.EXAMPLE.COM
[...]
Systemwide CA database updated.
The ipa-certupdate command was successful

NOTE

Ensure that you add the root CA’s certificate as an argument before any sub CA
certificates and that the CA or sub CA certificates have not expired.

8. Optional: If the certificate authority that issued the user certificate does not provide any Online
Certificate Status Protocol (OCSP) responder, you may need to disable OCSP check for
authentication to the IdM Web UI:

a. Set the SSLOCSPEnable parameter to off in the /etc/httpd/conf.d/ssl.conf file:

SSLOCSPEnable off

b. Restart the Apache daemon (httpd) for the changes to take effect immediately:

[root@server SmartCard]# systemctl restart httpd

WARNING

Do not disable the OCSP check if you only use user certificates issued by
the IdM CA. OCSP responders are part of IdM.

For instructions on how to keep the OCSP check enabled, and yet prevent a user certificate
from being rejected by the IdM server if it does not contain the information about the location at
which the CA that issued the user certificate listens for OCSP service requests, see the
SSLOCSPDefaultResponder directive in Apache mod_ssl configuration options .

The server is now configured for smart card authentication.

NOTE

To enable smart card authentication in the whole topology, run the procedure on each
IdM server.

Red Hat Enterprise Linux 8 Managing smart card authentication

12

http://httpd.apache.org/docs/trunk/en/mod/mod_ssl.html

2.2. USING ANSIBLE TO CONFIGURE THE IDM SERVER FOR SMART
CARD AUTHENTICATION

You can use Ansible to enable smart card authentication for users whose certificates have been issued
by the certificate authority (CA) of the <EXAMPLE.ORG> domain that your Identity Management (IdM)
CA trusts. To do that, you must obtain the following certificates so that you can use them when running
an Ansible playbook with the ipasmartcard_server ansible-freeipa role script:

The certificate of the root CA that has either issued the certificate for the <EXAMPLE.ORG> CA
directly, or through one or more of its sub-CAs. You can download the certificate chain from a
web page whose certificate has been issued by the authority. For details, see Step 4 in
Configuring a browser to enable certificate authentication .

The IdM CA certificate. You can obtain the CA certificate from the /etc/ipa/ca.crt file on any
IdM CA server.

The certificates of all of the CAs that are intermediate between the <EXAMPLE.ORG> CA and
the IdM CA.

Prerequisites

You have root access to the IdM server.

You know the IdM admin password.

You have the root CA certificate, the IdM CA certificate, and all the intermediate CA
certificates.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. If your CA certificates are stored in files of a different format, such as DER, convert them to
PEM format:

openssl x509 -in <filename>.der -inform DER -out <filename>.pem -outform PEM

The IdM Certificate Authority certificate is in PEM format and is located in the /etc/ipa/ca.crt
file.

2. Optional: Use the openssl x509 utility to view the contents of the files in the PEM format to
check that the Issuer and Subject values are correct:

openssl x509 -noout -text -in root-ca.pem | more

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/dc-web-ui-auth_configuring-and-managing-idm#configuring-browser-for-cert-auth_dc-web-ui-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

4. Create a subdirectory dedicated to the CA certificates:

$ mkdir SmartCard/

5. For convenience, copy all the required certificates to the ~/MyPlaybooks/SmartCard/
directory:

cp /tmp/root-ca.pem ~/MyPlaybooks/SmartCard/
cp /tmp/intermediate-ca.pem ~/MyPlaybooks/SmartCard/
cp /etc/ipa/ca.crt ~/MyPlaybooks/SmartCard/ipa-ca.crt

6. In your Ansible inventory file, specify the following:

The IdM servers that you want to configure for smart card authentication.

The IdM administrator password.

The paths to the certificates of the CAs in the following order:

The root CA certificate file

The intermediate CA certificates files

The IdM CA certificate file

The file can look as follows:

[ipaserver]
ipaserver.idm.example.com

[ipareplicas]
ipareplica1.idm.example.com
ipareplica2.idm.example.com

[ipacluster:children]
ipaserver
ipareplicas

[ipacluster:vars]
ipaadmin_password= "{{ ipaadmin_password }}"
ipasmartcard_server_ca_certs=/home/<user_name>/MyPlaybooks/SmartCard/root-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/intermediate-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/ipa-ca.crt

7. Create an install-smartcard-server.yml playbook with the following content:

- name: Playbook to set up smart card authentication for an IdM server
 hosts: ipaserver
 become: true

Red Hat Enterprise Linux 8 Managing smart card authentication

14

 roles:
 - role: ipasmartcard_server
 state: present

8. Save the file.

9. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory install-
smartcard-server.yml

The ipasmartcard_server Ansible role performs the following actions:

It configures the IdM Apache HTTP Server.

It enables Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) on the
Key Distribution Center (KDC).

It configures the IdM Web UI to accept smart card authorization requests.

10. Optional: If the certificate authority that issued the user certificate does not provide any Online
Certificate Status Protocol (OCSP) responder, you may need to disable OCSP check for
authentication to the IdM Web UI:

a. Connect to the IdM server as root:

ssh root@ipaserver.idm.example.com

b. Set the SSLOCSPEnable parameter to off in the /etc/httpd/conf.d/ssl.conf file:

SSLOCSPEnable off

c. Restart the Apache daemon (httpd) for the changes to take effect immediately:

systemctl restart httpd

WARNING

Do not disable the OCSP check if you only use user certificates issued by
the IdM CA. OCSP responders are part of IdM.

For instructions on how to keep the OCSP check enabled, and yet prevent a user certificate
from being rejected by the IdM server if it does not contain the information about the location at
which the CA that issued the user certificate listens for OCSP service requests, see the
SSLOCSPDefaultResponder directive in Apache mod_ssl configuration options .

The server listed in the inventory file is now configured for smart card authentication.

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

15

http://httpd.apache.org/docs/trunk/en/mod/mod_ssl.html

NOTE

To enable smart card authentication in the whole topology, set the hosts variable in the
Ansible playbook to ipacluster:

- name: Playbook to setup smartcard for IPA server and replicas
 hosts: ipacluster
[...]

Additional resources

Sample playbooks using the ipasmartcard_server role in the /usr/share/doc/ansible-
freeipa/playbooks/ directory

2.3. CONFIGURING THE IDM CLIENT FOR SMART CARD
AUTHENTICATION

Follow this procedure to configure IdM clients for smart card authentication. The procedure needs to be
run on each IdM system, a client or a server, to which you want to connect while using a smart card for
authentication. For example, to enable an ssh connection from host A to host B, the script needs to be
run on host B.

As an administrator, run this procedure to enable smart card authentication using

The ssh protocol
For details see Configuring SSH access using smart card authentication .

The console login

The GNOME Display Manager (GDM)

The su command

This procedure is not required for authenticating to the IdM Web UI. Authenticating to the IdM Web UI
involves two hosts, neither of which needs to be an IdM client:

The machine on which the browser is running. The machine can be outside of the IdM domain.

The IdM server on which httpd is running.

The following procedure assumes that you are configuring smart card authentication on an IdM client,
not an IdM server. For this reason you need two computers: an IdM server to generate the configuration
script, and the IdM client on which to run the script.

Prerequisites

Your IdM server has been configured for smart card authentication, as described in Configuring
the IdM server for smart card authentication.

You have root access to the IdM server and the IdM client.

You have the root CA certificate and all the intermediate CA certificates.

You installed the IdM client with the --mkhomedir option to ensure remote users can log in

Red Hat Enterprise Linux 8 Managing smart card authentication

16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication#configuring-ssh-access-using-smart-card-authentication_configuring-and-importing-local-certificates-to-a-smart-card
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth

You installed the IdM client with the --mkhomedir option to ensure remote users can log in
successfully. If you do not create a home directory, the default login location is the root of the
directory structure, /.

Procedure

1. On an IdM server, generate a configuration script with ipa-advise using the administrator’s
privileges:

[root@server SmartCard]# kinit admin
[root@server SmartCard]# ipa-advise config-client-for-smart-card-auth > config-client-
for-smart-card-auth.sh

The config-client-for-smart-card-auth.sh script performs the following actions:

It configures the smart card daemon.

It sets the system-wide truststore.

It configures the System Security Services Daemon (SSSD) to allow users to authenticate
with either their user name and password or with their smart card. For more details on SSSD
profile options for smart card authentication, see Smart card authentication options in
RHEL.

2. From the IdM server, copy the script to a directory of your choice on the IdM client machine:

[root@server SmartCard]# scp config-client-for-smart-card-auth.sh
root@client.idm.example.com:/root/SmartCard/
Password:
config-client-for-smart-card-auth.sh 100% 2419 3.5MB/s 00:00

3. From the IdM server, copy the CA certificate files in PEM format for convenience to the same
directory on the IdM client machine as used in the previous step:

[root@server SmartCard]# scp {rootca.pem,subca.pem,issuingca.pem}
root@client.idm.example.com:/root/SmartCard/
Password:
rootca.pem 100% 1237 9.6KB/s 00:00
subca.pem 100% 2514 19.6KB/s 00:00
issuingca.pem 100% 2514 19.6KB/s 00:00

4. On the client machine, execute the script, adding the PEM files containing the CA certificates as
arguments:

[root@client SmartCard]# kinit admin
[root@client SmartCard]# chmod +x config-client-for-smart-card-auth.sh
[root@client SmartCard]# ./config-client-for-smart-card-auth.sh rootca.pem subca.pem
issuingca.pem
Ticket cache:KEYRING:persistent:0:0
Default principal: admin@IDM.EXAMPLE.COM
[...]
Systemwide CA database updated.
The ipa-certupdate command was successful

NOTE

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication#con_smart-card-authentication-options-in-rhel_assembly_understanding-smart-card-authentication

NOTE

Ensure that you add the root CA’s certificate as an argument before any sub CA
certificates and that the CA or sub CA certificates have not expired.

The client is now configured for smart card authentication.

2.4. USING ANSIBLE TO CONFIGURE IDM CLIENTS FOR SMART CARD
AUTHENTICATION

Follow this procedure to use the ansible-freeipa ipasmartcard_client module to configure specific
Identity Management (IdM) clients to permit IdM users to authenticate with a smart card. Run this
procedure to enable smart card authentication for IdM users that use any of the following to access
IdM:

The ssh protocol
For details see Configuring SSH access using smart card authentication .

The console login

The GNOME Display Manager (GDM)

The su command

NOTE

This procedure is not required for authenticating to the IdM Web UI. Authenticating to
the IdM Web UI involves two hosts, neither of which needs to be an IdM client:

The machine on which the browser is running. The machine can be outside of the
IdM domain.

The IdM server on which httpd is running.

Prerequisites

Your IdM server has been configured for smart card authentication, as described in Using
Ansible to configure the IdM server for smart card authentication.

You have root access to the IdM server and the IdM client.

You have the root CA certificate, the IdM CA certificate, and all the intermediate CA
certificates.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

Red Hat Enterprise Linux 8 Managing smart card authentication

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication#configuring-ssh-access-using-smart-card-authentication_configuring-and-importing-local-certificates-to-a-smart-card
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. If your CA certificates are stored in files of a different format, such as DER, convert them to
PEM format:

openssl x509 -in <filename>.der -inform DER -out <filename>.pem -outform PEM

The IdM CA certificate is in PEM format and is located in the /etc/ipa/ca.crt file.

2. Optional: Use the openssl x509 utility to view the contents of the files in the PEM format to
check that the Issuer and Subject values are correct:

openssl x509 -noout -text -in root-ca.pem | more

3. On your Ansible control node, navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

4. Create a subdirectory dedicated to the CA certificates:

$ mkdir SmartCard/

5. For convenience, copy all the required certificates to the ~/MyPlaybooks/SmartCard/
directory, for example:

cp /tmp/root-ca.pem ~/MyPlaybooks/SmartCard/
cp /tmp/intermediate-ca.pem ~/MyPlaybooks/SmartCard/
cp /etc/ipa/ca.crt ~/MyPlaybooks/SmartCard/ipa-ca.crt

6. In your Ansible inventory file, specify the following:

The IdM clients that you want to configure for smart card authentication.

The IdM administrator password.

