
Red Hat Enterprise Linux 8

Using Ansible to install and manage Identity
Management

Using Ansible to maintain an IdM environment

Last Updated: 2024-07-25

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity
Management

Using Ansible to maintain an IdM environment

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat provides the ansible-freeipa package to enable administrators to run Red Hat Identity
Management (IdM) by using Ansible. You can use playbooks to install IdM and manage users,
groups, hosts, access control, and configuration settings.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. ANSIBLE TERMINOLOGY

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK
2.1. ANSIBLE AND ITS ADVANTAGES FOR INSTALLING IDM

Advantages of using Ansible to install IdM
2.2. INSTALLING THE ANSIBLE-FREEIPA PACKAGE
2.3. ANSIBLE ROLES LOCATION IN THE FILE SYSTEM
2.4. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH AN INTEGRATED DNS AND AN INTEGRATED
CA AS THE ROOT CA
2.5. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH EXTERNAL DNS AND AN INTEGRATED CA AS
THE ROOT CA
2.6. DEPLOYING AN IDM SERVER WITH AN INTEGRATED CA AS THE ROOT CA USING AN ANSIBLE
PLAYBOOK
2.7. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH AN INTEGRATED DNS AND AN EXTERNAL CA
AS THE ROOT CA
2.8. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH EXTERNAL DNS AND AN EXTERNAL CA AS THE
ROOT CA
2.9. DEPLOYING AN IDM SERVER WITH AN EXTERNAL CA AS THE ROOT CA USING AN ANSIBLE PLAYBOOK

2.10. UNINSTALLING AN IDM SERVER USING AN ANSIBLE PLAYBOOK
2.11. USING AN ANSIBLE PLAYBOOK TO UNINSTALL AN IDM SERVER EVEN IF THIS LEADS TO A
DISCONNECTED TOPOLOGY
2.12. ADDITIONAL RESOURCES

CHAPTER 3. INSTALLING AN IDENTITY MANAGEMENT REPLICA USING AN ANSIBLE PLAYBOOK
3.1. SPECIFYING THE BASE, SERVER AND CLIENT VARIABLES FOR INSTALLING THE IDM REPLICA
3.2. SPECIFYING THE CREDENTIALS FOR INSTALLING THE IDM REPLICA USING AN ANSIBLE PLAYBOOK

3.3. DEPLOYING AN IDM REPLICA USING AN ANSIBLE PLAYBOOK
3.4. UNINSTALLING AN IDM REPLICA USING AN ANSIBLE PLAYBOOK

CHAPTER 4. INSTALLING AN IDENTITY MANAGEMENT CLIENT USING AN ANSIBLE PLAYBOOK
4.1. SETTING THE PARAMETERS OF THE INVENTORY FILE FOR THE AUTODISCOVERY CLIENT
INSTALLATION MODE
4.2. SETTING THE PARAMETERS OF THE INVENTORY FILE WHEN AUTODISCOVERY IS NOT POSSIBLE
DURING CLIENT INSTALLATION
4.3. AUTHORIZATION OPTIONS FOR IDM CLIENT ENROLLMENT USING AN ANSIBLE PLAYBOOK
4.4. DEPLOYING AN IDM CLIENT USING AN ANSIBLE PLAYBOOK
4.5. USING THE ONE-TIME PASSWORD METHOD IN ANSIBLE TO INSTALL AN IDM CLIENT
4.6. TESTING AN IDENTITY MANAGEMENT CLIENT AFTER ANSIBLE INSTALLATION
4.7. UNINSTALLING AN IDM CLIENT USING AN ANSIBLE PLAYBOOK

CHAPTER 5. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS
5.1. PREPARING A CONTROL NODE AND MANAGED NODES FOR MANAGING IDM USING ANSIBLE
PLAYBOOKS
5.2. DIFFERENT METHODS TO PROVIDE THE CREDENTIALS REQUIRED FOR ANSIBLE-FREEIPA
PLAYBOOKS

CHAPTER 6. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS
6.1. RETRIEVING IDM CONFIGURATION USING AN ANSIBLE PLAYBOOK
6.2. CONFIGURING THE IDM CA RENEWAL SERVER USING AN ANSIBLE PLAYBOOK
6.3. CONFIGURING THE DEFAULT SHELL FOR IDM USERS USING AN ANSIBLE PLAYBOOK

9

10

11
11
11
11

12

13

15

18

19

22

25
26

27
29

30
30

34
35
35

37

37

39
42
43
44
46
46

48

48

50

53
53
55
56

Table of Contents

1

. .

. .

. .

. .

. .

. .

6.4. CONFIGURING A NETBIOS NAME FOR AN IDM DOMAIN BY USING ANSIBLE
6.5. ENSURING THAT IDM USERS AND GROUPS HAVE SIDS BY USING ANSIBLE
6.6. ADDITIONAL RESOURCES

CHAPTER 7. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS
7.1. USER LIFE CYCLE
7.2. ENSURING THE PRESENCE OF AN IDM USER USING AN ANSIBLE PLAYBOOK
7.3. ENSURING THE PRESENCE OF MULTIPLE IDM USERS USING ANSIBLE PLAYBOOKS
7.4. ENSURING THE PRESENCE OF MULTIPLE IDM USERS FROM A JSON FILE USING ANSIBLE
PLAYBOOKS
7.5. ENSURING THE ABSENCE OF USERS USING ANSIBLE PLAYBOOKS
7.6. ADDITIONAL RESOURCES

CHAPTER 8. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS
8.1. THE DIFFERENT GROUP TYPES IN IDM
8.2. DIRECT AND INDIRECT GROUP MEMBERS
8.3. ENSURING THE PRESENCE OF IDM GROUPS AND GROUP MEMBERS USING ANSIBLE PLAYBOOKS

8.4. USING ANSIBLE TO ADD MULTIPLE IDM GROUPS IN A SINGLE TASK
8.5. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
8.6. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE
PLAYBOOKS
8.7. ENSURING THE ABSENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE
PLAYBOOKS

CHAPTER 9. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM
9.1. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS PRESENT
9.2. USING ANSIBLE TO ENSURE THAT A SPECIFIED CONDITION IS PRESENT IN AN IDM USER GROUP
AUTOMEMBER RULE
9.3. USING ANSIBLE TO ENSURE THAT A CONDITION IS ABSENT FROM AN IDM USER GROUP
AUTOMEMBER RULE
9.4. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS ABSENT
9.5. USING ANSIBLE TO ENSURE THAT A CONDITION IS PRESENT IN AN IDM HOST GROUP AUTOMEMBER
RULE

CHAPTER 10. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM
10.1. SELF-SERVICE ACCESS CONTROL IN IDM
10.2. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS PRESENT
10.3. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS ABSENT
10.4. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE HAS SPECIFIC ATTRIBUTES
10.5. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

CHAPTER 11. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE
PLAYBOOKS

11.1. DELEGATION RULES
11.2. CREATING AN ANSIBLE INVENTORY FILE FOR IDM
11.3. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS PRESENT
11.4. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS ABSENT
11.5. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE HAS SPECIFIC ATTRIBUTES
11.6. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM
12.1. PERMISSIONS IN IDM
12.2. DEFAULT MANAGED PERMISSIONS
12.3. PRIVILEGES IN IDM

58
59
61

62
62
63
65

67
69
70

71
71
72

73
75
76

77

79

81
81

82

85
87

88

91
91
91

93
94

96

98
98
98
99
101
102
104

107
107
108
110

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

2

. .

. .

. .

. .

. .

12.4. ROLES IN IDM
12.5. PREDEFINED ROLES IN IDENTITY MANAGEMENT
12.6. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE WITH PRIVILEGES IS PRESENT
12.7. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE IS ABSENT
12.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS ASSIGNED TO AN IDM RBAC ROLE
12.9. USING ANSIBLE TO ENSURE THAT SPECIFIC USERS ARE NOT ASSIGNED TO AN IDM RBAC ROLE
12.10. USING ANSIBLE TO ENSURE A SERVICE IS A MEMBER OF AN IDM RBAC ROLE
12.11. USING ANSIBLE TO ENSURE A HOST IS A MEMBER OF AN IDM RBAC ROLE
12.12. USING ANSIBLE TO ENSURE A HOST GROUP IS A MEMBER OF AN IDM RBAC ROLE

CHAPTER 13. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES
13.1. USING ANSIBLE TO ENSURE A CUSTOM IDM RBAC PRIVILEGE IS PRESENT
13.2. USING ANSIBLE TO ENSURE MEMBER PERMISSIONS ARE PRESENT IN A CUSTOM IDM RBAC
PRIVILEGE
13.3. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE DOES NOT INCLUDE A PERMISSION
13.4. USING ANSIBLE TO RENAME A CUSTOM IDM RBAC PRIVILEGE
13.5. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE IS ABSENT
13.6. ADDITIONAL RESOURCES

CHAPTER 14. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM
14.1. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS PRESENT
14.2. USING ANSIBLE TO ENSURE AN RBAC PERMISSION WITH AN ATTRIBUTE IS PRESENT
14.3. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS ABSENT
14.4. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS A MEMBER OF AN IDM RBAC PERMISSION
14.5. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS NOT A MEMBER OF AN IDM RBAC PERMISSION
14.6. USING ANSIBLE TO RENAME AN IDM RBAC PERMISSION
14.7. ADDITIONAL RESOURCES

CHAPTER 15. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM
15.1. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT EXISTS IN IDM
15.2. USING ANSIBLE TO ENSURE REPLICATION AGREEMENTS EXIST BETWEEN MULTIPLE IDM REPLICAS

15.3. USING ANSIBLE TO CHECK IF A REPLICATION AGREEMENT EXISTS BETWEEN TWO REPLICAS
15.4. USING ANSIBLE TO VERIFY THAT A TOPOLOGY SUFFIX EXISTS IN IDM
15.5. USING ANSIBLE TO REINITIALIZE AN IDM REPLICA
15.6. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT IS ABSENT IN IDM
15.7. ADDITIONAL RESOURCES

CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE
16.1. CHECKING THAT AN IDM SERVER IS PRESENT BY USING ANSIBLE
16.2. ENSURING THAT AN IDM SERVER IS ABSENT FROM AN IDM TOPOLOGY BY USING ANSIBLE
16.3. ENSURING THE ABSENCE OF AN IDM SERVER DESPITE HOSTING A LAST IDM SERVER ROLE
16.4. ENSURING THAT AN IDM SERVER IS ABSENT BUT NOT NECESSARILY DISCONNECTED FROM OTHER
IDM SERVERS
16.5. ENSURING THAT AN EXISTING IDM SERVER IS HIDDEN USING AN ANSIBLE PLAYBOOK
16.6. ENSURING THAT AN EXISTING IDM SERVER IS VISIBLE BY USING AN ANSIBLE PLAYBOOK
16.7. ENSURING THAT AN EXISTING IDM SERVER HAS AN IDM DNS LOCATION ASSIGNED
16.8. ENSURING THAT AN EXISTING IDM SERVER HAS NO IDM DNS LOCATION ASSIGNED

CHAPTER 17. MANAGING HOSTS USING ANSIBLE PLAYBOOKS
17.1. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH FQDN USING ANSIBLE PLAYBOOKS
17.2. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH DNS INFORMATION USING ANSIBLE
PLAYBOOKS
17.3. ENSURING THE PRESENCE OF MULTIPLE IDM HOST ENTRIES WITH RANDOM PASSWORDS USING
ANSIBLE PLAYBOOKS

110
110
111

113
114
116
118
119
121

123
123

124
126
128
130
131

132
132
134
136
137
139
140
142

143
143

145
147
149
150
152
154

155
155
156
158

160
161

163
164
166

169
169

171

173

Table of Contents

3

. .

. .

. .

. .

. .

17.4. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH MULTIPLE IP ADDRESSES USING ANSIBLE
PLAYBOOKS
17.5. ENSURING THE ABSENCE OF AN IDM HOST ENTRY USING ANSIBLE PLAYBOOKS
17.6. ADDITIONAL RESOURCES

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS
18.1. HOST GROUPS IN IDM
18.2. ENSURING THE PRESENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
18.3. ENSURING THE PRESENCE OF HOSTS IN IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
18.4. NESTING IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
18.5. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM HOST GROUPS USING ANSIBLE
PLAYBOOKS
18.6. ENSURING THE ABSENCE OF HOSTS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
18.7. ENSURING THE ABSENCE OF NESTED HOST GROUPS FROM IDM HOST GROUPS USING ANSIBLE
PLAYBOOKS
18.8. ENSURING THE ABSENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
18.9. ENSURING THE ABSENCE OF MEMBER MANAGERS FROM IDM HOST GROUPS USING ANSIBLE
PLAYBOOKS

CHAPTER 19. DEFINING IDM PASSWORD POLICIES
19.1. WHAT IS A PASSWORD POLICY
19.2. PASSWORD POLICIES IN IDM
19.3. ENSURING THE PRESENCE OF A PASSWORD POLICY IN IDM USING AN ANSIBLE PLAYBOOK
19.4. ADDITIONAL PASSWORD POLICY OPTIONS IN IDM
19.5. APPLYING ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM GROUP
19.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM
GROUP

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
20.1. SUDO ACCESS ON AN IDM CLIENT
20.2. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE CLI
20.3. GRANTING SUDO ACCESS TO AN AD USER ON AN IDM CLIENT USING THE CLI
20.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE IDM WEB UI
20.5. CREATING A SUDO RULE ON THE CLI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN IDM
CLIENT
20.6. CREATING A SUDO RULE IN THE IDM WEBUI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON
AN IDM CLIENT
20.7. ENABLING GSSAPI AUTHENTICATION FOR SUDO ON AN IDM CLIENT
20.8. ENABLING GSSAPI AUTHENTICATION AND ENFORCING KERBEROS AUTHENTICATION INDICATORS
FOR SUDO ON AN IDM CLIENT
20.9. SSSD OPTIONS CONTROLLING GSSAPI AUTHENTICATION FOR PAM SERVICES
20.10. TROUBLESHOOTING GSSAPI AUTHENTICATION FOR SUDO
20.11. USING AN ANSIBLE PLAYBOOK TO ENSURE SUDO ACCESS FOR AN IDM USER ON AN IDM CLIENT

CHAPTER 21. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING
ANSIBLE PLAYBOOKS

21.1. HOST-BASED ACCESS CONTROL RULES IN IDM
21.2. ENSURING THE PRESENCE OF AN HBAC RULE IN IDM USING AN ANSIBLE PLAYBOOK

CHAPTER 22. MANAGING IDM CERTIFICATES USING ANSIBLE
22.1. USING ANSIBLE TO REQUEST SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
22.2. USING ANSIBLE TO REVOKE SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
22.3. USING ANSIBLE TO RESTORE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES
22.4. USING ANSIBLE TO RETRIEVE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

175
177
178

179
179
179
181

183

184
186

188
189

191

194
194
194
196
197
198

201

204
204
204
207

211

213

216
221

223
226
227

229

232
232
232

235
235
236
237
238

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

4

. .

. .

. .

. .

. .

CHAPTER 23. VAULTS IN IDM
23.1. VAULTS AND THEIR BENEFITS
23.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS
23.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS
23.4. USER, SERVICE, AND SHARED VAULTS
23.5. VAULT CONTAINERS
23.6. BASIC IDM VAULT COMMANDS
23.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

CHAPTER 24. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS
24.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM USING ANSIBLE
24.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM USING ANSIBLE
24.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM USING ANSIBLE

CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

25.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT IN IDM USING ANSIBLE
25.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING ANSIBLE
25.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT USING ANSIBLE
25.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING ANSIBLE
25.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED USING ANSIBLE
25.6. ADDITIONAL RESOURCES

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE
26.1. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM USING AN ANSIBLE PLAYBOOK
26.2. ENSURING THE PRESENCE OF MULTIPLE SERVICES IN IDM ON AN IDM CLIENT USING A SINGLE
ANSIBLE TASK
26.3. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM ON A NON-IDM CLIENT USING AN ANSIBLE
PLAYBOOK
26.4. ENSURING THE PRESENCE OF AN HTTP SERVICE ON AN IDM CLIENT WITHOUT DNS USING AN
ANSIBLE PLAYBOOK
26.5. ENSURING THE PRESENCE OF AN EXTERNALLY SIGNED CERTIFICATE IN AN IDM SERVICE ENTRY
USING AN ANSIBLE PLAYBOOK
26.6. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS, GROUPS, HOSTS, OR HOST GROUPS TO
CREATE A KEYTAB OF A SERVICE
26.7. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS, GROUPS, HOSTS, OR HOST GROUPS TO
RETRIEVE A KEYTAB OF A SERVICE
26.8. ENSURING THE PRESENCE OF A KERBEROS PRINCIPAL ALIAS OF A SERVICE USING AN ANSIBLE
PLAYBOOK
26.9. ENSURING THE ABSENCE OF AN HTTP SERVICE IN IDM USING AN ANSIBLE PLAYBOOK
26.10. ADDITIONAL RESOURCES

CHAPTER 27. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS
27.1. HOW IDM ENSURES THAT GLOBAL FORWARDERS FROM /ETC/RESOLV.CONF ARE NOT REMOVED BY
NETWORKMANAGER
27.2. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
27.3. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
27.4. THE ACTION: MEMBER OPTION IN IPADNSCONFIG ANSIBLE-FREEIPA MODULES
27.5. DNS FORWARD POLICIES IN IDM
27.6. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT THE FORWARD FIRST POLICY IS SET IN IDM DNS
GLOBAL CONFIGURATION
27.7. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT GLOBAL FORWARDERS ARE DISABLED IN IDM DNS

27.8. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT SYNCHRONIZATION OF FORWARD AND REVERSE
LOOKUP ZONES IS DISABLED IN IDM DNS

240
240
241
242
242
242
243
243

245
245
246
248

251
252
254
255
257
260
263

264
264

266

267

268

270

272

274

276
278
280

281

281
282
284
286
287

288

290

291

Table of Contents

5

. .

. .

. .

. .

. .

. .

CHAPTER 28. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES
28.1. SUPPORTED DNS ZONE TYPES
28.2. CONFIGURATION ATTRIBUTES OF PRIMARY IDM DNS ZONES
28.3. USING ANSIBLE TO CREATE A PRIMARY ZONE IN IDM DNS
28.4. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF A PRIMARY DNS ZONE IN IDM WITH
MULTIPLE VARIABLES
28.5. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF A ZONE FOR REVERSE DNS LOOKUP
WHEN AN IP ADDRESS IS GIVEN

CHAPTER 29. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM
29.1. DNS-BASED SERVICE DISCOVERY
29.2. DEPLOYMENT CONSIDERATIONS FOR DNS LOCATIONS
29.3. DNS TIME TO LIVE (TTL)
29.4. USING ANSIBLE TO ENSURE AN IDM LOCATION IS PRESENT
29.5. USING ANSIBLE TO ENSURE AN IDM LOCATION IS ABSENT
29.6. ADDITIONAL RESOURCES

CHAPTER 30. MANAGING DNS FORWARDING IN IDM
30.1. THE TWO ROLES OF AN IDM DNS SERVER
30.2. DNS FORWARD POLICIES IN IDM
30.3. ADDING A GLOBAL FORWARDER IN THE IDM WEB UI
30.4. ADDING A GLOBAL FORWARDER IN THE CLI
30.5. ADDING A DNS FORWARD ZONE IN THE IDM WEB UI
30.6. ADDING A DNS FORWARD ZONE IN THE CLI
30.7. ESTABLISHING A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
30.8. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
30.9. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
30.10. ENSURING DNS GLOBAL FORWARDERS ARE DISABLED IN IDM USING ANSIBLE
30.11. ENSURING THE PRESENCE OF A DNS FORWARD ZONE IN IDM USING ANSIBLE
30.12. ENSURING A DNS FORWARD ZONE HAS MULTIPLE FORWARDERS IN IDM USING ANSIBLE
30.13. ENSURING A DNS FORWARD ZONE IS DISABLED IN IDM USING ANSIBLE
30.14. ENSURING THE ABSENCE OF A DNS FORWARD ZONE IN IDM USING ANSIBLE

CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM
31.1. DNS RECORDS IN IDM
31.2. COMMON IPA DNSRECORD-* OPTIONS
31.3. ENSURING THE PRESENCE OF A AND AAAA DNS RECORDS IN IDM USING ANSIBLE
31.4. ENSURING THE PRESENCE OF A AND PTR DNS RECORDS IN IDM USING ANSIBLE
31.5. ENSURING THE PRESENCE OF MULTIPLE DNS RECORDS IN IDM USING ANSIBLE
31.6. ENSURING THE PRESENCE OF MULTIPLE CNAME RECORDS IN IDM USING ANSIBLE
31.7. ENSURING THE PRESENCE OF AN SRV RECORD IN IDM USING ANSIBLE

CHAPTER 32. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS
32.1. AUTOFS AND AUTOMOUNT IN IDM
32.2. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT IDENTITY MANAGEMENT DOMAIN
32.3. CONFIGURING AUTOMOUNT LOCATIONS, MAPS, AND KEYS IN IDM BY USING ANSIBLE
32.4. USING ANSIBLE TO ADD IDM USERS TO A GROUP THAT OWNS NFS SHARES
32.5. CONFIGURING AUTOMOUNT ON AN IDM CLIENT
32.6. VERIFYING THAT AN IDM USER CAN ACCESS NFS SHARES ON AN IDM CLIENT

CHAPTER 33. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS
33.1. NIS AND ITS BENEFITS
33.2. NIS IN IDM
33.3. NIS NETGROUPS IN IDM

293
293
294
296

298

300

303
303
304
304
304
306
307

308
308
309
309

312
313
316
317
319

320
322
323
325
327
329

331
331
332
334
336
338
340
342

344
344
345
346
349
350
350

353
353
353
354

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

6

. .

. .

. .

33.4. USING ANSIBLE TO ENSURE THAT A NETGROUP IS PRESENT
33.5. USING ANSIBLE TO ENSURE THAT MEMBERS ARE PRESENT IN A NETGROUP
33.6. USING ANSIBLE TO ENSURE THAT A MEMBER IS ABSENT FROM A NETGROUP
33.7. USING ANSIBLE TO ENSURE THAT A NETGROUP IS ABSENT

CHAPTER 34. USING ANSIBLE TO CONFIGURE HBAC AND SUDO RULES IN IDM

CHAPTER 35. USING ANSIBLE TO DELEGATE AUTHENTICATION FOR IDM USERS TO EXTERNAL IDENTITY
PROVIDERS

35.1. THE BENEFITS OF CONNECTING IDM TO AN EXTERNAL IDP
35.2. HOW IDM INCORPORATES LOGINS VIA EXTERNAL IDPS
35.3. USING ANSIBLE TO CREATE A REFERENCE TO AN EXTERNAL IDENTITY PROVIDER
35.4. USING ANSIBLE TO ENABLE AN IDM USER TO AUTHENTICATE VIA AN EXTERNAL IDP
35.5. RETRIEVING AN IDM TICKET-GRANTING TICKET AS AN EXTERNAL IDP USER
35.6. LOGGING IN TO AN IDM CLIENT VIA SSH AS AN EXTERNAL IDP USER
35.7. THE PROVIDER OPTION IN THE IPAIDP ANSIBLE MODULE

CHAPTER 36. INTEGRATING RHEL SYSTEMS INTO AD DIRECTLY BY USING THE RHEL SYSTEM ROLE
36.1. THE AD_INTEGRATION RHEL SYSTEM ROLE
36.2. CONNECTING A RHEL SYSTEM DIRECTLY TO AD BY USING THE AD_INTEGRATION RHEL SYSTEM
ROLE

354
355
356
357

359

364
364
364
365
366
368
370
370

375
375

375

Table of Contents

7

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

8

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

9

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. ANSIBLE TERMINOLOGY
The chapters in this title use the official Ansible terminology. If you are not familiar with the terminology,
read the official Ansible upstream documentation before proceeding, especially the following sections:

The Basic concepts in Ansible section provides an overview of the most commonly used
concepts in Ansible.

The User guide outlines the most common situations and questions when starting to use
Ansible, such as using the command line; working with an inventory; interacting with data; writing
tasks, plays, and playbooks; and executing playbooks.

How to build your inventory offers tips on how to design your inventory. An inventory is a list or a
group of lists that Ansible uses to work against multiple managed nodes or hosts in your
infrastructure.

Intro to playbooks introduces the concept of an Ansible playbook as a repeatable and re-usable
system for managing configurations, deploying machines, and deploying complex applications.

The Ansible roles section explains how to automate loading variables, tasks, and handlers based
on a known file structure.

The Glossary explains terms that are used elsewhere in the Ansible documentation.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

10

https://docs.ansible.com/
https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html
https://docs.ansible.com/ansible/latest/user_guide/index.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#intro-inventory
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT
SERVER USING AN ANSIBLE PLAYBOOK

Learn more about how to configure a system as an IdM server by using Ansible. Configuring a system as
an IdM server establishes an IdM domain and enables the system to offer IdM services to IdM clients.
You can manage the deployment by using the ipaserver Ansible role.

Prerequisites

You understand the general Ansible and IdM concepts.

2.1. ANSIBLE AND ITS ADVANTAGES FOR INSTALLING IDM

Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.
Ansible includes support for Identity Management (IdM), and you can use Ansible modules to automate
installation tasks such as the setup of an IdM server, replica, client, or an entire IdM topology.

Advantages of using Ansible to install IdM
The following list presents advantages of installing Identity Management using Ansible in contrast to
manual installation.

You do not need to log into the managed node.

You do not need to configure settings on each host to be deployed individually. Instead, you can
have one inventory file to deploy a complete cluster.

You can reuse an inventory file later for management tasks, for example to add users and hosts.
You can reuse an inventory file even for such tasks as are not related to IdM.

Additional resources

Automating Red Hat Identity Management installation

Planning Identity Management

Preparing the system for IdM server installation

2.2. INSTALLING THE ANSIBLE-FREEIPA PACKAGE

Follow this procedure to install the ansible-freeipa package that provides Ansible roles and modules for
installing and managing Identity Management (IdM) .

Prerequisites

Ensure that the controller is a Red Hat Enterprise Linux system with a valid subscription. If this is
not the case, see the official Ansible documentation Installation guide for alternative installation
instructions.

Ensure that you can reach the managed node over the SSH protocol from the controller. Check
that the managed node is listed in the /root/.ssh/known_hosts file of the controller.

Procedure

Use the following procedure on the Ansible controller.

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

11

https://www.ansible.com/
https://docs.ansible.com/ansible/latest/index.html
https://www.redhat.com/en/blog/automating-red-hat-identity-management-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/planning_identity_management/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#preparing-the-system-for-ipa-server-installation_installing-identity-management
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

1. If your system is running on RHEL 8.5 and earlier, enable the required repository:

subscription-manager repos --enable ansible-2.8-for-rhel-8-x86_64-rpms

2. If your system is running on RHEL 8.5 and earlier, install the ansible package:

yum install ansible

3. Install the ansible-freeipa package:

yum install ansible-freeipa

The roles and modules are installed into the /usr/share/ansible/roles/ and
/usr/share/ansible/plugins/modules directories.

2.3. ANSIBLE ROLES LOCATION IN THE FILE SYSTEM

By default, the ansible-freeipa roles are installed to the /usr/share/ansible/roles/ directory. The
structure of the ansible-freeipa package is as follows:

The /usr/share/ansible/roles/ directory stores the ipaserver, ipareplica, and ipaclient roles on
the Ansible controller. Each role directory stores examples, a basic overview, the license and
documentation about the role in a README.md Markdown file.

[root@server]# ls -1 /usr/share/ansible/roles/
ipaclient
ipareplica
ipaserver

The /usr/share/doc/ansible-freeipa/ directory stores the documentation about individual roles
and the topology in README.md Markdown files. It also stores the playbooks/ subdirectory.

[root@server]# ls -1 /usr/share/doc/ansible-freeipa/
playbooks
README-client.md
README.md
README-replica.md
README-server.md
README-topology.md

The /usr/share/doc/ansible-freeipa/playbooks/ directory stores the example playbooks:

[root@server]# ls -1 /usr/share/doc/ansible-freeipa/playbooks/
install-client.yml
install-cluster.yml
install-replica.yml
install-server.yml
uninstall-client.yml
uninstall-cluster.yml
uninstall-replica.yml
uninstall-server.yml

2.4. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH AN

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

12

2.4. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH AN
INTEGRATED DNS AND AN INTEGRATED CA AS THE ROOT CA

Complete this procedure to configure the inventory file for installing an IdM server with an integrated
CA as the root CA in an environment that uses the IdM integrated DNS solution.

NOTE

The inventory in this procedure uses the INI format. You can, alternatively, use the YAML
or JSON formats.

Procedure

1. Create a ~/MyPlaybooks/ directory:

$ mkdir MyPlaybooks

2. Create a ~/MyPlaybooks/inventory file.

3. Open the inventory file for editing. Specify the fully-qualified domain names (FQDN) of the
host you want to use as an IdM server. Ensure that the FQDN meets the following criteria:

Only alphanumeric characters and hyphens (-) are allowed. For example, underscores are
not allowed and can cause DNS failures.

The host name must be all lower-case.

4. Specify the IdM domain and realm information.

5. Specify that you want to use integrated DNS by adding the following option:

ipaserver_setup_dns=true

6. Specify the DNS forwarding settings. Choose one of the following options:

Use the ipaserver_auto_forwarders=true option if you want the installer to use forwarders
from the /etc/resolv.conf file. Do not use this option if the nameserver specified in the
/etc/resolv.conf file is the localhost 127.0.0.1 address or if you are on a virtual private
network and the DNS servers you are using are normally unreachable from the public
internet.

Use the ipaserver_forwarders option to specify your forwarders manually. The installation
process adds the forwarder IP addresses to the /etc/named.conf file on the installed IdM
server.

Use the ipaserver_no_forwarders=true option to configure root DNS servers to be used
instead.

NOTE

With no DNS forwarders, your environment is isolated, and names from other
DNS domains in your infrastructure are not resolved.

7. Specify the DNS reverse record and zone settings. Choose from the following options:

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

13

Use the ipaserver_allow_zone_overlap=true option to allow the creation of a (reverse)
zone even if the zone is already resolvable.

Use the ipaserver_reverse_zones option to specify your reverse zones manually.

Use the ipaserver_no_reverse=true option if you do not want the installer to create a
reverse DNS zone.

NOTE

Using IdM to manage reverse zones is optional. You can use an external DNS
service for this purpose instead.

8. Specify the passwords for admin and for the Directory Manager. Use the Ansible Vault to store
the password, and reference the Vault file from the playbook file. Alternatively and less securely,
specify the passwords directly in the inventory file.

9. (Optional) Specify a custom firewalld zone to be used by the IdM server. If you do not set a
custom zone, IdM will add its services to the default firewalld zone. The predefined default
zone is public.

IMPORTANT

The specified firewalld zone must exist and be permanent.

Example of an inventory file with the required server information (excluding the
passwords)

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=true
ipaserver_auto_forwarders=true
[...]

Example of an inventory file with the required server information (including the
passwords)

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=true
ipaserver_auto_forwarders=true
ipaadmin_password=MySecretPassword123
ipadm_password=MySecretPassword234

[...]

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

14

Example of an inventory file with a custom firewalld zone

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=true
ipaserver_auto_forwarders=true
ipaadmin_password=MySecretPassword123
ipadm_password=MySecretPassword234
ipaserver_firewalld_zone=custom zone

Example playbook to set up an IdM server using admin and Directory Manager
passwords stored in an Ansible Vault file

- name: Playbook to configure IPA server
 hosts: ipaserver
 become: true
 vars_files:
 - playbook_sensitive_data.yml

 roles:
 - role: ipaserver
 state: present

Example playbook to set up an IdM server using admin and Directory Manager
passwords from an inventory file

- name: Playbook to configure IPA server
 hosts: ipaserver
 become: true

 roles:
 - role: ipaserver
 state: present

Additional resources

man ipa-server-install(1)

/usr/share/doc/ansible-freeipa/README-server.md

2.5. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH
EXTERNAL DNS AND AN INTEGRATED CA AS THE ROOT CA

Complete this procedure to configure the inventory file for installing an IdM server with an integrated
CA as the root CA in an environment that uses an external DNS solution.

NOTE

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

15

NOTE

The inventory file in this procedure uses the INI format. You can, alternatively, use the
YAML or JSON formats.

Procedure

1. Create a ~/MyPlaybooks/ directory:

$ mkdir MyPlaybooks

2. Create a ~/MyPlaybooks/inventory file.

3. Open the inventory file for editing. Specify the fully-qualified domain names (FQDN) of the
host you want to use as an IdM server. Ensure that the FQDN meets the following criteria:

Only alphanumeric characters and hyphens (-) are allowed. For example, underscores are
not allowed and can cause DNS failures.

The host name must be all lower-case.

4. Specify the IdM domain and realm information.

5. Make sure that the ipaserver_setup_dns option is set to no or that it is absent.

6. Specify the passwords for admin and for the Directory Manager. Use the Ansible Vault to store
the password, and reference the Vault file from the playbook file. Alternatively and less securely,
specify the passwords directly in the inventory file.

7. (Optional) Specify a custom firewalld zone to be used by the IdM server. If you do not set a
custom zone, IdM will add its services to the default firewalld zone. The predefined default
zone is public.

IMPORTANT

The specified firewalld zone must exist and be permanent.

Example of an inventory file with the required server information (excluding the
passwords)

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=no
[...]

Example of an inventory file with the required server information (including the
passwords)

[ipaserver]
server.idm.example.com

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

16

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=no
ipaadmin_password=MySecretPassword123
ipadm_password=MySecretPassword234

[...]

Example of an inventory file with a custom firewalld zone

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=no
ipaadmin_password=MySecretPassword123
ipadm_password=MySecretPassword234
ipaserver_firewalld_zone=custom zone

Example playbook to set up an IdM server using admin and Directory Manager
passwords stored in an Ansible Vault file

- name: Playbook to configure IPA server
 hosts: ipaserver
 become: true
 vars_files:
 - playbook_sensitive_data.yml

 roles:
 - role: ipaserver
 state: present

Example playbook to set up an IdM server using admin and Directory Manager
passwords from an inventory file

- name: Playbook to configure IPA server
 hosts: ipaserver
 become: true

 roles:
 - role: ipaserver
 state: present

Additional resources

man ipa-server-install(1)

/usr/share/doc/ansible-freeipa/README-server.md

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

17

2.6. DEPLOYING AN IDM SERVER WITH AN INTEGRATED CA AS THE
ROOT CA USING AN ANSIBLE PLAYBOOK

Complete this procedure to deploy an IdM server with an integrated certificate authority (CA) as the
root CA using an Ansible playbook.

Prerequisites

The managed node is a Red Hat Enterprise Linux 8 system with a static IP address and a
working package manager.

You have set the parameters that correspond to your scenario by choosing one of the following
procedures:

Procedure with integrated DNS

Procedure with external DNS

Procedure

1. Run the Ansible playbook:

$ ansible-playbook -i ~/MyPlaybooks/inventory ~/MyPlaybooks/install-server.yml

2. Choose one of the following options:

If your IdM deployment uses external DNS: add the DNS resource records contained in the
/tmp/ipa.system.records.UFRPto.db file to the existing external DNS servers. The process
of updating the DNS records varies depending on the particular DNS solution.

...
Restarting the KDC
Please add records in this file to your DNS system:
/tmp/ipa.system.records.UFRBto.db
Restarting the web server
...

IMPORTANT

The server installation is not complete until you add the DNS records to the
existing DNS servers.

If your IdM deployment uses integrated DNS:

Add DNS delegation from the parent domain to the IdM DNS domain. For example, if
the IdM DNS domain is idm.example.com, add a name server (NS) record to the
example.com parent domain.

IMPORTANT

Repeat this step each time after an IdM DNS server is installed.

Add an _ntp._udp service (SRV) record for your time server to your IdM DNS. The

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

18

presence of the SRV record for the time server of the newly-installed IdM server in IdM
DNS ensures that future replica and client installations are automatically configured to
synchronize with the time server used by this primary IdM server.

2.7. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH AN
INTEGRATED DNS AND AN EXTERNAL CA AS THE ROOT CA

Complete this procedure to configure the inventory file for installing an IdM server with an external CA
as the root CA in an environment that uses the IdM integrated DNS solution.

NOTE

The inventory file in this procedure uses the INI format. You can, alternatively, use the
YAML or JSON formats.

Procedure

1. Create a ~/MyPlaybooks/ directory:

$ mkdir MyPlaybooks

2. Create a ~/MyPlaybooks/inventory file.

3. Open the inventory file for editing. Specify the fully-qualified domain names (FQDN) of the
host you want to use as an IdM server. Ensure that the FQDN meets the following criteria:

Only alphanumeric characters and hyphens (-) are allowed. For example, underscores are
not allowed and can cause DNS failures.

The host name must be all lower-case.

4. Specify the IdM domain and realm information.

5. Specify that you want to use integrated DNS by adding the following option:

ipaserver_setup_dns=true

6. Specify the DNS forwarding settings. Choose one of the following options:

Use the ipaserver_auto_forwarders=true option if you want the installation process to use
forwarders from the /etc/resolv.conf file. This option is not recommended if the
nameserver specified in the /etc/resolv.conf file is the localhost 127.0.0.1 address or if you
are on a virtual private network and the DNS servers you are using are normally unreachable
from the public internet.

Use the ipaserver_forwarders option to specify your forwarders manually. The installation
process adds the forwarder IP addresses to the /etc/named.conf file on the installed IdM
server.

Use the ipaserver_no_forwarders=true option to configure root DNS servers to be used
instead.

NOTE

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

19

NOTE

With no DNS forwarders, your environment is isolated, and names from other
DNS domains in your infrastructure are not resolved.

7. Specify the DNS reverse record and zone settings. Choose from the following options:

Use the ipaserver_allow_zone_overlap=true option to allow the creation of a (reverse)
zone even if the zone is already resolvable.

Use the ipaserver_reverse_zones option to specify your reverse zones manually.

Use the ipaserver_no_reverse=true option if you do not want the installation process to
create a reverse DNS zone.

NOTE

Using IdM to manage reverse zones is optional. You can use an external DNS
service for this purpose instead.

8. Specify the passwords for admin and for the Directory Manager. Use the Ansible Vault to store
the password, and reference the Vault file from the playbook file. Alternatively and less securely,
specify the passwords directly in the inventory file.

9. (Optional) Specify a custom firewalld zone to be used by the IdM server. If you do not set a
custom zone, IdM adds its services to the default firewalld zone. The predefined default zone is
public.

IMPORTANT

The specified firewalld zone must exist and be permanent.

Example of an inventory file with the required server information (excluding the
passwords)

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=true
ipaserver_auto_forwarders=true
[...]

Example of an inventory file with the required server information (including the
passwords)

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

20

ipaserver_setup_dns=true
ipaserver_auto_forwarders=true
ipaadmin_password=MySecretPassword123
ipadm_password=MySecretPassword234

[...]

Example of an inventory file with a custom firewalld zone

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=true
ipaserver_auto_forwarders=true
ipaadmin_password=MySecretPassword123
ipadm_password=MySecretPassword234
ipaserver_firewalld_zone=custom zone

[...]

10. Create a playbook for the first step of the installation. Enter instructions for generating the
certificate signing request (CSR) and copying it from the controller to the managed node.

- name: Playbook to configure IPA server Step 1
 hosts: ipaserver
 become: true
 vars_files:
 - playbook_sensitive_data.yml
 vars:
 ipaserver_external_ca: true

 roles:
 - role: ipaserver
 state: present

 post_tasks:
 - name: Copy CSR /root/ipa.csr from node to "{{ groups.ipaserver[0] + '-ipa.csr' }}"
 fetch:
 src: /root/ipa.csr
 dest: "{{ groups.ipaserver[0] + '-ipa.csr' }}"
 flat: true

11. Create another playbook for the final step of the installation.

- name: Playbook to configure IPA server Step 2
 hosts: ipaserver
 become: true
 vars_files:
 - playbook_sensitive_data.yml
 vars:

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

21

 ipaserver_external_cert_files:
 - "/root/servercert20240601.pem"
 - "/root/cacert.pem"

 pre_tasks:
 - name: Copy "{{ groups.ipaserver[0] }}-{{ item }}" to "/root/{{ item }}" on node
 ansible.builtin.copy:
 src: "{{ groups.ipaserver[0] }}-{{ item }}"
 dest: "/root/{{ item }}"
 force: true
 with_items:
 - servercert20240601.pem
 - cacert.pem

 roles:
 - role: ipaserver
 state: present

Additional resources

man ipa-server-install(1)

/usr/share/doc/ansible-freeipa/README-server.md

2.8. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH
EXTERNAL DNS AND AN EXTERNAL CA AS THE ROOT CA

Complete this procedure to configure the inventory file for installing an IdM server with an external CA
as the root CA in an environment that uses an external DNS solution.

NOTE

The inventory file in this procedure uses the INI format. You can, alternatively, use the
YAML or JSON formats.

Procedure

1. Create a ~/MyPlaybooks/ directory:

$ mkdir MyPlaybooks

2. Create a ~/MyPlaybooks/inventory file.

3. Open the inventory file for editing. Specify the fully-qualified domain names (FQDN) of the
host you want to use as an IdM server. Ensure that the FQDN meets the following criteria:

Only alphanumeric characters and hyphens (-) are allowed. For example, underscores are
not allowed and can cause DNS failures.

The host name must be all lower-case.

4. Specify the IdM domain and realm information.

5. Make sure that the ipaserver_setup_dns option is set to no or that it is absent.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

22

6. Specify the passwords for admin and for the Directory Manager. Use the Ansible Vault to store
the password, and reference the Vault file from the playbook file. Alternatively and less securely,
specify the passwords directly in the inventory file.

