
Red Hat Enterprise Linux 8

Securing networks

Configuring secured networks and network communication

Last Updated: 2024-09-13

Red Hat Enterprise Linux 8 Securing networks

Configuring secured networks and network communication

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn the tools and techniques to improve the security of your networks and lower the risks of data
breaches and intrusions.

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH
1.1. SSH AND OPENSSH
1.2. GENERATING SSH KEY PAIRS
1.3. SETTING KEY-BASED AUTHENTICATION AS THE ONLY METHOD ON AN OPENSSH SERVER
1.4. CACHING YOUR SSH CREDENTIALS BY USING SSH-AGENT
1.5. AUTHENTICATING BY SSH KEYS STORED ON A SMART CARD
1.6. MAKING OPENSSH MORE SECURE
1.7. CONNECTING TO A REMOTE SERVER THROUGH AN SSH JUMP HOST
1.8. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES

1.8.1. Variables of the sshd RHEL system role
1.8.2. Configuring OpenSSH servers by using the sshd RHEL system role
1.8.3. Variables of the ssh RHEL system role
1.8.4. Configuring OpenSSH clients by using the ssh RHEL system role
1.8.5. Using the sshd RHEL system role for non-exclusive configuration

1.9. ADDITIONAL RESOURCES

CHAPTER 2. CREATING AND MANAGING TLS KEYS AND CERTIFICATES
2.1. TLS CERTIFICATES
2.2. CREATING A PRIVATE CA USING OPENSSL
2.3. CREATING A PRIVATE KEY AND A CSR FOR A TLS SERVER CERTIFICATE USING OPENSSL
2.4. CREATING A PRIVATE KEY AND A CSR FOR A TLS CLIENT CERTIFICATE USING OPENSSL
2.5. USING A PRIVATE CA TO ISSUE CERTIFICATES FOR CSRS WITH OPENSSL
2.6. CREATING A PRIVATE CA USING GNUTLS
2.7. CREATING A PRIVATE KEY AND A CSR FOR A TLS SERVER CERTIFICATE USING GNUTLS
2.8. CREATING A PRIVATE KEY AND A CSR FOR A TLS CLIENT CERTIFICATE USING GNUTLS
2.9. USING A PRIVATE CA TO ISSUE CERTIFICATES FOR CSRS WITH GNUTLS

CHAPTER 3. USING SHARED SYSTEM CERTIFICATES
3.1. THE SYSTEM-WIDE TRUSTSTORE
3.2. ADDING NEW CERTIFICATES
3.3. MANAGING TRUSTED SYSTEM CERTIFICATES

CHAPTER 4. PLANNING AND IMPLEMENTING TLS
4.1. SSL AND TLS PROTOCOLS
4.2. SECURITY CONSIDERATIONS FOR TLS IN RHEL 8

4.2.1. Protocols
4.2.2. Cipher suites
4.2.3. Public key length

4.3. HARDENING TLS CONFIGURATION IN APPLICATIONS
4.3.1. Configuring the Apache HTTP server to use TLS
4.3.2. Configuring the Nginx HTTP and proxy server to use TLS
4.3.3. Configuring the Dovecot mail server to use TLS

CHAPTER 5. SETTING UP AN IPSEC VPN
5.1. LIBRESWAN AS AN IPSEC VPN IMPLEMENTATION
5.2. AUTHENTICATION METHODS IN LIBRESWAN
5.3. INSTALLING LIBRESWAN
5.4. CREATING A HOST-TO-HOST VPN
5.5. CONFIGURING A SITE-TO-SITE VPN
5.6. CONFIGURING A REMOTE ACCESS VPN

7

8
8
9

10
11

12
13
17
18
18
18

20
21
22
24

25
25
25
27
29
30
31

33
35
36

38
38
38
39

41
41
41

42
42
43
43
43
44
44

46
46
47
49
49
50
51

Table of Contents

1

. .

. .

5.7. CONFIGURING A MESH VPN
5.8. DEPLOYING A FIPS-COMPLIANT IPSEC VPN
5.9. PROTECTING THE IPSEC NSS DATABASE BY A PASSWORD
5.10. CONFIGURING AN IPSEC VPN TO USE TCP
5.11. CONFIGURING AUTOMATIC DETECTION AND USAGE OF ESP HARDWARE OFFLOAD TO ACCELERATE
AN IPSEC CONNECTION
5.12. CONFIGURING ESP HARDWARE OFFLOAD ON A BOND TO ACCELERATE AN IPSEC CONNECTION
5.13. CONFIGURING VPN CONNECTIONS WITH IPSEC BY USING THE RHEL SYSTEM ROLE

5.13.1. Creating a host-to-host VPN with IPsec by using the vpn RHEL system role
5.13.2. Creating an opportunistic mesh VPN connection with IPsec by using the vpn RHEL system role

5.14. CONFIGURING IPSEC CONNECTIONS THAT OPT OUT OF THE SYSTEM-WIDE CRYPTO POLICIES
5.15. TROUBLESHOOTING IPSEC VPN CONFIGURATIONS
5.16. CONFIGURING A VPN CONNECTION WITH CONTROL-CENTER
5.17. CONFIGURING A VPN CONNECTION USING NM-CONNECTION-EDITOR
5.18. ADDITIONAL RESOURCES

CHAPTER 6. USING MACSEC TO ENCRYPT LAYER-2 TRAFFIC IN THE SAME PHYSICAL NETWORK
6.1. CONFIGURING A MACSEC CONNECTION BY USING NMCLI
6.2. ADDITIONAL RESOURCES

CHAPTER 7. USING AND CONFIGURING FIREWALLD
7.1. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES
7.2. FIREWALL ZONES
7.3. FIREWALL POLICIES
7.4. FIREWALL RULES
7.5. ZONE CONFIGURATION FILES
7.6. PREDEFINED FIREWALLD SERVICES
7.7. WORKING WITH FIREWALLD ZONES

7.7.1. Customizing firewall settings for a specific zone to enhance security
7.7.2. Changing the default zone
7.7.3. Assigning a network interface to a zone
7.7.4. Assigning a zone to a connection using nmcli
7.7.5. Manually assigning a zone to a network connection in a connection profile file
7.7.6. Manually assigning a zone to a network connection in an ifcfg file
7.7.7. Creating a new zone
7.7.8. Enabling zones by using the web console
7.7.9. Disabling zones by using the web console
7.7.10. Using zone targets to set default behavior for incoming traffic

7.8. CONTROLLING NETWORK TRAFFIC USING FIREWALLD
7.8.1. Controlling traffic with predefined services using the CLI
7.8.2. Controlling traffic with predefined services using the GUI
7.8.3. Enabling services on the firewall by using the web console
7.8.4. Configuring custom ports by using the web console
7.8.5. Configuring firewalld to allow hosting a secure web server
7.8.6. Closing unused or unnecessary ports to enhance network security
7.8.7. Controlling traffic through the CLI
7.8.8. Controlling traffic with protocols using GUI

7.9. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON A SOURCE
7.9.1. Adding a source
7.9.2. Removing a source
7.9.3. Removing a source port
7.9.4. Using zones and sources to allow a service for only a specific domain

7.10. FILTERING FORWARDED TRAFFIC BETWEEN ZONES

52
56
58
60

60
61

63
63
65
67
67
71

76
79

80
80
82

83
83
83
85
86
86
87
87
88
89
89
90
90
91
91

92
93
94
95
95
96
98
99
101
102
103
104
104
104
105
105
106
107

Red Hat Enterprise Linux 8 Securing networks

2

. .

7.10.1. The relationship between policy objects and zones
7.10.2. Using priorities to sort policies
7.10.3. Using policy objects to filter traffic between locally hosted containers and a network physically
connected to the host
7.10.4. Setting the default target of policy objects
7.10.5. Using DNAT to forward HTTPS traffic to a different host

7.11. CONFIGURING NAT USING FIREWALLD
7.11.1. Network address translation types
7.11.2. Configuring IP address masquerading
7.11.3. Using DNAT to forward incoming HTTP traffic
7.11.4. Redirecting traffic from a non-standard port to make the web service accessible on a standard port

7.12. MANAGING ICMP REQUESTS
7.12.1. Configuring ICMP filtering

7.13. SETTING AND CONTROLLING IP SETS USING FIREWALLD
7.13.1. Configuring dynamic updates for allowlisting with IP sets

7.14. PRIORITIZING RICH RULES
7.14.1. How the priority parameter organizes rules into different chains
7.14.2. Setting the priority of a rich rule

7.15. CONFIGURING FIREWALL LOCKDOWN
7.15.1. Configuring lockdown using CLI
7.15.2. Overview of lockdown allowlist configuration files

7.16. ENABLING TRAFFIC FORWARDING BETWEEN DIFFERENT INTERFACES OR SOURCES WITHIN A
FIREWALLD ZONE

7.16.1. The difference between intra-zone forwarding and zones with the default target set to ACCEPT
7.16.2. Using intra-zone forwarding to forward traffic between an Ethernet and Wi-Fi network

7.17. CONFIGURING FIREWALLD BY USING THE RHEL SYSTEM ROLE
7.17.1. Introduction to the firewall RHEL system role
7.17.2. Resetting the firewalld settings by using the firewall RHEL system role
7.17.3. Forwarding incoming traffic in firewalld from one local port to a different local port by using the firewall
RHEL system role
7.17.4. Managing ports in firewalld by using the firewall RHEL system role
7.17.5. Configuring a firewalld DMZ zone by using the firewall RHEL system role

CHAPTER 8. GETTING STARTED WITH NFTABLES
8.1. MIGRATING FROM IPTABLES TO NFTABLES

8.1.1. When to use firewalld, nftables, or iptables
8.1.2. Converting iptables and ip6tables rule sets to nftables
8.1.3. Converting single iptables and ip6tables rules to nftables
8.1.4. Comparison of common iptables and nftables commands

8.2. WRITING AND EXECUTING NFTABLES SCRIPTS
8.2.1. Supported nftables script formats
8.2.2. Running nftables scripts
8.2.3. Using comments in nftables scripts
8.2.4. Using variables in nftables script
8.2.5. Including files in nftables scripts
8.2.6. Automatically loading nftables rules when the system boots

8.3. CREATING AND MANAGING NFTABLES TABLES, CHAINS, AND RULES
8.3.1. Basics of nftables tables
8.3.2. Basics of nftables chains

Chain types
Chain priorities
Chain policies

8.3.3. Basics of nftables rules

107
107

108
109
109

111
111

112
112
114
115
115
116
117
118
118
119
119
119

120

120
121
121
122
122
123

124
125
126

129
129
129
129
131
131
132
132
133
134
134
135
135
136
136
136
137
137
138
138

Table of Contents

3

. .

8.3.4. Managing tables, chains, and rules using nft commands
8.4. CONFIGURING NAT USING NFTABLES

8.4.1. NAT types
8.4.2. Configuring masquerading using nftables
8.4.3. Configuring source NAT using nftables
8.4.4. Configuring destination NAT using nftables
8.4.5. Configuring a redirect using nftables
8.4.6. Configuring flowtable by using nftables

8.5. USING SETS IN NFTABLES COMMANDS
8.5.1. Using anonymous sets in nftables
8.5.2. Using named sets in nftables
8.5.3. Additional resources

8.6. USING VERDICT MAPS IN NFTABLES COMMANDS
8.6.1. Using anonymous maps in nftables
8.6.2. Using named maps in nftables
8.6.3. Additional resources

8.7. EXAMPLE: PROTECTING A LAN AND DMZ USING AN NFTABLES SCRIPT
8.7.1. Network conditions
8.7.2. Security requirements to the firewall script
8.7.3. Configuring logging of dropped packets to a file
8.7.4. Writing and activating the nftables script

8.8. CONFIGURING PORT FORWARDING USING NFTABLES
8.8.1. Forwarding incoming packets to a different local port
8.8.2. Forwarding incoming packets on a specific local port to a different host

8.9. USING NFTABLES TO LIMIT THE AMOUNT OF CONNECTIONS
8.9.1. Limiting the number of connections by using nftables
8.9.2. Blocking IP addresses that attempt more than ten new incoming TCP connections within one minute

8.10. DEBUGGING NFTABLES RULES
8.10.1. Creating a rule with a counter
8.10.2. Adding a counter to an existing rule
8.10.3. Monitoring packets that match an existing rule

8.11. BACKING UP AND RESTORING THE NFTABLES RULE SET
8.11.1. Backing up the nftables rule set to a file
8.11.2. Restoring the nftables rule set from a file

8.12. ADDITIONAL RESOURCES

CHAPTER 9. SECURING NETWORK SERVICES
9.1. SECURING THE RPCBIND SERVICE
9.2. SECURING THE RPC.MOUNTD SERVICE
9.3. SECURING THE NFS SERVICE

9.3.1. Export options for securing an NFS server
9.3.2. Mount options for securing an NFS client
9.3.3. Securing NFS with firewall

9.4. SECURING THE FTP SERVICE
9.4.1. Securing the FTP greeting banner
9.4.2. Preventing anonymous access and uploads in FTP
9.4.3. Securing user accounts for FTP
9.4.4. Additional resources

9.5. SECURING HTTP SERVERS
9.5.1. Security enhancements in httpd.conf
9.5.2. Securing the Nginx server configuration

9.6. SECURING POSTGRESQL BY LIMITING ACCESS TO AUTHENTICATED LOCAL USERS

138
141
141

142
142
143
144
145
146
146
146
148
148
148
149
151
151
151
151
152
153
156
156
157
157
157

158
159
159
160
160
161

162
162
162

163
163
164
165
165
167
168
169
169
170
170
171
171
171

173
174

Red Hat Enterprise Linux 8 Securing networks

4

9.7. SECURING THE MEMCACHED SERVICE
9.7.1. Hardening Memcached against DDoS

175
175

Table of Contents

5

Red Hat Enterprise Linux 8 Securing networks

6

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN
TWO SYSTEMS WITH OPENSSH

SSH (Secure Shell) is a protocol which provides secure communications between two systems using a
client-server architecture and allows users to log in to server host systems remotely. Unlike other
remote communication protocols, such as FTP or Telnet, SSH encrypts the login session, which prevents
intruders from collecting unencrypted passwords from the connection.

1.1. SSH AND OPENSSH

SSH (Secure Shell) is a program for logging into a remote machine and executing commands on that
machine. The SSH protocol provides secure encrypted communications between two untrusted hosts
over an insecure network. You can also forward X11 connections and arbitrary TCP/IP ports over the
secure channel.

The SSH protocol mitigates security threats, such as interception of communication between two
systems and impersonation of a particular host, when you use it for remote shell login or file copying.
This is because the SSH client and server use digital signatures to verify their identities. Additionally, all
communication between the client and server systems is encrypted.

A host key authenticates hosts in the SSH protocol. Host keys are cryptographic keys that are
generated automatically when OpenSSH is started for the first time or when the host boots for the first
time.

OpenSSH is an implementation of the SSH protocol supported by Linux, UNIX, and similar operating
systems. It includes the core files necessary for both the OpenSSH client and server. The OpenSSH
suite consists of the following user-space tools:

ssh is a remote login program (SSH client).

sshd is an OpenSSH SSH daemon.

scp is a secure remote file copy program.

sftp is a secure file transfer program.

ssh-agent is an authentication agent for caching private keys.

ssh-add adds private key identities to ssh-agent.

ssh-keygen generates, manages, and converts authentication keys for ssh.

ssh-copy-id is a script that adds local public keys to the authorized_keys file on a remote SSH
server.

ssh-keyscan gathers SSH public host keys.

The OpenSSH suite in RHEL supports only SSH version 2. It has an enhanced key-exchange algorithm
that is not vulnerable to exploits known in the older version 1.

Red Hat Enterprise Linux includes the following OpenSSH packages: the general openssh package, the
openssh-server package, and the openssh-clients package. The OpenSSH packages require the
OpenSSL package openssl-libs, which installs several important cryptographic libraries that enable
OpenSSH to provide encrypted communications.

OpenSSH, as one of core cryptographic subsystems of RHEL, uses system-wide crypto policies. This

Red Hat Enterprise Linux 8 Securing networks

8

ensures that weak cipher suites and cryptographic algorithms are disabled in the default configuration.
To modify the policy, the administrator must either use the update-crypto-policies command to adjust
the settings or manually opt out of the system-wide crypto policies. See the Excluding an application
from following system-wide crypto policies section for more information.

The OpenSSH suite uses two sets of configuration files: one for client programs (that is, ssh, scp, and
sftp), and another for the server (the sshd daemon).

System-wide SSH configuration information is stored in the /etc/ssh/ directory. The
/etc/ssh/ssh_config file contains the client configuration, and the /etc/ssh/sshd_config file is the
default OpenSSH server configuration file.

User-specific SSH configuration information is stored in ~/.ssh/ in the user’s home directory. For a
detailed list of OpenSSH configuration files, see the FILES section in the sshd(8) man page.

Additional resources

Man pages listed by using the man -k ssh command on your system

Using system-wide cryptographic policies

1.2. GENERATING SSH KEY PAIRS

You can log in to an OpenSSH server without entering a password by generating an SSH key pair on a
local system and copying the generated public key to the OpenSSH server. Each user who wants to
create a key must run this procedure.

To preserve previously generated key pairs after you reinstall the system, back up the ~/.ssh/ directory
before you create new keys. After reinstalling, copy it back to your home directory. You can do this for all
users on your system, including root.

Prerequisites

You are logged in as a user who wants to connect to the OpenSSH server by using keys.

The OpenSSH server is configured to allow key-based authentication.

Procedure

1. Generate an ECDSA key pair:

$ ssh-keygen -t ecdsa
Generating public/private ecdsa key pair.
Enter file in which to save the key (/home/<username>/.ssh/id_ecdsa):
Enter passphrase (empty for no passphrase): <password>
Enter same passphrase again: <password>
Your identification has been saved in /home/<username>/.ssh/id_ecdsa.
Your public key has been saved in /home/<username>/.ssh/id_ecdsa.pub.
The key fingerprint is:
SHA256:Q/x+qms4j7PCQ0qFd09iZEFHA+SqwBKRNaU72oZfaCI
<username>@<localhost.example.com>
The key's randomart image is:
+---[ECDSA 256]---+
|.oo..o=++ |
|.. o .oo . |

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

9

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#excluding-an-application-from-following-the-system-wide-crypto-policies_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

|. .. o. o |
|....o.+... |
|o.oo.o +S . |
|.=.+. .o |
|E.*+. . . . |
|.=..+ +.. o |
| . oo*+o. |
+----[SHA256]-----+

You can also generate an RSA key pair by using the ssh-keygen command without any
parameter or an Ed25519 key pair by entering the ssh-keygen -t ed25519 command. Note that
the Ed25519 algorithm is not FIPS-140-compliant, and OpenSSH does not work with Ed25519
keys in FIPS mode.

2. Copy the public key to a remote machine:

$ ssh-copy-id <username>@<ssh-server-example.com>
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are
already installed
<username>@<ssh-server-example.com>'s password:
…
Number of key(s) added: 1

Now try logging into the machine, with: "ssh '<username>@<ssh-server-example.com>'" and
check to make sure that only the key(s) you wanted were added.

Replace <username>@<ssh-server-example.com> with your credentials.

If you do not use the ssh-agent program in your session, the previous command copies the
most recently modified ~/.ssh/id*.pub public key if it is not yet installed. To specify another
public-key file or to prioritize keys in files over keys cached in memory by ssh-agent, use the
ssh-copy-id command with the -i option.

Verification

1. Log in to the OpenSSH server by using the key file:

$ ssh -o PreferredAuthentications=publickey <username>@<ssh-server-example.com>

Additional resources

ssh-keygen(1) and ssh-copy-id(1) man pages on your system

1.3. SETTING KEY-BASED AUTHENTICATION AS THE ONLY METHOD
ON AN OPENSSH SERVER

To improve system security, enforce key-based authentication by disabling password authentication on
your OpenSSH server.

Prerequisites

The openssh-server package is installed.

The sshd daemon is running on the server.

Red Hat Enterprise Linux 8 Securing networks

10

You can already connect to the OpenSSH server by using a key.
See the Generating SSH key pairs section for details.

Procedure

1. Open the /etc/ssh/sshd_config configuration in a text editor, for example:

vi /etc/ssh/sshd_config

2. Change the PasswordAuthentication option to no:

PasswordAuthentication no

3. On a system other than a new default installation, check that the PubkeyAuthentication
parameter is either not set or set to yes.

4. Set the ChallengeResponseAuthentication directive to no.
Note that the corresponding entry is commented out in the configuration file and the default
value is yes.

5. To use key-based authentication with NFS-mounted home directories, enable the
use_nfs_home_dirs SELinux boolean:

setsebool -P use_nfs_home_dirs 1

6. If you are connected remotely, not using console or out-of-band access, test the key-based
login process before disabling password authentication.

7. Reload the sshd daemon to apply the changes:

systemctl reload sshd

Additional resources

sshd_config(5) and setsebool(8) man pages on your system

1.4. CACHING YOUR SSH CREDENTIALS BY USING SSH-AGENT

To avoid entering a passphrase each time you initiate an SSH connection, you can use the ssh-agent
utility to cache the private SSH key for a login session. If the agent is running and your keys are
unlocked, you can log in to SSH servers by using these keys but without having to enter the key’s
password again. The private key and the passphrase remain secure.

Prerequisites

You have a remote host with the SSH daemon running and reachable through the network.

You know the IP address or hostname and credentials to log in to the remote host.

You have generated an SSH key pair with a passphrase and transferred the public key to the
remote machine.
See the Generating SSH key pairs section for details.

Procedure

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

11

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/securing_networks/assembly_using-secure-communications-between-two-systems-with-openssh_securing-networks#generating-ssh-key-pairs_assembly_using-secure-communications-between-two-systems-with-openssh
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/securing_networks/assembly_using-secure-communications-between-two-systems-with-openssh_securing-networks#generating-ssh-key-pairs_assembly_using-secure-communications-between-two-systems-with-openssh

Procedure

1. Add the command for automatically starting ssh-agent in your session to the ~/.bashrc file:

a. Open ~/.bashrc in a text editor of your choice, for example:

$ vi ~/.bashrc

b. Add the following line to the file:

eval $(ssh-agent)

c. Save the changes, and quit the editor.

2. Add the following line to the ~/.ssh/config file:

AddKeysToAgent yes

With this option and ssh-agent started in your session, the agent prompts for a password only
for the first time when you connect to a host.

Verification

Log in to a host which uses the corresponding public key of the cached private key in the agent,
for example:

$ ssh <example.user>@<ssh-server@example.com>

Note that you did not have to enter the passphrase.

1.5. AUTHENTICATING BY SSH KEYS STORED ON A SMART CARD

You can create and store ECDSA and RSA keys on a smart card and authenticate by the smart card on
an OpenSSH client. Smart-card authentication replaces the default password authentication.

Prerequisites

On the client side, the opensc package is installed and the pcscd service is running.

Procedure

1. List all keys provided by the OpenSC PKCS #11 module including their PKCS #11 URIs and save
the output to the keys.pub file:

$ ssh-keygen -D pkcs11: > keys.pub

2. Transfer the public key to the remote server. Use the ssh-copy-id command with the keys.pub
file created in the previous step:

$ ssh-copy-id -f -i keys.pub <username@ssh-server-example.com>

3. Connect to <ssh-server-example.com> by using the ECDSA key. You can use just a subset of the
URI, which uniquely references your key, for example:

Red Hat Enterprise Linux 8 Securing networks

12

$ ssh -i "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so" <ssh-server-
example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

Because OpenSSH uses the p11-kit-proxy wrapper and the OpenSC PKCS #11 module is
registered to the p11-kit tool, you can simplify the previous command:

$ ssh -i "pkcs11:id=%01" <ssh-server-example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

If you skip the id= part of a PKCS #11 URI, OpenSSH loads all keys that are available in the proxy
module. This can reduce the amount of typing required:

$ ssh -i pkcs11: <ssh-server-example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

4. Optional: You can use the same URI string in the ~/.ssh/config file to make the configuration
permanent:

$ cat ~/.ssh/config
IdentityFile "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so"
$ ssh <ssh-server-example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

The ssh client utility now automatically uses this URI and the key from the smart card.

Additional resources

p11-kit(8), opensc.conf(5), pcscd(8), ssh(1), and ssh-keygen(1) man pages on your system

1.6. MAKING OPENSSH MORE SECURE

You can tweak the system to increase security when using OpenSSH.

Note that changes in the /etc/ssh/sshd_config OpenSSH server configuration file require reloading the
sshd daemon to take effect:

systemctl reload sshd

WARNING

The majority of security hardening configuration changes reduce compatibility with
clients that do not support up-to-date algorithms or cipher suites.

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

13

Disabling insecure connection protocols

To make SSH truly effective, prevent the use of insecure connection protocols that are replaced by
the OpenSSH suite. Otherwise, a user’s password might be protected using SSH for one session only
to be captured later when logging in using Telnet.

Disabling password-based authentication

Disabling passwords for authentication and allowing only key pairs reduces the attack surface. See
the Setting key-based authentication as the only method on an OpenSSH server section for more
information.

Stronger key types

Although the ssh-keygen command generates a pair of RSA keys by default, you can instruct it to
generate Elliptic Curve Digital Signature Algorithm (ECDSA) or Edwards-Curve 25519 (Ed25519)
keys by using the -t option. The ECDSA offers better performance than RSA at the equivalent
symmetric key strength. It also generates shorter keys. The Ed25519 public-key algorithm is an
implementation of twisted Edwards curves that is more secure and also faster than RSA, DSA, and
ECDSA.
OpenSSH creates RSA, ECDSA, and Ed25519 server host keys automatically if they are missing. To
configure the host key creation in RHEL, use the sshd-keygen@.service instantiated service. For
example, to disable the automatic creation of the RSA key type:

systemctl mask sshd-keygen@rsa.service
rm -f /etc/ssh/ssh_host_rsa_key*
systemctl restart sshd

NOTE

In images with the cloud-init method enabled, the ssh-keygen units are automatically
disabled. This is because the ssh-keygen template service can interfere with the
cloud-init tool and cause problems with host key generation. To prevent these
problems the etc/systemd/system/sshd-keygen@.service.d/disable-sshd-keygen-
if-cloud-init-active.conf drop-in configuration file disables the ssh-keygen units if
cloud-init is running.

To allow only a particular key type for SSH connections, remove a comment out at the beginning of
the relevant line in /etc/ssh/sshd_config, and reload the sshd service. For example, to allow only
Ed25519 host keys, the corresponding lines must be as follows:

HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key
HostKey /etc/ssh/ssh_host_ed25519_key

IMPORTANT

The Ed25519 algorithm is not FIPS-140-compliant, and OpenSSH does not work with
Ed25519 keys in FIPS mode.

Non-default port

By default, the sshd daemon listens on TCP port 22. Changing the port reduces the exposure of the
system to attacks based on automated network scanning on the default port and therefore increases
security through obscurity. You can specify the port using the Port directive in the
/etc/ssh/sshd_config configuration file.

You also have to update the default SELinux policy to allow the use of a non-default port. To do so,

Red Hat Enterprise Linux 8 Securing networks

14

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/securing_networks/assembly_using-secure-communications-between-two-systems-with-openssh_securing-networks#setting-an-openssh-server-for-key-based-authentication_assembly_using-secure-communications-between-two-systems-with-openssh

You also have to update the default SELinux policy to allow the use of a non-default port. To do so,
use the semanage tool from the policycoreutils-python-utils package:

semanage port -a -t ssh_port_t -p tcp <port-number>

Furthermore, update firewalld configuration:

firewall-cmd --add-port <port-number>/tcp
firewall-cmd --remove-port=22/tcp
firewall-cmd --runtime-to-permanent

In the previous commands, replace <port-number> with the new port number specified using the Port
directive.

No root login

If your particular use case does not require the possibility of logging in as the root user, you can set
the PermitRootLogin configuration directive to no in the /etc/ssh/sshd_config file. By disabling the
possibility of logging in as the root user, the administrator can audit which users run what privileged
commands after they log in as regular users and then gain root rights.
Alternatively, set PermitRootLogin to prohibit-password:

PermitRootLogin prohibit-password

This enforces the use of key-based authentication instead of the use of passwords for logging in as
root and reduces risks by preventing brute-force attacks.

Using the X Security extension

The X server in Red Hat Enterprise Linux clients does not provide the X Security extension.
Therefore, clients cannot request another security layer when connecting to untrusted SSH servers
with X11 forwarding. Most applications are not able to run with this extension enabled anyway.
By default, the ForwardX11Trusted option in the /etc/ssh/ssh_config.d/05-redhat.conf file is set
to yes, and there is no difference between the ssh -X remote_machine (untrusted host) and ssh -Y
remote_machine (trusted host) command.

If your scenario does not require the X11 forwarding feature at all, set the X11Forwarding directive in
the /etc/ssh/sshd_config configuration file to no.

Restricting SSH access to specific users, groups, or IP ranges

The AllowUsers and AllowGroups directives in the /etc/ssh/sshd_config configuration file server
enable you to permit only certain users, domains, or groups to connect to your OpenSSH server. You
can combine AllowUsers and AllowGroups to restrict access more precisely, for example:

AllowUsers *@192.168.1.* *@10.0.0.* !*@192.168.1.2
AllowGroups example-group

This configuration allows only connections if all of the following conditions meet:

The connection’s source IP is within the 192.168.1.0/24 or 10.0.0.0/24 subnet.

The source IP is not 192.168.1.2.

The user is a member of the example-group group.

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

15

The OpenSSH server permits only connections that pass all Allow and Deny directives in
/etc/ssh/sshd_config. For example, if the AllowUsers directive lists a user that is not part of a
group listed in the AllowGroups directive, then the user cannot log in.

Note that using allowlists (directives starting with Allow) is more secure than using blocklists (options
starting with Deny) because allowlists block also new unauthorized users or groups.

Changing system-wide cryptographic policies

OpenSSH uses RHEL system-wide cryptographic policies, and the default system-wide
cryptographic policy level offers secure settings for current threat models. To make your
cryptographic settings more strict, change the current policy level:

update-crypto-policies --set FUTURE
Setting system policy to FUTURE

WARNING

If your system communicates with legacy systems, you might face
interoperability problems due to the strict setting of the FUTURE policy.

You can also disable only specific ciphers for the SSH protocol through the system-wide cryptographic
policies. See the Customizing system-wide cryptographic policies with subpolicies section in the
Security hardening document for more information.

Opting out of system-wide cryptographic policies

To opt out of the system-wide cryptographic policies for your OpenSSH server, uncomment the line
with the CRYPTO_POLICY= variable in the /etc/sysconfig/sshd file. After this change, values that
you specify in the Ciphers, MACs, KexAlgoritms, and GSSAPIKexAlgorithms sections in the
/etc/ssh/sshd_config file are not overridden.
See the sshd_config(5) man page for more information.

To opt out of system-wide cryptographic policies for your OpenSSH client, perform one of the
following tasks:

For a given user, override the global ssh_config with a user-specific configuration in the
~/.ssh/config file.

For the entire system, specify the cryptographic policy in a drop-in configuration file located
in the /etc/ssh/ssh_config.d/ directory, with a two-digit number prefix smaller than 5, so
that it lexicographically precedes the 05-redhat.conf file, and with a .conf suffix, for
example, 04-crypto-policy-override.conf.

Additional resources

sshd_config(5), ssh-keygen(1), crypto-policies(7), and update-crypto-policies(8) man pages
on your system

Using system-wide cryptographic policies in the Security hardening document

Red Hat Enterprise Linux 8 Securing networks

16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#customizing-system-wide-cryptographic-policies-with-subpolicies_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

How to disable specific algorithms and ciphers for ssh service only (Red Hat Knowledgebase)

1.7. CONNECTING TO A REMOTE SERVER THROUGH AN SSH JUMP
HOST

You can connect from your local system to a remote server through an intermediary server, also called
jump host. A jump server bridges hosts from different security zones and can manage multiple client-
server connections.

Prerequisites

A jump host accepts SSH connections from your local system.

A remote server accepts SSH connections from the jump host.

Procedure

1. If you connect through a jump server or more intermediary servers once, use the ssh -J
command and specify the jump servers directly, for example:

$ ssh -J <jump-1.example.com>,<jump-2.example.com>,<jump-3.example.com> <target-
server-1.example.com>

Change the host name-only notation in the previous command if the user names or SSH ports
on the jump servers differ from the names and ports on the remote server, for example:

$ ssh -J <example.user.1>@<jump-1.example.com>:<75>,<example.user.2>@<jump-
2.example.com>:<75>,<example.user.3>@<jump-3.example.com>:<75>
<example.user.f>@<target-server-1.example.com>:<220>

2. If you connect to a remote server through jump servers regularly, store the jump-server
configuration in your SSH configuration file:

a. Define the jump host by editing the ~/.ssh/config file on your local system, for example:

Host <jump-server-1>
 HostName <jump-1.example.com>

The Host parameter defines a name or alias for the host you can use in ssh commands.
The value can match the real host name, but can also be any string.

The HostName parameter sets the actual host name or IP address of the jump host.

b. Add the remote server jump configuration with the ProxyJump directive to ~/.ssh/config
file on your local system, for example:

Host <remote-server-1>
 HostName <target-server-1.example.com>
 ProxyJump <jump-server-1>

c. Use your local system to connect to the remote server through the jump server:

$ ssh <remote-server-1>

This command is equivalent to the ssh -J jump-server1 remote-server command if you

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

17

https://access.redhat.com/solutions/4410591

This command is equivalent to the ssh -J jump-server1 remote-server command if you
omit the previous configuration steps.

Additional resources

ssh_config(5) and ssh(1) man pages on your system

1.8. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM
ROLES

As an administrator, you can use the sshd system role to configure SSH servers and the ssh system
role to configure SSH clients consistently on any number of RHEL systems at the same time by using
Red Hat Ansible Automation Platform.

1.8.1. Variables of the sshd RHEL system role

In an sshd system role playbook, you can define the parameters for the SSH configuration file
according to your preferences and limitations.

If you do not configure these variables, the system role produces an sshd_config file that matches the
RHEL defaults.

In all cases, Booleans correctly render as yes and no in sshd configuration. You can define multi-line
configuration items using lists. For example:

sshd_ListenAddress:
 - 0.0.0.0
 - '::'

renders as:

ListenAddress 0.0.0.0
ListenAddress ::

Additional resources

/usr/share/ansible/roles/rhel-system-roles.sshd/README.md file

/usr/share/doc/rhel-system-roles/sshd/ directory

1.8.2. Configuring OpenSSH servers by using the sshd RHEL system role

You can use the sshd RHEL system role to configure multiple SSH servers by running an Ansible
playbook.

NOTE

You can use the sshd RHEL system role with other RHEL system roles that change SSH
and SSHD configuration, for example the Identity Management RHEL system roles. To
prevent the configuration from being overwritten, make sure that the sshd role uses
namespaces (RHEL 8 and earlier versions) or a drop-in directory (RHEL 9).

Red Hat Enterprise Linux 8 Securing networks

18

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

The playbook configures the managed node as an SSH server configured so that:

password and root user login is disabled

password and root user login is enabled only from the subnet 192.0.2.0/24

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. Log in to the SSH server:

$ ssh <username>@<ssh_server>

2. Verify the contents of the sshd_config file on the SSH server:

$ cat /etc/ssh/sshd_config
...

- name: SSH server configuration
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure sshd to prevent root and password login except from particular subnet
 ansible.builtin.include_role:
 name: rhel-system-roles.sshd
 vars:
 sshd:
 PermitRootLogin: no
 PasswordAuthentication: no
 Match:
 - Condition: "Address 192.0.2.0/24"
 PermitRootLogin: yes
 PasswordAuthentication: yes

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

PasswordAuthentication no
PermitRootLogin no
...
Match Address 192.0.2.0/24
 PasswordAuthentication yes
 PermitRootLogin yes
...