The paths to the certificates of the CAs in the following order:

The root CA certificate file

The intermediate CA certificates files

The IdM CA certificate file

The file can look as follows:

[ipaclients]
ipaclient1.example.com
ipaclient2.example.com

[ipaclients:vars]
ipaadmin_password=SomeADMINpassword

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

19

ipasmartcard_client_ca_certs=/home/<user_name>/MyPlaybooks/SmartCard/root-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/intermediate-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/ipa-ca.crt

7. Create an install-smartcard-clients.yml playbook with the following content:

- name: Playbook to set up smart card authentication for an IdM client
 hosts: ipaclients
 become: true

 roles:
 - role: ipasmartcard_client
 state: present

8. Save the file.

9. Run the Ansible playbook. Specify the playbook and inventory files:

$ ansible-playbook --vault-password-file=password_file -v -i inventory install-
smartcard-clients.yml

The ipasmartcard_client Ansible role performs the following actions:

It configures the smart card daemon.

It sets the system-wide truststore.

It configures the System Security Services Daemon (SSSD) to allow users to authenticate
with either their user name and password or their smart card. For more details on SSSD
profile options for smart card authentication, see Smart card authentication options in
RHEL.

The clients listed in the ipaclients section of the inventory file are now configured for smart card
authentication.

NOTE

If you have installed the IdM clients with the --mkhomedir option, remote users will be
able to log in to their home directories. Otherwise, the default login location is the root of
the directory structure, /.

Additional resources

Sample playbooks using the ipasmartcard_server role in the /usr/share/doc/ansible-
freeipa/playbooks/ directory

2.5. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM WEB UI

Follow this procedure to add an external certificate to a user entry in IdM Web UI.

NOTE

Red Hat Enterprise Linux 8 Managing smart card authentication

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication#con_smart-card-authentication-options-in-rhel_assembly_understanding-smart-card-authentication

NOTE

Instead of uploading the whole certificate, it is also possible to upload certificate mapping
data to a user entry in IdM. User entries containing either full certificates or certificate
mapping data can be used in conjunction with corresponding certificate mapping rules to
facilitate the configuration of smart card authentication for system administrators. For
details, see Certificate mapping rules for configuring authentication .

NOTE

If the user’s certificate has been issued by the IdM Certificate Authority, the certificate is
already stored in the user entry, and you do not need to follow this procedure.

Prerequisites

You have the certificate that you want to add to the user entry at your disposal.

Procedure

1. Log into the IdM Web UI as an administrator if you want to add a certificate to another user. For
adding a certificate to your own profile, you do not need the administrator’s credentials.

2. Navigate to Users → Active users → sc_user.

3. Find the Certificate option and click Add.

4. In the command-line interface, display the certificate in the PEM format using the cat utility or a
text editor:

[user@client SmartCard]$ cat testuser.crt

5. Copy and paste the certificate from the CLI into the window that has opened in the Web UI.

6. Click Add.

Figure 2.1. Adding a new certificate in the IdM Web UI

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

Figure 2.1. Adding a new certificate in the IdM Web UI

The sc_user entry now contains an external certificate.

2.6. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM CLI

Follow this procedure to add an external certificate to a user entry in IdM CLI.

NOTE

Instead of uploading the whole certificate, it is also possible to upload certificate mapping
data to a user entry in IdM. User entries containing either full certificates or certificate
mapping data can be used in conjunction with corresponding certificate mapping rules to
facilitate the configuration of smart card authentication for system administrators. For
details, see Certificate mapping rules for configuring authentication .

NOTE

If the user’s certificate has been issued by the IdM Certificate Authority, the certificate is
already stored in the user entry, and you do not need to follow this procedure.

Prerequisites

You have the certificate that you want to add to the user entry at your disposal.

Procedure

Red Hat Enterprise Linux 8 Managing smart card authentication

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

1. Log into the IdM CLI as an administrator if you want to add a certificate to another user:

[user@client SmartCard]$ kinit admin

For adding a certificate to your own profile, you do not need the administrator’s credentials:

[user@client SmartCard]$ kinit sc_user

2. Create an environment variable containing the certificate with the header and footer removed
and concatenated into a single line, which is the format expected by the ipa user-add-cert
command:

[user@client SmartCard]$ export CERT=`openssl x509 -outform der -in testuser.crt |
base64 -w0 -`

Note that certificate in the testuser.crt file must be in the PEM format.

3. Add the certificate to the profile of sc_user using the ipa user-add-cert command:

[user@client SmartCard]$ ipa user-add-cert sc_user --certificate=$CERT

The sc_user entry now contains an external certificate.

2.7. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

Prerequisites

The gnutls-utils package is installed.

The opensc package is installed.

The pcscd service is running.

Before you can configure your smart card, you must install the corresponding tools, which can generate
certificates and start the pscd service.

Procedure

1. Install the opensc and gnutls-utils packages:

yum -y install opensc gnutls-utils

2. Start the pcscd service.

systemctl start pcscd

Verification

Verify that the pcscd service is up and running

systemctl status pcscd

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

23

2.8. PREPARING YOUR SMART CARD AND UPLOADING YOUR
CERTIFICATES AND KEYS TO YOUR SMART CARD

Follow this procedure to configure your smart card with the pkcs15-init tool, which helps you to
configure:

Erasing your smart card

Setting new PINs and optional PIN Unblocking Keys (PUKs)

Creating a new slot on the smart card

Storing the certificate, private key, and public key in the slot

If required, locking the smart card settings as certain smart cards require this type of finalization

NOTE

The pkcs15-init tool may not work with all smart cards. You must use the tools that work
with the smart card you are using.

Prerequisites

The opensc package, which includes the pkcs15-init tool, is installed.
For more details, see Installing tools for managing and using smart cards .

The card is inserted in the reader and connected to the computer.

You have a private key, a public key, and a certificate to store on the smart card. In this
procedure, testuser.key, testuserpublic.key, and testuser.crt are the names used for the
private key, public key, and the certificate.

You have your current smart card user PIN and Security Officer PIN (SO-PIN).

Procedure

1. Erase your smart card and authenticate yourself with your PIN:

$ pkcs15-init --erase-card --use-default-transport-keys
Using reader with a card: Reader name
PIN [Security Officer PIN] required.
Please enter PIN [Security Officer PIN]:

The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

$ pkcs15-init --create-pkcs15 --use-default-transport-keys \ --pin 963214 --puk 321478 --so-
pin 65498714 --so-puk 784123
Using reader with a card: Reader name

The pcks15-init tool creates a new slot on the smart card.

3. Set a label and the authentication ID for the slot:

Red Hat Enterprise Linux 8 Managing smart card authentication

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth

$ pkcs15-init --store-pin --label testuser \ --auth-id 01 --so-pin 65498714 --pin 963214 --puk
321478
Using reader with a card: Reader name

The label is set to a human-readable value, in this case, testuser. The auth-id must be two
hexadecimal values, in this case it is set to 01.

4. Store and label the private key in the new slot on the smart card:

$ pkcs15-init --store-private-key testuser.key --label testuser_key \ --auth-id 01 --id 01 --pin
963214
Using reader with a card: Reader name

NOTE

The value you specify for --id must be the same when storing your private key
and storing your certificate in the next step. Specifying your own value for --id is
recommended as otherwise a more complicated value is calculated by the tool.

5. Store and label the certificate in the new slot on the smart card:

$ pkcs15-init --store-certificate testuser.crt --label testuser_crt \ --auth-id 01 --id 01 --format
pem --pin 963214
Using reader with a card: Reader name

6. Optional: Store and label the public key in the new slot on the smart card:

$ pkcs15-init --store-public-key testuserpublic.key --label testuserpublic_key --auth-id 01 --id
01 --pin 963214
Using reader with a card: Reader name

NOTE

If the public key corresponds to a private key or certificate, specify the same ID
as the ID of the private key or certificate.

7. Optional: Certain smart cards require you to finalize the card by locking the settings:

$ pkcs15-init -F

At this stage, your smart card includes the certificate, private key, and public key in the newly
created slot. You have also created your user PIN and PUK and the Security Officer PIN and
PUK.

2.9. LOGGING IN TO IDM WITH SMART CARDS

Follow this procedure to use smart cards for logging in to the IdM Web UI.

Prerequisites

The web browser is configured for using smart card authentication.

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

25

The IdM server is configured for smart card authentication.

The certificate installed on your smart card is either issued by the IdM server or has been added
to the user entry in IdM.

You know the PIN required to unlock the smart card.

The smart card has been inserted into the reader.

Procedure

1. Open the IdM Web UI in the browser.

2. Click Log In Using Certificate.

3. If the Password Required dialog box opens, add the PIN to unlock the smart card and click the
OK button.
The User Identification Request dialog box opens.

If the smart card contains more than one certificate, select the certificate you want to use for
authentication in the drop down list below Choose a certificate to present as identification.

4. Click the OK button.

Now you are successfully logged in to the IdM Web UI.

2.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION

Red Hat Enterprise Linux 8 Managing smart card authentication

26

2.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION
ON AN IDM CLIENT

The GNOME Desktop Manager (GDM) requires authentication. You can use your password; however,
you can also use a smart card for authentication.

Follow this procedure to use smart card authentication to access GDM.

Prerequisites

The system has been configured for smart card authentication. For details, see Configuring the
IdM client for smart card authentication.

The smart card contains your certificate and private key.

The user account is a member of the IdM domain.

The certificate on the smart card maps to the user entry through:

Assigning the certificate to a particular user entry. For details, see, Adding a certificate to a
user entry in the IdM Web UI or Adding a certificate to a user entry in the IdM CLI .

The certificate mapping data being applied to the account. For details, see Certificate
mapping rules for configuring authentication on smart cards.

Procedure

1. Insert the smart card in the reader.

2. Enter the smart card PIN.

3. Click Sign In.

You are successfully logged in to the RHEL system and you have a TGT provided by the IdM server.

Verification

In the Terminal window, enter klist and check the result:

$ klist
Ticket cache: KEYRING:persistent:1358900015:krb_cache_TObtNMd
Default principal: example.user@REDHAT.COM

Valid starting Expires Service principal
04/20/2020 13:58:24 04/20/2020 23:58:24 krbtgt/EXAMPLE.COM@EXAMPLE.COM
 renew until 04/27/2020 08:58:15

2.11. USING SMART CARD AUTHENTICATION WITH THE SU COMMAND

Changing to a different user requires authentication. You can use a password or a certificate. Follow this
procedure to use your smart card with the su command. It means that after entering the su command,
you are prompted for the smart card PIN.

Prerequisites

CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-webui_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-cli_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

Your IdM server and client have been configured for smart card authentication.

See Configuring the IdM server for smart card authentication

See Configuring the IdM client for smart card authentication

The smart card contains your certificate and private key. See Storing a certificate on a smart
card

The card is inserted in the reader and connected to the computer.

Procedure

In a terminal window, change to a different user with the su command:

$ su - example.user
PIN for smart_card

If the configuration is correct, you are prompted to enter the smart card PIN.

Red Hat Enterprise Linux 8 Managing smart card authentication

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#storing-a-certificate-on-the-smart-card_configuring-idm-for-smart-card-auth

CHAPTER 3. CONFIGURING CERTIFICATES ISSUED BY ADCS
FOR SMART CARD AUTHENTICATION IN IDM

To configure smart card authentication in IdM for users whose certificates are issued by Active
Directory (AD) certificate services:

Your deployment is based on cross-forest trust between Identity Management (IdM) and Active
Directory (AD).

You want to allow smart card authentication for users whose accounts are stored in AD.

Certificates are created and stored in Active Directory Certificate Services (ADCS).

For an overview of smart card authentication, see Understanding smart card authentication .

Configuration is accomplished in the following steps:

Copying CA and user certificates from Active Directory to the IdM server and client

Configuring the IdM server and clients for smart card authentication using ADCS certificates

Converting a PFX (PKCS#12) file to be able to store the certificate and private key into the
smart card

Configuring timeouts in the sssd.conf file

Creating certificate mapping rules for smart card authentication

Prerequisites

Identity Management (IdM) and Active Directory (AD) trust is installed
For details, see Installing trust between IdM and AD .