7. (Optional) Specify a custom firewalld zone to be used by the IdM server. If you do not set a
custom zone, IdM will add its services to the default firewalld zone. The predefined default
zone is public.

IMPORTANT

The specified firewalld zone must exist and be permanent.

Example of an inventory file with the required server information (excluding the
passwords)

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=no
[...]

Example of an inventory file with the required server information (including the
passwords)

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=no
ipaadmin_password=MySecretPassword123
ipadm_password=MySecretPassword234

[...]

Example of an inventory file with a custom firewalld zone

[ipaserver]
server.idm.example.com

[ipaserver:vars]
ipaserver_domain=idm.example.com
ipaserver_realm=IDM.EXAMPLE.COM
ipaserver_setup_dns=no
ipaadmin_password=MySecretPassword123
ipadm_password=MySecretPassword234
ipaserver_firewalld_zone=custom zone

[...]

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

23

8. Create a playbook for the first step of the installation. Enter instructions for generating the
certificate signing request (CSR) and copying it from the controller to the managed node.

- name: Playbook to configure IPA server Step 1
 hosts: ipaserver
 become: true
 vars_files:
 - playbook_sensitive_data.yml
 vars:
 ipaserver_external_ca: true

 roles:
 - role: ipaserver
 state: present

 post_tasks:
 - name: Copy CSR /root/ipa.csr from node to "{{ groups.ipaserver[0] + '-ipa.csr' }}"
 fetch:
 src: /root/ipa.csr
 dest: "{{ groups.ipaserver[0] + '-ipa.csr' }}"
 flat: true

9. Create another playbook for the final step of the installation.

- name: Playbook to configure IPA server Step 2
 hosts: ipaserver
 become: true
 vars_files:
 - playbook_sensitive_data.yml
 vars:
 ipaserver_external_cert_files:
 - "/root/servercert20240601.pem"
 - "/root/cacert.pem"

 pre_tasks:
 - name: Copy "{{ groups.ipaserver[0] }}-{{ item }}" to "/root/{{ item }}" on node
 ansible.builtin.copy:
 src: "{{ groups.ipaserver[0] }}-{{ item }}"
 dest: "/root/{{ item }}"
 force: true
 with_items:
 - servercert20240601.pem
 - cacert.pem

 roles:
 - role: ipaserver
 state: present

Additional resources

Installing an IdM server: Without integrated DNS, with an external CA as the root CA

man ipa-server-install(1)

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-ipa-server-without-dns-with-external-ca_installing-identity-management

/usr/share/doc/ansible-freeipa/README-server.md

2.9. DEPLOYING AN IDM SERVER WITH AN EXTERNAL CA AS THE
ROOT CA USING AN ANSIBLE PLAYBOOK

Complete this procedure to deploy an IdM server with an external certificate authority (CA) as the root
CA using an Ansible playbook.

Prerequisites

The managed node is a Red Hat Enterprise Linux 8 system with a static IP address and a
working package manager.

You have set the parameters that correspond to your scenario by choosing one of the following
procedures:

Procedure with integrated DNS

Procedure with external DNS

Procedure

1. Run the Ansible playbook with the instructions for the first step of the installation, for example
install-server-step1.yml:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
~/MyPlaybooks/install-server-step1.yml

2. Locate the ipa.csr certificate signing request file on the controller and submit it to the external
CA.

3. Place the IdM CA certificate signed by the external CA in the controller file system so that the
playbook in the next step can find it.

4. Run the Ansible playbook with the instructions for the final step of the installation, for example
install-server-step2.yml:

$ ansible-playbook -v -i ~/MyPlaybooks/inventory ~/MyPlaybooks/install-server-
step2.yml

5. Choose one of the following options:

If your IdM deployment uses external DNS: add the DNS resource records contained in the
/tmp/ipa.system.records.UFRPto.db file to the existing external DNS servers. The process
of updating the DNS records varies depending on the particular DNS solution.

...
Restarting the KDC
Please add records in this file to your DNS system:
/tmp/ipa.system.records.UFRBto.db
Restarting the web server
...

IMPORTANT

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

25

IMPORTANT

The server installation is not complete until you add the DNS records to the
existing DNS servers.

If your IdM deployment uses integrated DNS:

Add DNS delegation from the parent domain to the IdM DNS domain. For example, if
the IdM DNS domain is idm.example.com, add a name server (NS) record to the
example.com parent domain.

IMPORTANT

Repeat this step each time after an IdM DNS server is installed.

Add an _ntp._udp service (SRV) record for your time server to your IdM DNS. The
presence of the SRV record for the time server of the newly-installed IdM server in IdM
DNS ensures that future replica and client installations are automatically configured to
synchronize with the time server used by this primary IdM server.

2.10. UNINSTALLING AN IDM SERVER USING AN ANSIBLE PLAYBOOK

NOTE

In an existing Identity Management (IdM) deployment, replica and server are
interchangeable terms.

Complete this procedure to uninstall an IdM replica using an Ansible playbook. In this example:

IdM configuration is uninstalled from server123.idm.example.com.

server123.idm.example.com and the associated host entry are removed from the IdM topology.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory. In this example, the FQDN is
server123.idm.example.com.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

For the ipaserver_remove_from_topology option to work, the system must be running on
RHEL 8.9 or later.

On the managed node:

The system is running on RHEL 8.

Procedure

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Create your Ansible playbook file uninstall-server.yml with the following content:

- name: Playbook to uninstall an IdM replica
 hosts: ipaserver
 become: true

 roles:
 - role: ipaserver
 ipaserver_remove_from_domain: true
 state: absent

The ipaserver_remove_from_domain option unenrolls the host from the IdM topology.

NOTE

If the removal of server123.idm.example.com should lead to a disconnected
topology, the removal will be aborted. For more information, see Using an Ansible
playbook to uninstall an IdM server even if this leads to a disconnected topology.

2. Uninstall the replica:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/inventory <path_to_playbooks_directory>/uninstall-
server.yml

3. Ensure that all name server (NS) DNS records pointing to server123.idm.example.com are
deleted from your DNS zones. This applies regardless of whether you use integrated DNS
managed by IdM or external DNS. For more information on how to delete DNS records from
IdM, see Deleting DNS records in the IdM CLI .

2.11. USING AN ANSIBLE PLAYBOOK TO UNINSTALL AN IDM SERVER
EVEN IF THIS LEADS TO A DISCONNECTED TOPOLOGY

NOTE

In an existing Identity Management (IdM) deployment, replica and server are
interchangeable terms.

Complete this procedure to uninstall an IdM replica using an Ansible playbook even if this results in a
disconnected IdM topology. In the example, server456.idm.example.com is used to remove the replica
and the associated host entry with the FQDN of server123.idm.example.com from the topology, leaving
certain replicas disconnected from server456.idm.example.com and the rest of the topology.

NOTE

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-dns-records-in-idm_configuring-and-managing-idm#deleting-dns-records-in-the-idm-cli_managing-dns-records-in-idm

NOTE

If removing a replica from the topology using only the remove_server_from_domain
does not result in a disconnected topology, no other options are required. If the result is a
disconnected topology, you must specify which part of the domain you want to preserve.
In that case, you must do the following:

Specify the ipaserver_remove_on_server value.

Set ipaserver_ignore_topology_disconnect to True.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

The system is running on RHEL 8.9 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory. In this example, the FQDN is
server123.idm.example.com.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

On the managed node:

The system is running on 8 or later.

Procedure

1. Create your Ansible playbook file uninstall-server.yml with the following content:

- name: Playbook to uninstall an IdM replica
 hosts: ipaserver
 become: true

 roles:
 - role: ipaserver
 ipaserver_remove_from_domain: true
 ipaserver_remove_on_server: server456.idm.example.com
 ipaserver_ignore_topology_disconnect: true
 state: absent

NOTE

Under normal circumstances, if the removal of server123 does not result in a
disconnected topology: if the value for ipaserver_remove_on_server is not set,
the replica on which server123 is removed is automatically determined using the
replication agreements of server123.

2. Uninstall the replica:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/uninstall-
server.yml

3. Ensure that all name server (NS) DNS records pointing to server123.idm.example.com are
deleted from your DNS zones. This applies regardless of whether you use integrated DNS
managed by IdM or external DNS. For more information on how to delete DNS records from
IdM, see Deleting DNS records in the IdM CLI .

2.12. ADDITIONAL RESOURCES

Planning the replica topology

Backing up and restoring IdM servers using Ansible playbooks

Inventory basics: formats, hosts, and groups

CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-dns-records-in-idm_configuring-and-managing-idm#deleting-dns-records-in-the-idm-cli_managing-dns-records-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/planning_identity_management/index#planning-the-replica-topology_planning-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/planning_identity_management/index#assembly_backing-up-and-restoring-idm-servers-using-ansible-playbooks_planning-identity-management
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#inventory-basics-formats-hosts-and-groups

CHAPTER 3. INSTALLING AN IDENTITY MANAGEMENT
REPLICA USING AN ANSIBLE PLAYBOOK

Configuring a system as an IdM replica by using Ansible enrolls it into an IdM domain and enables the
system to use IdM services on IdM servers in the domain.

The deployment is managed by the ipareplica Ansible role. The role can use the autodiscovery mode for
identifying the IdM servers, domain and other settings. However, if you deploy multiple replicas in a tier-
like model, with different groups of replicas being deployed at different times, you must define specific
servers or replicas for each group.

Prerequisites

You have installed the ansible-freeipa package on the Ansible control node.

You understand the general Ansible and IdM concepts.

You have planned the replica topology in your deployment .

3.1. SPECIFYING THE BASE, SERVER AND CLIENT VARIABLES FOR
INSTALLING THE IDM REPLICA

Complete this procedure to configure the inventory file for installing an IdM replica.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

Procedure

1. Open the inventory file for editing. Specify the fully-qualified domain names (FQDN) of the
hosts to become IdM replicas. The FQDNs must be valid DNS names:

Only numbers, alphabetic characters, and hyphens (-) are allowed. For example,
underscores are not allowed and can cause DNS failures.

The host name must be all lower-case.

Example of a simple inventory hosts file with only the replicas' FQDN defined

[ipareplicas]
replica1.idm.example.com
replica2.idm.example.com
replica3.idm.example.com
[...]

If the IdM server is already deployed and the SRV records are set properly in the IdM DNS
zone, the script automatically discovers all the other required values.

2. [Optional] Provide additional information in the inventory file based on how you have designed

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

30

https://www.ansible.com/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible
https://docs.ansible.com/ansible/latest/index.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/planning_identity_management/index#planning-the-replica-topology_planning-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

2. [Optional] Provide additional information in the inventory file based on how you have designed
your topology:

Scenario 1

If you want to avoid autodiscovery and have all replicas listed in the [ipareplicas] section use
a specific IdM server, set the server in the [ipaservers] section of the inventory file.

Example inventory hosts file with the FQDN of the IdM server and replicas
defined

[ipaservers]
server.idm.example.com

[ipareplicas]
replica1.idm.example.com
replica2.idm.example.com
replica3.idm.example.com
[...]

Scenario 2

Alternatively, if you want to avoid autodiscovery but want to deploy specific replicas with
specific servers, set the servers for specific replicas individually in the [ipareplicas] section in
the inventory file.

Example inventory file with a specific IdM server defined for a specific replica

[ipaservers]
server.idm.example.com
replica1.idm.example.com

[ipareplicas]
replica2.idm.example.com
replica3.idm.example.com ipareplica_servers=replica1.idm.example.com

In the example above, replica3.idm.example.com uses the already deployed
replica1.idm.example.com as its replication source.

Scenario 3

If you are deploying several replicas in one batch and time is a concern to you, multitier
replica deployment can be useful for you. Define specific groups of replicas in the inventory
file, for example [ipareplicas_tier1] and [ipareplicas_tier2], and design separate plays for
each group in the install-replica.yml playbook.

Example inventory file with replica tiers defined

[ipaservers]
server.idm.example.com

[ipareplicas_tier1]
replica1.idm.example.com

CHAPTER 3. INSTALLING AN IDENTITY MANAGEMENT REPLICA USING AN ANSIBLE PLAYBOOK

31

[ipareplicas_tier2]
replica2.idm.example.com \
ipareplica_servers=replica1.idm.example.com,server.idm.example.com

The first entry in ipareplica_servers will be used. The second entry will be used as a fallback
option. When using multiple tiers for deploying IdM replicas, you must have separate tasks in
the playbook to first deploy replicas from tier1 and then replicas from tier2:

Example of a playbook file with different plays for different replica groups

- name: Playbook to configure IPA replicas (tier1)
 hosts: ipareplicas_tier1
 become: true

 roles:
 - role: ipareplica
 state: present

- name: Playbook to configure IPA replicas (tier2)
 hosts: ipareplicas_tier2
 become: true

 roles:
 - role: ipareplica
 state: present

3. [Optional] Provide additional information regarding firewalld and DNS:

Scenario 1

If you want the replica to use a specified firewalld zone, for example an internal one, you can
specify it in the inventory file. If you do not set a custom zone, IdM will add its services to the
default firewalld zone. The predefined default zone is public.

IMPORTANT

The specified firewalld zone must exist and be permanent.

Example of a simple inventory hosts file with a custom firewalld zone

[ipaservers]
server.idm.example.com

[ipareplicas]
replica1.idm.example.com
replica2.idm.example.com
replica3.idm.example.com
[...]

[ipareplicas:vars]
ipareplica_firewalld_zone=custom zone

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

32

Scenario 2

If you want the replica to host the IdM DNS service, add the ipareplica_setup_dns=true line
to the [ipareplicas:vars] section. Additionally, specify if you want to use per-server DNS
forwarders:

To configure per-server forwarders, add the ipareplica_forwarders variable and a list of
strings to the [ipareplicas:vars] section, for example:
ipareplica_forwarders=192.0.2.1,192.0.2.2

To configure no per-server forwarders, add the following line to the [ipareplicas:vars]
section: ipareplica_no_forwarders=true.

To configure per-server forwarders based on the forwarders listed in the
/etc/resolv.conf file of the replica, add the ipareplica_auto_forwarders variable to the
[ipareplicas:vars] section.

Example inventory file with instructions to set up DNS and per-server forwarders
on the replicas

[ipaservers]
server.idm.example.com

[ipareplicas]
replica1.idm.example.com
replica2.idm.example.com
replica3.idm.example.com
[...]

[ipareplicas:vars]
ipareplica_setup_dns=true
ipareplica_forwarders=192.0.2.1,192.0.2.2

Scenario 3

Specify the DNS resolver using the ipaclient_configure_dns_resolve and
ipaclient_dns_servers options (if available) to simplify cluster deployments. This is
especially useful if your IdM deployment is using integrated DNS:

An inventory file snippet specifying a DNS resolver:

[...]
[ipaclient:vars]
ipaclient_configure_dns_resolver=true
ipaclient_dns_servers=192.168.100.1

NOTE

The ipaclient_dns_servers list must contain only IP addresses. Host names
are not allowed.

Additional resources

/usr/share/ansible/roles/ipareplica/README.md

CHAPTER 3. INSTALLING AN IDENTITY MANAGEMENT REPLICA USING AN ANSIBLE PLAYBOOK

33

3.2. SPECIFYING THE CREDENTIALS FOR INSTALLING THE IDM
REPLICA USING AN ANSIBLE PLAYBOOK

Complete this procedure to configure the authorization for installing the IdM replica.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

Procedure

1. Specify the password of a user authorized to deploy replicas, for example the IdM admin.

Red Hat recommends using the Ansible Vault to store the password, and referencing the
Vault file from the playbook file, for example install-replica.yml:

Example playbook file using principal from inventory file and password from an
Ansible Vault file

- name: Playbook to configure IPA replicas
 hosts: ipareplicas
 become: true
 vars_files:
 - playbook_sensitive_data.yml

 roles:
 - role: ipareplica
 state: present

For details how to use Ansible Vault, see the official Ansible Vault documentation.

Less securely, provide the credentials of admin directly in the inventory file. Use the
ipaadmin_password option in the [ipareplicas:vars] section of the inventory file. The
inventory file and the install-replica.yml playbook file can then look as follows:

Example inventory hosts.replica file

[...]
[ipareplicas:vars]
ipaadmin_password=Secret123

Example playbook using principal and password from inventory file

- name: Playbook to configure IPA replicas
 hosts: ipareplicas
 become: true

 roles:
 - role: ipareplica
 state: present

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://docs.ansible.com/ansible/latest/user_guide/vault.html

Alternatively but also less securely, provide the credentials of another user authorized to
deploy a replica directly in the inventory file. To specify a different authorized user, use the
ipaadmin_principal option for the user name, and the ipaadmin_password option for the
password. The inventory file and the install-replica.yml playbook file can then look as
follows:

Example inventory hosts.replica file

[...]
[ipareplicas:vars]
ipaadmin_principal=my_admin
ipaadmin_password=my_admin_secret123

Example playbook using principal and password from inventory file

- name: Playbook to configure IPA replicas
 hosts: ipareplicas
 become: true

 roles:
 - role: ipareplica
 state: present

Additional resources

/usr/share/ansible/roles/ipareplica/README.md

3.3. DEPLOYING AN IDM REPLICA USING AN ANSIBLE PLAYBOOK

Complete this procedure to use an Ansible playbook to deploy an IdM replica.

Prerequisites

The managed node is a Red Hat Enterprise Linux 8 system with a static IP address and a
working package manager.

You have configured the inventory file for installing an IdM replica .

You have configured the authorization for installing the IdM replica .

Procedure

Run the Ansible playbook:

$ ansible-playbook -i ~/MyPlaybooks/inventory ~/MyPlaybooks/install-replica.yml

3.4. UNINSTALLING AN IDM REPLICA USING AN ANSIBLE PLAYBOOK

NOTE

CHAPTER 3. INSTALLING AN IDENTITY MANAGEMENT REPLICA USING AN ANSIBLE PLAYBOOK

35

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-replica-using-an-ansible-playbook_installing-identity-management#specifying-the-base-server-and-client-variables-for-installing-the-IdM-replica_replica-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-replica-using-an-ansible-playbook_installing-identity-management#specifying-the-credentials-for-installing-the-replica-using-an-ansible-playbook_replica-ansible

NOTE

In an existing Identity Management (IdM) deployment, replica and server are
interchangeable terms. For information on how to uninstall an IdM server, see Uninstalling
an IdM server using an Ansible playbook or Using an Ansible playbook to uninstall an IdM
server even if this leads to a disconnected topology.

Additional resources

Introduction to IdM servers and clients

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

36

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/overview-of-identity-management-and-access-control-planning-identity-management#introduction-to-ipa-servers-and-clients_overview-of-idm-and-access-control

CHAPTER 4. INSTALLING AN IDENTITY MANAGEMENT
CLIENT USING AN ANSIBLE PLAYBOOK

Learn more about how to configure a system as an Identity Management (IdM) client by using Ansible.
Configuring a system as an IdM client enrolls it into an IdM domain and enables the system to use IdM
services on IdM servers in the domain.

The deployment is managed by the ipaclient Ansible role. By default, the role uses the autodiscovery
mode for identifying the IdM servers, domain and other settings. The role can be modified to have the
Ansible playbook use the settings specified, for example in the inventory file.

Prerequisites

You have installed the ansible-freeipa package on the Ansible control node.

You are using Ansible version 2.14 or later.

You understand the general Ansible and IdM concepts.

4.1. SETTING THE PARAMETERS OF THE INVENTORY FILE FOR THE
AUTODISCOVERY CLIENT INSTALLATION MODE

To install an Identity Management (IdM) client using an Ansible playbook, configure the target host
parameters in an inventory file, for example inventory:

The information about the host

The authorization for the task

The inventory file can be in one of many formats, depending on the inventory plugins you have. The INI-
like format is one of Ansible’s defaults and is used in the examples below.

NOTE

To use smart cards with the graphical user interface in RHEL, ensure that you include the
ipaclient_mkhomedir variable in your Ansible playbook.

Procedure

1. Open your inventory file for editing.

2. Specify the fully-qualified hostname (FQDN) of the host to become an IdM client. The fully
qualified domain name must be a valid DNS name:

Only numbers, alphabetic characters, and hyphens (-) are allowed. For example,
underscores are not allowed and can cause DNS failures.

The host name must be all lower-case. No capital letters are allowed.

If the SRV records are set properly in the IdM DNS zone, the script automatically discovers all
the other required values.

Example of a simple inventory hosts file with only the client FQDN defined

CHAPTER 4. INSTALLING AN IDENTITY MANAGEMENT CLIENT USING AN ANSIBLE PLAYBOOK

37

https://www.ansible.com/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible
https://docs.ansible.com/ansible/latest/index.html

[ipaclients]
client.idm.example.com
[...]

3. Specify the credentials for enrolling the client. The following authentication methods are
available:

The password of a user authorized to enroll clients. This is the default option.

Red Hat recommends using the Ansible Vault to store the password, and referencing
the Vault file from the playbook file, for example install-client.yml, directly:

Example playbook file using principal from inventory file and password from
an Ansible Vault file

- name: Playbook to configure IPA clients with username/password
 hosts: ipaclients
 become: true
 vars_files:
 - playbook_sensitive_data.yml

 roles:
 - role: ipaclient
 state: present

Less securely, provide the credentials of admin using the ipaadmin_password option
in the [ipaclients:vars] section of the inventory/hosts file. Alternatively, to specify a
different authorized user, use the ipaadmin_principal option for the user name, and
the ipaadmin_password option for the password. The inventory/hosts inventory file
and the install-client.yml playbook file can then look as follows:

Example inventory hosts file

[...]
[ipaclients:vars]
ipaadmin_principal=my_admin
ipaadmin_password=Secret123

Example Playbook using principal and password from inventory file

- name: Playbook to unconfigure IPA clients
 hosts: ipaclients
 become: true

 roles:
 - role: ipaclient
 state: true

The client keytab from the previous enrollment if it is still available.
This option is available if the system was previously enrolled as an Identity Management
client. To use this authentication method, uncomment the #ipaclient_keytab option,
specifying the path to the file storing the keytab, for example in the [ipaclient:vars] section
of inventory/hosts.

A random, one-time password (OTP) to be generated during the enrollment. To use this

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

38

A random, one-time password (OTP) to be generated during the enrollment. To use this
authentication method, use the ipaclient_use_otp=true option in your inventory file. For
example, you can uncomment the ipaclient_use_otp=true option in the [ipaclients:vars]
section of the inventory/hosts file. Note that with OTP you must also specify one of the
following options:

The password of a user authorized to enroll clients, for example by providing a value
for ipaadmin_password in the [ipaclients:vars] section of the inventory/hosts file.

The admin keytab, for example by providing a value for ipaadmin_keytab in the
[ipaclients:vars] section of inventory/hosts.

4. [Optional] Specify the DNS resolver using the ipaclient_configure_dns_resolve and
ipaclient_dns_servers options (if available) to simplify cluster deployments. This is especially
useful if your IdM deployment is using integrated DNS:

An inventory file snippet specifying a DNS resolver:

[...]
[ipaclients:vars]
ipaadmin_password: "{{ ipaadmin_password }}"
ipaclient_domain=idm.example.com
ipaclient_configure_dns_resolver=true
ipaclient_dns_servers=192.168.100.1

NOTE

The ipaclient_dns_servers list must contain only IP addresses. Host names are
not allowed.

5. Starting with RHEL 8.9, you can also specify the ipaclient_subid: true option to have subid
ranges configured for IdM users on the IdM level.

Additional resources

/usr/share/ansible/roles/ipaclient/README.md

Managing subID ranges manually

4.2. SETTING THE PARAMETERS OF THE INVENTORY FILE WHEN
AUTODISCOVERY IS NOT POSSIBLE DURING CLIENT INSTALLATION

To install an Identity Management client using an Ansible playbook, configure the target host
parameters in an inventory file, for example inventory/hosts:

The information about the host, the IdM server and the IdM domain or the IdM realm

The authorization for the task

The inventory file can be in one of many formats, depending on the inventory plugins you have. The INI-
like format is one of Ansible’s defaults and is used in the examples below.

NOTE

CHAPTER 4. INSTALLING AN IDENTITY MANAGEMENT CLIENT USING AN ANSIBLE PLAYBOOK

39

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#assembly_managing-subid-ranges-manually_configuring-and-managing-idm

NOTE

To use smart cards with the graphical user interface in RHEL, ensure that you include the
ipaclient_mkhomedir variable in your Ansible playbook.

Procedure

1. Specify the fully-qualified hostname (FQDN) of the host to become an IdM client. The fully
qualified domain name must be a valid DNS name:

Only numbers, alphabetic characters, and hyphens (-) are allowed. For example,
underscores are not allowed and can cause DNS failures.

The host name must be all lower-case. No capital letters are allowed.

2. Specify other options in the relevant sections of the inventory/hosts file:

The FQDN of the servers in the [ipaservers] section to indicate which IdM server the client
will be enrolled with

One of the two following options:

The ipaclient_domain option in the [ipaclients:vars] section to indicate the DNS
domain name of the IdM server the client will be enrolled with

The ipaclient_realm option in the [ipaclients:vars] section to indicate the name of the
Kerberos realm controlled by the IdM server

Example of an inventory hosts file with the client FQDN, the server FQDN
and the domain defined

[ipaclients]
client.idm.example.com

[ipaservers]
server.idm.example.com

[ipaclients:vars]
ipaclient_domain=idm.example.com
[...]

3. Specify the credentials for enrolling the client. The following authentication methods are
available:

The password of a user authorized to enroll clients. This is the default option.

Red Hat recommends using the Ansible Vault to store the password, and referencing
the Vault file from the playbook file, for example install-client.yml, directly:

Example playbook file using principal from inventory file and password from
an Ansible Vault file

- name: Playbook to configure IPA clients with username/password
 hosts: ipaclients
 become: true
 vars_files:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

40

 - playbook_sensitive_data.yml

 roles:
 - role: ipaclient
 state: present

Less securely, the credentials of admin to be provided using the ipaadmin_password
option in the [ipaclients:vars] section of the inventory/hosts file. Alternatively, to specify
a different authorized user, use the ipaadmin_principal option for the user name, and the
ipaadmin_password option for the password. The install-client.yml playbook file can then
look as follows:

Example inventory hosts file

[...]
[ipaclients:vars]
ipaadmin_principal=my_admin
ipaadmin_password=Secret123

Example Playbook using principal and password from inventory file

- name: Playbook to unconfigure IPA clients
 hosts: ipaclients
 become: true

 roles:
 - role: ipaclient
 state: true

The client keytab from the previous enrollment if it is still available:
This option is available if the system was previously enrolled as an Identity Management
client. To use this authentication method, uncomment the ipaclient_keytab option,
specifying the path to the file storing the keytab, for example in the [ipaclient:vars] section
of inventory/hosts.

A random, one-time password (OTP) to be generated during the enrollment. To use this
authentication method, use the ipaclient_use_otp=true option in your inventory file. For
example, you can uncomment the #ipaclient_use_otp=true option in the [ipaclients:vars]
section of the inventory/hosts file. Note that with OTP you must also specify one of the
following options:

The password of a user authorized to enroll clients, for example by providing a value
for ipaadmin_password in the [ipaclients:vars] section of the inventory/hosts file.

The admin keytab, for example by providing a value for ipaadmin_keytab in the
[ipaclients:vars] section of inventory/hosts.

4. Starting with RHEL 8.9, you can also specify the ipaclient_subid: true option to have subid
ranges configured for IdM users on the IdM level.

Additional resources

/usr/share/ansible/roles/ipaclient/README.md

Managing subID ranges manually

CHAPTER 4. INSTALLING AN IDENTITY MANAGEMENT CLIENT USING AN ANSIBLE PLAYBOOK

41

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#assembly_managing-subid-ranges-manually_configuring-and-managing-idm

4.3. AUTHORIZATION OPTIONS FOR IDM CLIENT ENROLLMENT
USING AN ANSIBLE PLAYBOOK

You can authorize IdM client enrollment by using any of the following methods:

A random, one-time password (OTP) + administrator password

A random, one-time password (OTP) + an admin keytab

The client keytab from the previous enrollment

The password of a user authorized to enroll a client (admin) stored in an inventory file

The password of a user authorized to enroll a client (admin) stored in an Ansible vault

It is possible to have the OTP generated by an IdM administrator before the IdM client installation. In
that case, you do not need any credentials for the installation other than the OTP itself.

The following are sample inventory files for these methods:

Table 4.1. Sample inventory files

Authorization option Inventory file

A random, one-time
password (OTP) +
administrator password

[ipaclients:vars]
ipaadmin_password=Secret123
ipaclient_use_otp=true

A random, one-time
password (OTP) [ipaclients:vars]

ipaclient_otp=<W5YpARl=7M.>

This scenario assumes that the OTP was already generated by an IdM admin
before the installation.

A random, one-time
password (OTP) + an admin
keytab

[ipaclients:vars]
ipaadmin_keytab=/root/admin.keytab
ipaclient_use_otp=true

The client keytab from the
previous enrollment [ipaclients:vars]

ipaclient_keytab=/root/krb5.keytab

Password of an admin user
stored in an inventory file [ipaclients:vars]

ipaadmin_password=Secret123

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

42

Password of an admin user
stored in an Ansible vault file [ipaclients:vars]

[...]

Authorization option Inventory file

If you are using the password of an admin user stored in an Ansible vault file, the corresponding
playbook file must have an additional vars_files directive:

Table 4.2. User password stored in an Ansible vault

Inventory file Playbook file

[ipaclients:vars]
[...]

- name: Playbook to configure IPA clients
 hosts: ipaclients
 become: true
 vars_files:
 - ansible_vault_file.yml

 roles:
 - role: ipaclient
 state: present

In all the other authorization scenarios described above, a basic playbook file could look as follows:

- name: Playbook to configure IPA clients
 hosts: ipaclients
 become: true

 roles:
 - role: ipaclient
 state: true

NOTE

As of RHEL 8.8, in the two OTP authorization scenarios described above, the requesting
of the administrator’s TGT by using the kinit command occurs on the first specified or
discovered IdM server. Therefore, no additional modification of the Ansible control node
is required. Before RHEL 8.8, the krb5-workstation package was required on the control
node.

4.4. DEPLOYING AN IDM CLIENT USING AN ANSIBLE PLAYBOOK

Complete this procedure to use an Ansible playbook to deploy an IdM client in your IdM environment.

Prerequisites

CHAPTER 4. INSTALLING AN IDENTITY MANAGEMENT CLIENT USING AN ANSIBLE PLAYBOOK

43

The managed node is a Red Hat Enterprise Linux 8 system with a static IP address and a
working package manager.

You have set the parameters of the IdM client deployment to correspond to your deployment
scenario:

Setting the parameters of the inventory file for the autodiscovery client installation mode

Setting the parameters of the inventory file when autodiscovery is not possible during client
installation

Procedure

Run the Ansible playbook:

$ ansible-playbook -v -i ~/MyPlaybooks/inventory ~/MyPlaybooks/install-client.yml

4.5. USING THE ONE-TIME PASSWORD METHOD IN ANSIBLE TO
INSTALL AN IDM CLIENT

You can generate a one-time password (OTP) for a new host in Identity Management (IdM) and use it to
enroll a system into the IdM domain. This procedure describes how to use Ansible to install an IdM client
after generating an OTP for it on another IdM host.

This method of installing an IdM client is convenient if two system administrators with different
privileges exist in your organisation:

One that has the credentials of an IdM administrator.

Another that has the required Ansible credentials, including root access to the host to become
an IdM client.

The IdM administrator performs the first part of the procedure in which the OTP password is generated.
The Ansible administrator performs the remaining part of the procedure in which the OTP is used to
install an IdM client.

Prerequisites

You have the IdM admin credentials or at least the Host Enrollment privilege and a permission
to add DNS records in IdM.

You have configured a user escalation method on the Ansible managed node to allow you to
install an IdM client.

If your Ansible control node is running on RHEL 8.7 or earlier, you must be able to install
packages on your Ansible control node.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server.

The managed node is a Red Hat Enterprise Linux 8 system with a static IP address and a

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management#setting-the-parameters-of-the-inventory-file-for-the-autodiscovery-client-installation-mode_client-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management#setting-the-parameters-of-the-inventory-file-when-autodiscovery-is-not-possible-during-client-installation_client-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The managed node is a Red Hat Enterprise Linux 8 system with a static IP address and a
working package manager.

Procedure

1. SSH to an IdM host as an IdM user with a role that has the Host Enrollment privilege and a
permission to add DNS records:

$ ssh admin@server.idm.example.com

2. Generate an OTP for the new client:

[admin@server ~]$ ipa host-add client.idm.example.com --ip-address=172.25.250.11 --
random
 --
 Added host "client.idm.example.com"
 --
 Host name: client.idm.example.com
 Random password: W5YpARl=7M.n
 Password: True
 Keytab: False
 Managed by: server.idm.example.com

The --ip-address=<your_host_ip_address> option adds the host to IdM DNS with the specified
IP address.

3. Exit the IdM host:

$ exit
logout
Connection to server.idm.example.com closed.

4. On the ansible controller, update the inventory file to include the random password:

[...]
[ipaclients]
client.idm.example.com

[ipaclients:vars]
ipaclient_domain=idm.example.com
ipaclient_otp=W5YpARl=7M.n
[...]

5. If your ansible controller is running RHEL 8.7 or earlier, install the kinit utility provided by the
krb5-workstation package:

$ sudo dnf install krb5-workstation

6. Run the playbook to install the client:

$ ansible-playbook -i inventory install-client.yml

4.6. TESTING AN IDENTITY MANAGEMENT CLIENT AFTER ANSIBLE

CHAPTER 4. INSTALLING AN IDENTITY MANAGEMENT CLIENT USING AN ANSIBLE PLAYBOOK

45

4.6. TESTING AN IDENTITY MANAGEMENT CLIENT AFTER ANSIBLE
INSTALLATION

The command-line interface (CLI) informs you that the ansible-playbook command was successful,
but you can also do your own test.

To test that the Identity Management client can obtain information about users defined on the server,
check that you are able to resolve a user defined on the server. For example, to check the default admin
user:

[user@client1 ~]$ id admin
uid=1254400000(admin) gid=1254400000(admins) groups=1254400000(admins)

To test that authentication works correctly, su - as another already existing IdM user:

[user@client1 ~]$ su - idm_user
Last login: Thu Oct 18 18:39:11 CEST 2018 from 192.168.122.1 on pts/0
[idm_user@client1 ~]$

4.7. UNINSTALLING AN IDM CLIENT USING AN ANSIBLE PLAYBOOK

Complete this procedure to use an Ansible playbook to uninstall your host as an IdM client.

Prerequisites

IdM administrator credentials.

The managed node is a Red Hat Enterprise Linux 8 system with a static IP address.

Procedure

Run the Ansible playbook with the instructions to uninstall the client, for example uninstall-
client.yml:

$ ansible-playbook -v -i ~/MyPlaybooks/inventory ~/MyPlaybooks/uninstall-client.yml

IMPORTANT

The uninstallation of the client only removes the basic IdM configuration from the host
but leaves the configuration files on the host in case you decide to re-install the client. In
addition, the uninstallation has the following limitations:

It does not remove the client host entry from the IdM LDAP server. The
uninstallation only unenrolls the host.

It does not remove any services residing on the client from IdM.

It does not remove the DNS entries for the client from the IdM server.

It does not remove the old principals for keytabs other than /etc/krb5.keytab.

Note that the uninstallation does remove all certificates that were issued for the host by
the IdM CA.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

46

Additional resources

Uninstalling an IdM client

CHAPTER 4. INSTALLING AN IDENTITY MANAGEMENT CLIENT USING AN ANSIBLE PLAYBOOK

47

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-client_installing-identity-management

CHAPTER 5. PREPARING YOUR ENVIRONMENT FOR
MANAGING IDM USING ANSIBLE PLAYBOOKS

As a system administrator managing Identity Management (IdM), when working with Red Hat Ansible
Engine, it is good practice to do the following:

Keep a subdirectory dedicated to Ansible playbooks in your home directory, for example
~/MyPlaybooks.

Copy and adapt sample Ansible playbooks from the /usr/share/doc/ansible-freeipa/* and
/usr/share/doc/rhel-system-roles/* directories and subdirectories into your ~/MyPlaybooks
directory.

Include your inventory file in your ~/MyPlaybooks directory.

Using this practice, you can find all your playbooks in one place.

NOTE

You can run your ansible-freeipa playbooks without invoking root privileges on the
managed nodes. Exceptions include playbooks that use the ipaserver, ipareplica,
ipaclient, ipasmartcard_server, ipasmartcard_client and ipabackup ansible-freeipa
roles. These roles require privileged access to directories and the dnf software package
manager.

The playbooks in the Red Hat Enterprise Linux IdM documentation assume the following security
configuration:

The IdM admin is your remote Ansible user on the managed nodes.

You store the IdM admin password encrypted in an Ansible vault.

You have placed the password that protects the Ansible vault in a password file.

You block access to the vault password file to everyone except your local ansible user.

You regularly remove and re-create the vault password file.

Consider also alternative security configurations .

5.1. PREPARING A CONTROL NODE AND MANAGED NODES FOR
MANAGING IDM USING ANSIBLE PLAYBOOKS

Follow this procedure to create the ~/MyPlaybooks directory and configure it so that you can use it to
store and run Ansible playbooks.

Prerequisites

You have installed an IdM server on your managed nodes, server.idm.example.com and
replica.idm.example.com.

You have configured DNS and networking so you can log in to the managed nodes,
server.idm.example.com and replica.idm.example.com, directly from the control node.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

48

You know the IdM admin password.

Procedure

1. Change into the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks

2. Create the ~/MyPlaybooks/ansible.cfg file with the following content:

[defaults]
inventory = /home/your_username/MyPlaybooks/inventory
remote_user = admin

3. Create the ~/MyPlaybooks/inventory file with the following content:

[eu]
server.idm.example.com

[us]
replica.idm.example.com

[ipaserver:children]
eu
us

This configuration defines two host groups, eu and us, for hosts in these locations. Additionally,
this configuration defines the ipaserver host group, which contains all hosts from the eu and us
groups.

4. [Optional] Create an SSH public and private key. To simplify access in your test environment, do
not set a password on the private key:

$ ssh-keygen

5. Copy the SSH public key to the IdM admin account on each managed node:

$ ssh-copy-id admin@server.idm.example.com
$ ssh-copy-id admin@replica.idm.example.com

These commands require that you enter the IdM admin password.

6. Create a password_file file that contains the vault password:

redhat

7. Change the permissions to modify the file:

$ chmod 0600 password_file

8. Create a secret.yml Ansible vault to store the IdM admin password:

a. Configure password_file to store the vault password:

CHAPTER 5. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS

49

$ ansible-vault create --vault-password-file=password_file secret.yml

b. When prompted, enter the content of the secret.yml file:

ipaadmin_password: Secret123

NOTE

To use the encrypted ipaadmin_password in a playbook, you must use the vars_file
directive. For example, a simple playbook to delete an IdM user can look as follows:

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Delete user robot
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: robot
 state: absent

When executing a playbook, instruct Ansible use the vault password to decrypt
ipaadmin_password by adding the --vault-password-file=password_file option. For
example:

ansible-playbook -i inventory --vault-password-file=password_file del-user.yml

WARNING

For security reasons, remove the vault password file at the end of each session, and
repeat steps 6-8 at the start of each new session.

Additional resources

Different methods to provide the credentials required for ansible-freeipa playbooks

Installing an Identity Management server using an Ansible playbook

How to build your inventory

5.2. DIFFERENT METHODS TO PROVIDE THE CREDENTIALS
REQUIRED FOR ANSIBLE-FREEIPA PLAYBOOKS

There are advantages and disadvantages in the different methods for providing the credentials required



Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

There are advantages and disadvantages in the different methods for providing the credentials required
for running playbooks that use ansible-freeipa roles and modules.

Storing passwords in plain text in a playbook

Benefits:

Not being prompted all the time you run the playbook.

Easy to implement.

Drawbacks:

Everyone with access to the file can read the password. Setting wrong permissions and sharing
the file, for example in an internal or external repository, can compromise security.

High maintenance work: if the password is changed, it needs to be changed in all playbooks.

Entering passwords interactively when you execute a playbook

Benefits:

No-one can steal the password as it is not stored anywhere.

You can update the password easily.

Easy to implement.

Drawbacks:

If you are using Ansible playbooks in scripts, the requirement to enter the password interactively
can be inconvenient.

Storing passwords in an Ansible vault and the vault password in a file:

Benefits:

The user password is stored encrypted.

You can update the user password easily, by creating a new Ansible vault.

You can update the password file that protects the ansible vault easily, by using the ansible-
vault rekey --new-vault-password-file=NEW_VAULT_PASSWORD_FILE
secret.yml command.

If you are using Ansible playbooks in scripts, it is convenient not to have to enter the password
protecting the Ansible vault interactively.

Drawbacks:

It is vital that the file that contains the sensitive plain text password be protected through file
permissions and other security measures.

Storing passwords in an Ansible vault and entering the vault password interactively

Benefits:

The user password is stored encrypted.

CHAPTER 5. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS

51

No-one can steal the vault password as it is not stored anywhere.

You can update the user password easily, by creating a new Ansible vault.

You can update the vault password easily too, by using the ansible-vault rekey file_name
command.

Drawbacks:

If you are using Ansible playbooks in scripts, the need to enter the vault password interactively
can be inconvenient.

Additional resources

Preparing a control node and managed nodes for managing IdM using Ansible playbooks

What is Zero trust?