3. Check that you can connect to the server as root from the 192.0.2.0/24 subnet:

a. Determine your IP address:

$ hostname -I
192.0.2.1

If the IP address is within the 192.0.2.1 - 192.0.2.254 range, you can connect to the server.

b. Connect to the server as root:

$ ssh root@<ssh_server>

Additional resources

/usr/share/ansible/roles/rhel-system-roles.sshd/README.md file

/usr/share/doc/rhel-system-roles/sshd/ directory

1.8.3. Variables of the ssh RHEL system role

In an ssh system role playbook, you can define the parameters for the client SSH configuration file
according to your preferences and limitations.

If you do not configure these variables, the system role produces a global ssh_config file that matches
the RHEL defaults.

In all cases, booleans correctly render as yes or no in ssh configuration. You can define multi-line
configuration items using lists. For example:

LocalForward:
 - 22 localhost:2222
 - 403 localhost:4003

renders as:

LocalForward 22 localhost:2222
LocalForward 403 localhost:4003

NOTE

The configuration options are case sensitive.

Additional resources

Red Hat Enterprise Linux 8 Securing networks

20

/usr/share/ansible/roles/rhel-system-roles.ssh/README.md file

/usr/share/doc/rhel-system-roles/ssh/ directory

1.8.4. Configuring OpenSSH clients by using the ssh RHEL system role

You can use the ssh RHEL system role to configure multiple SSH clients by running an Ansible
playbook.

NOTE

You can use the ssh RHEL system role with other system roles that change SSH and
SSHD configuration, for example the Identity Management RHEL system roles. To
prevent the configuration from being overwritten, make sure that the ssh role uses a
drop-in directory (default in RHEL 8 and later).

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

This playbook configures the root user’s SSH client preferences on the managed nodes with the
following configurations:

Compression is enabled.

ControlMaster multiplexing is set to auto.

- name: SSH client configuration
 hosts: managed-node-01.example.com
 tasks:
 - name: "Configure ssh clients"
 ansible.builtin.include_role:
 name: rhel-system-roles.ssh
 vars:
 ssh_user: root
 ssh:
 Compression: true
 GSSAPIAuthentication: no
 ControlMaster: auto
 ControlPath: ~/.ssh/.cm%C
 Host:
 - Condition: example
 Hostname: server.example.com
 User: user1
 ssh_ForwardX11: no

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

The example alias for connecting to the server.example.com host is user1.

The example host alias is created, which represents a connection to the
server.example.com host the with the user1 user name.

X11 forwarding is disabled.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Verify that the managed node has the correct configuration by displaying the SSH configuration
file:

cat ~/root/.ssh/config
Ansible managed
Compression yes
ControlMaster auto
ControlPath ~/.ssh/.cm%C
ForwardX11 no
GSSAPIAuthentication no
Host example
 Hostname example.com
 User user1

Additional resources

/usr/share/ansible/roles/rhel-system-roles.ssh/README.md file

/usr/share/doc/rhel-system-roles/ssh/ directory

1.8.5. Using the sshd RHEL system role for non-exclusive configuration

Normally, applying the sshd system role overwrites the entire configuration. This may be problematic if
you have previously adjusted the configuration, for example, with a different system role or playbook. To
apply the sshd system role for only selected configuration options while keeping other options in place,
you can use the non-exclusive configuration.

You can apply a non-exclusive configuration:

In RHEL 8 and earlier by using a configuration snippet.

In RHEL 9 and later by using files in a drop-in directory. The default configuration file is already
placed in the drop-in directory as /etc/ssh/sshd_config.d/00-ansible_system_role.conf.

Red Hat Enterprise Linux 8 Securing networks

22

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

For managed nodes that run RHEL 8 or earlier:

For managed nodes that run RHEL 9 or later:

In the sshd_config_file variable, define the .conf file into which the sshd system role
writes the configuration options. Use a two-digit prefix, for example 42- to specify the order
in which the configuration files will be applied.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid

- name: Non-exclusive sshd configuration
 hosts: managed-node-01.example.com
 tasks:
 - name: <Configure SSHD to accept some useful environment variables>
 ansible.builtin.include_role:
 name: rhel-system-roles.sshd
 vars:
 sshd_config_namespace: <my-application>
 sshd:
 # Environment variables to accept
 AcceptEnv:
 LANG
 LS_COLORS
 EDITOR

- name: Non-exclusive sshd configuration
 hosts: managed-node-01.example.com
 tasks:
 - name: <Configure sshd to accept some useful environment variables>
 ansible.builtin.include_role:
 name: rhel-system-roles.sshd
 vars:
 sshd_config_file: /etc/ssh/sshd_config.d/<42-my-application>.conf
 sshd:
 # Environment variables to accept
 AcceptEnv:
 LANG
 LS_COLORS
 EDITOR

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Verify the configuration on the SSH server:

For managed nodes that run RHEL 8 or earlier:

cat /etc/ssh/sshd_config.d/42-my-application.conf
Ansible managed
#
AcceptEnv LANG LS_COLORS EDITOR

For managed nodes that run RHEL 9 or later:

cat /etc/ssh/sshd_config
...
BEGIN sshd system role managed block: namespace <my-application>
Match all
 AcceptEnv LANG LS_COLORS EDITOR
END sshd system role managed block: namespace <my-application>

Additional resources

/usr/share/ansible/roles/rhel-system-roles.sshd/README.md file

/usr/share/doc/rhel-system-roles/sshd/ directory

1.9. ADDITIONAL RESOURCES

sshd(8), ssh(1), scp(1), sftp(1), ssh-keygen(1), ssh-copy-id(1), ssh_config(5),
sshd_config(5), update-crypto-policies(8), and crypto-policies(7) man pages.

Configuring SELinux for applications and services with non-standard configurations

Controlling network traffic using firewalld

Red Hat Enterprise Linux 8 Securing networks

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_selinux/configuring-selinux-for-applications-and-services-with-non-standard-configurations_using-selinux
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/using-and-configuring-firewalld_securing-networks#controlling-network-traffic-using-firewalld_using-and-configuring-firewalld

CHAPTER 2. CREATING AND MANAGING TLS KEYS AND
CERTIFICATES

You can encrypt communication transmitted between two systems by using the TLS (Transport Layer
Security) protocol. This standard uses asymmetric cryptography with private and public keys, digital
signatures, and certificates.

2.1. TLS CERTIFICATES

TLS (Transport Layer Security) is a protocol that enables client-server applications to pass information
securely. TLS uses a system of public and private key pairs to encrypt communication transmitted
between clients and servers. TLS is the successor protocol to SSL (Secure Sockets Layer).

TLS uses X.509 certificates to bind identities, such as hostnames or organizations, to public keys using
digital signatures. X.509 is a standard that defines the format of public key certificates.

Authentication of a secure application depends on the integrity of the public key value in the
application’s certificate. If an attacker replaces the public key with its own public key, it can impersonate
the true application and gain access to secure data. To prevent this type of attack, all certificates must
be signed by a certification authority (CA). A CA is a trusted node that confirms the integrity of the
public key value in a certificate.

A CA signs a public key by adding its digital signature and issues a certificate. A digital signature is a
message encoded with the CA’s private key. The CA’s public key is made available to applications by
distributing the certificate of the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA’s public key.

To have a certificate signed by a CA, you must generate a public key, and send it to a CA for signing. This
is referred to as a certificate signing request (CSR). A CSR contains also a distinguished name (DN) for
the certificate. The DN information that you can provide for either type of certificate can include a two-
letter country code for your country, a full name of your state or province, your city or town, a name of
your organization, your email address, and it can also be empty. Many current commercial CAs prefer the
Subject Alternative Name extension and ignore DNs in CSRs.

RHEL provides two main toolkits for working with TLS certificates: GnuTLS and OpenSSL. You can
create, read, sign, and verify certificates using the openssl utility from the openssl package. The
certtool utility provided by the gnutls-utils package can do the same operations using a different
syntax and above all a different set of libraries in the back end.

Additional resources

RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile

openssl(1), x509(1), ca(1), req(1), and certtool(1) man pages

2.2. CREATING A PRIVATE CA USING OPENSSL

Private certificate authorities (CA) are useful when your scenario requires verifying entities within your
internal network. For example, use a private CA when you create a VPN gateway with authentication
based on certificates signed by a CA under your control or when you do not want to pay a commercial
CA. To sign certificates in such use cases, the private CA uses a self-signed certificate.

Prerequisites

CHAPTER 2. CREATING AND MANAGING TLS KEYS AND CERTIFICATES

25

https://datatracker.ietf.org/doc/html/rfc5280

You have root privileges or permissions to enter administrative commands with sudo.
Commands that require such privileges are marked with #.

Procedure

1. Generate a private key for your CA. For example, the following command creates a 256-bit
Elliptic Curve Digital Signature Algorithm (ECDSA) key:

$ openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:P-256 -out <ca.key>

The time for the key-generation process depends on the hardware and entropy of the host, the
selected algorithm, and the length of the key.

2. Create a certificate signed using the private key generated in the previous command:

$ openssl req -key <ca.key> -new -x509 -days 3650 -addext
keyUsage=critical,keyCertSign,cRLSign -subj "/CN=<Example CA>" -out <ca.crt>

The generated ca.crt file is a self-signed CA certificate that you can use to sign other
certificates for ten years. In the case of a private CA, you can replace <Example CA> with any
string as the common name (CN).

3. Set secure permissions on the private key of your CA, for example:

chown <root>:<root> <ca.key>
chmod 600 <ca.key>

Next steps

To use a self-signed CA certificate as a trust anchor on client systems, copy the CA certificate
to the client and add it to the clients' system-wide truststore as root:

trust anchor <ca.crt>

See Chapter 3, Using shared system certificates for more information.

Verification

1. Create a certificate signing request (CSR), and use your CA to sign the request. The CA must
successfully create a certificate based on the CSR, for example:

$ openssl x509 -req -in <client-cert.csr> -CA <ca.crt> -CAkey <ca.key> -CAcreateserial -
days 365 -extfile <openssl.cnf> -extensions <client-cert> -out <client-cert.crt>
Signature ok
subject=C = US, O = Example Organization, CN = server.example.com
Getting CA Private Key

See Section 2.5, “Using a private CA to issue certificates for CSRs with OpenSSL” for more
information.

2. Display the basic information about your self-signed CA:

$ openssl x509 -in <ca.crt> -text -noout
Certificate:

Red Hat Enterprise Linux 8 Securing networks

26

…
 X509v3 extensions:
 …
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
…

3. Verify the consistency of the private key:

$ openssl pkey -check -in <ca.key>
Key is valid
-----BEGIN PRIVATE KEY-----
MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgcagSaTEBn74xZAwO

18wRpXoCVC9vcPki7WlT+gnmCI+hRANCAARb9NxIvkaVjFhOoZbGp/HtIQxbM78E
lwbDP0BI624xBJ8gK68ogSaq2x4SdezFdV1gNeKScDcU+Pj2pELldmdF
-----END PRIVATE KEY-----

Additional resources

openssl(1), ca(1), genpkey(1), x509(1), and req(1) man pages

2.3. CREATING A PRIVATE KEY AND A CSR FOR A TLS SERVER
CERTIFICATE USING OPENSSL

You can use TLS-encrypted communication channels only if you have a valid TLS certificate from a
certificate authority (CA). To obtain the certificate, you must create a private key and a certificate
signing request (CSR) for your server first.

Procedure

1. Generate a private key on your server system, for example:

$ openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:P-256 -out <server-
private.key>

2. Optional: Use a text editor of your choice to prepare a configuration file that simplifies creating
your CSR, for example:

$ vim <example_server.cnf>
[server-cert]
keyUsage = critical, digitalSignature, keyEncipherment, keyAgreement
extendedKeyUsage = serverAuth
subjectAltName = @alt_name

[req]
distinguished_name = dn
prompt = no

[dn]
C = <US>

CHAPTER 2. CREATING AND MANAGING TLS KEYS AND CERTIFICATES

27

O = <Example Organization>
CN = <server.example.com>

[alt_name]
DNS.1 = <example.com>
DNS.2 = <server.example.com>
IP.1 = <192.168.0.1>
IP.2 = <::1>
IP.3 = <127.0.0.1>

The extendedKeyUsage = serverAuth option limits the use of a certificate.

3. Create a CSR using the private key you created previously:

$ openssl req -key <server-private.key> -config <example_server.cnf> -new -out <server-
cert.csr>

If you omit the -config option, the req utility prompts you for additional information, for
example:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]: <US>
State or Province Name (full name) []: <Washington>
Locality Name (eg, city) [Default City]: <Seattle>
Organization Name (eg, company) [Default Company Ltd]: <Example Organization>
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []: <server.example.com>
Email Address []: <server@example.com>

Next steps

Submit the CSR to a CA of your choice for signing. Alternatively, for an internal use scenario
within a trusted network, use your private CA for signing. See Section 2.5, “Using a private CA to
issue certificates for CSRs with OpenSSL” for more information.

Verification

1. After you obtain the requested certificate from the CA, check that the human-readable parts of
the certificate match your requirements, for example:

$ openssl x509 -text -noout -in <server-cert.crt>
Certificate:
…
 Issuer: CN = Example CA
 Validity
 Not Before: Feb 2 20:27:29 2023 GMT
 Not After : Feb 2 20:27:29 2024 GMT
 Subject: C = US, O = Example Organization, CN = server.example.com
 Subject Public Key Info:

Red Hat Enterprise Linux 8 Securing networks

28

 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
…
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment, Key Agreement
 X509v3 Extended Key Usage:
 TLS Web Server Authentication
 X509v3 Subject Alternative Name:
 DNS:example.com, DNS:server.example.com, IP Address:192.168.0.1, IP
…

Additional resources

openssl(1), x509(1), genpkey(1), req(1), and config(5) man pages

2.4. CREATING A PRIVATE KEY AND A CSR FOR A TLS CLIENT
CERTIFICATE USING OPENSSL

You can use TLS-encrypted communication channels only if you have a valid TLS certificate from a
certificate authority (CA). To obtain the certificate, you must create a private key and a certificate
signing request (CSR) for your client first.

Procedure

1. Generate a private key on your client system, for example:

$ openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:P-256 -out <client-
private.key>

2. Optional: Use a text editor of your choice to prepare a configuration file that simplifies creating
your CSR, for example:

$ vim <example_client.cnf>
[client-cert]
keyUsage = critical, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth
subjectAltName = @alt_name

[req]
distinguished_name = dn
prompt = no

[dn]
CN = <client.example.com>

[clnt_alt_name]
email= <client@example.com>

The extendedKeyUsage = clientAuth option limits the use of a certificate.

3. Create a CSR using the private key you created previously:

CHAPTER 2. CREATING AND MANAGING TLS KEYS AND CERTIFICATES

29

$ openssl req -key <client-private.key> -config <example_client.cnf> -new -out <client-
cert.csr>

If you omit the -config option, the req utility prompts you for additional information, for
example:

You are about to be asked to enter information that will be incorporated
into your certificate request.
…
Common Name (eg, your name or your server's hostname) []: <client.example.com>
Email Address []: <client@example.com>

Next steps

Submit the CSR to a CA of your choice for signing. Alternatively, for an internal use scenario
within a trusted network, use your private CA for signing. See Section 2.5, “Using a private CA to
issue certificates for CSRs with OpenSSL” for more information.

Verification

1. Check that the human-readable parts of the certificate match your requirements, for example:

$ openssl x509 -text -noout -in <client-cert.crt>
Certificate:
…
 X509v3 Extended Key Usage:
 TLS Web Client Authentication
 X509v3 Subject Alternative Name:
 email:client@example.com
…

Additional resources

openssl(1), x509(1), genpkey(1), req(1), and config(5) man pages

2.5. USING A PRIVATE CA TO ISSUE CERTIFICATES FOR CSRS WITH
OPENSSL

To enable systems to establish a TLS-encrypted communication channel, a certificate authority (CA)
must provide valid certificates to them. If you have a private CA, you can create the requested
certificates by signing certificate signing requests (CSRs) from the systems.

Prerequisites

You have already configured a private CA. See Section 2.2, “Creating a private CA using
OpenSSL” for more information.

You have a file containing a CSR. You can find an example of creating the CSR in Section 2.3,
“Creating a private key and a CSR for a TLS server certificate using OpenSSL” .

Procedure

1. Optional: Use a text editor of your choice to prepare an OpenSSL configuration file for adding

Red Hat Enterprise Linux 8 Securing networks

30

1. Optional: Use a text editor of your choice to prepare an OpenSSL configuration file for adding
extensions to certificates, for example:

$ vim <openssl.cnf>
[server-cert]
extendedKeyUsage = serverAuth

[client-cert]
extendedKeyUsage = clientAuth

2. Use the x509 utility to create a certificate based on a CSR, for example:

$ openssl x509 -req -in <server-cert.csr> -CA <ca.crt> -CAkey <ca.key> -CAcreateserial -
days 365 -extfile <openssl.cnf> -extensions <server-cert> -out <server-cert.crt>
Signature ok
subject=C = US, O = Example Organization, CN = server.example.com
Getting CA Private Key

To increase security, delete the serial-number file before you create another certificate from a
CSR. This way, you ensure that the serial number is always random. If you omit the CAserial
option for specifying a custom file name, the serial-number file name is the same as the file
name of the certificate, but its extension is replaced with the .srl extension (server-cert.srl in
the previous example).

Additional resources

openssl(1), ca(1), and x509(1) man pages

2.6. CREATING A PRIVATE CA USING GNUTLS

Private certificate authorities (CA) are useful when your scenario requires verifying entities within your
internal network. For example, use a private CA when you create a VPN gateway with authentication
based on certificates signed by a CA under your control or when you do not want to pay a commercial
CA. To sign certificates in such use cases, the private CA uses a self-signed certificate.

Prerequisites

You have root privileges or permissions to enter administrative commands with sudo.
Commands that require such privileges are marked with #.

You have already installed GnuTLS on your system. If you did not, you can use this command:

$ yum install gnutls-utils

Procedure

1. Generate a private key for your CA. For example, the following command creates a 256-bit
ECDSA (Elliptic Curve Digital Signature Algorithm) key:

$ certtool --generate-privkey --sec-param High --key-type=ecdsa --outfile <ca.key>

The time for the key-generation process depends on the hardware and entropy of the host, the
selected algorithm, and the length of the key.

CHAPTER 2. CREATING AND MANAGING TLS KEYS AND CERTIFICATES

31

2. Create a template file for a certificate.

a. Create a file with a text editor of your choice, for example:

$ vi <ca.cfg>

b. Edit the file to include the necessary certification details:

organization = "Example Inc."
state = "Example"
country = EX
cn = "Example CA"
serial = 007
expiration_days = 365
ca
cert_signing_key
crl_signing_key

3. Create a certificate signed using the private key generated in step 1:
The generated <ca.crt> file is a self-signed CA certificate that you can use to sign other
certificates for one year. <ca.crt> file is the public key (certificate). The loaded file <ca.key> is
the private key. You should keep this file in safe location.

$ certtool --generate-self-signed --load-privkey <ca.key> --template <ca.cfg> --outfile
<ca.crt>

4. Set secure permissions on the private key of your CA, for example:

chown <root>:<root> <ca.key>
chmod 600 <ca.key>

Next steps

To use a self-signed CA certificate as a trust anchor on client systems, copy the CA certificate
to the client and add it to the clients' system-wide truststore as root:

trust anchor <ca.crt>

See Chapter 3, Using shared system certificates for more information.

Verification

1. Display the basic information about your self-signed CA:

$ certtool --certificate-info --infile <ca.crt>
Certificate:
…
 X509v3 extensions:
 …
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign

Red Hat Enterprise Linux 8 Securing networks

32

2. Create a certificate signing request (CSR), and use your CA to sign the request. The CA must
successfully create a certificate based on the CSR, for example:

a. Generate a private key for your CA:

$ certtool --generate-privkey --outfile <example-server.key>

b. Open a new configuration file in a text editor of your choice, for example:

$ vi <example-server.cfg>

c. Edit the file to include the necessary certification details:

signing_key
encryption_key
key_agreement

tls_www_server

country = "US"
organization = "Example Organization"
cn = "server.example.com"

dns_name = "example.com"
dns_name = "server.example.com"
ip_address = "192.168.0.1"
ip_address = "::1"
ip_address = "127.0.0.1"

d. Generate a request with the previously created private key:

$ certtool --generate-request --load-privkey <example-server.key> --template <example-
server.cfg> --outfile <example-server.crq>

e. Generate the certificate and sign it with the private key of the CA:

$ certtool --generate-certificate --load-request <example-server.crq> --load-ca-certificate
<ca.crt> --load-ca-privkey <ca.key> --outfile <example-server.crt>

Additional resources

certtool(1) and trust(1) man pages

2.7. CREATING A PRIVATE KEY AND A CSR FOR A TLS SERVER
CERTIFICATE USING GNUTLS

To obtain the certificate, you must create a private key and a certificate signing request (CSR) for your
server first.

Procedure

1. Generate a private key on your server system, for example:

CHAPTER 2. CREATING AND MANAGING TLS KEYS AND CERTIFICATES

33

$ certtool --generate-privkey --sec-param High --outfile <example-server.key>

2. Optional: Use a text editor of your choice to prepare a configuration file that simplifies creating
your CSR, for example:

$ vim <example_server.cnf>
signing_key
encryption_key
key_agreement

tls_www_server

country = "US"
organization = "Example Organization"
cn = "server.example.com"

dns_name = "example.com"
dns_name = "server.example.com"
ip_address = "192.168.0.1"
ip_address = "::1"
ip_address = "127.0.0.1"

3. Create a CSR using the private key you created previously:

$ certtool --generate-request --template <example-server.cfg> --load-privkey <example-
server.key> --outfile <example-server.crq>

If you omit the --template option, the certool utility prompts you for additional information, for
example:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Generating a PKCS #10 certificate request...
Country name (2 chars): <US>
State or province name: <Washington>
Locality name: <Seattle>
Organization name: <Example Organization>
Organizational unit name:
Common name: <server.example.com>

Next steps

Submit the CSR to a CA of your choice for signing. Alternatively, for an internal use scenario
within a trusted network, use your private CA for signing. See Section 2.9, “Using a private CA to
issue certificates for CSRs with GnuTLS” for more information.

Verification

1. After you obtain the requested certificate from the CA, check that the human-readable parts of

Red Hat Enterprise Linux 8 Securing networks

34

1. After you obtain the requested certificate from the CA, check that the human-readable parts of
the certificate match your requirements, for example:

$ certtool --certificate-info --infile <example-server.crt>
Certificate:
…
 Issuer: CN = Example CA
 Validity
 Not Before: Feb 2 20:27:29 2023 GMT
 Not After : Feb 2 20:27:29 2024 GMT
 Subject: C = US, O = Example Organization, CN = server.example.com
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
…
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment, Key Agreement
 X509v3 Extended Key Usage:
 TLS Web Server Authentication
 X509v3 Subject Alternative Name:
 DNS:example.com, DNS:server.example.com, IP Address:192.168.0.1, IP
…

Additional resources

certtool(1) man page

2.8. CREATING A PRIVATE KEY AND A CSR FOR A TLS CLIENT
CERTIFICATE USING GNUTLS

To obtain the certificate, you must create a private key and a certificate signing request (CSR) for your
client first.

Procedure

1. Generate a private key on your client system, for example:

$ certtool --generate-privkey --sec-param High --outfile <example-client.key>

2. Optional: Use a text editor of your choice to prepare a configuration file that simplifies creating
your CSR, for example:

$ vim <example_client.cnf>
signing_key
encryption_key

tls_www_client

cn = "client.example.com"
email = "client@example.com"

3. Create a CSR using the private key you created previously:

CHAPTER 2. CREATING AND MANAGING TLS KEYS AND CERTIFICATES

35

$ certtool --generate-request --template <example-client.cfg> --load-privkey <example-
client.key> --outfile <example-client.crq>

If you omit the --template option, the certtool utility prompts you for additional information, for
example:

Generating a PKCS #10 certificate request...
Country name (2 chars): <US>
State or province name: <Washington>
Locality name: <Seattle>
Organization name: <Example Organization>
Organizational unit name:
Common name: <server.example.com>

Next steps

Submit the CSR to a CA of your choice for signing. Alternatively, for an internal use scenario
within a trusted network, use your private CA for signing. See Section 2.9, “Using a private CA to
issue certificates for CSRs with GnuTLS” for more information.

Verification

1. Check that the human-readable parts of the certificate match your requirements, for example:

$ certtool --certificate-info --infile <example-client.crt>
Certificate:
…
 X509v3 Extended Key Usage:
 TLS Web Client Authentication
 X509v3 Subject Alternative Name:
 email:client@example.com
…

Additional resources

certtool(1) man page

2.9. USING A PRIVATE CA TO ISSUE CERTIFICATES FOR CSRS WITH
GNUTLS

To enable systems to establish a TLS-encrypted communication channel, a certificate authority (CA)
must provide valid certificates to them. If you have a private CA, you can create the requested
certificates by signing certificate signing requests (CSRs) from the systems.

Prerequisites

You have already configured a private CA. See Section 2.6, “Creating a private CA using
GnuTLS” for more information.

You have a file containing a CSR. You can find an example of creating the CSR in Section 2.7,
“Creating a private key and a CSR for a TLS server certificate using GnuTLS” .

Red Hat Enterprise Linux 8 Securing networks

36

Procedure

1. Optional: Use a text editor of your choice to prepare an GnuTLS configuration file for adding
extensions to certificates, for example:

$ vi <server-extensions.cfg>
honor_crq_extensions
ocsp_uri = "http://ocsp.example.com"

2. Use the certtool utility to create a certificate based on a CSR, for example:

$ certtool --generate-certificate --load-request <example-server.crq> --load-ca-privkey
<ca.key> --load-ca-certificate <ca.crt> --template <server-extensions.cfg> --outfile
<example-server.crt>

Additional resources

certtool(1) man page

CHAPTER 2. CREATING AND MANAGING TLS KEYS AND CERTIFICATES

37

CHAPTER 3. USING SHARED SYSTEM CERTIFICATES
The shared system certificates storage enables NSS, GnuTLS, OpenSSL, and Java to share a default
source for retrieving system certificate anchors and block-list information. By default, the truststore
contains the Mozilla CA list, including positive and negative trust. The system allows updating the core
Mozilla CA list or choosing another certificate list.

3.1. THE SYSTEM-WIDE TRUSTSTORE

In RHEL, the consolidated system-wide truststore is located in the /etc/pki/ca-trust/ and
/usr/share/pki/ca-trust-source/ directories. The trust settings in /usr/share/pki/ca-trust-source/ are
processed with lower priority than settings in /etc/pki/ca-trust/.

Certificate files are treated depending on the subdirectory they are installed to. For example, trust
anchors belong to the /usr/share/pki/ca-trust-source/anchors/ or /etc/pki/ca-trust/source/anchors/
directory.

NOTE

In a hierarchical cryptographic system, a trust anchor is an authoritative entity that other
parties consider trustworthy. In the X.509 architecture, a root certificate is a trust anchor
from which a chain of trust is derived. To enable chain validation, the trusting party must
have access to the trust anchor first.

Additional resources

update-ca-trust(8) and trust(1) man pages

3.2. ADDING NEW CERTIFICATES

To acknowledge applications on your system with a new source of trust, add the corresponding
certificate to the system-wide store, and use the update-ca-trust command.

Prerequisites

The ca-certificates package is present on the system.

Procedure

1. To add a certificate in the simple PEM or DER file formats to the list of CAs trusted on the
system, copy the certificate file to the /usr/share/pki/ca-trust-source/anchors/ or /etc/pki/ca-
trust/source/anchors/ directory, for example:

cp ~/certificate-trust-examples/Cert-trust-test-ca.pem /usr/share/pki/ca-trust-
source/anchors/

2. To update the system-wide truststore configuration, use the update-ca-trust command:

update-ca-trust

NOTE

Red Hat Enterprise Linux 8 Securing networks

38

NOTE

Even though the Firefox browser can use an added certificate without a prior execution
of update-ca-trust, enter the update-ca-trust command after every CA change. Also
note that browsers, such as Firefox, Chromium, and GNOME Web cache files, and you
might have to clear your browser’s cache or restart your browser to load the current
system certificate configuration.

Additional resources

update-ca-trust(8) and trust(1) man pages

3.3. MANAGING TRUSTED SYSTEM CERTIFICATES

The trust command provides a convenient way for managing certificates in the shared system-wide
truststore.

To list, extract, add, remove, or change trust anchors, use the trust command. To see the built-
in help for this command, enter it without any arguments or with the --help directive:

$ trust
usage: trust command <args>...

Common trust commands are:
 list List trust or certificates
 extract Extract certificates and trust
 extract-compat Extract trust compatibility bundles
 anchor Add, remove, change trust anchors
 dump Dump trust objects in internal format

See 'trust <command> --help' for more information

To list all system trust anchors and certificates, use the trust list command:

$ trust list
pkcs11:id=%d2%87%b4%e3%df%37%27%93%55%f6%56%ea%81%e5%36%cc%8c%1e%3
f%bd;type=cert
 type: certificate
 label: ACCVRAIZ1
 trust: anchor
 category: authority

pkcs11:id=%a6%b3%e1%2b%2b%49%b6%d7%73%a1%aa%94%f5%01%e7%73%65%4c%
ac%50;type=cert
 type: certificate
 label: ACEDICOM Root
 trust: anchor
 category: authority
...

To store a trust anchor into the system-wide truststore, use the trust anchor sub-command
and specify a path to a certificate. Replace <path.to/certificate.crt> by a path to your certificate
and its file name:

trust anchor <path.to/certificate.crt>

CHAPTER 3. USING SHARED SYSTEM CERTIFICATES

39

To remove a certificate, use either a path to a certificate or an ID of a certificate:

trust anchor --remove <path.to/certificate.crt>
trust anchor --remove "pkcs11:id=<%AA%BB%CC%DD%EE>;type=cert"

Additional resources

All sub-commands of the trust commands offer a detailed built-in help, for example:

$ trust list --help
usage: trust list --filter=<what>

 --filter=<what> filter of what to export
 ca-anchors certificate anchors
...
 --purpose=<usage> limit to certificates usable for the purpose
 server-auth for authenticating servers
...

Additional resources

update-ca-trust(8) and trust(1) man pages

Red Hat Enterprise Linux 8 Securing networks

40

CHAPTER 4. PLANNING AND IMPLEMENTING TLS
TLS (Transport Layer Security) is a cryptographic protocol used to secure network communications.
When hardening system security settings by configuring preferred key-exchange protocols,
authentication methods, and encryption algorithms, it is necessary to bear in mind that the broader the
range of supported clients, the lower the resulting security. Conversely, strict security settings lead to
limited compatibility with clients, which can result in some users being locked out of the system. Be sure
to target the strictest available configuration and only relax it when it is required for compatibility
reasons.

4.1. SSL AND TLS PROTOCOLS

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape Corporation to provide
a mechanism for secure communication over the Internet. Subsequently, the protocol was adopted by
the Internet Engineering Task Force (IETF) and renamed to Transport Layer Security (TLS).

The TLS protocol sits between an application protocol layer and a reliable transport layer, such as
TCP/IP. It is independent of the application protocol and can thus be layered underneath many different
protocols, for example: HTTP, FTP, SMTP, and so on.

Protocol version Usage recommendation

SSL v2 Do not use. Has serious security vulnerabilities. Removed from the core crypto libraries
since RHEL 7.

SSL v3 Do not use. Has serious security vulnerabilities. Removed from the core crypto libraries
since RHEL 8.

TLS 1.0 Not recommended to use. Has known issues that cannot be mitigated in a way that
guarantees interoperability, and does not support modern cipher suites. In RHEL 8,
enabled only in the LEGACY system-wide cryptographic policy profile.

TLS 1.1 Use for interoperability purposes where needed. Does not support modern cipher suites.
In RHEL 8, enabled only in the LEGACY policy.

TLS 1.2 Supports the modern AEAD cipher suites. This version is enabled in all system-wide
crypto policies, but optional parts of this protocol contain vulnerabilities and TLS 1.2 also
allows outdated algorithms.

TLS 1.3 Recommended version. TLS 1.3 removes known problematic options, provides
additional privacy by encrypting more of the negotiation handshake and can be faster
thanks usage of more efficient modern cryptographic algorithms. TLS 1.3 is also
enabled in all system-wide cryptographic policies.

Additional resources

IETF: The Transport Layer Security (TLS) Protocol Version 1.3 .

4.2. SECURITY CONSIDERATIONS FOR TLS IN RHEL 8

In RHEL 8, cryptography-related considerations are significantly simplified thanks to the system-wide

CHAPTER 4. PLANNING AND IMPLEMENTING TLS

41

https://tools.ietf.org/html/rfc8446

crypto policies. The DEFAULT crypto policy allows only TLS 1.2 and 1.3. To allow your system to
negotiate connections using the earlier versions of TLS, you need to either opt out from following crypto
policies in an application or switch to the LEGACY policy with the update-crypto-policies command.
See Using system-wide cryptographic policies for more information.

The default settings provided by libraries included in RHEL 8 are secure enough for most deployments.
The TLS implementations use secure algorithms where possible while not preventing connections from
or to legacy clients or servers. Apply hardened settings in environments with strict security requirements
where legacy clients or servers that do not support secure algorithms or protocols are not expected or
allowed to connect.

The most straightforward way to harden your TLS configuration is switching the system-wide
cryptographic policy level to FUTURE using the update-crypto-policies --set FUTURE command.

WARNING

Algorithms disabled for the LEGACY cryptographic policy do not conform to Red
Hat’s vision of RHEL 8 security, and their security properties are not reliable.
Consider moving away from using these algorithms instead of re-enabling them. If
you do decide to re-enable them, for example for interoperability with old
hardware, treat them as insecure and apply extra protection measures, such as
isolating their network interactions to separate network segments. Do not use them
across public networks.

If you decide to not follow RHEL system-wide crypto policies or create custom cryptographic policies
tailored to your setup, use the following recommendations for preferred protocols, cipher suites, and
key lengths on your custom configuration:

4.2.1. Protocols

The latest version of TLS provides the best security mechanism. Unless you have a compelling reason to
include support for older versions of TLS, allow your systems to negotiate connections using at least
TLS version 1.2.

Note that even though RHEL 8 supports TLS version 1.3, not all features of this protocol are fully
supported by RHEL 8 components. For example, the 0-RTT (Zero Round Trip Time) feature, which
reduces connection latency, is not yet fully supported by the Apache web server.

4.2.2. Cipher suites

Modern, more secure cipher suites should be preferred to old, insecure ones. Always disable the use of
eNULL and aNULL cipher suites, which do not offer any encryption or authentication at all. If at all
possible, ciphers suites based on RC4 or HMAC-MD5, which have serious shortcomings, should also be
disabled. The same applies to the so-called export cipher suites, which have been intentionally made
weaker, and thus are easy to break.

While not immediately insecure, cipher suites that offer less than 128 bits of security should not be
considered for their short useful life. Algorithms that use 128 bits of security or more can be expected to
be unbreakable for at least several years, and are thus strongly recommended. Note that while 3DES
ciphers advertise the use of 168 bits, they actually offer 112 bits of security.

Red Hat Enterprise Linux 8 Securing networks

42

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

Always prefer cipher suites that support (perfect) forward secrecy (PFS), which ensures the
confidentiality of encrypted data even in case the server key is compromised. This rules out the fast
RSA key exchange, but allows for the use of ECDHE and DHE. Of the two, ECDHE is the faster and
therefore the preferred choice.

You should also prefer AEAD ciphers, such as AES-GCM, over CBC-mode ciphers as they are not
vulnerable to padding oracle attacks. Additionally, in many cases, AES-GCM is faster than AES in CBC
mode, especially when the hardware has cryptographic accelerators for AES.

Note also that when using the ECDHE key exchange with ECDSA certificates, the transaction is even
faster than a pure RSA key exchange. To provide support for legacy clients, you can install two pairs of
certificates and keys on a server: one with ECDSA keys (for new clients) and one with RSA keys (for
legacy ones).