Active Directory Certificate Services (ADCS) is installed and certificates for users are generated

3.1. WINDOWS SERVER SETTINGS REQUIRED FOR TRUST
CONFIGURATION AND CERTIFICATE USAGE

You must configure the following on the Windows Server:

Active Directory Certificate Services (ADCS) is installed

Certificate Authority is created

Optional: If you are using Certificate Authority Web Enrollment, the Internet Information
Services (IIS) must be configured

Export the certificate:

Key must have 2048 bits or more

Include a private key

You will need a certificate in the following format: Personal Information Exchange — PKCS
#12(.PFX)

Enable certificate privacy

CHAPTER 3. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#copying-certificates-from-active-directory-using-sftp_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#configuring-the-idm-server-and-clients-for-smart-card-authentication-using-adcs-certificates_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#converting-the-pfx-file_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#configuring-timeouts-in-sssd-conf_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#certificate-mapping-rules-for-smart-card-authentication_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management

Enable certificate privacy

3.2. COPYING CERTIFICATES FROM ACTIVE DIRECTORY USING SFTP

To be able to use smart card authetication, you need to copy the following certificate files:

A root CA certificate in the CER format: adcs-winserver-ca.cer on your IdM server.

A user certificate with a private key in the PFX format: aduser1.pfx on an IdM client.

NOTE

This procedure expects SSH access is allowed. If SSH is unavailable the user must copy
the file from the AD Server to the IdM server and client.

Procedure

1. Connect from the IdM server and copy the adcs-winserver-ca.cer root certificate to the IdM
server:

root@idmserver ~]# sftp Administrator@winserver.ad.example.com
Administrator@winserver.ad.example.com's password:
Connected to Administrator@winserver.ad.example.com.
sftp> cd <Path to certificates>
sftp> ls
adcs-winserver-ca.cer aduser1.pfx
sftp>
sftp> get adcs-winserver-ca.cer
Fetching <Path to certificates>/adcs-winserver-ca.cer to adcs-winserver-ca.cer
<Path to certificates>/adcs-winserver-ca.cer 100% 1254 15KB/s 00:00
sftp quit

2. Connect from the IdM client and copy the aduser1.pfx user certificate to the client:

[root@client1 ~]# sftp Administrator@winserver.ad.example.com
Administrator@winserver.ad.example.com's password:
Connected to Administrator@winserver.ad.example.com.
sftp> cd /<Path to certificates>
sftp> get aduser1.pfx
Fetching <Path to certificates>/aduser1.pfx to aduser1.pfx
<Path to certificates>/aduser1.pfx 100% 1254 15KB/s 00:00
sftp quit

Now the CA certificate is stored in the IdM server and the user certificates is stored on the client
machine.

3.3. CONFIGURING THE IDM SERVER AND CLIENTS FOR SMART CARD
AUTHENTICATION USING ADCS CERTIFICATES

You must configure the IdM (Identity Management) server and clients to be able to use smart card
authentication in the IdM environment. IdM includes the ipa-advise scripts which makes all necessary
changes:

Red Hat Enterprise Linux 8 Managing smart card authentication

30

Install necessary packages

Configure IdM server and clients

Copy the CA certificates into the expected locations

You can run ipa-advise on your IdM server.

Follow this procedure to configure your server and clients for smart card authentication:

On an IdM server: Preparing the ipa-advise script to configure your IdM server for smart card
authentication.

On an IdM server: Preparing the ipa-advise script to configure your IdM client for smart card
authentication.

On an IdM server: Applying the the ipa-advise server script on the IdM server using the AD
certificate.

Moving the client script to the IdM client machine.

On an IdM client: Applying the the ipa-advise client script on the IdM client using the AD
certificate.

Prerequisites

The certificate has been copied to the IdM server.

Obtain the Kerberos ticket.

Log in as a user with administration rights.

Procedure

1. On the IdM server, use the ipa-advise script for configuring a client:

[root@idmserver ~]# ipa-advise config-client-for-smart-card-auth > sc_client.sh

2. On the IdM server, use the ipa-advise script for configuring a server:

[root@idmserver ~]# ipa-advise config-server-for-smart-card-auth > sc_server.sh

3. On the IdM server, execute the script:

[root@idmserver ~]# sh -x sc_server.sh adcs-winserver-ca.cer

It configures the IdM Apache HTTP Server.

It enables Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) on the
Key Distribution Center (KDC).

It configures the IdM Web UI to accept smart card authorization requests.

4. Copy the sc_client.sh script to the client system:

CHAPTER 3. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

31

[root@idmserver ~]# scp sc_client.sh root@client1.idm.example.com:/root
Password:
sc_client.sh 100% 2857 1.6MB/s 00:00

5. Copy the Windows certificate to the client system:

[root@idmserver ~]# scp adcs-winserver-ca.cer root@client1.idm.example.com:/root
Password:
adcs-winserver-ca.cer 100% 1254 952.0KB/s 00:00

6. On the client system, run the client script:

[root@idmclient1 ~]# sh -x sc_client.sh adcs-winserver-ca.cer

The CA certificate is installed in the correct format on the IdM server and client systems and next step is
to copy the user certificates onto the smart card itself.

3.4. CONVERTING THE PFX FILE

Before you store the PFX (PKCS#12) file into the smart card, you must:

Convert the file to the PEM format

Extract the private key and the certificate to two different files

Prerequisites

The PFX file is copied into the IdM client machine.

Procedure

1. On the IdM client, into the PEM format:

[root@idmclient1 ~]# openssl pkcs12 -in aduser1.pfx -out aduser1_cert_only.pem -clcerts -
nodes
Enter Import Password:

2. Extract the key into the separate file:

[root@idmclient1 ~]# openssl pkcs12 -in adduser1.pfx -nocerts -out adduser1.pem >
aduser1.key

3. Extract the public certificate into the separate file:

[root@idmclient1 ~]# openssl pkcs12 -in adduser1.pfx -clcerts -nokeys -out
aduser1_cert_only.pem > aduser1.crt

At this point, you can store the aduser1.key and aduser1.crt into the smart card.

3.5. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

Red Hat Enterprise Linux 8 Managing smart card authentication

32

Prerequisites

The gnutls-utils package is installed.

The opensc package is installed.

The pcscd service is running.

Before you can configure your smart card, you must install the corresponding tools, which can generate
certificates and start the pscd service.

Procedure

1. Install the opensc and gnutls-utils packages:

yum -y install opensc gnutls-utils

2. Start the pcscd service.

systemctl start pcscd

Verification

Verify that the pcscd service is up and running

systemctl status pcscd

3.6. PREPARING YOUR SMART CARD AND UPLOADING YOUR
CERTIFICATES AND KEYS TO YOUR SMART CARD

Follow this procedure to configure your smart card with the pkcs15-init tool, which helps you to
configure:

Erasing your smart card

Setting new PINs and optional PIN Unblocking Keys (PUKs)

Creating a new slot on the smart card

Storing the certificate, private key, and public key in the slot

If required, locking the smart card settings as certain smart cards require this type of finalization

NOTE

The pkcs15-init tool may not work with all smart cards. You must use the tools that work
with the smart card you are using.

Prerequisites

The opensc package, which includes the pkcs15-init tool, is installed.
For more details, see Installing tools for managing and using smart cards .

The card is inserted in the reader and connected to the computer.

CHAPTER 3. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

33

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth

You have a private key, a public key, and a certificate to store on the smart card. In this
procedure, testuser.key, testuserpublic.key, and testuser.crt are the names used for the
private key, public key, and the certificate.

You have your current smart card user PIN and Security Officer PIN (SO-PIN).

Procedure

1. Erase your smart card and authenticate yourself with your PIN:

$ pkcs15-init --erase-card --use-default-transport-keys
Using reader with a card: Reader name
PIN [Security Officer PIN] required.
Please enter PIN [Security Officer PIN]:

The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

$ pkcs15-init --create-pkcs15 --use-default-transport-keys \ --pin 963214 --puk 321478 --so-
pin 65498714 --so-puk 784123
Using reader with a card: Reader name

The pcks15-init tool creates a new slot on the smart card.

3. Set a label and the authentication ID for the slot:

$ pkcs15-init --store-pin --label testuser \ --auth-id 01 --so-pin 65498714 --pin 963214 --puk
321478
Using reader with a card: Reader name

The label is set to a human-readable value, in this case, testuser. The auth-id must be two
hexadecimal values, in this case it is set to 01.

4. Store and label the private key in the new slot on the smart card:

$ pkcs15-init --store-private-key testuser.key --label testuser_key \ --auth-id 01 --id 01 --pin
963214
Using reader with a card: Reader name

NOTE

The value you specify for --id must be the same when storing your private key
and storing your certificate in the next step. Specifying your own value for --id is
recommended as otherwise a more complicated value is calculated by the tool.

5. Store and label the certificate in the new slot on the smart card:

$ pkcs15-init --store-certificate testuser.crt --label testuser_crt \ --auth-id 01 --id 01 --format
pem --pin 963214
Using reader with a card: Reader name

6. Optional: Store and label the public key in the new slot on the smart card:

Red Hat Enterprise Linux 8 Managing smart card authentication

34

$ pkcs15-init --store-public-key testuserpublic.key --label testuserpublic_key --auth-id 01 --id
01 --pin 963214
Using reader with a card: Reader name

NOTE

If the public key corresponds to a private key or certificate, specify the same ID
as the ID of the private key or certificate.

7. Optional: Certain smart cards require you to finalize the card by locking the settings:

$ pkcs15-init -F

At this stage, your smart card includes the certificate, private key, and public key in the newly
created slot. You have also created your user PIN and PUK and the Security Officer PIN and
PUK.

3.7. CONFIGURING TIMEOUTS IN SSSD.CONF

Authentication with a smart card certificate might take longer than the default timeouts used by SSSD.
Time out expiration can be caused by:

Slow reader

A forwarding form a physical device into a virtual environment

Too many certificates stored on the smart card

Slow response from the OCSP (Online Certificate Status Protocol) responder if OCSP is used
to verify the certificates

In this case you can prolong the following timeouts in the sssd.conf file, for example, to 60 seconds:

p11_child_timeout

krb5_auth_timeout

Prerequisites

You must be logged in as root.

Procedure

1. Open the sssd.conf file:

[root@idmclient1 ~]# vim /etc/sssd/sssd.conf

2. Change the value of p11_child_timeout:

[pam]
p11_child_timeout = 60

3. Change the value of krb5_auth_timeout:

CHAPTER 3. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

35

[domain/IDM.EXAMPLE.COM]
krb5_auth_timeout = 60

4. Save the settings.

Now, the interaction with the smart card is allowed to run for 1 minute (60 seconds) before
authentication will fail with a timeout.

3.8. CREATING CERTIFICATE MAPPING RULES FOR SMART CARD
AUTHENTICATION

If you want to use one certificate for a user who has accounts in AD (Active Directory) and in IdM
(Identity Management), you can create a certificate mapping rule on the IdM server.

After creating such a rule, the user is able to authenticate with their smart card in both domains.

For details about certificate mapping rules, see Certificate mapping rules for configuring authentication .

Red Hat Enterprise Linux 8 Managing smart card authentication

36

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

CHAPTER 4. CERTIFICATE MAPPING RULES FOR
CONFIGURING AUTHENTICATION

You might need to configure certificate mapping rules in the following scenarios:

Certificates have been issued by the Certificate System of the Active Directory (AD) with which
the IdM domain is in a trust relationship.

Certificates have been issued by an external certificate authority.

The IdM environment is large with many users using smart cards. In this case, adding full
certificates can be complicated. The subject and issuer are predictable in most scenarios and
therefore easier to add ahead of time than the full certificate.

As a system administrator, you can create a certificate mapping rule and add certificate mapping data to
a user entry even before a certificate is issued to a particular user. Once the certificate is issued, the
user can log in using the certificate even though the full certificate has not yet been uploaded to the
user entry.

In addition, as certificates are renewed at regular intervals, certificate mapping rules reduce
administrative overhead. When a user’s certificate is renewed, the administrator does not have to update
the user entry. For example, if the mapping is based on the Subject and Issuer values, and if the new
certificate has the same subject and issuer as the old one, the mapping still applies. If, in contrast, the
full certificate was used, then the administrator would have to upload the new certificate to the user
entry to replace the old one.

To set up certificate mapping:

1. An administrator has to load the certificate mapping data or the full certificate into a user
account.

2. An administrator has to create a certificate mapping rule to allow successful logging into IdM for
a user whose account contains a certificate mapping data entry that matches the information
on the certificate.

Once the certificate mapping rules have been created, when the end-user presents the certificate,
stored either on a filesystem or a smart card, authentication is successful.

NOTE

The Key Distribution Center (KDC) has a cache for certificate mapping rules. The cache is
populated on the first certauth request and it has a hard-coded timeout of 300 seconds.
KDC will not see any changes to certificate mapping rules unless it is restarted or the
cache expires.

For details on the individual components that make up a mapping rule and how to obtain and use them,
see Components of an identity mapping rule in IdM and Obtaining the issuer from a certificate for use in
a matching rule.