Protecting sensitive data with Ansible vault

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

52

https://www.redhat.com/en/topics/security/what-is-zero-trust
https://docs.ansible.com/ansible/latest/vault_guide/index.html

CHAPTER 6. CONFIGURING GLOBAL IDM SETTINGS USING
ANSIBLE PLAYBOOKS

Using the Ansible config module, you can retrieve and set global configuration parameters for Identity
Management (IdM).

Retrieving IdM configuration using an Ansible playbook

Configuring the IdM CA renewal server using an Ansible playbook

Configuring the default shell for IdM users using an Ansible playbook

Configuring a NETBIOS name for an IdM domain by using Ansible

Ensuring that IdM users and groups have SIDs by using Ansible

6.1. RETRIEVING IDM CONFIGURATION USING AN ANSIBLE
PLAYBOOK

The following procedure describes how you can use an Ansible playbook to retrieve information about
the current global IdM configuration.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Open the /usr/share/doc/ansible-freeipa/playbooks/config/retrieve-config.yml Ansible
playbook file for editing:

- name: Playbook to handle global IdM configuration
 hosts: ipaserver
 become: no
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Query IPA global configuration

CHAPTER 6. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

53

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 register: serverconfig

 - debug:
 msg: "{{ serverconfig }}"

2. Adapt the file by changing the following:

The password of IdM administrator.

Other values, if necessary.

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/config/retrieve-config.yml
[...]
TASK [debug]
ok: [server.idm.example.com] => {
 "msg": {
 "ansible_facts": {
 "discovered_interpreter_
 },
 "changed": false,
 "config": {
 "ca_renewal_master_server": "server.idm.example.com",
 "configstring": [
 "AllowNThash",
 "KDC:Disable Last Success"
],
 "defaultgroup": "ipausers",
 "defaultshell": "/bin/bash",
 "emaildomain": "idm.example.com",
 "enable_migration": false,
 "groupsearch": [
 "cn",
 "description"
],
 "homedirectory": "/home",
 "maxhostname": "64",
 "maxusername": "64",
 "pac_type": [
 "MS-PAC",
 "nfs:NONE"
],
 "pwdexpnotify": "4",
 "searchrecordslimit": "100",
 "searchtimelimit": "2",
 "selinuxusermapdefault": "unconfined_u:s0-s0:c0.c1023",
 "selinuxusermaporder": [
 "guest_u:s0$xguest_u:s0$user_

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

54

],
 "usersearch": [
 "uid",
 "givenname",
 "sn",
 "telephonenumber",
 "ou",
 "title"
]
 },
 "failed": false
 }
}

6.2. CONFIGURING THE IDM CA RENEWAL SERVER USING AN
ANSIBLE PLAYBOOK

In an Identity Management (IdM) deployment that uses an embedded certificate authority (CA), the CA
renewal server maintains and renews IdM system certificates. It ensures robust IdM deployments.

For more details on the role of the IdM CA renewal server, see Using IdM CA renewal server .

The following procedure describes how you can use an Ansible playbook to configure the IdM CA
renewal server.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Optional: Identify the current IdM CA renewal server:

$ ipa config-show | grep 'CA renewal'
 IPA CA renewal master: server.idm.example.com

2. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

CHAPTER 6. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ipa-ca-renewal_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the /usr/share/doc/ansible-freeipa/playbooks/config/set-ca-renewal-master-
server.yml Ansible playbook file for editing:

- name: Playbook to handle global DNS configuration
 hosts: ipaserver
 become: no
 gather_facts: no
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: set ca_renewal_master_server
 ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ca_renewal_master_server: carenewal.idm.example.com

4. Adapt the file by changing:

The password of IdM administrator set by the ipaadmin_password variable.

The name of the CA renewal server set by the ca_renewal_master_server variable.

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/config/set-ca-renewal-master-server.yml

Verification steps

You can verify that the CA renewal server has been changed:

1. Log into ipaserver as IdM administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request the identity of the IdM CA renewal server:

$ ipa config-show | grep ‘CA renewal’
IPA CA renewal master: carenewal.idm.example.com

The output shows the carenewal.idm.example.com server is the new CA renewal server.

6.3. CONFIGURING THE DEFAULT SHELL FOR IDM USERS USING AN
ANSIBLE PLAYBOOK

The shell is a program that accepts and interprets commands. Several shells are available in Red Hat

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

56

The shell is a program that accepts and interprets commands. Several shells are available in Red Hat
Enterprise Linux (RHEL), such as bash, sh, ksh, zsh, fish, and others. Bash, or /bin/bash, is a popular
shell on most Linux systems, and it is normally the default shell for user accounts on RHEL.

The following procedure describes how you can use an Ansible playbook to configure sh, an alternative
shell, as the default shell for IdM users.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Optional: Use the retrieve-config.yml Ansible playbook to identify the current shell for IdM
users. See Retrieving IdM configuration using an Ansible playbook for details.

2. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

3. Open the /usr/share/doc/ansible-freeipa/playbooks/config/ensure-config-options-are-
set.yml Ansible playbook file for editing:

- name: Playbook to ensure some config options are set
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 # Set defaultlogin and maxusername
 - ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 defaultshell: /bin/bash
 maxusername: 64

4. Adapt the file by changing the following:

The password of IdM administrator set by the ipaadmin_password variable.

The default shell of the IdM users set by the defaultshell variable into /bin/sh.

CHAPTER 6. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

57

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/configuring-global-idm-settings-using-ansible-playbooks_using-ansible-to-install-and-manage-idm#retrieving-IdM-configuration-using-an-Ansible-playbook_configuring-global-idm-settings-using-ansible-playbooks

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/config/ensure-config-options-are-set.yml

Verification steps

You can verify that the default user shell has been changed by starting a new session in IdM:

1. Log into ipaserver as IdM administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display the current shell:

[admin@server /]$ echo "$SHELL"
/bin/sh

The logged-in user is using the sh shell.

6.4. CONFIGURING A NETBIOS NAME FOR AN IDM DOMAIN BY USING
ANSIBLE

The NetBIOS name is used for Microsoft Windows' (SMB) type of sharing and messaging. You can use
NetBIOS names to map a drive or connect to a printer.

Follow this procedure to use an Ansible playbook to configure a NetBIOS name for your
Identity Management (IdM) domain.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

The ansible-freeipa package is installed.

Assumptions

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password and
that you know the vault file password.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

58

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/MyPlaybooks/

2. Create a netbios-domain-name-present.yml Ansible playbook file.

3. Add the following content to the file:

- name: Playbook to change IdM domain netbios name
 hosts: ipaserver
 become: no
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Set IdM domain netbios name
 ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 netbios_name: IPADOM

4. Save the file.

5. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory netbios-
domain-name-present.yml

When prompted, provide the vault file password.

Additional resources

Guidelines for configuring NetBIOS names

6.5. ENSURING THAT IDM USERS AND GROUPS HAVE SIDS BY USING
ANSIBLE

The Identity Management (IdM) server can assign unique security identifiers (SIDs) to IdM users and
groups internally, based on the data from the ID ranges of the local domain. The SIDs are stored in the
user and group objects.

The goal of ensuring that IdM users and groups have SIDs is to allow the generation of the Privileged
Attribute Certificate (PAC), which is the first step towards IdM-IdM trusts. If IdM users and groups have
SIDs, IdM is able to issue Kerberos tickets with PAC data.

Follow this procedure to achieve the following goals:

Generate SIDs for already existing IdM users and user groups.

Enable the generation of SIDs for IdM new users and groups.

Prerequisites

CHAPTER 6. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

59

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/planning_identity_management/index#guidelines-for-configuring-netbios-names_planning-a-cross-forest-trust-between-idm-and-ad

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

The ansible-freeipa package is installed.

Assumptions

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password and
that you know the vault file password.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create a sids-for-users-and-groups-present.yml Ansible playbook file.

3. Add the following content to the file:

- name: Playbook to ensure SIDs are enabled and users and groups have SIDs
 hosts: ipaserver
 become: no
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Enable SID and generate users and groups SIDS
 ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 enable_sid: true
 add_sids: true

The enable_sid variable enables SID generation for future IdM users and groups. The add_sids
variable generates SIDs for existing IdM users and groups.

NOTE

When using add_sids: true, you must also set the enable_sid variable to true.

4. Save the file.

5. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory sids-for-users-
and-groups-present.yml

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

60

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

When prompted, provide the vault file password.

Additional resources

The role of security and relative identifiers in IdM ID ranges .

6.6. ADDITIONAL RESOURCES

See README-config.md in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/config directory.

CHAPTER 6. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

61

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#con_the-role-of-security-and-relative-identifiers-in-idm-id-ranges_adjusting-id-ranges-manually

CHAPTER 7. MANAGING USER ACCOUNTS USING ANSIBLE
PLAYBOOKS

You can manage users in IdM using Ansible playbooks. After presenting the user life cycle, this chapter
describes how to use Ansible playbooks for the following operations:

Ensuring the presence of a single user listed directly in the YML file.

Ensuring the presence of multiple users listed directly in the YML file.

Ensuring the presence of multiple users listed in a JSON file that is referenced from the YML
file.

Ensuring the absence of users listed directly in the YML file.

7.1. USER LIFE CYCLE

Identity Management (IdM) supports three user account states:

Stage users are not allowed to authenticate. This is an initial state. Some of the user account
properties required for active users cannot be set, for example, group membership.

Active users are allowed to authenticate. All required user account properties must be set in this
state.

Preserved users are former active users that are considered inactive and cannot authenticate
to IdM. Preserved users retain most of the account properties they had as active users, but they
are not part of any user groups.

You can delete user entries permanently from the IdM database.

IMPORTANT

Deleted user accounts cannot be restored. When you delete a user account, all the
information associated with the account is permanently lost.

A new administrator can only be created by a user with administrator rights, such as the default admin

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

62

A new administrator can only be created by a user with administrator rights, such as the default admin
user. If you accidentally delete all administrator accounts, the Directory Manager must create a new
administrator manually in the Directory Server.

WARNING

Do not delete the admin user. As admin is a pre-defined user required by IdM, this
operation causes problems with certain commands. If you want to define and use an
alternative admin user, disable the pre-defined admin user with ipa user-disable
admin after you granted admin permissions to at least one different user.

WARNING

Do not add local users to IdM. The Name Service Switch (NSS) always resolves IdM
users and groups before resolving local users and groups. This means that, for
example, IdM group membership does not work for local users.

7.2. ENSURING THE PRESENCE OF AN IDM USER USING AN ANSIBLE
PLAYBOOK

The following procedure describes ensuring the presence of a user in IdM using an Ansible playbook.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com





CHAPTER 7. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

63

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Create an Ansible playbook file with the data of the user whose presence in IdM you want to
ensure. To simplify this step, you can copy and modify the example in the
/usr/share/doc/ansible-freeipa/playbooks/user/add-user.yml file. For example, to create user
named idm_user and add Password123 as the user password:

You must use the following options to add a user:

name: the login name

first: the first name string

last: the last name string

For the full list of available user options, see the /usr/share/doc/ansible-freeipa/README-
user.md Markdown file.

NOTE

If you use the update_password: on_create option, Ansible only creates the
user password when it creates the user. If the user is already created with a
password, Ansible does not generate a new password.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-IdM-
user.yml

Verification steps

You can verify if the new user account exists in IdM by using the ipa user-show command:

1. Log into ipaserver as admin:

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create user idm_user
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: idm_user
 first: Alice
 last: Acme
 uid: 1000111
 gid: 10011
 phone: "+555123457"
 email: idm_user@acme.com
 passwordexpiration: "2023-01-19 23:59:59"
 password: "Password123"
 update_password: on_create

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

64

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Request information about idm_user:

$ ipa user-show idm_user
 User login: idm_user
 First name: Alice
 Last name: Acme

The user named idm_user is present in IdM.

7.3. ENSURING THE PRESENCE OF MULTIPLE IDM USERS USING
ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of multiple users in IdM using an Ansible
playbook.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the data of the users whose presence you want to ensure in
IdM. To simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/user/ensure-users-present.yml file. For example, to create users

CHAPTER 7. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

idm_user_1, idm_user_2, and idm_user_3, and add Password123 as the password of idm_user_1:

NOTE

If you do not specify the update_password: on_create option, Ansible re-sets
the user password every time the playbook is run: if the user has changed the
password since the last time the playbook was run, Ansible re-sets password.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-
users.yml

Verification steps

You can verify if the user account exists in IdM by using the ipa user-show command:

1. Log into ipaserver as administrator:

$ ssh administrator@server.idm.example.com
Password:
[admin@server /]$

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create user idm_users
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 users:
 - name: idm_user_1
 first: Alice
 last: Acme
 uid: 10001
 gid: 10011
 phone: "+555123457"
 email: idm_user@acme.com
 passwordexpiration: "2023-01-19 23:59:59"
 password: "Password123"
 - name: idm_user_2
 first: Bob
 last: Acme
 uid: 100011
 gid: 10011
 - name: idm_user_3
 first: Eve
 last: Acme
 uid: 1000111
 gid: 10011

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

66

2. Display information about idm_user_1:

$ ipa user-show idm_user_1
 User login: idm_user_1
 First name: Alice
 Last name: Acme
 Password: True

The user named idm_user_1 is present in IdM.

7.4. ENSURING THE PRESENCE OF MULTIPLE IDM USERS FROM A
JSON FILE USING ANSIBLE PLAYBOOKS

The following procedure describes how you can ensure the presence of multiple users in IdM using an
Ansible playbook. The users are stored in a JSON file.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary tasks. Reference the JSON file with the data
of the users whose presence you want to ensure. To simplify this step, you can copy and modify
the example in the /usr/share/doc/ansible-freeipa/ensure-users-present-ymlfile.yml file:

- name: Ensure users' presence
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Include users.json

CHAPTER 7. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

67

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Create the users.json file, and add the IdM users into it. To simplify this step, you can copy and
modify the example in the /usr/share/doc/ansible-freeipa/playbooks/user/users.json file. For
example, to create users idm_user_1, idm_user_2, and idm_user_3, and add Password123 as the
password of idm_user_1:

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-users-
present-jsonfile.yml

Verification steps

You can verify if the user accounts are present in IdM using the ipa user-show command:

1. Log into ipaserver as administrator:

$ ssh administrator@server.idm.example.com
Password:
[admin@server /]$

2. Display information about idm_user_1:

$ ipa user-show idm_user_1

 include_vars:
 file: users.json

 - name: Users present
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 users: "{{ users }}"

{
 "users": [
 {
 "name": "idm_user_1",
 "first": "Alice",
 "last": "Acme",
 "password": "Password123"
 },
 {
 "name": "idm_user_2",
 "first": "Bob",
 "last": "Acme"
 },
 {
 "name": "idm_user_3",
 "first": "Eve",
 "last": "Acme"
 }
]
}

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

68

 User login: idm_user_1
 First name: Alice
 Last name: Acme
 Password: True

The user named idm_user_1 is present in IdM.

7.5. ENSURING THE ABSENCE OF USERS USING ANSIBLE
PLAYBOOKS

The following procedure describes how you can use an Ansible playbook to ensure that specific users are
absent from IdM.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the users whose absence from IdM you want to ensure. To
simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/user/ensure-users-present.yml file. For example, to delete users
idm_user_1, idm_user_2, and idm_user_3:

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Delete users idm_user_1, idm_user_2, idm_user_3
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 users:

CHAPTER 7. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

69

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/delete-
users.yml

Verification steps

You can verify that the user accounts do not exist in IdM by using the ipa user-show command:

1. Log into ipaserver as administrator:

$ ssh administrator@server.idm.example.com
Password:
[admin@server /]$

2. Request information about idm_user_1:

$ ipa user-show idm_user_1
ipa: ERROR: idm_user_1: user not found

The user named idm_user_1 does not exist in IdM.

7.6. ADDITIONAL RESOURCES

See the README-user.md Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/user directory.

 - name: idm_user_1
 - name: idm_user_2
 - name: idm_user_3
 state: absent

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

70

CHAPTER 8. MANAGING USER GROUPS USING ANSIBLE
PLAYBOOKS

This section introduces user group management using Ansible playbooks.

A user group is a set of users with common privileges, password policies, and other characteristics.

A user group in Identity Management (IdM) can include:

IdM users

other IdM user groups

external users, which are users that exist outside of IdM

The section includes the following topics:

The different group types in IdM

Direct and indirect group members

Ensuring the presence of IdM groups and group members using Ansible playbooks

Using Ansible to enable AD users to administer IdM

Ensuring the presence of member managers in IDM user groups using Ansible playbooks

Ensuring the absence of member managers in IDM user groups using Ansible playbooks

8.1. THE DIFFERENT GROUP TYPES IN IDM

IdM supports the following types of groups:

POSIX groups (the default)

POSIX groups support Linux POSIX attributes for their members. Note that groups that interact with
Active Directory cannot use POSIX attributes.
POSIX attributes identify users as separate entities. Examples of POSIX attributes relevant to users
include uidNumber, a user number (UID), and gidNumber, a group number (GID).

Non-POSIX groups

Non-POSIX groups do not support POSIX attributes. For example, these groups do not have a GID
defined.
All members of this type of group must belong to the IdM domain.

External groups

Use external groups to add group members that exist in an identity store outside of the IdM domain,
such as:

A local system

An Active Directory domain

A directory service

External groups do not support POSIX attributes. For example, these groups do not have a GID

CHAPTER 8. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

71

External groups do not support POSIX attributes. For example, these groups do not have a GID
defined.

Table 8.1. User groups created by default

Group name Default group members

ipausers All IdM users

admins Users with administrative privileges, including the default admin user

editors This is a legacy group that no longer has any special privileges

trust admins Users with privileges to manage the Active Directory trusts

When you add a user to a user group, the user gains the privileges and policies associated with the
group. For example, to grant administrative privileges to a user, add the user to the admins group.

WARNING

Do not delete the admins group. As admins is a pre-defined group required by
IdM, this operation causes problems with certain commands.

In addition, IdM creates user private groups by default whenever a new user is created in IdM. For more
information about private groups, see Adding users without a private group .

8.2. DIRECT AND INDIRECT GROUP MEMBERS

User group attributes in IdM apply to both direct and indirect members: when group B is a member of
group A, all users in group B are considered indirect members of group A.

For example, in the following diagram:

User 1 and User 2 are direct members of group A.

User 3, User 4, and User 5 are indirect members of group A.

Figure 8.1. Direct and Indirect Group Membership



Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

72

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#adding-users-without-a-user-private-group_managing-user-groups-in-idm-cli

Figure 8.1. Direct and Indirect Group Membership

If you set a password policy for user group A, the policy also applies to all users in user group B.

8.3. ENSURING THE PRESENCE OF IDM GROUPS AND GROUP
MEMBERS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of IdM groups and group members - both
users and user groups - using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The users you want to reference in your Ansible playbook exist in IdM. For details on ensuring
the presence of users using Ansible, see Managing user accounts using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary user and group information:

- name: Playbook to handle groups
 hosts: ipaserver

CHAPTER 8. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

73

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-group-
members.yml

Verification steps

You can verify if the ops group contains sysops and appops as direct members and idm_user as an
indirect member by using the ipa group-show command:

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about ops:

ipaserver]$ ipa group-show ops
 Group name: ops
 GID: 1234
 Member groups: sysops, appops
 Indirect Member users: idm_user

The appops and sysops groups - the latter including the idm_user user - exist in IdM.

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create group ops with gid 1234
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: ops
 gidnumber: 1234

 - name: Create group sysops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: sysops
 user:
 - idm_user

 - name: Create group appops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: appops

 - name: Add group members sysops and appops to group ops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: ops
 group:
 - sysops
 - appops

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

74

Additional resources

See the /usr/share/doc/ansible-freeipa/README-group.md Markdown file.

8.4. USING ANSIBLE TO ADD MULTIPLE IDM GROUPS IN A SINGLE
TASK

You can use the ansible-freeipa ipagroup module to add, modify, and delete multiple Identity
Management (IdM) user groups with a single Ansible task. For that, use the groups option of the
ipagroup module.

Using the groups option, you can also specify multiple group variables that only apply to a particular
group. Define this group by the name variable, which is the only mandatory variable for the groups
option.

Complete this procedure to ensure the presence of the sysops and the appops groups in IdM in a single
task. Define the sysops group as a nonposix group and the appops group as an external group.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You are using RHEL 8.9 and later.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Procedure

1. Create your Ansible playbook file add-nonposix-and-external-groups.yml with the following
content:

- name: Playbook to add nonposix and external groups
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Add nonposix group sysops and external group appops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 groups:
 - name: sysops
 nonposix: true
 - name: appops
 external: true

2. Run the playbook:

CHAPTER 8. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

75

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/add-nonposix-
and-external-groups.yml

Additional resources

The group module in ansible-freeipa upstream docs

8.5. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM

Follow this procedure to use an Ansible playbook to ensure that a user ID override is present in an
Identity Management (IdM) group. The user ID override is the override of an Active Directory (AD) user
that you created in the Default Trust View after you established a trust with AD. As a result of running
the playbook, an AD user, for example an AD administrator, is able to fully administer IdM without having
two different accounts and passwords.

Prerequisites

You know the IdM admin password.

You have installed a trust with AD .

The user ID override of the AD user already exists in IdM. If it does not, create it with the ipa
idoverrideuser-add 'default trust view' ad_user@ad.example.com command.

The group to which you are adding the user ID override already exists in IdM .

You are using the 4.8.7 version of IdM or later. To view the version of IdM you have installed on
your server, enter ipa --version.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create an add-useridoverride-to-group.yml playbook with the following content:

- name: Playbook to ensure presence of users in a group
 hosts: ipaserver

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

76

https://github.com/freeipa/ansible-freeipa/blob/master/README-group.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-groups-using-ansible-playbooks_configuring-and-managing-idm#ensuring-the-presence-of-IdM-groups-and-group-members-using-Ansible-playbooks_managing-user-groups-using-ansible-playbooks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - name: Ensure the ad_user@ad.example.com user ID override is a member of the admins
group:
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: admins
 idoverrideuser:
 - ad_user@ad.example.com

In the example:

Secret123 is the IdM admin password.

admins is the name of the IdM POSIX group to which you are adding the
ad_user@ad.example.com ID override. Members of this group have full administrator
privileges.

ad_user@ad.example.com is the user ID override of an AD administrator. The user is stored
in the AD domain with which a trust has been established.

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-
useridoverride-to-group.yml

Additional resources

ID overrides for AD users

/usr/share/doc/ansible-freeipa/README-group.md

/usr/share/doc/ansible-freeipa/playbooks/user

Using ID views in Active Directory environments

Enabling AD users to administer IdM

8.6. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM USER
GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of IdM member managers - both users and
user groups - using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

CHAPTER 8. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

77

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/enabling-ad-users-to-administer-idm_configuring-and-managing-idm#id-overrides-for-ad-users_enabling-ad-users-to-administer-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-id-views-for-active-directory-users_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/enabling-ad-users-to-administer-idm_configuring-and-managing-idm

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the user or group you are adding as member managers and the
name of the group you want them to manage.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary user and group member management
information:

- name: Playbook to handle membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure user test is present for group_a
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_a
 membermanager_user: test

 - name: Ensure group_admins is present for group_a
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_a
 membermanager_group: group_admins

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-member-
managers-user-groups.yml

Verification steps

You can verify if the group_a group contains test as a member manager and group_admins is a
member manager of group_a by using the ipa group-show command:

1. Log into ipaserver as administrator:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

78

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about managergroup1:

ipaserver]$ ipa group-show group_a
 Group name: group_a
 GID: 1133400009
 Membership managed by groups: group_admins
 Membership managed by users: test

Additional resources

See ipa host-add-member-manager --help.

See the ipa man page.

8.7. ENSURING THE ABSENCE OF MEMBER MANAGERS IN IDM USER
GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the absence of IdM member managers - both users and
user groups - using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the existing member manager user or group you are removing and
the name of the group they are managing.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary user and group member management
information:

CHAPTER 8. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

79

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
member-managers-are-absent.yml

Verification steps

You can verify if the group_a group does not contain test as a member manager and group_admins as
a member manager of group_a by using the ipa group-show command:

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about group_a:

ipaserver]$ ipa group-show group_a
 Group name: group_a
 GID: 1133400009

Additional resources

See ipa host-remove-member-manager --help.

See the ipa man page.

- name: Playbook to handle membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure member manager user and group members are absent for group_a
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_a
 membermanager_user: test
 membermanager_group: group_admins
 action: member
 state: absent

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

80

CHAPTER 9. USING ANSIBLE TO AUTOMATE GROUP
MEMBERSHIP IN IDM

Using automatic group membership, you can assign users and hosts user groups and host groups
automatically, based on their attributes. For example, you can:

Divide employees' user entries into groups based on the employees' manager, location, position
or any other attribute. You can list all attributes by entering ipa user-add --help on the
command-line.

Divide hosts into groups based on their class, location, or any other attribute. You can list all
attributes by entering ipa host-add --help on the command-line.

Add all users or all hosts to a single global group.

You can use Red Hat Ansible Engine to automate the management of automatic group membership in
Identity Management (IdM).

This section covers the following topics:

Using Ansible to ensure that an automember rule for an IdM user group is present

Using Ansible to ensure that a condition is present in an IdM user group automember rule

Using Ansible to ensure that a condition is absent in an IdM user group automember rule

Using Ansible to ensure that an automember rule for an IdM group is absent

Using Ansible to ensure that a condition is present in an IdM host group automember rule

9.1. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR
AN IDM USER GROUP IS PRESENT

The following procedure describes how to use an Ansible playbook to ensure an automember rule for an
Identity Management (IdM) group exists. In the example, the presence of an automember rule is
ensured for the testing_group user group.

Prerequisites

You know the IdM admin password.

The testing_group user group exists in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

CHAPTER 9. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

81

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-group-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-group-
present.yml automember-group-present-copy.yml

3. Open the automember-group-present-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to present.

This is the modified Ansible playbook file for the current example:

- name: Automember group present example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure group automember rule admins is present
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: present

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
group-present-copy.yml

9.2. USING ANSIBLE TO ENSURE THAT A SPECIFIED CONDITION IS
PRESENT IN AN IDM USER GROUP AUTOMEMBER RULE

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

82

Additional resources

The following procedure describes how to use an Ansible playbook to ensure that a specified condition
exists in an automember rule for an Identity Management (IdM) group. In the example, the presence of
a UID-related condition in the automember rule is ensured for the testing_group group. By specifying
the .* condition, you ensure that all future IdM users automatically become members of the
testing_group.

Prerequisites

You know the IdM admin password.

The testing_group user group and automember user group rule exist in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-hostgroup-rule-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory and name it, for example,
automember-usergroup-rule-present.yml :

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-hostgroup-
rule-present.yml automember-usergroup-rule-present.yml

3. Open the automember-usergroup-rule-present.yml file for editing.

4. Adapt the file by modifying the following parameters:

Rename the playbook to correspond to your use case, for example: Automember user
group rule member present.

Rename the task to correspond to your use case, for example: Ensure an automember
condition for a user group is present.

Set the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

CHAPTER 9. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

83

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the automember_type variable to group.

Ensure that the state variable is set to present.

Ensure that the action variable is set to member.

Set the inclusive key variable to UID.

Set the inclusive expression variable to .*

This is the modified Ansible playbook file for the current example:

- name: Automember user group rule member present
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure an automember condition for a user group is present
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: present
 action: member
 inclusive:
 - key: UID
 expression: .*

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
usergroup-rule-present.yml

Verification steps

1. Log in as an IdM administrator.

$ kinit admin

2. Add a user, for example:

$ ipa user-add user101 --first user --last 101

Added user "user101"

 User login: user101
 First name: user
 Last name: 101
 ...
 Member of groups: ipausers, testing_group
 ...

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

84

9.3. USING ANSIBLE TO ENSURE THAT A CONDITION IS ABSENT
FROM AN IDM USER GROUP AUTOMEMBER RULE

Additional resources

The following procedure describes how to use an Ansible playbook to ensure a condition is absent from
an automember rule for an Identity Management (IdM) group. In the example, the absence of a
condition in the automember rule is ensured that specifies that users whose initials are dp should be
included. The automember rule is applied to the testing_group group. By applying the condition, you
ensure that no future IdM user whose initials are dp becomes a member of the testing_group.

Prerequisites

You know the IdM admin password.

The testing_group user group and automember user group rule exist in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-hostgroup-rule-absent.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory and name it, for example,
automember-usergroup-rule-absent.yml:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-hostgroup-
rule-absent.yml automember-usergroup-rule-absent.yml

3. Open the automember-usergroup-rule-absent.yml file for editing.

4. Adapt the file by modifying the following parameters:

Rename the playbook to correspond to your use case, for example: Automember user
group rule member absent.

Rename the task to correspond to your use case, for example: Ensure an automember
condition for a user group is absent.

CHAPTER 9. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

85

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to absent.

Ensure that the action variable is set to member.

Set the inclusive key variable to initials.

Set the inclusive expression variable to dp.

This is the modified Ansible playbook file for the current example:

- name: Automember user group rule member absent
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure an automember condition for a user group is absent
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: absent
 action: member
 inclusive:
 - key: initials
 expression: dp

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
usergroup-rule-absent.yml

Verification steps

1. Log in as an IdM administrator.

$ kinit admin

2. View the automember group:

$ ipa automember-show --type=group testing_group
 Automember Rule: testing_group

The absence of an Inclusive Regex: initials=dp entry in the output confirms that the testing_group

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

86

The absence of an Inclusive Regex: initials=dp entry in the output confirms that the testing_group
automember rule does not contain the condition specified.

9.4. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR
AN IDM USER GROUP IS ABSENT

Additional resources

The following procedure describes how to use an Ansible playbook to ensure an automember rule is
absent for an Identity Management (IdM) group. In the example, the absence of an automember rule is
ensured for the testing_group group.

NOTE

Deleting an automember rule also deletes all conditions associated with the rule. To
remove only specific conditions from a rule, see Using Ansible to ensure that a condition is
absent in an IdM user group automember rule.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-group-absent.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-group-
absent.yml automember-group-absent-copy.yml

3. Open the automember-group-absent-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

CHAPTER 9. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

87

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Automember group absent example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure group automember rule admins is absent
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
group-absent.yml

Additional resources

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

9.5. USING ANSIBLE TO ENSURE THAT A CONDITION IS PRESENT IN
AN IDM HOST GROUP AUTOMEMBER RULE

Follow this procedure to use Ansible to ensure that a condition is present in an IdM host group
automember rule. The example describes how to ensure that hosts with the FQDN of
.*.idm.example.com are members of the primary_dns_domain_hosts host group and hosts whose
FQDN is .*.example.org are not members of the primary_dns_domain_hosts host group.

Prerequisites

You know the IdM admin password.

The primary_dns_domain_hosts host group and automember host group rule exist in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

88

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-hostgroup-rule-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-hostgroup-
rule-present.yml automember-hostgroup-rule-present-copy.yml

3. Open the automember-hostgroup-rule-present-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to primary_dns_domain_hosts.

Set the automember_type variable to hostgroup.

Ensure that the state variable is set to present.

Ensure that the action variable is set to member.

Ensure that the inclusive key variable is set to fqdn.

Set the corresponding inclusive expression variable to .*.idm.example.com.

Set the exclusive key variable to fqdn.

Set the corresponding exclusive expression variable to .*.example.org.

This is the modified Ansible playbook file for the current example:

- name: Automember user group rule member present
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure an automember condition for a user group is present
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: primary_dns_domain_hosts
 automember_type: hostgroup
 state: present

CHAPTER 9. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

89

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 action: member
 inclusive:
 - key: fqdn
 expression: .*.idm.example.com
 exclusive:
 - key: fqdn
 expression: .*.example.org

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
hostgroup-rule-present-copy.yml

Additional resources

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

90

CHAPTER 10. USING ANSIBLE PLAYBOOKS TO MANAGE
SELF-SERVICE RULES IN IDM

This section introduces self-service rules in Identity Management (IdM) and describes how to create and
edit self-service access rules using Ansible playbooks. Self-service access control rules allow an IdM
entity to perform specified operations on its IdM Directory Server entry.

Self-service access control in IdM

Using Ansible to ensure that a self-service rule is present

Using Ansible to ensure that a self-service rule is absent

Using Ansible to ensure that a self-service rule has specific attributes

Using Ansible to ensure that a self-service rule does not have specific attributes

10.1. SELF-SERVICE ACCESS CONTROL IN IDM

Self-service access control rules define which operations an Identity Management (IdM) entity can
perform on its IdM Directory Server entry: for example, IdM users have the ability to update their own
passwords.

This method of control allows an authenticated IdM entity to edit specific attributes within its LDAP
entry, but does not allow add or delete operations on the entire entry.

WARNING

Be careful when working with self-service access control rules: configuring access
control rules improperly can inadvertently elevate an entity’s privileges.

10.2. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS
PRESENT

The following procedure describes how to use an Ansible playbook to define self-service rules and
ensure their presence on an Identity Management (IdM) server. In this example, the new Users can
manage their own name details rule grants users the ability to change their own givenname,
displayname, title and initials attributes. This allows them to, for example, change their display name or
initials if they want to.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible



CHAPTER 10. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

91

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/selfservice/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-present.yml
selfservice-present-copy.yml

3. Open the selfservice-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new self-service rule.

Set the permission variable to a comma-separated list of permissions to grant: read and
write.

Set the attribute variable to a list of attributes that users can manage themselves:
givenname, displayname, title, and initials.

This is the modified Ansible playbook file for the current example:

- name: Self-service present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure self-service rule "Users can manage their own name details" is present
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 permission: read, write
 attribute:
 - givenname
 - displayname
 - title
 - initials

5. Save the file.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

92

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
present-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/selfservice directory.

10.3. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS
ABSENT

The following procedure describes how to use an Ansible playbook to ensure a specified self-service rule
is absent from your IdM configuration. The example below describes how to make sure the Users can
manage their own name details self-service rule does not exist in IdM. This will ensure that users
cannot, for example, change their own display name or initials.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/selfservice/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-absent.yml
selfservice-absent-copy.yml

3. Open the selfservice-absent-copy.yml Ansible playbook file for editing.

CHAPTER 10. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

93

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the self-service rule.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Self-service absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure self-service rule "Users can manage their own name details" is absent
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
absent-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/selfservice
directory.

10.4. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE HAS
SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that an already existing
self-service rule has specific settings. In the example, you ensure the Users can manage their own
name details self-service rule also has the surname member attribute.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

94

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The Users can manage their own name details self-service rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-member-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/selfservice/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-member-
present.yml selfservice-member-present-copy.yml

3. Open the selfservice-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the self-service rule to modify.

Set the attribute variable to surname.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Self-service member present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure selfservice "Users can manage their own name details" member attribute
surname is present
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 attribute:
 - surname
 action: member

5. Save the file.

CHAPTER 10. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

95

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
member-present-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file available in the /usr/share/doc/ansible-freeipa/
directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/selfservice
directory.

10.5. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE DOES
NOT HAVE SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that a self-service rule
does not have specific settings. You can use this playbook to make sure a self-service rule does not
grant undesired access. In the example, you ensure the Users can manage their own name details self-
service rule does not have the givenname and surname member attributes.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The Users can manage their own name details self-service rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-member-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/selfservice/ directory:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

96

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-member-
absent.yml selfservice-member-absent-copy.yml

3. Open the selfservice-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the self-service rule you want to modify.

Set the attribute variable to givenname and surname.

Set the action variable to member.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Self-service member absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure selfservice "Users can manage their own name details" member attributes
givenname and surname are absent
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 attribute:
 - givenname
 - surname
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
member-absent-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/selfservice
directory.

CHAPTER 10. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

97

CHAPTER 11. DELEGATING PERMISSIONS TO USER GROUPS
TO MANAGE USERS USING ANSIBLE PLAYBOOKS

Delegation is one of the access control methods in IdM, along with self-service rules and role-based
access control (RBAC). You can use delegation to assign permissions to one group of users to manage
entries for another group of users.

This section covers the following topics:

Delegation rules

Creating the Ansible inventory file for IdM

Using Ansible to ensure that a delegation rule is present

Using Ansible to ensure that a delegation rule is absent

Using Ansible to ensure that a delegation rule has specific attributes

Using Ansible to ensure that a delegation rule does not have specific attributes

11.1. DELEGATION RULES

You can delegate permissions to user groups to manage users by creating delegation rules.

Delegation rules allow a specific user group to perform write (edit) operations on specific attributes for
users in another user group. This form of access control rule is limited to editing the values of a subset of
attributes you specify in a delegation rule; it does not grant the ability to add or remove whole entries or
control over unspecified attributes.

Delegation rules grant permissions to existing user groups in IdM. You can use delegation to, for
example, allow the managers user group to manage selected attributes of users in the employees user
group.

11.2. CREATING AN ANSIBLE INVENTORY FILE FOR IDM

When working with Ansible, it is good practice to create, in your home directory, a subdirectory
dedicated to Ansible playbooks that you copy and adapt from the /usr/share/doc/ansible-freeipa/* and
/usr/share/doc/rhel-system-roles/* subdirectories. This practice has the following advantages:

You can find all your playbooks in one place.

You can run your playbooks without invoking root privileges.

Procedure

1. Create a directory for your Ansible configuration and playbooks in your home directory:

$ mkdir ~/MyPlaybooks/

2. Change into the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

98

3. Create the ~/MyPlaybooks/ansible.cfg file with the following content:

[defaults]
inventory = /home/<username>/MyPlaybooks/inventory

[privilege_escalation]
become=True

4. Create the ~/MyPlaybooks/inventory file with the following content:

[eu]
server.idm.example.com

[us]
replica.idm.example.com

[ipaserver:children]
eu
us

This configuration defines two host groups, eu and us, for hosts in these locations. Additionally,
this configuration defines the ipaserver host group, which contains all hosts from the eu and us
groups.

11.3. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS
PRESENT

The following procedure describes how to use an Ansible playbook to define privileges for a new IdM
delegation rule and ensure its presence. In the example, the new basic manager attributes delegation
rule grants the managers group the ability to read and write the following attributes for members of
the employees group:

businesscategory

departmentnumber

employeenumber

employeetype

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

CHAPTER 11. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

99

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the delegation-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-present.yml
delegation-present-copy.yml

3. Open the delegation-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new delegation rule.

Set the permission variable to a comma-separated list of permissions to grant: read and
write.

Set the attribute variable to a list of attributes the delegated user group can manage:
businesscategory, departmentnumber, employeenumber, and employeetype.

Set the group variable to the name of the group that is being given access to view or
modify attributes.

Set the membergroup variable to the name of the group whose attributes can be viewed
or modified.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage a delegation rule
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" is present
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"
 permission: read, write
 attribute:
 - businesscategory
 - departmentnumber
 - employeenumber
 - employeetype
 group: managers
 membergroup: employees

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

100

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-present-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

11.4. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS
ABSENT

The following procedure describes how to use an Ansible playbook to ensure a specified delegation rule
is absent from your IdM configuration. The example below describes how to make sure the custom basic
manager attributes delegation rule does not exist in IdM.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks>/

2. Make a copy of the delegation-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-present.yml
delegation-absent-copy.yml

CHAPTER 11. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

101

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the delegation-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the delegation rule.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Delegation absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" is absent
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-absent-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

11.5. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE HAS
SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that a delegation rule has
specific settings. You can use this playbook to modify a delegation role you have previously created. In
the example, you ensure the basic manager attributes delegation rule only has the departmentnumber
member attribute.

Prerequisites

You know the IdM administrator password.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

102

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The basic manager attributes delegation rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the delegation-member-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-member-
present.yml delegation-member-present-copy.yml

3. Open the delegation-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the delegation rule to modify.

Set the attribute variable to departmentnumber.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Delegation member present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" member attribute departmentnumber
is present
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"

CHAPTER 11. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

103

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 attribute:
 - departmentnumber
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-member-present-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

11.6. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE DOES
NOT HAVE SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that a delegation rule does
not have specific settings. You can use this playbook to make sure a delegation role does not grant
undesired access. In the example, you ensure the basic manager attributes delegation rule does not
have the employeenumber and employeetype member attributes.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The basic manager attributes delegation rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

104

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Make a copy of the delegation-member-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-member-
absent.yml delegation-member-absent-copy.yml

3. Open the delegation-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the delegation rule to modify.

Set the attribute variable to employeenumber and employeetype.

Set the action variable to member.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Delegation member absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" member attributes employeenumber
and employeetype are absent
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"
 attribute:
 - employeenumber
 - employeetype
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-member-absent-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation

CHAPTER 11. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

105

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

106

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE
ROLE-BASED ACCESS CONTROL IN IDM

Role-based access control (RBAC) is a policy-neutral access-control mechanism defined around roles
and privileges. The components of RBAC in Identity Management (IdM) are roles, privileges and
permissions:

Permissions grant the right to perform a specific task such as adding or deleting users,
modifying a group, and enabling read-access.

Privileges combine permissions, for example all the permissions needed to add a new user.

Roles grant a set of privileges to users, user groups, hosts or host groups.

Especially in large companies, using RBAC can help create a hierarchical system of administrators with
their individual areas of responsibility.