4.2.3. Public key length

When using RSA keys, always prefer key lengths of at least 3072 bits signed by at least SHA-256, which
is sufficiently large for true 128 bits of security.

WARNING

The security of your system is only as strong as the weakest link in the chain. For
example, a strong cipher alone does not guarantee good security. The keys and the
certificates are just as important, as well as the hash functions and keys used by the
Certification Authority (CA) to sign your keys.

Additional resources

System-wide crypto policies in RHEL 8 .

update-crypto-policies(8) man page.

4.3. HARDENING TLS CONFIGURATION IN APPLICATIONS

In RHEL, system-wide crypto policies provide a convenient way to ensure that your applications that use
cryptographic libraries do not allow known insecure protocols, ciphers, or algorithms.

If you want to harden your TLS-related configuration with your customized cryptographic settings, you
can use the cryptographic configuration options described in this section, and override the system-wide
crypto policies just in the minimum required amount.

Regardless of the configuration you choose to use, always ensure that your server application enforces
server-side cipher order , so that the cipher suite to be used is determined by the order you configure.

4.3.1. Configuring the Apache HTTP server to use TLS

The Apache HTTP Server can use both OpenSSL and NSS libraries for its TLS needs. RHEL 8
provides the mod_ssl functionality through eponymous packages:

yum install mod_ssl

CHAPTER 4. PLANNING AND IMPLEMENTING TLS

43

https://access.redhat.com/articles/3666211
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

The mod_ssl package installs the /etc/httpd/conf.d/ssl.conf configuration file, which can be used to
modify the TLS-related settings of the Apache HTTP Server.

Install the httpd-manual package to obtain complete documentation for the Apache HTTP Server,
including TLS configuration. The directives available in the /etc/httpd/conf.d/ssl.conf configuration file
are described in detail in the /usr/share/httpd/manual/mod/mod_ssl.html file. Examples of various
settings are described in the /usr/share/httpd/manual/ssl/ssl_howto.html file.

When modifying the settings in the /etc/httpd/conf.d/ssl.conf configuration file, be sure to consider the
following three directives at the minimum:

SSLProtocol

Use this directive to specify the version of TLS or SSL you want to allow.

SSLCipherSuite

Use this directive to specify your preferred cipher suite or disable the ones you want to disallow.

SSLHonorCipherOrder

Uncomment and set this directive to on to ensure that the connecting clients adhere to the order of
ciphers you specified.

For example, to use only the TLS 1.2 and 1.3 protocol:

SSLProtocol all -SSLv3 -TLSv1 -TLSv1.1

See the Configuring TLS encryption on an Apache HTTP Server chapter in the Deploying different
types of servers document for more information.

4.3.2. Configuring the Nginx HTTP and proxy server to use TLS

To enable TLS 1.3 support in Nginx, add the TLSv1.3 value to the ssl_protocols option in the server
section of the /etc/nginx/nginx.conf configuration file:

server {
 listen 443 ssl http2;
 listen [::]:443 ssl http2;

 ssl_protocols TLSv1.2 TLSv1.3;
 ssl_ciphers

}

See the Adding TLS encryption to an Nginx web server chapter in the Deploying different types of
servers document for more information.

4.3.3. Configuring the Dovecot mail server to use TLS

To configure your installation of the Dovecot mail server to use TLS, modify the
/etc/dovecot/conf.d/10-ssl.conf configuration file. You can find an explanation of some of the basic
configuration directives available in that file in the
/usr/share/doc/dovecot/wiki/SSL.DovecotConfiguration.txt file, which is installed along with the
standard installation of Dovecot.

When modifying the settings in the /etc/dovecot/conf.d/10-ssl.conf configuration file, be sure to
consider the following three directives at the minimum:

Red Hat Enterprise Linux 8 Securing networks

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/setting-apache-http-server_deploying-different-types-of-servers#configuring-tls-encryption-on-an-apache-http-server_setting-apache-http-server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/setting-up-and-configuring-nginx_deploying-different-types-of-servers#adding-tls-encryption-to-an-nginx-web-server_setting-up-and-configuring-nginx
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/index

ssl_protocols

Use this directive to specify the version of TLS or SSL you want to allow or disable.

ssl_cipher_list

Use this directive to specify your preferred cipher suites or disable the ones you want to disallow.

ssl_prefer_server_ciphers

Uncomment and set this directive to yes to ensure that the connecting clients adhere to the order of
ciphers you specified.

For example, the following line in /etc/dovecot/conf.d/10-ssl.conf allows only TLS 1.1 and later:

ssl_protocols = !SSLv2 !SSLv3 !TLSv1

Additional resources

Deploying different types of servers on RHEL 8

config(5) and ciphers(1) man pages.

Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS).

Mozilla SSL Configuration Generator.

SSL Server Test.

CHAPTER 4. PLANNING AND IMPLEMENTING TLS

45

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/index
https://tools.ietf.org/html/rfc7525
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://www.ssllabs.com/ssltest/

CHAPTER 5. SETTING UP AN IPSEC VPN

A virtual private network (VPN) is a way of connecting to a local network over the internet. IPsec
provided by Libreswan is the preferred method for creating a VPN. Libreswan is a user-space IPsec
implementation for VPN. A VPN enables the communication between your LAN, and another, remote
LAN by setting up a tunnel across an intermediate network such as the internet. For security reasons, a
VPN tunnel always uses authentication and encryption. For cryptographic operations, Libreswan uses
the NSS library.

5.1. LIBRESWAN AS AN IPSEC VPN IMPLEMENTATION

In RHEL, you can configure a Virtual Private Network (VPN) by using the IPsec protocol, which is
supported by the Libreswan application. Libreswan is a continuation of the Openswan application, and
many examples from the Openswan documentation are interchangeable with Libreswan.

The IPsec protocol for a VPN is configured using the Internet Key Exchange (IKE) protocol. The terms
IPsec and IKE are used interchangeably. An IPsec VPN is also called an IKE VPN, IKEv2 VPN, XAUTH
VPN, Cisco VPN or IKE/IPsec VPN. A variant of an IPsec VPN that also uses the Layer 2 Tunneling
Protocol (L2TP) is usually called an L2TP/IPsec VPN, which requires the xl2tpd package provided by the
optional repository.

Libreswan is an open-source, user-space IKE implementation. IKE v1 and v2 are implemented as a user-
level daemon. The IKE protocol is also encrypted. The IPsec protocol is implemented by the Linux kernel,
and Libreswan configures the kernel to add and remove VPN tunnel configurations.

The IKE protocol uses UDP port 500 and 4500. The IPsec protocol consists of two protocols:

Encapsulated Security Payload (ESP), which has protocol number 50.

Authenticated Header (AH), which has protocol number 51.

The AH protocol is not recommended for use. Users of AH are recommended to migrate to ESP with null
encryption.

The IPsec protocol provides two modes of operation:

Tunnel Mode (the default)

Transport Mode.

You can configure the kernel with IPsec without IKE. This is called manual keying. You can also configure
manual keying using the ip xfrm commands, however, this is strongly discouraged for security reasons.
Libreswan communicates with the Linux kernel using the Netlink interface. The kernel performs packet
encryption and decryption.

Libreswan uses the Network Security Services (NSS) cryptographic library. NSS is certified for use with
the Federal Information Processing Standard (FIPS) Publication 140-2.

IMPORTANT

IKE/IPsec VPNs, implemented by Libreswan and the Linux kernel, is the only VPN
technology recommended for use in RHEL. Do not use any other VPN technology
without understanding the risks of doing so.

In RHEL, Libreswan follows system-wide cryptographic policies by default. This ensures that

Red Hat Enterprise Linux 8 Securing networks

46

In RHEL, Libreswan follows system-wide cryptographic policies by default. This ensures that
Libreswan uses secure settings for current threat models including IKEv2 as a default protocol. See
Using system-wide crypto policies for more information.

Libreswan does not use the terms "source" and "destination" or "server" and "client" because IKE/IPsec
are peer to peer protocols. Instead, it uses the terms "left" and "right" to refer to end points (the hosts).
This also allows you to use the same configuration on both end points in most cases. However,
administrators usually choose to always use "left" for the local host and "right" for the remote host.

The leftid and rightid options serve as identification of the respective hosts in the authentication
process. See the ipsec.conf(5) man page for more information.

5.2. AUTHENTICATION METHODS IN LIBRESWAN

Libreswan supports several authentication methods, each of which fits a different scenario.

Pre-Shared key (PSK)

Pre-Shared Key (PSK) is the simplest authentication method. For security reasons, do not use PSKs
shorter than 64 random characters. In FIPS mode, PSKs must comply with a minimum-strength
requirement depending on the integrity algorithm used. You can set PSK by using the authby=secret
connection.

Raw RSA keys

Raw RSA keys are commonly used for static host-to-host or subnet-to-subnet IPsec configurations.
Each host is manually configured with the public RSA keys of all other hosts, and Libreswan sets up an
IPsec tunnel between each pair of hosts. This method does not scale well for large numbers of hosts.

You can generate a raw RSA key on a host using the ipsec newhostkey command. You can list
generated keys by using the ipsec showhostkey command. The leftrsasigkey= line is required for
connection configurations that use CKA ID keys. Use the authby=rsasig connection option for raw RSA
keys.

X.509 certificates

X.509 certificates are commonly used for large-scale deployments with hosts that connect to a common
IPsec gateway. A central certificate authority (CA) signs RSA certificates for hosts or users. This central
CA is responsible for relaying trust, including the revocations of individual hosts or users.

For example, you can generate X.509 certificates using the openssl command and the NSS certutil
command. Because Libreswan reads user certificates from the NSS database using the certificates'
nickname in the leftcert= configuration option, provide a nickname when you create a certificate.

If you use a custom CA certificate, you must import it to the Network Security Services (NSS) database.
You can import any certificate in the PKCS #12 format to the Libreswan NSS database by using the
ipsec import command.

CHAPTER 5. SETTING UP AN IPSEC VPN

47

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

WARNING

Libreswan requires an Internet Key Exchange (IKE) peer ID as a subject alternative
name (SAN) for every peer certificate as described in section 3.1 of RFC 4945 .
Disabling this check by changing the require-id-on-certificated= option can make
the system vulnerable to man-in-the-middle attacks.

Use the authby=rsasig connection option for authentication based on X.509 certificates using RSA
with SHA-1 and SHA-2. You can further limit it for ECDSA digital signatures using SHA-2 by setting
authby= to ecdsa and RSA Probabilistic Signature Scheme (RSASSA-PSS) digital signatures based
authentication with SHA-2 through authby=rsa-sha2. The default value is authby=rsasig,ecdsa.

The certificates and the authby= signature methods should match. This increases interoperability and
preserves authentication in one digital signature system.

NULL authentication

NULL authentication is used to gain mesh encryption without authentication. It protects against passive
attacks but not against active attacks. However, because IKEv2 allows asymmetric authentication
methods, NULL authentication can also be used for internet-scale opportunistic IPsec. In this model,
clients authenticate the server, but servers do not authenticate the client. This model is similar to secure
websites using TLS. Use authby=null for NULL authentication.

Protection against quantum computers

In addition to the previously mentioned authentication methods, you can use the Post-quantum Pre-
shared Key (PPK) method to protect against possible attacks by quantum computers. Individual clients
or groups of clients can use their own PPK by specifying a PPK ID that corresponds to an out-of-band
configured pre-shared key.

Using IKEv1 with pre-shared keys protects against quantum attackers. The redesign of IKEv2 does not
offer this protection natively. Libreswan offers the use of a Post-quantum Pre-shared Key (PPK) to
protect IKEv2 connections against quantum attacks.

To enable optional PPK support, add ppk=yes to the connection definition. To require PPK, add
ppk=insist. Then, each client can be given a PPK ID with a secret value that is communicated out-of-
band (and preferably quantum-safe). The PPK’s should be very strong in randomness and not based on
dictionary words. The PPK ID and PPK data are stored in the ipsec.secrets file, for example:

@west @east : PPKS "user1" "thestringismeanttobearandomstr"

The PPKS option refers to static PPKs. This experimental function uses one-time-pad-based Dynamic
PPKs. Upon each connection, a new part of the one-time pad is used as the PPK. When used, that part
of the dynamic PPK inside the file is overwritten with zeros to prevent re-use. If there is no more one-
time-pad material left, the connection fails. See the ipsec.secrets(5) man page for more information.

Red Hat Enterprise Linux 8 Securing networks

48

https://datatracker.ietf.org/doc/html/rfc4945#section-3.1

WARNING

The implementation of dynamic PPKs is provided as an unsupported Technology
Preview. Use with caution.

5.3. INSTALLING LIBRESWAN

Before you can set a VPN through the Libreswan IPsec/IKE implementation, you must install the
corresponding packages, start the ipsec service, and allow the service in your firewall.

Prerequisites

The AppStream repository is enabled.

Procedure

1. Install the libreswan packages:

yum install libreswan

2. If you are re-installing Libreswan, remove its old database files and create a new database:

systemctl stop ipsec
rm /etc/ipsec.d/*db
ipsec initnss

3. Start the ipsec service, and enable the service to be started automatically on boot:

systemctl enable ipsec --now

4. Configure the firewall to allow 500 and 4500/UDP ports for the IKE, ESP, and AH protocols by
adding the ipsec service:

firewall-cmd --add-service="ipsec"
firewall-cmd --runtime-to-permanent

5.4. CREATING A HOST-TO-HOST VPN

You can configure Libreswan to create a host-to-host IPsec VPN between two hosts referred to as left
and right using authentication by raw RSA keys.

Prerequisites

Libreswan is installed and the ipsec service is started on each node.

Procedure

1. Generate a raw RSA key pair on each host:

CHAPTER 5. SETTING UP AN IPSEC VPN

49

ipsec newhostkey

2. The previous step returned the generated key’s ckaid. Use that ckaid with the following
command on left, for example:

ipsec showhostkey --left --ckaid 2d3ea57b61c9419dfd6cf43a1eb6cb306c0e857d

The output of the previous command generated the leftrsasigkey= line required for the
configuration. Do the same on the second host (right):

ipsec showhostkey --right --ckaid a9e1f6ce9ecd3608c24e8f701318383f41798f03

3. In the /etc/ipsec.d/ directory, create a new my_host-to-host.conf file. Write the RSA host keys
from the output of the ipsec showhostkey commands in the previous step to the new file. For
example:

conn mytunnel
 leftid=@west
 left=192.1.2.23
 leftrsasigkey=0sAQOrlo+hOafUZDlCQmXFrje/oZm [...] W2n417C/4urYHQkCvuIQ==
 rightid=@east
 right=192.1.2.45
 rightrsasigkey=0sAQO3fwC6nSSGgt64DWiYZzuHbc4 [...] D/v8t5YTQ==
 authby=rsasig

4. After importing keys, restart the ipsec service:

systemctl restart ipsec

5. Load the connection:

ipsec auto --add mytunnel

6. Establish the tunnel:

ipsec auto --up mytunnel

7. To automatically start the tunnel when the ipsec service is started, add the following line to the
connection definition:

auto=start

5.5. CONFIGURING A SITE-TO-SITE VPN

To create a site-to-site IPsec VPN, by joining two networks, an IPsec tunnel between the two hosts, is
created. The hosts thus act as the end points, which are configured to permit traffic from one or more
subnets to pass through. Therefore you can think of the host as gateways to the remote portion of the
network.

The configuration of the site-to-site VPN only differs from the host-to-host VPN in that one or more
networks or subnets must be specified in the configuration file.

Prerequisites

Red Hat Enterprise Linux 8 Securing networks

50

Prerequisites

A host-to-host VPN is already configured.

Procedure

1. Copy the file with the configuration of your host-to-host VPN to a new file, for example:

cp /etc/ipsec.d/my_host-to-host.conf /etc/ipsec.d/my_site-to-site.conf

2. Add the subnet configuration to the file created in the previous step, for example:

conn mysubnet
 also=mytunnel
 leftsubnet=192.0.1.0/24
 rightsubnet=192.0.2.0/24
 auto=start

conn mysubnet6
 also=mytunnel
 leftsubnet=2001:db8:0:1::/64
 rightsubnet=2001:db8:0:2::/64
 auto=start

the following part of the configuration file is the same for both host-to-host and site-to-site
connections:

conn mytunnel
 leftid=@west
 left=192.1.2.23
 leftrsasigkey=0sAQOrlo+hOafUZDlCQmXFrje/oZm [...] W2n417C/4urYHQkCvuIQ==
 rightid=@east
 right=192.1.2.45
 rightrsasigkey=0sAQO3fwC6nSSGgt64DWiYZzuHbc4 [...] D/v8t5YTQ==
 authby=rsasig

5.6. CONFIGURING A REMOTE ACCESS VPN

Road warriors are traveling users with mobile clients and a dynamically assigned IP address. The mobile
clients authenticate using X.509 certificates.

The following example shows configuration for IKEv2, and it avoids using the IKEv1 XAUTH protocol.

On the server:

conn roadwarriors
 ikev2=insist
 # support (roaming) MOBIKE clients (RFC 4555)
 mobike=yes
 fragmentation=yes
 left=1.2.3.4
 # if access to the LAN is given, enable this, otherwise use 0.0.0.0/0
 # leftsubnet=10.10.0.0/16
 leftsubnet=0.0.0.0/0
 leftcert=gw.example.com

CHAPTER 5. SETTING UP AN IPSEC VPN

51

 leftid=%fromcert
 leftxauthserver=yes
 leftmodecfgserver=yes
 right=%any
 # trust our own Certificate Agency
 rightca=%same
 # pick an IP address pool to assign to remote users
 # 100.64.0.0/16 prevents RFC1918 clashes when remote users are behind NAT
 rightaddresspool=100.64.13.100-100.64.13.254
 # if you want remote clients to use some local DNS zones and servers
 modecfgdns="1.2.3.4, 5.6.7.8"
 modecfgdomains="internal.company.com, corp"
 rightxauthclient=yes
 rightmodecfgclient=yes
 authby=rsasig
 # optionally, run the client X.509 ID through pam to allow or deny client
 # pam-authorize=yes
 # load connection, do not initiate
 auto=add
 # kill vanished roadwarriors
 dpddelay=1m
 dpdtimeout=5m
 dpdaction=clear

On the mobile client, the road warrior’s device, use a slight variation of the previous configuration:

conn to-vpn-server
 ikev2=insist
 # pick up our dynamic IP
 left=%defaultroute
 leftsubnet=0.0.0.0/0
 leftcert=myname.example.com
 leftid=%fromcert
 leftmodecfgclient=yes
 # right can also be a DNS hostname
 right=1.2.3.4
 # if access to the remote LAN is required, enable this, otherwise use 0.0.0.0/0
 # rightsubnet=10.10.0.0/16
 rightsubnet=0.0.0.0/0
 fragmentation=yes
 # trust our own Certificate Agency
 rightca=%same
 authby=rsasig
 # allow narrowing to the server’s suggested assigned IP and remote subnet
 narrowing=yes
 # support (roaming) MOBIKE clients (RFC 4555)
 mobike=yes
 # initiate connection
 auto=start

5.7. CONFIGURING A MESH VPN

A mesh VPN network, which is also known as an any-to-any VPN, is a network where all nodes
communicate using IPsec. The configuration allows for exceptions for nodes that cannot use IPsec. The
mesh VPN network can be configured in two ways:

Red Hat Enterprise Linux 8 Securing networks

52

To require IPsec.

To prefer IPsec but allow a fallback to clear-text communication.

Authentication between the nodes can be based on X.509 certificates or on DNS Security Extensions
(DNSSEC).

You can use any regular IKEv2 authentication method for opportunistic IPsec, because these
connections are regular Libreswan configurations, except for the opportunistic IPsec that is defined by
right=%opportunisticgroup entry. A common authentication method is for hosts to authenticate each
other based on X.509 certificates using a commonly shared certification authority (CA). Cloud
deployments typically issue certificates for each node in the cloud as part of the standard procedure.

IMPORTANT

Do not use PreSharedKey (PSK) authentication because one compromised host would
result in group PSK secret being compromised as well.

You can use NULL authentication to deploy encryption between nodes without authentication, which
protects only against passive attackers.

The following procedure uses X.509 certificates. You can generate these certificates by using any kind
of CA management system, such as the Dogtag Certificate System. Dogtag assumes that the
certificates for each node are available in the PKCS #12 format (.p12 files), which contain the private
key, the node certificate, and the Root CA certificate used to validate other nodes' X.509 certificates.

Each node has an identical configuration with the exception of its X.509 certificate. This allows for
adding new nodes without reconfiguring any of the existing nodes in the network. The PKCS #12 files
require a "friendly name", for which we use the name "node" so that the configuration files referencing
the friendly name can be identical for all nodes.

Prerequisites

Libreswan is installed, and the ipsec service is started on each node.

A new NSS database is initialized.

1. If you already have an old NSS database, remove the old database files:

systemctl stop ipsec
rm /etc/ipsec.d/*db

2. You can initialize a new database with the following command:

ipsec initnss

Procedure

1. On each node, import PKCS #12 files. This step requires the password used to generate the
PKCS #12 files:

ipsec import nodeXXX.p12

2. Create the following three connection definitions for the IPsec required (private), IPsec

CHAPTER 5. SETTING UP AN IPSEC VPN

53

1

2. Create the following three connection definitions for the IPsec required (private), IPsec
optional (private-or-clear), and No IPsec (clear) profiles:

cat /etc/ipsec.d/mesh.conf
conn clear
 auto=ondemand 1
 type=passthrough
 authby=never
 left=%defaultroute
 right=%group

conn private
 auto=ondemand
 type=transport
 authby=rsasig
 failureshunt=drop
 negotiationshunt=drop
 ikev2=insist
 left=%defaultroute
 leftcert=nodeXXXX
 leftid=%fromcert 2
 rightid=%fromcert
 right=%opportunisticgroup

conn private-or-clear
 auto=ondemand
 type=transport
 authby=rsasig
 failureshunt=passthrough
 negotiationshunt=passthrough
 # left
 left=%defaultroute
 leftcert=nodeXXXX 3
 leftid=%fromcert
 leftrsasigkey=%cert
 # right
 rightrsasigkey=%cert
 rightid=%fromcert
 right=%opportunisticgroup

The auto variable has several options:

You can use the ondemand connection option with opportunistic IPsec to initiate the IPsec
connection, or for explicitly configured connections that do not need to be active all the time. This
option sets up a trap XFRM policy in the kernel, enabling the IPsec connection to begin when it
receives the first packet that matches that policy.

You can effectively configure and manage your IPsec connections, whether you use Opportunistic
IPsec or explicitly configured connections, by using the following options:

The add option
Loads the connection configuration and prepares it for responding to remote initiations.
However, the connection is not automatically initiated from the local side. You can manually
start the IPsec connection by using the command ipsec auto --up.

The start option

Loads the connection configuration and prepares it for responding to remote initiations.

Red Hat Enterprise Linux 8 Securing networks

54

2

3

Loads the connection configuration and prepares it for responding to remote initiations.
Additionally, it immediately initiates a connection to the remote peer. You can use this option
for permanent and always active connections.

The leftid and rightid variables identify the right and the left channel of the IPsec tunnel
connection. You can use these variables to obtain the value of the local IP address or the subject
DN of the local certificate, if you have configured one.

The leftcert variable defines the nickname of the NSS database that you want to use.

3. Add the IP address of the network to the corresponding category. For example, if all nodes
reside in the 10.15.0.0/16 network, and all nodes must use IPsec encryption:

echo "10.15.0.0/16" >> /etc/ipsec.d/policies/private

4. To allow certain nodes, for example, 10.15.34.0/24, to work with and without IPsec, add
those nodes to the private-or-clear group:

echo "10.15.34.0/24" >> /etc/ipsec.d/policies/private-or-clear

5. To define a host, for example, 10.15.1.2, which is not capable of IPsec into the clear group,
use:

echo "10.15.1.2/32" >> /etc/ipsec.d/policies/clear

You can create the files in the /etc/ipsec.d/policies directory from a template for each
new node, or you can provision them by using Puppet or Ansible.

Note that every node has the same list of exceptions or different traffic flow expectations.
Two nodes, therefore, might not be able to communicate because one requires IPsec and
the other cannot use IPsec.

6. Restart the node to add it to the configured mesh:

systemctl restart ipsec

Verification

1. Open an IPsec tunnel by using the ping command:

ping <nodeYYY>

2. Display the NSS database with the imported certification:

certutil -L -d sql:/etc/ipsec.d

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

west u,u,u
ca CT,,

3. See which tunnels are open on the node:

CHAPTER 5. SETTING UP AN IPSEC VPN

55

ipsec trafficstatus
006 #2: "private#10.15.0.0/16"[1] ...<nodeYYY>, type=ESP, add_time=1691399301,
inBytes=512, outBytes=512, maxBytes=2^63B, id='C=US, ST=NC, O=Example
Organization, CN=east'

Additional resources

ipsec.conf(5) man page.

For more information about the authby variable, see 6.2. Authentication methods in Libreswan .

5.8. DEPLOYING A FIPS-COMPLIANT IPSEC VPN

You can deploy a FIPS-compliant IPsec VPN solution with Libreswan. To do so, you can identify which
cryptographic algorithms are available and which are disabled for Libreswan in FIPS mode.

Prerequisites

The AppStream repository is enabled.

Procedure

1. Install the libreswan packages:

yum install libreswan

2. If you are re-installing Libreswan, remove its old NSS database:

systemctl stop ipsec
rm /etc/ipsec.d/*db

3. Start the ipsec service, and enable the service to be started automatically on boot:

systemctl enable ipsec --now

4. Configure the firewall to allow 500 and 4500 UDP ports for the IKE, ESP, and AH protocols by
adding the ipsec service:

firewall-cmd --add-service="ipsec"
firewall-cmd --runtime-to-permanent

5. Switch the system to FIPS mode:

fips-mode-setup --enable

6. Restart your system to allow the kernel to switch to FIPS mode:

reboot

Verification

Red Hat Enterprise Linux 8 Securing networks

56

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/configuring-a-vpn-with-ipsec_securing-networks#con_authentication-methods-in-libreswan_configuring-a-vpn-with-ipsec

1. Confirm Libreswan is running in FIPS mode:

ipsec whack --fipsstatus
000 FIPS mode enabled

2. Alternatively, check entries for the ipsec unit in the systemd journal:

$ journalctl -u ipsec
...
Jan 22 11:26:50 localhost.localdomain pluto[3076]: FIPS Product: YES
Jan 22 11:26:50 localhost.localdomain pluto[3076]: FIPS Kernel: YES
Jan 22 11:26:50 localhost.localdomain pluto[3076]: FIPS Mode: YES

3. To see the available algorithms in FIPS mode:

ipsec pluto --selftest 2>&1 | head -11
FIPS Product: YES
FIPS Kernel: YES
FIPS Mode: YES
NSS DB directory: sql:/etc/ipsec.d
Initializing NSS
Opening NSS database "sql:/etc/ipsec.d" read-only
NSS initialized
NSS crypto library initialized
FIPS HMAC integrity support [enabled]
FIPS mode enabled for pluto daemon
NSS library is running in FIPS mode
FIPS HMAC integrity verification self-test passed

4. To query disabled algorithms in FIPS mode:

ipsec pluto --selftest 2>&1 | grep disabled
Encryption algorithm CAMELLIA_CTR disabled; not FIPS compliant
Encryption algorithm CAMELLIA_CBC disabled; not FIPS compliant
Encryption algorithm SERPENT_CBC disabled; not FIPS compliant
Encryption algorithm TWOFISH_CBC disabled; not FIPS compliant
Encryption algorithm TWOFISH_SSH disabled; not FIPS compliant
Encryption algorithm NULL disabled; not FIPS compliant
Encryption algorithm CHACHA20_POLY1305 disabled; not FIPS compliant
Hash algorithm MD5 disabled; not FIPS compliant
PRF algorithm HMAC_MD5 disabled; not FIPS compliant
PRF algorithm AES_XCBC disabled; not FIPS compliant
Integrity algorithm HMAC_MD5_96 disabled; not FIPS compliant
Integrity algorithm HMAC_SHA2_256_TRUNCBUG disabled; not FIPS compliant
Integrity algorithm AES_XCBC_96 disabled; not FIPS compliant
DH algorithm MODP1024 disabled; not FIPS compliant
DH algorithm MODP1536 disabled; not FIPS compliant
DH algorithm DH31 disabled; not FIPS compliant

5. To list all allowed algorithms and ciphers in FIPS mode:

ipsec pluto --selftest 2>&1 | grep ESP | grep FIPS | sed "s/^.*FIPS//"
{256,192,*128} aes_ccm, aes_ccm_c
{256,192,*128} aes_ccm_b

CHAPTER 5. SETTING UP AN IPSEC VPN

57

{256,192,*128} aes_ccm_a
[*192] 3des
{256,192,*128} aes_gcm, aes_gcm_c
{256,192,*128} aes_gcm_b
{256,192,*128} aes_gcm_a
{256,192,*128} aesctr
{256,192,*128} aes
{256,192,*128} aes_gmac
sha, sha1, sha1_96, hmac_sha1
sha512, sha2_512, sha2_512_256, hmac_sha2_512
sha384, sha2_384, sha2_384_192, hmac_sha2_384
sha2, sha256, sha2_256, sha2_256_128, hmac_sha2_256
aes_cmac
null
null, dh0
dh14
dh15
dh16
dh17
dh18
ecp_256, ecp256
ecp_384, ecp384
ecp_521, ecp521

Additional resources

Using system-wide cryptographic policies .

5.9. PROTECTING THE IPSEC NSS DATABASE BY A PASSWORD

By default, the IPsec service creates its Network Security Services (NSS) database with an empty
password during the first start. To enhance security, you can add password protection.

NOTE

In the previous releases of RHEL up to version 6.6, you had to protect the IPsec NSS
database with a password to meet the FIPS 140-2 requirements because the NSS
cryptographic libraries were certified for the FIPS 140-2 Level 2 standard. In RHEL 8,
NIST certified NSS to Level 1 of this standard, and this status does not require password
protection for the database.

Prerequisites

The /etc/ipsec.d/ directory contains NSS database files.

Procedure

1. Enable password protection for the NSS database for Libreswan:

certutil -N -d sql:/etc/ipsec.d
Enter Password or Pin for "NSS Certificate DB":
Enter a password which will be used to encrypt your keys.
The password should be at least 8 characters long,

Red Hat Enterprise Linux 8 Securing networks

58

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

and should contain at least one non-alphabetic character.

Enter new password:

2. Create the /etc/ipsec.d/nsspassword file that containins the password you have set in the
previous step, for example:

cat /etc/ipsec.d/nsspassword
NSS Certificate DB:_<password>_

The nsspassword file use the following syntax:

<token_1>:<password1>
<token_2>:<password2>

The default NSS software token is NSS Certificate DB. If your system is running in FIPS mode,
the name of the token is NSS FIPS 140-2 Certificate DB.

3. Depending on your scenario, either start or restart the ipsec service after you finish the
nsspassword file:

systemctl restart ipsec

Verification

1. Check that the ipsec service is running after you have added a non-empty password to its NSS
database:

systemctl status ipsec
● ipsec.service - Internet Key Exchange (IKE) Protocol Daemon for IPsec
 Loaded: loaded (/usr/lib/systemd/system/ipsec.service; enabled; vendor preset: disable>
 Active: active (running)...

Verification

Check that the Journal log contains entries that confirm a successful initialization:

journalctl -u ipsec
...
pluto[6214]: Initializing NSS using read-write database "sql:/etc/ipsec.d"
pluto[6214]: NSS Password from file "/etc/ipsec.d/nsspassword" for token "NSS Certificate
DB" with length 20 passed to NSS
pluto[6214]: NSS crypto library initialized
...

Additional resources

certutil(1) man page.

FIPS 140-2 and FIPS 140-3 in the Compliance Activities and Government Standards
Knowledgebase article.

CHAPTER 5. SETTING UP AN IPSEC VPN

59

https://access.redhat.com/articles/2918071#fips-140-2-and-fips-140-3-2

5.10. CONFIGURING AN IPSEC VPN TO USE TCP

Libreswan supports TCP encapsulation of IKE and IPsec packets as described in RFC 8229. With this
feature, you can establish IPsec VPNs on networks that prevent traffic transmitted via UDP and
Encapsulating Security Payload (ESP). You can configure VPN servers and clients to use TCP either as a
fallback or as the main VPN transport protocol. Because TCP encapsulation has bigger performance
costs, use TCP as the main VPN protocol only if UDP is permanently blocked in your scenario.

Prerequisites

A remote-access VPN is already configured.

Procedure

1. Add the following option to the /etc/ipsec.conf file in the config setup section:

listen-tcp=yes

2. To use TCP encapsulation as a fallback option when the first attempt over UDP fails, add the
following two options to the client’s connection definition:

enable-tcp=fallback
tcp-remoteport=4500

Alternatively, if you know that UDP is permanently blocked, use the following options in the
client’s connection configuration:

enable-tcp=yes
tcp-remoteport=4500

Additional resources

IETF RFC 8229: TCP Encapsulation of IKE and IPsec Packets .

5.11. CONFIGURING AUTOMATIC DETECTION AND USAGE OF ESP
HARDWARE OFFLOAD TO ACCELERATE AN IPSEC CONNECTION

Offloading Encapsulating Security Payload (ESP) to the hardware accelerates IPsec connections over
Ethernet. By default, Libreswan detects if hardware supports this feature and, as a result, enables ESP
hardware offload. In case that the feature was disabled or explicitly enabled, you can switch back to
automatic detection.

Prerequisites

The network card supports ESP hardware offload.

The network driver supports ESP hardware offload.

The IPsec connection is configured and works.

Procedure

1. Edit the Libreswan configuration file in the /etc/ipsec.d/ directory of the connection that should

Red Hat Enterprise Linux 8 Securing networks

60

https://tools.ietf.org/html/rfc8229

1. Edit the Libreswan configuration file in the /etc/ipsec.d/ directory of the connection that should
use automatic detection of ESP hardware offload support.

2. Ensure the nic-offload parameter is not set in the connection’s settings.

3. If you removed nic-offload, restart the ipsec service:

systemctl restart ipsec

Verification

1. Display the tx_ipsec and rx_ipsec counters of the Ethernet device the IPsec connection uses:

ethtool -S enp1s0 | egrep "_ipsec"
 tx_ipsec: 10
 rx_ipsec: 10

2. Send traffic through the IPsec tunnel. For example, ping a remote IP address:

ping -c 5 remote_ip_address

3. Display the tx_ipsec and rx_ipsec counters of the Ethernet device again:

ethtool -S enp1s0 | egrep "_ipsec"
 tx_ipsec: 15
 rx_ipsec: 15

If the counter values have increased, ESP hardware offload works.

Additional resources

Configuring a VPN with IPsec

5.12. CONFIGURING ESP HARDWARE OFFLOAD ON A BOND TO
ACCELERATE AN IPSEC CONNECTION

Offloading Encapsulating Security Payload (ESP) to the hardware accelerates IPsec connections. If you
use a network bond for fail-over reasons, the requirements and the procedure to configure ESP
hardware offload are different from those using a regular Ethernet device. For example, in this scenario,
you enable the offload support on the bond, and the kernel applies the settings to the ports of the bond.

Prerequisites

All network cards in the bond support ESP hardware offload.

The network driver supports ESP hardware offload on a bond device. In RHEL, only the ixgbe
driver supports this feature.

The bond is configured and works.

The bond uses the active-backup mode. The bonding driver does not support any other modes
for this feature.

The IPsec connection is configured and works.

CHAPTER 5. SETTING UP AN IPSEC VPN

61

Procedure

1. Enable ESP hardware offload support on the network bond:

nmcli connection modify bond0 ethtool.feature-esp-hw-offload on

This command enables ESP hardware offload support on the bond0 connection.