NOTE

Your certificate mapping rules can depend on the use case for which you are using the
certificate. For example, if you are using SSH with certificates, you must have the full
certificate to extract the public key from the certificate.

CHAPTER 4. CERTIFICATE MAPPING RULES FOR CONFIGURING AUTHENTICATION

37

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/dc-web-ui-auth_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#logging-in-to-idm-with-smart-cards_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#sc-id-mapping_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#sc-id-issuer-obtain-example_conf-certmap-idm

CHAPTER 5. CONFIGURING SMART CARD AUTHENTICATION
WITH THE WEB CONSOLE FOR CENTRALLY MANAGED

USERS
You can configure smart card authentication in the RHEL web console for users who are centrally
managed by:

Identity Management

Active Directory which is connected in the cross-forest trust with Identity Management

IMPORTANT

Smart card authentication does not elevate administrative privileges yet and the web
console opens in the web browser in the read-only mode.

You can run administrative commands in the built-in terminal with sudo.

Prerequisites

The system for which you want to use the smart card authentication must be a member of an
Active Directory or Identity Management domain.
For details about joining the RHEL 8 system into a domain using the web console, see Joining a
RHEL system to an IdM domain using the web console.

The certificate used for the smart card authentication must be associated with a particular user
in Identity Management or Active Directory.
For more details about associating a certificate with the user in Identity Management, see
Adding a certificate to a user entry in the IdM Web UI or Adding a certificate to a user entry in
the IdM CLI.

5.1. SMART CARD AUTHENTICATION FOR CENTRALLY MANAGED
USERS

A smart card is a physical device, which can provide personal authentication using certificates stored on
the card. Personal authentication means that you can use smart cards in the same way as user
passwords.

You can store user credentials on the smart card in the form of a private key and a certificate. Special
software and hardware is used to access them. You insert the smart card into a reader or a USB socket
and supply the PIN code for the smart card instead of providing your password.

Identity Management (IdM) supports smart card authentication with:

User certificates issued by the IdM certificate authority. For more details, see Configuring
Identity Management for smart card authentication.

User certificates issued by the Active Directory Certificate Service (ADCS) certificate authority.
For more details, see Configuring certificates issued by ADCS for smart card authentication in
IdM.

NOTE

Red Hat Enterprise Linux 8 Managing smart card authentication

38

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring_single_sign_on_for_the_rhel_8_web_console_in_the_idm_domain_system-management-using-the-rhel-8-web-console#joining-a-rhel-8-system-to-an-idm-domain-using-the-web-console_configuring-single-sign-on-for-the-web-console-in-the-idm-domain
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-webui_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-cli_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication

NOTE

If you want to start using smart card authentication, see the hardware requirements:
Smart Card support in RHEL8+ .

5.2. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

Prerequisites

The gnutls-utils package is installed.

The opensc package is installed.

The pcscd service is running.

Before you can configure your smart card, you must install the corresponding tools, which can generate
certificates and start the pscd service.

Procedure

1. Install the opensc and gnutls-utils packages:

yum -y install opensc gnutls-utils

2. Start the pcscd service.

systemctl start pcscd

Verification

Verify that the pcscd service is up and running

systemctl status pcscd

5.3. PREPARING YOUR SMART CARD AND UPLOADING YOUR
CERTIFICATES AND KEYS TO YOUR SMART CARD

Follow this procedure to configure your smart card with the pkcs15-init tool, which helps you to
configure:

Erasing your smart card

Setting new PINs and optional PIN Unblocking Keys (PUKs)

Creating a new slot on the smart card

Storing the certificate, private key, and public key in the slot

If required, locking the smart card settings as certain smart cards require this type of finalization

NOTE

CHAPTER 5. CONFIGURING SMART CARD AUTHENTICATION WITH THE WEB CONSOLE FOR CENTRALLY MANAGED USERS

39

https://access.redhat.com/articles/4253861

NOTE

The pkcs15-init tool may not work with all smart cards. You must use the tools that work
with the smart card you are using.

Prerequisites

The opensc package, which includes the pkcs15-init tool, is installed.
For more details, see Installing tools for managing and using smart cards .

The card is inserted in the reader and connected to the computer.

You have a private key, a public key, and a certificate to store on the smart card. In this
procedure, testuser.key, testuserpublic.key, and testuser.crt are the names used for the
private key, public key, and the certificate.

You have your current smart card user PIN and Security Officer PIN (SO-PIN).

Procedure

1. Erase your smart card and authenticate yourself with your PIN:

$ pkcs15-init --erase-card --use-default-transport-keys
Using reader with a card: Reader name
PIN [Security Officer PIN] required.
Please enter PIN [Security Officer PIN]:

The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

$ pkcs15-init --create-pkcs15 --use-default-transport-keys \ --pin 963214 --puk 321478 --so-
pin 65498714 --so-puk 784123
Using reader with a card: Reader name

The pcks15-init tool creates a new slot on the smart card.

3. Set a label and the authentication ID for the slot:

$ pkcs15-init --store-pin --label testuser \ --auth-id 01 --so-pin 65498714 --pin 963214 --puk
321478
Using reader with a card: Reader name

The label is set to a human-readable value, in this case, testuser. The auth-id must be two
hexadecimal values, in this case it is set to 01.

4. Store and label the private key in the new slot on the smart card:

$ pkcs15-init --store-private-key testuser.key --label testuser_key \ --auth-id 01 --id 01 --pin
963214
Using reader with a card: Reader name

NOTE

Red Hat Enterprise Linux 8 Managing smart card authentication

40

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth

NOTE

The value you specify for --id must be the same when storing your private key
and storing your certificate in the next step. Specifying your own value for --id is
recommended as otherwise a more complicated value is calculated by the tool.

5. Store and label the certificate in the new slot on the smart card:

$ pkcs15-init --store-certificate testuser.crt --label testuser_crt \ --auth-id 01 --id 01 --format
pem --pin 963214
Using reader with a card: Reader name

6. Optional: Store and label the public key in the new slot on the smart card:

$ pkcs15-init --store-public-key testuserpublic.key --label testuserpublic_key --auth-id 01 --id
01 --pin 963214
Using reader with a card: Reader name

NOTE

If the public key corresponds to a private key or certificate, specify the same ID
as the ID of the private key or certificate.

7. Optional: Certain smart cards require you to finalize the card by locking the settings:

$ pkcs15-init -F

At this stage, your smart card includes the certificate, private key, and public key in the newly
created slot. You have also created your user PIN and PUK and the Security Officer PIN and
PUK.

5.4. ENABLING SMART CARD AUTHENTICATION FOR THE WEB
CONSOLE

To use smart card authentication in the web console, enable this authentication method in the
cockpit.conf file.

Additionally, you can disable password authentication in the same file.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Terminal.

3. In the /etc/cockpit/cockpit.conf, set the ClientCertAuthentication to yes:

CHAPTER 5. CONFIGURING SMART CARD AUTHENTICATION WITH THE WEB CONSOLE FOR CENTRALLY MANAGED USERS

41

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

[WebService]
ClientCertAuthentication = yes

4. Optional: Disable password based authentication in cockpit.conf with:

[Basic]
action = none

This configuration disables password authentication and you must always use the smart card.

5. Restart the web console to ensure that the cockpit.service accepts the change:

systemctl restart cockpit

5.5. LOGGING IN TO THE WEB CONSOLE WITH SMART CARDS

You can use smart cards to log in to the web console.

Prerequisites

A valid certificate stored in your smart card that is associated to a user account created in a
Active Directory or Identity Management domain.

PIN to unlock the smart card.

The smart card has been put into the reader.

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

The browser asks you to add the PIN protecting the certificate stored on the smart card.

2. In the Password Required dialog box, enter PIN and click OK.

3. In the User Identification Request dialog box, select the certificate stored in the smart card.

4. Select Remember this decision.
The system does not open this window next time.

NOTE

This step does not apply to Google Chrome users.

5. Click OK.

You are now connected and the web console displays its content.

5.6. LIMITING USER SESSIONS AND MEMORY TO PREVENT A DOS

Red Hat Enterprise Linux 8 Managing smart card authentication

42

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

5.6. LIMITING USER SESSIONS AND MEMORY TO PREVENT A DOS
ATTACK

A certificate authentication is protected by separating and isolating instances of the cockpit-ws web
server against attackers who wants to impersonate another user. However, this introduces a potential
denial of service (DoS) attack: A remote attacker could create a large number of certificates and send a
large number of HTTPS requests to cockpit-ws each using a different certificate.

To prevent such DoS attacks, the collective resources of these web server instances are limited. By
default, limits for the number of connections and memory usage are set to 200 threads and 75 % (soft)
or 90 % (hard) memory limit.

The example procedure demonstrates resource protection by limiting the number of connections and
memory.

Procedure

1. In the terminal, open the system-cockpithttps.slice configuration file:

systemctl edit system-cockpithttps.slice

2. Limit the TasksMax to 100 and CPUQuota to 30%:

[Slice]
change existing value
TasksMax=100
add new restriction
CPUQuota=30%

3. To apply the changes, restart the system:

systemctl daemon-reload
systemctl stop cockpit

Now, the new memory and user session lower the risk of DoS attacks on the cockpit-ws web server.

5.7. ADDITIONAL RESOURCES

Configuring Identity Management for smart card authentication .

Configuring certificates issued by ADCS for smart card authentication in IdM .

Configuring and importing local certificates to a smart card .

CHAPTER 5. CONFIGURING SMART CARD AUTHENTICATION WITH THE WEB CONSOLE FOR CENTRALLY MANAGED USERS

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/configuring-idm-for-smart-card-auth_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication

CHAPTER 6. CONFIGURING SMART CARD AUTHENTICATION
WITH LOCAL CERTIFICATES

To configure smart card authentication with local certificates:

The host is not connected to a domain.

You want to authenticate with a smart card on this host.

You want to configure SSH access using smart card authentication.

You want to configure the smart card with authselect.

Use the following configuration to accomplish this scenario:

Obtain a user certificate for the user who wants to authenticate with a smart card. The
certificate should be generated by a trustworthy Certification Authority used in the domain.
If you cannot get the certificate, you can generate a user certificate signed by a local certificate
authority for testing purposes,

Store the certificate and private key in a smart card.

Configure the smart card authentication for SSH access.

IMPORTANT

If a host can be part of the domain, add the host to the domain and use certificates
generated by Active Directory or Identity Management Certification Authority.

For details about how to create IdM certificates for a smart card, see Configuring Identity
Management for smart card authentication.

Prerequisites

Authselect installed
The authselect tool configures user authentication on Linux hosts and you can use it to
configure smart card authentication parameters. For details about authselect, see Explaining
authselect.

Smart Card or USB devices supported by RHEL 8
For details, see Smart Card support in RHEL8 .

6.1. CREATING LOCAL CERTIFICATES

Follow this procedure to perform the following tasks:

Generate the OpenSSL certificate authority

Create a certificate signing request

Red Hat Enterprise Linux 8 Managing smart card authentication

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_authentication_and_authorization_in_rhel/configuring-user-authentication-using-authselect_configuring-authentication-and-authorization-in-rhel#what-is-authselect-used-for_configuring-user-authentication-using-authselect
https://access.redhat.com/articles/4253861

WARNING

The following steps are intended for testing purposes only. Certificates generated
by a local self-signed Certificate Authority are not as secure as using AD, IdM, or
RHCS Certification Authority. You should use a certificate generated by your
enterprise Certification Authority even if the host is not part of the domain.

Procedure

1. Create a directory where you can generate the certificate, for example:

mkdir /tmp/ca
cd /tmp/ca

2. Set up the certificate (copy this text to your command line in the ca directory):

cat > ca.cnf <<EOF
[ca]
default_ca = CA_default

[CA_default]
dir = .
database = \$dir/index.txt
new_certs_dir = \$dir/newcerts

certificate = \$dir/rootCA.crt
serial = \$dir/serial
private_key = \$dir/rootCA.key
RANDFILE = \$dir/rand

default_days = 365
default_crl_days = 30
default_md = sha256

policy = policy_any
email_in_dn = no

name_opt = ca_default
cert_opt = ca_default
copy_extensions = copy

[usr_cert]
authorityKeyIdentifier = keyid, issuer

[v3_ca]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer:always
basicConstraints = CA:true
keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[policy_any]

CHAPTER 6. CONFIGURING SMART CARD AUTHENTICATION WITH LOCAL CERTIFICATES

45

organizationName = supplied
organizationalUnitName = supplied
commonName = supplied
emailAddress = optional

[req]
distinguished_name = req_distinguished_name
prompt = no

[req_distinguished_name]
O = Example
OU = Example Test
CN = Example Test CA
EOF

3. Create the following directories:

mkdir certs crl newcerts

4. Create the following files:

touch index.txt crlnumber index.txt.attr

5. Write the number 01 in the serial file:

echo 01 > serial

This command writes a number 01 in the serial file. It is a serial number of the certificate. With
each new certificate released by this CA the number increases by one.