This chapter describes the following operations performed when managing RBAC using Ansible
playbooks:

Permissions in IdM

Default managed permissions

Privileges in IdM

Roles in IdM

Predefined roles in IdM

Using Ansible to ensure an IdM RBAC role with privileges is present

Using Ansible to ensure an IdM RBAC role is absent

Using Ansible to ensure that a group of users is assigned to an IdM RBAC role

Using Ansible to ensure that specific users are not assigned to an IdM RBAC role

Using Ansible to ensure a service is a member of an IdM RBAC role

Using Ansible to ensure a host is a member of an IdM RBAC role

Using Ansible to ensure a host group is a member of an IdM RBAC role

12.1. PERMISSIONS IN IDM

Permissions are the lowest level unit of role-based access control, they define operations together with
the LDAP entries to which those operations apply. Comparable to building blocks, permissions can be
assigned to as many privileges as needed.
One or more rights define what operations are allowed:

write

read

search

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

107

compare

add

delete

all

These operations apply to three basic targets:

subtree: a domain name (DN); the subtree under this DN

target filter: an LDAP filter

target: DN with possible wildcards to specify entries

Additionally, the following convenience options set the corresponding attribute(s):

type: a type of object (user, group, etc); sets subtree and target filter

memberof: members of a group; sets a target filter

targetgroup: grants access to modify a specific group (such as granting the rights to manage
group membership); sets a target

With IdM permissions, you can control which users have access to which objects and even which
attributes of these objects. IdM enables you to allow or block individual attributes or change the entire
visibility of a specific IdM function, such as users, groups, or sudo, to all anonymous users, all
authenticated users, or just a certain group of privileged users.
For example, the flexibility of this approach to permissions is useful for an administrator who wants to
limit access of users or groups only to the specific sections these users or groups need to access and to
make the other sections completely hidden to them.

NOTE

A permission cannot contain other permissions.

12.2. DEFAULT MANAGED PERMISSIONS

Managed permissions are permissions that come by default with IdM. They behave like other
permissions created by the user, with the following differences:

You cannot delete them or modify their name, location, and target attributes.

They have three sets of attributes:

Default attributes, the user cannot modify them, as they are managed by IdM

Included attributes, which are additional attributes added by the user

Excluded attributes, which are attributes removed by the user

A managed permission applies to all attributes that appear in the default and included attribute sets but
not in the excluded set.

NOTE

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

108

NOTE

While you cannot delete a managed permission, setting its bind type to permission and
removing the managed permission from all privileges effectively disables it.

Names of all managed permissions start with System:, for example System: Add Sudo rule or System:
Modify Services. Earlier versions of IdM used a different scheme for default permissions. For example,
the user could not delete them and was only able to assign them to privileges. Most of these default
permissions have been turned into managed permissions, however, the following permissions still use
the previous scheme:

Add Automember Rebuild Membership Task

Add Configuration Sub-Entries

Add Replication Agreements

Certificate Remove Hold

Get Certificates status from the CA

Read DNA Range

Modify DNA Range

Read PassSync Managers Configuration

Modify PassSync Managers Configuration

Read Replication Agreements

Modify Replication Agreements

Remove Replication Agreements

Read LDBM Database Configuration

Request Certificate

Request Certificate ignoring CA ACLs

Request Certificates from a different host

Retrieve Certificates from the CA

Revoke Certificate

Write IPA Configuration

NOTE

If you attempt to modify a managed permission from the command line, the system does
not allow you to change the attributes that you cannot modify, the command fails. If you
attempt to modify a managed permission from the Web UI, the attributes that you
cannot modify are disabled.

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

109

12.3. PRIVILEGES IN IDM

A privilege is a group of permissions applicable to a role.
While a permission provides the rights to do a single operation, there are certain IdM tasks that require
multiple permissions to succeed. Therefore, a privilege combines the different permissions required to
perform a specific task.
For example, setting up an account for a new IdM user requires the following permissions:

Creating a new user entry

Resetting a user password

Adding the new user to the default IPA users group

Combining these three low-level tasks into a higher level task in the form of a custom privilege named,
for example, Add User makes it easier for a system administrator to manage roles. IdM already contains
several default privileges. Apart from users and user groups, privileges are also assigned to hosts and
host groups, as well as network services. This practice permits a fine-grained control of operations by a
set of users on a set of hosts using specific network services.

NOTE

A privilege may not contain other privileges.

12.4. ROLES IN IDM

A role is a list of privileges that users specified for the role possess.
In effect, permissions grant the ability to perform given low-level tasks (such as creating a user entry
and adding an entry to a group), privileges combine one or more of these permissions needed for a
higher-level task (such as creating a new user in a given group). Roles gather privileges together as
needed: for example, a User Administrator role would be able to add, modify, and delete users.

IMPORTANT

Roles are used to classify permitted actions. They are not used as a tool to implement
privilege separation or to protect from privilege escalation.

NOTE

Roles can not contain other roles.

12.5. PREDEFINED ROLES IN IDENTITY MANAGEMENT

Red Hat Identity Management provides the following range of pre-defined roles:

Table 12.1. Predefined Roles in Identity Management

Role Privilege Description

Enrollment Administrator Host Enrollment Responsible for client, or host,
enrollment

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

110

helpdesk Modify Users and Reset
passwords, Modify Group
membership

Responsible for performing simple
user administration tasks

IT Security Specialist Netgroups Administrators, HBAC
Administrator, Sudo Administrator

Responsible for managing security
policy such as host-based access
controls, sudo rules

IT Specialist Host Administrators, Host Group
Administrators, Service
Administrators, Automount
Administrators

Responsible for managing hosts

Security Architect Delegation Administrator,
Replication Administrators, Write
IPA Configuration, Password
Policy Administrator

Responsible for managing the
Identity Management
environment, creating trusts,
creating replication agreements

User Administrator User Administrators, Group
Administrators, Stage User
Administrators

Responsible for creating users
and groups

Role Privilege Description

12.6. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE WITH
PRIVILEGES IS PRESENT

To exercise more granular control over role-based access (RBAC) to resources in Identity Management
(IdM) than the default roles provide, create a custom role.

The following procedure describes how to use an Ansible playbook to define privileges for a new IdM
custom role and ensure its presence. In the example, the new user_and_host_administrator role
contains a unique combination of the following privileges that are present in IdM by default:

Group Administrators

User Administrators

Stage User Administrators

Group Administrators

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

111

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-user-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-user-present.yml role-
member-user-present-copy.yml

3. Open the role-member-user-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new role.

Set the privilege list to the names of the IdM privileges that you want to include in the new
role.

Optionally, set the user variable to the name of the user to whom you want to grant the new
role.

Optionally, set the group variable to the name of the group to which you want to grant the
new role.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: user_and_host_administrator
 user: idm_user01
 group: idm_group01
 privilege:
 - Group Administrators

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

112

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - User Administrators
 - Stage User Administrators
 - Group Administrators

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-user-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

12.7. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE IS ABSENT

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to ensure the absence of an obsolete role so that no administrator assigns it to any user
accidentally.

The following procedure describes how to use an Ansible playbook to ensure a role is absent. The
example below describes how to make sure the custom user_and_host_administrator role does not
exist in IdM.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

113

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Make a copy of the role-is-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-is-absent.yml role-is-absent-
copy.yml

3. Open the role-is-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role.

Ensure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: user_and_host_administrator
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-is-absent-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

12.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS
ASSIGNED TO AN IDM RBAC ROLE

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

114

https://docs.ansible.com/ansible/latest/user_guide/vault.html

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to assign a role to a specific group of users, for example junior administrators.

The following example describes how to use an Ansible playbook to ensure the built-in IdM RBAC
helpdesk role is assigned to junior_sysadmins.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-group-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-group-present.yml
role-member-group-present-copy.yml

3. Open the role-member-group-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the group variable to the name of the group.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

115

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: helpdesk
 group: junior_sysadmins
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-group-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

12.9. USING ANSIBLE TO ENSURE THAT SPECIFIC USERS ARE NOT
ASSIGNED TO AN IDM RBAC ROLE

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to ensure that an RBAC role is not assigned to specific users after they have, for example,
moved to different positions within the company.

The following procedure describes how to use an Ansible playbook to ensure that the users named
user_01 and user_02 are not assigned to the helpdesk role.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

116

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-user-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-user-absent.yml role-
member-user-absent-copy.yml

3. Open the role-member-user-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the user list to the names of the users.

Set the action variable to member.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: helpdesk
 user
 - user_01
 - user_02
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-user-absent-copy.yml

Additional resources

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

117

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

12.10. USING ANSIBLE TO ENSURE A SERVICE IS A MEMBER OF AN
IDM RBAC ROLE

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to ensure that a specific service that is enrolled into IdM is a member of a particular role.
The following example describes how to ensure that the custom web_administrator role can manage
the HTTP service that is running on the client01.idm.example.com server.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The web_administrator role exists in IdM.

The HTTP/client01.idm.example.com@IDM.EXAMPLE.COM service exists in IdM.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-service-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-service-present-
absent.yml role-member-service-present-copy.yml

3. Open the role-member-service-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

118

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the name variable to the name of the role you want to assign.

Set the service list to the name of the service.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web_administrator
 service:
 - HTTP/client01.idm.example.com
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-service-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

12.11. USING ANSIBLE TO ENSURE A HOST IS A MEMBER OF AN IDM
RBAC ROLE

As a system administrator managing role-based access control in Identity Management (IdM), you may
want to ensure that a specific host or host group is associated with a specific role. The following
example describes how to ensure that the custom web_administrator role can manage the
client01.idm.example.com IdM host on which the HTTP service is running.

Prerequisites

You know the IdM administrator password.

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

119

https://docs.ansible.com/ansible/latest/user_guide/vault.html

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The web_administrator role exists in IdM.

The client01.idm.example.com host exists in IdM.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-host-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-host-present.yml role-
member-host-present-copy.yml

3. Open the role-member-host-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the host list to the name of the host.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web_administrator

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

120

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 host:
 - client01.idm.example.com
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-host-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

12.12. USING ANSIBLE TO ENSURE A HOST GROUP IS A MEMBER OF
AN IDM RBAC ROLE

As a system administrator managing role-based access control in Identity Management (IdM), you may
want to ensure that a specific host or host group is associated with a specific role. The following
example describes how to ensure that the custom web_administrator role can manage the
web_servers group of IdM hosts on which the HTTP service is running.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The web_administrator role exists in IdM.

The web_servers host group exists in IdM.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

121

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-hostgroup-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-hostgroup-
present.yml role-member-hostgroup-present-copy.yml

3. Open the role-member-hostgroup-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the hostgroup list to the name of the hostgroup.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web_administrator
 hostgroup:
 - web_servers
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-hostgroup-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

122

https://docs.ansible.com/ansible/latest/user_guide/vault.html

CHAPTER 13. USING ANSIBLE PLAYBOOKS TO MANAGE
RBAC PRIVILEGES

Role-based access control (RBAC) is a policy-neutral access-control mechanism defined around roles,
privileges, and permissions. Especially in large companies, using RBAC can help create a hierarchical
system of administrators with their individual areas of responsibility.

This chapter describes the following operations for using Ansible playbooks to manage RBAC privileges
in Identity Management (IdM):

Using Ansible to ensure a custom RBAC privilege is present

Using Ansible to ensure member permissions are present in a custom IdM RBAC privilege

Using Ansible to ensure an IdM RBAC privilege does not include a permission

Using Ansible to rename a custom IdM RBAC privilege

Using Ansible to ensure an IdM RBAC privilege is absent

Prerequisites

You understand the concepts and principles of RBAC .

13.1. USING ANSIBLE TO ENSURE A CUSTOM IDM RBAC PRIVILEGE IS
PRESENT

To have a fully-functioning custom privilege in Identity Management (IdM) role-based access control
(RBAC), you need to proceed in stages:

1. Create a privilege with no permissions attached.

2. Add permissions of your choice to the privilege.

The following procedure describes how to create an empty privilege using an Ansible playbook so that
you can later add permissions to it. The example describes how to create a privilege named
full_host_administration that is meant to combine all IdM permissions related to host administration.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

CHAPTER 13. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

123

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-present.yml privilege-
present-copy.yml

3. Open the privilege-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new privilege, full_host_administration.

Optionally, describe the privilege using the description variable.

This is the modified Ansible playbook file for the current example:

- name: Privilege present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure privilege full_host_administration is present
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: full_host_administration
 description: This privilege combines all IdM permissions related to host
administration

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
present-copy.yml

13.2. USING ANSIBLE TO ENSURE MEMBER PERMISSIONS ARE
PRESENT IN A CUSTOM IDM RBAC PRIVILEGE

To have a fully-functioning custom privilege in Identity Management (IdM) role-based access control
(RBAC), you need to proceed in stages:

1. Create a privilege with no permissions attached.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

124

2. Add permissions of your choice to the privilege.

The following procedure describes how to use an Ansible playbook to add permissions to a privilege
created in the previous step. The example describes how to add all IdM permissions related to host
administration to a privilege named full_host_administration. By default, the permissions are distributed
between the Host Enrollment, Host Administrators and Host Group Administrator privileges.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The full_host_administration privilege exists. For information about how to create a privilege
using Ansible, see Using Ansible to ensure a custom IdM RBAC privilege is present .

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-member-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-member-present.yml
privilege-member-present-copy.yml

3. Open the privilege-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the privilege.

Set the permission list to the names of the permissions that you want to include in the
privilege.

Make sure that the action variable is set to member.

This is the modified Ansible playbook file for the current example:

CHAPTER 13. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Privilege member present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that permissions are present for the "full_host_administration" privilege
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: full_host_administration
 permission:
 - "System: Add krbPrincipalName to a Host"
 - "System: Enroll a Host"
 - "System: Manage Host Certificates"
 - "System: Manage Host Enrollment Password"
 - "System: Manage Host Keytab"
 - "System: Manage Host Principals"
 - "Retrieve Certificates from the CA"
 - "Revoke Certificate"
 - "System: Add Hosts"
 - "System: Add krbPrincipalName to a Host"
 - "System: Enroll a Host"
 - "System: Manage Host Certificates"
 - "System: Manage Host Enrollment Password"
 - "System: Manage Host Keytab"
 - "System: Manage Host Keytab Permissions"
 - "System: Manage Host Principals"
 - "System: Manage Host SSH Public Keys"
 - "System: Manage Service Keytab"
 - "System: Manage Service Keytab Permissions"
 - "System: Modify Hosts"
 - "System: Remove Hosts"
 - "System: Add Hostgroups"
 - "System: Modify Hostgroup Membership"
 - "System: Modify Hostgroups"
 - "System: Remove Hostgroups"

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
member-present-copy.yml

13.3. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE DOES NOT
INCLUDE A PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control.

The following procedure describes how to use an Ansible playbook to remove a permission from a
privilege. The example describes how to remove the Request Certificates ignoring CA ACLs

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

126

permission from the default Certificate Administrators privilege because, for example, the
administrator considers it a security risk.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-member-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-member-absent.yml
privilege-member-absent-copy.yml

3. Open the privilege-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the privilege.

Set the permission list to the names of the permissions that you want to remove from the
privilege.

Make sure that the action variable is set to member.

Make sure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Privilege absent example
 hosts: ipaserver

CHAPTER 13. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

127

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "Request Certificate ignoring CA ACLs" permission is absent from
the "Certificate Administrators" privilege
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: Certificate Administrators
 permission:
 - "Request Certificate ignoring CA ACLs"
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
member-absent-copy.yml

13.4. USING ANSIBLE TO RENAME A CUSTOM IDM RBAC PRIVILEGE

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control.

The following procedure describes how to rename a privilege because, for example, you have removed a
few permissions from it. As a result, the name of the privilege is no longer accurate. In the example, the
administrator renames a full_host_administration privilege to limited_host_administration.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The full_host_administration privilege exists. For more information about how to add a
privilege, see Using Ansible to ensure a custom IdM RBAC privilege is present .

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

128

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-present.yml rename-
privilege.yml

3. Open the rename-privilege.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the current name of the privilege.

Add the rename variable and set it to the new name of the privilege.

Add the state variable and set it to renamed.

5. Rename the playbook itself, for example:

- name: Rename a privilege
 hosts: ipaserver

6. Rename the task in the playbook, for example:

[...]
tasks:
- name: Ensure the full_host_administration privilege is renamed to
limited_host_administration
 ipaprivilege:
 [...]

This is the modified Ansible playbook file for the current example:

- name: Rename a privilege
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the full_host_administration privilege is renamed to
limited_host_administration
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: full_host_administration
 rename: limited_host_administration
 state: renamed

7. Save the file.

8. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the

CHAPTER 13. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

129

8. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory rename-
privilege.yml

13.5. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE IS ABSENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control. The following procedure describes how to use an Ansible playbook to ensure that an RBAC
privilege is absent. The example describes how to ensure that the CA administrator privilege is absent.
As a result of the procedure, the admin administrator becomes the only user capable of managing
certificate authorities in IdM.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-absent.yml privilege-
absent-copy.yml

3. Open the privilege-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the privilege you want to remove.

Make sure that the state variable is set it to absent.

5. Rename the task in the playbook, for example:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

130

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[...]
tasks:
- name: Ensure privilege "CA administrator" is absent
 ipaprivilege:
 [...]

This is the modified Ansible playbook file for the current example:

- name: Privilege absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure privilege "CA administrator" is absent
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: CA administrator
 state: absent

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
absent-copy.yml

13.6. ADDITIONAL RESOURCES

See Privileges in IdM .

See Permissions in IdM .

See the README-privilege file available in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipaprivilege
directory.

CHAPTER 13. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

131

CHAPTER 14. USING ANSIBLE PLAYBOOKS TO MANAGE
RBAC PERMISSIONS IN IDM

Role-based access control (RBAC) is a policy-neutral access control mechanism defined around roles,
privileges, and permissions. Especially in large companies, using RBAC can help create a hierarchical
system of administrators with their individual areas of responsibility.

This chapter describes the following operations performed when managing RBAC permissions in
Identity Management (IdM) using Ansible playbooks:

Using Ansible to ensure an RBAC permission is present

Using Ansible to ensure an RBAC permission with an attribute is present

Using Ansible to ensure an RBAC permission is absent

Using Ansible to ensure an attribute is a member of an IdM RBAC permission

Using Ansible to ensure an attribute is not a member of an IdM RBAC permission

Using Ansible to rename an IdM RBAC permission

Prerequisites

You understand the concepts and principles of RBAC .

14.1. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS PRESENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure a permission is present in
IdM so that it can be added to a privilege. The example describes how to ensure the following target
state:

The MyPermission permission exists.

The MyPermission permission can only be applied to hosts.

A user granted a privilege that contains the permission can do all of the following possible
operations on an entry:

Write

Read

Search

Compare

Add

Delete

Prerequisites

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

132

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-present.yml
permission-present-copy.yml

3. Open the permission-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the object_type variable to host.

Set the right variable to all.

This is the modified Ansible playbook file for the current example:

- name: Permission present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "MyPermission" permission is present
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"

CHAPTER 14. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

133

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 name: MyPermission
 object_type: host
 right: all

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
present-copy.yml

14.2. USING ANSIBLE TO ENSURE AN RBAC PERMISSION WITH AN
ATTRIBUTE IS PRESENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure a permission is present in
IdM so that it can be added to a privilege. The example describes how to ensure the following target
state:

The MyPermission permission exists.

The MyPermission permission can only be used to add hosts.

A user granted a privilege that contains the permission can do all of the following possible
operations on a host entry:

Write

Read

Search

Compare

Add

Delete

The host entries created by a user that is granted a privilege that contains the MyPermission
permission can have a description value.

NOTE

The type of attribute that you can specify when creating or modifying a permission is not
constrained by the IdM LDAP schema. However, specifying, for example, attrs:
car_licence if the object_type is host later results in the ipa: ERROR: attribute "car-
license" not allowed error message when you try to exercise the permission and add a
specific car licence value to a host.

Prerequisites

You know the IdM administrator password.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

134

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-present.yml
permission-present-with-attribute.yml

3. Open the permission-present-with-attribute.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the object_type variable to host.

Set the right variable to all.

Set the attrs variable to description.

This is the modified Ansible playbook file for the current example:

- name: Permission present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "MyPermission" permission is present with an attribute
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission

CHAPTER 14. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

135

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 object_type: host
 right: all
 attrs: description

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
present-with-attribute.yml

Additional resources

See User and group schema in Linux Domain Identity, Authentication and Policy Guide in RHEL
7.

14.3. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS ABSENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure a permission is absent in
IdM so that it cannot be added to a privilege.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-absent.yml
permission-absent-copy.yml

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

136

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/user-schema
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the permission-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

This is the modified Ansible playbook file for the current example:

- name: Permission absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "MyPermission" permission is absent
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
absent-copy.yml

14.4. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS A MEMBER OF AN
IDM RBAC PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure that an attribute is a
member of an RBAC permission in IdM. As a result, a user with the permission can create entries that
have the attribute.

The example describes how to ensure that the host entries created by a user with a privilege that
contains the MyPermission permission can have gecos and description values.

NOTE

The type of attribute that you can specify when creating or modifying a permission is not
constrained by the IdM LDAP schema. However, specifying, for example, attrs:
car_licence if the object_type is host later results in the ipa: ERROR: attribute "car-
license" not allowed error message when you try to exercise the permission and add a
specific car licence value to a host.

CHAPTER 14. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

137

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The MyPermission permission exists.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-member-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-member-
present.yml permission-member-present-copy.yml

3. Open the permission-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the attrs list to the description and gecos variables.

Make sure the action variable is set to member.

This is the modified Ansible playbook file for the current example:

- name: Permission member present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "gecos" and "description" attributes are present in

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

138

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

"MyPermission"
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 attrs:
 - description
 - gecos
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
member-present-copy.yml

14.5. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS NOT A MEMBER
OF AN IDM RBAC PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure that an attribute is not a
member of an RBAC permission in IdM. As a result, when a user with the permission creates an entry in
IdM LDAP, that entry cannot have a value associated with the attribute.

The example describes how to ensure the following target state:

The MyPermission permission exists.

The host entries created by a user with a privilege that contains the MyPermission permission
cannot have the description attribute.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The MyPermission permission exists.

Procedure

CHAPTER 14. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

139

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-member-absent.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-member-
absent.yml permission-member-absent-copy.yml

3. Open the permission-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the attrs variable to description.

Set the action variable to member.

Make sure the state variable is set to absent

This is the modified Ansible playbook file for the current example:

- name: Permission absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that an attribute is not a member of "MyPermission"
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 attrs: description
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
member-absent-copy.yml

14.6. USING ANSIBLE TO RENAME AN IDM RBAC PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

140

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control.

The following procedure describes how to use an Ansible playbook to rename a permission. The example
describes how to rename MyPermission to MyNewPermission.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The MyPermission exists in IdM.

The MyNewPermission does not exist in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-renamed.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-renamed.yml
permission-renamed-copy.yml

3. Open the permission-renamed-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

This is the modified Ansible playbook file for the current example:

- name: Permission present example
 hosts: ipaserver

CHAPTER 14. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

141

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Rename the "MyPermission" permission
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 rename: MyNewPermission
 state: renamed

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
renamed-copy.yml

14.7. ADDITIONAL RESOURCES

See Permissions in IdM .

See Privileges in IdM .

See the README-permission file available in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipapermission
directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

142

CHAPTER 15. USING ANSIBLE TO MANAGE THE REPLICATION
TOPOLOGY IN IDM

You can maintain multiple Identity Management (IdM) servers and let them replicate each other for
redundancy purposes to mitigate or prevent server loss. For example, if one server fails, the other
servers keep providing services to the domain. You can also recover the lost server by creating a new
replica based on one of the remaining servers.

Data stored on an IdM server is replicated based on replication agreements: when two servers have a
replication agreement configured, they share their data. The data that is replicated is stored in the
topology suffixes. When two replicas have a replication agreement between their suffixes, the suffixes
form a topology segment.

This chapter describes how to use Red Hat Ansible Engine to manage IdM replication agreements,
topology segments, and topology suffixes. The chapter contains the following sections:

Using Ansible to ensure a replication agreement exists in IdM

Using Ansible to ensure replication agreements exist between multiple IdM replicas

Using Ansible to check if a replication agreement exists between two replicas

Using Ansible to verify that a topology suffix exists in IdM

Using Ansible to re-initialize an IdM replica

Using Ansible to ensure a replication agreement is absent in IdM

15.1. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT
EXISTS IN IDM

Data stored on an Identity Management (IdM) server is replicated based on replication agreements:
when two servers have a replication agreement configured, they share their data. Replication
agreements are always bilateral: the data is replicated from the first replica to the other one as well as
from the other replica to the first one.

Follow this procedure to use an Ansible playbook to ensure that a replication agreement of the domain
type exists between server.idm.example.com and replica.idm.example.com.

Prerequisites

Ensure that you understand the recommendations for designing your IdM topology listed in
Guidelines for connecting IdM replicas in a topology .

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

CHAPTER 15. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

143

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#guidelines-for-connecting-idm-replicas-in-a-topology_planning-the-replica-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the add-topologysegment.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/add-topologysegment.yml
add-topologysegment-copy.yml

3. Open the add-topologysegment-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipatopologysegment task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the suffix variable to either domain or ca, depending on what type of segment you
want to add.

Set the left variable to the name of the IdM server that you want to be the left node of the
replication agreement.

Set the right variable to the name of the IdM server that you want to be the right node of
the replication agreement.

Ensure that the state variable is set to present.

This is the modified Ansible playbook file for the current example:

- name: Playbook to handle topologysegment
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
- name: Add topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: domain
 left: server.idm.example.com
 right: replica.idm.example.com
 state: present

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

144

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-
topologysegment-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

15.2. USING ANSIBLE TO ENSURE REPLICATION AGREEMENTS EXIST
BETWEEN MULTIPLE IDM REPLICAS

Data stored on an Identity Management (IdM) server is replicated based on replication agreements:
when two servers have a replication agreement configured, they share their data. Replication
agreements are always bilateral: the data is replicated from the first replica to the other one as well as
from the other replica to the first one.

Follow this procedure to ensure replication agreements exist between multiple pairs of replicas in IdM.

Prerequisites

Ensure that you understand the recommendations for designing your IdM topology listed in
Connecting the replicas in a topology .

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the add-topologysegments.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/add-topologysegments.yml
add-topologysegments-copy.yml

CHAPTER 15. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

145

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#guidelines-for-connecting-idm-replicas-in-a-topology_planning-the-replica-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the add-topologysegments-copy.yml file for editing.

4. Adapt the file by setting the following variables in the vars section:

Set the ipaadmin_password variable to the password of the IdM admin.

For every topology segment, add a line in the ipatopology_segments section and set the
following variables:

Set the suffix variable to either domain or ca, depending on what type of segment you
want to add.

Set the left variable to the name of the IdM server that you want to be the left node of
the replication agreement.

Set the right variable to the name of the IdM server that you want to be the right node
of the replication agreement.

5. In the tasks section of the add-topologysegments-copy.yml file, ensure that the state
variable is set to present.
This is the modified Ansible playbook file for the current example:

- name: Add topology segments
 hosts: ipaserver
 gather_facts: false

 vars:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ipatopology_segments:
 - {suffix: domain, left: replica1.idm.example.com , right: replica2.idm.example.com }
 - {suffix: domain, left: replica2.idm.example.com , right: replica3.idm.example.com }
 - {suffix: domain, left: replica3.idm.example.com , right: replica4.idm.example.com }
 - {suffix: domain+ca, left: replica4.idm.example.com , right: replica1.idm.example.com }

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Add topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: "{{ item.suffix }}"
 name: "{{ item.name | default(omit) }}"
 left: "{{ item.left }}"
 right: "{{ item.right }}"
 state: present
 #state: absent
 #state: checked
 #state: reinitialized
 loop: "{{ ipatopology_segments | default([]) }}"

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

146

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-
topologysegments-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

15.3. USING ANSIBLE TO CHECK IF A REPLICATION AGREEMENT
EXISTS BETWEEN TWO REPLICAS

Data stored on an Identity Management (IdM) server is replicated based on replication agreements:
when two servers have a replication agreement configured, they share their data. Replication
agreements are always bilateral: the data is replicated from the first replica to the other one as well as
from the other replica to the first one.

Follow this procedure to verify that replication agreements exist between multiple pairs of replicas in
IdM.

Prerequisites

Ensure that you understand the recommendations for designing your Identity Management
(IdM) topology listed in Connecting the replicas in a topology .

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the check-topologysegments.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

CHAPTER 15. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

147

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#guidelines-for-connecting-idm-replicas-in-a-topology_planning-the-replica-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/check-topologysegments.yml
check-topologysegments-copy.yml

3. Open the check-topologysegments-copy.yml file for editing.

4. Adapt the file by setting the following variables in the vars section:

Set the ipaadmin_password variable to the password of the IdM admin.

For every topology segment, add a line in the ipatopology_segments section and set the
following variables:

Set the suffix variable to either domain or ca, depending on the type of segment you
are adding.

Set the left variable to the name of the IdM server that you want to be the left node of
the replication agreement.

Set the right variable to the name of the IdM server that you want to be the right node
of the replication agreement.

5. In the tasks section of the check-topologysegments-copy.yml file, ensure that the state
variable is set to present.
This is the modified Ansible playbook file for the current example:

- name: Add topology segments
 hosts: ipaserver
 gather_facts: false

 vars:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ipatopology_segments:
 - {suffix: domain, left: replica1.idm.example.com, right: replica2.idm.example.com }
 - {suffix: domain, left: replica2.idm.example.com , right: replica3.idm.example.com }
 - {suffix: domain, left: replica3.idm.example.com , right: replica4.idm.example.com }
 - {suffix: domain+ca, left: replica4.idm.example.com , right:
replica1.idm.example.com }

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Check topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: "{{ item.suffix }}"
 name: "{{ item.name | default(omit) }}"
 left: "{{ item.left }}"
 right: "{{ item.right }}"
 state: checked
 loop: "{{ ipatopology_segments | default([]) }}"

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

148

$ ansible-playbook --vault-password-file=password_file -v -i inventory check-
topologysegments-copy.yml

Additional resources

For more information about the concept of topology agreements, suffixes, and segments, see
Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

15.4. USING ANSIBLE TO VERIFY THAT A TOPOLOGY SUFFIX EXISTS
IN IDM

In the context of replication agreements in Identity Management (IdM), topology suffixes store the data
that is replicated. IdM supports two types of topology suffixes: domain and ca. Each suffix represents a
separate back end, a separate replication topology. When a replication agreement is configured, it joins
two topology suffixes of the same type on two different servers.

The domain suffix contains all domain-related data, such as users, groups, and policies. The ca suffix
contains data for the Certificate System component. It is only present on servers with a certificate
authority (CA) installed.

Follow this procedure to use an Ansible playbook to ensure that a topology suffix exists in IdM. The
example describes how to ensure that the domain suffix exists in IdM.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the verify-topologysuffix.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

CHAPTER 15. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

149

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/ verify-topologysuffix.yml
verify-topologysuffix-copy.yml

3. Open the verify-topologysuffix-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipatopologysuffix section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the suffix variable to domain. If you are verifying the presence of the ca suffix, set the
variable to ca.

Ensure that the state variable is set to verified. No other option is possible.

This is the modified Ansible playbook file for the current example:

- name: Playbook to handle topologysuffix
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Verify topology suffix
 ipatopologysuffix:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: domain
 state: verified

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory verify-
topologysuffix-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

15.5. USING ANSIBLE TO REINITIALIZE AN IDM REPLICA

If a replica has been offline for a long period of time or its database has been corrupted, you can
reinitialize it. reinitialization refreshes the replica with an updated set of data. reinitialization can, for
example, be used if an authoritative restore from backup is required.

NOTE

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

150

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology

NOTE

In contrast to replication updates, during which replicas only send changed entries to
each other, reinitialization refreshes the whole database.

The local host on which you run the command is the reinitialized replica. To specify the replica from
which the data is obtained, use the direction option.

Follow this procedure to use an Ansible playbook to reinitialize the domain data on
replica.idm.example.com from server.idm.example.com.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the reinitialize-topologysegment.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/reinitialize-
topologysegment.yml reinitialize-topologysegment-copy.yml

3. Open the reinitialize-topologysegment-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipatopologysegment section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the suffix variable to domain. If you are reinitializing the ca data, set the variable to ca.

Set the left variable to the left node of the replication agreement.

Set the right variable to the right node of the replication agreement.

Set the direction variable to the direction of the reinitializing data. The left-to-right
direction means that data flows from the left node to the right node.

CHAPTER 15. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

151

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Ensure that the state variable is set to reinitialized.
This is the modified Ansible playbook file for the current example:

- name: Playbook to handle topologysegment
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Reinitialize topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: domain
 left: server.idm.example.com
 right: replica.idm.example.com
 direction: left-to-right
 state: reinitialized

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory reinitialize-
topologysegment-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

15.6. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT IS
ABSENT IN IDM

Data stored on an Identity Management (IdM) server is replicated based on replication agreements:
when two servers have a replication agreement configured, they share their data. Replication
agreements are always bilateral: the data is replicated from the first replica to the other one as well as
from the other replica to the first one.

Follow this procedure to ensure a replication agreement between two replicas does not exist in IdM. The
example describes how to ensure a replication agreement of the domain type does not exist between
the replica01.idm.example.com and replica02.idm.example.com IdM servers.

Prerequisites

Ensure that you understand the recommendations for designing your IdM topology listed in
Connecting the replicas in a topology

You know the IdM admin password.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

152

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#guidelines-for-connecting-idm-replicas-in-a-topology_planning-the-replica-topology

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the delete-topologysegment.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/delete-topologysegment.yml
delete-topologysegment-copy.yml

3. Open the delete-topologysegment-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipatopologysegment task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the suffix variable to domain. Alternatively, if you are ensuring that the ca data are not
replicated between the left and right nodes, set the variable to ca.

Set the left variable to the name of the IdM server that is the left node of the replication
agreement.

Set the right variable to the name of the IdM server that is the right node of the replication
agreement.

Ensure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Playbook to handle topologysegment
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
- name: Delete topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: domain

CHAPTER 15. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

153

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 left: replica01.idm.example.com
 right: replica02.idm.example.com:
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory delete-
topologysegment-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

15.7. ADDITIONAL RESOURCES

See Planning the replica topology.

See Installing an IdM replica .

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

154

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/planning_identity_management/index#planning-the-replica-topology_planning-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-replica_installing-identity-management

CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE
You can use Red Hat Ansible Engine to manage the servers in your Identity Management (IdM)
topology. You can use the server module in the ansible-freeipa package to check the presence or
absence of a server in the IdM topology. You can also hide any replica or make a replica visible.

The section contains the following topics:

Checking that an IdM server is present by using Ansible

Ensuring that an IdM server is absent from an IdM topology by using Ansible

Ensuring the absence of an IdM server despite hosting a last IdM server role

Ensuring that an IdM server is absent but not necessarily disconnected from other IdM servers

Ensuring that an existing IdM server is hidden using an Ansible playbook

Ensuring that an existing IdM server is visible using an Ansible playbook

Ensuring that an existing IdM server has an IdM DNS location assigned

Ensuring that an existing IdM server has no IdM DNS location assigned

16.1. CHECKING THAT AN IDM SERVER IS PRESENT BY USING ANSIBLE

You can use the ipaserver ansible-freeipa module in an Ansible playbook to verify that an
Identity Management (IdM) server exists.

NOTE

The ipaserver Ansible module does not install the IdM server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE

155

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-present.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-present.yml server-
present-copy.yml

3. Open the server-present-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

- name: Server present example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com is present
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-present-
copy.yml

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

16.2. ENSURING THAT AN IDM SERVER IS ABSENT FROM AN IDM
TOPOLOGY BY USING ANSIBLE

Use an Ansible playbook to ensure an Identity Management (IdM) server does not exist in an IdM
topology, even as a host.

In contrast to the ansible-freeipa ipaserver role, the ipaserver module used in this playbook does not
uninstall IdM services from the server.

Prerequisites

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

156

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-absent.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-absent.yml server-absent-
copy.yml

3. Open the server-absent-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the state variable is set to absent.

- name: Server absent example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com is absent
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 state: absent

5. Run the Ansible playbook and specify the playbook file and the inventory file:

CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE

157

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-absent-
copy.yml

6. Make sure all name server (NS) DNS records pointing to server123.idm.example.com are
deleted from your DNS zones. This applies regardless of whether you use integrated DNS
managed by IdM or external DNS.

Additional resources

See Uninstalling an IdM server .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

16.3. ENSURING THE ABSENCE OF AN IDM SERVER DESPITE HOSTING
A LAST IDM SERVER ROLE

You can use Ansible to ensure that an Identity Management (IdM) server is absent even if the last IdM
service instance is running on the server. A certificate authority (CA), key recovery authority (KRA), or
DNS server are all examples of IdM services.

WARNING

If you remove the last server that serves as a CA, KRA, or DNS server, you disrupt
IdM functionality seriously. You can manually check which services are running on
which IdM servers with the ipa service-find command. The principal name of a CA
server is dogtag/server_name/REALM_NAME.

In contrast to the ansible-freeipa ipaserver role, the ipaserver module used in this playbook does not
uninstall IdM services from the server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is



Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

158

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-server_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-absent-ignore-last-of-role.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-absent-ignore-last-of-
role.yml server-absent-ignore-last-of-role-copy.yml

3. Open the server-absent-ignore-last-of-role-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the ignore_last_of_role variable is set to true.

Set the state variable to absent.

- name: Server absent with last of role skip example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server “server123.idm.example.com” is absent with last of role skip
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 ignore_last_of_role: true
 state: absent

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-absent-
ignore-last-of-role-copy.yml

6. Make sure all name server (NS) DNS records that point to server123.idm.example.com are
deleted from your DNS zones. This applies regardless of whether you use integrated DNS
managed by IdM or external DNS.

Additional resources

See Uninstalling an IdM server .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE

159

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-server_installing-identity-management

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

16.4. ENSURING THAT AN IDM SERVER IS ABSENT BUT NOT
NECESSARILY DISCONNECTED FROM OTHER IDM SERVERS

If you are removing an Identity Management (IdM) server from the topology, you can keep its replication
agreements intact with an Ansible playbook. The playbook also ensures that the IdM server does not
exist in IdM, even as a host.

IMPORTANT

Ignoring a server’s replication agreements when removing it is only recommended when
the other servers are dysfunctional servers that you are planning to remove anyway.
Removing a server that serves as a central point in the topology can split your topology
into two disconnected clusters.

You can remove a dysfunctional server from the topology with the ipa server-del
command.

NOTE

If you remove the last server that serves as a certificate authority (CA), key recovery
authority (KRA), or DNS server, you seriously disrupt the Identity Management (IdM)
functionality. To prevent this problem, the playbook makes sure these services are
running on another server in the domain before it uninstalls a server that serves as a CA,
KRA, or DNS server.

In contrast to the ansible-freeipa ipaserver role, the ipaserver module used in this playbook does not
uninstall IdM services from the server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

160

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/MyPlaybooks/

2. Copy the server-absent-ignore_topology_disconnect.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-absent-
ignore_topology_disconnect.yml server-absent-ignore_topology_disconnect-copy.yml

3. Open the server-absent-ignore_topology_disconnect-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the ignore_topology_disconnect variable is set to true.

Ensure that the state variable is set to absent.

- name: Server absent with ignoring topology disconnects example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server “server123.idm.example.com” with ignoring topology disconnects
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 ignore_topology_disconnect: true
 state: absent

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-absent-
ignore_topology_disconnect-copy.yml

6. [Optional] Make sure all name server (NS) DNS records pointing to
server123.idm.example.com are deleted from your DNS zones. This applies regardless of
whether you use integrated DNS managed by IdM or external DNS.

Additional resources

See Uninstalling an IdM server .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

16.5. ENSURING THAT AN EXISTING IDM SERVER IS HIDDEN USING AN
ANSIBLE PLAYBOOK

CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE

161

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-server_installing-identity-management

Use the ipaserver ansible-freeipa module in an Ansible playbook to ensure that an existing
Identity Management (IdM) server is hidden. Note that this playbook does not install the IdM server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-hidden.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-hidden.yml server-hidden-
copy.yml

3. Open the server-hidden-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the hidden variable is set to True.

- name: Server hidden example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com is hidden
 ipaserver:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

162

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 hidden: True

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-hidden-
copy.yml

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See The hidden replica mode.

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

16.6. ENSURING THAT AN EXISTING IDM SERVER IS VISIBLE BY USING
AN ANSIBLE PLAYBOOK

Use the ipaserver ansible-freeipa module in an Ansible playbook to ensure that an existing
Identity Management (IdM) server is visible. Note that this playbook does not install the IdM server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-not-hidden.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE

163

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#the-hidden-replica-mode_planning-the-replica-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-not-hidden.yml server-
not-hidden-copy.yml

3. Open the server-not-hidden-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the hidden variable is set to no.

- name: Server not hidden example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com is not hidden
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 hidden: no

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-not-
hidden-copy.yml

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See The hidden replica mode.

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

16.7. ENSURING THAT AN EXISTING IDM SERVER HAS AN IDM DNS
LOCATION ASSIGNED

Use the ipaserver ansible-freeipa module in an Ansible playbook to ensure that an existing
Identity Management (IdM) server is assigned a specific IdM DNS location.

Note that the ipaserver Ansible module does not install the IdM server.

Prerequisites

You know the IdM admin password.

The IdM DNS location exists. The example location is germany.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

164

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#the-hidden-replica-mode_planning-the-replica-topology

You have root access to the server. The example server is server123.idm.example.com.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-location.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-location.yml server-
location-copy.yml

3. Open the server-location-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to server123.idm.example.com.

Set the location variable to germany.

This is the modified Ansible playbook file for the current example:

- name: Server enabled example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com with location “germany” is present
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 location: germany

5. Run the Ansible playbook and specify the playbook file and the inventory file:

CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE

165

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-location-
copy.yml

6. Connect to server123.idm.example.com as root using SSH:

ssh root@server123.idm.example.com

7. Restart the named-pkcs11 service on the server for the updates to take effect immediately:

[root@server123.idm.example.com ~]# systemctl restart named-pkcs11

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See Using Ansible to ensure an IdM location is present .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

16.8. ENSURING THAT AN EXISTING IDM SERVER HAS NO IDM DNS
LOCATION ASSIGNED

Use the ipaserver ansible-freeipa module in an Ansible playbook to ensure that an existing
Identity Management (IdM) server has no IdM DNS location assigned to it. Do not assign a DNS location
to servers that change geographical location frequently. Note that the playbook does not install the IdM
server.