2. Reactivate the bond0 connection:

nmcli connection up bond0

3. Edit the Libreswan configuration file in the /etc/ipsec.d/ directory of the connection that should
use ESP hardware offload, and append the nic-offload=yes statement to the connection entry:

conn example
 ...
 nic-offload=yes

4. Restart the ipsec service:

systemctl restart ipsec

Verification

1. Display the active port of the bond:

grep "Currently Active Slave" /proc/net/bonding/bond0
Currently Active Slave: enp1s0

2. Display the tx_ipsec and rx_ipsec counters of the active port:

ethtool -S enp1s0 | egrep "_ipsec"
 tx_ipsec: 10
 rx_ipsec: 10

3. Send traffic through the IPsec tunnel. For example, ping a remote IP address:

ping -c 5 remote_ip_address

4. Display the tx_ipsec and rx_ipsec counters of the active port again:

ethtool -S enp1s0 | egrep "_ipsec"
 tx_ipsec: 15
 rx_ipsec: 15

If the counter values have increased, ESP hardware offload works.

Additional resources

Configuring a network bond

Configuring a VPN with IPsec

Red Hat Enterprise Linux 8 Securing networks

62

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-network-bonding_configuring-and-managing-networking

5.13. CONFIGURING VPN CONNECTIONS WITH IPSEC BY USING THE
RHEL SYSTEM ROLE

With the vpn system role, you can configure VPN connections on RHEL systems by using Red Hat
Ansible Automation Platform. You can use it to set up host-to-host, network-to-network, VPN Remote
Access Server, and mesh configurations.

For host-to-host connections, the role sets up a VPN tunnel between each pair of hosts in the list of
vpn_connections using the default parameters, including generating keys as needed. Alternatively, you
can configure it to create an opportunistic mesh configuration between all hosts listed. The role assumes
that the names of the hosts under hosts are the same as the names of the hosts used in the Ansible
inventory, and that you can use those names to configure the tunnels.

NOTE

The vpn RHEL system role currently supports only Libreswan, which is an IPsec
implementation, as the VPN provider.

5.13.1. Creating a host-to-host VPN with IPsec by using the vpn RHEL system role

You can use the vpn system role to configure host-to-host connections by running an Ansible playbook
on the control node, which configures all managed nodes listed in an inventory file.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

This playbook configures the connection managed-node-01.example.com-to-managed-node-
02.example.com by using pre-shared key authentication with keys auto-generated by the
system role. Because vpn_manage_firewall and vpn_manage_selinux are both set to true,
the vpn role uses the firewall and selinux roles to manage the ports used by the vpn role.

To configure connections from managed hosts to external hosts that are not listed in the
inventory file, add the following section to the vpn_connections list of hosts:

- name: Host to host VPN
 hosts: managed-node-01.example.com, managed-node-02.example.com
 roles:
 - rhel-system-roles.vpn
 vars:
 vpn_connections:
 - hosts:
 managed-node-01.example.com:
 managed-node-02.example.com:
 vpn_manage_firewall: true
 vpn_manage_selinux: true

CHAPTER 5. SETTING UP AN IPSEC VPN

63

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

This configures one additional connection: managed-node-01.example.com-
to-<external_node>

NOTE

The connections are configured only on the managed nodes and not on the
external node.

2. Optional: You can specify multiple VPN connections for the managed nodes by using additional
sections within vpn_connections, for example, a control plane and a data plane:

3. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

4. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. On the managed nodes, confirm that the connection is successfully loaded:

ipsec status | grep <connection_name>

 vpn_connections:
 - hosts:
 managed-node-01.example.com:
 <external_node>:
 hostname: <IP_address_or_hostname>

- name: Multiple VPN
 hosts: managed-node-01.example.com, managed-node-02.example.com
 roles:
 - rhel-system-roles.vpn
 vars:
 vpn_connections:
 - name: control_plane_vpn
 hosts:
 managed-node-01.example.com:
 hostname: 192.0.2.0 # IP for the control plane
 managed-node-02.example.com:
 hostname: 192.0.2.1
 - name: data_plane_vpn
 hosts:
 managed-node-01.example.com:
 hostname: 10.0.0.1 # IP for the data plane
 managed-node-02.example.com:
 hostname: 10.0.0.2

Red Hat Enterprise Linux 8 Securing networks

64

Replace <connection_name> with the name of the connection from this node, for example
managed_node1-to-managed_node2.

NOTE

By default, the role generates a descriptive name for each connection it creates
from the perspective of each system. For example, when creating a connection
between managed_node1 and managed_node2, the descriptive name of this
connection on managed_node1 is managed_node1-to-managed_node2 but
on managed_node2 the connection is named managed_node2-to-
managed_node1.

2. On the managed nodes, confirm that the connection is successfully started:

ipsec trafficstatus | grep <connection_name>

3. Optional: If a connection does not successfully load, manually add the connection by entering
the following command. This provides more specific information indicating why the connection
failed to establish:

ipsec auto --add <connection_name>

NOTE

Any errors that may occur during the process of loading and starting the
connection are reported in the /var/log/pluto.log file. Because these logs are
hard to parse, manually add the connection to obtain log messages from the
standard output instead.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.vpn/README.md file

/usr/share/doc/rhel-system-roles/vpn/ directory

5.13.2. Creating an opportunistic mesh VPN connection with IPsec by using the vpn

RHEL system role

You can use the vpn system role to configure an opportunistic mesh VPN connection that uses
certificates for authentication by running an Ansible playbook on the control node, which will configure
all the managed nodes listed in an inventory file.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The IPsec Network Security Services (NSS) crypto library in the /etc/ipsec.d/ directory contains
the necessary certificates.

CHAPTER 5. SETTING UP AN IPSEC VPN

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Authentication with certificates is configured by defining the auth_method: cert parameter in
the playbook. By default, the node name is used as the certificate nickname. In this example, this
is managed-node-01.example.com. You can define different certificate names by using the
cert_name attribute in your inventory.

In this example procedure, the control node, which is the system from which you will run the
Ansible playbook, shares the same classless inter-domain routing (CIDR) number as both of the
managed nodes (192.0.2.0/24) and has the IP address 192.0.2.7. Therefore, the control node
falls under the private policy which is automatically created for CIDR 192.0.2.0/24.

To prevent SSH connection loss during the play, a clear policy for the control node is included in
the list of policies. Note that there is also an item in the policies list where the CIDR is equal to
default. This is because this playbook overrides the rule from the default policy to make it
private instead of private-or-clear.

Because vpn_manage_firewall and vpn_manage_selinux are both set to true, the vpn role
uses the firewall and selinux roles to manage the ports used by the vpn role.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

- name: Mesh VPN
 hosts: managed-node-01.example.com, managed-node-02.example.com, managed-node-
03.example.com
 roles:
 - rhel-system-roles.vpn
 vars:
 vpn_connections:
 - opportunistic: true
 auth_method: cert
 policies:
 - policy: private
 cidr: default
 - policy: private-or-clear
 cidr: 198.51.100.0/24
 - policy: private
 cidr: 192.0.2.0/24
 - policy: clear
 cidr: 192.0.2.7/32
 vpn_manage_firewall: true
 vpn_manage_selinux: true

Red Hat Enterprise Linux 8 Securing networks

66

/usr/share/ansible/roles/rhel-system-roles.vpn/README.md file

/usr/share/doc/rhel-system-roles/vpn/ directory

5.14. CONFIGURING IPSEC CONNECTIONS THAT OPT OUT OF THE
SYSTEM-WIDE CRYPTO POLICIES

Overriding system-wide crypto-policies for a connection

The RHEL system-wide cryptographic policies create a special connection called %default. This
connection contains the default values for the ikev2, esp, and ike options. However, you can override
the default values by specifying the mentioned option in the connection configuration file.

For example, the following configuration allows connections that use IKEv1 with AES and SHA-1 or SHA-
2, and IPsec (ESP) with either AES-GCM or AES-CBC:

conn MyExample
 ...
 ikev2=never
 ike=aes-sha2,aes-sha1;modp2048
 esp=aes_gcm,aes-sha2,aes-sha1
 ...

Note that AES-GCM is available for IPsec (ESP) and for IKEv2, but not for IKEv1.

Disabling system-wide crypto policies for all connections

To disable system-wide crypto policies for all IPsec connections, comment out the following line in the
/etc/ipsec.conf file:

include /etc/crypto-policies/back-ends/libreswan.config

Then add the ikev2=never option to your connection configuration file.

Additional resources

Using system-wide cryptographic policies .

5.15. TROUBLESHOOTING IPSEC VPN CONFIGURATIONS

Problems related to IPsec VPN configurations most commonly occur due to several main reasons. If you
are encountering such problems, you can check if the cause of the problem corresponds to any of the
following scenarios, and apply the corresponding solution.

Basic connection troubleshooting

Most problems with VPN connections occur in new deployments, where administrators configured
endpoints with mismatched configuration options. Also, a working configuration can suddenly stop
working, often due to newly introduced incompatible values. This could be the result of an administrator
changing the configuration. Alternatively, an administrator may have installed a firmware update or a
package update with different default values for certain options, such as encryption algorithms.

To confirm that an IPsec VPN connection is established:

CHAPTER 5. SETTING UP AN IPSEC VPN

67

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

ipsec trafficstatus
006 #8: "vpn.example.com"[1] 192.0.2.1, type=ESP, add_time=1595296930, inBytes=5999,
outBytes=3231, id='@vpn.example.com', lease=100.64.13.5/32

If the output is empty or does not show an entry with the connection name, the tunnel is broken.

To check that the problem is in the connection:

1. Reload the vpn.example.com connection:

ipsec auto --add vpn.example.com
002 added connection description "vpn.example.com"

2. Next, initiate the VPN connection:

ipsec auto --up vpn.example.com

Firewall-related problems

The most common problem is that a firewall on one of the IPsec endpoints or on a router between the
endpoints is dropping all Internet Key Exchange (IKE) packets.

For IKEv2, an output similar to the following example indicates a problem with a firewall:

ipsec auto --up vpn.example.com
181 "vpn.example.com"[1] 192.0.2.2 #15: initiating IKEv2 IKE SA
181 "vpn.example.com"[1] 192.0.2.2 #15: STATE_PARENT_I1: sent v2I1, expected v2R1
010 "vpn.example.com"[1] 192.0.2.2 #15: STATE_PARENT_I1: retransmission; will wait 0.5
seconds for response
010 "vpn.example.com"[1] 192.0.2.2 #15: STATE_PARENT_I1: retransmission; will wait 1
seconds for response
010 "vpn.example.com"[1] 192.0.2.2 #15: STATE_PARENT_I1: retransmission; will wait 2
seconds for
...

For IKEv1, the output of the initiating command looks like:

ipsec auto --up vpn.example.com
002 "vpn.example.com" #9: initiating Main Mode
102 "vpn.example.com" #9: STATE_MAIN_I1: sent MI1, expecting MR1
010 "vpn.example.com" #9: STATE_MAIN_I1: retransmission; will wait 0.5 seconds for
response
010 "vpn.example.com" #9: STATE_MAIN_I1: retransmission; will wait 1 seconds for
response
010 "vpn.example.com" #9: STATE_MAIN_I1: retransmission; will wait 2 seconds for
response
...

Because the IKE protocol, which is used to set up IPsec, is encrypted, you can troubleshoot only a limited
subset of problems using the tcpdump tool. If a firewall is dropping IKE or IPsec packets, you can try to
find the cause using the tcpdump utility. However, tcpdump cannot diagnose other problems with IPsec
VPN connections.

To capture the negotiation of the VPN and all encrypted data on the eth0 interface:

Red Hat Enterprise Linux 8 Securing networks

68

tcpdump -i eth0 -n -n esp or udp port 500 or udp port 4500 or tcp port 4500

Mismatched algorithms, protocols, and policies

VPN connections require that the endpoints have matching IKE algorithms, IPsec algorithms, and IP
address ranges. If a mismatch occurs, the connection fails. If you identify a mismatch by using one of the
following methods, fix it by aligning algorithms, protocols, or policies.

If the remote endpoint is not running IKE/IPsec, you can see an ICMP packet indicating it. For
example:

ipsec auto --up vpn.example.com
...
000 "vpn.example.com"[1] 192.0.2.2 #16: ERROR: asynchronous network error report on
wlp2s0 (192.0.2.2:500), complainant 198.51.100.1: Connection refused [errno 111, origin
ICMP type 3 code 3 (not authenticated)]
...

Example of mismatched IKE algorithms:

ipsec auto --up vpn.example.com
...
003 "vpn.example.com"[1] 193.110.157.148 #3: dropping unexpected IKE_SA_INIT message
containing NO_PROPOSAL_CHOSEN notification; message payloads: N; missing payloads:
SA,KE,Ni

Example of mismatched IPsec algorithms:

ipsec auto --up vpn.example.com
...
182 "vpn.example.com"[1] 193.110.157.148 #5: STATE_PARENT_I2: sent v2I2, expected
v2R2 {auth=IKEv2 cipher=AES_GCM_16_256 integ=n/a prf=HMAC_SHA2_256
group=MODP2048}
002 "vpn.example.com"[1] 193.110.157.148 #6: IKE_AUTH response contained the error
notification NO_PROPOSAL_CHOSEN

A mismatched IKE version could also result in the remote endpoint dropping the request
without a response. This looks identical to a firewall dropping all IKE packets.

Example of mismatched IP address ranges for IKEv2 (called Traffic Selectors - TS):

ipsec auto --up vpn.example.com
...
1v2 "vpn.example.com" #1: STATE_PARENT_I2: sent v2I2, expected v2R2 {auth=IKEv2
cipher=AES_GCM_16_256 integ=n/a prf=HMAC_SHA2_512 group=MODP2048}
002 "vpn.example.com" #2: IKE_AUTH response contained the error notification
TS_UNACCEPTABLE

Example of mismatched IP address ranges for IKEv1:

ipsec auto --up vpn.example.com
...
031 "vpn.example.com" #2: STATE_QUICK_I1: 60 second timeout exceeded after 0
retransmits. No acceptable response to our first Quick Mode message: perhaps peer likes
no proposal

CHAPTER 5. SETTING UP AN IPSEC VPN

69

When using PreSharedKeys (PSK) in IKEv1, if both sides do not put in the same PSK, the entire
IKE message becomes unreadable:

ipsec auto --up vpn.example.com
...
003 "vpn.example.com" #1: received Hash Payload does not match computed value
223 "vpn.example.com" #1: sending notification INVALID_HASH_INFORMATION to
192.0.2.23:500

In IKEv2, the mismatched-PSK error results in an AUTHENTICATION_FAILED message:

ipsec auto --up vpn.example.com
...
002 "vpn.example.com" #1: IKE SA authentication request rejected by peer:
AUTHENTICATION_FAILED

Maximum transmission unit

Other than firewalls blocking IKE or IPsec packets, the most common cause of networking problems
relates to an increased packet size of encrypted packets. Network hardware fragments packets larger
than the maximum transmission unit (MTU), for example, 1500 bytes. Often, the fragments are lost and
the packets fail to re-assemble. This leads to intermittent failures, when a ping test, which uses small-
sized packets, works but other traffic fails. In this case, you can establish an SSH session but the terminal
freezes as soon as you use it, for example, by entering the 'ls -al /usr' command on the remote host.

To work around the problem, reduce MTU size by adding the mtu=1400 option to the tunnel
configuration file.

Alternatively, for TCP connections, enable an iptables rule that changes the MSS value:

iptables -I FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu

If the previous command does not solve the problem in your scenario, directly specify a lower size in the
set-mss parameter:

iptables -I FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --set-mss 1380

Network address translation (NAT)

When an IPsec host also serves as a NAT router, it could accidentally remap packets. The following
example configuration demonstrates the problem:

conn myvpn
 left=172.16.0.1
 leftsubnet=10.0.2.0/24
 right=172.16.0.2
 rightsubnet=192.168.0.0/16
…

The system with address 172.16.0.1 have a NAT rule:

iptables -t nat -I POSTROUTING -o eth0 -j MASQUERADE

Red Hat Enterprise Linux 8 Securing networks

70

If the system on address 10.0.2.33 sends a packet to 192.168.0.1, then the router translates the source
10.0.2.33 to 172.16.0.1 before it applies the IPsec encryption.

Then, the packet with the source address 10.0.2.33 no longer matches the conn myvpn configuration,
and IPsec does not encrypt this packet.

To solve this problem, insert rules that exclude NAT for target IPsec subnet ranges on the router, in this
example:

iptables -t nat -I POSTROUTING -s 10.0.2.0/24 -d 192.168.0.0/16 -j RETURN

Kernel IPsec subsystem bugs

The kernel IPsec subsystem might fail, for example, when a bug causes a desynchronizing of the IKE user
space and the IPsec kernel. To check for such problems:

$ cat /proc/net/xfrm_stat
XfrmInError 0
XfrmInBufferError 0
...

Any non-zero value in the output of the previous command indicates a problem. If you encounter this
problem, open a new support case, and attach the output of the previous command along with the
corresponding IKE logs.

Libreswan logs

Libreswan logs using the syslog protocol by default. You can use the journalctl command to find log
entries related to IPsec. Because the corresponding entries to the log are sent by the pluto IKE daemon,
search for the “pluto” keyword, for example:

$ journalctl -b | grep pluto

To show a live log for the ipsec service:

$ journalctl -f -u ipsec

If the default level of logging does not reveal your configuration problem, enable debug logs by adding
the plutodebug=all option to the config setup section in the /etc/ipsec.conf file.

Note that debug logging produces a lot of entries, and it is possible that either the journald or syslogd
service rate-limits the syslog messages. To ensure you have complete logs, redirect the logging to a
file. Edit the /etc/ipsec.conf, and add the logfile=/var/log/pluto.log in the config setup section.

Additional resources

Troubleshooting problems by using log files .

tcpdump(8) and ipsec.conf(5) man pages.

Using and configuring firewalld

5.16. CONFIGURING A VPN CONNECTION WITH CONTROL-CENTER

If you use Red Hat Enterprise Linux with a graphical interface, you can configure a VPN connection in

CHAPTER 5. SETTING UP AN IPSEC VPN

71

https://access.redhat.com/support
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/assembly_troubleshooting-problems-using-log-files_configuring-basic-system-settings
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/using-and-configuring-firewalld_securing-networks

If you use Red Hat Enterprise Linux with a graphical interface, you can configure a VPN connection in
the GNOME control-center.

Prerequisites

The NetworkManager-libreswan-gnome package is installed.

Procedure

1. Press the Super key, type Settings, and press Enter to open the control-center application.

2. Select the Network entry on the left.

3. Click the + icon.

4. Select VPN.

5. Select the Identity menu entry to see the basic configuration options:
General

Gateway — The name or IP address of the remote VPN gateway.

Authentication

Type

IKEv2 (Certificate)- client is authenticated by certificate. It is more secure (default).

IKEv1 (XAUTH) - client is authenticated by user name and password, or a pre-shared key
(PSK).
The following configuration settings are available under the Advanced section:

Figure 5.1. Advanced options of a VPN connection

Red Hat Enterprise Linux 8 Securing networks

72

Figure 5.1. Advanced options of a VPN connection

CHAPTER 5. SETTING UP AN IPSEC VPN

73

WARNING

When configuring an IPsec-based VPN connection using the gnome-
control-center application, the Advanced dialog displays the
configuration, but it does not allow any changes. As a consequence,
users cannot change any advanced IPsec options. Use the nm-
connection-editor or nmcli tools instead to perform configuration of
the advanced properties.

Identification

Domain — If required, enter the Domain Name.
Security

Phase1 Algorithms — corresponds to the ike Libreswan parameter — enter the algorithms
to be used to authenticate and set up an encrypted channel.

Phase2 Algorithms — corresponds to the esp Libreswan parameter — enter the algorithms
to be used for the IPsec negotiations.
Check the Disable PFS field to turn off Perfect Forward Secrecy (PFS) to ensure
compatibility with old servers that do not support PFS.

Phase1 Lifetime — corresponds to the ikelifetime Libreswan parameter — how long the key
used to encrypt the traffic will be valid.

Phase2 Lifetime — corresponds to the salifetime Libreswan parameter — how long a
particular instance of a connection should last before expiring.
Note that the encryption key should be changed from time to time for security reasons.

Remote network — corresponds to the rightsubnet Libreswan parameter — the destination
private remote network that should be reached through the VPN.
Check the narrowing field to enable narrowing. Note that it is only effective in IKEv2
negotiation.

Enable fragmentation — corresponds to the fragmentation Libreswan parameter —
whether or not to allow IKE fragmentation. Valid values are yes (default) or no.

Enable Mobike — corresponds to the mobike Libreswan parameter — whether to allow
Mobility and Multihoming Protocol (MOBIKE, RFC 4555) to enable a connection to migrate
its endpoint without needing to restart the connection from scratch. This is used on mobile
devices that switch between wired, wireless, or mobile data connections. The values are no
(default) or yes.

6. Select the IPv4 menu entry:
IPv4 Method

Automatic (DHCP) — Choose this option if the network you are connecting to uses a DHCP
server to assign dynamic IP addresses.

Link-Local Only — Choose this option if the network you are connecting to does not have a
DHCP server and you do not want to assign IP addresses manually. Random addresses will
be assigned as per RFC 3927 with prefix 169.254/16.

Red Hat Enterprise Linux 8 Securing networks

74

http://www.rfc-editor.org/info/rfc3927

Manual — Choose this option if you want to assign IP addresses manually.

Disable — IPv4 is disabled for this connection.
DNS

In the DNS section, when Automatic is ON, switch it to OFF to enter the IP address of a
DNS server you want to use separating the IPs by comma.

Routes

Note that in the Routes section, when Automatic is ON, routes from DHCP are used, but
you can also add additional static routes. When OFF, only static routes are used.

Address — Enter the IP address of a remote network or host.

Netmask — The netmask or prefix length of the IP address entered above.

Gateway — The IP address of the gateway leading to the remote network or host entered
above.

Metric — A network cost, a preference value to give to this route. Lower values will be
preferred over higher values.
Use this connection only for resources on its network

Select this check box to prevent the connection from becoming the default route. Selecting
this option means that only traffic specifically destined for routes learned automatically over
the connection or entered here manually is routed over the connection.

7. To configure IPv6 settings in a VPN connection, select the IPv6 menu entry:
IPv6 Method

Automatic — Choose this option to use IPv6 Stateless Address AutoConfiguration
(SLAAC) to create an automatic, stateless configuration based on the hardware address
and Router Advertisements (RA).

Automatic, DHCP only — Choose this option to not use RA, but request information from
DHCPv6 directly to create a stateful configuration.

Link-Local Only — Choose this option if the network you are connecting to does not have a
DHCP server and you do not want to assign IP addresses manually. Random addresses will
be assigned as per RFC 4862 with prefix FE80::0.

Manual — Choose this option if you want to assign IP addresses manually.

Disable — IPv6 is disabled for this connection.
Note that DNS, Routes, Use this connection only for resources on its network are
common to IPv4 settings.

8. Once you have finished editing the VPN connection, click the Add button to customize the
configuration or the Apply button to save it for the existing one.

9. Switch the profile to ON to active the VPN connection.

Additional resources

nm-settings-libreswan(5)

CHAPTER 5. SETTING UP AN IPSEC VPN

75

http://www.rfc-editor.org/info/rfc4862

5.17. CONFIGURING A VPN CONNECTION USING NM-CONNECTION-
EDITOR

If you use Red Hat Enterprise Linux with a graphical interface, you can configure a VPN connection in
the nm-connection-editor application.

Prerequisites

The NetworkManager-libreswan-gnome package is installed.

If you configure an Internet Key Exchange version 2 (IKEv2) connection:

The certificate is imported into the IPsec network security services (NSS) database.

The nickname of the certificate in the NSS database is known.

Procedure

1. Open a terminal, and enter:

$ nm-connection-editor

2. Click the + button to add a new connection.

3. Select the IPsec based VPN connection type, and click Create.

4. On the VPN tab:

a. Enter the host name or IP address of the VPN gateway into the Gateway field, and select
an authentication type. Based on the authentication type, you must enter different
additional information:

IKEv2 (Certifiate) authenticates the client by using a certificate, which is more secure.
This setting requires the nickname of the certificate in the IPsec NSS database

IKEv1 (XAUTH) authenticates the user by using a user name and password (pre-shared
key). This setting requires that you enter the following values:

User name

Password

Group name

Secret

b. If the remote server specifies a local identifier for the IKE exchange, enter the exact string
in the Remote ID field. In the remote server runs Libreswan, this value is set in the server’s
leftid parameter.

Red Hat Enterprise Linux 8 Securing networks

76

c. Optional: Configure additional settings by clicking the Advanced button. You can configure
the following settings:

Identification

Domain — If required, enter the domain name.

Security

Phase1 Algorithms corresponds to the ike Libreswan parameter. Enter the
algorithms to be used to authenticate and set up an encrypted channel.

Phase2 Algorithms corresponds to the esp Libreswan parameter. Enter the
algorithms to be used for the IPsec negotiations.
Check the Disable PFS field to turn off Perfect Forward Secrecy (PFS) to ensure
compatibility with old servers that do not support PFS.

Phase1 Lifetime corresponds to the ikelifetime Libreswan parameter. This
parameter defines how long the key used to encrypt the traffic is valid.

Phase2 Lifetime corresponds to the salifetime Libreswan parameter. This
parameter defines how long a security association is valid.

Connectivity

Remote network corresponds to the rightsubnet Libreswan parameter and

CHAPTER 5. SETTING UP AN IPSEC VPN

77

Remote network corresponds to the rightsubnet Libreswan parameter and
defines the destination private remote network that should be reached through the
VPN.
Check the narrowing field to enable narrowing. Note that it is only effective in the
IKEv2 negotiation.

Enable fragmentation corresponds to the fragmentation Libreswan parameter
and defines whether or not to allow IKE fragmentation. Valid values are yes
(default) or no.

Enable Mobike corresponds to the mobike Libreswan parameter. The parameter
defines whether to allow Mobility and Multihoming Protocol (MOBIKE) (RFC 4555)
to enable a connection to migrate its endpoint without needing to restart the
connection from scratch. This is used on mobile devices that switch between wired,
wireless or mobile data connections. The values are no (default) or yes.

5. On the IPv4 Settings tab, select the IP assignment method and, optionally, set additional static
addresses, DNS servers, search domains, and routes.

6. Save the connection.

7. Close nm-connection-editor.

NOTE

When you add a new connection by clicking the + button, NetworkManager creates a new
configuration file for that connection and then opens the same dialog that is used for
editing an existing connection. The difference between these dialogs is that an existing
connection profile has a Details menu entry.

Additional resources

nm-settings-libreswan(5) man page

Red Hat Enterprise Linux 8 Securing networks

78

5.18. ADDITIONAL RESOURCES

ipsec(8), ipsec.conf(5), ipsec.secrets(5), ipsec_auto(8), and ipsec_rsasigkey(8) man pages.

/usr/share/doc/libreswan-version/ directory.

The Libreswan Project Wiki .

All Libreswan man pages .

NIST Special Publication 800-77: Guide to IPsec VPNs .

CHAPTER 5. SETTING UP AN IPSEC VPN

79

https://libreswan.org/wiki
https://libreswan.org/man/
https://doi.org/10.6028/NIST.SP.800-77r1

CHAPTER 6. USING MACSEC TO ENCRYPT LAYER-2 TRAFFIC
IN THE SAME PHYSICAL NETWORK

You can use MACsec to secure the communication between two devices (point-to-point). For example,
your branch office is connected over a Metro-Ethernet connection with the central office, you can
configure MACsec on the two hosts that connect the offices to increase the security.

Media Access Control security (MACsec) is a layer 2 protocol that secures different traffic types over
the Ethernet links including:

dynamic host configuration protocol (DHCP)

address resolution protocol (ARP)

Internet Protocol version 4 / 6 (IPv4 / IPv6) and

any traffic over IP such as TCP or UDP

MACsec encrypts and authenticates all traffic in LANs, by default with the GCM-AES-128 algorithm, and
uses a pre-shared key to establish the connection between the participant hosts. If you want to change
the pre-shared key, you need to update the NM configuration on all hosts in the network that uses
MACsec.

A MACsec connection uses an Ethernet device, such as an Ethernet network card, VLAN, or tunnel
device, as parent. You can either set an IP configuration only on the MACsec device to communicate
with other hosts only using the encrypted connection, or you can also set an IP configuration on the
parent device. In the latter case, you can use the parent device to communicate with other hosts using an
unencrypted connection and the MACsec device for encrypted connections.

MACsec does not require any special hardware. For example, you can use any switch, except if you want
to encrypt traffic only between a host and a switch. In this scenario, the switch must also support
MACsec.

In other words, there are 2 common methods to configure MACsec;

host to host and

host to switch then switch to other host(s)

IMPORTANT

You can use MACsec only between hosts that are in the same (physical or virtual) LAN.

6.1. CONFIGURING A MACSEC CONNECTION BY USING NMCLI

You can configure Ethernet interfaces to use MACsec using the nmcli utility. For example, you can
create a MACsec connection between two hosts that are connected over Ethernet.

Procedure

1. On the first host on which you configure MACsec:

Create the connectivity association key (CAK) and connectivity-association key name
(CKN) for the pre-shared key:

Red Hat Enterprise Linux 8 Securing networks

80

a. Create a 16-byte hexadecimal CAK:

dd if=/dev/urandom count=16 bs=1 2> /dev/null | hexdump -e '1/2 "%04x"'
50b71a8ef0bd5751ea76de6d6c98c03a

b. Create a 32-byte hexadecimal CKN:

dd if=/dev/urandom count=32 bs=1 2> /dev/null | hexdump -e '1/2 "%04x"'
f2b4297d39da7330910a74abc0449feb45b5c0b9fc23df1430e1898fcf1c4550

2. On both hosts you want to connect over a MACsec connection:

3. Create the MACsec connection:

nmcli connection add type macsec con-name macsec0 ifname macsec0
connection.autoconnect yes macsec.parent enp1s0 macsec.mode psk macsec.mka-
cak 50b71a8ef0bd5751ea76de6d6c98c03a macsec.mka-ckn
f2b4297d39da7330910a74abc0449feb45b5c0b9fc23df1430e1898fcf1c4550

Use the CAK and CKN generated in the previous step in the macsec.mka-cak and
macsec.mka-ckn parameters. The values must be the same on every host in the MACsec-
protected network.

4. Configure the IP settings on the MACsec connection.

a. Configure the IPv4 settings. For example, to set a static IPv4 address, network mask,
default gateway, and DNS server to the macsec0 connection, enter:

nmcli connection modify macsec0 ipv4.method manual ipv4.addresses
'192.0.2.1/24' ipv4.gateway '192.0.2.254' ipv4.dns '192.0.2.253'

b. Configure the IPv6 settings. For example, to set a static IPv6 address, network mask,
default gateway, and DNS server to the macsec0 connection, enter:

nmcli connection modify macsec0 ipv6.method manual ipv6.addresses
'2001:db8:1::1/32' ipv6.gateway '2001:db8:1::fffe' ipv6.dns '2001:db8:1::fffd'

5. Activate the connection:

nmcli connection up macsec0

Verification

1. Verify that the traffic is encrypted:

tcpdump -nn -i enp1s0

2. Optional: Display the unencrypted traffic:

tcpdump -nn -i macsec0

3. Display MACsec statistics:

CHAPTER 6. USING MACSEC TO ENCRYPT LAYER-2 TRAFFIC IN THE SAME PHYSICAL NETWORK

81

ip macsec show

4. Display individual counters for each type of protection: integrity-only (encrypt off) and
encryption (encrypt on)

ip -s macsec show

6.2. ADDITIONAL RESOURCES

MACsec: a different solution to encrypt network traffic blog.

Red Hat Enterprise Linux 8 Securing networks

82

https://developers.redhat.com/blog/2016/10/14/macsec-a-different-solution-to-encrypt-network-traffic/

CHAPTER 7. USING AND CONFIGURING FIREWALLD
A firewall is a way to protect machines from any unwanted traffic from outside. It enables users to
control incoming network traffic on host machines by defining a set of firewall rules. These rules are used
to sort the incoming traffic and either block it or allow through.

firewalld is a firewall service daemon that provides a dynamic customizable host-based firewall with a
D-Bus interface. Being dynamic, it enables creating, changing, and deleting the rules without the
necessity to restart the firewall daemon each time the rules are changed.

firewalld uses the concepts of zones and services, that simplify the traffic management. Zones are
predefined sets of rules. Network interfaces and sources can be assigned to a zone. The traffic allowed
depends on the network your computer is connected to and the security level this network is assigned.
Firewall services are predefined rules that cover all necessary settings to allow incoming traffic for a
specific service and they apply within a zone.

Services use one or more ports or addresses for network communication. Firewalls filter communication
based on ports. To allow network traffic for a service, its ports must be open. firewalld blocks all traffic
on ports that are not explicitly set as open. Some zones, such as trusted, allow all traffic by default.

Note that firewalld with nftables backend does not support passing custom nftables rules to firewalld,
using the --direct option.

7.1. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES

The following is a brief overview in which scenario you should use one of the following utilities:

firewalld: Use the firewalld utility for simple firewall use cases. The utility is easy to use and
covers the typical use cases for these scenarios.

nftables: Use the nftables utility to set up complex and performance-critical firewalls, such as
for a whole network.

iptables: The iptables utility on Red Hat Enterprise Linux uses the nf_tables kernel API instead
of the legacy back end. The nf_tables API provides backward compatibility so that scripts that
use iptables commands still work on Red Hat Enterprise Linux. For new firewall scripts, Red Hat
recommends to use nftables.

IMPORTANT

To prevent the different firewall-related services (firewalld, nftables, or iptables) from
influencing each other, run only one of them on a RHEL host, and disable the other
services.

7.2. FIREWALL ZONES

You can use the firewalld utility to separate networks into different zones according to the level of trust
that you have with the interfaces and traffic within that network. A connection can only be part of one
zone, but you can use that zone for many network connections.

firewalld follows strict principles in regards to zones:

1. Traffic ingresses only one zone.

2. Traffic egresses only one zone.

CHAPTER 7. USING AND CONFIGURING FIREWALLD

83

3. A zone defines a level of trust.

4. Intrazone traffic (within the same zone) is allowed by default.

5. Interzone traffic (from zone to zone) is denied by default.

Principles 4 and 5 are a consequence of principle 3.

Principle 4 is configurable through the zone option --remove-forward. Principle 5 is configurable by
adding new policies.

NetworkManager notifies firewalld of the zone of an interface. You can assign zones to interfaces with
the following utilities:

NetworkManager

firewall-config utility

firewall-cmd utility

The RHEL web console

The RHEL web console, firewall-config, and firewall-cmd can only edit the appropriate
NetworkManager configuration files. If you change the zone of the interface using the web console,
firewall-cmd, or firewall-config, the request is forwarded to NetworkManager and is not handled by
firewalld.

The /usr/lib/firewalld/zones/ directory stores the predefined zones, and you can instantly apply them to
any available network interface. These files are copied to the /etc/firewalld/zones/ directory only after
they are modified. The default settings of the predefined zones are as follows:

block

Suitable for: Any incoming network connections are rejected with an icmp-host-prohibited
message for IPv4 and icmp6-adm-prohibited for IPv6.

Accepts: Only network connections initiated from within the system.

dmz

Suitable for: Computers in your DMZ that are publicly-accessible with limited access to your
internal network.

Accepts: Only selected incoming connections.

drop

Suitable for: Any incoming network packets are dropped without any notification.

Accepts: Only outgoing network connections.

external

Suitable for: External networks with masquerading enabled, especially for routers. Situations
when you do not trust the other computers on the network.

Accepts: Only selected incoming connections.

Red Hat Enterprise Linux 8 Securing networks

84

home

Suitable for: Home environment where you mostly trust the other computers on the network.

Accepts: Only selected incoming connections.

internal

Suitable for: Internal networks where you mostly trust the other computers on the network.