6. Create an OpenSSL root CA key:

openssl genrsa -out rootCA.key 2048

7. Create a self-signed root Certification Authority certificate:

openssl req -batch -config ca.cnf \
 -x509 -new -nodes -key rootCA.key -sha256 -days 10000 \
 -set_serial 0 -extensions v3_ca -out rootCA.crt

8. Create the key for your username:

openssl genrsa -out example.user.key 2048

This key is generated in the local system which is not secure, therefore, remove the key from
the system when the key is stored in the card.

You can create a key directly in the smart card as well. For doing this, follow instructions created
by the manufacturer of your smart card.

9. Create the certificate signing request configuration file (copy this text to your command line in
the ca directory):

cat > req.cnf <<EOF

Red Hat Enterprise Linux 8 Managing smart card authentication

46

[req]
distinguished_name = req_distinguished_name
prompt = no

[req_distinguished_name]
O = Example
OU = Example Test
CN = testuser

[req_exts]
basicConstraints = CA:FALSE
nsCertType = client, email
nsComment = "testuser"
subjectKeyIdentifier = hash
keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth, emailProtection, msSmartcardLogin
subjectAltName = otherName:msUPN;UTF8:testuser@EXAMPLE.COM,
email:testuser@example.com
EOF

10. Create a certificate signing request for your example.user certificate:

openssl req -new -nodes -key example.user.key \
 -reqexts req_exts -config req.cnf -out example.user.csr

11. Configure the new certificate. Expiration period is set to 1 year:

openssl ca -config ca.cnf -batch -notext \
 -keyfile rootCA.key -in example.user.csr -days 365 \
 -extensions usr_cert -out example.user.crt

At this point, the certification authority and certificates are successfully generated and prepared for
import into a smart card.

6.2. COPYING CERTIFICATES TO THE SSSD DIRECTORY

GNOME Desktop Manager (GDM) requires SSSD. If you use GDM, you need to copy the PEM
certificate to the /etc/sssd/pki directory.

Prerequisites

The local CA authority and certificates have been generated

Procedure

1. Ensure that you have SSSD installed on the system.

rpm -q sssd
sssd-2.0.0.43.el8_0.3.x86_64

2. Create a /etc/sssd/pki directory:

CHAPTER 6. CONFIGURING SMART CARD AUTHENTICATION WITH LOCAL CERTIFICATES

47

file /etc/sssd/pki
/etc/sssd/pki/: directory

3. Copy the rootCA.crt as a PEM file in the /etc/sssd/pki/ directory:

cp /tmp/ca/rootCA.crt /etc/sssd/pki/sssd_auth_ca_db.pem

Now you have successfully generated the certificate authority and certificates, and you have saved them
in the /etc/sssd/pki directory.

NOTE

If you want to share the Certificate Authority certificates with another application, you
can change the location in sssd.conf:

SSSD PAM responder: pam_cert_db_path in the [pam] section

SSSD ssh responder: ca_db in the [ssh] section

For details, see man page for sssd.conf.

Red Hat recommends keeping the default path and using a dedicated Certificate
Authority certificate file for SSSD to make sure that only Certificate Authorities trusted
for authentication are listed here.

6.3. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

Prerequisites

The gnutls-utils package is installed.

The opensc package is installed.

The pcscd service is running.

Before you can configure your smart card, you must install the corresponding tools, which can generate
certificates and start the pscd service.

Procedure

1. Install the opensc and gnutls-utils packages:

yum -y install opensc gnutls-utils

2. Start the pcscd service.

systemctl start pcscd

Verification

Verify that the pcscd service is up and running

systemctl status pcscd

Red Hat Enterprise Linux 8 Managing smart card authentication

48

6.4. PREPARING YOUR SMART CARD AND UPLOADING YOUR
CERTIFICATES AND KEYS TO YOUR SMART CARD

Follow this procedure to configure your smart card with the pkcs15-init tool, which helps you to
configure:

Erasing your smart card

Setting new PINs and optional PIN Unblocking Keys (PUKs)

Creating a new slot on the smart card

Storing the certificate, private key, and public key in the slot

If required, locking the smart card settings as certain smart cards require this type of finalization

NOTE

The pkcs15-init tool may not work with all smart cards. You must use the tools that work
with the smart card you are using.

Prerequisites

The opensc package, which includes the pkcs15-init tool, is installed.
For more details, see Installing tools for managing and using smart cards .

The card is inserted in the reader and connected to the computer.

You have a private key, a public key, and a certificate to store on the smart card. In this
procedure, testuser.key, testuserpublic.key, and testuser.crt are the names used for the
private key, public key, and the certificate.

You have your current smart card user PIN and Security Officer PIN (SO-PIN).

Procedure

1. Erase your smart card and authenticate yourself with your PIN:

$ pkcs15-init --erase-card --use-default-transport-keys
Using reader with a card: Reader name
PIN [Security Officer PIN] required.
Please enter PIN [Security Officer PIN]:

The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

$ pkcs15-init --create-pkcs15 --use-default-transport-keys \ --pin 963214 --puk 321478 --so-
pin 65498714 --so-puk 784123
Using reader with a card: Reader name

The pcks15-init tool creates a new slot on the smart card.

CHAPTER 6. CONFIGURING SMART CARD AUTHENTICATION WITH LOCAL CERTIFICATES

49

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth

3. Set a label and the authentication ID for the slot:

$ pkcs15-init --store-pin --label testuser \ --auth-id 01 --so-pin 65498714 --pin 963214 --puk
321478
Using reader with a card: Reader name

The label is set to a human-readable value, in this case, testuser. The auth-id must be two
hexadecimal values, in this case it is set to 01.

4. Store and label the private key in the new slot on the smart card:

$ pkcs15-init --store-private-key testuser.key --label testuser_key \ --auth-id 01 --id 01 --pin
963214
Using reader with a card: Reader name

NOTE

The value you specify for --id must be the same when storing your private key
and storing your certificate in the next step. Specifying your own value for --id is
recommended as otherwise a more complicated value is calculated by the tool.

5. Store and label the certificate in the new slot on the smart card:

$ pkcs15-init --store-certificate testuser.crt --label testuser_crt \ --auth-id 01 --id 01 --format
pem --pin 963214
Using reader with a card: Reader name

6. Optional: Store and label the public key in the new slot on the smart card:

$ pkcs15-init --store-public-key testuserpublic.key --label testuserpublic_key --auth-id 01 --id
01 --pin 963214
Using reader with a card: Reader name

NOTE

If the public key corresponds to a private key or certificate, specify the same ID
as the ID of the private key or certificate.

7. Optional: Certain smart cards require you to finalize the card by locking the settings:

$ pkcs15-init -F

At this stage, your smart card includes the certificate, private key, and public key in the newly
created slot. You have also created your user PIN and PUK and the Security Officer PIN and
PUK.

6.5. CONFIGURING SSH ACCESS USING SMART CARD
AUTHENTICATION

SSH connections require authentication. You can use a password or a certificate. Follow this procedure
to enable authentication using a certificate stored on a smart card.

Red Hat Enterprise Linux 8 Managing smart card authentication

50

For details about configuring smart cards with authselect, see Configuring smart cards using authselect .

Prerequisites

The smart card contains your certificate and private key.

The card is inserted in the reader and connected to the computer.

Your username matches the Common Name (CN) or User ID (UID) in the certificate’s
SUBJECT.

The pcscd service is running on your local machine.
For details, see Installing tools for managing and using smart cards .

Procedure

1. Create a new directory for SSH keys in the home directory of the user who uses smart card
authentication:

mkdir /home/example.user/.ssh

2. Run the ssh-keygen -D command with the opensc library to retrieve the existing public key
paired with the private key on the smart card, and add it to the authorized_keys list of the
user’s SSH keys directory to enable SSH access with smart card authentication.

ssh-keygen -D /usr/lib64/pkcs11/opensc-pkcs11.so >>
~example.user/.ssh/authorized_keys

3. SSH requires access right configuration for the /.ssh directory and the authorized_keys file. To
set or change the access rights, enter:

chown -R example.user:example.user ~example.user/.ssh/
chmod 700 ~example.user/.ssh/
chmod 600 ~example.user/.ssh/authorized_keys

Verification

1. Display the keys:

cat ~example.user/.ssh/authorized_keys

The terminal displays the keys.

You can verify the SSH access with the following command:

ssh -I /usr/lib64/opensc-pkcs11.so -l example.user localhost hostname

If the configuration is successful, you are prompted to enter the smart card PIN.

The configuration works now locally. Now you can copy the public key and distribute it to
authorized_keys files located on all servers on which you want to use SSH.

CHAPTER 6. CONFIGURING SMART CARD AUTHENTICATION WITH LOCAL CERTIFICATES

51

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-smart-cards-using-authselect_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-and-importing-local-certificates-to-a-smart-card

CHAPTER 7. CONFIGURING SMART CARD AUTHENTICATION
USING AUTHSELECT

This section describes how to configure your smart card to achieve one of the following aims:

Enable both password and smart card authentication

Disable password and enable smart card authentication

Enable lock on removal

Prerequisites

Authselect installed
The authselect tool configures user authentication on Linux hosts and you can use it to
configure smart card authentication parameters. For details about authselect, see Configuring
user authentication using authselect.

Smart Card or USB devices supported by RHEL 8
For details, see Smart Card support in RHEL8 .

7.1. CERTIFICATES ELIGIBLE FOR SMART CARDS

Before you can configure a smart card with authselect, you must import a certificate into your card. You
can use the following tools to generate the certificate:

Active Directory (AD)

Identity Management (IdM)
For details about how to create IdM certificates, see Requesting a new user certificate and
exporting it to the client.

Red Hat Certificate System (RHCS)
For details, see Managing Smart Cards with the Enterprise Security Client .

Third-party Certification Authority (CA)

Local Certification Authority. You can use a certificate generated by the Local Certification
Authority if the user is not part of a domain or for testing purposes.
For details about how to create and import local certificates into a smart card, Configuring and
importing local certificates to a smart card.

7.2. CONFIGURE YOUR SYSTEM TO ENABLE BOTH SMART CARD AND
PASSWORD AUTHENTICATION

Follow this procedure to enable both smart card and password authentication on your system.

Prerequisites

The Smart card contains your certificate and private key.

The card is inserted into the reader and connected to the computer.

The authselect tool is installed on your system.

Red Hat Enterprise Linux 8 Managing smart card authentication

52

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_authentication_and_authorization_in_rhel/index#configuring-user-authentication-using-authselect_configuring-authentication-and-authorization-in-rhel
https://access.redhat.com/articles/4253861
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_certificates_in_idm/dc-web-ui-auth_working-with-idm-certificates#requesting-and-exporting-a-user-certificate_dc-web-ui-auth
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/managing_smart_cards_with_the_enterprise_security_client/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication

Procedure

Enter the following command to allow smart card and password authentication:

authselect select sssd with-smartcard --force

At this point, smart card authentication is enabled, however, password authentication will work if you
forget your smart card at home.

7.3. CONFIGURING YOUR SYSTEM TO ENFORCE SMART CARD
AUTHENTICATION

The authselect tool enables you to configure smart card authentication on your system and to disable
the default password authentication. The authselect command includes the following options:

with-smartcard — enables smart card authentication in addition to password authentication

with-smartcard-required  — enables smart card authentication and disables password
authentication

NOTE

The with-smartcard-required option only enforces exclusive smart card authentication
for login services, such as login, gdm, xdm, kdm, xscreensaver, gnome-screensaver,
and kscreensaver. Other services, such as su or sudo for switching users, do not use
smart card authentication by default and will continue to prompt you for a password.

Prerequisites

Smart card contains your certificate and private key.

The card is inserted into the reader and connected to the computer.

The authselect tool is installed on your local system.