Prerequisites

You know the IdM admin password.

You have root access to the server. The example server is server123.idm.example.com.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

166

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-no-location.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-no-location.yml server-no-
location-copy.yml

3. Open the server-no-location-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to server123.idm.example.com.

Ensure that the location variable is set to ””.

- name: Server no location example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com is present with no location
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 location: “”

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-no-
location-copy.yml

6. Connect to server123.idm.example.com as root using SSH:

ssh root@server123.idm.example.com

7. Restart the named-pkcs11 service on the server for the updates to take effect immediately:

[root@server123.idm.example.com ~]# systemctl restart named-pkcs11

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See Using Ansible to manage DNS locations in IdM .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE

167

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

168

CHAPTER 17. MANAGING HOSTS USING ANSIBLE
PLAYBOOKS

Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.
Ansible includes support for Identity Management (IdM), and you can use Ansible modules to automate
host management.

The following concepts and operations are performed when managing hosts and host entries using
Ansible playbooks:

Ensuring the presence of IdM host entries that are only defined by their FQDNs

Ensuring the presence of IdM host entries with IP addresses

Ensuring the presence of multiple IdM host entries with random passwords

Ensuring the presence of an IdM host entry with multiple IP addresses

Ensuring the absence of IdM host entries

17.1. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH FQDN
USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of host entries in Identity Management (IdM) using Ansible
playbooks. The host entries are only defined by their fully-qualified domain names (FQDNs).

Specifying the FQDN name of the host is enough if at least one of the following conditions applies:

The IdM server is not configured to manage DNS.

The host does not have a static IP address or the IP address is not known at the time the host is
configured. Adding a host defined only by an FQDN essentially creates a placeholder entry in the
IdM DNS service. For example, laptops may be preconfigured as IdM clients, but they do not
have IP addresses at the time they are configured. When the DNS service dynamically updates
its records, the host’s current IP address is detected and its DNS record is updated.

NOTE

Without Ansible, host entries are created in IdM using the ipa host-add command. The
result of adding a host to IdM is the state of the host being present in IdM. Because of
the Ansible reliance on idempotence, to add a host to IdM using Ansible, you must create
a playbook in which you define the state of the host as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

CHAPTER 17. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

169

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the FQDN of the host whose presence in IdM you want to
ensure. To simplify this step, you can copy and modify the example in the
/usr/share/doc/ansible-freeipa/playbooks/host/add-host.yml file:

- name: Host present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Host host01.idm.example.com present
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 state: present
 force: true

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
is-present.yml

NOTE

The procedure results in a host entry in the IdM LDAP server being created but not in
enrolling the host into the IdM Kerberos realm. For that, you must deploy the host as an
IdM client. For details, see Installing an Identity Management client using an Ansible
playbook.

Verification steps

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of the host:

$ ipa host-show host01.idm.example.com

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

170

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management

 Host name: host01.idm.example.com
 Principal name: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Principal alias: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Password: False
 Keytab: False
 Managed by: host01.idm.example.com

The output confirms that host01.idm.example.com exists in IdM.

17.2. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH DNS
INFORMATION USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of host entries in Identity Management (IdM) using Ansible
playbooks. The host entries are defined by their fully-qualified domain names (FQDNs) and their IP
addresses.

NOTE

Without Ansible, host entries are created in IdM using the ipa host-add command. The
result of adding a host to IdM is the state of the host being present in IdM. Because of
the Ansible reliance on idempotence, to add a host to IdM using Ansible, you must create
a playbook in which you define the state of the host as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the fully-qualified domain name (FQDN) of the host
whose presence in IdM you want to ensure. In addition, if the IdM server is configured to manage
DNS and you know the IP address of the host, specify a value for the ip_address parameter.
The IP address is necessary for the host to exist in the DNS resource records. To simplify this

CHAPTER 17. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

171

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/host/host-present.yml file. You can also include other, additional
information:

- name: Host present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure host01.idm.example.com is present
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 description: Example host
 ip_address: 192.168.0.123
 locality: Lab
 ns_host_location: Lab
 ns_os_version: CentOS 7
 ns_hardware_platform: Lenovo T61
 mac_address:
 - "08:00:27:E3:B1:2D"
 - "52:54:00:BD:97:1E"
 state: present

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
is-present.yml

NOTE

The procedure results in a host entry in the IdM LDAP server being created but not in
enrolling the host into the IdM Kerberos realm. For that, you must deploy the host as an
IdM client. For details, see Installing an Identity Management client using an Ansible
playbook.

Verification steps

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of the host:

$ ipa host-show host01.idm.example.com
 Host name: host01.idm.example.com
 Description: Example host
 Locality: Lab
 Location: Lab
 Platform: Lenovo T61

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

172

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management

 Operating system: CentOS 7
 Principal name: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Principal alias: host/host01.idm.example.com@IDM.EXAMPLE.COM
 MAC address: 08:00:27:E3:B1:2D, 52:54:00:BD:97:1E
 Password: False
 Keytab: False
 Managed by: host01.idm.example.com

The output confirms host01.idm.example.com exists in IdM.

17.3. ENSURING THE PRESENCE OF MULTIPLE IDM HOST ENTRIES
WITH RANDOM PASSWORDS USING ANSIBLE PLAYBOOKS

The ipahost module allows the system administrator to ensure the presence or absence of multiple host
entries in IdM using just one Ansible task. Follow this procedure to ensure the presence of multiple host
entries that are only defined by their fully-qualified domain names (FQDNs). Running the Ansible
playbook generates random passwords for the hosts.

NOTE

Without Ansible, host entries are created in IdM using the ipa host-add command. The
result of adding a host to IdM is the state of the host being present in IdM. Because of
the Ansible reliance on idempotence, to add a host to IdM using Ansible, you must create
a playbook in which you define the state of the host as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the fully-qualified domain name (FQDN) of the hosts
whose presence in IdM you want to ensure. To make the Ansible playbook generate a random
password for each host even when the host already exists in IdM and update_password is

CHAPTER 17. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

173

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

limited to on_create, add the random: true and force: true options. To simplify this step, you
can copy and modify the example from the /usr/share/doc/ansible-freeipa/README-host.md
Markdown file:

- name: Ensure hosts with random password
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Hosts host01.idm.example.com and host02.idm.example.com present with random
passwords
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 hosts:
 - name: host01.idm.example.com
 random: true
 force: true
 - name: host02.idm.example.com
 random: true
 force: true
 register: ipahost

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
are-present.yml
[...]
TASK [Hosts host01.idm.example.com and host02.idm.example.com present with random
passwords]
changed: [r8server.idm.example.com] => {"changed": true, "host":
{"host01.idm.example.com": {"randompassword": "0HoIRvjUdH0Ycbf6uYdWTxH"},
"host02.idm.example.com": {"randompassword": "5VdLgrf3wvojmACdHC3uA3s"}}}

NOTE

To deploy the hosts as IdM clients using random, one-time passwords (OTPs), see
Authorization options for IdM client enrollment using an Ansible playbook or Installing a
client by using a one-time password: Interactive installation.

Verification steps

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of one of the hosts:

$ ipa host-show host01.idm.example.com
 Host name: host01.idm.example.com
 Password: True

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

174

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management#authorization-options-for-idm-client-enrollment-using-an-ansible-playbook_client-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-a-one-time-password-interactive-installation_assembly_installing-an-idm-client

 Keytab: False
 Managed by: host01.idm.example.com

The output confirms host01.idm.example.com exists in IdM with a random password.

17.4. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH
MULTIPLE IP ADDRESSES USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of a host entry in Identity Management (IdM) using Ansible
playbooks. The host entry is defined by its fully-qualified domain name (FQDN) and its multiple IP
addresses.

NOTE

In contrast to the ipa host utility, the Ansible ipahost module can ensure the presence or
absence of several IPv4 and IPv6 addresses for a host. The ipa host-mod command
cannot handle IP addresses.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file. Specify, as the name of the ipahost variable, the fully-qualified
domain name (FQDN) of the host whose presence in IdM you want to ensure. Specify each of
the multiple IPv4 and IPv6 ip_address values on a separate line by using the ip_address syntax.
To simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/host/host-member-ipaddresses-present.yml file. You can also include
additional information:

- name: Host member IP addresses present
 hosts: ipaserver

CHAPTER 17. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

175

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure host101.example.com IP addresses present
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 ip_address:
 - 192.168.0.123
 - fe80::20c:29ff:fe02:a1b3
 - 192.168.0.124
 - fe80::20c:29ff:fe02:a1b4
 force: true

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
with-multiple-IP-addreses-is-present.yml

NOTE

The procedure creates a host entry in the IdM LDAP server but does not enroll the host
into the IdM Kerberos realm. For that, you must deploy the host as an IdM client. For
details, see Installing an Identity Management client using an Ansible playbook .

Verification steps

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of the host:

$ ipa host-show host01.idm.example.com
 Principal name: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Principal alias: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Password: False
 Keytab: False
 Managed by: host01.idm.example.com

The output confirms that host01.idm.example.com exists in IdM.

3. To verify that the multiple IP addresses of the host exist in the IdM DNS records, enter the ipa
dnsrecord-show command and specify the following information:

The name of the IdM domain

The name of the host

$ ipa dnsrecord-show idm.example.com host01
[...]
 Record name: host01

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

176

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management

 A record: 192.168.0.123, 192.168.0.124
 AAAA record: fe80::20c:29ff:fe02:a1b3, fe80::20c:29ff:fe02:a1b4

The output confirms that all the IPv4 and IPv6 addresses specified in the playbook are correctly
associated with the host01.idm.example.com host entry.

17.5. ENSURING THE ABSENCE OF AN IDM HOST ENTRY USING
ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of host entries in Identity Management (IdM) using Ansible
playbooks.

Prerequisites

IdM administrator credentials

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the fully-qualified domain name (FQDN) of the host
whose absence from IdM you want to ensure. If your IdM domain has integrated DNS, use the
updatedns: true option to remove the associated records of any kind for the host from the
DNS.
To simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/host/delete-host.yml file:

- name: Host absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Host host01.idm.example.com absent
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 updatedns: true
 state: absent

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
absent.yml

NOTE

CHAPTER 17. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

177

NOTE

The procedure results in:

The host not being present in the IdM Kerberos realm.

The host entry not being present in the IdM LDAP server.

To remove the specific IdM configuration of system services, such as System Security
Services Daemon (SSSD), from the client host itself, you must run the ipa-client-install --
uninstall command on the client. For details, see Uninstalling an IdM client .

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about host01.idm.example.com:

$ ipa host-show host01.idm.example.com
ipa: ERROR: host01.idm.example.com: host not found

The output confirms that the host does not exist in IdM.

17.6. ADDITIONAL RESOURCES

See the /usr/share/doc/ansible-freeipa/README-host.md Markdown file.

See the additional playbooks in the /usr/share/doc/ansible-freeipa/playbooks/host directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

178

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-client_installing-identity-management

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE
PLAYBOOKS

To learn more about host groups in Identity Management (IdM) and using Ansible to perform operations
involving host groups in Identity Management (IdM), see the following:

Host groups in IdM

Ensuring the presence of IdM host groups

Ensuring the presence of hosts in IdM host groups

Nesting IdM host groups

Ensuring the presence of member managers in IdM host groups

Ensuring the absence of hosts from IdM host groups

Ensuring the absence of nested host groups from IdM host groups

Ensuring the absence of member managers from IdM host groups

18.1. HOST GROUPS IN IDM

IdM host groups can be used to centralize control over important management tasks, particularly access
control.

Definition of host groups

A host group is an entity that contains a set of IdM hosts with common access control rules and other
characteristics. For example, you can define host groups based on company departments, physical
locations, or access control requirements.

A host group in IdM can include:

IdM servers and clients

Other IdM host groups

Host groups created by default

By default, the IdM server creates the host group ipaservers for all IdM server hosts.

Direct and indirect group members

Group attributes in IdM apply to both direct and indirect members: when host group B is a member of
host group A, all members of host group B are considered indirect members of host group A.

18.2. ENSURING THE PRESENCE OF IDM HOST GROUPS USING
ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of host groups in Identity Management (IdM) using
Ansible playbooks.

NOTE

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

179

NOTE

Without Ansible, host group entries are created in IdM using the ipa hostgroup-add
command. The result of adding a host group to IdM is the state of the host group being
present in IdM. Because of the Ansible reliance on idempotence, to add a host group to
IdM using Ansible, you must create a playbook in which you define the state of the host
group as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. For example, to
ensure the presence of a host group named databases, specify name: databases in the -
ipahostgroup task. To simplify this step, you can copy and modify the example in the
/usr/share/doc/ansible-freeipa/playbooks/user/ensure-hostgroup-is-present.yml file.

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure host-group databases is present
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 state: present

In the playbook, state: present signifies a request to add the host group to IdM unless it already
exists there.

3. Run the playbook:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

180

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
hostgroup-is-present.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group whose presence in IdM you wanted to ensure:

$ ipa hostgroup-show databases
 Host-group: databases

The databases host group exists in IdM.

18.3. ENSURING THE PRESENCE OF HOSTS IN IDM HOST GROUPS
USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of hosts in host groups in Identity Management (IdM)
using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The hosts you want to reference in your Ansible playbook exist in IdM. For details, see Ensuring
the presence of an IdM host entry using Ansible playbooks.

The host groups you reference from the Ansible playbook file have been added to IdM. For
details, see Ensuring the presence of IdM host groups using Ansible playbooks .

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

181

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host information. Specify the name of the
host group using the name parameter of the ipahostgroup variable. Specify the name of the
host with the host parameter of the ipahostgroup variable. To simplify this step, you can copy
and modify the examples in the /usr/share/doc/ansible-
freeipa/playbooks/hostgroup/ensure-hosts-and-hostgroups-are-present-in-hostgroup.yml
file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure host-group databases is present
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 host:
 - db.idm.example.com
 action: member

This playbook adds the db.idm.example.com host to the databases host group. The action:
member line indicates that when the playbook is run, no attempt is made to add the databases
group itself. Instead, only an attempt is made to add db.idm.example.com to databases.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-present-in-hostgroup.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about a host group to see which hosts are present in it:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

182

$ ipa hostgroup-show databases
 Host-group: databases
 Member hosts: db.idm.example.com

The db.idm.example.com host is present as a member of the databases host group.

18.4. NESTING IDM HOST GROUPS USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of nested host groups in Identity Management (IdM) host
groups using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The host groups you reference from the Ansible playbook file exist in IdM. For details, see
Ensuring the presence of IdM host groups using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. To ensure that a
nested host group A exists in a host group B: in the Ansible playbook, specify, among the -
ipahostgroup variables, the name of the host group B using the name variable. Specify the
name of the nested hostgroup A with the hostgroup variable. To simplify this step, you can copy
and modify the examples in the /usr/share/doc/ansible-
freeipa/playbooks/hostgroup/ensure-hosts-and-hostgroups-are-present-in-hostgroup.yml
file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

183

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 # Ensure hosts and hostgroups are present in existing databases hostgroup
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 hostgroup:
 - mysql-server
 - oracle-server
 action: member

This Ansible playbook ensures the presence of the myqsl-server and oracle-server host groups
in the databases host group. The action: member line indicates that when the playbook is run,
no attempt is made to add the databases group itself to IdM.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-present-in-hostgroup.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group in which nested host groups are present:

$ ipa hostgroup-show databases
 Host-group: databases
 Member hosts: db.idm.example.com
 Member host-groups: mysql-server, oracle-server

The mysql-server and oracle-server host groups exist in the databases host group.

18.5. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM
HOST GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of member managers in IdM hosts and host
groups using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

184

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the host or host group you are adding as member managers and the
name of the host group you want them to manage.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host and host group member management
information:

- name: Playbook to handle host group membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure member manager user example_member is present for group_name
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_name
 membermanager_user: example_member

 - name: Ensure member manager group project_admins is present for group_name
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_name
 membermanager_group: project_admins

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-member-
managers-host-groups.yml

Verification steps

You can verify if the group_name group contains example_member and project_admins as member
managers by using the ipa group-show command:

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

185

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about testhostgroup:

ipaserver]$ ipa hostgroup-show group_name
 Host-group: group_name
 Member hosts: server.idm.example.com
 Member host-groups: testhostgroup2
 Membership managed by groups: project_admins
 Membership managed by users: example_member

Additional resources

See ipa hostgroup-add-member-manager --help.

See the ipa man page.

18.6. ENSURING THE ABSENCE OF HOSTS FROM IDM HOST GROUPS
USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of hosts from host groups in Identity Management (IdM)
using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The hosts you want to reference in your Ansible playbook exist in IdM. For details, see Ensuring
the presence of an IdM host entry using Ansible playbooks.

The host groups you reference from the Ansible playbook file exist in IdM. For details, see
Ensuring the presence of IdM host groups using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

186

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host and host group information. Specify the
name of the host group using the name parameter of the ipahostgroup variable. Specify the
name of the host whose absence from the host group you want to ensure using the host
parameter of the ipahostgroup variable. To simplify this step, you can copy and modify the
examples in the /usr/share/doc/ansible-freeipa/playbooks/hostgroup/ensure-hosts-and-
hostgroups-are-absent-in-hostgroup.yml file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure host-group databases is absent
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 host:
 - db.idm.example.com
 action: member
 state: absent

This playbook ensures the absence of the db.idm.example.com host from the databases host
group. The action: member line indicates that when the playbook is run, no attempt is made to
remove the databases group itself.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-absent-in-hostgroup.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group and the hosts it contains:

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

187

$ ipa hostgroup-show databases
 Host-group: databases
 Member host-groups: mysql-server, oracle-server

The db.idm.example.com host does not exist in the databases host group.

18.7. ENSURING THE ABSENCE OF NESTED HOST GROUPS FROM IDM
HOST GROUPS USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of nested host groups from outer host groups in
Identity Management (IdM) using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The host groups you reference from the Ansible playbook file exist in IdM. For details, see
Ensuring the presence of IdM host groups using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. Specify, among the -
ipahostgroup variables, the name of the outer host group using the name variable. Specify the
name of the nested hostgroup with the hostgroup variable. To simplify this step, you can copy
and modify the examples in the /usr/share/doc/ansible-
freeipa/playbooks/hostgroup/ensure-hosts-and-hostgroups-are-absent-in-hostgroup.yml
file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

188

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 tasks:
 # Ensure hosts and hostgroups are absent in existing databases hostgroup
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 hostgroup:
 - mysql-server
 - oracle-server
 action: member
 state: absent

This playbook makes sure that the mysql-server and oracle-server host groups are absent
from the databases host group. The action: member line indicates that when the playbook is
run, no attempt is made to ensure the databases group itself is deleted from IdM.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-absent-in-hostgroup.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group from which nested host groups should be absent:

$ ipa hostgroup-show databases
 Host-group: databases

The output confirms that the mysql-server and oracle-server nested host groups are absent from the
outer databases host group.

18.8. ENSURING THE ABSENCE OF IDM HOST GROUPS USING
ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of host groups in Identity Management (IdM) using Ansible
playbooks.

NOTE

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

189

NOTE

Without Ansible, host group entries are removed from IdM using the ipa hostgroup-del
command. The result of removing a host group from IdM is the state of the host group
being absent from IdM. Because of the Ansible reliance on idempotence, to remove a
host group from IdM using Ansible, you must create a playbook in which you define the
state of the host group as absent: state: absent.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. To simplify this step,
you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/user/ensure-hostgroup-is-absent.yml file.

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - Ensure host-group databases is absent
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 state: absent

This playbook ensures the absence of the databases host group from IdM. The state: absent
means a request to delete the host group from IdM unless it is already deleted.

3. Run the playbook:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

190

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
hostgroup-is-absent.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group whose absence you ensured:

$ ipa hostgroup-show databases
ipa: ERROR: databases: host group not found

The databases host group does not exist in IdM.

18.9. ENSURING THE ABSENCE OF MEMBER MANAGERS FROM IDM
HOST GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the absence of member managers in IdM hosts and host
groups using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the user or user group you are removing as member managers and
the name of the host group they are managing.

Procedure

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

191

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host and host group member management
information:

- name: Playbook to handle host group membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure member manager host and host group members are absent for
group_name
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_name
 membermanager_user: example_member
 membermanager_group: project_admins
 action: member
 state: absent

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
member-managers-host-groups-are-absent.yml

Verification steps

You can verify if the group_name group does not contain example_member or project_admins as
member managers by using the ipa group-show command:

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about testhostgroup:

ipaserver]$ ipa hostgroup-show group_name
 Host-group: group_name
 Member hosts: server.idm.example.com
 Member host-groups: testhostgroup2

Additional resources

See ipa hostgroup-add-member-manager --help.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

192

See the ipa man page.

CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

193

CHAPTER 19. DEFINING IDM PASSWORD POLICIES
This chapter describes Identity Management (IdM) password policies and how to add a new password
policy in IdM using an Ansible playbook.

19.1. WHAT IS A PASSWORD POLICY

A password policy is a set of rules that passwords must meet. For example, a password policy can define
the minimum password length and the maximum password lifetime. All users affected by this policy are
required to set a sufficiently long password and change it frequently enough to meet the specified
conditions. In this way, password policies help reduce the risk of someone discovering and misusing a
user’s password.

19.2. PASSWORD POLICIES IN IDM

Passwords are the most common way for Identity Management (IdM) users to authenticate to the IdM
Kerberos domain. Password policies define the requirements that these IdM user passwords must meet.

NOTE

The IdM password policy is set in the underlying LDAP directory, but the Kerberos Key
Distribution Center (KDC) enforces the password policy.

Password policy attributes lists the attributes you can use to define a password policy in IdM.

Table 19.1. Password Policy Attributes

Attribute Explanation Example

Max lifetime The maximum amount of time in days
that a password is valid before a user
must reset it. The default value is 90
days.

Note that if the attribute is set to 0, the
password never expires.

Max lifetime = 180

User passwords are valid only for 180
days. After that, IdM prompts users to
change them.

Min lifetime The minimum amount of time in hours
that must pass between two password
change operations.

Min lifetime = 1

After users change their passwords, they
must wait at least 1 hour before changing
them again.

History size The number of previous passwords that
are stored. A user cannot reuse a
password from their password history but
can reuse old passwords that are not
stored.

History size = 0

In this case, the password history is empty
and users can reuse any of their previous
passwords.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

194

Character classes The number of different character
classes the user must use in the
password. The character classes are:

* Uppercase characters

* Lowercase characters

* Digits

* Special characters, such as comma (,),
period (.), asterisk (*)

* Other UTF-8 characters

Using a character three or more times in
a row decreases the character class by
one. For example:

* Secret1 has 3 character classes:
uppercase, lowercase, digits

* Secret111 has 2 character classes:
uppercase, lowercase, digits, and a -1
penalty for using 1 repeatedly

Character classes = 0

The default number of classes required is
0. To configure the number, run the ipa
pwpolicy-mod command with the --
minclasses option.

See also the Important note below this
table.

Min length The minimum number of characters in a
password.

If any of the additional password policy
options are set, then the minimum length
of passwords is 6 characters.

Min length = 8

Users cannot use passwords shorter than
8 characters.

Max failures The maximum number of failed login
attempts before IdM locks the user
account.

Max failures = 6

IdM locks the user account when the user
enters a wrong password 7 times in a row.

Failure reset
interval

The amount of time in seconds after
which IdM resets the current number of
failed login attempts.

Failure reset interval = 60

If the user waits for more than 1 minute
after the number of failed login attempts
defined in Max failures, the user can
attempt to log in again without risking a
user account lock.

Lockout duration The amount of time in seconds that the
user account is locked after the number
of failed login attempts defined in Max
failures.

Lockout duration = 600

Users with locked accounts are unable to
log in for 10 minutes.

Attribute Explanation Example

IMPORTANT

CHAPTER 19. DEFINING IDM PASSWORD POLICIES

195

IMPORTANT

Use the English alphabet and common symbols for the character classes requirement if
you have a diverse set of hardware that may not have access to international characters
and symbols. For more information about character class policies in passwords, see What
characters are valid in a password? in Red Hat Knowledgebase.

19.3. ENSURING THE PRESENCE OF A PASSWORD POLICY IN IDM
USING AN ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of a password policy in Identity Management (IdM) using
an Ansible playbook.

In the default global_policy password policy in IdM, the number of different character classes in the
password is set to 0. The history size is also set to 0.

Complete this procedure to enforce a stronger password policy for an IdM group using an Ansible
playbook.

NOTE

You can only define a password policy for an IdM group. You cannot define a password
policy for an individual user.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The group for which you are ensuring the presence of a password policy exists in IdM.

Procedure

1. Create an inventory file, for example inventory.file, and define the FQDN of your IdM server in
the [ipaserver] section:

[ipaserver]
server.idm.example.com

2. Create your Ansible playbook file that defines the password policy whose presence you want to
ensure. To simplify this step, copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/pwpolicy/pwpolicy_present.yml file:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

196

https://access.redhat.com/solutions/3143431
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Tests
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure presence of pwpolicy for group ops
 ipapwpolicy:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: ops
 minlife: 7
 maxlife: 49
 history: 5
 priority: 1
 lockouttime: 300
 minlength: 8
 minclasses: 4
 maxfail: 3
 failinterval: 5

For details on what the individual variables mean, see Password policy attributes.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file
path_to_playbooks_directory_/new_pwpolicy_present.yml

You have successfully used an Ansible playbook to ensure that a password policy for the ops group is
present in IdM.

IMPORTANT

The priority of the ops password policy is set to 1, whereas the global_policy password
policy has no priority set. For this reason, the ops policy automatically supersedes
global_policy for the ops group and is enforced immediately.

global_policy serves as a fallback policy when no group policy is set for a user, and it can
never take precedence over a group policy.

Additional resources

See the README-pwpolicy.md file in the /usr/share/doc/ansible-freeipa/ directory.

See Password policy priorities.

19.4. ADDITIONAL PASSWORD POLICY OPTIONS IN IDM

As an Identity Management (IdM) administrator, you can strengthen the default password requirements
by enabling additional password policy options based on the libpwquality feature set. The additional
password policy options include the following:

--maxrepeat

CHAPTER 19. DEFINING IDM PASSWORD POLICIES

197

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/pwd-policies-how#pwd-policies-priority

Specifies the maximum acceptable number of same consecutive characters in the new password.

--maxsequence

Specifies the maximum length of monotonic character sequences in the new password. Examples of
such a sequence are 12345 or fedcb. Most such passwords will not pass the simplicity check.

--dictcheck

If nonzero, checks whether the password, with possible modifications, matches a word in a dictionary.
Currently libpwquality performs the dictionary check using the cracklib library.

--usercheck

If nonzero, checks whether the password, with possible modifications, contains the user name in
some form. It is not performed for user names shorter than 3 characters.

You cannot apply the additional password policy options to existing passwords. If you apply any of the
additional options, IdM automatically sets the --minlength option, the minimum number of characters in
a password, to 6 characters.

NOTE

In a mixed environment with RHEL 7 and RHEL 8 servers, you can enforce the additional
password policy settings only on servers running on RHEL 8.4 and later. If a user is logged
in to an IdM client and the IdM client is communicating with an IdM server running on
RHEL 8.3 or earlier, then the new password policy requirements set by the system
administrator will not be applied. To ensure consistent behavior, upgrade or update all
servers to RHEL 8.4 and later.

Additional resources:

Applying additional password policies to an IdM group

pwquality(3) man page

19.5. APPLYING ADDITIONAL PASSWORD POLICY OPTIONS TO AN
IDM GROUP

Follow this procedure to apply additional password policy options in Identity Management (IdM). The
example describes how to strengthen the password policy for the managers group by making sure that
the new passwords do not contain the users' respective user names and that the passwords contain no
more than two identical characters in succession.

Prerequisites

You are logged in as an IdM administrator.

The managers group exists in IdM.

The managers password policy exists in IdM.

Procedure

1. Apply the user name check to all new passwords suggested by the users in the managers group:

$ ipa pwpolicy-mod --usercheck=True managers

NOTE

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

198

NOTE

If you do not specify the name of the password policy, the default global_policy
is modified.

2. Set the maximum number of identical consecutive characters to 2 in the managers password
policy:

$ ipa pwpolicy-mod --maxrepeat=2 managers

A password now will not be accepted if it contains more than 2 identical consecutive characters.
For example, the eR873mUi111YJQ combination is unacceptable because it contains three 1s in
succession.

Verification

1. Add a test user named test_user:

$ ipa user-add test_user
First name: test
Last name: user

Added user "test_user"

2. Add the test user to the managers group:

a. In the IdM Web UI, click Identity → Groups → User Groups.

b. Click managers.

c. Click Add.

d. In the Add users into user group 'managers' page, check test_user.

e. Click the > arrow to move the user to the Prospective column.

f. Click Add.

3. Reset the password for the test user:

a. Go to Identity → Users.

b. Click test_user.

c. In the Actions menu, click Reset Password.

d. Enter a temporary password for the user.

4. On the command line, try to obtain a Kerberos ticket-granting ticket (TGT) for the test_user:

$ kinit test_user

a. Enter the temporary password.

b. The system informs you that you must change your password. Enter a password that

CHAPTER 19. DEFINING IDM PASSWORD POLICIES

199

b. The system informs you that you must change your password. Enter a password that
contains the user name of test_user:

Password expired. You must change it now.
Enter new password:
Enter it again:
Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

NOTE

Kerberos does not have fine-grained error password policy reporting and, in
certain cases, does not provide a clear reason why a password was rejected.

c. The system informs you that the entered password was rejected. Enter a password that
contains three or more identical characters in succession:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

d. The system informs you that the entered password was rejected. Enter a password that
meets the criteria of the managers password policy:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

5. View the obtained TGT:

$ klist
Ticket cache: KCM:0:33945
Default principal: test_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/07/2021 12:44:44 07/08/2021 12:44:44
krbtgt@IDM.EXAMPLE.COM@IDM.EXAMPLE.COM

The managers password policy now works correctly for users in the managers group.

Additional resources

Additional password policies in IdM

19.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

200

19.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL
PASSWORD POLICY OPTIONS TO AN IDM GROUP

You can use an Ansible playbook to apply additional password policy options to strengthen the password
policy requirements for a specific IdM group. You can use the maxrepeat, maxsequence, dictcheck
and usercheck password policy options for this purpose. The example describes how to set the
following requirements for the managers group:

Users' new passwords do not contain the users' respective user names.

The passwords contain no more than two identical characters in succession.

Any monotonic character sequences in the passwords are not longer than 3 characters. This
means that the system does not accept a password with a sequence such as 1234 or abcd.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

The group for which you are ensuring the presence of a password policy exists in IdM.

Procedure

1. Create your Ansible playbook file manager_pwpolicy_present.yml that defines the password
policy whose presence you want to ensure. To simplify this step, copy and modify the following
example:

- name: Tests
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure presence of usercheck and maxrepeat pwpolicy for group managers
 ipapwpolicy:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: managers
 usercheck: True
 maxrepeat: 2
 maxsequence: 3

2. Run the playbook:

CHAPTER 19. DEFINING IDM PASSWORD POLICIES

201

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file
path_to_playbooks_directory_/manager_pwpolicy_present.yml

Verification

1. Add a test user named test_user:

$ ipa user-add test_user
First name: test
Last name: user

Added user "test_user"

2. Add the test user to the managers group:

a. In the IdM Web UI, click Identity → Groups → User Groups.

b. Click managers.

c. Click Add.

d. In the Add users into user group 'managers' page, check test_user.

e. Click the > arrow to move the user to the Prospective column.

f. Click Add.

3. Reset the password for the test user:

a. Go to Identity → Users.

b. Click test_user.

c. In the Actions menu, click Reset Password.

d. Enter a temporary password for the user.

4. On the command line, try to obtain a Kerberos ticket-granting ticket (TGT) for the test_user:

$ kinit test_user

a. Enter the temporary password.

b. The system informs you that you must change your password. Enter a password that
contains the user name of test_user:

Password expired. You must change it now.
Enter new password:
Enter it again:
Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

NOTE

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

202

NOTE

Kerberos does not have fine-grained error password policy reporting and, in
certain cases, does not provide a clear reason why a password was rejected.

c. The system informs you that the entered password was rejected. Enter a password that
contains three or more identical characters in succession:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

d. The system informs you that the entered password was rejected. Enter a password that
contains a monotonic character sequence longer than 3 characters. Examples of such
sequences include 1234 and fedc:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

e. The system informs you that the entered password was rejected. Enter a password that
meets the criteria of the managers password policy:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

5. Verify that you have obtained a TGT, which is only possible after having entered a valid
password:

$ klist
Ticket cache: KCM:0:33945
Default principal: test_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/07/2021 12:44:44 07/08/2021 12:44:44
krbtgt@IDM.EXAMPLE.COM@IDM.EXAMPLE.COM

Additional resources

Additional password policies in IdM

/usr/share/doc/ansible-freeipa/README-pwpolicy.md

/usr/share/doc/ansible-freeipa/playbooks/pwpolicy

CHAPTER 19. DEFINING IDM PASSWORD POLICIES

203

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON
AN IDM CLIENT

Learn more about granting sudo access to users in Identity Management.

20.1. SUDO ACCESS ON AN IDM CLIENT

System administrators can grant sudo access to allow non-root users to execute administrative
commands that are normally reserved for the root user. Consequently, when users need to perform an
administrative command normally reserved for the root user, they precede that command with sudo.
After entering their password, the command is executed as if they were the root user. To execute a sudo
command as another user or group, such as a database service account, you can configure a RunAs alias
for a sudo rule.

If a Red Hat Enterprise Linux (RHEL) 8 host is enrolled as an Identity Management (IdM) client, you can
specify sudo rules defining which IdM users can perform which commands on the host in the following
ways:

Locally in the /etc/sudoers file

Centrally in IdM

You can create a central sudo rule for an IdM client using the command line interface (CLI) and the IdM
Web UI.

In RHEL 8.4 and later, you can also configure password-less authentication for sudo using the Generic
Security Service Application Programming Interface (GSSAPI), the native way for UNIX-based
operating systems to access and authenticate Kerberos services. You can use the pam_sss_gss.so
Pluggable Authentication Module (PAM) to invoke GSSAPI authentication via the SSSD service, allowing
users to authenticate to the sudo command with a valid Kerberos ticket.

Additional resources

See Managing sudo access.

20.2. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
USING THE CLI

In Identity Management (IdM), you can grant sudo access for a specific command to an IdM user
account on a specific IdM host. First, add a sudo command and then create a sudo rule for one or more
commands.

For example, complete this procedure to create the idm_user_reboot sudo rule to grant the idm_user
account the permission to run the /usr/sbin/reboot command on the idmclient machine.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the CLI, see Adding users
using the command line.

No local idm_user account is present on the idmclient host. The idm_user user is not listed in

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

204

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/managing-sudo-access_configuring-basic-system-settings
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-accounts-using-the-command-line_managing-users-groups-hosts#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

Procedure

1. Retrieve a Kerberos ticket as the IdM admin.

[root@idmclient ~]# kinit admin

2. Add the /usr/sbin/reboot command to the IdM database of sudo commands:

[root@idmclient ~]# ipa sudocmd-add /usr/sbin/reboot

Added Sudo Command "/usr/sbin/reboot"

 Sudo Command: /usr/sbin/reboot

3. Create a sudo rule named idm_user_reboot:

[root@idmclient ~]# ipa sudorule-add idm_user_reboot

Added Sudo Rule "idm_user_reboot"

 Rule name: idm_user_reboot
 Enabled: TRUE

4. Add the /usr/sbin/reboot command to the idm_user_reboot rule:

[root@idmclient ~]# ipa sudorule-add-allow-command idm_user_reboot --sudocmds
'/usr/sbin/reboot'
 Rule name: idm_user_reboot
 Enabled: TRUE
 Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

5. Apply the idm_user_reboot rule to the IdM idmclient host:

[root@idmclient ~]# ipa sudorule-add-host idm_user_reboot --hosts
idmclient.idm.example.com
Rule name: idm_user_reboot
Enabled: TRUE
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

6. Add the idm_user account to the idm_user_reboot rule:

[root@idmclient ~]# ipa sudorule-add-user idm_user_reboot --users idm_user
Rule name: idm_user_reboot
Enabled: TRUE

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

205

Users: idm_user
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

7. Optionally, define the validity of the idm_user_reboot rule:

a. To define the time at which a sudo rule starts to be valid, use the ipa sudorule-mod
sudo_rule_name command with the --setattr sudonotbefore=DATE option. The DATE
value must follow the yyyymmddHHMMSSZ format, with seconds specified explicitly. For
example, to set the start of the validity of the idm_user_reboot rule to 31 December 2025
12:34:00, enter:

[root@idmclient ~]# ipa sudorule-mod idm_user_reboot --setattr
sudonotbefore=20251231123400Z

b. To define the time at which a sudo rule stops being valid, use the --setattr
sudonotafter=DATE option. For example, to set the end of the idm_user_reboot rule
validity to 31 December 2026 12:34:00, enter:

[root@idmclient ~]# ipa sudorule-mod idm_user_reboot --setattr
sudonotafter=20261231123400Z

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to the idmclient host as the idm_user account.

2. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idm_user on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY
KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user may run the following commands on idmclient:
 (root) /usr/sbin/reboot

3. Reboot the machine using sudo. Enter the password for idm_user when prompted:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

206

[idm_user@idmclient ~]$ sudo /usr/sbin/reboot
[sudo] password for idm_user:

20.3. GRANTING SUDO ACCESS TO AN AD USER ON AN IDM CLIENT
USING THE CLI

Identity Management (IdM) system administrators can use IdM user groups to set access permissions,
host-based access control, sudo rules, and other controls on IdM users. IdM user groups grant and
restrict access to IdM domain resources.

You can add both Active Directory (AD) users and AD groups to IdM user groups. To do that:

1. Add the AD users or groups to a non-POSIX external IdM group.

2. Add the non-POSIX external IdM group to an IdM POSIX group.

You can then manage the privileges of the AD users by managing the privileges of the POSIX group. For
example, you can grant sudo access for a specific command to an IdM POSIX user group on a specific
IdM host.

NOTE

It is also possible to add AD user groups as members to IdM external groups. This might
make it easier to define policies for Windows users, by keeping the user and group
management within the single AD realm.

IMPORTANT

Do not use ID overrides of AD users for SUDO rules in IdM. ID overrides of AD users
represent only POSIX attributes of AD users, not AD users themselves.

You can add ID overrides as group members. However, you can only use this functionality
to manage IdM resources in the IdM API. The possibility to add ID overrides as group
members is not extended to POSIX environments and you therefore cannot use it for
membership in sudo or host-based access control (HBAC) rules.

Follow this procedure to create the ad_users_reboot sudo rule to grant the administrator@ad-
domain.com AD user the permission to run the /usr/sbin/reboot command on the idmclient IdM host,
which is normally reserved for the root user. administrator@ad-domain.com is a member of the
ad_users_external non-POSIX group, which is, in turn, a member of the ad_users POSIX group.

Prerequisites

You have obtained the IdM admin Kerberos ticket-granting ticket (TGT).

A cross-forest trust exists between the IdM domain and the ad-domain.com AD domain.

No local administrator account is present on the idmclient host: the administrator user is not
listed in the local /etc/passwd file.

Procedure

1. Create the ad_users group that contains the ad_users_external group with the

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

207

1. Create the ad_users group that contains the ad_users_external group with the
administrator@ad-domain member:

a. Optional: Create or select a corresponding group in the AD domain to use to manage AD
users in the IdM realm. You can use multiple AD groups and add them to different groups on
the IdM side.

b. Create the ad_users_external group and indicate that it contains members from outside
the IdM domain by adding the --external option:

[root@ipaserver ~]# ipa group-add --desc='AD users external map'
ad_users_external --external

Added group "ad_users_external"

 Group name: ad_users_external
 Description: AD users external map

NOTE

Ensure that the external group that you specify here is an AD security group
with a global or universal group scope as defined in the Active Directory
security groups document. For example, the Domain users or Domain
admins AD security groups cannot be used because their group scope is
domain local.

c. Create the ad_users group:

[root@ipaserver ~]# ipa group-add --desc='AD users' ad_users

Added group "ad_users"

 Group name: ad_users
 Description: AD users
 GID: 129600004

d. Add the administrator@ad-domain.com AD user to ad_users_external as an external
member:

[root@ipaserver ~]# ipa group-add-member ad_users_external --external
"administrator@ad-domain.com"
 [member user]:
 [member group]:
 Group name: ad_users_external
 Description: AD users external map
 External member: S-1-5-21-3655990580-1375374850-1633065477-513

Number of members added 1

The AD user must be identified by a fully-qualified name, such as DOMAIN\user_name or
user_name@DOMAIN. The AD identity is then mapped to the AD SID for the user. The
same applies to adding AD groups.

e. Add ad_users_external to ad_users as a member:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

208

https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-groups

[root@ipaserver ~]# ipa group-add-member ad_users --groups ad_users_external
 Group name: ad_users
 Description: AD users
 GID: 129600004
 Member groups: ad_users_external

Number of members added 1

2. Grant the members of ad_users the permission to run /usr/sbin/reboot on the idmclient host:

a. Add the /usr/sbin/reboot command to the IdM database of sudo commands:

[root@idmclient ~]# ipa sudocmd-add /usr/sbin/reboot

Added Sudo Command "/usr/sbin/reboot"

 Sudo Command: /usr/sbin/reboot

b. Create a sudo rule named ad_users_reboot:

[root@idmclient ~]# ipa sudorule-add ad_users_reboot

Added Sudo Rule "ad_users_reboot"

 Rule name: ad_users_reboot
 Enabled: True

c. Add the /usr/sbin/reboot command to the ad_users_reboot rule:

[root@idmclient ~]# ipa sudorule-add-allow-command ad_users_reboot --sudocmds
'/usr/sbin/reboot'
 Rule name: ad_users_reboot
 Enabled: True
 Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

d. Apply the ad_users_reboot rule to the IdM idmclient host:

[root@idmclient ~]# ipa sudorule-add-host ad_users_reboot --hosts
idmclient.idm.example.com
Rule name: ad_users_reboot
Enabled: True
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

e. Add the ad_users group to the ad_users_reboot rule:

[root@idmclient ~]# ipa sudorule-add-user ad_users_reboot --groups ad_users

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

209

Rule name: ad_users_reboot
Enabled: TRUE
User Groups: ad_users
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to the idmclient host as administrator@ad-domain.com, an indirect member of the
ad_users group:

$ ssh administrator@ad-domain.com@ipaclient
Password:

2. Optionally, display the sudo commands that administrator@ad-domain.com is allowed to
execute:

[administrator@ad-domain.com@idmclient ~]$ sudo -l
Matching Defaults entries for administrator@ad-domain.com on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY
KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User administrator@ad-domain.com may run the following commands on idmclient:
 (root) /usr/sbin/reboot

3. Reboot the machine using sudo. Enter the password for administrator@ad-domain.com when
prompted:

[administrator@ad-domain.com@idmclient ~]$ sudo /usr/sbin/reboot
[sudo] password for administrator@ad-domain.com:

Additional resources

Active Directory users and Identity Management groups

Include users and groups from a trusted Active Directory domain into SUDO rules

20.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

210

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#trust-win-groups
https://freeipa.readthedocs.io/en/latest/designs/adtrust/sudorules-with-ad-objects.html

20.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
USING THE IDM WEB UI

In Identity Management (IdM), you can grant sudo access for a specific command to an IdM user
account on a specific IdM host. First, add a sudo command and then create a sudo rule for one or more
commands.