Accepts: Only selected incoming connections.

public

Suitable for: Public areas where you do not trust other computers on the network.

Accepts: Only selected incoming connections.

trusted

Accepts: All network connections.

work

Suitable for: Work environment where you mostly trust the other computers on the network.

Accepts: Only selected incoming connections.

One of these zones is set as the default zone. When interface connections are added to
NetworkManager, they are assigned to the default zone. On installation, the default zone in firewalld is
the public zone. You can change the default zone.

NOTE

Make network zone names self-explanatory to help users understand them quickly.

To avoid any security problems, review the default zone configuration and disable any unnecessary
services according to your needs and risk assessments.

Additional resources

firewalld.zone(5) man page

7.3. FIREWALL POLICIES

The firewall policies specify the desired security state of your network. They outline rules and actions to
take for different types of traffic. Typically, the policies contain rules for the following types of traffic:

Incoming traffic

Outgoing traffic

Forward traffic

Specific services and applications

CHAPTER 7. USING AND CONFIGURING FIREWALLD

85

Network address translations (NAT)

Firewall policies use the concept of firewall zones. Each zone is associated with a specific set of firewall
rules that determine the traffic allowed. Policies apply firewall rules in a stateful, unidirectional manner.
This means you only consider one direction of the traffic. The traffic return path is implicitly allowed due
to stateful filtering of firewalld.

Policies are associated with an ingress zone and an egress zone. The ingress zone is where the traffic
originated (received). The egress zone is where the traffic leaves (sent).

The firewall rules defined in a policy can reference the firewall zones to apply consistent configurations
across multiple network interfaces.

7.4. FIREWALL RULES

You can use the firewall rules to implement specific configurations for allowing or blocking network
traffic. As a result, you can control the flow of network traffic to protect your system from security
threats.

Firewall rules typically define certain criteria based on various attributes. The attributes can be as:

Source IP addresses

Destination IP addresses

Transfer Protocols (TCP, UDP, …)

Ports

Network interfaces

The firewalld utility organizes the firewall rules into zones (such as public, internal, and others) and
policies. Each zone has its own set of rules that determine the level of traffic freedom for network
interfaces associated with a particular zone.

7.5. ZONE CONFIGURATION FILES

A firewalld zone configuration file contains the information for a zone. These are the zone description,
services, ports, protocols, icmp-blocks, masquerade, forward-ports and rich language rules in an XML
file format. The file name has to be zone-name.xml where the length of zone-name is currently limited
to 17 chars. The zone configuration files are located in the /usr/lib/firewalld/zones/ and
/etc/firewalld/zones/ directories.

The following example shows a configuration that allows one service (SSH) and one port range, for both
the TCP and UDP protocols:

Additional resources

<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>My Zone</short>
 <description>Here you can describe the characteristic features of the zone.</description>
 <service name="ssh"/>
 <port protocol="udp" port="1025-65535"/>
 <port protocol="tcp" port="1025-65535"/>
</zone>

Red Hat Enterprise Linux 8 Securing networks

86

Additional resources

firewalld.zone manual page

7.6. PREDEFINED FIREWALLD SERVICES

The firewalld service is a predefined set of firewall rules that define access to a specific application or
network service. Each service represents a combination of the following elements:

Local port

Network protocol

Associated firewall rules

Source ports and destinations

Firewall helper modules that load automatically if a service is enabled

A service simplifies packet filtering and saves you time because it achieves several tasks at once. For
example, firewalld can perform the following tasks at once:

Open a port

Define network protocol

Enable packet forwarding

Service configuration options and generic file information are described in the firewalld.service(5) man
page. The services are specified by means of individual XML configuration files, which are named in the
following format: service-name.xml. Protocol names are preferred over service or application names in
firewalld.

You can configure firewalld in the following ways:

Use utilities:

firewall-config - graphical utility

firewall-cmd - command-line utility

firewall-offline-cmd - command-line utility

Edit the XML files in the /etc/firewalld/services/ directory.
If you do not add or change the service, no corresponding XML file exists in
/etc/firewalld/services/. You can use the files in /usr/lib/firewalld/services/ as templates.

Additional resources

The firewalld.service(5) man page

7.7. WORKING WITH FIREWALLD ZONES

Zones represent a concept to manage incoming traffic more transparently. The zones are connected to
networking interfaces or assigned a range of source addresses. You manage firewall rules for each zone
independently, which enables you to define complex firewall settings and apply them to the traffic.

CHAPTER 7. USING AND CONFIGURING FIREWALLD

87

7.7.1. Customizing firewall settings for a specific zone to enhance security

You can strengthen your network security by modifying the firewall settings and associating a specific
network interface or connection with a particular firewall zone. By defining granular rules and restrictions
for a zone, you can control inbound and outbound traffic based on your intended security levels.

For example, you can achieve the following benefits:

Protection of sensitive data

Prevention of unauthorized access

Mitigation of potential network threats

Prerequisites

The firewalld service is running.

Procedure

1. List the available firewall zones:

firewall-cmd --get-zones

The firewall-cmd --get-zones command displays all zones that are available on the system, but
it does not show any details for particular zones. To see more detailed information for all zones,
use the firewall-cmd --list-all-zones command.

2. Choose the zone you want to use for this configuration.

3. Modify firewall settings for the chosen zone. For example, to allow the SSH service and remove
the ftp service:

firewall-cmd --add-service=ssh --zone=<your_chosen_zone>
firewall-cmd --remove-service=ftp --zone=<same_chosen_zone>

4. Assign a network interface to the firewall zone:

a. List the available network interfaces:

firewall-cmd --get-active-zones

Activity of a zone is determined by the presence of network interfaces or source address
ranges that match its configuration. The default zone is active for unclassified traffic but is
not always active if no traffic matches its rules.

b. Assign a network interface to the chosen zone:

firewall-cmd --zone=<your_chosen_zone> --change-interface=<interface_name> -
-permanent

Assigning a network interface to a zone is more suitable for applying consistent firewall
settings to all traffic on a particular interface (physical or virtual).

The firewall-cmd command, when used with the --permanent option, often involves

Red Hat Enterprise Linux 8 Securing networks

88

updating NetworkManager connection profiles to make changes to the firewall
configuration permanent. This integration between firewalld and NetworkManager ensures
consistent network and firewall settings.

Verification

1. Display the updated settings for your chosen zone:

firewall-cmd --zone=<your_chosen_zone> --list-all

The command output displays all zone settings including the assigned services, network
interface, and network connections (sources).

7.7.2. Changing the default zone

System administrators assign a zone to a networking interface in its configuration files. If an interface is
not assigned to a specific zone, it is assigned to the default zone. After each restart of the firewalld
service, firewalld loads the settings for the default zone and makes it active. Note that settings for all
other zones are preserved and ready to be used.

Typically, zones are assigned to interfaces by NetworkManager according to the connection.zone
setting in NetworkManager connection profiles. Also, after a reboot NetworkManager manages
assignments for "activating" those zones.

Prerequisites

The firewalld service is running.

Procedure

To set up the default zone:

1. Display the current default zone:

firewall-cmd --get-default-zone

2. Set the new default zone:

firewall-cmd --set-default-zone <zone_name>

NOTE

Following this procedure, the setting is a permanent setting, even without the --
permanent option.

7.7.3. Assigning a network interface to a zone

It is possible to define different sets of rules for different zones and then change the settings quickly by
changing the zone for the interface that is being used. With multiple interfaces, a specific zone can be
set for each of them to distinguish traffic that is coming through them.

Procedure

To assign the zone to a specific interface:

CHAPTER 7. USING AND CONFIGURING FIREWALLD

89

1. List the active zones and the interfaces assigned to them:

firewall-cmd --get-active-zones

2. Assign the interface to a different zone:

firewall-cmd --zone=zone_name --change-interface=interface_name --permanent

7.7.4. Assigning a zone to a connection using nmcli

You can add a firewalld zone to a NetworkManager connection using the nmcli utility.

Procedure

1. Assign the zone to the NetworkManager connection profile:

nmcli connection modify profile connection.zone zone_name

2. Activate the connection:

nmcli connection up profile

7.7.5. Manually assigning a zone to a network connection in a connection profile file

If you cannot use the nmcli utility to modify a connection profile, you can manually edit the
corresponding file of the profile to assign a firewalld zone.

NOTE

Modifying the connection profile with the nmcli utility to assign a firewalld zone is more
efficient. For details, see Assigning a network interface to a zone .

Procedure

1. Determine the path to the connection profile and its format:

nmcli -f NAME,FILENAME connection
NAME FILENAME
enp1s0 /etc/NetworkManager/system-connections/enp1s0.nmconnection
enp7s0 /etc/sysconfig/network-scripts/ifcfg-enp7s0

NetworkManager uses separate directories and file names for the different connection profile
formats:

Profiles in /etc/NetworkManager/system-
connections/<connection_name>.nmconnection files use the keyfile format.

Profiles in /etc/sysconfig/network-scripts/ifcfg-<interface_name> files use the ifcfg
format.

2. Depending on the format, update the corresponding file:

If the file uses the keyfile format, append zone=<name> to the [connection] section of the
/etc/NetworkManager/system-connections/<connection_name>.nmconnection file:

Red Hat Enterprise Linux 8 Securing networks

90

/etc/NetworkManager/system-connections/<connection_name>.nmconnection file:

[connection]
...
zone=internal

If the file uses the ifcfg format, append ZONE=<name> to the /etc/sysconfig/network-
scripts/ifcfg-<interface_name> file:

ZONE=internal

3. Reload the connection profiles:

nmcli connection reload

4. Reactivate the connection profiles

nmcli connection up <profile_name>

Verification

Display the zone of the interface, for example:

firewall-cmd --get-zone-of-interface enp1s0
internal

7.7.6. Manually assigning a zone to a network connection in an ifcfg file

When the connection is managed by NetworkManager, it must be aware of a zone that it uses. For
every network connection profile, a zone can be specified, which provides the flexibility of various
firewall settings according to the location of the computer with portable devices. Thus, zones and
settings can be specified for different locations, such as company or home.

Procedure

To set a zone for a connection, edit the /etc/sysconfig/network-
scripts/ifcfg-connection_name file and add a line that assigns a zone to this connection:

ZONE=zone_name

7.7.7. Creating a new zone

To use custom zones, create a new zone and use it just like a predefined zone. New zones require the --
permanent option, otherwise the command does not work.

Prerequisites

The firewalld service is running.

Procedure

1. Create a new zone:

CHAPTER 7. USING AND CONFIGURING FIREWALLD

91

firewall-cmd --permanent --new-zone=zone-name

2. Make the new zone usable:

firewall-cmd --reload

The command applies recent changes to the firewall configuration without interrupting network
services that are already running.

Verification

Check if the new zone is added to your permanent settings:

firewall-cmd --get-zones --permanent

7.7.8. Enabling zones by using the web console

You can apply predefined and existing firewall zones on a particular interface or a range of IP addresses
through the RHEL web console.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Networking.

3. Click on the Edit rules and zones button.

If you do not see the Edit rules and zones button, log in to the web console with the
administrator privileges.

4. In the Firewall section, click Add new zone.

5. In the Add zone dialog box, select a zone from the Trust level options.
The web console displays all zones predefined in the firewalld service.

6. In the Interfaces part, select an interface or interfaces on which the selected zone is applied.

7. In the Allowed Addresses part, you can select whether the zone is applied on:

the whole subnet

Red Hat Enterprise Linux 8 Securing networks

92

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

or a range of IP addresses in the following format:

192.168.1.0

192.168.1.0/24

192.168.1.0/24, 192.168.1.0

8. Click on the Add zone button.

Verification

Check the configuration in the Firewall section:

7.7.9. Disabling zones by using the web console

You can disable a firewall zone in your firewall configuration by using the web console.

Prerequisites

CHAPTER 7. USING AND CONFIGURING FIREWALLD

93

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Networking.

3. Click on the Edit rules and zones button.

If you do not see the Edit rules and zones button, log in to the web console with the
administrator privileges.

4. Click on the Options icon at the zone you want to remove.

5. Click Delete.

The zone is now disabled and the interface does not include opened services and ports which were
configured in the zone.

7.7.10. Using zone targets to set default behavior for incoming traffic

For every zone, you can set a default behavior that handles incoming traffic that is not further specified.
Such behavior is defined by setting the target of the zone. There are four options:

ACCEPT: Accepts all incoming packets except those disallowed by specific rules.

REJECT: Rejects all incoming packets except those allowed by specific rules. When firewalld
rejects packets, the source machine is informed about the rejection.

DROP: Drops all incoming packets except those allowed by specific rules. When firewalld drops
packets, the source machine is not informed about the packet drop.

default: Similar behavior as for REJECT, but with special meanings in certain scenarios.

Prerequisites

Red Hat Enterprise Linux 8 Securing networks

94

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

The firewalld service is running.

Procedure

To set a target for a zone:

1. List the information for the specific zone to see the default target:

firewall-cmd --zone=zone-name --list-all

2. Set a new target in the zone:

firewall-cmd --permanent --zone=zone-name --set-target=
<default|ACCEPT|REJECT|DROP>

Additional resources

firewall-cmd(1) man page

7.8. CONTROLLING NETWORK TRAFFIC USING FIREWALLD

The firewalld package installs a large number of predefined service files and you can add more or
customize them. You can then use these service definitions to open or close ports for services without
knowing the protocol and port numbers they use.

7.8.1. Controlling traffic with predefined services using the CLI

The most straightforward method to control traffic is to add a predefined service to firewalld. This
opens all necessary ports and modifies other settings according to the service definition file .

Prerequisites

The firewalld service is running.

Procedure

1. Check that the service in firewalld is not already allowed:

firewall-cmd --list-services
ssh dhcpv6-client

The command lists the services that are enabled in the default zone.

2. List all predefined services in firewalld:

firewall-cmd --get-services
RH-Satellite-6 amanda-client amanda-k5-client bacula bacula-client bitcoin bitcoin-rpc
bitcoin-testnet bitcoin-testnet-rpc ceph ceph-mon cfengine condor-collector ctdb dhcp dhcpv6
dhcpv6-client dns docker-registry ...

The command displays a list of available services for the default zone.

3. Add the service to the list of services that firewalld allows:

CHAPTER 7. USING AND CONFIGURING FIREWALLD

95

firewall-cmd --add-service=<service_name>

The command adds the specified service to the default zone.

4. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

The command applies these runtime changes to the permanent configuration of the firewall. By
default, it applies these changes to the configuration of the default zone.

Verification

1. List all permanent firewall rules:

firewall-cmd --list-all --permanent
public
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: cockpit dhcpv6-client ssh
 ports:
 protocols:
 forward: no
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

The command displays complete configuration with the permanent firewall rules of the default
firewall zone (public).

2. Check the validity of the permanent configuration of the firewalld service.

firewall-cmd --check-config
success

If the permanent configuration is invalid, the command returns an error with further details:

firewall-cmd --check-config
Error: INVALID_PROTOCOL: 'public.xml': 'tcpx' not from {'tcp'|'udp'|'sctp'|'dccp'}

You can also manually inspect the permanent configuration files to verify the settings. The main
configuration file is /etc/firewalld/firewalld.conf. The zone-specific configuration files are in the
/etc/firewalld/zones/ directory and the policies are in the /etc/firewalld/policies/ directory.

7.8.2. Controlling traffic with predefined services using the GUI

You can control the network traffic with predefined services using a graphical user interface. The
Firewall Configuration application provides an accessible and user-friendly alternative to the command-
line utilities.

Prerequisites

Red Hat Enterprise Linux 8 Securing networks

96

Prerequisites

You installed the firewall-config package.

The firewalld service is running.

Procedure

1. To enable or disable a predefined or custom service:

a. Start the firewall-config utility and select the network zone whose services are to be
configured.

b. Select the Zones tab and then the Services tab below.

c. Select the checkbox for each type of service you want to trust or clear the checkbox to
block a service in the selected zone.

2. To edit a service:

a. Start the firewall-config utility.

b. Select Permanent from the menu labeled Configuration. Additional icons and menu
buttons appear at the bottom of the Services window.

c. Select the service you want to configure.

The Ports, Protocols, and Source Port tabs enable adding, changing, and removing of ports, protocols,
and source port for the selected service. The modules tab is for configuring Netfilter helper modules.
The Destination tab enables limiting traffic to a particular destination address and Internet Protocol
(IPv4 or IPv6).

NOTE

It is not possible to alter service settings in the Runtime mode.

Verification

Press the Super key to enter the Activities overview.

Select the Firewall Configuration utility.

You can also start the graphical firewall configuration utility using the command-line, by
entering the firewall-config command.

View the list of configurations of your firewall:

CHAPTER 7. USING AND CONFIGURING FIREWALLD

97

The Firewall Configuration window opens. Note that this command can be run as a normal user, but you
are prompted for an administrator password occasionally.

7.8.3. Enabling services on the firewall by using the web console

By default, services are added to the default firewall zone. If you use more firewall zones on more
network interfaces, you must select a zone first and then add the service with port.

The RHEL 8 web console displays predefined firewalld services and you can add them to active firewall
zones.

IMPORTANT

The RHEL 8 web console configures the firewalld service.

The web console does not allow generic firewalld rules which are not listed in the web
console.

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Networking.

Red Hat Enterprise Linux 8 Securing networks

98

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

3. Click on the Edit rules and zones button.

If you do not see the Edit rules and zones button, log in to the web console with the
administrator privileges.

4. In the Firewall section, select a zone for which you want to add the service and click Add
Services.

5. In the Add Services dialog box, find the service you want to enable on the firewall.

6. Enable services according to your scenario:

7. Click Add Services.

At this point, the RHEL 8 web console displays the service in the zone’s list of Services.

7.8.4. Configuring custom ports by using the web console

You can add configure custom ports for services through the RHEL web console.

CHAPTER 7. USING AND CONFIGURING FIREWALLD

99

Prerequisites

You have installed the RHEL 8 web console.
For instructions, see Installing and enabling the web console .

The firewalld service is running.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Networking.

3. Click on the Edit rules and zones button.

If you do not see the Edit rules and zones button, log in to the web console with the
administrative privileges.

4. In the Firewall section, select a zone for which you want to configure a custom port and click
Add Services.

5. In the Add services dialog box, click on the Custom Ports radio button.

6. In the TCP and UDP fields, add ports according to examples. You can add ports in the following
formats:

Port numbers such as 22

Range of port numbers such as 5900-5910

Aliases such as nfs, rsync

NOTE

You can add multiple values into each field. Values must be separated with the
comma and without the space, for example: 8080,8081,http

Red Hat Enterprise Linux 8 Securing networks

100

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

7. After adding the port number in the TCP filed, the UDP filed, or both, verify the service name in
the Name field.
The Name field displays the name of the service for which is this port reserved. You can rewrite
the name if you are sure that this port is free to use and no server needs to communicate on this
port.

8. In the Name field, add a name for the service including defined ports.

9. Click on the Add Ports button.

To verify the settings, go to the Firewall page and find the service in the list of zone’s Services.

7.8.5. Configuring firewalld to allow hosting a secure web server

Ports are logical services that enable an operating system to receive and distinguish network traffic and
forward it to system services. The system services are represented by a daemon that listens on the port
and waits for any traffic coming to this port.

Normally, system services listen on standard ports that are reserved for them. The httpd daemon, for
example, listens on port 80. However, system administrators can directly specify the port number
instead of the service name.

CHAPTER 7. USING AND CONFIGURING FIREWALLD

101

You can use the firewalld service to configure access to a secure web server for hosting your data.

Prerequisites

The firewalld service is running.

Procedure

1. Check the currently active firewall zone:

firewall-cmd --get-active-zones

2. Add the HTTPS service to the appropriate zone:

firewall-cmd --zone=<zone_name> --add-service=https --permanent

3. Reload the firewall configuration:

firewall-cmd --reload

Verification

1. Check if the port is open in firewalld:

If you opened the port by specifying the port number, enter:

firewall-cmd --zone=<zone_name> --list-all

If you opened the port by specifying a service definition, enter:

firewall-cmd --zone=<zone_name> --list-services

7.8.6. Closing unused or unnecessary ports to enhance network security

When an open port is no longer needed, you can use the firewalld utility to close it.

IMPORTANT

Close all unnecessary ports to reduce the potential attack surface and minimize the risk
of unauthorized access or exploitation of vulnerabilities.

Procedure

1. List all allowed ports:

firewall-cmd --list-ports

By default, this command lists the ports that are enabled in the default zone.

NOTE

Red Hat Enterprise Linux 8 Securing networks

102

NOTE

This command will only give you a list of ports that are opened as ports. You will
not be able to see any open ports that are opened as a service. For that case,
consider using the --list-all option instead of --list-ports.

2. Remove the port from the list of allowed ports to close it for the incoming traffic:

firewall-cmd --remove-port=port-number/port-type

This command removes a port from a zone. If you do not specify a zone, it will remove the port
from the default zone.

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

Without specifying a zone, this command applies runtime changes to the permanent
configuration of the default zone.

Verification

1. List the active zones and choose the zone you want to inspect:

firewall-cmd --get-active-zones

2. List the currently open ports in the selected zone to check if the unused or unnecessary ports
are closed:

firewall-cmd --zone=<zone_to_inspect> --list-ports

7.8.7. Controlling traffic through the CLI

You can use the firewall-cmd command to:

disable networking traffic

enable networking traffic

As a result, you can for example enhance your system defenses, ensure data privacy or optimize network
resources.

IMPORTANT

Enabling panic mode stops all networking traffic. For this reason, it should be used only
when you have the physical access to the machine or if you are logged in using a serial
console.

Procedure

1. To immediately disable networking traffic, switch panic mode on:

firewall-cmd --panic-on

CHAPTER 7. USING AND CONFIGURING FIREWALLD

103

2. Switching off panic mode reverts the firewall to its permanent settings. To switch panic mode
off, enter:

firewall-cmd --panic-off

Verification

To see whether panic mode is switched on or off, use:

firewall-cmd --query-panic

7.8.8. Controlling traffic with protocols using GUI

To permit traffic through the firewall using a certain protocol, you can use the GUI.

Prerequisites

You installed the firewall-config package

Procedure

1. Start the firewall-config tool and select the network zone whose settings you want to change.

2. Select the Protocols tab and click the Add button on the right-hand side. The Protocol window
opens.

3. Either select a protocol from the list or select the Other Protocol check box and enter the
protocol in the field.

7.9. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON
A SOURCE

You can use zones to manage incoming traffic based on its source. Incoming traffic in this context is any
data that is destined for your system, or passes through the host running firewalld. The source typically
refers to the IP address or network range from which the traffic originates. As a result, you can sort
incoming traffic and assign it to different zones to allow or disallow services that can be reached by that
traffic.

Matching by source address takes precedence over matching by interface name. When you add a source
to a zone, the firewall will prioritize the source-based rules for incoming traffic over interface-based
rules. This means that if incoming traffic matches a source address specified for a particular zone, the
zone associated with that source address will determine how the traffic is handled, regardless of the
interface through which it arrives. On the other hand, interface-based rules are generally a fallback for
traffic that does not match specific source-based rules. These rules apply to traffic, for which the source
is not explicitly associated with a zone. This allows you to define a default behavior for traffic that does
not have a specific source-defined zone.

7.9.1. Adding a source

To route incoming traffic into a specific zone, add the source to that zone. The source can be an IP
address or an IP mask in the classless inter-domain routing (CIDR) notation.

NOTE

Red Hat Enterprise Linux 8 Securing networks

104

NOTE

In case you add multiple zones with an overlapping network range, they are ordered
alphanumerically by zone name and only the first one is considered.

To set the source in the current zone:

firewall-cmd --add-source=<source>

To set the source IP address for a specific zone:

firewall-cmd --zone=zone-name --add-source=<source>

The following procedure allows all incoming traffic from 192.168.2.15 in the trusted zone:

Procedure

1. List all available zones:

firewall-cmd --get-zones

2. Add the source IP to the trusted zone in the permanent mode:

firewall-cmd --zone=trusted --add-source=192.168.2.15

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

7.9.2. Removing a source

When you remove a source from a zone, the traffic which originates from the source is no longer
directed through the rules specified for that source. Instead, the traffic falls back to the rules and
settings of the zone associated with the interface from which it originates, or goes to the default zone.

Procedure

1. List allowed sources for the required zone:

firewall-cmd --zone=zone-name --list-sources

2. Remove the source from the zone permanently:

firewall-cmd --zone=zone-name --remove-source=<source>

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

7.9.3. Removing a source port

CHAPTER 7. USING AND CONFIGURING FIREWALLD

105

By removing a source port you disable sorting the traffic based on a port of origin.

Procedure

To remove a source port:

firewall-cmd --zone=zone-name --remove-source-port=<port-
name>/<tcp|udp|sctp|dccp>

7.9.4. Using zones and sources to allow a service for only a specific domain

To allow traffic from a specific network to use a service on a machine, use zones and source. The
following procedure allows only HTTP traffic from the 192.0.2.0/24 network while any other traffic is
blocked.

WARNING

When you configure this scenario, use a zone that has the default target. Using a
zone that has the target set to ACCEPT is a security risk, because for traffic from
192.0.2.0/24, all network connections would be accepted.

Procedure

1. List all available zones:

firewall-cmd --get-zones
block dmz drop external home internal public trusted work

2. Add the IP range to the internal zone to route the traffic originating from the source through
the zone:

firewall-cmd --zone=internal --add-source=192.0.2.0/24

3. Add the http service to the internal zone:

firewall-cmd --zone=internal --add-service=http

4. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

Verification

Check that the internal zone is active and that the service is allowed in it:

firewall-cmd --zone=internal --list-all
internal (active)
 target: default

Red Hat Enterprise Linux 8 Securing networks

106

 icmp-block-inversion: no
 interfaces:
 sources: 192.0.2.0/24
 services: cockpit dhcpv6-client mdns samba-client ssh http
 ...

Additional resources

firewalld.zones(5) man page

7.10. FILTERING FORWARDED TRAFFIC BETWEEN ZONES

firewalld enables you to control the flow of network data between different firewalld zones. By defining
rules and policies, you can manage how traffic is allowed or blocked when it moves between these zones.

The policy objects feature provides forward and output filtering in firewalld. You can use firewalld to
filter traffic between different zones to allow access to locally hosted VMs to connect the host.

7.10.1. The relationship between policy objects and zones

Policy objects allow the user to attach firewalld’s primitives such as services, ports, and rich rules to the
policy. You can apply the policy objects to traffic that passes between zones in a stateful and
unidirectional manner.

firewall-cmd --permanent --new-policy myOutputPolicy

firewall-cmd --permanent --policy myOutputPolicy --add-ingress-zone HOST

firewall-cmd --permanent --policy myOutputPolicy --add-egress-zone ANY

HOST and ANY are the symbolic zones used in the ingress and egress zone lists.

The HOST symbolic zone allows policies for the traffic originating from or has a destination to
the host running firewalld.

The ANY symbolic zone applies policy to all the current and future zones. ANY symbolic zone
acts as a wildcard for all zones.

7.10.2. Using priorities to sort policies

Multiple policies can apply to the same set of traffic, therefore, priorities should be used to create an
order of precedence for the policies that may be applied.

To set a priority to sort the policies:

firewall-cmd --permanent --policy mypolicy --set-priority -500

In the above example -500 is a lower priority value but has higher precedence. Thus, -500 will execute
before -100.

Lower numerical priority values have higher precedence and are applied first.

7.10.3. Using policy objects to filter traffic between locally hosted containers and a

CHAPTER 7. USING AND CONFIGURING FIREWALLD

107

7.10.3. Using policy objects to filter traffic between locally hosted containers and a
network physically connected to the host

The policy objects feature allows users to filter traffic between Podman and firewalld zones.

NOTE

Red Hat recommends blocking all traffic by default and opening the selective services
needed for the Podman utility.

Procedure

1. Create a new firewall policy:

firewall-cmd --permanent --new-policy podmanToAny

2. Block all traffic from Podman to other zones and allow only necessary services on Podman:

firewall-cmd --permanent --policy podmanToAny --set-target REJECT
firewall-cmd --permanent --policy podmanToAny --add-service dhcp
firewall-cmd --permanent --policy podmanToAny --add-service dns
firewall-cmd --permanent --policy podmanToAny --add-service https

3. Create a new Podman zone:

firewall-cmd --permanent --new-zone=podman

4. Define the ingress zone for the policy:

firewall-cmd --permanent --policy podmanToHost --add-ingress-zone podman

5. Define the egress zone for all other zones:

firewall-cmd --permanent --policy podmanToHost --add-egress-zone ANY

Setting the egress zone to ANY means that you filter from Podman to other zones. If you want
to filter to the host, then set the egress zone to HOST.

6. Restart the firewalld service:

systemctl restart firewalld

Verification

Verify the Podman firewall policy to other zones:

firewall-cmd --info-policy podmanToAny
podmanToAny (active)
 ...
 target: REJECT
 ingress-zones: podman

Red Hat Enterprise Linux 8 Securing networks

108

 egress-zones: ANY
 services: dhcp dns https
 ...

7.10.4. Setting the default target of policy objects

You can specify --set-target options for policies. The following targets are available:

ACCEPT - accepts the packet

DROP - drops the unwanted packets

REJECT - rejects unwanted packets with an ICMP reply

CONTINUE (default) - packets will be subject to rules in following policies and zones.

firewall-cmd --permanent --policy mypolicy --set-target CONTINUE

Verification

Verify information about the policy

firewall-cmd --info-policy mypolicy

7.10.5. Using DNAT to forward HTTPS traffic to a different host

If your web server runs in a DMZ with private IP addresses, you can configure destination network
address translation (DNAT) to enable clients on the internet to connect to this web server. In this case,
the host name of the web server resolves to the public IP address of the router. When a client
establishes a connection to a defined port on the router, the router forwards the packets to the internal
web server.

Prerequisites

The DNS server resolves the host name of the web server to the router’s IP address.

You know the following settings:

The private IP address and port number that you want to forward

The IP protocol to be used

The destination IP address and port of the web server where you want to redirect the
packets

Procedure

1. Create a firewall policy:

firewall-cmd --permanent --new-policy <example_policy>

The policies, as opposed to zones, allow packet filtering for input, output, and forwarded traffic.
This is important, because forwarding traffic to endpoints on locally run web servers, containers,
or virtual machines requires such capability.

CHAPTER 7. USING AND CONFIGURING FIREWALLD

109

2. Configure symbolic zones for the ingress and egress traffic to also enable the router itself to
connect to its local IP address and forward this traffic:

firewall-cmd --permanent --policy=<example_policy> --add-ingress-zone=HOST
firewall-cmd --permanent --policy=<example_policy> --add-egress-zone=ANY

The --add-ingress-zone=HOST option refers to packets generated locally and transmitted out
of the local host. The --add-egress-zone=ANY option refers to traffic moving to any zone.

3. Add a rich rule that forwards traffic to the web server:

firewall-cmd --permanent --policy=<example_policy> --add-rich-rule='rule
family="ipv4" destination address="192.0.2.1" forward-port port="443" protocol="tcp"
to-port="443" to-addr="192.51.100.20"'

The rich rule forwards TCP traffic from port 443 on the IP address of the router (192.0.2.1) to
port 443 of the IP address of the web server (192.51.100.20).

4. Reload the firewall configuration files:

firewall-cmd --reload
success

5. Activate routing of 127.0.0.0/8 in the kernel:

For persistent changes, run:

echo "net.ipv4.conf.all.route_localnet=1" > /etc/sysctl.d/90-enable-route-
localnet.conf

The command persistently configures the route_localnet kernel parameter and ensures
that the setting is preserved after the system reboots.

For applying the settings immediately without a system reboot, run:

sysctl -p /etc/sysctl.d/90-enable-route-localnet.conf

The sysctl command is useful for applying on-the-fly changes, however the configuration
will not persist across system reboots.

Verification

1. Connect to the IP address of the router and to the port that you have forwarded to the web
server:

curl https://192.0.2.1:443

2. Optional: Verify that the net.ipv4.conf.all.route_localnet kernel parameter is active:

sysctl net.ipv4.conf.all.route_localnet
net.ipv4.conf.all.route_localnet = 1

3. Verify that <example_policy> is active and contains the settings you need, especially the
source IP address and port, protocol to be used, and the destination IP address and port:

Red Hat Enterprise Linux 8 Securing networks

110

firewall-cmd --info-policy=<example_policy>
example_policy (active)
 priority: -1
 target: CONTINUE
 ingress-zones: HOST
 egress-zones: ANY
 services:
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
 rule family="ipv4" destination address="192.0.2.1" forward-port port="443" protocol="tcp" to-
port="443" to-addr="192.51.100.20"

Additional resources

firewall-cmd(1), firewalld.policies(5), firewalld.richlanguage(5), sysctl(8), and sysctl.conf(5)
man pages

Using configuration files in /etc/sysctl.d/ to adjust kernel parameters

7.11. CONFIGURING NAT USING FIREWALLD

With firewalld, you can configure the following network address translation (NAT) types:

Masquerading

Destination NAT (DNAT)

Redirect

7.11.1. Network address translation types

These are the different network address translation (NAT) types:

Masquerading

Use one of these NAT types to change the source IP address of packets. For example, Internet
Service Providers (ISPs) do not route private IP ranges, such as 10.0.0.0/8. If you use private IP
ranges in your network and users should be able to reach servers on the internet, map the source IP
address of packets from these ranges to a public IP address.
Masquerading automatically uses the IP address of the outgoing interface. Therefore, use
masquerading if the outgoing interface uses a dynamic IP address.

Destination NAT (DNAT)

Use this NAT type to rewrite the destination address and port of incoming packets. For example, if
your web server uses an IP address from a private IP range and is, therefore, not directly accessible
from the internet, you can set a DNAT rule on the router to redirect incoming traffic to this server.

Redirect

This type is a special case of DNAT that redirects packets to a different port on the local machine.

CHAPTER 7. USING AND CONFIGURING FIREWALLD

111

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel#using-configuration-files-in-etc-sysctl-d-to-adjust-kernel-parameters_configuring-kernel-parameters-at-runtime

This type is a special case of DNAT that redirects packets to a different port on the local machine.
For example, if a service runs on a different port than its standard port, you can redirect incoming
traffic from the standard port to this specific port.

7.11.2. Configuring IP address masquerading

You can enable IP masquerading on your system. IP masquerading hides individual machines behind a
gateway when accessing the internet.

Procedure

1. To check if IP masquerading is enabled (for example, for the external zone), enter the following
command as root:

firewall-cmd --zone=external --query-masquerade

The command prints yes with exit status 0 if enabled. It prints no with exit status 1 otherwise. If
zone is omitted, the default zone will be used.

2. To enable IP masquerading, enter the following command as root:

firewall-cmd --zone=external --add-masquerade

3. To make this setting persistent, pass the --permanent option to the command.

4. To disable IP masquerading, enter the following command as root:

firewall-cmd --zone=external --remove-masquerade

To make this setting permanent, pass the --permanent option to the command.

7.11.3. Using DNAT to forward incoming HTTP traffic

You can use destination network address translation (DNAT) to direct incoming traffic from one
destination address and port to another. Typically, this is useful for redirecting incoming requests from
an external network interface to specific internal servers or services.

Prerequisites

The firewalld service is running.

Procedure

1. Create the /etc/sysctl.d/90-enable-IP-forwarding.conf file with the following content:

net.ipv4.ip_forward=1

This setting enables IP forwarding in the kernel. It makes the internal RHEL server act as a router
and forward packets from network to network.

2. Load the setting from the /etc/sysctl.d/90-enable-IP-forwarding.conf file:

sysctl -p /etc/sysctl.d/90-enable-IP-forwarding.conf

Red Hat Enterprise Linux 8 Securing networks

112

3. Forward incoming HTTP traffic:

firewall-cmd --zone=public --add-forward-
port=port=80:proto=tcp:toaddr=198.51.100.10:toport=8080 --permanent

The previous command defines a DNAT rule with the following settings:

--zone=public - The firewall zone for which you configure the DNAT rule. You can adjust
this to whatever zone you need.