Procedure

Enter the following command to enforce smart card authentication:

authselect select sssd with-smartcard with-smartcard-required --force

NOTE

Once you run this command, password authentication will no longer work and you can
only log in with a smart card. Ensure smart card authentication is working before running
this command or you may be locked out of your system.

7.4. CONFIGURING SMART CARD AUTHENTICATION WITH LOCK ON
REMOVAL

The authselect service enables you to configure your smart card authentication to lock your screen
instantly after removing the smart card from the reader. The authselect command must include the
following variables:

CHAPTER 7. CONFIGURING SMART CARD AUTHENTICATION USING AUTHSELECT

53

with-smartcard — enabling smart card authentication

with-smartcard-required — enabling exclusive smart card authentication (authentication with a
password is disabled)

with-smartcard-lock-on-removal — enforcing log out after the smart card removal

NOTE

The with-smartcard-lock-on-removal option only works on systems with the
GNOME desktop environment. If you are using a system that is tty or console
based and you remove your smart card from its reader, you are not automatically
locked out of the system.

Prerequisites

Smart card contains your certificate and private key.

The card is inserted into the reader and connected to the computer.

The authselect tool is installed on your local system.

Procedure

Enter the following command to enable smart card authentication, disable password
authentication, and enforce lock on removal:

authselect select sssd with-smartcard with-smartcard-required with-smartcard-lock-on-
removal --force

Now, when you remove the card, the screen locks. You must re-insert your smart card to unlock it.

Red Hat Enterprise Linux 8 Managing smart card authentication

54

CHAPTER 8. AUTHENTICATING TO SUDO REMOTELY USING
SMART CARDS

This section describes how to authenticate to sudo remotely using smart cards. After the ssh-agent
service is running locally and can forward the ssh-agent socket to a remote machine, you can use the
SSH authentication protocol in the sudo PAM module to authenticate users remotely.

After logging in locally using a smart card, you can log in through SSH to the remote machine and run
the sudo command without being prompted for a password by using SSH forwarding of the smart card
authentication.

For the purposes of this example, a client is connecting to the IPA server through SSH and running the
sudo command on the IPA server with credentials stored on a smart card.

Creating sudo rules in IdM

Setting up the PAM module for sudo

Connecting to sudo remotely using a smart card

8.1. CREATING SUDO RULES IN IDM

Follow this procedure to create sudo rules in IdM to give ipauser1 permission to run sudo on the remote
host.

For the purposes of this example, the less and whoami commands are added as sudo commands to test
the procedure.

Prerequisites

The IdM user has been created. For the purpose of this example, the user is ipauser1.

You have the hostname of the system where you are running sudo remotely. For the purpose of
this example, the host is server.ipa.test.

Procedure

1. Create a sudo rule named adminrule to allow a user to run commands.

ipa sudorule-add adminrule

2. Add less and whoami as sudo commands:

ipa sudocmd-add /usr/bin/less
ipa sudocmd-add /usr/bin/whoami

3. Add the less and whoami commands to the adminrule:

ipa sudorule-add-allow-command adminrule --sudocmds /usr/bin/less
ipa sudorule-add-allow-command adminrule --sudocmds /usr/bin/whoami

4. Add the ipauser1 user to the adminrule:

CHAPTER 8. AUTHENTICATING TO SUDO REMOTELY USING SMART CARDS

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_authenticating-to-sudo-remotely-using-smart-cards_managing-smart-card-authentication#proc_creating-sudo-rules-in-idm_assembly_authenticating-to-sudo-remotely-using-smart-cards
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_authenticating-to-sudo-remotely-using-smart-cards_managing-smart-card-authentication#proc_setting-up-the-pam-module-for-sudo_assembly_authenticating-to-sudo-remotely-using-smart-cards
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_authenticating-to-sudo-remotely-using-smart-cards_managing-smart-card-authentication#proc_connecting-to-sudo-remotely-using-a-smart-card_assembly_authenticating-to-sudo-remotely-using-smart-cards

ipa sudorule-add-user adminrule --users ipauser1

5. Add the host on which you are running sudo to the adminrule:

ipa sudorule-add-host adminrule --hosts server.ipa.test

Additional resources

See ipa sudorule-add --help.

See ipa sudocmd-add --help.

8.2. SETTING UP THE PAM MODULE FOR SUDO

Follow this procedure to install and set up the pam_ssh_agent_auth.so PAM module for sudo
authentication with a smart card on any host where you are running sudo.

Procedure

1. Install the PAM SSH agent:

dnf -y install pam_ssh_agent_auth

2. Add the authorized_keys_command for pam_ssh_agent_auth.so to the /etc/pam.d/sudo
file before any other auth entry:

#%PAM-1.0
auth sufficient pam_ssh_agent_auth.so
authorized_keys_command=/usr/bin/sss_ssh_authorizedkeys
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

3. To enable the SSH agent forwarding to work when you run sudo commands, add the following to
the /etc/sudoers file:

Defaults env_keep += "SSH_AUTH_SOCK"

This allows users who have their public keys from smart cards stored in IPA/SSSD to
authenticate to sudo without entering a password.

4. Restart the sssd service:

systemctl restart sssd

Additional resources

See the pam man page.

8.3. CONNECTING TO SUDO REMOTELY USING A SMART CARD

Red Hat Enterprise Linux 8 Managing smart card authentication

56

Follow this procedure to configure the SSH agent and client to connect to sudo remotely using a smart
card.

Prerequisites

You have created sudo rules in IdM.

You have installed and set up the pam_ssh_agent_auth PAM module for sudo authentication
on the remote system where you are going to run sudo.

Procedure

1. Start the SSH agent (if not already running).

eval `ssh-agent`

2. Add your smart card to the SSH agent. Enter your PIN when prompted:

ssh-add -s /usr/lib64/opensc-pkcs11.so

3. Connect to the system where you need to run sudo remotely by using SSH with ssh-agent
forwarding enabled. Use the -A option:

ssh -A ipauser1@server.ipa.test

Verification

Run the whoami command with sudo:

sudo /usr/bin/whoami

You are not prompted for a PIN or password when the smart card is inserted.

NOTE

If the SSH agent is configured to use other sources, such as the GNOME Keyring, and you
run the sudo command after removing the smart card, you might not be prompted for a
PIN or password, as one of the other sources might provide access to a valid private key.
To check the public keys of all identities known by the SSH agent, run the ssh-add -L
command.

Additional resources

Using secure communications between two systems with OpenSSH

Connecting to remote machines with SSH keys using ssh-agent

CHAPTER 8. AUTHENTICATING TO SUDO REMOTELY USING SMART CARDS

57

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/assembly_using-secure-communications-between-two-systems-with-openssh_securing-networks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/assembly_using-secure-communications-between-two-systems-with-openssh_securing-networks#connecting-to-remote-machines-with-ssh-keys-using-ssh-agent_assembly_using-secure-communications-between-two-systems-with-openssh

CHAPTER 9. AUTHENTICATING AS AN ACTIVE DIRECTORY
USER USING PKINIT WITH A SMART CARD

Active Directory (AD) users can authenticate with a smart card to a desktop client system joined to IdM
and get a Kerberos ticket-granting ticket (TGT). These tickets can be used for single sign-on (SSO)
authentication from the client.

Prerequisites

The client is configured for smart card authentication.

The krb5-pkinit package is installed.

The AD server is configured to trust the certificate authority (CA) that issued the smart card
certificate. Import the CA certificates into the NTAuth store (see Microsoft support) and add
the CA as a trusted CA. See Active Directory documentation for details.

Procedure

1. Configure the Kerberos client to trust the CA that issued the smart card certificate:

a. On the IdM client, open the /etc/krb5.conf file.

b. Add the following lines to the file:

[realms]
 AD.DOMAIN.COM = {
 pkinit_eku_checking = kpServerAuth
 pkinit_kdc_hostname = adserver.ad.domain.com
 }

2. If the user certificates do not contain a certificate revocation list (CRL) distribution point
extension, configure AD to ignore revocation errors:

a. Save the following REG-formatted content in a plain text file and import it to the Windows
registry:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Kdc]
"UseCachedCRLOnlyAndIgnoreRevocationUnknownErrors"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\LSA\Kerberos\Parameter
s]
"UseCachedCRLOnlyAndIgnoreRevocationUnknownErrors"=dword:00000001

Alternatively, you can set the values manually by using the regedit.exe application.

b. Reboot the Windows system to apply the changes.

3. Authenticate by using the kinit utility on an Identity Management client. Specify the Active
Directory user with the user name and domain name:

$ kinit -X X509_user_identity='PKCS11:opensc-pkcs11.so' ad_user@AD.DOMAIN.COM

Red Hat Enterprise Linux 8 Managing smart card authentication

58

https://learn.microsoft.com/en-US/troubleshoot/windows-server/certificates-and-public-key-infrastructure-pki/import-third-party-ca-to-enterprise-ntauth-store

The -X option specifies the opensc-pkcs11.so module as the pre-authentication attribute.

Additional resources

The kinit(1) man page.

CHAPTER 9. AUTHENTICATING AS AN ACTIVE DIRECTORY USER USING PKINIT WITH A SMART CARD

59

CHAPTER 10. TROUBLESHOOTING AUTHENTICATION WITH
SMART CARDS

The following sections describe how to resolve some of the issues you might encounter when setting up
smart card authentication.

Testing smart card authentication

Troubleshooting smart card authentication with SSSD

Verifying that IdM Kerberos KDC can use PKINIT and that the CA certificates are correctly
located

Increasing SSSD timeouts

Troubleshooting certificate mapping and matching rules

10.1. TESTING SMART CARD ACCESS ON THE SYSTEM

Follow this procedure to test whether you can access your smart card.

Prerequisites

You have installed and configured your IdM Server and client for use with smart cards.

You have installed the certutil tool from the nss-tools package.

You have the PIN or password for your smart card.

Procedure

1. Using the lsusb command, verify that the smart card reader is visible to the operating system:

$ lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID 072f:b100 Advanced Card Systems, Ltd ACR39U
Bus 001 Device 002: ID 0627:0001 Adomax Technology Co., Ltd
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

For more information about the smart cards and readers tested and supported in RHEL, see
Smart Card support in RHEL 8 .

2. Ensure that the pcscd service and socket are enabled and running:

$ systemctl status pcscd.service pcscd.socket

● pcscd.service - PC/SC Smart Card Daemon
 Loaded: loaded (/usr/lib/systemd/system/pcscd.service; indirect;
vendor preset: disabled)
 Active: active (running) since Fri 2021-09-24 11:05:04 CEST; 2
weeks 6 days ago
TriggeredBy: ● pcscd.socket
 Docs: man:pcscd(8)
 Main PID: 3772184 (pcscd)

Red Hat Enterprise Linux 8 Managing smart card authentication

60

https://access.redhat.com/articles/4253861

 Tasks: 12 (limit: 38201)
 Memory: 8.2M
 CPU: 1min 8.067s
 CGroup: /system.slice/pcscd.service
 └─3772184 /usr/sbin/pcscd --foreground --auto-exit

● pcscd.socket - PC/SC Smart Card Daemon Activation Socket
 Loaded: loaded (/usr/lib/systemd/system/pcscd.socket; enabled;
vendor preset: enabled)
 Active: active (running) since Fri 2021-09-24 11:05:04 CEST; 2
weeks 6 days ago
 Triggers: ● pcscd.service
 Listen: /run/pcscd/pcscd.comm (Stream)
 CGroup: /system.slice/pcscd.socket

3. Using the p11-kit list-modules command, display information about the configured smart card
and the tokens present on the smart card:

$ p11-kit list-modules
p11-kit-trust: p11-kit-trust.so
[...]
opensc: opensc-pkcs11.so
 library-description: OpenSC smartcard framework
 library-manufacturer: OpenSC Project
 library-version: 0.20
 token: MyEID (sctest)
 manufacturer: Aventra Ltd.
 model: PKCS#15
 serial-number: 8185043840990797
 firmware-version: 40.1
 flags:
 rng
 login-required
 user-pin-initialized
 token-initialized

4. Verify you can access the contents of your smart card:

$ pkcs11-tool --list-objects --login
Using slot 0 with a present token (0x0)
Logging in to "MyEID (sctest)".
Please enter User PIN:
Private Key Object; RSA
 label: Certificate
 ID: 01
 Usage: sign
 Access: sensitive
Public Key Object; RSA 2048 bits
 label: Public Key
 ID: 01
 Usage: verify
 Access: none
Certificate Object; type = X.509 cert

CHAPTER 10. TROUBLESHOOTING AUTHENTICATION WITH SMART CARDS

61

 label: Certificate
 subject: DN: O=IDM.EXAMPLE.COM, CN=idmuser1
 ID: 01

5. Display the contents of the certificate on your smart card using the certutil command:

a. Run the following command to determine the correct name of your certificate:

$ certutil -d /etc/pki/nssdb -L -h all

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

Enter Password or Pin for "MyEID (sctest)":
Smart Card CA 0f5019a8-7e65-46a1-afe5-8e17c256ae00 CT,C,C
MyEID (sctest):Certificate u,u,u

b. Display the contents of the certificate on your smart card:

NOTE

Ensure the name of the certificate is an exact match for the output displayed
in the previous step, in this example MyEID (sctest):Certificate.