Complete this procedure to create the idm_user_reboot sudo rule to grant the idm_user account the
permission to run the /usr/sbin/reboot command on the idmclient machine.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the command-line interface,
see Adding users using the command line .

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

Procedure

1. Add the /usr/sbin/reboot command to the IdM database of sudo commands:

a. Navigate to Policy → Sudo → Sudo Commands.

b. Click Add in the upper right corner to open the Add sudo command dialog box.

c. Enter the command you want the user to be able to perform using sudo: /usr/sbin/reboot.

Figure 20.1. Adding IdM sudo command

d. Click Add.

2. Use the new sudo command entry to create a sudo rule to allow idm_user to reboot the

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

211

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-accounts-using-the-command-line_managing-users-groups-hosts#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

2. Use the new sudo command entry to create a sudo rule to allow idm_user to reboot the
idmclient machine:

a. Navigate to Policy → Sudo → Sudo rules.

b. Click Add in the upper right corner to open the Add sudo rule dialog box.

c. Enter the name of the sudo rule: idm_user_reboot.

d. Click Add and Edit.

e. Specify the user:

i. In the Who section, check the Specified Users and Groups radio button.

ii. In the User category the rule applies to subsection, click Add to open the Add users
into sudo rule "idm_user_reboot" dialog box.

iii. In the Add users into sudo rule "idm_user_reboot" dialog box in the Available column,
check the idm_user checkbox, and move it to the Prospective column.

iv. Click Add.

f. Specify the host:

i. In the Access this host section, check the Specified Hosts and Groups radio button.

ii. In the Host category this rule applies to subsection, click Add to open the Add hosts
into sudo rule "idm_user_reboot" dialog box.

iii. In the Add hosts into sudo rule "idm_user_reboot" dialog box in the Available column,
check the idmclient.idm.example.com checkbox, and move it to the Prospective
column.

iv. Click Add.

g. Specify the commands:

i. In the Command category the rule applies to subsection of the Run Commands
section, check the Specified Commands and Groups radio button.

ii. In the Sudo Allow Commands subsection, click Add to open the Add allow sudo
commands into sudo rule "idm_user_reboot" dialog box.

iii. In the Add allow sudo commands into sudo rule "idm_user_reboot" dialog box in the
Available column, check the /usr/sbin/reboot checkbox, and move it to the
Prospective column.

iv. Click Add to return to the idm_sudo_reboot page.

Figure 20.2. Adding IdM sudo rule

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

212

Figure 20.2. Adding IdM sudo rule

h. Click Save in the top left corner.

The new rule is enabled by default.

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to idmclient as idm_user.

2. Reboot the machine using sudo. Enter the password for idm_user when prompted:

$ sudo /usr/sbin/reboot
[sudo] password for idm_user:

If the sudo rule is configured correctly, the machine reboots.

20.5. CREATING A SUDO RULE ON THE CLI THAT RUNS A COMMAND
AS A SERVICE ACCOUNT ON AN IDM CLIENT

In IdM, you can configure a sudo rule with a RunAs alias to run a sudo command as another user or
group. For example, you might have an IdM client that hosts a database application, and you need to run
commands as the local service account that corresponds to that application.

Use this example to create a sudo rule on the command line called run_third-party-app_report to allow
the idm_user account to run the /opt/third-party-app/bin/report command as the thirdpartyapp
service account on the idmclient host.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the CLI, see Adding users
using the command line.

No local idm_user account is present on the idmclient host. The idm_user user is not listed in

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

213

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-accounts-using-the-command-line_configuring-and-managing-idm#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

You have a custom application named third-party-app installed on the idmclient host.

The report command for the third-party-app application is installed in the /opt/third-party-
app/bin/report directory.

You have created a local service account named thirdpartyapp to execute commands for the
third-party-app application.

Procedure

1. Retrieve a Kerberos ticket as the IdM admin.

[root@idmclient ~]# kinit admin

2. Add the /opt/third-party-app/bin/report command to the IdM database of sudo commands:

[root@idmclient ~]# ipa sudocmd-add /opt/third-party-app/bin/report
--
Added Sudo Command "/opt/third-party-app/bin/report"
--
 Sudo Command: /opt/third-party-app/bin/report

3. Create a sudo rule named run_third-party-app_report:

[root@idmclient ~]# ipa sudorule-add run_third-party-app_report
--
Added Sudo Rule "run_third-party-app_report"
--
 Rule name: run_third-party-app_report
 Enabled: TRUE

4. Use the --users=<user> option to specify the RunAs user for the sudorule-add-runasuser
command:

[root@idmclient ~]# ipa sudorule-add-runasuser run_third-party-app_report --
users=thirdpartyapp
 Rule name: run_third-party-app_report
 Enabled: TRUE
 RunAs External User: thirdpartyapp

Number of members added 1

The user (or group specified with the --groups=* option) can be external to IdM, such as a local
service account or an Active Directory user. Do not add a % prefix for group names.

5. Add the /opt/third-party-app/bin/report command to the run_third-party-app_report rule:

[root@idmclient ~]# ipa sudorule-add-allow-command run_third-party-app_report --
sudocmds '/opt/third-party-app/bin/report'
Rule name: run_third-party-app_report
Enabled: TRUE

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

214

Sudo Allow Commands: /opt/third-party-app/bin/report
RunAs External User: thirdpartyapp

Number of members added 1

6. Apply the run_third-party-app_report rule to the IdM idmclient host:

[root@idmclient ~]# ipa sudorule-add-host run_third-party-app_report --hosts
idmclient.idm.example.com
Rule name: run_third-party-app_report
Enabled: TRUE
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /opt/third-party-app/bin/report
RunAs External User: thirdpartyapp

Number of members added 1

7. Add the idm_user account to the run_third-party-app_report rule:

[root@idmclient ~]# ipa sudorule-add-user run_third-party-app_report --users idm_user
Rule name: run_third-party-app_report
Enabled: TRUE
Users: idm_user
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /opt/third-party-app/bin/report
RunAs External User: thirdpartyapp

Number of members added 1

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to the idmclient host as the idm_user account.

2. Test the new sudo rule:

a. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idm_user@idm.example.com on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER
LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET
XAUTHORITY KRB5CCNAME",

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

215

 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user@idm.example.com may run the following commands on idmclient:
 (thirdpartyapp) /opt/third-party-app/bin/report

b. Run the report command as the thirdpartyapp service account.

[idm_user@idmclient ~]$ sudo -u thirdpartyapp /opt/third-party-app/bin/report
[sudo] password for idm_user@idm.example.com:
Executing report...
Report successful.

20.6. CREATING A SUDO RULE IN THE IDM WEBUI THAT RUNS A
COMMAND AS A SERVICE ACCOUNT ON AN IDM CLIENT

In IdM, you can configure a sudo rule with a RunAs alias to run a sudo command as another user or
group. For example, you might have an IdM client that hosts a database application, and you need to run
commands as the local service account that corresponds to that application.

Use this example to create a sudo rule in the IdM WebUI called run_third-party-app_report to allow the
idm_user account to run the /opt/third-party-app/bin/report command as the thirdpartyapp service
account on the idmclient host.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the CLI, see Adding users
using the command line.

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

You have a custom application named third-party-app installed on the idmclient host.

The report command for the third-party-app application is installed in the /opt/third-party-
app/bin/report directory.

You have created a local service account named thirdpartyapp to execute commands for the
third-party-app application.

Procedure

1. Add the /opt/third-party-app/bin/report command to the IdM database of sudo commands:

a. Navigate to Policy → Sudo → Sudo Commands.

b. Click Add in the upper right corner to open the Add sudo command dialog box.

c. Enter the command: /opt/third-party-app/bin/report.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

216

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-accounts-using-the-command-line_configuring-and-managing-idm#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

d. Click Add.

2. Use the new sudo command entry to create the new sudo rule:

a. Navigate to Policy → Sudo → Sudo rules.

b. Click Add in the upper right corner to open the Add sudo rule dialog box.

c. Enter the name of the sudo rule: run_third-party-app_report.

d. Click Add and Edit.

e. Specify the user:

i. In the Who section, check the Specified Users and Groups radio button.

ii. In the User category the rule applies to subsection, click Add to open the Add users
into sudo rule "run_third-party-app_report" dialog box.

iii. In the Add users into sudo rule "run_third-party-app_report" dialog box in the
Available column, check the idm_user checkbox, and move it to the Prospective
column.

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

217

iv. Click Add.

f. Specify the host:

i. In the Access this host section, check the Specified Hosts and Groups radio button.

ii. In the Host category this rule applies to subsection, click Add to open the Add hosts
into sudo rule "run_third-party-app_report" dialog box.

iii. In the Add hosts into sudo rule "run_third-party-app_report" dialog box in the
Available column, check the idmclient.idm.example.com checkbox, and move it to the
Prospective column.

iv. Click Add.

g. Specify the commands:

i. In the Command category the rule applies to subsection of the Run Commands
section, check the Specified Commands and Groups radio button.

ii. In the Sudo Allow Commands subsection, click Add to open the Add allow sudo

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

218

ii. In the Sudo Allow Commands subsection, click Add to open the Add allow sudo
commands into sudo rule "run_third-party-app_report" dialog box.

iii. In the Add allow sudo commands into sudo rule "run_third-party-app_report" dialog
box in the Available column, check the /opt/third-party-app/bin/report checkbox, and
move it to the Prospective column.

iv. Click Add to return to the run_third-party-app_report page.

h. Specify the RunAs user:

i. In the As Whom section, check the Specified Users and Groups radio button.

ii. In the RunAs Users subsection, click Add to open the Add RunAs users into sudo rule
"run_third-party-app_report" dialog box.

iii. In the Add RunAs users into sudo rule "run_third-party-app_report" dialog box, enter
the thirdpartyapp service account in the External box and move it to the Prospective
column.

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

219

iv. Click Add to return to the run_third-party-app_report page.

i. Click Save in the top left corner.

The new rule is enabled by default.

Figure 20.3. Details of the sudo rule

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to the idmclient host as the idm_user account.

2. Test the new sudo rule:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

220

a. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idm_user@idm.example.com on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER
LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET
XAUTHORITY KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user@idm.example.com may run the following commands on idmclient:
 (thirdpartyapp) /opt/third-party-app/bin/report

b. Run the report command as the thirdpartyapp service account.

[idm_user@idmclient ~]$ sudo -u thirdpartyapp /opt/third-party-app/bin/report
[sudo] password for idm_user@idm.example.com:
Executing report...
Report successful.

20.7. ENABLING GSSAPI AUTHENTICATION FOR SUDO ON AN IDM
CLIENT

Enable Generic Security Service Application Program Interface (GSSAPI) authentication on an IdM
client for the sudo and sudo -i commands via the pam_sss_gss.so PAM module. With this
configuration, IdM users can authenticate to the sudo command with their Kerberos ticket.

Prerequisites

You have created a sudo rule for an IdM user that applies to an IdM host. For this example, you
have created the idm_user_reboot sudo rule to grant the idm_user account the permission to
run the /usr/sbin/reboot command on the idmclient host.

The idmclient host is running RHEL 8.4 or later.

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the
/etc/pam.d/ directory.

Procedure

1. Open the /etc/sssd/sssd.conf configuration file.

2. Add the following entry to the [domain/<domain_name>] section.

[domain/<domain_name>]
pam_gssapi_services = sudo, sudo-i

3. Save and close the /etc/sssd/sssd.conf file.

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

221

4. Restart the SSSD service to load the configuration changes.

[root@idmclient ~]# systemctl restart sssd

5. On RHEL 8.8 or later:

a. [Optional] Determine if you have selected the sssd authselect profile:

authselect current
Profile ID: sssd

b. If the sssd authselect profile is selected, enable GSSAPI authentication:

authselect enable-feature with-gssapi

c. If the sssd authselect profile is not selected, select it and enable GSSAPI authentication:

authselect select sssd with-gssapi

6. On RHEL 8.7 or earlier:

a. Open the /etc/pam.d/sudo PAM configuration file.

b. Add the following entry as the first line of the auth section in the /etc/pam.d/sudo file.

#%PAM-1.0
auth sufficient pam_sss_gss.so
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

c. Save and close the /etc/pam.d/sudo file.

Verification steps

1. Log into the host as the idm_user account.

[root@idm-client ~]# ssh -l idm_user@idm.example.com localhost
idm_user@idm.example.com's password:

2. Verify that you have a ticket-granting ticket as the idm_user account.

[idmuser@idmclient ~]$ klist
Ticket cache: KCM:1366201107
Default principal: idm_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
01/08/2021 09:11:48 01/08/2021 19:11:48
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 renew until 01/15/2021 09:11:44

3. (Optional) If you do not have Kerberos credentials for the idm_user account, delete your

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

222

3. (Optional) If you do not have Kerberos credentials for the idm_user account, delete your
current Kerberos credentials and request the correct ones.

[idm_user@idmclient ~]$ kdestroy -A

[idm_user@idmclient ~]$ kinit idm_user@IDM.EXAMPLE.COM
Password for idm_user@idm.example.com:

4. Reboot the machine using sudo, without specifying a password.

[idm_user@idmclient ~]$ sudo /usr/sbin/reboot

Additional resources

The GSSAPI entry in the IdM terminology listing

Granting sudo access to an IdM user on an IdM client using IdM Web UI

Granting sudo access to an IdM user on an IdM client using the CLI

pam_sss_gss (8) man page

sssd.conf (5) man page

20.8. ENABLING GSSAPI AUTHENTICATION AND ENFORCING
KERBEROS AUTHENTICATION INDICATORS FOR SUDO ON AN IDM
CLIENT

Enable Generic Security Service Application Program Interface (GSSAPI) authentication on an IdM
client for the sudo and sudo -i commands via the pam_sss_gss.so PAM module. Additionally, only
users who have logged in with a smart card will authenticate to those commands with their Kerberos
ticket.

NOTE

You can use this procedure as a template to configure GSSAPI authentication with SSSD
for other PAM-aware services, and further restrict access to only those users that have a
specific authentication indicator attached to their Kerberos ticket.

Prerequisites

You have created a sudo rule for an IdM user that applies to an IdM host. For this example, you
have created the idm_user_reboot sudo rule to grant the idm_user account the permission to
run the /usr/sbin/reboot command on the idmclient host.

You have configured smart card authentication for the idmclient host.

The idmclient host is running RHEL 8.4 or later.

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the
/etc/pam.d/ directory.

Procedure

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

223

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/overview-of-identity-management-and-access-control-planning-identity-management#IdM_terminology_overview-of-idm-and-access-control

1. Open the /etc/sssd/sssd.conf configuration file.

2. Add the following entries to the [domain/<domain_name>] section.

[domain/<domain_name>]
pam_gssapi_services = sudo, sudo-i
pam_gssapi_indicators_map = sudo:pkinit, sudo-i:pkinit

3. Save and close the /etc/sssd/sssd.conf file.

4. Restart the SSSD service to load the configuration changes.

[root@idmclient ~]# systemctl restart sssd

5. On RHEL 8.8 or later:

a. Determine if you have selected the sssd authselect profile:

authselect current
Profile ID: sssd

b. [Optional] Select the sssd authselect profile:

authselect select sssd

c. Enable GSSAPI authentication:

authselect enable-feature with-gssapi

d. Configure the system to authenticate only users with smart cards:

authselect with-smartcard-required

6. On RHEL 8.7 or earlier:

a. Open the /etc/pam.d/sudo PAM configuration file.

b. Add the following entry as the first line of the auth section in the /etc/pam.d/sudo file.

#%PAM-1.0
auth sufficient pam_sss_gss.so
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

c. Save and close the /etc/pam.d/sudo file.

d. Open the /etc/pam.d/sudo-i PAM configuration file.

e. Add the following entry as the first line of the auth section in the /etc/pam.d/sudo-i file.

#%PAM-1.0
auth sufficient pam_sss_gss.so

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

224

auth include sudo
account include sudo
password include sudo
session optional pam_keyinit.so force revoke
session include sudo

f. Save and close the /etc/pam.d/sudo-i file.

Verification steps

1. Log into the host as the idm_user account and authenticate with a smart card.

[root@idmclient ~]# ssh -l idm_user@idm.example.com localhost
PIN for smart_card

2. Verify that you have a ticket-granting ticket as the smart card user.

[idm_user@idmclient ~]$ klist
Ticket cache: KEYRING:persistent:1358900015:krb_cache_TObtNMd
Default principal: idm_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
02/15/2021 16:29:48 02/16/2021 02:29:48
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 renew until 02/22/2021 16:29:44

3. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idmuser on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY
KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user may run the following commands on idmclient:
 (root) /usr/sbin/reboot

4. Reboot the machine using sudo, without specifying a password.

[idm_user@idmclient ~]$ sudo /usr/sbin/reboot

Additional resources

SSSD options controlling GSSAPI authentication for PAM services

The GSSAPI entry in the IdM terminology listing

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

225

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/granting-sudo-access-to-an-idm-user-on-an-idm-client_configuring-and-managing-idm#ref_sssd-options-controlling-gssapi-authentication-for-pam-services_granting-sudo-access-to-an-IdM-user-on-an-IdM-client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/overview-of-identity-management-and-access-control-planning-identity-management#IdM_terminology_overview-of-idm-and-access-control

Configuring Identity Management for smart card authentication

Kerberos authentication indicators

Granting sudo access to an IdM user on an IdM client using IdM Web UI

Granting sudo access to an IdM user on an IdM client using the CLI .

pam_sss_gss (8) man page

sssd.conf (5) man page

20.9. SSSD OPTIONS CONTROLLING GSSAPI AUTHENTICATION FOR
PAM SERVICES

You can use the following options for the /etc/sssd/sssd.conf configuration file to adjust the GSSAPI
configuration within the SSSD service.

pam_gssapi_services

GSSAPI authentication with SSSD is disabled by default. You can use this option to specify a
comma-separated list of PAM services that are allowed to try GSSAPI authentication using the
pam_sss_gss.so PAM module. To explicitly disable GSSAPI authentication, set this option to -.

pam_gssapi_indicators_map

This option only applies to Identity Management (IdM) domains. Use this option to list Kerberos
authentication indicators that are required to grant PAM access to a service. Pairs must be in the
format <PAM_service>:_<required_authentication_indicator>_.
Valid authentication indicators are:

otp for two-factor authentication

radius for RADIUS authentication

pkinit for PKINIT, smart card, or certificate authentication

hardened for hardened passwords

pam_gssapi_check_upn

This option is enabled and set to true by default. If this option is enabled, the SSSD service requires
that the user name matches the Kerberos credentials. If false, the pam_sss_gss.so PAM module
authenticates every user that is able to obtain the required service ticket.

Examples

The following options enable Kerberos authentication for the sudo and sudo-i services, requires that
sudo users authenticated with a one-time password, and user names must match the Kerberos principal.
Because these settings are in the [pam] section, they apply to all domains:

[pam]
pam_gssapi_services = sudo, sudo-i
pam_gssapi_indicators_map = sudo:otp
pam_gssapi_check_upn = true

You can also set these options in individual [domain] sections to overwrite any global values in the
[pam] section. The following options apply different GSSAPI settings to each domain:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

226

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-kerberos-ticket-policies_configuring-and-managing-idm#kerberos-authentication-indicators_managing-kerberos-ticket-policies

For the idm.example.com domain

Enable GSSAPI authentication for the sudo and sudo -i services.

Require certificate or smart card authentication authenticators for the sudo command.

Require one-time password authentication authenticators for the sudo -i command.

Enforce matching user names and Kerberos principals.

For the ad.example.com domain

Enable GSSAPI authentication only for the sudo service.

Do not enforce matching user names and principals.

[domain/idm.example.com]
pam_gssapi_services = sudo, sudo-i
pam_gssapi_indicators_map = sudo:pkinit, sudo-i:otp
pam_gssapi_check_upn = true
...

[domain/ad.example.com]
pam_gssapi_services = sudo
pam_gssapi_check_upn = false
...

Additional resources

Kerberos authentication indicators

20.10. TROUBLESHOOTING GSSAPI AUTHENTICATION FOR SUDO

If you are unable to authenticate to the sudo service with a Kerberos ticket from IdM, use the following
scenarios to troubleshoot your configuration.

Prerequisites

You have enabled GSSAPI authentication for the sudo service. See Enabling GSSAPI
authentication for sudo on an IdM client.

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the
/etc/pam.d/ directory.

Procedure

If you see the following error, the Kerberos service might not able to resolve the correct realm
for the service ticket based on the host name:

Server not found in Kerberos database

In this situation, add the hostname directly to [domain_realm] section in the /etc/krb5.conf
Kerberos configuration file:

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

227

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-kerberos-ticket-policies_configuring-and-managing-idm#kerberos-authentication-indicators_managing-kerberos-ticket-policies

[idm-user@idm-client ~]$ cat /etc/krb5.conf
...

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 server.example.com = EXAMPLE.COM

If you see the following error, you do not have any Kerberos credentials:

No Kerberos credentials available

In this situation, retrieve Kerberos credentials with the kinit utility or authenticate with SSSD:

[idm-user@idm-client ~]$ kinit idm-user@IDM.EXAMPLE.COM
Password for idm-user@idm.example.com:

If you see either of the following errors in the /var/log/sssd/sssd_pam.log log file, the Kerberos
credentials do not match the username of the user currently logged in:

User with UPN [<UPN>] was not found.

UPN [<UPN>] does not match target user [<username>].

In this situation, verify that you authenticated with SSSD, or consider disabling the
pam_gssapi_check_upn option in the /etc/sssd/sssd.conf file:

[idm-user@idm-client ~]$ cat /etc/sssd/sssd.conf
...

pam_gssapi_check_upn = false

For additional troubleshooting, you can enable debugging output for the pam_sss_gss.so
PAM module.

Add the debug option at the end of all pam_sss_gss.so entries in PAM files, such as
/etc/pam.d/sudo and /etc/pam.d/sudo-i:

[root@idm-client ~]# cat /etc/pam.d/sudo
#%PAM-1.0
auth sufficient pam_sss_gss.so debug
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

[root@idm-client ~]# cat /etc/pam.d/sudo-i
#%PAM-1.0
auth sufficient pam_sss_gss.so debug
auth include sudo
account include sudo
password include sudo
session optional pam_keyinit.so force revoke
session include sudo

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

228

Try to authenticate with the pam_sss_gss.so module and review the console output. In
this example, the user did not have any Kerberos credentials.

[idm-user@idm-client ~]$ sudo ls -l /etc/sssd/sssd.conf
pam_sss_gss: Initializing GSSAPI authentication with SSSD
pam_sss_gss: Switching euid from 0 to 1366201107
pam_sss_gss: Trying to establish security context
pam_sss_gss: SSSD User name: idm-user@idm.example.com
pam_sss_gss: User domain: idm.example.com
pam_sss_gss: User principal:
pam_sss_gss: Target name: host@idm.example.com
pam_sss_gss: Using ccache: KCM:
pam_sss_gss: Acquiring credentials, principal name will be derived
pam_sss_gss: Unable to read credentials from [KCM:] [maj:0xd0000, min:0x96c73ac3]
pam_sss_gss: GSSAPI: Unspecified GSS failure. Minor code may provide more
information
pam_sss_gss: GSSAPI: No credentials cache found
pam_sss_gss: Switching euid from 1366200907 to 0
pam_sss_gss: System error [5]: Input/output error

20.11. USING AN ANSIBLE PLAYBOOK TO ENSURE SUDO ACCESS FOR
AN IDM USER ON AN IDM CLIENT

In Identity Management (IdM), you can ensure sudo access to a specific command is granted to an IdM
user account on a specific IdM host.

Complete this procedure to ensure a sudo rule named idm_user_reboot exists. The rule grants
idm_user the permission to run the /usr/sbin/reboot command on the idmclient machine.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You have ensured the presence of a user account for idm_user in IdM and unlocked the
account by creating a password for the user. For details on adding a new IdM user using the
command-line interface, see link: Adding users using the command line .

No local idm_user account exists on idmclient. The idm_user user is not listed in the
/etc/passwd file on idmclient.

Procedure

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

229

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-accounts-using-the-command-line_configuring-and-managing-idm#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

1. Create an inventory file, for example inventory.file, and define ipaservers in it:

[ipaservers]
server.idm.example.com

2. Add one or more sudo commands:

a. Create an ensure-reboot-sudocmd-is-present.yml Ansible playbook that ensures the
presence of the /usr/sbin/reboot command in the IdM database of sudo commands. To
simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/sudocmd/ensure-sudocmd-is-present.yml file:

- name: Playbook to manage sudo command
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure sudo command is present
 - ipasudocmd:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: /usr/sbin/reboot
 state: present

b. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
reboot-sudocmd-is-present.yml

3. Create a sudo rule that references the commands:

a. Create an ensure-sudorule-for-idmuser-on-idmclient-is-present.yml Ansible playbook
that uses the sudo command entry to ensure the presence of a sudo rule. The sudo rule
allows idm_user to reboot the idmclient machine. To simplify this step, you can copy and
modify the example in the /usr/share/doc/ansible-freeipa/playbooks/sudorule/ensure-
sudorule-is-present.yml file:

- name: Tests
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure a sudorule is present granting idm_user the permission to run /usr/sbin/reboot
on idmclient
 - ipasudorule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: idm_user_reboot
 description: A test sudo rule.
 allow_sudocmd: /usr/sbin/reboot

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

230

 host: idmclient.idm.example.com
 user: idm_user
 state: present

b. Run the playbook:

$ ansible-playbook -v -i path_to_inventory_directory/inventory.file
path_to_playbooks_directory/ensure-sudorule-for-idmuser-on-idmclient-is-
present.yml

Verification steps

Test that the sudo rule whose presence you have ensured on the IdM server works on idmclient by
verifying that idm_user can reboot idmclient using sudo. Note that it can take a few minutes for the
changes made on the server to take effect on the client.

1. Log in to idmclient as idm_user.

2. Reboot the machine using sudo. Enter the password for idm_user when prompted:

$ sudo /usr/sbin/reboot
[sudo] password for idm_user:

If sudo is configured correctly, the machine reboots.

Additional resources

See the README-sudocmd.md, README-sudocmdgroup.md, and README-sudorule.md
files in the /usr/share/doc/ansible-freeipa/ directory.

CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

231

CHAPTER 21. ENSURING THE PRESENCE OF HOST-BASED
ACCESS CONTROL RULES IN IDM USING ANSIBLE

PLAYBOOKS
Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.
It includes support for Identity Management (IdM).

Learn more about Identity Management (IdM) host-based access policies and how to define them using
Ansible.

21.1. HOST-BASED ACCESS CONTROL RULES IN IDM

Host-based access control (HBAC) rules define which users or user groups can access which hosts or
host groups by using which services or services in a service group. As a system administrator, you can
use HBAC rules to achieve the following goals:

Limit access to a specified system in your domain to members of a specific user group.

Allow only a specific service to be used to access systems in your domain.

By default, IdM is configured with a default HBAC rule named allow_all, which means universal access to
every host for every user via every relevant service in the entire IdM domain.

You can fine-tune access to different hosts by replacing the default allow_all rule with your own set of
HBAC rules. For centralized and simplified access control management, you can apply HBAC rules to
user groups, host groups, or service groups instead of individual users, hosts, or services.

21.2. ENSURING THE PRESENCE OF AN HBAC RULE IN IDM USING AN
ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of a host-based access control (HBAC) rule in
Identity Management (IdM) using an Ansible playbook.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The users and user groups you want to use for your HBAC rule exist in IdM. See Managing user
accounts using Ansible playbooks and Ensuring the presence of IdM groups and group
members using Ansible playbooks for details.

The hosts and host groups to which you want to apply your HBAC rule exist in IdM. See

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

232

https://docs.ansible.com
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The hosts and host groups to which you want to apply your HBAC rule exist in IdM. See
Managing hosts using Ansible playbooks and Managing host groups using Ansible playbooks for
details.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create your Ansible playbook file that defines the HBAC policy whose presence you want to
ensure. To simplify this step, you can copy and modify the example in
the /usr/share/doc/ansible-freeipa/playbooks/hbacrule/ensure-hbacrule-allhosts-
present.yml file:

- name: Playbook to handle hbacrules
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure idm_user can access client.idm.example.com via the sshd service
 - ipahbacrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: login
 user: idm_user
 host: client.idm.example.com
 hbacsvc:
 - sshd
 state: present

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-new-
hbacrule-present.yml

Verification steps

1. Log in to the IdM Web UI as administrator.

2. Navigate to Policy → Host-Based-Access-Control → HBAC Test.

3. In the Who tab, select idm_user.

4. In the Accessing tab, select client.idm.example.com.

5. In the Via service tab, select sshd.

6. In the Rules tab, select login.

7. In the Run test tab, click the Run test button. If you see ACCESS GRANTED, the HBAC rule is
implemented successfully.

CHAPTER 21. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING ANSIBLE PLAYBOOKS

233

Additional resources

See the README-hbacsvc.md, README-hbacsvcgroup.md, and README-hbacrule.md
files in the /usr/share/doc/ansible-freeipa directory.

See the playbooks in the subdirectories of the /usr/share/doc/ansible-freeipa/playbooks
directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

234

CHAPTER 22. MANAGING IDM CERTIFICATES USING ANSIBLE
You can use the ansible-freeipa ipacert module to request, revoke, and retrieve SSL certificates for
Identity Management (IdM) users, hosts and services. You can also restore a certificate that has been
put on hold.

22.1. USING ANSIBLE TO REQUEST SSL CERTIFICATES FOR IDM
HOSTS, SERVICES AND USERS

You can use the ansible-freeipa ipacert module to request SSL certificates for Identity Management
(IdM) users, hosts and services. They can then use these certificates to authenticate to IdM.

Complete this procedure to request a certificate for an HTTP server from an IdM certificate authority
(CA) using an Ansible playbook.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Your IdM deployment has an integrated CA.

Procedure

1. Generate a certificate-signing request (CSR) for your user, host or service. For example, to use
the openssl utility to generate a CSR for the HTTP service running on client.idm.example.com,
enter:

openssl req -new -newkey rsa:2048 -days 365 -nodes -keyout new.key -out new.csr -
subj '/CN=client.idm.example.com,O=IDM.EXAMPLE.COM'

As a result, the CSR is stored in new.csr.

2. Create your Ansible playbook file request-certificate.yml with the following content:

- name: Playbook to request a certificate
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Request a certificate for a web server
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 state: requested

CHAPTER 22. MANAGING IDM CERTIFICATES USING ANSIBLE

235

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 csr: |
 -----BEGIN CERTIFICATE REQUEST-----

MIGYMEwCAQAwGTEXMBUGA1UEAwwOZnJlZWlwYSBydWxlcyEwKjAFBgMrZXADIQBs
 HlqIr4b/XNK+K8QLJKIzfvuNK0buBhLz3LAzY7QDEqAAMAUGAytlcANBAF4oSCbA
 5aIPukCidnZJdr491G4LBE+URecYXsPknwYb+V+ONnf5ycZHyaFv+jkUBFGFeDgU
 SYaXm/gF8cDYjQI=
 -----END CERTIFICATE REQUEST-----
 principal: HTTP/client.idm.example.com
 register: cert

Replace the certificate request with the CSR from new.csr.

3. Request the certificate:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/request-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

22.2. USING ANSIBLE TO REVOKE SSL CERTIFICATES FOR IDM
HOSTS, SERVICES AND USERS

You can use the ansible-freeipa ipacert module to revoke SSL certificates used by
Identity Management (IdM) users, hosts and services to authenticate to IdM.

Complete this procedure to revoke a certificate for an HTTP server using an Ansible playbook. The
reason for revoking the certificate is “keyCompromise”.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

You have obtained the serial number of the certificate, for example by entering the openssl
x509 -noout -text -in <path_to_certificate> command. In this example, the serial number
of the certificate is 123456789.

Your IdM deployment has an integrated CA.

Procedure

1. Create your Ansible playbook file revoke-certificate.yml with the following content:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

236

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Playbook to revoke a certificate
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Revoke a certificate for a web server
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 serial_number: 123456789
 revocation_reason: "keyCompromise"
 state: revoked

2. Revoke the certificate:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/revoke-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

Reason Code in RFC 5280

22.3. USING ANSIBLE TO RESTORE SSL CERTIFICATES FOR IDM
USERS, HOSTS, AND SERVICES

You can use the ansible-freeipa ipacert module to restore a revoked SSL certificate previously used by
an Identity Management (IdM) user, host or a service to authenticate to IdM.

NOTE

You can only restore a certificate that was put on hold. You may have put it on hold
because, for example, you were not sure if the private key had been lost. However, now
you have recovered the key and as you are certain that no-one has accessed it in the
meantime, you want to reinstate the certificate.

Complete this procedure to use an Ansible playbook to release a certificate for a service enrolled into
IdM from hold. This example describes how to release a certificate for an HTTP service from hold.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

CHAPTER 22. MANAGING IDM CERTIFICATES USING ANSIBLE

237

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md
https://datatracker.ietf.org/doc/html/rfc5280#section-5.3.1
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Your IdM deployment has an integrated CA.

You have obtained the serial number of the certificate, for example by entering the openssl
x509 -noout -text -in path/to/certificate command. In this example, the certificate serial
number is 123456789.

Procedure

1. Create your Ansible playbook file restore-certificate.yml with the following content:

- name: Playbook to restore a certificate
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Restore a certificate for a web service
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 serial_number: 123456789
 state: released

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/restore-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

22.4. USING ANSIBLE TO RETRIEVE SSL CERTIFICATES FOR IDM
USERS, HOSTS, AND SERVICES

You can use the ansible-freeipa ipacert module to retrieve an SSL certificate issued for an
Identity Management (IdM) user, host or a service, and store it in a file on the managed node.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

You have obtained the serial number of the certificate, for example by entering the openssl

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

238

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You have obtained the serial number of the certificate, for example by entering the openssl
x509 -noout -text -in <path_to_certificate> command. In this example, the serial number of
the certificate is 123456789, and the file in which you store the retrieved certificate is cert.pem.

Procedure

1. Create your Ansible playbook file retrieve-certificate.yml with the following content:

- name: Playbook to retrieve a certificate and store it locally on the managed node
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Retrieve a certificate and save it to file 'cert.pem'
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 serial_number: 123456789
 certificate_out: cert.pem
 state: retrieved

2. Retrieve the certificate:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/retrieve-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

CHAPTER 22. MANAGING IDM CERTIFICATES USING ANSIBLE

239

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md

CHAPTER 23. VAULTS IN IDM
This chapter describes vaults in Identity Management (IdM). It introduces the following topics:

The concept of the vault.

The different roles associated with a vault .

The different types of vaults available in IdM based on the level of security and access control .

The different types of vaults available in IdM based on ownership .

The concept of vault containers.

The basic commands for managing vaults in IdM .

Installing the key recovery authority (KRA), which is a prerequisite for using vaults in IdM .

23.1. VAULTS AND THEIR BENEFITS

A vault is a useful feature for those Identity Management (IdM) users who want to keep all their sensitive
data stored securely but conveniently in one place. There are various types of vaults and you should
choose which vault to use based on your requirements.

A vault is a secure location in (IdM) for storing, retrieving, sharing, and recovering a secret. A secret is
security-sensitive data, usually authentication credentials, that only a limited group of people or entities
can access. For example, secrets include:

Passwords

PINs

Private SSH keys

A vault is comparable to a password manager. Just like a password manager, a vault typically requires a
user to generate and remember one primary password to unlock and access any information stored in
the vault. However, a user can also decide to have a standard vault. A standard vault does not require
the user to enter any password to access the secrets stored in the vault.

NOTE

The purpose of vaults in IdM is to store authentication credentials that allow you to
authenticate to external, non-IdM-related services.

Other important characteristics of the IdM vaults are:

Vaults are only accessible to the vault owner and those IdM users that the vault owner selects
to be the vault members. In addition, the IdM administrator has access to the vault.

If a user does not have sufficient privileges to create a vault, an IdM administrator can create the
vault and set the user as its owner.

Users and services can access the secrets stored in a vault from any machine enrolled in the IdM
domain.

One vault can only contain one secret, for example, one file. However, the file itself can contain

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

240

One vault can only contain one secret, for example, one file. However, the file itself can contain
multiple secrets such as passwords, keytabs or certificates.

NOTE

Vault is only available from the IdM command line (CLI), not from the IdM Web UI.

23.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS

Identity Management (IdM) distinguishes the following vault user types:

Vault owner

A vault owner is a user or service with basic management privileges on the vault. For example, a vault
owner can modify the properties of the vault or add new vault members.
Each vault must have at least one owner. A vault can also have multiple owners.

Vault member

A vault member is a user or service that can access a vault created by another user or service.

Vault administrator

Vault administrators have unrestricted access to all vaults and are allowed to perform all vault
operations.

NOTE

Symmetric and asymmetric vaults are protected with a password or key and apply
special access control rules (see Vault types). The administrator must meet these
rules to:

Access secrets in symmetric and asymmetric vaults.

Change or reset the vault password or key.

A vault administrator is any user with the Vault Administrators privilege. In the context of the role-
based access control (RBAC) in IdM, a privilege is a group of permissions that you can apply to a role.

Vault User

The vault user represents the user in whose container the vault is located. The Vault user
information is displayed in the output of specific commands, such as ipa vault-show:

$ ipa vault-show my_vault
 Vault name: my_vault
 Type: standard
 Owner users: user
 Vault user: user

For details on vault containers and user vaults, see Vault containers.

Additional resources

See Standard, symmetric and asymmetric vaults for details on vault types.

CHAPTER 23. VAULTS IN IDM

241

23.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS

Based on the level of security and access control, IdM classifies vaults into the following types:

Standard vaults

Vault owners and vault members can archive and retrieve the secrets without having to use a
password or key.

Symmetric vaults

Secrets in the vault are protected with a symmetric key. Vault owners and members can archive and
retrieve the secrets, but they must provide the vault password.

Asymmetric vaults

Secrets in the vault are protected with an asymmetric key. Users archive the secret using a public key
and retrieve it using a private key. Vault members can only archive secrets, while vault owners can do
both, archive and retrieve secrets.

23.4. USER, SERVICE, AND SHARED VAULTS

Based on ownership, IdM classifies vaults into several types. The table below contains information about
each type, its owner and use.

Table 23.1. IdM vaults based on ownership

Type Description Owner Note

User vault A private vault for a user A single user Any user can own one or more user
vaults if allowed by IdM administrator

Service
vault

A private vault for a
service

A single service Any service can own one or more user
vaults if allowed by IdM administrator

Shared
vault

A vault shared by
multiple users and
services

The vault administrator
who created the vault

Users and services can own one or
more user vaults if allowed by IdM
administrator. The vault administrators
other than the one that created the
vault also have full access to the vault.

23.5. VAULT CONTAINERS

A vault container is a collection of vaults. The table below lists the default vault containers that
Identity Management (IdM) provides.

Table 23.2. Default vault containers in IdM

Type Description Purpose

User container A private container for a
user

Stores user vaults for a particular user

Service container A private container for a
service

Stores service vaults for a particular service

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

242

Shared container A container for multiple
users and services

Stores vaults that can be shared by multiple users or
services

Type Description Purpose

IdM creates user and service containers for each user or service automatically when the first private
vault for the user or service is created. After the user or service is deleted, IdM removes the container
and its contents.

23.6. BASIC IDM VAULT COMMANDS

You can use the basic commands outlined below to manage Identity Management (IdM) vaults. The
table below contains a list of ipa vault-* commands with the explanation of their purpose.

NOTE

Before running any ipa vault-* command, install the Key Recovery Authority (KRA)
certificate system component on one or more of the servers in your IdM domain. For
details, see Installing the Key Recovery Authority in IdM .