--add-forward-port - The option that indicates you are adding a port-forwarding rule.

port=80 - The external destination port.

proto=tcp - The protocol indicating that you forward TCP traffic.

toaddr=198.51.100.10 - The destination IP address.

toport=8080 - The destination port of the internal server.

--permanent - The option that makes the DNAT rule persistent across reboots.

4. Reload the firewall configuration to apply the changes:

firewall-cmd --reload

Verification

Verify the DNAT rule for the firewall zone that you used:

firewall-cmd --list-forward-ports --zone=public
port=80:proto=tcp:toport=8080:toaddr=198.51.100.10

Alternatively, view the corresponding XML configuration file:

cat /etc/firewalld/zones/public.xml
<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>Public</short>
 <description>For use in public areas. You do not trust the other computers on networks to
not harm your computer. Only selected incoming connections are accepted.</description>
 <service name="ssh"/>
 <service name="dhcpv6-client"/>
 <service name="cockpit"/>
 <forward-port port="80" protocol="tcp" to-port="8080" to-addr="198.51.100.10"/>
 <forward/>
</zone>

Additional resources

Configuring kernel parameters at runtime

firewall-cmd(1) manual page

7.11.4. Redirecting traffic from a non-standard port to make the web service

CHAPTER 7. USING AND CONFIGURING FIREWALLD

113

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel#doc-wrapper

7.11.4. Redirecting traffic from a non-standard port to make the web service
accessible on a standard port

You can use the redirect mechanism to make the web service that internally runs on a non-standard port
accessible without requiring users to specify the port in the URL. As a result, the URLs are simpler and
provide better browsing experience, while a non-standard port is still used internally or for specific
requirements.

Prerequisites

The firewalld service is running.

Procedure

1. Create the /etc/sysctl.d/90-enable-IP-forwarding.conf file with the following content:

net.ipv4.ip_forward=1

This setting enables IP forwarding in the kernel.

2. Load the setting from the /etc/sysctl.d/90-enable-IP-forwarding.conf file:

sysctl -p /etc/sysctl.d/90-enable-IP-forwarding.conf

3. Create the NAT redirect rule:

firewall-cmd --zone=public --add-forward-
port=port=<standard_port>:proto=tcp:toport=<non_standard_port> --permanent

The previous command defines the NAT redirect rule with the following settings:

--zone=public - The firewall zone, for which you configure the rule. You can adjust this to
whatever zone you need.

--add-forward-port=port=<non_standard_port> - The option that indicates you are
adding a port-forwarding (redirecting) rule with source port on which you initially receive the
incoming traffic.

proto=tcp - The protocol indicating that you redirect TCP traffic.

toport=<standard_port> - The destination port, to which the incoming traffic should be
redirected after being received on the source port.

--permanent - The option that makes the rule persist across reboots.

4. Reload the firewall configuration to apply the changes:

firewall-cmd --reload

Verification

Verify the redirect rule for the firewall zone that you used:

Red Hat Enterprise Linux 8 Securing networks

114

firewall-cmd --list-forward-ports
port=8080:proto=tcp:toport=80:toaddr=

Alternatively, view the corresponding XML configuration file:

cat /etc/firewalld/zones/public.xml
<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>Public</short>
 <description>For use in public areas. You do not trust the other computers on networks to
not harm your computer. Only selected incoming connections are accepted.</description>
 <service name="ssh"/>
 <service name="dhcpv6-client"/>
 <service name="cockpit"/>
 <forward-port port="8080" protocol="tcp" to-port="80"/>
 <forward/>
</zone>

Additional resources

Configuring kernel parameters at runtime

firewall-cmd(1) manual page

7.12. MANAGING ICMP REQUESTS

The Internet Control Message Protocol (ICMP) is a supporting protocol that is used by various
network devices for testing, troubleshooting, and diagnostics. ICMP differs from transport protocols
such as TCP and UDP because it is not used to exchange data between systems.

You can use the ICMP messages, especially echo-request and echo-reply, to reveal information about a
network and misuse such information for various kinds of fraudulent activities. Therefore, firewalld
enables controlling the ICMP requests to protect your network information.

7.12.1. Configuring ICMP filtering

You can use ICMP filtering to define which ICMP types and codes you want the firewall to permit or
deny from reaching your system. ICMP types and codes are specific categories and subcategories of
ICMP messages.

ICMP filtering helps, for example, in the following areas:

Security enhancement - Block potentially harmful ICMP types and codes to reduce your attack
surface.

Network performance - Permit only necessary ICMP types to optimize network performance
and prevent potential network congestion caused by excessive ICMP traffic.

Troubleshooting control - Maintain essential ICMP functionality for network troubleshooting
and block ICMP types that represent potential security risk.

Prerequisites

The firewalld service is running.

CHAPTER 7. USING AND CONFIGURING FIREWALLD

115

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel#doc-wrapper

Procedure

1. List available ICMP types and codes:

firewall-cmd --get-icmptypes
address-unreachable bad-header beyond-scope communication-prohibited destination-
unreachable echo-reply echo-request failed-policy fragmentation-needed host-precedence-
violation host-prohibited host-redirect host-unknown host-unreachable
...

From this predefined list, select which ICMP types and codes to allow or block.

2. Filter specific ICMP types by:

Allowing ICMP types:

firewall-cmd --zone=<target-zone> --remove-icmp-block=echo-request --
permanent

The command removes any existing blocking rules for the echo requests ICMP type.

Blocking ICMP types:

firewall-cmd --zone=<target-zone> --add-icmp-block=redirect --permanent

The command ensures that the redirect messages ICMP type is blocked by the firewall.

3. Reload the firewall configuration to apply the changes:

firewall-cmd --reload

Verification

Verify your filtering rules are in effect:

firewall-cmd --list-icmp-blocks
redirect

The command output displays the ICMP types and codes that you allowed or blocked.

Additional resources

firewall-cmd(1) manual page

7.13. SETTING AND CONTROLLING IP SETS USING FIREWALLD

IP sets are a RHEL feature for grouping of IP addresses and networks into sets to achieve more flexible
and efficient firewall rule management.

The IP sets are valuable in scenarios when you need to for example:

Handle large lists of IP addresses

Implement dynamic updates to those large lists of IP addresses

Red Hat Enterprise Linux 8 Securing networks

116

Create custom IP-based policies to enhance network security and control

WARNING

Red Hat recommends using the firewall-cmd command to create and manage IP
sets.

7.13.1. Configuring dynamic updates for allowlisting with IP sets

You can make near real-time updates to flexibly allow specific IP addresses or ranges in the IP sets even
in unpredictable conditions. These updates can be triggered by various events, such as detection of
security threats or changes in the network behavior. Typically, such a solution leverages automation to
reduce manual effort and improve security by responding quickly to the situation.

Prerequisites

The firewalld service is running.

Procedure

1. Create an IP set with a meaningful name:

firewall-cmd --permanent --new-ipset=allowlist --type=hash:ip

The new IP set called allowlist contains IP addresses that you want your firewall to allow.

2. Add a dynamic update to the IP set:

firewall-cmd --permanent --ipset=allowlist --add-entry=198.51.100.10

This configuration updates the allowlist IP set with a newly added IP address that is allowed to
pass network traffic by your firewall.

3. Create a firewall rule that references the previously created IP set:

firewall-cmd --permanent --zone=public --add-source=ipset:allowlist

Without this rule, the IP set would not have any impact on network traffic. The default firewall
policy would prevail.

4. Reload the firewall configuration to apply the changes:

firewall-cmd --reload

Verification

1. List all IP sets:

CHAPTER 7. USING AND CONFIGURING FIREWALLD

117

firewall-cmd --get-ipsets
allowlist

2. List the active rules:

firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s1
 sources: ipset:allowlist
 services: cockpit dhcpv6-client ssh
 ports:
 protocols:
 ...

The sources section of the command-line output provides insights to what origins of traffic
(hostnames, interfaces, IP sets, subnets, and others) are permitted or denied access to a
particular firewall zone. In this case, the IP addresses contained in the allowlist IP set are
allowed to pass traffic through the firewall for the public zone.

3. Explore the contents of your IP set:

cat /etc/firewalld/ipsets/allowlist.xml
<?xml version="1.0" encoding="utf-8"?>
<ipset type="hash:ip">
 <entry>198.51.100.10</entry>
</ipset>

Next steps

Use a script or a security utility to fetch your threat intelligence feeds and update allowlist
accordingly in an automated fashion.

Additional resources

firewall-cmd(1) manual page

7.14. PRIORITIZING RICH RULES

By default, rich rules are organized based on their rule action. For example, deny rules have precedence
over allow rules. The priority parameter in rich rules provides administrators fine-grained control over
rich rules and their execution order. When using the priority parameter, rules are sorted first by their
priority values in ascending order. When more rules have the same priority, their order is determined by
the rule action, and if the action is also the same, the order may be undefined.

7.14.1. How the priority parameter organizes rules into different chains

You can set the priority parameter in a rich rule to any number between -32768 and 32767, and lower
numerical values have higher precedence.

The firewalld service organizes rules based on their priority value into different chains:

Priority lower than 0: the rule is redirected into a chain with the _pre suffix.

Red Hat Enterprise Linux 8 Securing networks

118

Priority higher than 0: the rule is redirected into a chain with the _post suffix.

Priority equals 0: based on the action, the rule is redirected into a chain with the _log, _deny, or
_allow the action.

Inside these sub-chains, firewalld sorts the rules based on their priority value.

7.14.2. Setting the priority of a rich rule

The following is an example of how to create a rich rule that uses the priority parameter to log all traffic
that is not allowed or denied by other rules. You can use this rule to flag unexpected traffic.

Procedure

Add a rich rule with a very low precedence to log all traffic that has not been matched by other
rules:

firewall-cmd --add-rich-rule='rule priority=32767 log prefix="UNEXPECTED: " limit
value="5/m"'

The command additionally limits the number of log entries to 5 per minute.

Verification

Display the nftables rule that the command in the previous step created:

nft list chain inet firewalld filter_IN_public_post
table inet firewalld {
 chain filter_IN_public_post {
 log prefix "UNEXPECTED: " limit rate 5/minute
 }
}

7.15. CONFIGURING FIREWALL LOCKDOWN

Local applications or services are able to change the firewall configuration if they are running as root (for
example, libvirt). With this feature, the administrator can lock the firewall configuration so that either no
applications or only applications that are added to the lockdown allow list are able to request firewall
changes. The lockdown settings default to disabled. If enabled, the user can be sure that there are no
unwanted configuration changes made to the firewall by local applications or services.

7.15.1. Configuring lockdown using CLI

You can enable or disable the lockdown feature using the command line.

Procedure

1. To query whether lockdown is enabled:

firewall-cmd --query-lockdown

2. Manage lockdown configuration by either:

CHAPTER 7. USING AND CONFIGURING FIREWALLD

119

Enabling lockdown:

firewall-cmd --lockdown-on

Disabling lockdown:

firewall-cmd --lockdown-off

7.15.2. Overview of lockdown allowlist configuration files

The default allowlist configuration file contains the NetworkManager context and the default context
of libvirt. The user ID 0 is also on the list.

The allowlist configuration files are stored in the /etc/firewalld/ directory.

Following is an example allowlist configuration file enabling all commands for the firewall-cmd utility, for
a user called user whose user ID is 815:

This example shows both user id and user name, but only one option is required. Python is the
interpreter and is prepended to the command line.

In Red Hat Enterprise Linux, all utilities are placed in the /usr/bin/ directory and the /bin/ directory is
sym-linked to the /usr/bin/ directory. In other words, although the path for firewall-cmd when entered
as root might resolve to /bin/firewall-cmd, /usr/bin/firewall-cmd can now be used. All new scripts
should use the new location. But be aware that if scripts that run as root are written to use the
/bin/firewall-cmd path, then that command path must be added in the allowlist in addition to the
/usr/bin/firewall-cmd path traditionally used only for non- root users.

The * at the end of the name attribute of a command means that all commands that start with this string
match. If the * is not there then the absolute command including arguments must match.

7.16. ENABLING TRAFFIC FORWARDING BETWEEN DIFFERENT
INTERFACES OR SOURCES WITHIN A FIREWALLD ZONE

Intra-zone forwarding is a firewalld feature that enables traffic forwarding between interfaces or
sources within a firewalld zone.

7.16.1. The difference between intra-zone forwarding and zones with the default

<?xml version="1.0" encoding="utf-8"?>
 <whitelist>
 <command name="/usr/bin/python3 -s /usr/bin/firewall-config"/>
 <selinux context="system_u:system_r:NetworkManager_t:s0"/>
 <selinux context="system_u:system_r:virtd_t:s0-s0:c0.c1023"/>
 <user id="0"/>
 </whitelist>

<?xml version="1.0" encoding="utf-8"?>
 <whitelist>
 <command name="/usr/libexec/platform-python -s /bin/firewall-cmd*"/>
 <selinux context="system_u:system_r:NetworkManager_t:s0"/>
 <user id="815"/>
 <user name="user"/>
 </whitelist>

Red Hat Enterprise Linux 8 Securing networks

120

7.16.1. The difference between intra-zone forwarding and zones with the default
target set to ACCEPT

With intra-zone forwarding enabled, the traffic within a single firewalld zone can flow from one interface
or source to another interface or source. The zone specifies the trust level of interfaces and sources. If
the trust level is the same, the traffic stays inside the same zone.

NOTE

Enabling intra-zone forwarding in the default zone of firewalld, applies only to the
interfaces and sources added to the current default zone.

firewalld uses different zones to manage incoming and outgoing traffic. Each zone has its own set of
rules and behaviors. For example, the trusted zone, allows all forwarded traffic by default.

Other zones can have different default behaviors. In standard zones, forwarded traffic is typically
dropped by default when the target of the zone is set to default.

To control how the traffic is forwarded between different interfaces or sources within a zone, make sure
you understand and configure the target of the zone accordingly.

7.16.2. Using intra-zone forwarding to forward traffic between an Ethernet and Wi-
Fi network

You can use intra-zone forwarding to forward traffic between interfaces and sources within the same
firewalld zone. This feature brings the following benefits:

Seamless connectivity between wired and wireless devices (you can forward traffic between an
Ethernet network connected to enp1s0 and a Wi-Fi network connected to wlp0s20)

Support for flexible work environments

Shared resources that are accessible and used by multiple devices or users within a network
(such as printers, databases, network-attached storage, and others)

Efficient internal networking (such as smooth communication, reduced latency, resource
accessibility, and others)

You can enable this functionality for individual firewalld zones.

Procedure

1. Enable packet forwarding in the kernel:

echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

2. Ensure that interfaces between which you want to enable intra-zone forwarding are assigned
only to the internal zone:

firewall-cmd --get-active-zones

3. If the interface is currently assigned to a zone other than internal, reassign it:

CHAPTER 7. USING AND CONFIGURING FIREWALLD

121

firewall-cmd --zone=internal --change-interface=interface_name --permanent

4. Add the enp1s0 and wlp0s20 interfaces to the internal zone:

firewall-cmd --zone=internal --add-interface=enp1s0 --add-interface=wlp0s20

5. Enable intra-zone forwarding:

firewall-cmd --zone=internal --add-forward

Verification

The following Verification require that the nmap-ncat package is installed on both hosts.

1. Log in to a host that is on the same network as the enp1s0 interface of the host on which you
enabled zone forwarding.

2. Start an echo service with ncat to test connectivity:

ncat -e /usr/bin/cat -l 12345

3. Log in to a host that is in the same network as the wlp0s20 interface.

4. Connect to the echo server running on the host that is in the same network as the enp1s0:

ncat <other_host> 12345

5. Type something and press Enter. Verify the text is sent back.

Additional resources

firewalld.zones(5) man page

7.17. CONFIGURING FIREWALLD BY USING THE RHEL SYSTEM ROLE

You can use the firewall RHEL system role to configure settings of the firewalld service on multiple
clients at once. This solution:

Provides an interface with efficient input settings.

Keeps all intended firewalld parameters in one place.

After you run the firewall role on the control node, the RHEL system role applies the firewalld
parameters to the managed node immediately and makes them persistent across reboots.

7.17.1. Introduction to the firewall RHEL system role

RHEL system roles is a set of contents for the Ansible automation utility. This content together with the
Ansible automation utility provides a consistent configuration interface to remotely manage multiple
systems.

The rhel-system-roles.firewall role from the RHEL system roles was introduced for automated

Red Hat Enterprise Linux 8 Securing networks

122

The rhel-system-roles.firewall role from the RHEL system roles was introduced for automated
configurations of the firewalld service. The rhel-system-roles package contains this RHEL system role,
and also the reference documentation.

To apply the firewalld parameters on one or more systems in an automated fashion, use the firewall
RHEL system role variable in a playbook. A playbook is a list of one or more plays that is written in the
text-based YAML format.

You can use an inventory file to define a set of systems that you want Ansible to configure.

With the firewall role you can configure many different firewalld parameters, for example:

Zones.

The services for which packets should be allowed.

Granting, rejection, or dropping of traffic access to ports.

Forwarding of ports or port ranges for a zone.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md file

/usr/share/doc/rhel-system-roles/firewall/ directory

Working with playbooks

How to build your inventory

7.17.2. Resetting the firewalld settings by using the firewall RHEL system role

With the firewall RHEL system role, you can reset the firewalld settings to their default state. If you add
the previous:replaced parameter to the variable list, the RHEL system role removes all existing user-
defined settings and resets firewalld to the defaults. If you combine the previous:replaced parameter
with other settings, the firewall role removes all existing settings before applying new ones.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- name: Reset firewalld example
 hosts: managed-node-01.example.com
 tasks:
 - name: Reset firewalld

CHAPTER 7. USING AND CONFIGURING FIREWALLD

123

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Run this command as root on the managed node to check all the zones:

firewall-cmd --list-all-zones

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md file

/usr/share/doc/rhel-system-roles/firewall/ directory

7.17.3. Forwarding incoming traffic in firewalld from one local port to a different local
port by using the firewall RHEL system role

With the firewall role you can remotely configure firewalld parameters with persisting effect on
multiple managed hosts.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

 ansible.builtin.include_role:
 name: rhel-system-roles.firewall
 vars:
 firewall:
 - previous: replaced

- name: Configure firewalld
 hosts: managed-node-01.example.com
 tasks:

Red Hat Enterprise Linux 8 Securing networks

124

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

On the managed host, display the firewalld settings:

firewall-cmd --list-forward-ports

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md file

/usr/share/doc/rhel-system-roles/firewall/ directory

7.17.4. Managing ports in firewalld by using the firewall RHEL system role

You can use the firewall RHEL system role to open or close ports in the local firewall for incoming traffic
and make the new configuration persist across reboots. For example you can configure the default zone
to permit incoming traffic for the HTTPS service.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

 - name: Forward incoming traffic on port 8080 to 443
 ansible.builtin.include_role:
 name: rhel-system-roles.firewall
 vars:
 firewall:
 - { forward_port: 8080/tcp;443;, state: enabled, runtime: true, permanent: true }

- name: Configure firewalld
 hosts: managed-node-01.example.com

CHAPTER 7. USING AND CONFIGURING FIREWALLD

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

The permanent: true option makes the new settings persistent across reboots.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

On the managed node, verify that the 443/tcp port associated with the HTTPS service is open:

firewall-cmd --list-ports
443/tcp

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md file

/usr/share/doc/rhel-system-roles/firewall/ directory

7.17.5. Configuring a firewalld DMZ zone by using the firewall RHEL system role

As a system administrator, you can use the firewall RHEL system role to configure a dmz zone on the
enp1s0 interface to permit HTTPS traffic to the zone. In this way, you enable external users to access
your web servers.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

 tasks:
 - name: Allow incoming HTTPS traffic to the local host
 ansible.builtin.include_role:
 name: rhel-system-roles.firewall
 vars:
 firewall:
 - port: 443/tcp
 service: http
 state: enabled
 runtime: true
 permanent: true

Red Hat Enterprise Linux 8 Securing networks

126

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

On the managed node, view detailed information about the dmz zone:

firewall-cmd --zone=dmz --list-all
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp1s0
 sources:
 services: https ssh
 ports:
 protocols:
 forward: no
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md file

- name: Configure firewalld
 hosts: managed-node-01.example.com
 tasks:
 - name: Creating a DMZ with access to HTTPS port and masquerading for hosts in DMZ
 ansible.builtin.include_role:
 name: rhel-system-roles.firewall
 vars:
 firewall:
 - zone: dmz
 interface: enp1s0
 service: https
 state: enabled
 runtime: true
 permanent: true

CHAPTER 7. USING AND CONFIGURING FIREWALLD

127

/usr/share/doc/rhel-system-roles/firewall/ directory

Red Hat Enterprise Linux 8 Securing networks

128

CHAPTER 8. GETTING STARTED WITH NFTABLES
The nftables framework classifies packets and it is the successor to the iptables, ip6tables, arptables,
ebtables, and ipset utilities. It offers numerous improvements in convenience, features, and
performance over previous packet-filtering tools, most notably:

Built-in lookup tables instead of linear processing

A single framework for both the IPv4 and IPv6 protocols

All rules applied atomically instead of fetching, updating, and storing a complete rule set

Support for debugging and tracing in the rule set (nftrace) and monitoring trace events (in the
nft tool)

More consistent and compact syntax, no protocol-specific extensions

A Netlink API for third-party applications

The nftables framework uses tables to store chains. The chains contain individual rules for performing
actions. The nft utility replaces all tools from the previous packet-filtering frameworks. You can use the
libnftnl library for low-level interaction with nftables Netlink API through the libmnl library.

To display the effect of rule set changes, use the nft list ruleset command. Because these utilities add
tables, chains, rules, sets, and other objects to the nftables rule set, be aware that nftables rule-set
operations, such as the nft flush ruleset command, might affect rule sets installed using the iptables
command.

8.1. MIGRATING FROM IPTABLES TO NFTABLES

If your firewall configuration still uses iptables rules, you can migrate your iptables rules to nftables.

8.1.1. When to use firewalld, nftables, or iptables

The following is a brief overview in which scenario you should use one of the following utilities:

firewalld: Use the firewalld utility for simple firewall use cases. The utility is easy to use and
covers the typical use cases for these scenarios.

nftables: Use the nftables utility to set up complex and performance-critical firewalls, such as
for a whole network.

iptables: The iptables utility on Red Hat Enterprise Linux uses the nf_tables kernel API instead
of the legacy back end. The nf_tables API provides backward compatibility so that scripts that
use iptables commands still work on Red Hat Enterprise Linux. For new firewall scripts, Red Hat
recommends to use nftables.

IMPORTANT

To prevent the different firewall-related services (firewalld, nftables, or iptables) from
influencing each other, run only one of them on a RHEL host, and disable the other
services.

8.1.2. Converting iptables and ip6tables rule sets to nftables

CHAPTER 8. GETTING STARTED WITH NFTABLES

129

Use the iptables-restore-translate and ip6tables-restore-translate utilities to translate iptables and
ip6tables rule sets to nftables.

Prerequisites

The nftables and iptables packages are installed.

The system has iptables and ip6tables rules configured.

Procedure

1. Write the iptables and ip6tables rules to a file:

iptables-save >/root/iptables.dump
ip6tables-save >/root/ip6tables.dump

2. Convert the dump files to nftables instructions:

iptables-restore-translate -f /root/iptables.dump > /etc/nftables/ruleset-migrated-
from-iptables.nft
ip6tables-restore-translate -f /root/ip6tables.dump > /etc/nftables/ruleset-migrated-
from-ip6tables.nft

3. Review and, if needed, manually update the generated nftables rules.

4. To enable the nftables service to load the generated files, add the following to the
/etc/sysconfig/nftables.conf file:

include "/etc/nftables/ruleset-migrated-from-iptables.nft"
include "/etc/nftables/ruleset-migrated-from-ip6tables.nft"

5. Stop and disable the iptables service:

systemctl disable --now iptables

If you used a custom script to load the iptables rules, ensure that the script no longer starts
automatically and reboot to flush all tables.

6. Enable and start the nftables service:

systemctl enable --now nftables

Verification

Display the nftables rule set:

nft list ruleset

Additional resources

Automatically loading nftables rules when the system boots

Red Hat Enterprise Linux 8 Securing networks

130

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index#automatically-loading-nftables-rules-when-the-system-boots_writing-and-executing-nftables-scripts

8.1.3. Converting single iptables and ip6tables rules to nftables

Red Hat Enterprise Linux provides the iptables-translate and ip6tables-translate utilities to convert an
iptables or ip6tables rule into the equivalent one for nftables.

Prerequisites

The nftables package is installed.

Procedure

Use the iptables-translate or ip6tables-translate utility instead of iptables or ip6tables to
display the corresponding nftables rule, for example:

iptables-translate -A INPUT -s 192.0.2.0/24 -j ACCEPT
nft add rule ip filter INPUT ip saddr 192.0.2.0/24 counter accept

Note that some extensions lack translation support. In these cases, the utility prints the
untranslated rule prefixed with the # sign, for example:

iptables-translate -A INPUT -j CHECKSUM --checksum-fill
nft # -A INPUT -j CHECKSUM --checksum-fill

Additional resources

iptables-translate --help

8.1.4. Comparison of common iptables and nftables commands

The following is a comparison of common iptables and nftables commands:

Listing all rules:

iptables nftables

iptables-save nft list ruleset

Listing a certain table and chain:

iptables nftables

iptables -L nft list table ip filter

iptables -L INPUT nft list chain ip filter INPUT

iptables -t nat -L PREROUTING nft list chain ip nat PREROUTING

The nft command does not pre-create tables and chains. They exist only if a user created them
manually.

Listing rules generated by firewalld:

CHAPTER 8. GETTING STARTED WITH NFTABLES

131

nft list table inet firewalld
nft list table ip firewalld
nft list table ip6 firewalld

8.2. WRITING AND EXECUTING NFTABLES SCRIPTS

The major benefit of using the nftables framework is that the execution of scripts is atomic. This means
that the system either applies the whole script or prevents the execution if an error occurs. This
guarantees that the firewall is always in a consistent state.

Additionally, with the nftables script environment, you can:

Add comments

Define variables

Include other rule-set files

When you install the nftables package, Red Hat Enterprise Linux automatically creates *.nft scripts in
the /etc/nftables/ directory. These scripts contain commands that create tables and empty chains for
different purposes.

8.2.1. Supported nftables script formats

You can write scripts in the nftables scripting environment in the following formats:

The same format as the nft list ruleset command displays the rule set:

The same syntax as for nft commands:

#!/usr/sbin/nft -f

Flush the rule set
flush ruleset

table inet example_table {
 chain example_chain {
 # Chain for incoming packets that drops all packets that
 # are not explicitly allowed by any rule in this chain
 type filter hook input priority 0; policy drop;

 # Accept connections to port 22 (ssh)
 tcp dport ssh accept
 }
}

#!/usr/sbin/nft -f

Flush the rule set
flush ruleset

Create a table
add table inet example_table

Create a chain for incoming packets that drops all packets

Red Hat Enterprise Linux 8 Securing networks

132

8.2.2. Running nftables scripts

You can run an nftables script either by passing it to the nft utility or by executing the script directly.

Procedure

To run an nftables script by passing it to the nft utility, enter:

nft -f /etc/nftables/<example_firewall_script>.nft

To run an nftables script directly:

a. For the single time that you perform this:

i. Ensure that the script starts with the following shebang sequence:

IMPORTANT

If you omit the -f parameter, the nft utility does not read the script and
displays: Error: syntax error, unexpected newline, expecting string.

ii. Optional: Set the owner of the script to root:

chown root /etc/nftables/<example_firewall_script>.nft

iii. Make the script executable for the owner:

chmod u+x /etc/nftables/<example_firewall_script>.nft

b. Run the script:

/etc/nftables/<example_firewall_script>.nft

If no output is displayed, the system executed the script successfully.

IMPORTANT

Even if nft executes the script successfully, incorrectly placed rules, missing parameters,
or other problems in the script can cause that the firewall behaves not as expected.

Additional resources

chown(1) man page

that are not explicitly allowed by any rule in this chain
add chain inet example_table example_chain { type filter hook input priority 0 ; policy drop ; }

Add a rule that accepts connections to port 22 (ssh)
add rule inet example_table example_chain tcp dport ssh accept

#!/usr/sbin/nft -f

CHAPTER 8. GETTING STARTED WITH NFTABLES

133

chmod(1) man page

Automatically loading nftables rules when the system boots

8.2.3. Using comments in nftables scripts

The nftables scripting environment interprets everything to the right of a # character to the end of a
line as a comment.

Comments can start at the beginning of a line, or next to a command:

8.2.4. Using variables in nftables script

To define a variable in an nftables script, use the define keyword. You can store single values and
anonymous sets in a variable. For more complex scenarios, use sets or verdict maps.

Variables with a single value

The following example defines a variable named INET_DEV with the value enp1s0:

define INET_DEV = enp1s0

You can use the variable in the script by entering the $ sign followed by the variable name:

...
add rule inet example_table example_chain iifname $INET_DEV tcp dport ssh accept
...

Variables that contain an anonymous set

The following example defines a variable that contains an anonymous set:

define DNS_SERVERS = { 192.0.2.1, 192.0.2.2 }

You can use the variable in the script by writing the $ sign followed by the variable name:

add rule inet example_table example_chain ip daddr $DNS_SERVERS accept

NOTE

Curly braces have special semantics when you use them in a rule because they indicate
that the variable represents a set.

Additional resources

...
Flush the rule set
flush ruleset

add table inet example_table # Create a table
...

Red Hat Enterprise Linux 8 Securing networks

134

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#automatically-loading-nftables-rules-when-the-system-boots_writing-and-executing-nftables-scripts

Using sets in nftables commands

Using verdict maps in nftables commands

8.2.5. Including files in nftables scripts

In the nftables scripting environment, you can include other scripts by using the include statement.

If you specify only a file name without an absolute or relative path, nftables includes files from the
default search path, which is set to /etc on Red Hat Enterprise Linux.

Example 8.1. Including files from the default search directory

To include a file from the default search directory:

include "example.nft"

Example 8.2. Including all *.nft files from a directory

To include all files ending with *.nft that are stored in the /etc/nftables/rulesets/ directory:

include "/etc/nftables/rulesets/*.nft"

Note that the include statement does not match files beginning with a dot.

Additional resources

The Include files section in the nft(8) man page

8.2.6. Automatically loading nftables rules when the system boots

The nftables systemd service loads firewall scripts that are included in the /etc/sysconfig/nftables.conf
file.

Prerequisites

The nftables scripts are stored in the /etc/nftables/ directory.

Procedure

1. Edit the /etc/sysconfig/nftables.conf file.

If you modified the *.nft scripts that were created in /etc/nftables/ with the installation of
the nftables package, uncomment the include statement for these scripts.

If you wrote new scripts, add include statements to include these scripts. For example, to
load the /etc/nftables/example.nft script when the nftables service starts, add:

include "/etc/nftables/_example_.nft"

2. Optional: Start the nftables service to load the firewall rules without rebooting the system:

CHAPTER 8. GETTING STARTED WITH NFTABLES

135

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#using-sets-in-nftables-commands_getting-started-with-nftables
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#using-verdict-maps-in-nftables-commands_getting-started-with-nftables

systemctl start nftables

3. Enable the nftables service.

systemctl enable nftables

Additional resources

Supported nftables script formats

8.3. CREATING AND MANAGING NFTABLES TABLES, CHAINS, AND
RULES

You can display nftables rule sets and manage them.

8.3.1. Basics of nftables tables

A table in nftables is a namespace that contains a collection of chains, rules, sets, and other objects.

Each table must have an address family assigned. The address family defines the packet types that this
table processes. You can set one of the following address families when you create a table:

ip: Matches only IPv4 packets. This is the default if you do not specify an address family.

ip6: Matches only IPv6 packets.

inet: Matches both IPv4 and IPv6 packets.

arp: Matches IPv4 address resolution protocol (ARP) packets.

bridge: Matches packets that pass through a bridge device.

netdev: Matches packets from ingress.

If you want to add a table, the format to use depends on your firewall script:

In scripts in native syntax, use:

table <table_address_family> <table_name> {
}

In shell scripts, use:

nft add table <table_address_family> <table_name>

8.3.2. Basics of nftables chains

Tables consist of chains which in turn are containers for rules. The following two rule types exists:

Base chain: You can use base chains as an entry point for packets from the networking stack.

Regular chain: You can use regular chains as a jump target to better organize rules.

Red Hat Enterprise Linux 8 Securing networks

136

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#supported-nftables-script-formats_writing-and-executing-nftables-scripts

If you want to add a base chain to a table, the format to use depends on your firewall script:

In scripts in native syntax, use:

table <table_address_family> <table_name> {
 chain <chain_name> {
 type <type> hook <hook> priority <priority>
 policy <policy> ;
 }
}

In shell scripts, use:

nft add chain <table_address_family> <table_name> <chain_name> { type <type> hook
<hook> priority <priority> \; policy <policy> \; }

To avoid that the shell interprets the semicolons as the end of the command, place the \ escape
character in front of the semicolons.

Both examples create base chains. To create a regular chain, do not set any parameters in the curly
brackets.

Chain types
The following are the chain types and an overview with which address families and hooks you can use
them:

Type Address families Hooks Description

filter all all Standard chain type

nat ip, ip6, inet prerouting, input,
output,
postrouting

Chains of this type perform native address
translation based on connection tracking
entries. Only the first packet traverses this
chain type.

route ip, ip6 output Accepted packets that traverse this chain type
cause a new route lookup if relevant parts of
the IP header have changed.

Chain priorities
The priority parameter specifies the order in which packets traverse chains with the same hook value.
You can set this parameter to an integer value or use a standard priority name.

The following matrix is an overview of the standard priority names and their numeric values, and with
which address families and hooks you can use them:

Textual value Numeric value Address families Hooks

raw -300 ip, ip6, inet all

mangle -150 ip, ip6, inet all

CHAPTER 8. GETTING STARTED WITH NFTABLES

137

dstnat -100 ip, ip6, inet prerouting

-300 bridge prerouting

filter 0 ip, ip6, inet, arp, netdev all

-200 bridge all

security 50 ip, ip6, inet all

srcnat 100 ip, ip6, inet postrouting

300 bridge postrouting

out 100 bridge output

Textual value Numeric value Address families Hooks

Chain policies
The chain policy defines whether nftables should accept or drop packets if rules in this chain do not
specify any action. You can set one of the following policies in a chain:

accept (default)

drop

8.3.3. Basics of nftables rules

Rules define actions to perform on packets that pass a chain that contains this rule. If the rule also
contains matching expressions, nftables performs the actions only if all previous expressions apply.

If you want to add a rule to a chain, the format to use depends on your firewall script:

In scripts in native syntax, use:

table <table_address_family> <table_name> {
 chain <chain_name> {
 type <type> hook <hook> priority <priority> ; policy <policy> ;
 <rule>
 }
}

In shell scripts, use:

nft add rule <table_address_family> <table_name> <chain_name> <rule>

This shell command appends the new rule at the end of the chain. If you prefer to add a rule at
the beginning of the chain, use the nft insert command instead of nft add.

8.3.4. Managing tables, chains, and rules using nft commands

Red Hat Enterprise Linux 8 Securing networks

138

To manage an nftables firewall on the command line or in shell scripts, use the nft utility.

IMPORTANT

The commands in this procedure do not represent a typical workflow and are not
optimized. This procedure only demonstrates how to use nft commands to manage
tables, chains, and rules in general.

Procedure

1. Create a table named nftables_svc with the inet address family so that the table can process
both IPv4 and IPv6 packets:

nft add table inet nftables_svc

2. Add a base chain named INPUT, that processes incoming network traffic, to the inet
nftables_svc table:

nft add chain inet nftables_svc INPUT { type filter hook input priority filter \; policy
accept \; }

To avoid that the shell interprets the semicolons as the end of the command, escape the
semicolons using the \ character.