$ certutil -d /etc/pki/nssdb -L -n "MyEID (sctest):Certificate"

Enter Password or Pin for "MyEID (sctest)":
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 15 (0xf)
 Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption
 Issuer: "CN=Certificate Authority,O=IDM.EXAMPLE.COM"
 Validity:
 Not Before: Thu Sep 30 14:01:41 2021
 Not After : Sun Oct 01 14:01:41 2023
 Subject: "CN=idmuser1,O=IDM.EXAMPLE.COM"
 Subject Public Key Info:
 Public Key Algorithm: PKCS #1 RSA Encryption
 RSA Public Key:
 Modulus:
 [...]
 Exponent: 65537 (0x10001)
 Signed Extensions:
 Name: Certificate Authority Key Identifier
 Key ID:
 e2:27:56:0d:2f:f5:f2:72:ce:de:37:20:44:8f:18:7f:
 2f:56:f9:1a

 Name: Authority Information Access
 Method: PKIX Online Certificate Status Protocol
 Location:
 URI: "http://ipa-ca.idm.example.com/ca/ocsp"

 Name: Certificate Key Usage

Red Hat Enterprise Linux 8 Managing smart card authentication

62

 Critical: True
 Usages: Digital Signature
 Non-Repudiation
 Key Encipherment
 Data Encipherment

 Name: Extended Key Usage
 TLS Web Server Authentication Certificate
 TLS Web Client Authentication Certificate

 Name: CRL Distribution Points
 Distribution point:
 URI: "http://ipa-ca.idm.example.com/ipa/crl/MasterCRL.bin"
 CRL issuer:
 Directory Name: "CN=Certificate Authority,O=ipaca"

 Name: Certificate Subject Key ID
 Data:
 43:23:9f:c1:cf:b1:9f:51:18:be:05:b5:44:dc:e6:ab:
 be:07:1f:36

 Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption
 Signature:
 [...]
 Fingerprint (SHA-256):

6A:F9:64:F7:F2:A2:B5:04:88:27:6E:B8:53:3E:44:3E:F5:75:85:91:34:ED:48:A8:0D:F0:31:5
D:7B:C9:E0:EC
 Fingerprint (SHA1):
 B4:9A:59:9F:1C:A8:5D:0E:C1:A2:41:EC:FD:43:E0:80:5F:63:DF:29

 Mozilla-CA-Policy: false (attribute missing)
 Certificate Trust Flags:
 SSL Flags:
 User
 Email Flags:
 User
 Object Signing Flags:
 User

Additional resources

See certutil(1) man page.

10.2. TROUBLESHOOTING SMART CARD AUTHENTICATION WITH
SSSD

Follow this procedure to troubleshoot authentication with SSSD using smart cards.

Prerequisites

You have installed and configured your IdM Server and client for use with smart cards.

You have installed the sssd-tools package.

You are able to detect your smart card reader and display the contents of your smart card. See

CHAPTER 10. TROUBLESHOOTING AUTHENTICATION WITH SMART CARDS

63

You are able to detect your smart card reader and display the contents of your smart card. See
Testing smart card access on the system .

Procedure

1. Verify you can authenticate with your smart card using su:

$ su - idmuser1 -c ‘su - idmuser1 -c whoami’
PIN for MyEID (sctest):
idmuser1

If you are not prompted for the smart card PIN, and either a password prompt or an
authorization error are returned, check the SSSD logs. See Troubleshooting authentication with
SSSD in IdM for information about logging in SSSD. The following is an example of an
authentication failure:

$ su - idmuser1 -c ‘su - idmuser1 -c whoami’
PIN for MyEID (sctest):
su: Authentication failure

If the SSSD logs indicate an issue from the krb5_child, similar to the following, you may have an
issue with your CA certificates. To troubleshoot issues with certificates, see Verifying that IdM
Kerberos KDC can use Pkinit and that the CA certificates are correctly located.

[Pre-authentication failed: Failed to verify own certificate (depth 0): unable to get local issuer
certificate: could not load the shared library]

If the SSSD logs indicate a timeout either from p11_child or krb5_child, you may need to
increase the SSSD timeouts and try authenticating again with your smart card. See Increasing
SSSD timeouts for details on how to increase the timeouts.

2. Verify your GDM smart card authentication configuration is correct. A success message for
PAM authentication should be returned as shown below:

sssctl user-checks -s gdm-smartcard "idmuser1" -a auth
user: idmuser1
action: auth
service: gdm-smartcard

SSSD nss user lookup result:
 - user name: idmuser1
 - user id: 603200210
 - group id: 603200210
 - gecos: idm user1
 - home directory: /home/idmuser1
 - shell: /bin/sh

SSSD InfoPipe user lookup result:
 - name: idmuser1
 - uidNumber: 603200210
 - gidNumber: 603200210
 - gecos: idm user1
 - homeDirectory: /home/idmuser1
 - loginShell: /bin/sh

Red Hat Enterprise Linux 8 Managing smart card authentication

64

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_troubleshooting-authentication-with-smart-cards_managing-smart-card-authentication#proc_testing-smart-card-authentication_assembly_troubleshooting-authentication-with-smart-cards
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html-single/configuring_authentication_and_authorization_in_rhel/index#assembly_troubleshooting-authentication-with-sssd-in-idm_configuring-authentication-and-authorization-in-rhel

testing pam_authenticate

PIN for MyEID (sctest)
pam_authenticate for user [idmuser1]: Success

PAM Environment:
 - PKCS11_LOGIN_TOKEN_NAME=MyEID (sctest)
 - KRB5CCNAME=KCM:

If an authentication error, similar to the following, is returned, check the SSSD logs to try and
determine what is causing the issue. See Troubleshooting authentication with SSSD in IdM for
information about logging in SSSD.

pam_authenticate for user [idmuser1]: Authentication failure

PAM Environment:
 - no env -

If PAM authentication continues to fail, clear your cache and run the command again.

sssctl cache-remove
SSSD must not be running. Stop SSSD now? (yes/no) [yes] yes
Creating backup of local data…
Removing cache files…
SSSD needs to be running. Start SSSD now? (yes/no) [yes] yes

10.3. VERIFYING THAT IDM KERBEROS KDC CAN USE PKINIT AND
THAT THE CA CERTIFICATES ARE CORRECTLY LOCATED

Follow this procedure to verify that IdM Kerberos KDC can use PKINIT and also describes how to verify
your CA certificates are correctly located.

Prerequisites

You have installed and configured your IdM Server and client for use with smart cards.

You are able to detect your smart card reader and display the contents of your smart card. See
Testing smart card access on the system .

Procedure

1. Run the kinit utility to authenticate as the idmuser1 with the certificate stored on your smart
card:

$ kinit -X X509_user_identity=PKCS11: idmuser1
MyEID (sctest) PIN:

2. Enter your smart card PIN. If you are not prompted for your PIN, check that you can detect your
smart card reader and display the contents of your smart card. See Testing smart card
authentication.

3. If your PIN is accepted and you are then prompted for your password, you might be missing your
CA signing certificate.

CHAPTER 10. TROUBLESHOOTING AUTHENTICATION WITH SMART CARDS

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_authentication_and_authorization_in_rhel/assembly_troubleshooting-authentication-with-sssd-in-idm_restricting-domains-for-pam-services-using-sssd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_troubleshooting-authentication-with-smart-cards_managing-smart-card-authentication#proc_testing-smart-card-authentication_assembly_troubleshooting-authentication-with-smart-cards
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_troubleshooting-authentication-with-smart-cards_managing-smart-card-authentication#proc_testing-smart-card-authentication_assembly_troubleshooting-authentication-with-smart-cards

a. Verify the CA chain is listed in the default certificate bundle file using openssl commands:

$ openssl crl2pkcs7 -nocrl -certfile /var/lib/ipa-client/pki/ca-bundle.pem | openssl pkcs7 -
print_certs -noout
subject=O = IDM.EXAMPLE.COM, CN = Certificate Authority

issuer=O = IDM.EXAMPLE.COM, CN = Certificate Authority

b. Verify the validity of your certificates:

i. Find the user authentication certificate ID for idmuser1:

$ pkcs11-tool --list-objects --login
[...]
Certificate Object; type = X.509 cert
 label: Certificate
 subject: DN: O=IDM.EXAMPLE.COM, CN=idmuser1
 ID: 01

ii. Read the user certificate information from the smart card in DER format:

$ pkcs11-tool --read-object --id 01 --type cert --output-file cert.der
Using slot 0 with a present token (0x0)

iii. Convert the DER certificate to PEM format:

$ openssl x509 -in cert.der -inform DER -out cert.pem -outform PEM

iv. Verify the certificate has valid issuer signatures up to the CA:

$ openssl verify -CAfile /var/lib/ipa-client/pki/ca-bundle.pem <path>/cert.pem
cert.pem: OK

4. If your smart card contains several certificates, kinit might fail to choose the correct certificate
for authentication. In this case, you need to specify the certificate ID as an argument to the kinit
command using the certid=<ID> option.

a. Check how many certificates are stored on the smart card and get the certificate ID for the
one you are using:

$ pkcs11-tool --list-objects --type cert --login
Using slot 0 with a present token (0x0)
Logging in to "MyEID (sctest)".
Please enter User PIN:
Certificate Object; type = X.509 cert
 label: Certificate
 subject: DN: O=IDM.EXAMPLE.COM, CN=idmuser1
 ID: 01
Certificate Object; type = X.509 cert
 label: Second certificate
 subject: DN: O=IDM.EXAMPLE.COM, CN=ipauser1
 ID: 02

b. Run kinit with certificate ID 01:

Red Hat Enterprise Linux 8 Managing smart card authentication

66

$ kinit -X kinit -X X509_user_identity=PKCS11:certid=01 idmuser1
MyEID (sctest) PIN:

5. Run klist to view the contents of the Kerberos credentials cache:

$ klist
Ticket cache: KCM:0:11485
Default principal: idmuser1@EXAMPLE.COM

Valid starting Expires Service principal
10/04/2021 10:50:04 10/05/2021 10:49:55 krbtgt/EXAMPLE.COM@EXAMPLE.COM

6. Destroy your active Kerberos tickets once you have finished:

$ kdestroy -A

Additional resources

See kinit man page.

See kdestroy man page.

10.4. INCREASING SSSD TIMEOUTS

If you are having issues authenticating with a smart card, check the krb5_child.log and the
p11_child.log file for timeout entries similar to the following:

krb5_child: Timeout for child [9607] reached… ..consider increasing value of krb5_auth_timeout.

If there is a timeout entry in the log file, try increasing the SSSD timeouts as outlined in this procedure.

Prerequisites

You have configured your IdM Server and client for smart card authentication.

Procedure

1. Open the sssd.conf file on the IdM client:

vim /etc/sssd/sssd.conf

2. In your domain section, for example [domain/idm.example.com], add the following option:

krb5_auth_timeout = 60

3. In the [pam] section, add the following:

p11_child_timeout = 60

4. Clear the SSSD cache:

sssctl cache-remove

CHAPTER 10. TROUBLESHOOTING AUTHENTICATION WITH SMART CARDS

67

SSSD must not be running. Stop SSSD now? (yes/no) [yes] yes
Creating backup of local data…
Removing cache files…
SSSD needs to be running. Start SSSD now? (yes/no) [yes] yes

Once you have increased the timeouts, try authenticating again using your smart card. See Testing
smart card authentication for more details.