Table 23.3. Basic IdM vault commands with explanations

Command Purpose

ipa help vault Displays conceptual information about IdM vaults and sample vault commands.

ipa vault-add --help,
ipa vault-find --help

Adding the --help option to a specific ipa vault-* command displays the options
and detailed help available for that command.

ipa vault-show
user_vault --user
idm_user

When accessing a vault as a vault member, you must specify the vault owner. If
you do not specify the vault owner, IdM informs you that it did not find the vault:

[admin@server ~]$ ipa vault-show user_vault
ipa: ERROR: user_vault: vault not found

ipa vault-show
shared_vault --
shared

When accessing a shared vault, you must specify that the vault you want to
access is a shared vault. Otherwise, IdM informs you it did not find the vault:

[admin@server ~]$ ipa vault-show shared_vault
ipa: ERROR: shared_vault: vault not found

23.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

Follow this procedure to enable vaults in Identity Management (IdM) by installing the Key Recovery
Authority (KRA) Certificate System (CS) component on a specific IdM server.

Prerequisites

You are logged in as root on the IdM server.

CHAPTER 23. VAULTS IN IDM

243

An IdM certificate authority is installed on the IdM server.

You have the Directory Manager credentials.

Procedure

Install the KRA:

ipa-kra-install

IMPORTANT

You can install the first KRA of an IdM cluster on a hidden replica. However, installing
additional KRAs requires temporarily activating the hidden replica before you install the
KRA clone on a non-hidden replica. Then you can hide the originally hidden replica again.

NOTE

To make the vault service highly available and resilient, install the KRA on two IdM servers
or more. Maintaining multiple KRA servers prevents data loss.

Additional resources

See Demoting or promoting hidden replicas .

See The hidden replica mode.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

244

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/demoting-or-promoting-hidden-replicas_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#the-hidden-replica-mode_planning-the-replica-topology

CHAPTER 24. USING ANSIBLE TO MANAGE IDM USER
VAULTS: STORING AND RETRIEVING SECRETS

This chapter describes how to manage user vaults in Identity Management using the Ansible vault
module. Specifically, it describes how a user can use Ansible playbooks to perform the following three
consecutive actions:

Create a user vault in IdM .

Store a secret in the vault .

Retrieve a secret from the vault .

The user can do the storing and the retrieving from two different IdM clients.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

24.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to create a vault container with one or more private
vaults to securely store sensitive information. In the example used in the procedure below, the idm_user
user creates a vault of the standard type named my_vault. The standard vault type ensures that
idm_user will not be required to authenticate when accessing the file. idm_user will be able to retrieve
the file from any IdM client to which the user is logged in.

Prerequisites

You have installed the ansible-freeipa package on the Ansible controller, that is the host on
which you execute the steps in the procedure.

You know the password of idm_user.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Create an inventory file, for example inventory.file:

$ touch inventory.file

3. Open inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

CHAPTER 24. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

245

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

4. Make a copy of the ensure-standard-vault-is-present.yml Ansible playbook file. For example:

$ cp ensure-standard-vault-is-present.yml ensure-standard-vault-is-present-copy.yml

5. Open the ensure-standard-vault-is-present-copy.yml file for editing.

6. Adapt the file by setting the following variables in the ipavault task section:

Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the vault_type variable to standard.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_principal: idm_user
 ipaadmin_password: idm_user_password
 user: idm_user
 name: my_vault
 vault_type: standard

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
standard-vault-is-present-copy.yml

24.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to store sensitive information in a personal vault. In the
example used, the idm_user user archives a file with sensitive information named password.txt in a
vault named my_vault.

Prerequisites

You have installed the ansible-freeipa package on the Ansible controller, that is the host on
which you execute the steps in the procedure.

You know the password of idm_user.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

246

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

idm_user is the owner, or at least a member user of my_vault.

You have access to password.txt, the secret that you want to archive in my_vault.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the data-archive-in-symmetric-vault.yml Ansible playbook file but replace
"symmetric" by "standard". For example:

$ cp data-archive-in-symmetric-vault.yml data-archive-in-standard-vault-copy.yml

4. Open the data-archive-in-standard-vault-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipavault task section:

Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the in variable to the full path to the file with sensitive information.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_principal: idm_user
 ipaadmin_password: idm_user_password
 user: idm_user
 name: my_vault
 in: /usr/share/doc/ansible-freeipa/playbooks/vault/password.txt
 action: member

CHAPTER 24. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

247

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file data-
archive-in-standard-vault-copy.yml

24.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to retrieve a secret from the user personal vault. In the
example used in the procedure below, the idm_user user retrieves a file with sensitive data from a vault
of the standard type named my_vault onto an IdM client named host01. idm_user does not have to
authenticate when accessing the file. idm_user can use Ansible to retrieve the file from any IdM client on
which Ansible is installed.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the password of idm_user.

idm_user is the owner of my_vault.

idm_user has stored a secret in my_vault.

Ansible can write into the directory on the IdM host into which you want to retrieve the secret.

idm_user can read from the directory on the IdM host into which you want to retrieve the secret.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and mention, in a clearly defined section, the IdM client onto which you
want to retrieve the secret. For example, to instruct Ansible to retrieve the secret onto
host01.idm.example.com, enter:

[ipahost]
host01.idm.example.com

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

248

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Make a copy of the retrive-data-symmetric-vault.yml Ansible playbook file. Replace
"symmetric" with "standard". For example:

$ cp retrive-data-symmetric-vault.yml retrieve-data-standard-vault.yml-copy.yml

4. Open the retrieve-data-standard-vault.yml-copy.yml file for editing.

5. Adapt the file by setting the hosts variable to ipahost.

6. Adapt the file by setting the following variables in the ipavault task section:

Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the out variable to the full path of the file into which you want to export the secret.

Set the state variable to retrieved.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipahost
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_principal: idm_user
 ipaadmin_password: idm_user_password
 user: idm_user
 name: my_vault
 out: /tmp/password_exported.txt
 state: retrieved

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file retrieve-
data-standard-vault.yml-copy.yml

Verification steps

1. SSH to host01 as user01:

$ ssh user01@host01.idm.example.com

2. View the file specified by the out variable in the Ansible playbook file:

CHAPTER 24. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

249

$ vim /tmp/password_exported.txt

You can now see the exported secret.

For more information about using Ansible to manage IdM vaults and user secrets and about
playbook variables, see the README-vault.md Markdown file available in the
/usr/share/doc/ansible-freeipa/ directory and the sample playbooks available in the
/usr/share/doc/ansible-freeipa/playbooks/vault/ directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

250

CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE
VAULTS: STORING AND RETRIEVING SECRETS

This section shows how an administrator can use the ansible-freeipa vault module to securely store a
service secret in a centralized location. The vault used in the example is asymmetric, which means that
to use it, the administrator needs to perform the following steps:

1. Generate a private key using, for example, the openssl utility.

2. Generate a public key based on the private key.

The service secret is encrypted with the public key when an administrator archives it into the vault.
Afterwards, a service instance hosted on a specific machine in the domain retrieves the secret using the
private key. Only the service and the administrator are allowed to access the secret.

If the secret is compromised, the administrator can replace it in the service vault and then redistribute it
to those individual service instances that have not been compromised.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

This section includes these procedures:

Ensuring the presence of an asymmetric service vault in IdM using Ansible

Storing an IdM service secret in an asymmetric vault using Ansible

Retrieving a service secret for an IdM service using Ansible

Changing an IdM service vault secret when compromised using Ansible

In the procedures:

admin is the administrator who manages the service password.

private-key-to-an-externally-signed-certificate.pem is the file containing the service secret,
in this case a private key to an externally signed certificate. Do not confuse this private key with
the private key used to retrieve the secret from the vault.

secret_vault is the vault created to store the service secret.

HTTP/webserver1.idm.example.com is the service that is the owner of the vault.

HTTP/webserver2.idm.example.com and HTTP/webserver3.idm.example.com are the vault
member services.

service-public.pem is the service public key used to encrypt the password stored in
password_vault.

service-private.pem is the service private key used to decrypt the password stored in
secret_vault.

25.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT

CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

251

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#vaults-in-idm_configuring-and-managing-idm

25.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT
IN IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to create a service vault container with one or more
private vaults to securely store sensitive information. In the example used in the procedure below, the
administrator creates an asymmetric vault named secret_vault. This ensures that the vault members
have to authenticate using a private key to retrieve the secret in the vault. The vault members will be
able to retrieve the file from any IdM client.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Obtain the public key of the service instance. For example, using the openssl utility:

a. Generate the service-private.pem private key.

$ openssl genrsa -out service-private.pem 2048
Generating RSA private key, 2048 bit long modulus
.+++
...+++
e is 65537 (0x10001)

b. Generate the service-public.pem public key based on the private key.

$ openssl rsa -in service-private.pem -out service-public.pem -pubout
writing RSA key

3. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

4. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

252

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[ipaserver]
server.idm.example.com

5. Make a copy of the ensure-asymmetric-vault-is-present.yml Ansible playbook file. For
example:

$ cp ensure-asymmetric-vault-is-present.yml ensure-asymmetric-service-vault-is-
present-copy.yml

6. Open the ensure-asymmetric-vault-is-present-copy.yml file for editing.

7. Add a task that copies the service-public.pem public key from the Ansible controller to the
server.idm.example.com server.

8. Modify the rest of the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Define the name of the vault using the name variable, for example secret_vault.

Set the vault_type variable to asymmetric.

Set the service variable to the principal of the service that owns the vault, for example
HTTP/webserver1.idm.example.com.

Set the public_key_file to the location of your public key.
This is the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Copy public key to ipaserver.
 copy:
 src: /path/to/service-public.pem
 dest: /usr/share/doc/ansible-freeipa/playbooks/vault/service-public.pem
 mode: 0600
 - name: Add data to vault, from a LOCAL file.
 ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 vault_type: asymmetric
 service: HTTP/webserver1.idm.example.com
 public_key_file: /usr/share/doc/ansible-freeipa/playbooks/vault/service-public.pem

9. Save the file.

10. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
asymmetric-service-vault-is-present-copy.yml

CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

253

25.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING
ANSIBLE

Follow this procedure to use an Ansible playbook to add member services to a service vault so that they
can all retrieve the secret stored in the vault. In the example used in the procedure below, the IdM
administrator adds the HTTP/webserver2.idm.example.com and
HTTP/webserver3.idm.example.com service principals to the secret_vault vault that is owned by
HTTP/webserver1.idm.example.com.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

3. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

4. Make a copy of the data-archive-in-asymmetric-vault.yml Ansible playbook file. For example:

$ cp data-archive-in-asymmetric-vault.yml add-services-to-an-asymmetric-vault.yml

5. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

254

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Define the services that you want to have access to the vault secret using the services
variable.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 services:
 - HTTP/webserver2.idm.example.com
 - HTTP/webserver3.idm.example.com
 action: member

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file add-
services-to-an-asymmetric-vault.yml

25.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT
USING ANSIBLE

Follow this procedure to use an Ansible playbook to store a secret in a service vault so that it can be later
retrieved by the service. In the example used in the procedure below, the administrator stores a PEM file
with the secret in an asymmetric vault named secret_vault. This ensures that the service will have to
authenticate using a private key to retrieve the secret from the vault. The vault members will be able to
retrieve the file from any IdM client.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

255

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

The secret is stored locally on the Ansible controller, for example in the
/usr/share/doc/ansible-freeipa/playbooks/vault/private-key-to-an-externally-signed-
certificate.pem file.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

3. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

4. Make a copy of the data-archive-in-asymmetric-vault.yml Ansible playbook file. For example:

$ cp data-archive-in-asymmetric-vault.yml data-archive-in-asymmetric-vault-copy.yml

5. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Set the in variable to "{{ lookup('file', 'private-key-to-an-externally-signed-
certificate.pem') | b64encode }}". This ensures that Ansible retrieves the file with the
private key from the working directory on the Ansible controller rather than from the IdM
server.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

256

 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 in: "{{ lookup('file', 'private-key-to-an-externally-signed-certificate.pem') | b64encode }}"
 action: member

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file data-
archive-in-asymmetric-vault-copy.yml

25.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING
ANSIBLE

Follow this procedure to use an Ansible playbook to retrieve a secret from a service vault on behalf of
the service. In the example used in the procedure below, running the playbook retrieves a PEM file with
the secret from an asymmetric vault named secret_vault, and stores it in the specified location on all the
hosts listed in the Ansible inventory file as ipaservers.

The services authenticate to IdM using keytabs, and they authenticate to the vault using a private key.
You can retrieve the file on behalf of the service from any IdM client on which ansible-freeipa is
installed.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

You have archived the secret in the vault .

You have stored the private key used to retrieve the service vault secret in the location
specified by the private_key_file variable on the Ansible controller.

CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

257

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

3. Open your inventory file and define the following hosts:

Define your IdM server in the [ipaserver] section.

Define the hosts onto which you want to retrieve the secret in the [webservers] section.
For example, to instruct Ansible to retrieve the secret to webserver1.idm.example.com,
webserver2.idm.example.com, and webserver3.idm.example.com, enter:

[ipaserver]
server.idm.example.com

[webservers]
webserver1.idm.example.com
webserver2.idm.example.com
webserver3.idm.example.com

4. Make a copy of the retrieve-data-asymmetric-vault.yml Ansible playbook file. For example:

$ cp retrieve-data-asymmetric-vault.yml retrieve-data-asymmetric-vault-copy.yml

5. Open the retrieve-data-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Set the private_key_file variable to the location of the private key used to retrieve the
service vault secret.

Set the out variable to the location on the IdM server where you want to retrieve the
private-key-to-an-externally-signed-certificate.pem secret, for example the current
working directory.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Retrieve data from vault
 hosts: ipaserver
 become: no

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

258

 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Retrieve data from the service vault
 ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 vault_type: asymmetric
 private_key: "{{ lookup('file', 'service-private.pem') | b64encode }}"
 out: private-key-to-an-externally-signed-certificate.pem
 state: retrieved

7. Add a section to the playbook that retrieves the data file from the IdM server to the Ansible
controller:

- name: Retrieve data from vault
 hosts: ipaserver
 become: no
 gather_facts: false
 tasks:
[...]
 - name: Retrieve data file
 fetch:
 src: private-key-to-an-externally-signed-certificate.pem
 dest: ./
 flat: true
 mode: 0600

8. Add a section to the playbook that transfers the retrieved private-key-to-an-externally-
signed-certificate.pem file from the Ansible controller on to the webservers listed in the
webservers section of the inventory file:

- name: Send data file to webservers
 become: no
 gather_facts: no
 hosts: webservers
 tasks:
 - name: Send data to webservers
 copy:
 src: private-key-to-an-externally-signed-certificate.pem
 dest: /etc/pki/tls/private/httpd.key
 mode: 0444

9. Save the file.

10. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file retrieve-
data-asymmetric-vault-copy.yml

CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

259

25.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN
COMPROMISED USING ANSIBLE

Follow this procedure to reuse an Ansible playbook to change the secret stored in a service vault when a
service instance has been compromised. The scenario in the following example assumes that on
webserver3.idm.example.com, the retrieved secret has been compromised, but not the key to the
asymmetric vault storing the secret. In the example, the administrator reuses the Ansible playbooks used
when storing a secret in an asymmetric vault and retrieving a secret from the asymmetric vault onto IdM
hosts. At the start of the procedure, the IdM administrator stores a new PEM file with a new secret in the
asymmetric vault, adapts the inventory file so as not to retrieve the new secret on to the compromised
web server, webserver3.idm.example.com, and then re-runs the two procedures.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

You have generated a new httpd key for the web services running on IdM hosts to replace the
compromised old key.

The new httpd key is stored locally on the Ansible controller, for example in the
/usr/share/doc/ansible-freeipa/playbooks/vault/private-key-to-an-externally-signed-
certificate.pem file.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and make sure that the following hosts are defined correctly:

The IdM server in the [ipaserver] section.

The hosts onto which you want to retrieve the secret in the [webservers] section. For
example, to instruct Ansible to retrieve the secret to webserver1.idm.example.com and
webserver2.idm.example.com, enter:

[ipaserver]
server.idm.example.com

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

260

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[webservers]
webserver1.idm.example.com
webserver2.idm.example.com

IMPORTANT

Make sure that the list does not contain the compromised webserver, in the
current example webserver3.idm.example.com.

3. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

4. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver.idm.example.com.

Set the in variable to "{{ lookup('file', 'new-private-key-to-an-externally-signed-
certificate.pem') | b64encode }}". This ensures that Ansible retrieves the file with the
private key from the working directory on the Ansible controller rather than from the IdM
server.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver.idm.example.com
 in: "{{ lookup('file', 'new-private-key-to-an-externally-signed-certificate.pem') | b64encode
}}"
 action: member

5. Save the file.

6. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file data-
archive-in-asymmetric-vault-copy.yml

7. Open the retrieve-data-asymmetric-vault-copy.yml file for editing.

8. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to your IdM administrator password.

CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

261

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Set the private_key_file variable to the location of the private key used to retrieve the
service vault secret.

Set the out variable to the location on the IdM server where you want to retrieve the new-
private-key-to-an-externally-signed-certificate.pem secret, for example the current
working directory.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Retrieve data from vault
 hosts: ipaserver
 become: no
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Retrieve data from the service vault
 ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 vault_type: asymmetric
 private_key: "{{ lookup('file', 'service-private.pem') | b64encode }}"
 out: new-private-key-to-an-externally-signed-certificate.pem
 state: retrieved

9. Add a section to the playbook that retrieves the data file from the IdM server to the Ansible
controller:

- name: Retrieve data from vault
 hosts: ipaserver
 become: true
 gather_facts: false
 tasks:
[...]
 - name: Retrieve data file
 fetch:
 src: new-private-key-to-an-externally-signed-certificate.pem
 dest: ./
 flat: true
 mode: 0600

10. Add a section to the playbook that transfers the retrieved new-private-key-to-an-externally-
signed-certificate.pem file from the Ansible controller on to the webservers listed in the
webservers section of the inventory file:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

262

- name: Send data file to webservers
 become: true
 gather_facts: no
 hosts: webservers
 tasks:
 - name: Send data to webservers
 copy:
 src: new-private-key-to-an-externally-signed-certificate.pem
 dest: /etc/pki/tls/private/httpd.key
 mode: 0444

11. Save the file.

12. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file retrieve-
data-asymmetric-vault-copy.yml

25.6. ADDITIONAL RESOURCES

See the README-vault.md Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/vault/ directory.

CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

263

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF
SERVICES IN IDM USING ANSIBLE

With the Ansible service module, Identity Management (IdM) administrator can ensure that specific
services that are not native to IdM are present or absent in IdM. For example, you can use the service
module to:

Check that a manually installed service is present on an IdM client and automatically install that
service if it is absent. For details, see:

Ensuring the presence of an HTTP service in IdM on an IdM client.

Ensuring the presence of an HTTP service in IdM on a non-IdM client.

Ensuring the presence of an HTTP service on an IdM client without DNS.

Check that a service enrolled in IdM has a certificate attached and automatically install that
certificate if it is absent. For details, see:

Ensuring the presence of an externally-signed certificate in an IdM service entry.

Allow IdM users and hosts to retrieve and create the service keytab. For details, see:

Allowing IdM users, groups, hosts, or host groups to create a keytab of a service.

Allowing IdM users, groups, hosts, or host groups to retrieve a keytab of a service.

Allow IdM users and hosts to add a Kerberos alias to a service. For details, see:

Ensuring the presence of a Kerberos principal alias for a service.

Check that a service is not present on an IdM client and automatically remove that service if it is
present. For details, see:

Ensuring the absence of an HTTP service in IdM on an IdM client.

26.1. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM USING
AN ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of an HTTP server in IdM using an Ansible playbook.

Prerequisites

The system to host the HTTP service is an IdM client.

You have the IdM administrator password.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

264

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-http-service-in-idm-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-http-service-in-idm-on-a-non-idm-client-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-http-service-on-an-idm-client-without-dns-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-externally-signed-certificate-in-an-idm-service-entry-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#using-an-ansible-playbook-to-allow-idm-users-groups-hosts-or-host-groups-to-create-a-keytab-of-a-service_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#using-an-ansible-playbook-to-allow-idm-users-groups-hosts-or-host-groups-to-retrieve-a-keytab-of-a-service_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-a-kerberos-principal-alias-of-a-service-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-absence-of-an-http-service-in-idm-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-
present.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present.yml
/usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-copy.yml

4. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-copy.yml
Ansible playbook file for editing:

- name: Playbook to manage IPA service.
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service is present
 - ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com

5. Adapt the file:

Change the IdM administrator password defined by the ipaadmin_password variable.

Change the name of your IdM client on which the HTTP service is running, as defined by the
name variable of the ipaservice task.

6. Save and exit the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-is-present-copy.yml

Verification steps

1. Log into the IdM Web UI as IdM administrator.

2. Navigate to Identity → Services.

If HTTP/client.idm.example.com@IDM.EXAMPLE.COM is listed in the Services list, the Ansible
playbook has been successfully added to IdM.

Additional resources

To secure the communication between the HTTP server and browser clients, see adding TLS
encryption to an Apache HTTP Server.

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

265

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/restricting-an-application-to-trust-only-a-subset-of-certificates_configuring-and-managing-idm#proc_adding-tls-encryption-to-an-apache-http-server-configuration_restricting-an-application-to-trust-a-subset-of-certs

To request a certificate for the HTTP service, see the procedure described in Obtaining an IdM
certificate for a service using certmonger.

26.2. ENSURING THE PRESENCE OF MULTIPLE SERVICES IN IDM ON
AN IDM CLIENT USING A SINGLE ANSIBLE TASK

You can use the ansible-freeipa ipaservice module to add, modify, and delete multiple Identity
Management (IdM) services with a single Ansible task. For that, use the services option of the
ipaservice module.

Using the services option, you can also specify multiple service variables that only apply to a particular
service. Define this service by the name variable, which is the only mandatory variable for the services
option.

Complete this procedure to ensure the presence of the
HTTP/client01.idm.example.com@IDM.EXAMPLE.COM and the
ftp/client02.idm.example.com@IDM.EXAMPLE.COM services in IdM with a single task.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You are using RHEL 8.9 and later.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Procedure

1. Create your Ansible playbook file add-http-and-ftp-services.yml with the following content:

- name: Playbook to add multiple services in a single task
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Add HTTP and ftp services
 ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 services:
 - name: HTTP/client01.idm.example.com@IDM.EXAMPLE.COM
 - name: ftp/client02.idm.example.com@IDM.EXAMPLE.COM

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-http-and-
ftp-services.yml

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

266

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-certmonger_configuring-and-managing-idm#obtain-service-cert-with-certmonger_certmonger-for-issuing-renewing-service-certs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Additional resources

The service module in ansible-freeipa upstream docs

26.3. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM ON A
NON-IDM CLIENT USING AN ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of an HTTP server in IdM on a host that is not an IdM client
using an Ansible playbook. By adding the HTTP server to IdM you are also adding the host to IdM.

Prerequisites

You have installed an HTTP service on your host.

The host on which you have set up HTTP is not an IdM client. Otherwise, follow the steps in
enrolled the HTTP service into IdM.

You have the IdM administrator password.

The DNS A record - or the AAAA record if IPv6 is used - for the host is available.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
without-host-check.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-without-host-
check.yml /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
without-host-check-copy.yml

4. Open the copied file, /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
without-host-check-copy.yml, for editing. Locate the ipaadmin_password and name
variables in the ipaservice task:

- name: Playbook to manage IPA service.
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service is present
 - ipaservice:

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

267

https://github.com/freeipa/ansible-freeipa/blob/master/README-service.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/restricting-an-application-to-trust-only-a-subset-of-certificates_configuring-and-managing-idm#setting-up-a-single-instance-apache-http-server_restricting-an-application-to-trust-a-subset-of-certs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-http-service-in-idm-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible

 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/www2.example.com
 skip_host_check: true

5. Adapt the file:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the host on which the HTTP service is running.

6. Save and exit the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-is-present-without-host-check-copy.yml

Verification steps

1. Log into the IdM Web UI as IdM administrator.

2. Navigate to Identity → Services.

You can now see HTTP/client.idm.example.com@IDM.EXAMPLE.COM listed in the Services list.

Additional resources

To secure the communication, see adding TLS encryption to an Apache HTTP Server .

26.4. ENSURING THE PRESENCE OF AN HTTP SERVICE ON AN IDM
CLIENT WITHOUT DNS USING AN ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of an HTTP server running on an IdM client that has no
DNS entry using an Ansible playbook. The scenario implied is that the IdM host has no DNS A entry
available - or no DNS AAAA entry if IPv6 is used instead of IPv4.

Prerequisites

The system to host the HTTP service is enrolled in IdM.

The DNS A or DNS AAAA record for the host may not exist. Otherwise, if the DNS record for
the host does exist, follow the procedure in Ensuring the presence of an HTTP service in IdM
using an Ansible playbook.

You have the IdM administrator password.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

268

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/restricting-an-application-to-trust-only-a-subset-of-certificates_configuring-and-managing-idm#proc_adding-tls-encryption-to-an-apache-http-server-configuration_restricting-an-application-to-trust-a-subset-of-certs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-http-service-in-idm-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
with-host-force.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-with-host-
force.yml /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-with-
host-force-copy.yml

4. Open the copied file, /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
with-host-force-copy.yml, for editing. Locate the ipaadmin_password and name variables in
the ipaservice task:

- name: Playbook to manage IPA service.
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service is present
 - ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/ihavenodns.info
 force: true

5. Adapt the file:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the host on which the HTTP service is running.

6. Save and exit the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-is-present-with-host-force-copy.yml

Verification steps

1. Log into the IdM Web UI as IdM administrator.

2. Navigate to Identity → Services.

You can now see HTTP/client.idm.example.com@IDM.EXAMPLE.COM listed in the Services list.

Additional resources

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

269

Additional resources

To secure the communication, see adding TLS encryption to an Apache HTTP Server .

26.5. ENSURING THE PRESENCE OF AN EXTERNALLY SIGNED
CERTIFICATE IN AN IDM SERVICE ENTRY USING AN ANSIBLE
PLAYBOOK

Follow this procedure to use the ansible-freeipa service module to ensure that a certificate issued by
an external certificate authority (CA) is attached to the IdM entry of the HTTP service. Having the
certificate of an HTTP service signed by an external CA rather than the IdM CA is particularly useful if
your IdM CA uses a self-signed certificate.

Prerequisites

You have installed an HTTP service on your host.

You have enrolled the HTTP service into IdM.

You have the IdM administrator password.

You have an externally signed certificate whose Subject corresponds to the principal of the
HTTP service.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
certificate-present.yml file, for example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-member-certificate-
present.yml /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
certificate-present-copy.yml

4. Optional: If the certificate is in the Privacy Enhanced Mail (PEM) format, convert the certificate
to the Distinguished Encoding Rules (DER) format for easier handling through the command-
line interface (CLI):

$ openssl x509 -outform der -in cert1.pem -out cert1.der

5. Decode the DER file to standard output using the base64 command. Use the -w0 option to
disable wrapping:

$ base64 cert1.der -w0
MIIC/zCCAeegAwIBAgIUV74O+4kXeg21o4vxfRRtyJm...

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

270

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/restricting-an-application-to-trust-only-a-subset-of-certificates_configuring-and-managing-idm#proc_adding-tls-encryption-to-an-apache-http-server-configuration_restricting-an-application-to-trust-a-subset-of-certs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/restricting-an-application-to-trust-only-a-subset-of-certificates_configuring-and-managing-idm#setting-up-a-single-instance-apache-http-server_restricting-an-application-to-trust-a-subset-of-certs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-http-service-in-idm-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible

6. Copy the certificate from the standard output to the clipboard.

7. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-certificate-
present-copy.yml file for editing and view its contents:

- name: Service certificate present.
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service certificate is present
 - ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 certificate: |
 - MIICBjCCAW8CFHnm32VcXaUDGfEGdDL/...
 [...]
 action: member
 state: present

8. Adapt the file:

Replace the certificate, defined using the certificate variable, with the certificate you
copied from the CLI. Note that if you use the certificate: variable with the "|" pipe character
as indicated, you can enter the certificate THIS WAY rather than having it to enter it in a
single line. This makes reading the certificate easier.

Change the IdM administrator password, defined by the ipaadmin_password variable.

Change the name of your IdM client on which the HTTP service is running, defined by the
name variable.

Change any other relevant variables.

9. Save and exit the file.

10. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-certificate-present-copy.yml

Verification steps

1. Log into the IdM Web UI as IdM administrator.

2. Navigate to Identity → Services.

3. Click the name of the service with the newly added certificate, for example
HTTP/client.idm.example.com.

In the Service Certificate section on the right, you can now see the newly added certificate.

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

271

26.6. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS,
GROUPS, HOSTS, OR HOST GROUPS TO CREATE A KEYTAB OF A
SERVICE

A keytab is a file containing pairs of Kerberos principals and encrypted keys. Keytab files are commonly
used to allow scripts to automatically authenticate using Kerberos, without requiring human interaction
or access to password stored in a plain-text file. The script is then able to use the acquired credentials to
access files stored on a remote system.

As an Identity Management (IdM) administrator, you can allow other users to retrieve or even create a
keytab for a service running in IdM. By allowing specific users and user groups to create keytabs, you can
delegate the administration of the service to them without sharing the IdM administrator password. This
delegation provides a more fine-grained system administration.

Follow this procedure to allow specific IdM users, user groups, hosts, and host groups to create a keytab
for the HTTP service running on an IdM client. Specifically, it describes how you can allow the user01 IdM
user to create a keytab for the HTTP service running on an IdM client named client.idm.example.com.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You have enrolled the HTTP service into IdM.

The system to host the HTTP service is an IdM client.

The IdM users and user groups that you want to allow to create the keytab exist in IdM.

The IdM hosts and host groups that you want to allow to create the keytab exist in IdM.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

272

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-http-service-in-idm-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_create_keytab-present.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_create_keytab-present.yml /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-allow_create_keytab-present-copy.yml

4. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_create_keytab-present-copy.yml Ansible playbook file for editing.

5. Adapt the file by changing the following:

The IdM administrator password specified by the ipaadmin_password variable.

The name of your IdM client on which the HTTP service is running. In the current example, it
is HTTP/client.idm.example.com

The names of IdM users that are listed in the allow_create_keytab_user: section. In the
current example, it is user01.

The names of IdM user groups that are listed in the allow_create_keytab_group: section.

The names of IdM hosts that are listed in the allow_create_keytab_host: section.

The names of IdM host groups that are listed in the allow_create_keytab_hostgroup:
section.

The name of the task specified by the name variable in the tasks section.
After being adapted for the current example, the copied file looks like this:

- name: Service member allow_create_keytab present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Service HTTP/client.idm.example.com members allow_create_keytab present for
user01
 ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 allow_create_keytab_user:
 - user01
 action: member

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-allow_create_keytab-present-copy.yml

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

273

Verification steps

1. SSH to an IdM server as an IdM user that has the privilege to create a keytab for the particular
HTTP service:

$ ssh user01@server.idm.example.com
Password:

2. Use the ipa-getkeytab command to generate the new keytab for the HTTP service:

$ ipa-getkeytab -s server.idm.example.com -p HTTP/client.idm.example.com -k
/etc/httpd/conf/krb5.keytab

The -s option specifies a Key Distribution Center (KDC) server to generate the keytab.

The -p option specifies the principal whose keytab you want to create.

The -k option specifies the keytab file to append the new key to. The file will be created if it
does not exist.

If the command does not result in an error, you have successfully created a keytab of
HTTP/client.idm.example.com as user01.

26.7. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS,
GROUPS, HOSTS, OR HOST GROUPS TO RETRIEVE A KEYTAB OF A
SERVICE

A keytab is a file containing pairs of Kerberos principals and encrypted keys. Keytab files are commonly
used to allow scripts to automatically authenticate using Kerberos, without requiring human interaction
or access to a password stored in a plain-text file. The script is then able to use the acquired credentials
to access files stored on a remote system.

As IdM administrator, you can allow other users to retrieve or even create a keytab for a service running
in IdM.

Follow this procedure to allow specific IdM users, user groups, hosts, and host groups to retrieve a
keytab for the HTTP service running on an IdM client. Specifically, it describes how to allow the user01
IdM user to retrieve the keytab of the HTTP service running on client.idm.example.com.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

274

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You have enrolled the HTTP service into IdM.

The IdM users and user groups that you want to allow to retrieve the keytab exist in IdM.

The IdM hosts and host groups that you want to allow to retrieve the keytab exist in IdM.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_retrieve_keytab-present.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_retrieve_keytab-present.yml /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-allow_retrieve_keytab-present-copy.yml

4. Open the copied file, /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_retrieve_keytab-present-copy.yml, for editing:

5. Adapt the file:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable of the ipaservice task to the principal of the HTTP service. In the
current example, it is HTTP/client.idm.example.com

Specify the names of IdM users in the allow_retrieve_keytab_group: section. In the
current example, it is user01.

Specify the names of IdM user groups in the allow_retrieve_keytab_group: section.

Specify the names of IdM hosts in the allow_retrieve_keytab_group: section.

Specify the names of IdM host groups in the allow_retrieve_keytab_group: section.

Specify the name of the task using the name variable in the tasks section.
After being adapted for the current example, the copied file looks like this:

- name: Service member allow_retrieve_keytab present
 hosts: ipaserver

 vars_files:

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

275

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-http-service-in-idm-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible

 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Service HTTP/client.idm.example.com members allow_retrieve_keytab present for
user01
 ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 allow_retrieve_keytab_user:
 - user01
 action: member

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-allow_retrieve_keytab-present-copy.yml

Verification steps

1. SSH to an IdM server as an IdM user with the privilege to retrieve a keytab for the HTTP service:

$ ssh user01@server.idm.example.com
Password:

2. Use the ipa-getkeytab command with the -r option to retrieve the keytab:

$ ipa-getkeytab -r -s server.idm.example.com -p HTTP/client.idm.example.com -k
/etc/httpd/conf/krb5.keytab

The -s option specifies a Key Distribution Center (KDC) server from which you want to retrieve
the keytab.

The -p option specifies the principal whose keytab you want to retrieve.

The -k option specifies the keytab file to which you want to append the retrieved key. The file
will be created if it does not exist.

If the command does not result in an error, you have successfully retrieved a keytab of
HTTP/client.idm.example.com as user01.

26.8. ENSURING THE PRESENCE OF A KERBEROS PRINCIPAL ALIAS
OF A SERVICE USING AN ANSIBLE PLAYBOOK

In some scenarios, it is beneficial for IdM administrator to enable IdM users, hosts, or services to
authenticate against Kerberos applications using a Kerberos principal alias. These scenarios include:

The user name changed, but the user should be able to log into the system using both the
previous and new user names.

The user needs to log in using the email address even if the IdM Kerberos realm differs from the
email domain.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

276

Follow this procedure to create the principal alias of HTTP/mycompany.idm.example.com for the
HTTP service running on client.idm.example.com.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You have set up an HTTP service on your host.

You have enrolled the HTTP service into IdM.

The host on which you have set up HTTP is an IdM client.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
principal-present.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-member-principal-
present.yml /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
principal-present-copy.yml

4. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-principal-
present-copy.yml Ansible playbook file for editing.

5. Adapt the file by changing the following:

The IdM administrator password specified by the ipaadmin_password variable.

The name of the service specified by the name variable. This is the canonical principal name
of the service. In the current example, it is HTTP/client.idm.example.com.

The Kerberos principal alias specified by the principal variable. This is the alias you want to

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

277

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/restricting-an-application-to-trust-only-a-subset-of-certificates_configuring-and-managing-idm#setting-up-a-single-instance-apache-http-server_restricting-an-application-to-trust-a-subset-of-certs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ensuring-the-presence-and-absence-of-services-in-idm-using-ansible_configuring-and-managing-idm#ensuring-the-presence-of-an-http-service-in-idm-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible

The Kerberos principal alias specified by the principal variable. This is the alias you want to
add to the service defined by the name variable. In the current example, it is
host/mycompany.idm.example.com.

The name of the task specified by the name variable in the tasks section.
After being adapted for the current example, the copied file looks like this:

- name: Service member principal present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Service HTTP/client.idm.example.com member principals
host/mycompany.idm.exmaple.com present
 ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 principal:
 - host/mycompany.idm.example.com
 action: member

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-principal-present-copy.yml

If running the playbook results in 0 unreachable and 0 failed tasks, you have successfully created the
host/mycompany.idm.example.com Kerberos principal for the HTTP/client.idm.example.com service.

Additional resources

See Managing Kerberos principal aliases for users, hosts, and services .

26.9. ENSURING THE ABSENCE OF AN HTTP SERVICE IN IDM USING
AN ANSIBLE PLAYBOOK

Follow this procedure to unenroll a service from IdM. More specifically, it describes how to use an Ansible
playbook to ensure the absence of an HTTP server named HTTP/client.idm.example.com in IdM.

Prerequisites

You have the IdM administrator password.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

278

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/managing-kerberos-aliases

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-absent.yml
Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-is-absent.yml
/usr/share/doc/ansible-freeipa/playbooks/service/service-is-absent-copy.yml

4. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-absent-copy.yml
Ansible playbook file for editing.

5. Adapt the file by changing the following:

The IdM administrator password defined by the ipaadmin_password variable.

The Kerberos principal of the HTTP service, as defined by the name variable of the
ipaservice task.
After being adapted for the current example, the copied file looks like this:

- name: Playbook to manage IPA service.
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service is absent
 - ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 state: absent

6. Save and exit the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-is-absent-copy.yml

Verification steps

1. Log into the IdM Web UI as IdM administrator.

2. Navigate to Identity → Services.

If you cannot see the HTTP/client.idm.example.com@IDM.EXAMPLE.COM service in the Services

CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

279

If you cannot see the HTTP/client.idm.example.com@IDM.EXAMPLE.COM service in the Services
list, you have successfully ensured its absence in IdM.

26.10. ADDITIONAL RESOURCES

See the README-service.md Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/config directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

280

CHAPTER 27. MANAGING GLOBAL DNS CONFIGURATION IN
IDM USING ANSIBLE PLAYBOOKS

Using the Red Hat Ansible Engine dnsconfig module, you can configure global configuration for
Identity Management (IdM) DNS. Settings defined in global DNS configuration are applied to all IdM
DNS servers. However, the global configuration has lower priority than the configuration for a specific
IdM DNS zone.

The dnsconfig module supports the following variables:

The global forwarders, specifically their IP addresses and the port used for communication.

The global forwarding policy: only, first, or none. For more details on these types of DNS
forward policies, see DNS forward policies in IdM .

The synchronization of forward lookup and reverse lookup zones.

Prerequisites

DNS service is installed on the IdM server. For more information about how to install an IdM
server with integrated DNS, see one of the following links:

Installing an IdM server: With integrated DNS, with an integrated CA as the root CA

Installing an IdM server: With integrated DNS, with an external CA as the root CA

Installing an IdM server: With integrated DNS, without a CA

This chapter includes the following sections:

How IdM ensures that global forwarders from /etc/resolv.conf are not removed by
NetworkManager

Ensuring the presence of a DNS global forwarder in IdM using Ansible

Ensuring the absence of a DNS global forwarder in IdM using Ansible

The action: member option in ipadnsconfig ansible-freeipa modules

An introduction to DNS forward policies in IdM

Using an Ansible playbook to ensure that the forward first policy is set in IdM DNS global
configuration

Using an Ansible playbook to ensure that global forwarders are disabled in IdM DNS

Using an Ansible playbook to ensure that synchronization of forward and reverse lookup zones is
disabled in IdM DNS

27.1. HOW IDM ENSURES THAT GLOBAL FORWARDERS FROM
/ETC/RESOLV.CONF ARE NOT REMOVED BY NETWORKMANAGER

Installing Identity Management (IdM) with integrated DNS configures the /etc/resolv.conf file to point

CHAPTER 27. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

281

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-integrated-dns_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-external-ca_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-without-a-ca_installing-identity-management

Installing Identity Management (IdM) with integrated DNS configures the /etc/resolv.conf file to point
to the 127.0.0.1 localhost address:

Generated by NetworkManager
search idm.example.com
nameserver 127.0.0.1

In certain environments, such as networks that use Dynamic Host Configuration Protocol (DHCP), the
NetworkManager service may revert changes to the /etc/resolv.conf file. To make the DNS
configuration persistent, the IdM DNS installation process also configures the NetworkManager service
in the following way:

1. The DNS installation script creates an /etc/NetworkManager/conf.d/zzz-ipa.conf
NetworkManager configuration file to control the search order and DNS server list:

auto-generated by IPA installer
[main]
dns=default

[global-dns]
searches=$DOMAIN

[global-dns-domain-*]
servers=127.0.0.1

2. The NetworkManager service is reloaded, which always creates the /etc/resolv.conf file with
the settings from the last file in the /etc/NetworkManager/conf.d/ directory. This is in this case
the zzz-ipa.conf file.

IMPORTANT

Do not modify the /etc/resolv.conf file manually.