3. Add rules to the INPUT chain. For example, allow incoming TCP traffic on port 22 and 443, and,
as the last rule of the INPUT chain, reject other incoming traffic with an Internet Control
Message Protocol (ICMP) port unreachable message:

nft add rule inet nftables_svc INPUT tcp dport 22 accept
nft add rule inet nftables_svc INPUT tcp dport 443 accept
nft add rule inet nftables_svc INPUT reject with icmpx type port-unreachable

If you enter the nft add rule commands as shown, nft adds the rules in the same order to the
chain as you run the commands.

4. Display the current rule set including handles:

nft -a list table inet nftables_svc
table inet nftables_svc { # handle 13
 chain INPUT { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport 22 accept # handle 2
 tcp dport 443 accept # handle 3
 reject # handle 4
 }
}

5. Insert a rule before the existing rule with handle 3. For example, to insert a rule that allows TCP
traffic on port 636, enter:

nft insert rule inet nftables_svc INPUT position 3 tcp dport 636 accept

6. Append a rule after the existing rule with handle 3. For example, to insert a rule that allows TCP
traffic on port 80, enter:

CHAPTER 8. GETTING STARTED WITH NFTABLES

139

nft add rule inet nftables_svc INPUT position 3 tcp dport 80 accept

7. Display the rule set again with handles. Verify that the later added rules have been added to the
specified positions:

nft -a list table inet nftables_svc
table inet nftables_svc { # handle 13
 chain INPUT { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport 22 accept # handle 2
 tcp dport 636 accept # handle 5
 tcp dport 443 accept # handle 3
 tcp dport 80 accept # handle 6
 reject # handle 4
 }
}

8. Remove the rule with handle 6:

nft delete rule inet nftables_svc INPUT handle 6

To remove a rule, you must specify the handle.

9. Display the rule set, and verify that the removed rule is no longer present:

nft -a list table inet nftables_svc
table inet nftables_svc { # handle 13
 chain INPUT { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport 22 accept # handle 2
 tcp dport 636 accept # handle 5
 tcp dport 443 accept # handle 3
 reject # handle 4
 }
}

10. Remove all remaining rules from the INPUT chain:

nft flush chain inet nftables_svc INPUT

11. Display the rule set, and verify that the INPUT chain is empty:

nft list table inet nftables_svc
table inet nftables_svc {
 chain INPUT {
 type filter hook input priority filter; policy accept
 }
}

12. Delete the INPUT chain:

nft delete chain inet nftables_svc INPUT

Red Hat Enterprise Linux 8 Securing networks

140

You can also use this command to delete chains that still contain rules.

13. Display the rule set, and verify that the INPUT chain has been deleted:

nft list table inet nftables_svc
table inet nftables_svc {
}

14. Delete the nftables_svc table:

nft delete table inet nftables_svc

You can also use this command to delete tables that still contain chains.

NOTE

To delete the entire rule set, use the nft flush ruleset command instead of
manually deleting all rules, chains, and tables in separate commands.

Additional resources

nft(8) man page

8.4. CONFIGURING NAT USING NFTABLES

With nftables, you can configure the following network address translation (NAT) types:

Masquerading

Source NAT (SNAT)

Destination NAT (DNAT)

Redirect

IMPORTANT

You can only use real interface names in iifname and oifname parameters, and
alternative names (altname) are not supported.

8.4.1. NAT types

These are the different network address translation (NAT) types:

Masquerading and source NAT (SNAT)

Use one of these NAT types to change the source IP address of packets. For example, Internet
Service Providers (ISPs) do not route private IP ranges, such as 10.0.0.0/8. If you use private IP
ranges in your network and users should be able to reach servers on the internet, map the source IP
address of packets from these ranges to a public IP address.
Masquerading and SNAT are very similar to one another. The differences are:

Masquerading automatically uses the IP address of the outgoing interface. Therefore, use
masquerading if the outgoing interface uses a dynamic IP address.

CHAPTER 8. GETTING STARTED WITH NFTABLES

141

SNAT sets the source IP address of packets to a specified IP and does not dynamically look
up the IP of the outgoing interface. Therefore, SNAT is faster than masquerading. Use SNAT
if the outgoing interface uses a fixed IP address.

Destination NAT (DNAT)

Use this NAT type to rewrite the destination address and port of incoming packets. For example, if
your web server uses an IP address from a private IP range and is, therefore, not directly accessible
from the internet, you can set a DNAT rule on the router to redirect incoming traffic to this server.

Redirect

This type is a special case of DNAT that redirects packets to the local machine depending on the
chain hook. For example, if a service runs on a different port than its standard port, you can redirect
incoming traffic from the standard port to this specific port.

8.4.2. Configuring masquerading using nftables

Masquerading enables a router to dynamically change the source IP of packets sent through an
interface to the IP address of the interface. This means that if the interface gets a new IP assigned,
nftables automatically uses the new IP when replacing the source IP.

Replace the source IP of packets leaving the host through the ens3 interface to the IP set on ens3.

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting and postrouting chains to the table:

nft add chain nat postrouting { type nat hook postrouting priority 100 \; }

IMPORTANT

Even if you do not add a rule to the prerouting chain, the nftables framework
requires this chain to match incoming packet replies.

Note that you must pass the -- option to the nft command to prevent the shell from interpreting
the negative priority value as an option of the nft command.

3. Add a rule to the postrouting chain that matches outgoing packets on the ens3 interface:

nft add rule nat postrouting oifname "ens3" masquerade

8.4.3. Configuring source NAT using nftables

On a router, Source NAT (SNAT) enables you to change the IP of packets sent through an interface to a
specific IP address. The router then replaces the source IP of outgoing packets.

Procedure

1. Create a table:

Red Hat Enterprise Linux 8 Securing networks

142

nft add table nat

2. Add the prerouting and postrouting chains to the table:

nft add chain nat postrouting { type nat hook postrouting priority 100 \; }

IMPORTANT

Even if you do not add a rule to the postrouting chain, the nftables framework
requires this chain to match outgoing packet replies.

Note that you must pass the -- option to the nft command to prevent the shell from interpreting
the negative priority value as an option of the nft command.

3. Add a rule to the postrouting chain that replaces the source IP of outgoing packets through
ens3 with 192.0.2.1:

nft add rule nat postrouting oifname "ens3" snat to 192.0.2.1

Additional resources

Forwarding incoming packets on a specific local port to a different host

8.4.4. Configuring destination NAT using nftables

Destination NAT (DNAT) enables you to redirect traffic on a router to a host that is not directly
accessible from the internet.

For example, with DNAT the router redirects incoming traffic sent to port 80 and 443 to a web server
with the IP address 192.0.2.1.

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain nat postrouting { type nat hook postrouting priority 100 \; }

IMPORTANT

Even if you do not add a rule to the postrouting chain, the nftables framework
requires this chain to match outgoing packet replies.

Note that you must pass the -- option to the nft command to prevent the shell from interpreting
the negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming traffic to port 80 and 443 on the
ens3 interface of the router to the web server with the IP address 192.0.2.1:

CHAPTER 8. GETTING STARTED WITH NFTABLES

143

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#forwarding-incoming-packets-on-a-specific-local-port-to-a-different-host_configuring-port-forwarding-using-nftables

nft add rule nat prerouting iifname ens3 tcp dport { 80, 443 } dnat to 192.0.2.1

4. Depending on your environment, add either a SNAT or masquerading rule to change the source
address for packets returning from the web server to the sender:

a. If the ens3 interface uses a dynamic IP addresses, add a masquerading rule:

nft add rule nat postrouting oifname "ens3" masquerade

b. If the ens3 interface uses a static IP address, add a SNAT rule. For example, if the ens3
uses the 198.51.100.1 IP address:

nft add rule nat postrouting oifname "ens3" snat to 198.51.100.1

5. Enable packet forwarding:

echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

Additional resources

NAT types

8.4.5. Configuring a redirect using nftables

The redirect feature is a special case of destination network address translation (DNAT) that redirects
packets to the local machine depending on the chain hook.

For example, you can redirect incoming and forwarded traffic sent to port 22 of the local host to port
2222.

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting chain to the table:

nft -- add chain nat prerouting { type nat hook prerouting priority -100 \; }

Note that you must pass the -- option to the nft command to prevent the shell from interpreting
the negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming traffic on port 22 to port 2222:

nft add rule nat prerouting tcp dport 22 redirect to 2222

Additional resources

NAT types

Red Hat Enterprise Linux 8 Securing networks

144

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#nat-types_configuring-nat-using-nftables
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#nat-types_configuring-nat-using-nftables

8.4.6. Configuring flowtable by using nftables

The nftables utility uses the netfilter framework to provide network address translation (NAT) for
network traffic and provides the fastpath feature-based flowtable mechanism to accelerate packet
forwarding.

The flowtable mechanism has the following features:

Uses connection tracking to bypass the classic packet forwarding path.

Avoids revisiting the routing table by bypassing the classic packet processing.

Works only with TCP and UDP protocols.

Hardware independent software fast path.

Procedure

1. Add an example-table table of inet family:

nft add table inet <example-table>

2. Add an example-flowtable flowtable with ingress hook and filter as a priority type:

nft add flowtable inet <example-table> <example-flowtable> { hook ingress priority
filter \; devices = { enp1s0, enp7s0 } \; }

3. Add an example-forwardchain flow to the flowtable from a packet processing table:

nft add chain inet <example-table> <example-forwardchain> { type filter hook
forward priority filter \; }

This command adds a flowtable of filter type with forward hook and filter priority.

4. Add a rule with established connection tracking state to offload example-flowtable flow:

nft add rule inet <example-table> <example-forwardchain> ct state established flow
add @<example-flowtable>

Verification

Verify the properties of example-table:

nft list table inet <example-table>
table inet example-table {
 flowtable example-flowtable {
 hook ingress priority filter
 devices = { enp1s0, enp7s0 }
 }

 chain example-forwardchain {
type filter hook forward priority filter; policy accept;

CHAPTER 8. GETTING STARTED WITH NFTABLES

145

ct state established flow add @example-flowtable
 }
}

Additional resources

nft(8) man page

8.5. USING SETS IN NFTABLES COMMANDS

The nftables framework natively supports sets. You can use sets, for example, if a rule should match
multiple IP addresses, port numbers, interfaces, or any other match criteria.

8.5.1. Using anonymous sets in nftables

An anonymous set contains comma-separated values enclosed in curly brackets, such as { 22, 80, 443 },
that you use directly in a rule. You can use anonymous sets also for IP addresses and any other match
criteria.

The drawback of anonymous sets is that if you want to change the set, you must replace the rule. For a
dynamic solution, use named sets as described in Using named sets in nftables .

Prerequisites

The example_chain chain and the example_table table in the inet family exists.

Procedure

1. For example, to add a rule to example_chain in example_table that allows incoming traffic to
port 22, 80, and 443:

nft add rule inet example_table example_chain tcp dport { 22, 80, 443 } accept

2. Optional: Display all chains and their rules in example_table:

nft list table inet example_table
table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 tcp dport { ssh, http, https } accept
 }
}

8.5.2. Using named sets in nftables

The nftables framework supports mutable named sets. A named set is a list or range of elements that
you can use in multiple rules within a table. Another benefit over anonymous sets is that you can update
a named set without replacing the rules that use the set.

When you create a named set, you must specify the type of elements the set contains. You can set the
following types:

ipv4_addr for a set that contains IPv4 addresses or ranges, such as 192.0.2.1 or 192.0.2.0/24.

Red Hat Enterprise Linux 8 Securing networks

146

ipv6_addr for a set that contains IPv6 addresses or ranges, such as 2001:db8:1::1 or
2001:db8:1::1/64.

ether_addr for a set that contains a list of media access control (MAC) addresses, such as
52:54:00:6b:66:42.

inet_proto for a set that contains a list of internet protocol types, such as tcp.

inet_service for a set that contains a list of internet services, such as ssh.

mark for a set that contains a list of packet marks. Packet marks can be any positive 32-bit
integer value (0 to 2147483647).

Prerequisites

The example_chain chain and the example_table table exists.

Procedure

1. Create an empty set. The following examples create a set for IPv4 addresses:

To create a set that can store multiple individual IPv4 addresses:

nft add set inet example_table example_set { type ipv4_addr \; }

To create a set that can store IPv4 address ranges:

nft add set inet example_table example_set { type ipv4_addr \; flags interval \; }

IMPORTANT

To prevent the shell from interpreting the semicolons as the end of the
command, you must escape the semicolons with a backslash.

2. Optional: Create rules that use the set. For example, the following command adds a rule to the
example_chain in the example_table that will drop all packets from IPv4 addresses in
example_set.

nft add rule inet example_table example_chain ip saddr @example_set drop

Because example_set is still empty, the rule has currently no effect.

3. Add IPv4 addresses to example_set:

If you create a set that stores individual IPv4 addresses, enter:

nft add element inet example_table example_set { 192.0.2.1, 192.0.2.2 }

If you create a set that stores IPv4 ranges, enter:

nft add element inet example_table example_set { 192.0.2.0-192.0.2.255 }

When you specify an IP address range, you can alternatively use the Classless Inter-Domain
Routing (CIDR) notation, such as 192.0.2.0/24 in the above example.

CHAPTER 8. GETTING STARTED WITH NFTABLES

147

8.5.3. Additional resources

The Sets section in the nft(8) man page

8.6. USING VERDICT MAPS IN NFTABLES COMMANDS

Verdict maps, which are also known as dictionaries, enable nft to perform an action based on packet
information by mapping match criteria to an action.

8.6.1. Using anonymous maps in nftables

An anonymous map is a { match_criteria : action } statement that you use directly in a rule. The
statement can contain multiple comma-separated mappings.

The drawback of an anonymous map is that if you want to change the map, you must replace the rule.
For a dynamic solution, use named maps as described in Using named maps in nftables .

For example, you can use an anonymous map to route both TCP and UDP packets of the IPv4 and IPv6
protocol to different chains to count incoming TCP and UDP packets separately.

Procedure

1. Create a new table:

nft add table inet example_table

2. Create the tcp_packets chain in example_table:

nft add chain inet example_table tcp_packets

3. Add a rule to tcp_packets that counts the traffic in this chain:

nft add rule inet example_table tcp_packets counter

4. Create the udp_packets chain in example_table

nft add chain inet example_table udp_packets

5. Add a rule to udp_packets that counts the traffic in this chain:

nft add rule inet example_table udp_packets counter

6. Create a chain for incoming traffic. For example, to create a chain named incoming_traffic in
example_table that filters incoming traffic:

nft add chain inet example_table incoming_traffic { type filter hook input priority 0 \;
}

7. Add a rule with an anonymous map to incoming_traffic:

nft add rule inet example_table incoming_traffic ip protocol vmap { tcp : jump
tcp_packets, udp : jump udp_packets }

The anonymous map distinguishes the packets and sends them to the different counter chains

Red Hat Enterprise Linux 8 Securing networks

148

The anonymous map distinguishes the packets and sends them to the different counter chains
based on their protocol.

8. To list the traffic counters, display example_table:

nft list table inet example_table
table inet example_table {
 chain tcp_packets {
 counter packets 36379 bytes 2103816
 }

 chain udp_packets {
 counter packets 10 bytes 1559
 }

 chain incoming_traffic {
 type filter hook input priority filter; policy accept;
 ip protocol vmap { tcp : jump tcp_packets, udp : jump udp_packets }
 }
}

The counters in the tcp_packets and udp_packets chain display both the number of received
packets and bytes.

8.6.2. Using named maps in nftables

The nftables framework supports named maps. You can use these maps in multiple rules within a table.
Another benefit over anonymous maps is that you can update a named map without replacing the rules
that use it.

When you create a named map, you must specify the type of elements:

ipv4_addr for a map whose match part contains an IPv4 address, such as 192.0.2.1.

ipv6_addr for a map whose match part contains an IPv6 address, such as 2001:db8:1::1.

ether_addr for a map whose match part contains a media access control (MAC) address, such
as 52:54:00:6b:66:42.

inet_proto for a map whose match part contains an internet protocol type, such as tcp.

inet_service for a map whose match part contains an internet services name port number, such
as ssh or 22.

mark for a map whose match part contains a packet mark. A packet mark can be any positive
32-bit integer value (0 to 2147483647).

counter for a map whose match part contains a counter value. The counter value can be any
positive 64-bit integer value.

quota for a map whose match part contains a quota value. The quota value can be any positive
64-bit integer value.

For example, you can allow or drop incoming packets based on their source IP address. Using a named
map, you require only a single rule to configure this scenario while the IP addresses and actions are
dynamically stored in the map.

CHAPTER 8. GETTING STARTED WITH NFTABLES

149

Procedure

1. Create a table. For example, to create a table named example_table that processes IPv4
packets:

nft add table ip example_table

2. Create a chain. For example, to create a chain named example_chain in example_table:

nft add chain ip example_table example_chain { type filter hook input priority 0 \; }

IMPORTANT

To prevent the shell from interpreting the semicolons as the end of the
command, you must escape the semicolons with a backslash.

3. Create an empty map. For example, to create a map for IPv4 addresses:

nft add map ip example_table example_map { type ipv4_addr : verdict \; }

4. Create rules that use the map. For example, the following command adds a rule to
example_chain in example_table that applies actions to IPv4 addresses which are both
defined in example_map:

nft add rule example_table example_chain ip saddr vmap @example_map

5. Add IPv4 addresses and corresponding actions to example_map:

nft add element ip example_table example_map { 192.0.2.1 : accept, 192.0.2.2 : drop }

This example defines the mappings of IPv4 addresses to actions. In combination with the rule
created above, the firewall accepts packet from 192.0.2.1 and drops packets from 192.0.2.2.

6. Optional: Enhance the map by adding another IP address and action statement:

nft add element ip example_table example_map { 192.0.2.3 : accept }

7. Optional: Remove an entry from the map:

nft delete element ip example_table example_map { 192.0.2.1 }

8. Optional: Display the rule set:

nft list ruleset
table ip example_table {
 map example_map {
 type ipv4_addr : verdict
 elements = { 192.0.2.2 : drop, 192.0.2.3 : accept }
 }

 chain example_chain {
 type filter hook input priority filter; policy accept;

Red Hat Enterprise Linux 8 Securing networks

150

 ip saddr vmap @example_map
 }
}

8.6.3. Additional resources

The Maps section in the nft(8) man page

8.7. EXAMPLE: PROTECTING A LAN AND DMZ USING AN NFTABLES
SCRIPT

Use the nftables framework on a RHEL router to write and install a firewall script that protects the
network clients in an internal LAN and a web server in a DMZ from unauthorized access from the
internet and from other networks.

IMPORTANT

This example is only for demonstration purposes and describes a scenario with specific
requirements.

Firewall scripts highly depend on the network infrastructure and security requirements.
Use this example to learn the concepts of nftables firewalls when you write scripts for
your own environment.

8.7.1. Network conditions

The network in this example has the following conditions:

The router is connected to the following networks:

The internet through interface enp1s0

The internal LAN through interface enp7s0

The DMZ through enp8s0

The internet interface of the router has both a static IPv4 address (203.0.113.1) and IPv6
address (2001:db8:a::1) assigned.

The clients in the internal LAN use only private IPv4 addresses from the range 10.0.0.0/24.
Consequently, traffic from the LAN to the internet requires source network address translation
(SNAT).

The administrator PCs in the internal LAN use the IP addresses 10.0.0.100 and 10.0.0.200.

The DMZ uses public IP addresses from the ranges 198.51.100.0/24 and 2001:db8:b::/56.

The web server in the DMZ uses the IP addresses 198.51.100.5 and 2001:db8:b::5.

The router acts as a caching DNS server for hosts in the LAN and DMZ.

8.7.2. Security requirements to the firewall script

The following are the requirements to the nftables firewall in the example network:

CHAPTER 8. GETTING STARTED WITH NFTABLES

151

The router must be able to:

Recursively resolve DNS queries.

Perform all connections on the loopback interface.

Clients in the internal LAN must be able to:

Query the caching DNS server running on the router.

Access the HTTPS server in the DMZ.

Access any HTTPS server on the internet.

The PCs of the administrators must be able to access the router and every server in the DMZ
using SSH.

The web server in the DMZ must be able to:

Query the caching DNS server running on the router.

Access HTTPS servers on the internet to download updates.

Hosts on the internet must be able to:

Access the HTTPS servers in the DMZ.

Additionally, the following security requirements exists:

Connection attempts that are not explicitly allowed should be dropped.

Dropped packets should be logged.

8.7.3. Configuring logging of dropped packets to a file

By default, systemd logs kernel messages, such as for dropped packets, to the journal. Additionally, you
can configure the rsyslog service to log such entries to a separate file. To ensure that the log file does
not grow infinitely, configure a rotation policy.

Prerequisites

The rsyslog package is installed.

The rsyslog service is running.

Procedure

1. Create the /etc/rsyslog.d/nftables.conf file with the following content:

Using this configuration, the rsyslog service logs dropped packets to the /var/log/nftables.log
file instead of /var/log/messages.

2. Restart the rsyslog service:

:msg, startswith, "nft drop" -/var/log/nftables.log
& stop

Red Hat Enterprise Linux 8 Securing networks

152

systemctl restart rsyslog

3. Create the /etc/logrotate.d/nftables file with the following content to rotate
/var/log/nftables.log if the size exceeds 10 MB:

The maxage 30 setting defines that logrotate removes rotated logs older than 30 days during
the next rotation operation.

Additional resources

rsyslog.conf(5) man page

logrotate(8) man page

8.7.4. Writing and activating the nftables script

This example is an nftables firewall script that runs on a RHEL router and protects the clients in an
internal LAN and a web server in a DMZ. For details about the network and the requirements for the
firewall used in the example, see Network conditions and Security requirements to the firewall script .

WARNING

This nftables firewall script is only for demonstration purposes. Do not use it
without adapting it to your environments and security requirements.

Prerequisites

The network is configured as described in Network conditions.

Procedure

1. Create the /etc/nftables/firewall.nft script with the following content:

/var/log/nftables.log {
 size +10M
 maxage 30
 sharedscripts
 postrotate
 /usr/bin/systemctl kill -s HUP rsyslog.service >/dev/null 2>&1 || true
 endscript
}

Remove all rules
flush ruleset

Table for both IPv4 and IPv6 rules
table inet nftables_svc {

CHAPTER 8. GETTING STARTED WITH NFTABLES

153

 # Define variables for the interface name
 define INET_DEV = enp1s0
 define LAN_DEV = enp7s0
 define DMZ_DEV = enp8s0

 # Set with the IPv4 addresses of admin PCs
 set admin_pc_ipv4 {
 type ipv4_addr
 elements = { 10.0.0.100, 10.0.0.200 }
 }

 # Chain for incoming trafic. Default policy: drop
 chain INPUT {
 type filter hook input priority filter
 policy drop

 # Accept packets in established and related state, drop invalid packets
 ct state vmap { established:accept, related:accept, invalid:drop }

 # Accept incoming traffic on loopback interface
 iifname lo accept

 # Allow request from LAN and DMZ to local DNS server
 iifname { $LAN_DEV, $DMZ_DEV } meta l4proto { tcp, udp } th dport 53 accept

 # Allow admins PCs to access the router using SSH
 iifname $LAN_DEV ip saddr @admin_pc_ipv4 tcp dport 22 accept

 # Last action: Log blocked packets
 # (packets that were not accepted in previous rules in this chain)
 log prefix "nft drop IN : "
 }

 # Chain for outgoing traffic. Default policy: drop
 chain OUTPUT {
 type filter hook output priority filter
 policy drop

 # Accept packets in established and related state, drop invalid packets
 ct state vmap { established:accept, related:accept, invalid:drop }

 # Accept outgoing traffic on loopback interface
 oifname lo accept

 # Allow local DNS server to recursively resolve queries
 oifname $INET_DEV meta l4proto { tcp, udp } th dport 53 accept

 # Last action: Log blocked packets
 log prefix "nft drop OUT: "
 }

 # Chain for forwarding traffic. Default policy: drop

Red Hat Enterprise Linux 8 Securing networks

154

2. Include the /etc/nftables/firewall.nft script in the /etc/sysconfig/nftables.conf file:

include "/etc/nftables/firewall.nft"

3. Enable IPv4 forwarding:

echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

4. Enable and start the nftables service:

systemctl enable --now nftables

Verification

1. Optional: Verify the nftables rule set:

nft list ruleset
...

2. Try to perform an access that the firewall prevents. For example, try to access the router using
SSH from the DMZ:

 chain FORWARD {
 type filter hook forward priority filter
 policy drop

 # Accept packets in established and related state, drop invalid packets
 ct state vmap { established:accept, related:accept, invalid:drop }

 # IPv4 access from LAN and internet to the HTTPS server in the DMZ
 iifname { $LAN_DEV, $INET_DEV } oifname $DMZ_DEV ip daddr 198.51.100.5 tcp dport
443 accept

 # IPv6 access from internet to the HTTPS server in the DMZ
 iifname $INET_DEV oifname $DMZ_DEV ip6 daddr 2001:db8:b::5 tcp dport 443 accept

 # Access from LAN and DMZ to HTTPS servers on the internet
 iifname { $LAN_DEV, $DMZ_DEV } oifname $INET_DEV tcp dport 443 accept

 # Last action: Log blocked packets
 log prefix "nft drop FWD: "
 }

 # Postrouting chain to handle SNAT
 chain postrouting {
 type nat hook postrouting priority srcnat; policy accept;

 # SNAT for IPv4 traffic from LAN to internet
 iifname $LAN_DEV oifname $INET_DEV snat ip to 203.0.113.1
 }
}

CHAPTER 8. GETTING STARTED WITH NFTABLES

155

ssh router.example.com
ssh: connect to host router.example.com port 22: Network is unreachable

3. Depending on your logging settings, search:

The systemd journal for the blocked packets:

journalctl -k -g "nft drop"
Oct 14 17:27:18 router kernel: nft drop IN : IN=enp8s0 OUT= MAC=...
SRC=198.51.100.5 DST=198.51.100.1 ... PROTO=TCP SPT=40464 DPT=22 ... SYN ...

The /var/log/nftables.log file for the blocked packets:

Oct 14 17:27:18 router kernel: nft drop IN : IN=enp8s0 OUT= MAC=...
SRC=198.51.100.5 DST=198.51.100.1 ... PROTO=TCP SPT=40464 DPT=22 ... SYN ...

8.8. CONFIGURING PORT FORWARDING USING NFTABLES

Port forwarding enables administrators to forward packets sent to a specific destination port to a
different local or remote port.

For example, if your web server does not have a public IP address, you can set a port forwarding rule on
your firewall that forwards incoming packets on port 80 and 443 on the firewall to the web server. With
this firewall rule, users on the internet can access the web server using the IP or host name of the
firewall.

8.8.1. Forwarding incoming packets to a different local port

You can use nftables to forward packets. For example, you can forward incoming IPv4 packets on port
8022 to port 22 on the local system.

Procedure

1. Create a table named nat with the ip address family:

nft add table ip nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain ip nat prerouting { type nat hook prerouting priority -100 \; }

NOTE

Pass the -- option to the nft command to prevent the shell from interpreting the
negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming packets on port 8022 to the local
port 22:

nft add rule ip nat prerouting tcp dport 8022 redirect to :22

Red Hat Enterprise Linux 8 Securing networks

156

8.8.2. Forwarding incoming packets on a specific local port to a different host

You can use a destination network address translation (DNAT) rule to forward incoming packets on a
local port to a remote host. This enables users on the internet to access a service that runs on a host
with a private IP address.

For example, you can forward incoming IPv4 packets on the local port 443 to the same port number on
the remote system with the 192.0.2.1 IP address.

Prerequisites

You are logged in as the root user on the system that should forward the packets.

Procedure

1. Create a table named nat with the ip address family:

nft add table ip nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain ip nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain ip nat postrouting { type nat hook postrouting priority 100 \; }

NOTE

Pass the -- option to the nft command to prevent the shell from interpreting the
negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming packets on port 443 to the same port
on 192.0.2.1:

nft add rule ip nat prerouting tcp dport 443 dnat to 192.0.2.1

4. Add a rule to the postrouting chain to masquerade outgoing traffic:

nft add rule ip nat postrouting daddr 192.0.2.1 masquerade

5. Enable packet forwarding:

echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

8.9. USING NFTABLES TO LIMIT THE AMOUNT OF CONNECTIONS

You can use nftables to limit the number of connections or to block IP addresses that attempt to
establish a given amount of connections to prevent them from using too many system resources.

8.9.1. Limiting the number of connections by using nftables

By using the ct count parameter of the nft utility, you can limit the number of simultaneous connections

CHAPTER 8. GETTING STARTED WITH NFTABLES

157

By using the ct count parameter of the nft utility, you can limit the number of simultaneous connections
per IP address. For example, you can use this feature to configure that each source IP address can only
establish two parallel SSH connections to a host.

Procedure

1. Create the filter table with the inet address family:

nft add table inet filter

2. Add the input chain to the inet filter table:

nft add chain inet filter input { type filter hook input priority 0 \; }

3. Create a dynamic set for IPv4 addresses:

nft add set inet filter limit-ssh { type ipv4_addr\; flags dynamic \;}

4. Add a rule to the input chain that allows only two simultaneous incoming connections to the
SSH port (22) from an IPv4 address and rejects all further connections from the same IP:

nft add rule inet filter input tcp dport ssh ct state new add @limit-ssh { ip saddr ct
count over 2 } counter reject

Verification

1. Establish more than two new simultaneous SSH connections from the same IP address to the
host. Nftables refuses connections to the SSH port if two connections are already established.

2. Display the limit-ssh meter:

nft list set inet filter limit-ssh
table inet filter {
 set limit-ssh {
 type ipv4_addr
 size 65535
 flags dynamic
 elements = { 192.0.2.1 ct count over 2 , 192.0.2.2 ct count over 2 }
 }
}

The elements entry displays addresses that currently match the rule. In this example, elements
lists IP addresses that have active connections to the SSH port. Note that the output does not
display the number of active connections or if connections were rejected.

8.9.2. Blocking IP addresses that attempt more than ten new incoming TCP
connections within one minute

You can temporarily block hosts that are establishing more than ten IPv4 TCP connections within one
minute.

Procedure

Red Hat Enterprise Linux 8 Securing networks

158

1. Create the filter table with the ip address family:

nft add table ip filter

2. Add the input chain to the filter table:

nft add chain ip filter input { type filter hook input priority 0 \; }

3. Add a rule that drops all packets from source addresses that attempt to establish more than ten
TCP connections within one minute:

nft add rule ip filter input ip protocol tcp ct state new, untracked meter ratemeter { ip
saddr timeout 5m limit rate over 10/minute } drop

The timeout 5m parameter defines that nftables automatically removes entries after five
minutes to prevent that the meter fills up with stale entries.

Verification

To display the meter’s content, enter:

nft list meter ip filter ratemeter
table ip filter {
 meter ratemeter {
 type ipv4_addr
 size 65535
 flags dynamic,timeout
 elements = { 192.0.2.1 limit rate over 10/minute timeout 5m expires 4m58s224ms }
 }
}

8.10. DEBUGGING NFTABLES RULES

The nftables framework provides different options for administrators to debug rules and if packets
match them.

8.10.1. Creating a rule with a counter

To identify if a rule is matched, you can use a counter.

For more information about a procedure that adds a counter to an existing rule, see Adding a
counter to an existing rule in Configuring and managing networking

Prerequisites

The chain to which you want to add the rule exists.

Procedure

1. Add a new rule with the counter parameter to the chain. The following example adds a rule with
a counter that allows TCP traffic on port 22 and counts the packets and traffic that match this
rule:

CHAPTER 8. GETTING STARTED WITH NFTABLES

159

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#adding-a-counter-to-an-existing-rule_debugging-nftables-rules

nft add rule inet example_table example_chain tcp dport 22 counter accept

2. To display the counter values:

nft list ruleset
table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 tcp dport ssh counter packets 6872 bytes 105448565 accept
 }
}

8.10.2. Adding a counter to an existing rule

To identify if a rule is matched, you can use a counter.

For more information about a procedure that adds a new rule with a counter, see Creating a rule
with the counter in Configuring and managing networking

Prerequisites

The rule to which you want to add the counter exists.

Procedure

1. Display the rules in the chain including their handles:

nft --handle list chain inet example_table example_chain
table inet example_table {
 chain example_chain { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport ssh accept # handle 4
 }
}

2. Add the counter by replacing the rule but with the counter parameter. The following example
replaces the rule displayed in the previous step and adds a counter:

nft replace rule inet example_table example_chain handle 4 tcp dport 22 counter
accept

3. To display the counter values:

nft list ruleset
table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 tcp dport ssh counter packets 6872 bytes 105448565 accept
 }
}

8.10.3. Monitoring packets that match an existing rule

Red Hat Enterprise Linux 8 Securing networks

160

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#creating-a-rule-with-a-counter_debugging-nftables-rules

The tracing feature in nftables in combination with the nft monitor command enables administrators to
display packets that match a rule. You can enable tracing for a rule an use it to monitoring packets that
match this rule.

Prerequisites

The rule to which you want to add the counter exists.

Procedure

1. Display the rules in the chain including their handles:

nft --handle list chain inet example_table example_chain
table inet example_table {
 chain example_chain { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport ssh accept # handle 4
 }
}

2. Add the tracing feature by replacing the rule but with the meta nftrace set 1 parameters. The
following example replaces the rule displayed in the previous step and enables tracing:

nft replace rule inet example_table example_chain handle 4 tcp dport 22 meta nftrace
set 1 accept

3. Use the nft monitor command to display the tracing. The following example filters the output of
the command to display only entries that contain inet example_table example_chain:

nft monitor | grep "inet example_table example_chain"
trace id 3c5eb15e inet example_table example_chain packet: iif "enp1s0" ether saddr
52:54:00:17:ff:e4 ether daddr 52:54:00:72:2f:6e ip saddr 192.0.2.1 ip daddr 192.0.2.2 ip dscp
cs0 ip ecn not-ect ip ttl 64 ip id 49710 ip protocol tcp ip length 60 tcp sport 56728 tcp dport
ssh tcp flags == syn tcp window 64240
trace id 3c5eb15e inet example_table example_chain rule tcp dport ssh nftrace set 1 accept
(verdict accept)
...

WARNING

Depending on the number of rules with tracing enabled and the amount of
matching traffic, the nft monitor command can display a lot of output. Use
grep or other utilities to filter the output.

8.11. BACKING UP AND RESTORING THE NFTABLES RULE SET

You can backup nftables rules to a file and later restoring them. Also, administrators can use a file with
the rules to, for example, transfer the rules to a different server.

CHAPTER 8. GETTING STARTED WITH NFTABLES

161

8.11.1. Backing up the nftables rule set to a file

You can use the nft utility to back up the nftables rule set to a file.

Procedure

To backup nftables rules:

In a format produced by nft list ruleset format:

nft list ruleset > file.nft

In JSON format:

nft -j list ruleset > file.json

8.11.2. Restoring the nftables rule set from a file

You can restore the nftables rule set from a file.

Procedure

To restore nftables rules:

If the file to restore is in the format produced by nft list ruleset or contains nft commands
directly:

nft -f file.nft

If the file to restore is in JSON format:

nft -j -f file.json

8.12. ADDITIONAL RESOURCES

Using nftables in Red Hat Enterprise Linux 8

What comes after iptables? Its successor, of course: nftables

Firewalld: The Future is nftables

Red Hat Enterprise Linux 8 Securing networks

162

https://www.redhat.com/en/blog/using-nftables-red-hat-enterprise-linux-8
https://developers.redhat.com/blog/2016/10/28/what-comes-after-iptables-its-successor-of-course-nftables/
https://developers.redhat.com/blog/2018/08/10/firewalld-the-future-is-nftables/

CHAPTER 9. SECURING NETWORK SERVICES
Red Hat Enterprise Linux 8 supports many different types of network servers. Their network services
can expose the system security to risks of various types of attacks, such as denial of service attacks
(DoS), distributed denial of service attacks (DDoS), script vulnerability attacks, and buffer overflow
attacks.