10.5. TROUBLESHOOTING CERTIFICATE MAPPING AND MATCHING
RULES

If you are having issues authenticating with a smart card, check that you have linked your smart card
certificate correctly to a user. By default, a certificate is associated with a user when the user entry
contains the full certificate as part of the usercertificate attribute. However, if you have defined
certificate mapping rules, you may have changed how certificates are associated with users. To
troubleshoot certificate mapping and matching rules, refer to the following sections:

Checking how the certificates are mapped to users

Checking the user associated with a smart card certificate

NOTE

If you are using your smart card to authenticate using SSH, you need to add the full
certificate to the user entry in Identity Management (IdM). If you are not using your smart
card to authenticate using SSH, you can add certificate mapping data using the ipa user-
add-certmapdata command.

10.5.1. Checking how the certificates are mapped to users

By default, a certificate is associated with a user when the user entry contains the full certificate as part
of the usercertificate attribute. However, if you have defined certificate mapping rules, you may have
changed how certificates are associated with users. Follow this procedure to check your certificate
mapping rules.

Prerequisites

You have installed and configured your Identity Management (IdM) server and client for use
with smart cards.

You are able to detect your smart card reader and display the contents of your smart card. See
Testing smart card access on the system .

You have mapped your smart card certificate to an IdM user. See Certificate mapping rules for
configuring authentication on smart cards.

Procedure

1. Verify the certificate mapping rules currently configured for IdM:

ipa certmaprule-find

1 Certificate Identity Mapping Rule matched

Red Hat Enterprise Linux 8 Managing smart card authentication

68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_troubleshooting-authentication-with-smart-cards_managing-smart-card-authentication#proc_testing-smart-card-authentication_assembly_troubleshooting-authentication-with-smart-cards
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

 Rule name: smartcardrule
 Mapping rule: (ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})
 Matching rule: <ISSUER>CN=Certificate Authority,O=IDM.EXAMPLE.COM
 Enabled: TRUE

Number of entries returned 1

You can expect to see one of the following mapping rules defined:

ipacertmapdata indicates that the IdM user entry certmapdata attribute is used.

altSecurityIdentities specifies that Active Directory’s user entry name mapping attribute is
used.

userCertificate;binary= indicates that the whole certificate in either IdM or AD is used.

You can define many matching options but some of the typically configured options are as
follows:

<ISSUER>CN=[…] specifies the issuer attribute of the certificate being used is checked to
make sure it matches this.

<SUBJECT>.*,DC=MY,DC=DOMAIN indicates the subject of the certificate is checked.

2. Enable System Security Services Daemon (SSSD) logging by adding debug_level = 9 to the
/etc/sssd/sssd.conf file on the IdM server:

[domain/idm.example.com]
...
debug_level = 9

3. Restart SSSD:

systemctl restart sssd

4. You should see the following entry in the /var/log/sssd/sssd_idm.example.com.log file if the
mapping is read correctly:

[be[idm.example.com]] [sdap_setup_certmap] (0x4000): Trying to add rule [smartcardrule][-1]
[<ISSUER>CN=Certificate Authority,O=IDM.EXAMPLE.COM][(|(userCertificate;binary=
{cert!bin})(ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500}))].

5. If your mapping rule contains an invalid syntax, an entry similar to the following can be seen in
the log file:

[be[idm.example.com]]] [sss_certmap_init] (0x0040): sss_certmap initialized.
[be[idm.example.com]]] [ipa_certmap_parse_results] (0x4000): Trying to add rule
[smartcardrule][-1][<ISSUER>CN=Certificate Authority,O=IDM.EXAMPLE.COM]
[(ipacertmapdata=X509:<I>{issuer_dn!x509}<S>{subject_dn})].
[be[idm.example.com]]] [parse_template] (0x0040): Parse template invalid.
[be[idm.example.com]]] [parse_ldap_mapping_rule] (0x0040): Failed to add template.
[be[idm.example.com]]] [parse_mapping_rule] (0x0040): Failed to parse LDAP mapping rule.
[be[idm.example.com]]] [ipa_certmap_parse_results] (0x0020): sss_certmap_add_rule failed
for rule [smartcardrule], skipping. Please check for typos and if rule syntax is supported.

CHAPTER 10. TROUBLESHOOTING AUTHENTICATION WITH SMART CARDS

69

[be[idm.example.com]]] [ipa_subdomains_certmap_done] (0x0040): Unable to parse certmap
results [22]: Invalid argument
[be[idm.example.com]]] [ipa_subdomains_refresh_certmap_done] (0x0020): Failed to read
certificate mapping rules [22]: Invalid argument

6. Check your mapping rule syntax.

ipa certmaprule-show smartcardrule
 Rule name: smartcardrule
 Mapping rule: (|(userCertificate;binary={cert!bin})(ipacertmapdata=X509:<I>
{issuer_dn!nss_x500}<S>{subject_dn!nss_x500}))
 Matching rule: <ISSUER>CN=Certificate Authority,O=IDM.EXAMPLE.COM
 Domain name: ipa.test
 Enabled: TRUE

7. If required, modify your certificate mapping rule:

ipa certmaprule-mod smartcardrule --maprule '(ipacertmapdata=X509:<I>
{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})'

Additional resources

See the sss-certmap man page.

10.5.2. Checking the user associated with a smart card certificate

If you are having issues authenticating with a smart card, verify the correct user is associated with your
smart card certificate.

Prerequisites

You have installed and configured your Identity Management (IdM) server and client for use
with smart cards.

You are able to detect your smart card reader and display the contents of your smart card. See
Testing smart card access on the system .

You have mapped your smart card certificate to an IdM user. See Certificate mapping rules for
configuring authentication on smart cards.

You have a copy of the certificate from your smart card in PEM format, for example, cert.pem.

Procedure

1. Verify the user is associated with your smart card certificate:

ipa certmap-match cert.pem

1 user matched

 Domain: IDM.EXAMPLE.COM
 User logins: idmuser1

Red Hat Enterprise Linux 8 Managing smart card authentication

70

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_troubleshooting-authentication-with-smart-cards_managing-smart-card-authentication#proc_testing-smart-card-authentication_assembly_troubleshooting-authentication-with-smart-cards
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

Number of entries returned 1

If the user or domain are not correct, check how your certificates are mapped to users. See
Checking how the certificates are mapped to users .

2. Check if the user entry contains the certificate:

ipa user-show idmuser1
 User login: idmuser1
[...]
Certificate:MIIEejCCAuKgAwIBAgIBCzANBgkqhkiG9w0BAQsFADAzMREwDwYDVQQKDAhJ
UEEuVEVTVDEeMBwGA1UEAwwVQ2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XD

3. If your user entry does not contain the certificate, add your base-64 encoded certificate to the
user entry:

a. Create an environment variable containing the certificate with the header and footer
removed and concatenated into a single line, which is the format expected by the ipa user-
add-cert command:

$ export CERT=`openssl x509 -outform der -in idmuser1.crt | base64 -w0 -`

Note that the certificate in the idmuser1.crt file must be in PEM format.

b. Add the certificate to the profile of idmuser1 using the ipa user-add-cert command:

$ ipa user-add-cert idmuser1 --certificate=$CERT

c. Clear the System Security Services Daemon (SSSD) cache.

sssctl cache-remove
SSSD must not be running. Stop SSSD now? (yes/no) [yes] yes
Creating backup of local data…
Removing cache files…
SSSD needs to be running. Start SSSD now? (yes/no) [yes] yes

4. Run ipa certmap-match again to confirm the user is associated with your smart card certificate.

CHAPTER 10. TROUBLESHOOTING AUTHENTICATION WITH SMART CARDS

71

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. UNDERSTANDING SMART CARD AUTHENTICATION
	1.1. WHAT IS A SMART CARD
	1.2. WHAT IS SMART CARD AUTHENTICATION
	1.2.1. Examples of smart card authentication in IdM
	1.2.1.1. Logging in to your system with a smart card
	1.2.1.2. Logging in to GDM with lock on removal

	1.3. SMART CARD AUTHENTICATION OPTIONS IN RHEL
	1.4. TOOLS FOR MANAGING SMART CARDS AND THEIR CONTENTS
	1.5. CERTIFICATES AND SMART CARD AUTHENTICATION
	1.6. REQUIRED STEPS FOR SMART CARD AUTHENTICATION IN IDM
	1.7. REQUIRED STEPS FOR SMART CARD AUTHENTICATION WITH CERTIFICATES ISSUED BY ACTIVE DIRECTORY

	CHAPTER 2. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION
	2.1. CONFIGURING THE IDM SERVER FOR SMART CARD AUTHENTICATION
	2.2. USING ANSIBLE TO CONFIGURE THE IDM SERVER FOR SMART CARD AUTHENTICATION
	2.3. CONFIGURING THE IDM CLIENT FOR SMART CARD AUTHENTICATION
	2.4. USING ANSIBLE TO CONFIGURE IDM CLIENTS FOR SMART CARD AUTHENTICATION
	2.5. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM WEB UI
	2.6. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM CLI
	2.7. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
	2.8. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART CARD
	2.9. LOGGING IN TO IDM WITH SMART CARDS
	2.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION ON AN IDM CLIENT
	2.11. USING SMART CARD AUTHENTICATION WITH THE SU COMMAND

	CHAPTER 3. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM
	3.1. WINDOWS SERVER SETTINGS REQUIRED FOR TRUST CONFIGURATION AND CERTIFICATE USAGE
	3.2. COPYING CERTIFICATES FROM ACTIVE DIRECTORY USING SFTP
	3.3. CONFIGURING THE IDM SERVER AND CLIENTS FOR SMART CARD AUTHENTICATION USING ADCS CERTIFICATES
	3.4. CONVERTING THE PFX FILE
	3.5. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
	3.6. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART CARD
	3.7. CONFIGURING TIMEOUTS IN SSSD.CONF
	3.8. CREATING CERTIFICATE MAPPING RULES FOR SMART CARD AUTHENTICATION

	CHAPTER 4. CERTIFICATE MAPPING RULES FOR CONFIGURING AUTHENTICATION
	CHAPTER 5. CONFIGURING SMART CARD AUTHENTICATION WITH THE WEB CONSOLE FOR CENTRALLY MANAGED USERS
	5.1. SMART CARD AUTHENTICATION FOR CENTRALLY MANAGED USERS
	5.2. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
	5.3. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART CARD
	5.4. ENABLING SMART CARD AUTHENTICATION FOR THE WEB CONSOLE
	5.5. LOGGING IN TO THE WEB CONSOLE WITH SMART CARDS
	5.6. LIMITING USER SESSIONS AND MEMORY TO PREVENT A DOS ATTACK
	5.7. ADDITIONAL RESOURCES

	CHAPTER 6. CONFIGURING SMART CARD AUTHENTICATION WITH LOCAL CERTIFICATES
	6.1. CREATING LOCAL CERTIFICATES
	6.2. COPYING CERTIFICATES TO THE SSSD DIRECTORY
	6.3. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
	6.4. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART CARD
	6.5. CONFIGURING SSH ACCESS USING SMART CARD AUTHENTICATION

	CHAPTER 7. CONFIGURING SMART CARD AUTHENTICATION USING AUTHSELECT
	7.1. CERTIFICATES ELIGIBLE FOR SMART CARDS
	7.2. CONFIGURE YOUR SYSTEM TO ENABLE BOTH SMART CARD AND PASSWORD AUTHENTICATION
	7.3. CONFIGURING YOUR SYSTEM TO ENFORCE SMART CARD AUTHENTICATION
	7.4. CONFIGURING SMART CARD AUTHENTICATION WITH LOCK ON REMOVAL

	CHAPTER 8. AUTHENTICATING TO SUDO REMOTELY USING SMART CARDS
	8.1. CREATING SUDO RULES IN IDM
	8.2. SETTING UP THE PAM MODULE FOR SUDO
	8.3. CONNECTING TO SUDO REMOTELY USING A SMART CARD

	CHAPTER 9. AUTHENTICATING AS AN ACTIVE DIRECTORY USER USING PKINIT WITH A SMART CARD
	CHAPTER 10. TROUBLESHOOTING AUTHENTICATION WITH SMART CARDS
	10.1. TESTING SMART CARD ACCESS ON THE SYSTEM
	10.2. TROUBLESHOOTING SMART CARD AUTHENTICATION WITH SSSD
	10.3. VERIFYING THAT IDM KERBEROS KDC CAN USE PKINIT AND THAT THE CA CERTIFICATES ARE CORRECTLY LOCATED
	10.4. INCREASING SSSD TIMEOUTS
	10.5. TROUBLESHOOTING CERTIFICATE MAPPING AND MATCHING RULES
	10.5.1. Checking how the certificates are mapped to users
	10.5.2. Checking the user associated with a smart card certificate