To increase the system security against attacks, it is important to monitor active network services that
you use. For example, when a network service is running on a machine, its daemon listens for
connections on network ports, and this can reduce the security. To limit exposure to attacks over the
network, all services that are unused should be turned off.

9.1. SECURING THE RPCBIND SERVICE

The rpcbind service is a dynamic port-assignment daemon for remote procedure calls (RPC) services
such as Network Information Service (NIS) and Network File System (NFS). Because it has weak
authentication mechanisms and can assign a wide range of ports for the services it controls, it is
important to secure rpcbind.

You can secure rpcbind by restricting access to all networks and defining specific exceptions using
firewall rules on the server.

NOTE

The rpcbind service is required on NFSv2 and NFSv3 servers.

The rpcbind service is not required on NFSv4.

Prerequisites

The rpcbind package is installed.

The firewalld package is installed and the service is running.

Procedure

1. Add firewall rules, for example:

Limit TCP connection and accept packages only from the 192.168.0.0/24 host via the 111
port:

firewall-cmd --add-rich-rule='rule family="ipv4" port port="111" protocol="tcp" source
address="192.168.0.0/24" invert="True" drop'

Limit TCP connection and accept packages only from local host via the 111 port:

firewall-cmd --add-rich-rule='rule family="ipv4" port port="111" protocol="tcp" source
address="127.0.0.1" accept'

Limit UDP connection and accept packages only from the 192.168.0.0/24 host via the 111
port:

firewall-cmd --permanent --add-rich-rule='rule family="ipv4" port port="111"
protocol="udp" source address="192.168.0.0/24" invert="True" drop'

To make the firewall settings permanent, use the --permanent option when adding firewall

CHAPTER 9. SECURING NETWORK SERVICES

163

To make the firewall settings permanent, use the --permanent option when adding firewall
rules.

2. Reload the firewall to apply the new rules:

firewall-cmd --reload

Verification

List the firewall rules:

firewall-cmd --list-rich-rule
rule family="ipv4" port port="111" protocol="tcp" source address="192.168.0.0/24"
invert="True" drop
rule family="ipv4" port port="111" protocol="tcp" source address="127.0.0.1" accept
rule family="ipv4" port port="111" protocol="udp" source address="192.168.0.0/24"
invert="True" drop

Additional resources

For more information about NFSv4-only servers, see Configuring an NFSv4-only server.

Using and configuring firewalld

9.2. SECURING THE RPC.MOUNTD SERVICE

The rpc.mountd daemon implements the server side of the NFS mount protocol. The NFS mount
protocol is used by NFS version 2 (RFC 1904) and NFS version 3 (RFC 1813).

You can secure the rpc.mountd service by adding firewall rules to the server. You can restrict access to
all networks and define specific exceptions using firewall rules.

Prerequisites

The rpc.mountd package is installed.

The firewalld package is installed and the service is running.

Procedure

1. Add firewall rules to the server, for example:

Accept mountd connections from the 192.168.0.0/24 host:

firewall-cmd --add-rich-rule 'rule family="ipv4" service name="mountd" source
address="192.168.0.0/24" invert="True" drop'

Accept mountd connections from the local host:

firewall-cmd --permanent --add-rich-rule 'rule family="ipv4" source address="127.0.0.1"
service name="mountd" accept'

To make the firewall settings permanent, use the --permanent option when adding firewall
rules.

Red Hat Enterprise Linux 8 Securing networks

164

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/deploying-an-nfs-server_deploying-different-types-of-servers#configuring-an-nfsv4-only-server_deploying-an-nfs-server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/using-and-configuring-firewalld_securing-networks

2. Reload the firewall to apply the new rules:

firewall-cmd --reload

Verification

List the firewall rules:

firewall-cmd --list-rich-rule
rule family="ipv4" service name="mountd" source address="192.168.0.0/24" invert="True"
drop
rule family="ipv4" source address="127.0.0.1" service name="mountd" accept

Additional resources

Using and configuring firewalld

9.3. SECURING THE NFS SERVICE

You can secure Network File System version 4 (NFSv4) by authenticating and encrypting all file system
operations using Kerberos. When using NFSv4 with Network Address Translation (NAT) or a firewall, you
can turn off the delegations by modifying the /etc/default/nfs file. Delegation is a technique by which
the server delegates the management of a file to a client. In contrast, NFSv2 and NFSv3 do not use
Kerberos for locking and mounting files.

The NFS service sends the traffic using TCP in all versions of NFS. The service supports Kerberos user
and group authentication, as part of the RPCSEC_GSS kernel module.

NFS allows remote hosts to mount file systems over a network and interact with those file systems as if
they are mounted locally. You can merge the resources on centralized servers and additionally
customize NFS mount options in the /etc/nfsmount.conf file when sharing the file systems.

9.3.1. Export options for securing an NFS server

The NFS server determines a list structure of directories and hosts about which file systems to export to
which hosts in the /etc/exports file.

CHAPTER 9. SECURING NETWORK SERVICES

165

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/using-and-configuring-firewalld_securing-networks

WARNING

Extra spaces in the syntax of the /etc/exports file can lead to major changes in the
configuration.

In the following example, the /tmp/nfs/ directory is shared with the
bob.example.com host and has read and write permissions.

/tmp/nfs/ bob.example.com(rw)

The following example is the same as the previous one but shares the same
directory to the bob.example.com host with read-only permissions and shares it to
the world with read and write permissions due to a single space character after the
hostname.

/tmp/nfs/ bob.example.com (rw)

You can check the shared directories on your system by entering the showmount -
e <hostname> command.

You can use the following export options on the /etc/exports file:

WARNING

Export an entire file system because exporting a subdirectory of a file system is not
secure. An attacker might access the unexported part of a partially-exported file
system.

ro

Exports the NFS volume as read-only.

rw

Allows read and write requests on the NFS volume. Use this option cautiously because allowing write
access increases the risk of attacks. If your scenario requires mounting the directories with the rw
option, make sure they are not writable for all users to reduce possible risks.

root_squash

Maps requests from uid/gid 0 to the anonymous uid/gid. This does not apply to any other uids or
gids that might be equally sensitive, such as the bin user or the staff group.

no_root_squash

Turns off root squashing. By default, NFS shares change the root user to the nobody user, which is
an unprivileged user account. This changes the owner of all the root created files to nobody, which
prevents the uploading of programs with the setuid bit set. When using the no_root_squash option,
remote root users can change any file on the shared file system and leave applications infected by
trojans for other users.

Red Hat Enterprise Linux 8 Securing networks

166

secure

Restricts exports to reserved ports. By default, the server allows client communication only through
reserved ports. However, it is easy for anyone to become a root user on a client on many networks, so
it is rarely safe for the server to assume that communication through a reserved port is privileged.
Therefore the restriction to reserved ports is of limited value; it is better to rely on Kerberos, firewalls,
and restriction of exports to particular clients.

Additionally, consider the following best practices when exporting an NFS server:

Exporting home directories is a risk because some applications store passwords in plain text or in
a weakly encrypted format. You can reduce the risk by reviewing and improving the application
code.

Some users do not set passwords on SSH keys which again leads to risks with home directories.
You can reduce these risks by enforcing the use of passwords or using Kerberos.

Restrict the NFS exports only to required clients. Use the showmount -e command on the NFS
server to review what the server is exporting. Do not export anything that is not specifically
required.

Do not allow unnecessary users to log in to a server to reduce the risk of attacks. You can
periodically check who and what can access the server.

Additional resources

Using automount in IdM when using Red Hat Identity Management

exports(5) and nfs(5) man pages

9.3.2. Mount options for securing an NFS client

You can pass the following options to the mount command to increase the security of NFS-based
clients:

nosuid

Use the nosuid option to disable the set-user-identifier or set-group-identifier bits. This prevents
remote users from gaining higher privileges by running a setuid program and you can use this option
opposite to setuid option.

noexec

Use the noexec option to disable all executable files on the client. Use this to prevent users from
accidentally executing files placed in the shared file system.

nodev

Use the nodev option to prevent the client’s processing of device files as a hardware device.

resvport

Use the resvport option to restrict communication to a reserved port and you can use a privileged
source port to communicate with the server. The reserved ports are reserved for privileged users and
processes such as the root user.

sec

Use the sec option on the NFS server to choose the RPCGSS security flavor for accessing files on
the mount point. Valid security flavors are none, sys, krb5, krb5i, and krb5p.

IMPORTANT

CHAPTER 9. SECURING NETWORK SERVICES

167

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#using-automount-in-idm_configuring-and-managing-idm

IMPORTANT

The MIT Kerberos libraries provided by the krb5-libs package do not support the Data
Encryption Standard (DES) algorithm in new deployments. DES is deprecated and
disabled by default in Kerberos libraries because of security and compatibility reasons.
Use newer and more secure algorithms instead of DES, unless your environment requires
DES for compatibility reasons.

Additional resources

Frequently-used NFS mount options

9.3.3. Securing NFS with firewall

To secure the firewall on an NFS server, keep only the required ports open. Do not use the NFS
connection port numbers for any other service.

Prerequisites

The nfs-utils package is installed.

The firewalld package is installed and running.

Procedure

On NFSv4, the firewall must open TCP port 2049.

On NFSv3, open four additional ports with 2049:

1. rpcbind service assigns the NFS ports dynamically, which might cause problems when
creating firewall rules. To simplify this process, use the /etc/nfs.conf file to specify which
ports to use:

a. Set TCP and UDP port for mountd (rpc.mountd) in the [mountd] section in
port=<value> format.

b. Set TCP and UDP port for statd (rpc.statd) in the [statd] section in port=<value>
format.

2. Set the TCP and UDP port for the NFS lock manager (nlockmgr) in the /etc/nfs.conf file:

a. Set TCP port for nlockmgr (rpc.statd) in the [lockd] section in port=value format.
Alternatively, you can use the nlm_tcpport option in the /etc/modprobe.d/lockd.conf
file.

b. Set UDP port for nlockmgr (rpc.statd) in the [lockd] section in udp-port=value
format. Alternatively, you can use the nlm_udpport option in the
/etc/modprobe.d/lockd.conf file.

Verification

List the active ports and RPC programs on the NFS server:

$ rpcinfo -p

Red Hat Enterprise Linux 8 Securing networks

168

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_file_systems/mounting-nfs-shares_managing-file-systems#frequently-used-nfs-mount-options_mounting-nfs-shares

Additional resources

Using automount in IdM when using Red Hat Identity Management

exports(5) and nfs(5) man pages

9.4. SECURING THE FTP SERVICE

You can use the File Transfer Protocol (FTP) to transfer files over a network. Because all FTP
transactions with the server, including user authentication, are unencrypted, make sure it is configured
securely.

RHEL 8 provides two FTP servers:

Red Hat Content Accelerator (tux)

A kernel-space web server with FTP capabilities.

Very Secure FTP Daemon (vsftpd)

A standalone, security-oriented implementation of the FTP service.

The following security guidelines are for setting up the vsftpd FTP service.

9.4.1. Securing the FTP greeting banner

When a user connects to the FTP service, FTP shows a greeting banner, which by default includes
version information. Attackers might use this information to identify weaknesses in the system. You can
hide this information by changing the default banner.

You can define a custom banner by editing the /etc/banners/ftp.msg file to either directly include a
single-line message, or to refer to a separate file, which can contain a multi-line message.

Procedure

To define a single line message, add the following option to the /etc/vsftpd/vsftpd.conf file:

ftpd_banner=Hello, all activity on ftp.example.com is logged.

To define a message in a separate file:

Create a .msg file which contains the banner message, for example /etc/banners/ftp.msg:

######### Hello, all activity on ftp.example.com is logged. #########

To simplify the management of multiple banners, place all banners into the /etc/banners/
directory.

Add the path to the banner file to the banner_file option in the /etc/vsftpd/vsftpd.conf file:

banner_file=/etc/banners/ftp.msg

Verification

Display the modified banner:

CHAPTER 9. SECURING NETWORK SERVICES

169

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#using-automount-in-idm_configuring-and-managing-idm

$ ftp localhost
Trying ::1…
Connected to localhost (::1).
Hello, all activity on ftp.example.com is logged.

9.4.2. Preventing anonymous access and uploads in FTP

By default, installing the vsftpd package creates the /var/ftp/ directory and a directory tree for
anonymous users with read-only permissions on the directories. Because anonymous users can access
the data, do not store sensitive data in these directories.

To increase the security of the system, you can configure the FTP server to allow anonymous users to
upload files to a specific directory and prevent anonymous users from reading data. In the following
procedure, the anonymous user must be able to upload files in the directory owned by the root user but
not change it.

Procedure

Create a write-only directory in the /var/ftp/pub/ directory:

mkdir /var/ftp/pub/upload
chmod 730 /var/ftp/pub/upload
ls -ld /var/ftp/pub/upload
drwx-wx---. 2 root ftp 4096 Nov 14 22:57 /var/ftp/pub/upload

Add the following lines to the /etc/vsftpd/vsftpd.conf file:

anon_upload_enable=YES
anonymous_enable=YES

Optional: If your system has SELinux enabled and enforcing, enable SELinux boolean attributes
allow_ftpd_anon_write and allow_ftpd_full_access.

WARNING

Allowing anonymous users to read and write in directories might lead to the server
becoming a repository for stolen software.

9.4.3. Securing user accounts for FTP

FTP transmits usernames and passwords unencrypted over insecure networks for authentication. You
can improve the security of FTP by denying system users access to the server from their user accounts.

Perform as many of the following steps as applicable for your configuration.

Procedure

Disable all user accounts in the vsftpd server, by adding the following line to the
/etc/vsftpd/vsftpd.conf file:

Red Hat Enterprise Linux 8 Securing networks

170

local_enable=NO

Disable FTP access for specific accounts or specific groups of accounts, such as the root user
and users with sudo privileges, by adding the usernames to the /etc/pam.d/vsftpd PAM
configuration file.

Disable user accounts, by adding the usernames to the /etc/vsftpd/ftpusers file.

9.4.4. Additional resources

ftpd_selinux(8) man page

9.5. SECURING HTTP SERVERS

9.5.1. Security enhancements in httpd.conf

You can enhance the security of the Apache HTTP server by configuring security options in the
/etc/httpd/conf/httpd.conf file.

Always verify that all scripts running on the system work correctly before putting them into production.

Ensure that only the root user has write permissions to any directory containing scripts or Common
Gateway Interfaces (CGI). To change the directory ownership to root with write permissions, enter the
following commands:

chown root <directory_name>
chmod 755 <directory_name>

In the /etc/httpd/conf/httpd.conf file, you can configure the following options:

FollowSymLinks

This directive is enabled by default and follows symbolic links in the directory.

Indexes

This directive is enabled by default. Disable this directive to prevent visitors from browsing files on
the server.

UserDir

This directive is disabled by default because it can confirm the presence of a user account on the
system. To activate user directory browsing for all user directories other than /root/, use the UserDir
enabled and UserDir disabled root directives. To add users to the list of disabled accounts, add a
space-delimited list of users on the UserDir disabled line.

ServerTokens

This directive controls the server response header field which is sent back to clients. You can use the
following parameters to customize the information:

ServerTokens Full

Provides all available information such as web server version number, server operating system
details, installed Apache modules, for example:

Apache/2.4.37 (Red Hat Enterprise Linux) MyMod/1.2

ServerTokens Full-Release

CHAPTER 9. SECURING NETWORK SERVICES

171

Provides all available information with release versions, for example:

Apache/2.4.37 (Red Hat Enterprise Linux) (Release 41.module+el8.5.0+11772+c8e0c271)

ServerTokens Prod / ServerTokens ProductOnly

Provides the web server name, for example:

Apache

ServerTokens Major

Provides the web server major release version, for example:

Apache/2

ServerTokens Minor

Provides the web server minor release version, for example:

Apache/2.4

ServerTokens Min / ServerTokens Minimal

Provides the web server minimal release version, for example:

Apache/2.4.37

ServerTokens OS

Provides the web server release version and operating system, for example:

Apache/2.4.37 (Red Hat Enterprise Linux)

Use the ServerTokens Prod option to reduce the risk of attackers gaining any valuable
information about your system.

IMPORTANT

Do not remove the IncludesNoExec directive. By default, the Server Side Includes (SSI)
module cannot execute commands. Changing this can allow an attacker to enter
commands on the system.

Removing httpd modules

You can remove the httpd modules to limit the functionality of the HTTP server. To do so, edit
configuration files in the /etc/httpd/conf.modules.d/ or /etc/httpd/conf.d/ directory. For example, to
remove the proxy module:

echo '# All proxy modules disabled' > /etc/httpd/conf.modules.d/00-proxy.conf

Additional resources

Red Hat Enterprise Linux 8 Securing networks

172

The Apache HTTP server

Customizing the SELinux policy for the Apache HTTP server

9.5.2. Securing the Nginx server configuration

Nginx is a high-performance HTTP and proxy server. You can harden your Nginx configuration with the
following configuration options.

Procedure

To disable version strings, modify the server_tokens configuration option:

server_tokens off;

This option stops displaying additional details such as server version number. This configuration
displays only the server name in all requests served by Nginx, for example:

$ curl -sI http://localhost | grep Server
Server: nginx

Add extra security headers that mitigate certain known web application vulnerabilities in specific
/etc/nginx/ conf files:

For example, the X-Frame-Options header option denies any page outside of your domain
to frame any content served by Nginx, mitigating clickjacking attacks:

add_header X-Frame-Options "SAMEORIGIN";

For example, the x-content-type header prevents MIME-type sniffing in certain older
browsers:

add_header X-Content-Type-Options nosniff;

For example, the X-XSS-Protection header enables Cross-Site Scripting (XSS) filtering,
which prevents browsers from rendering potentially malicious content included in a
response by Nginx:

add_header X-XSS-Protection "1; mode=block";

You can limit the services exposed to the public and limit what they do and accept from the
visitors, for example:

limit_except GET {
 allow 192.168.1.0/32;
 deny all;
}

The snippet will limit access to all methods except GET and HEAD.

You can disable HTTP methods, for example:

Allow GET, PUT, POST; return "405 Method Not Allowed" for all others.

CHAPTER 9. SECURING NETWORK SERVICES

173

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/setting-apache-http-server_deploying-different-types-of-servers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/using_selinux/index#customizing-the-selinux-policy-for-the-apache-http-server-in-a-non-standard-configuration_configuring-selinux-for-applications-and-services-with-non-standard-configurations

if ($request_method !~ ^(GET|PUT|POST)$) {
 return 405;
}

You can configure SSL to protect the data served by your Nginx web server, consider serving it
over HTTPS only. Furthermore, you can generate a secure configuration profile for enabling SSL
in your Nginx server using the Mozilla SSL Configuration Generator. The generated
configuration ensures that known vulnerable protocols (for example, SSLv2 and SSLv3),
ciphers, and hashing algorithms (for example, 3DES and MD5) are disabled. You can also use
the SSL Server Test to verify that your configuration meets modern security requirements.

Additional resources

Mozilla SSL Configuration Generator

SSL Server Test

9.6. SECURING POSTGRESQL BY LIMITING ACCESS TO
AUTHENTICATED LOCAL USERS

PostgreSQL is an object-relational database management system (DBMS). In Red Hat Enterprise Linux,
PostgreSQL is provided by the postgresql-server package.

You can reduce the risks of attacks by configuring client authentication. The pg_hba.conf configuration
file stored in the database cluster’s data directory controls the client authentication. Follow the
procedure to configure PostgreSQL for host-based authentication.

Procedure

1. Install PostgreSQL:

yum install postgresql-server

2. Initialize a database storage area using one of the following options:

a. Using the initdb utility:

$ initdb -D /home/postgresql/db1/

The initdb command with the -D option creates the directory you specify if it does not
already exist, for example /home/postgresql/db1/. This directory then contains all the data
stored in the database and also the client authentication configuration file.

b. Using the postgresql-setup script:

$ postgresql-setup --initdb

By default, the script uses the /var/lib/pgsql/data/ directory. This script helps system
administrators with basic database cluster administration.

3. To allow any authenticated local users to access any database with their usernames, modify the
following line in the pg_hba.conf file:

local all all trust

Red Hat Enterprise Linux 8 Securing networks

174

https://ssl-config.mozilla.org/
https://www.ssllabs.com/ssltest/

This can be problematic when you use layered applications that create database users and no
local users. If you do not want to explicitly control all user names on the system, remove the
local line entry from the pg_hba.conf file.

4. Restart the database to apply the changes:

systemctl restart postgresql

The previous command updates the database and also verifies the syntax of the configuration
file.

9.7. SECURING THE MEMCACHED SERVICE

Memcached is an open source, high-performance, distributed memory object caching system. It can
improve the performance of dynamic web applications by lowering database load.

Memcached is an in-memory key-value store for small chunks of arbitrary data, such as strings and
objects, from results of database calls, API calls, or page rendering. Memcached allows assigning
memory from underutilized areas to applications that require more memory.

In 2018, vulnerabilities of DDoS amplification attacks by exploiting Memcached servers exposed to the
public internet were discovered. These attacks took advantage of Memcached communication using the
UDP protocol for transport. The attack was effective because of the high amplification ratio where a
request with the size of a few hundred bytes could generate a response of a few megabytes or even
hundreds of megabytes in size.

In most situations, the memcached service does not need to be exposed to the public Internet. Such
exposure may have its own security problems, allowing remote attackers to leak or modify information
stored in Memcached.

9.7.1. Hardening Memcached against DDoS

To mitigate security risks, perform as many of the following steps as applicable for your configuration.

Procedure

Configure a firewall in your LAN. If your Memcached server should be accessible only in your
local network, do not route external traffic to ports used by the memcached service. For
example, remove the default port 11211 from the list of allowed ports:

firewall-cmd --remove-port=11211/udp
firewall-cmd --runtime-to-permanent

If you use a single Memcached server on the same machine as your application, set up
memcached to listen to localhost traffic only. Modify the OPTIONS value in the
/etc/sysconfig/memcached file:

OPTIONS="-l 127.0.0.1,::1"

Enable Simple Authentication and Security Layer (SASL) authentication:

1. Modify or add the /etc/sasl2/memcached.conf file:

sasldb_path: /path.to/memcached.sasldb

CHAPTER 9. SECURING NETWORK SERVICES

175

2. Add an account in the SASL database:

saslpasswd2 -a memcached -c cacheuser -f /path.to/memcached.sasldb

3. Ensure that the database is accessible for the memcached user and group:

chown memcached:memcached /path.to/memcached.sasldb

4. Enable SASL support in Memcached by adding the -S value to the OPTIONS parameter in
the /etc/sysconfig/memcached file:

OPTIONS="-S"

5. Restart the Memcached server to apply the changes:

systemctl restart memcached

6. Add the username and password created in the SASL database to the Memcached client
configuration of your application.

Encrypt communication between Memcached clients and servers with TLS:

1. Enable encrypted communication between Memcached clients and servers with TLS by
adding the -Z value to the OPTIONS parameter in the /etc/sysconfig/memcached file:

OPTIONS="-Z"

2. Add the certificate chain file path in the PEM format using the -o ssl_chain_cert option.

3. Add a private key file path using the -o ssl_key option.

Red Hat Enterprise Linux 8 Securing networks

176

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH
	1.1. SSH AND OPENSSH
	1.2. GENERATING SSH KEY PAIRS
	1.3. SETTING KEY-BASED AUTHENTICATION AS THE ONLY METHOD ON AN OPENSSH SERVER
	1.4. CACHING YOUR SSH CREDENTIALS BY USING SSH-AGENT
	1.5. AUTHENTICATING BY SSH KEYS STORED ON A SMART CARD
	1.6. MAKING OPENSSH MORE SECURE
	1.7. CONNECTING TO A REMOTE SERVER THROUGH AN SSH JUMP HOST
	1.8. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES
	1.8.1. Variables of the sshd RHEL system role
	1.8.2. Configuring OpenSSH servers by using the sshd RHEL system role
	1.8.3. Variables of the ssh RHEL system role
	1.8.4. Configuring OpenSSH clients by using the ssh RHEL system role
	1.8.5. Using the sshd RHEL system role for non-exclusive configuration

	1.9. ADDITIONAL RESOURCES

	CHAPTER 2. CREATING AND MANAGING TLS KEYS AND CERTIFICATES
	2.1. TLS CERTIFICATES
	2.2. CREATING A PRIVATE CA USING OPENSSL
	2.3. CREATING A PRIVATE KEY AND A CSR FOR A TLS SERVER CERTIFICATE USING OPENSSL
	2.4. CREATING A PRIVATE KEY AND A CSR FOR A TLS CLIENT CERTIFICATE USING OPENSSL
	2.5. USING A PRIVATE CA TO ISSUE CERTIFICATES FOR CSRS WITH OPENSSL
	2.6. CREATING A PRIVATE CA USING GNUTLS
	2.7. CREATING A PRIVATE KEY AND A CSR FOR A TLS SERVER CERTIFICATE USING GNUTLS
	2.8. CREATING A PRIVATE KEY AND A CSR FOR A TLS CLIENT CERTIFICATE USING GNUTLS
	2.9. USING A PRIVATE CA TO ISSUE CERTIFICATES FOR CSRS WITH GNUTLS

	CHAPTER 3. USING SHARED SYSTEM CERTIFICATES
	3.1. THE SYSTEM-WIDE TRUSTSTORE
	3.2. ADDING NEW CERTIFICATES
	3.3. MANAGING TRUSTED SYSTEM CERTIFICATES

	CHAPTER 4. PLANNING AND IMPLEMENTING TLS
	4.1. SSL AND TLS PROTOCOLS
	4.2. SECURITY CONSIDERATIONS FOR TLS IN RHEL 8
	4.2.1. Protocols
	4.2.2. Cipher suites
	4.2.3. Public key length

	4.3. HARDENING TLS CONFIGURATION IN APPLICATIONS
	4.3.1. Configuring the Apache HTTP server to use TLS
	4.3.2. Configuring the Nginx HTTP and proxy server to use TLS
	4.3.3. Configuring the Dovecot mail server to use TLS

	CHAPTER 5. SETTING UP AN IPSEC VPN
	5.1. LIBRESWAN AS AN IPSEC VPN IMPLEMENTATION
	5.2. AUTHENTICATION METHODS IN LIBRESWAN
	5.3. INSTALLING LIBRESWAN
	5.4. CREATING A HOST-TO-HOST VPN
	5.5. CONFIGURING A SITE-TO-SITE VPN
	5.6. CONFIGURING A REMOTE ACCESS VPN
	5.7. CONFIGURING A MESH VPN
	5.8. DEPLOYING A FIPS-COMPLIANT IPSEC VPN
	5.9. PROTECTING THE IPSEC NSS DATABASE BY A PASSWORD
	5.10. CONFIGURING AN IPSEC VPN TO USE TCP
	5.11. CONFIGURING AUTOMATIC DETECTION AND USAGE OF ESP HARDWARE OFFLOAD TO ACCELERATE AN IPSEC CONNECTION
	5.12. CONFIGURING ESP HARDWARE OFFLOAD ON A BOND TO ACCELERATE AN IPSEC CONNECTION
	5.13. CONFIGURING VPN CONNECTIONS WITH IPSEC BY USING THE RHEL SYSTEM ROLE
	5.13.1. Creating a host-to-host VPN with IPsec by using the vpn RHEL system role
	5.13.2. Creating an opportunistic mesh VPN connection with IPsec by using the vpn RHEL system role

	5.14. CONFIGURING IPSEC CONNECTIONS THAT OPT OUT OF THE SYSTEM-WIDE CRYPTO POLICIES
	5.15. TROUBLESHOOTING IPSEC VPN CONFIGURATIONS
	5.16. CONFIGURING A VPN CONNECTION WITH CONTROL-CENTER
	5.17. CONFIGURING A VPN CONNECTION USING NM-CONNECTION-EDITOR
	5.18. ADDITIONAL RESOURCES

	CHAPTER 6. USING MACSEC TO ENCRYPT LAYER-2 TRAFFIC IN THE SAME PHYSICAL NETWORK
	6.1. CONFIGURING A MACSEC CONNECTION BY USING NMCLI
	6.2. ADDITIONAL RESOURCES

	CHAPTER 7. USING AND CONFIGURING FIREWALLD
	7.1. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES
	7.2. FIREWALL ZONES
	7.3. FIREWALL POLICIES
	7.4. FIREWALL RULES
	7.5. ZONE CONFIGURATION FILES
	7.6. PREDEFINED FIREWALLD SERVICES
	7.7. WORKING WITH FIREWALLD ZONES
	7.7.1. Customizing firewall settings for a specific zone to enhance security
	7.7.2. Changing the default zone
	7.7.3. Assigning a network interface to a zone
	7.7.4. Assigning a zone to a connection using nmcli
	7.7.5. Manually assigning a zone to a network connection in a connection profile file
	7.7.6. Manually assigning a zone to a network connection in an ifcfg file
	7.7.7. Creating a new zone
	7.7.8. Enabling zones by using the web console
	7.7.9. Disabling zones by using the web console
	7.7.10. Using zone targets to set default behavior for incoming traffic

	7.8. CONTROLLING NETWORK TRAFFIC USING FIREWALLD
	7.8.1. Controlling traffic with predefined services using the CLI
	7.8.2. Controlling traffic with predefined services using the GUI
	7.8.3. Enabling services on the firewall by using the web console
	7.8.4. Configuring custom ports by using the web console
	7.8.5. Configuring firewalld to allow hosting a secure web server
	7.8.6. Closing unused or unnecessary ports to enhance network security
	7.8.7. Controlling traffic through the CLI
	7.8.8. Controlling traffic with protocols using GUI

	7.9. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON A SOURCE
	7.9.1. Adding a source
	7.9.2. Removing a source
	7.9.3. Removing a source port
	7.9.4. Using zones and sources to allow a service for only a specific domain

	7.10. FILTERING FORWARDED TRAFFIC BETWEEN ZONES
	7.10.1. The relationship between policy objects and zones
	7.10.2. Using priorities to sort policies
	7.10.3. Using policy objects to filter traffic between locally hosted containers and a network physically connected to the host
	7.10.4. Setting the default target of policy objects
	7.10.5. Using DNAT to forward HTTPS traffic to a different host

	7.11. CONFIGURING NAT USING FIREWALLD
	7.11.1. Network address translation types
	7.11.2. Configuring IP address masquerading
	7.11.3. Using DNAT to forward incoming HTTP traffic
	7.11.4. Redirecting traffic from a non-standard port to make the web service accessible on a standard port

	7.12. MANAGING ICMP REQUESTS
	7.12.1. Configuring ICMP filtering

	7.13. SETTING AND CONTROLLING IP SETS USING FIREWALLD
	7.13.1. Configuring dynamic updates for allowlisting with IP sets

	7.14. PRIORITIZING RICH RULES
	7.14.1. How the priority parameter organizes rules into different chains
	7.14.2. Setting the priority of a rich rule

	7.15. CONFIGURING FIREWALL LOCKDOWN
	7.15.1. Configuring lockdown using CLI
	7.15.2. Overview of lockdown allowlist configuration files

	7.16. ENABLING TRAFFIC FORWARDING BETWEEN DIFFERENT INTERFACES OR SOURCES WITHIN A FIREWALLD ZONE
	7.16.1. The difference between intra-zone forwarding and zones with the default target set to ACCEPT
	7.16.2. Using intra-zone forwarding to forward traffic between an Ethernet and Wi-Fi network

	7.17. CONFIGURING FIREWALLD BY USING THE RHEL SYSTEM ROLE
	7.17.1. Introduction to the firewall RHEL system role
	7.17.2. Resetting the firewalld settings by using the firewall RHEL system role
	7.17.3. Forwarding incoming traffic in firewalld from one local port to a different local port by using the firewall RHEL system role
	7.17.4. Managing ports in firewalld by using the firewall RHEL system role
	7.17.5. Configuring a firewalld DMZ zone by using the firewall RHEL system role

	CHAPTER 8. GETTING STARTED WITH NFTABLES
	8.1. MIGRATING FROM IPTABLES TO NFTABLES
	8.1.1. When to use firewalld, nftables, or iptables
	8.1.2. Converting iptables and ip6tables rule sets to nftables
	8.1.3. Converting single iptables and ip6tables rules to nftables
	8.1.4. Comparison of common iptables and nftables commands

	8.2. WRITING AND EXECUTING NFTABLES SCRIPTS
	8.2.1. Supported nftables script formats
	8.2.2. Running nftables scripts
	8.2.3. Using comments in nftables scripts
	8.2.4. Using variables in nftables script
	8.2.5. Including files in nftables scripts
	8.2.6. Automatically loading nftables rules when the system boots

	8.3. CREATING AND MANAGING NFTABLES TABLES, CHAINS, AND RULES
	8.3.1. Basics of nftables tables
	8.3.2. Basics of nftables chains
	Chain types
	Chain priorities
	Chain policies

	8.3.3. Basics of nftables rules
	8.3.4. Managing tables, chains, and rules using nft commands

	8.4. CONFIGURING NAT USING NFTABLES
	8.4.1. NAT types
	8.4.2. Configuring masquerading using nftables
	8.4.3. Configuring source NAT using nftables
	8.4.4. Configuring destination NAT using nftables
	8.4.5. Configuring a redirect using nftables
	8.4.6. Configuring flowtable by using nftables

	8.5. USING SETS IN NFTABLES COMMANDS
	8.5.1. Using anonymous sets in nftables
	8.5.2. Using named sets in nftables
	8.5.3. Additional resources

	8.6. USING VERDICT MAPS IN NFTABLES COMMANDS
	8.6.1. Using anonymous maps in nftables
	8.6.2. Using named maps in nftables
	8.6.3. Additional resources

	8.7. EXAMPLE: PROTECTING A LAN AND DMZ USING AN NFTABLES SCRIPT
	8.7.1. Network conditions
	8.7.2. Security requirements to the firewall script
	8.7.3. Configuring logging of dropped packets to a file
	8.7.4. Writing and activating the nftables script

	8.8. CONFIGURING PORT FORWARDING USING NFTABLES
	8.8.1. Forwarding incoming packets to a different local port
	8.8.2. Forwarding incoming packets on a specific local port to a different host

	8.9. USING NFTABLES TO LIMIT THE AMOUNT OF CONNECTIONS
	8.9.1. Limiting the number of connections by using nftables
	8.9.2. Blocking IP addresses that attempt more than ten new incoming TCP connections within one minute

	8.10. DEBUGGING NFTABLES RULES
	8.10.1. Creating a rule with a counter
	8.10.2. Adding a counter to an existing rule
	8.10.3. Monitoring packets that match an existing rule

	8.11. BACKING UP AND RESTORING THE NFTABLES RULE SET
	8.11.1. Backing up the nftables rule set to a file
	8.11.2. Restoring the nftables rule set from a file

	8.12. ADDITIONAL RESOURCES

	CHAPTER 9. SECURING NETWORK SERVICES
	9.1. SECURING THE RPCBIND SERVICE
	9.2. SECURING THE RPC.MOUNTD SERVICE
	9.3. SECURING THE NFS SERVICE
	9.3.1. Export options for securing an NFS server
	9.3.2. Mount options for securing an NFS client
	9.3.3. Securing NFS with firewall

	9.4. SECURING THE FTP SERVICE
	9.4.1. Securing the FTP greeting banner
	9.4.2. Preventing anonymous access and uploads in FTP
	9.4.3. Securing user accounts for FTP
	9.4.4. Additional resources

	9.5. SECURING HTTP SERVERS
	9.5.1. Security enhancements in httpd.conf
	9.5.2. Securing the Nginx server configuration

	9.6. SECURING POSTGRESQL BY LIMITING ACCESS TO AUTHENTICATED LOCAL USERS
	9.7. SECURING THE MEMCACHED SERVICE
	9.7.1. Hardening Memcached against DDoS