27.2. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the presence of a DNS global forwarder in
IdM. In the example procedure below, the IdM administrator ensures the presence of a DNS global
forwarder to a DNS server with an Internet Protocol (IP) v4 address of 7.7.9.9 and IP v6 address of
2001:db8::1:0 on port 53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

282

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-presence-of-a-global-forwarder.yml

4. Open the ensure-presence-of-a-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the presence of a
global forwarder in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the presence of a DNS
global forwarder to 7.7.9.9 and 2001:db8::1:0 on port 53.

c. In the forwarders section of the ipadnsconfig portion:

i. Change the first ip_address value to the IPv4 address of the global forwarder: 7.7.9.9.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:db8::1:0.

iii. Verify the port value is set to 53.

d. Change the state to present.
This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the presence of a global forwarder in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the presence of a DNS global forwarder to 7.7.9.9 and 2001:db8::1:0 on port
53
 ipadnsconfig:
 forwarders:

CHAPTER 27. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

283

 - ip_address: 7.7.9.9
 - ip_address: 2001:db8::1:0
 port: 53
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-presence-
of-a-global-forwarder.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

27.3. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the absence of a DNS global forwarder in
IdM. In the example procedure below, the IdM administrator ensures the absence of a DNS global
forwarder with an Internet Protocol (IP) v4 address of 8.8.6.6 and IP v6 address of
2001:4860:4860::8800 on port 53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

284

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-absence-of-a-global-forwarder.yml

4. Open the ensure-absence-of-a-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the absence of a
global forwarder in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the absence of a DNS global
forwarder to 8.8.6.6 and 2001:4860:4860::8800 on port 53.

c. In the forwarders section of the ipadnsconfig portion:

i. Change the first ip_address value to the IPv4 address of the global forwarder: 8.8.6.6.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:4860:4860::8800.

iii. Verify the port value is set to 53.

d. Set the action variable to member.

e. Verify the state is set to absent.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the absence of a global forwarder in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the absence of a DNS global forwarder to 8.8.6.6 and
2001:4860:4860::8800 on port 53
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.6
 - ip_address: 2001:4860:4860::8800
 port: 53
 action: member
 state: absent

IMPORTANT

If you only use the state: absent option in your playbook without also using
action: member, the playbook fails.

6. Save the file.

7. Run the playbook:

CHAPTER 27. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

285

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-absence-of-
a-global-forwarder.yml

Additional resources

The README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory

The action: member option in ipadnsconfig ansible-freeipa modules

27.4. THE ACTION: MEMBER OPTION IN IPADNSCONFIG ANSIBLE-
FREEIPA MODULES

Excluding global forwarders in Identity Management (IdM) by using the ansible-freeipa ipadnsconfig
module requires using the action: member option in addition to the state: absent option. If you only
use state: absent in your playbook without also using action: member, the playbook fails.
Consequently, to remove all global forwarders, you must specify all of them individually in the playbook.
In contrast, the state: present option does not require action: member.

The following table provides configuration examples for both adding and removing DNS global
forwarders that demonstrate the correct use of the action: member option. The table shows, in each
line:

The global forwarders configured before executing a playbook

An excerpt from the playbook

The global forwarders configured after executing the playbook

Table 27.1. ipadnsconfig management of global forwarders

Forwarders
before

Playbook excerpt Forwarders
after

8.8.6.6
[...]
tasks:
- name: Ensure the presence of DNS global forwarder 8.8.6.7
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.7
 state: present

8.8.6.7

8.8.6.6
[...]
tasks:
- name: Ensure the presence of DNS global forwarder 8.8.6.7
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.7
 action: member
 state: present

8.8.6.6,
8.8.6.7

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

286

8.8.6.6,
8.8.6.7 [...]

tasks:
- name: Ensure the absence of DNS global forwarder 8.8.6.7
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.7
 state: absent

Trying to
execute the
playbook
results in an
error. The
original
configuratio
n - 8.8.6.6,
8.8.6.7 - is
left
unchanged.

8.8.6.6,
8.8.6.7 [...]

tasks:
- name: Ensure the absence of DNS global forwarder 8.8.6.7
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.7
 action: member
 state: absent

8.8.6.6

Forwarders
before

Playbook excerpt Forwarders
after

27.5. DNS FORWARD POLICIES IN IDM

IdM supports the first and only standard BIND forward policies, as well as the none IdM-specific
forward policy.

Forward first (default)

The IdM BIND service forwards DNS queries to the configured forwarder. If a query fails because of a
server error or timeout, BIND falls back to the recursive resolution using servers on the Internet. The
forward first policy is the default policy, and it is suitable for optimizing DNS traffic.

Forward only

The IdM BIND service forwards DNS queries to the configured forwarder. If a query fails because of a
server error or timeout, BIND returns an error to the client. The forward only policy is recommended
for environments with split DNS configuration.

None (forwarding disabled)

DNS queries are not forwarded with the none forwarding policy. Disabling forwarding is only useful as
a zone-specific override for global forwarding configuration. This option is the IdM equivalent of
specifying an empty list of forwarders in BIND configuration.

NOTE

CHAPTER 27. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

287

NOTE

You cannot use forwarding to combine data in IdM with data from other DNS servers.
You can only forward queries for specific subzones of the primary zone in IdM DNS.

By default, the BIND service does not forward queries to another server if the queried
DNS name belongs to a zone for which the IdM server is authoritative. In such a situation,
if the queried DNS name cannot be found in the IdM database, the NXDOMAIN answer is
returned. Forwarding is not used.

Example 27.1. Example Scenario

The IdM server is authoritative for the test.example. DNS zone. BIND is configured to forward
queries to the DNS server with the 192.0.2.254 IP address.

When a client sends a query for the nonexistent.test.example. DNS name, BIND detects that the
IdM server is authoritative for the test.example. zone and does not forward the query to the
192.0.2.254. server. As a result, the DNS client receives the NXDomain error message, informing the
user that the queried domain does not exist.

27.6. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT THE
FORWARD FIRST POLICY IS SET IN IDM DNS GLOBAL
CONFIGURATION

Follow this procedure to use an Ansible playbook to ensure that global forwarding policy in IdM DNS is
set to forward first.

If you use the forward first DNS forwarding policy, DNS queries are forwarded to the configured
forwarder. If a query fails because of a server error or timeout, BIND falls back to the recursive resolution
using servers on the Internet. The forward first policy is the default policy. It is suitable for traffic
optimization.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Your IdM environment contains an integrated DNS server.

Procedure

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

288

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the set-configuration.yml Ansible playbook file. For example:

$ cp set-configuration.yml set-forward-policy-to-first.yml

4. Open the set-forward-policy-to-first.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsconfig task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the forward_policy variable to first.
Delete all the other lines of the original playbook that are irrelevant. This is the modified
Ansible playbook file for the current example:

- name: Playbook to set global forwarding policy to first
 hosts: ipaserver
 become: true

 tasks:
 - name: Set global forwarding policy to first.
 ipadnsconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 forward_policy: first

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file set-forward-
policy-to-first.yml

Additional resources

See DNS forward policies in IdM .

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

For more sample playbooks, see the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig
directory.

27.7. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT GLOBAL

CHAPTER 27. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

289

27.7. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT GLOBAL
FORWARDERS ARE DISABLED IN IDM DNS

Follow this procedure to use an Ansible playbook to ensure that global forwarders are disabled in IdM
DNS. The disabling is done by setting the forward_policy variable to none.

Disabling global forwarders causes DNS queries not to be forwarded. Disabling forwarding is only useful
as a zone-specific override for global forwarding configuration. This option is the IdM equivalent of
specifying an empty list of forwarders in BIND configuration.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Your IdM environment contains an integrated DNS server.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the disable-global-forwarders.yml Ansible playbook file. For example:

$ cp disable-global-forwarders.yml disable-global-forwarders-copy.yml

4. Open the disable-global-forwarders-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsconfig task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the forward_policy variable to none.
This is the modified Ansible playbook file for the current example:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

290

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Playbook to disable global DNS forwarders
 hosts: ipaserver
 become: true

 tasks:
 - name: Disable global forwarders.
 ipadnsconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 forward_policy: none

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file disable-
global-forwarders-copy.yml

Additional resources

See DNS forward policies in IdM .

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

See more sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig
directory.

27.8. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT
SYNCHRONIZATION OF FORWARD AND REVERSE LOOKUP ZONES IS
DISABLED IN IDM DNS

Follow this procedure to use an Ansible playbook to ensure that forward and reverse lookup zones are
not synchronized in IdM DNS.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Your IdM environment contains an integrated DNS server.

Procedure

CHAPTER 27. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

291

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the disallow-reverse-sync.yml Ansible playbook file. For example:

$ cp disallow-reverse-sync.yml disallow-reverse-sync-copy.yml

4. Open the disallow-reverse-sync-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsconfig task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the allow_sync_ptr variable to no.
This is the modified Ansible playbook file for the current example:

- name: Playbook to disallow reverse record synchronization
 hosts: ipaserver
 become: true

 tasks:
 - name: Disallow reverse record synchronization.
 ipadnsconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 allow_sync_ptr: no

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file disallow-
reverse-sync-copy.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

For more sample playbooks, see the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig
directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

292

CHAPTER 28. USING ANSIBLE PLAYBOOKS TO MANAGE IDM
DNS ZONES

As Identity Management (IdM) administrator, you can manage how IdM DNS zones work using the
dnszone module available in the ansible-freeipa package.

What DNS zone types are supported in IdM

What DNS attributes you can configure in IdM

How to use an Ansible playbook to create a primary zone in IdM DNS

How to use an Ansible playbook to ensure the presence of a primary IdM DNS zone with multiple
variables

How to use an Ansible playbook to ensure the presence of a zone for reverse DNS lookup when
an IP address is given

Prerequisites

DNS service is installed on the IdM server. For more information about how to use Red Hat
Ansible Engine to install an IdM server with integrated DNS, see Installing an Identity
Management server using an Ansible playbook.

28.1. SUPPORTED DNS ZONE TYPES

Identity Management (IdM) supports two types of DNS zones: primary and forward zones. These two
types of zones are described here, including an example scenario for DNS forwarding.

NOTE

This guide uses the BIND terminology for zone types which is different from the
terminology used for Microsoft Windows DNS. Primary zones in BIND serve the same
purpose as forward lookup zones and reverse lookup zones in Microsoft Windows DNS.
Forward zones in BIND serve the same purpose as conditional forwarders in
Microsoft Windows DNS.

Primary DNS zones

Primary DNS zones contain authoritative DNS data and can accept dynamic DNS updates. This
behavior is equivalent to the type master setting in standard BIND configuration. You can manage
primary zones using the ipa dnszone-* commands.
In compliance with standard DNS rules, every primary zone must contain start of authority (SOA)
and nameserver (NS) records. IdM generates these records automatically when the DNS zone is
created, but you must copy the NS records manually to the parent zone to create proper delegation.

In accordance with standard BIND behavior, queries for names for which the server is not
authoritative are forwarded to other DNS servers. These DNS servers, so called forwarders, may or
may not be authoritative for the query.

Example 28.1. Example scenario for DNS forwarding

The IdM server contains the test.example. primary zone. This zone contains an NS delegation
record for the sub.test.example. name. In addition, the test.example. zone is configured with the
192.0.2.254 forwarder IP address for the sub.text.example subzone.

CHAPTER 28. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

293

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-Identity-Management-server-using-an-Ansible-playbook_installing-identity-management

A client querying the name nonexistent.test.example. receives the NXDomain answer, and no
forwarding occurs because the IdM server is authoritative for this name.

On the other hand, querying for the host1.sub.test.example. name is forwarded to the
configured forwarder 192.0.2.254 because the IdM server is not authoritative for this name.

Forward DNS zones

From the perspective of IdM, forward DNS zones do not contain any authoritative data. In fact, a
forward "zone" usually only contains two pieces of information:

A domain name

The IP address of a DNS server associated with the domain

All queries for names belonging to the domain defined are forwarded to the specified IP address. This
behavior is equivalent to the type forward setting in standard BIND configuration. You can manage
forward zones using the ipa dnsforwardzone-* commands.

Forward DNS zones are especially useful in the context of IdM-Active Directory (AD) trusts. If the IdM
DNS server is authoritative for the idm.example.com zone and the AD DNS server is authoritative for
the ad.example.com zone, then ad.example.com is a DNS forward zone for the idm.example.com
primary zone. That means that when a query comes from an IdM client for the IP address of
somehost.ad.example.com, the query is forwarded to an AD domain controller specified in the
ad.example.com IdM DNS forward zone.

28.2. CONFIGURATION ATTRIBUTES OF PRIMARY IDM DNS ZONES

Identity Management (IdM) creates a new zone with certain default configuration, such as the refresh
periods, transfer settings, or cache settings. In IdM DNS zone attributes , you can find the attributes of
the default zone configuration that you can modify using one of the following options:

The dnszone-mod command in the command-line interface (CLI). For more information, see
Editing the configuration of a primary DNS zone in IdM CLI .

The IdM Web UI. For more information, see Editing the configuration of a primary DNS zone in
IdM Web UI.

An Ansible playbook that uses the ipadnszone module. For more information, see Managing
DNS zones in IdM.

Along with setting the actual information for the zone, the settings define how the DNS server handles
the start of authority (SOA) record entries and how it updates its records from the DNS name server.

Table 28.1. IdM DNS zone attributes

Attribute ansible-freeipa
variable

Description

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

294

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#editing-the-configuration-of-a-primary-dns-zone-in-idm-cli_managing-dns-zones-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#editing-the-configuration-of-a-primary-dns-zone-in-idm-web-ui_managing-dns-zones-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management

Authoritative name
server

name_server Sets the domain name of the primary DNS name server, also
known as SOA MNAME.

By default, each IdM server advertises itself in the SOA MNAME
field. Consequently, the value stored in LDAP using --name-
server is ignored.

Administrator e-
mail address

admin_email Sets the email address to use for the zone administrator. This
defaults to the root account on the host.

SOA serial serial Sets a serial number in the SOA record. Note that IdM sets the
version number automatically and users are not expected to
modify it.

SOA refresh refresh Sets the interval, in seconds, for a secondary DNS server to wait
before requesting updates from the primary DNS server.

SOA retry retry Sets the time, in seconds, to wait before retrying a failed refresh
operation.

SOA expire expire Sets the time, in seconds, that a secondary DNS server will try to
perform a refresh update before ending the operation attempt.

SOA minimum minimum Sets the time to live (TTL) value in seconds for negative caching
according to RFC 2308.

SOA time to live ttl Sets TTL in seconds for records at zone apex. In zone
example.com, for example, all records (A, NS, or SOA) under
name example.com are configured, but no other domain
names, like test.example.com, are affected.

Default time to live default_ttl Sets the default time to live (TTL) value in seconds for negative
caching for all values in a zone that never had an individual TTL
value set before. Requires a restart of the named-pkcs11
service on all IdM DNS servers after changes to take effect.

BIND update
policy

update_policy Sets the permissions allowed to clients in the DNS zone.

Dynamic update dynamic_updat
e=TRUE|FALSE

Enables dynamic updates to DNS records for clients.

Note that if this is set to false, IdM client machines will not be
able to add or update their IP address.

Attribute ansible-freeipa
variable

Description

CHAPTER 28. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

295

http://tools.ietf.org/html/rfc2308

Allow transfer allow_transfer=s
tring

Gives a list of IP addresses or network names which are allowed
to transfer the given zone, separated by semicolons (;).

Zone transfers are disabled by default. The default
allow_transfer value is none.

Allow query allow_query Gives a list of IP addresses or network names which are allowed
to issue DNS queries, separated by semicolons (;).

Allow PTR sync allow_sync_ptr=
1|0

Sets whether A or AAAA records (forward records) for the zone
will be automatically synchronized with the PTR (reverse)
records.

Zone forwarders forwarder=IP_add
ress

Specifies a forwarder specifically configured for the DNS zone.
This is separate from any global forwarders used in the IdM
domain.

To specify multiple forwarders, use the option multiple times.

Forward policy forward_policy=
none|only|first

Specifies the forward policy. For information about the
supported policies, see DNS forward policies in IdM.

Attribute ansible-freeipa
variable

Description

Additional resources

See the README-dnszone.md file in the /usr/share/doc/ansible-freeipa/ directory.

28.3. USING ANSIBLE TO CREATE A PRIMARY ZONE IN IDM DNS

Follow this procedure to use an Ansible playbook to ensure that a primary DNS zone exists. In the
example used in the procedure below, you ensure the presence of the zone.idm.example.com DNS
zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

296

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnszone directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnszone

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the dnszone-present.yml Ansible playbook file. For example:

$ cp dnszone-present.yml dnszone-present-copy.yml

4. Open the dnszone-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnszone task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the zone_name variable to zone.idm.example.com.
This is the modified Ansible playbook file for the current example:

- name: Ensure dnszone present
 hosts: ipaserver
 become: true

 tasks:
 - name: Ensure zone is present.
 ipadnszone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 zone_name: zone.idm.example.com
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file dnszone-
present-copy.yml

Additional resources

See Supported DNS zone types .

See the README-dnszone.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnszone
directory.

CHAPTER 28. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

297

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#supported-dns-zone-types_managing-dns-zones-in-idm

28.4. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF
A PRIMARY DNS ZONE IN IDM WITH MULTIPLE VARIABLES

Follow this procedure to use an Ansible playbook to ensure that a primary DNS zone exists. In the
example used in the procedure below, an IdM administrator ensures the presence of the
zone.idm.example.com DNS zone. The Ansible playbook configures multiple parameters of the zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnszone directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnszone

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the dnszone-all-params.yml Ansible playbook file. For example:

$ cp dnszone-all-params.yml dnszone-all-params-copy.yml

4. Open the dnszone-all-params-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnszone task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the zone_name variable to zone.idm.example.com.

Set the allow_sync_ptr variable to true if you want to allow the synchronization of forward
and reverse records, that is the synchronization of A and AAAA records with PTR records.

Set the dynamic_update variable to true to enable IdM client machines to add or update
their IP addresses.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

298

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the dnssec variable to true to allow inline DNSSEC signing of records in the zone.

Set the allow_transfer variable to the IP addresses of secondary name servers in the zone.

Set the allow_query variable to the IP addresses or networks that are allowed to issue
queries.

Set the forwarders variable to the IP addresses of global forwarders.

Set the serial variable to the SOA record serial number.

Define the refresh, retry, expire, minimum, ttl, and default_ttl values for DNS records in
the zone.

Define the NSEC3PARAM record for the zone using the nsec3param_rec variable.

Set the skip_overlap_check variable to true to force DNS creation even if it overlaps with
an existing zone.

Set the skip_nameserver_check to true to force DNS zone creation even if the
nameserver is not resolvable.
This is the modified Ansible playbook file for the current example:

- name: Ensure dnszone present
 hosts: ipaserver
 become: true

 tasks:
 - name: Ensure zone is present.
 ipadnszone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 zone_name: zone.idm.example.com
 allow_sync_ptr: true
 dynamic_update: true
 dnssec: true
 allow_transfer:
 - 1.1.1.1
 - 2.2.2.2
 allow_query:
 - 1.1.1.1
 - 2.2.2.2
 forwarders:
 - ip_address: 8.8.8.8
 - ip_address: 8.8.4.4
 port: 52
 serial: 1234
 refresh: 3600
 retry: 900
 expire: 1209600
 minimum: 3600
 ttl: 60
 default_ttl: 90
 name_server: server.idm.example.com.
 admin_email: admin.admin@idm.example.com
 nsec3param_rec: "1 7 100 0123456789abcdef"

CHAPTER 28. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

299

 skip_overlap_check: true
 skip_nameserver_check: true
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file dnszone-all-
params-copy.yml

Additional resources

See Supported DNS zone types .

See Configuration attributes of primary IdM DNS zones .

See the README-dnszone.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnszone
directory.

28.5. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF
A ZONE FOR REVERSE DNS LOOKUP WHEN AN IP ADDRESS IS GIVEN

Follow this procedure to use an Ansible playbook to ensure that a reverse DNS zone exists. In the
example used in the procedure below, an IdM administrator ensures the presence of a reverse DNS
lookup zone using the IP address and prefix length of an IdM host.

Providing the prefix length of the IP address of your DNS server using the name_from_ip variable
allows you to control the zone name. If you do not state the prefix length, the system queries DNS
servers for zones and, based on the name_from_ip value of 192.168.1.2, the query can return any of the
following DNS zones:

1.168.192.in-addr.arpa.

168.192.in-addr.arpa.

192.in-addr.arpa.

Because the zone returned by the query might not be what you expect, name_from_ip can only be used
with the state option set to present to prevent accidental removals of zones.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

300

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-dns-zones-in-idm_configuring-and-managing-idm#supported-dns-zone-types_managing-dns-zones-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnszone directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnszone

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the dnszone-reverse-from-ip.yml Ansible playbook file. For example:

$ cp dnszone-reverse-from-ip.yml dnszone-reverse-from-ip-copy.yml

4. Open the dnszone-reverse-from-ip-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnszone task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name_from_ip variable to the IP of your IdM nameserver, and provide its prefix
length.
This is the modified Ansible playbook file for the current example:

- name: Ensure dnszone present
 hosts: ipaserver
 become: true

 tasks:
 - name: Ensure zone for reverse DNS lookup is present.
 ipadnszone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name_from_ip: 192.168.1.2/24
 state: present
 register: result
 - name: Display inferred zone name.
 debug:
 msg: "Zone name: {{ result.dnszone.name }}"

The playbook creates a zone for reverse DNS lookup from the 192.168.1.2 IP address and its
prefix length of 24. Next, the playbook displays the resulting zone name.

6. Save the file.

7. Run the playbook:

CHAPTER 28. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

301

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file dnszone-
reverse-from-ip-copy.yml

Additional resources

See Supported DNS zone types .

See the README-dnszone.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnszone
directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

302

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#supported-dns-zone-types_managing-dns-zones-in-idm

CHAPTER 29. USING ANSIBLE TO MANAGE DNS LOCATIONS
IN IDM

As Identity Management (IdM) administrator, you can manage IdM DNS locations using the location
module available in the ansible-freeipa package.

DNS-based service discovery

Deployment considerations for DNS locations

DNS time to live (TTL)

Using Ansible to ensure an IdM location is present

Using Ansible to ensure an IdM location is absent

29.1. DNS-BASED SERVICE DISCOVERY

DNS-based service discovery is a process in which a client uses the DNS protocol to locate servers in a
network that offer a specific service, such as LDAP or Kerberos. One typical type of operation is to
allow clients to locate authentication servers within the closest network infrastructure, because they
provide a higher throughput and lower network latency, lowering overall costs.

The major advantages of service discovery are:

No need for clients to be explicitly configured with names of nearby servers.

DNS servers are used as central providers of policy. Clients using the same DNS server have
access to the same policy about service providers and their preferred order.

In an Identity Management (IdM) domain, DNS service records (SRV records) exist for LDAP, Kerberos,
and other services. For example, the following command queries the DNS server for hosts providing a
TCP-based Kerberos service in an IdM DNS domain:

Example 29.1. DNS location independent results

$ dig -t SRV +short _kerberos._tcp.idm.example.com
0 100 88 idmserver-01.idm.example.com.
0 100 88 idmserver-02.idm.example.com.

The output contains the following information:

0 (priority): Priority of the target host. A lower value is preferred.

100 (weight). Specifies a relative weight for entries with the same priority. For further
information, see RFC 2782, section 3.

88 (port number): Port number of the service.

Canonical name of the host providing the service.

In the example, the two host names returned have the same priority and weight. In this case, the client
uses a random entry from the result list.

CHAPTER 29. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM

303

https://tools.ietf.org/html/rfc2782#page-3

When the client is, instead, configured to query a DNS server that is configured in a DNS location, the
output differs. For IdM servers that are assigned to a location, tailored values are returned. In the
example below, the client is configured to query a DNS server in the location germany:

Example 29.2. DNS location-based results

$ dig -t SRV +short _kerberos._tcp.idm.example.com
_kerberos._tcp.germany._locations.idm.example.com.
0 100 88 idmserver-01.idm.example.com.
50 100 88 idmserver-02.idm.example.com.

The IdM DNS server automatically returns a DNS alias (CNAME) pointing to a DNS location specific
SRV record which prefers local servers. This CNAME record is shown in the first line of the output. In the
example, the host idmserver-01.idm.example.com has the lowest priority value and is therefore
preferred. The idmserver-02.idm.example.com has a higher priority and thus is used only as backup for
cases when the preferred host is unavailable.

29.2. DEPLOYMENT CONSIDERATIONS FOR DNS LOCATIONS

Identity Management (IdM) can generate location-specific service (SRV) records when using the
integrated DNS. Because each IdM DNS server generates location-specific SRV records, you have to
install at least one IdM DNS server in each DNS location.

The client’s affinity to a DNS location is only defined by the DNS records received by the client. For this
reason, you can combine IdM DNS servers with non-IdM DNS consumer servers and recursors if the
clients doing DNS service discovery resolve location-specific records from IdM DNS servers.

In the majority of deployments with mixed IdM and non-IdM DNS services, DNS recursors select the
closest IdM DNS server automatically by using round-trip time metrics. Typically, this ensures that
clients using non-IdM DNS servers are getting records for the nearest DNS location and thus use the
optimal set of IdM servers.

29.3. DNS TIME TO LIVE (TTL)

Clients can cache DNS resource records for an amount of time that is set in the zone’s configuration.
Because of this caching, a client might not be able to receive the changes until the time to live (TTL)
value expires. The default TTL value in Identity Management (IdM) is 1 day.

If your client computers roam between sites, you should adapt the TTL value for your IdM DNS zone. Set
the value to a lower value than the time clients need to roam between sites. This ensures that cached
DNS entries on the client expire before they reconnect to another site and thus query the DNS server to
refresh location-specific SRV records.

Additional resources

See Configuration attributes of primary IdM DNS zones .

29.4. USING ANSIBLE TO ENSURE AN IDM LOCATION IS PRESENT

As a system administrator of Identity Management (IdM), you can configure IdM DNS locations to allow
clients to locate authentication servers within the closest network infrastructure.

The following procedure describes how to use an Ansible playbook to ensure a DNS location is present in

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

304

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-playbooks-to-manage-idm-dns-zones_working-with-dns-in-identity-management#configuration-attributes-of-primary-idm-dns-zones_using-ansible-playbooks-to-manage-idm-dns-zones

The following procedure describes how to use an Ansible playbook to ensure a DNS location is present in
IdM. The example describes how to ensure that the germany DNS location is present in IdM. As a result,
you can assign particular IdM servers to this location so that local IdM clients can use them to reduce
server response time.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You understand the deployment considerations for DNS locations .

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the location-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/location/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/location/location-present.yml location-
present-copy.yml

3. Open the location-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipalocation task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the location.

This is the modified Ansible playbook file for the current example:

- name: location present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:

CHAPTER 29. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM

305

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - name: Ensure that the "germany" location is present
 ipalocation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: germany

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory location-
present-copy.yml

Additional resources

See Assigning an IdM server to a DNS location using the IdM Web UI or Assigning an IdM server
to a DNS location using the IdM CLI.

29.5. USING ANSIBLE TO ENSURE AN IDM LOCATION IS ABSENT

As a system administrator of Identity Management (IdM), you can configure IdM DNS locations to allow
clients to locate authentication servers within the closest network infrastructure.

The following procedure describes how to use an Ansible playbook to ensure that a DNS location is
absent in IdM. The example describes how to ensure that the germany DNS location is absent in IdM.
As a result, you cannot assign particular IdM servers to this location and local IdM clients cannot use
them.

Prerequisites

You know the IdM administrator password.

No IdM server is assigned to the germany DNS location.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The example assumes that you have created and configured the ~/MyPlaybooks/ directory as
a central location to store copies of sample playbooks.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

306

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-locations-in-idm_working-with-dns-in-identity-management#assigning-an-idm-server-to-a-dns-location-using-the-idm-web-ui_managing-dns-locations-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-locations-in-idm_working-with-dns-in-identity-management#assigning-an-idm-server-to-a-dns-location-using-the-idm-cli_managing-dns-locations-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/MyPlaybooks/

2. Make a copy of the location-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/location/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/location/location-absent.yml location-
absent-copy.yml

3. Open the location-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipalocation task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the DNS location.

Make sure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: location absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "germany" location is absent
 ipalocation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: germany
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory location-
absent-copy.yml

29.6. ADDITIONAL RESOURCES

See the README-location.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/location
directory.

CHAPTER 29. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM

307

CHAPTER 30. MANAGING DNS FORWARDING IN IDM
Follow these procedures to configure DNS global forwarders and DNS forward zones in the Identity
Management (IdM) Web UI, the IdM CLI, and using Ansible:

The two roles of an IdM DNS server

DNS forward policies in IdM

Adding a global forwarder in the IdM Web UI

Adding a global forwarder in the CLI

Adding a DNS Forward Zone in the IdM Web UI

Adding a DNS Forward Zone in the CLI

Establishing a DNS Global Forwarder in IdM using Ansible

Ensuring the presence of a DNS global forwarder in IdM using Ansible

Ensuring the absence of a DNS global forwarder in IdM using Ansible

Ensuring DNS Global Forwarders are disabled in IdM using Ansible

Ensuring the presence of a DNS Forward Zone in IdM using Ansible

Ensuring a DNS Forward Zone has multiple forwarders in IdM using Ansible

Ensuring a DNS Forward Zone is disabled in IdM using Ansible

Ensuring the absence of a DNS Forward Zone in IdM using Ansible

30.1. THE TWO ROLES OF AN IDM DNS SERVER

DNS forwarding affects how a DNS service answers DNS queries. By default, the Berkeley Internet
Name Domain (BIND) service integrated with IdM acts as both an authoritative and a recursive DNS
server:

Authoritative DNS server

When a DNS client queries a name belonging to a DNS zone for which the IdM server is authoritative,
BIND replies with data contained in the configured zone. Authoritative data always takes precedence
over any other data.

Recursive DNS server

When a DNS client queries a name for which the IdM server is not authoritative, BIND attempts to
resolve the query using other DNS servers. If forwarders are not defined, BIND asks the root servers
on the Internet and uses a recursive resolution algorithm to answer the DNS query.

In some cases, it is not desirable to let BIND contact other DNS servers directly and perform the
recursion based on data available on the Internet. You can configure BIND to use another DNS server, a
forwarder, to resolve the query.

When you configure BIND to use a forwarder, queries and answers are forwarded back and forth
between the IdM server and the forwarder, and the IdM server acts as the DNS cache for non-
authoritative data.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

308

30.2. DNS FORWARD POLICIES IN IDM

IdM supports the first and only standard BIND forward policies, as well as the none IdM-specific
forward policy.

Forward first (default)

The IdM BIND service forwards DNS queries to the configured forwarder. If a query fails because of a
server error or timeout, BIND falls back to the recursive resolution using servers on the Internet. The
forward first policy is the default policy, and it is suitable for optimizing DNS traffic.

Forward only

The IdM BIND service forwards DNS queries to the configured forwarder. If a query fails because of a
server error or timeout, BIND returns an error to the client. The forward only policy is recommended
for environments with split DNS configuration.

None (forwarding disabled)

DNS queries are not forwarded with the none forwarding policy. Disabling forwarding is only useful as
a zone-specific override for global forwarding configuration. This option is the IdM equivalent of
specifying an empty list of forwarders in BIND configuration.

NOTE

You cannot use forwarding to combine data in IdM with data from other DNS servers.
You can only forward queries for specific subzones of the primary zone in IdM DNS.

By default, the BIND service does not forward queries to another server if the queried
DNS name belongs to a zone for which the IdM server is authoritative. In such a situation,
if the queried DNS name cannot be found in the IdM database, the NXDOMAIN answer is
returned. Forwarding is not used.

Example 30.1. Example Scenario

The IdM server is authoritative for the test.example. DNS zone. BIND is configured to forward
queries to the DNS server with the 192.0.2.254 IP address.

When a client sends a query for the nonexistent.test.example. DNS name, BIND detects that the
IdM server is authoritative for the test.example. zone and does not forward the query to the
192.0.2.254. server. As a result, the DNS client receives the NXDomain error message, informing the
user that the queried domain does not exist.

30.3. ADDING A GLOBAL FORWARDER IN THE IDM WEB UI

Follow this procedure to add a global DNS forwarder in the Identity Management (IdM) Web UI.

Prerequisites

You are logged in to the IdM WebUI as IdM administrator.

You know the Internet Protocol (IP) address of the DNS server to forward queries to.

Procedure

1. In the IdM Web UI, select Network Services → DNS Global Configuration → DNS.

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

309

2. In the DNS Global Configuration section, click Add.

3. Specify the IP address of the DNS server that will receive forwarded DNS queries.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

310

4. Select the Forward policy.

5. Click Save at the top of the window.

Verification steps

1. Select Network Services → DNS Global Configuration → DNS.

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

311

2. Verify that the global forwarder, with the forward policy you specified, is present and enabled in
the IdM Web UI.

30.4. ADDING A GLOBAL FORWARDER IN THE CLI

Follow this procedure to add a global DNS forwarder by using the command line interface (CLI).

Prerequisites

You are logged in as IdM administrator.

You know the Internet Protocol (IP) address of the DNS server to forward queries to.

Procedure

Use the ipa dnsconfig-mod command to add a new global forwarder. Specify the IP address of
the DNS forwarder with the --forwarder option.

[user@server ~]$ ipa dnsconfig-mod --forwarder=10.10.0.1
Server will check DNS forwarder(s).

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

312

This may take some time, please wait ...
 Global forwarders: 10.10.0.1
 IPA DNS servers: server.example.com

Verification steps

Use the dnsconfig-show command to display global forwarders.

[user@server ~]$ ipa dnsconfig-show
 Global forwarders: 10.10.0.1
 IPA DNS servers: server.example.com

30.5. ADDING A DNS FORWARD ZONE IN THE IDM WEB UI

Follow this procedure to add a DNS forward zone in the Identity Management (IdM) Web UI.

IMPORTANT

Do not use forward zones unless absolutely required. Forward zones are not a standard
solution, and using them can lead to unexpected and problematic behavior. If you must
use forward zones, limit their use to overriding a global forwarding configuration.

When creating a new DNS zone, Red Hat recommends to always use standard DNS
delegation using nameserver (NS) records and to avoid forward zones. In most cases,
using a global forwarder is sufficient, and forward zones are not necessary.

Prerequisites

You are logged in to the IdM WebUI as IdM administrator.

You know the Internet Protocol (IP) address of the DNS server to forward queries to.

Procedure

1. In the IdM Web UI, select Network Services → DNS Forward Zones → DNS.

2. In the DNS Forward Zones section, click Add.

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

313

3. In the Add DNS forward zone window, specify the forward zone name.

4. Click the Add button and specify the IP address of a DNS server to receive the forwarding
request. You can specify multiple forwarders per forward zone.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

314

5. Select the Forward policy.

6. Click Add at the bottom of the window to add the new forward zone.

Verification steps

1. In the IdM Web UI, select Network Services → DNS Forward Zones → DNS.

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

315

2. Verify that the forward zone you created, with the forwarders and forward policy you specified,
is present and enabled in the IdM Web UI.

30.6. ADDING A DNS FORWARD ZONE IN THE CLI

Follow this procedure to add a DNS forward zone by using the command line interface (CLI).

IMPORTANT

Do not use forward zones unless absolutely required. Forward zones are not a standard
solution, and using them can lead to unexpected and problematic behavior. If you must
use forward zones, limit their use to overriding a global forwarding configuration.

When creating a new DNS zone, Red Hat recommends to always use standard DNS
delegation using nameserver (NS) records and to avoid forward zones. In most cases,
using a global forwarder is sufficient, and forward zones are not necessary.

Prerequisites

You are logged in as IdM administrator.

You know the Internet Protocol (IP) address of the DNS server to forward queries to.

Procedure

Use the dnsforwardzone-add command to add a new forward zone. Specify at least one
forwarder with the --forwarder option if the forward policy is not none, and specify the forward
policy with the --forward-policy option.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

316

[user@server ~]$ ipa dnsforwardzone-add forward.example.com. --
forwarder=10.10.0.14 --forwarder=10.10.1.15 --forward-policy=first

Zone name: forward.example.com.
Zone forwarders: 10.10.0.14, 10.10.1.15
Forward policy: first

Verification steps

Use the dnsforwardzone-show command to display the DNS forward zone you just created.

[user@server ~]$ ipa dnsforwardzone-show forward.example.com.

Zone name: forward.example.com.
Zone forwarders: 10.10.0.14, 10.10.1.15
Forward policy: first

30.7. ESTABLISHING A DNS GLOBAL FORWARDER IN IDM USING
ANSIBLE

Follow this procedure to use an Ansible playbook to establish a DNS Global Forwarder in IdM.

In the example procedure below, the IdM administrator creates a DNS global forwarder to a DNS server
with an Internet Protocol (IP) v4 address of 8.8.6.6 and IPv6 address of 2001:4860:4860::8800 on port
53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

317

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[ipaserver]
server.idm.example.com

3. Make a copy of the set-configuration.yml Ansible playbook file. For example:

$ cp set-configuration.yml establish-global-forwarder.yml

4. Open the establish-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to establish a global forwarder
in IdM DNS.

b. In the tasks section, change the name of the task to Create a DNS global forwarder to
8.8.6.6 and 2001:4860:4860::8800.

c. In the forwarders section of the ipadnsconfig portion:

i. Change the first ip_address value to the IPv4 address of the global forwarder: 8.8.6.6.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:4860:4860::8800.

iii. Verify the port value is set to 53.

d. Change the forward_policy to first.
This the modified Ansible playbook file for the current example:

- name: Playbook to establish a global forwarder in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create a DNS global forwarder to 8.8.6.6 and 2001:4860:4860::8800
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.6
 - ip_address: 2001:4860:4860::8800
 port: 53
 forward_policy: first
 allow_sync_ptr: true

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file establish-global-
forwarder.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

318

30.8. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the presence of a DNS global forwarder in
IdM. In the example procedure below, the IdM administrator ensures the presence of a DNS global
forwarder to a DNS server with an Internet Protocol (IP) v4 address of 7.7.9.9 and IP v6 address of
2001:db8::1:0 on port 53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-presence-of-a-global-forwarder.yml

4. Open the ensure-presence-of-a-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the presence of a
global forwarder in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the presence of a DNS
global forwarder to 7.7.9.9 and 2001:db8::1:0 on port 53.

c. In the forwarders section of the ipadnsconfig portion:

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

319

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

i. Change the first ip_address value to the IPv4 address of the global forwarder: 7.7.9.9.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:db8::1:0.

iii. Verify the port value is set to 53.

d. Change the state to present.
This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the presence of a global forwarder in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the presence of a DNS global forwarder to 7.7.9.9 and 2001:db8::1:0 on port
53
 ipadnsconfig:
 forwarders:
 - ip_address: 7.7.9.9
 - ip_address: 2001:db8::1:0
 port: 53
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-presence-
of-a-global-forwarder.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

30.9. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the absence of a DNS global forwarder in
IdM. In the example procedure below, the IdM administrator ensures the absence of a DNS global
forwarder with an Internet Protocol (IP) v4 address of 8.8.6.6 and IP v6 address of
2001:4860:4860::8800 on port 53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

320

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-absence-of-a-global-forwarder.yml

4. Open the ensure-absence-of-a-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the absence of a
global forwarder in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the absence of a DNS global
forwarder to 8.8.6.6 and 2001:4860:4860::8800 on port 53.

c. In the forwarders section of the ipadnsconfig portion:

i. Change the first ip_address value to the IPv4 address of the global forwarder: 8.8.6.6.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:4860:4860::8800.

iii. Verify the port value is set to 53.

d. Set the action variable to member.

e. Verify the state is set to absent.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the absence of a global forwarder in IdM DNS
 hosts: ipaserver

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

321

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the absence of a DNS global forwarder to 8.8.6.6 and
2001:4860:4860::8800 on port 53
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.6
 - ip_address: 2001:4860:4860::8800
 port: 53
 action: member
 state: absent

IMPORTANT

If you only use the state: absent option in your playbook without also using
action: member, the playbook fails.

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-absence-of-
a-global-forwarder.yml

Additional resources

The README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory

The action: member option in ipadnsconfig ansible-freeipa modules

30.10. ENSURING DNS GLOBAL FORWARDERS ARE DISABLED IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure DNS Global Forwarders are disabled in IdM.
In the example procedure below, the IdM administrator ensures that the forwarding policy for the global
forwarder is set to none, which effectively disables the global forwarder.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

322

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Verify the contents of the disable-global-forwarders.yml Ansible playbook file which is already
configured to disable all DNS global forwarders. For example:

$ cat disable-global-forwarders.yml

- name: Playbook to disable global DNS forwarders
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Disable global forwarders.
 ipadnsconfig:
 forward_policy: none

4. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file disable-global-
forwarders.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

30.11. ENSURING THE PRESENCE OF A DNS FORWARD ZONE IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the presence of a DNS Forward Zone in IdM.
In the example procedure below, the IdM administrator ensures the presence of a DNS forward zone for
example.com to a DNS server with an Internet Protocol (IP) address of 8.8.8.8.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

323

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-presence-forwardzone.yml

4. Open the ensure-presence-forwardzone.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the presence of a
dnsforwardzone in IdM DNS.

b. In the tasks section, change the name of the task to Ensure presence of a
dnsforwardzone for example.com to 8.8.8.8.

c. In the tasks section, change the ipadnsconfig heading to ipadnsforwardzone.

d. In the ipadnsforwardzone section:

i. Add the ipaadmin_password variable and set it to your IdM administrator password.

ii. Add the name variable and set it to example.com.

iii. In the forwarders section:

A. Remove the ip_address and port lines.

B. Add the IP address of the DNS server to receive forwarded requests by specifying it
after a dash:

- 8.8.8.8

iv. Add the forwardpolicy variable and set it to first.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

324

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

v. Add the skip_overlap_check variable and set it to true.

vi. Change the state variable to present.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the presence of a dnsforwardzone in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the presence of a dnsforwardzone for example.com to 8.8.8.8
 ipadnsforwardzone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: example.com
 forwarders:
 - 8.8.8.8
 forwardpolicy: first
 skip_overlap_check: true
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-presence-
forwardzone.yml

Additional resources

See the README-dnsforwardzone.md file in the /usr/share/doc/ansible-freeipa/ directory.

30.12. ENSURING A DNS FORWARD ZONE HAS MULTIPLE
FORWARDERS IN IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure a DNS Forward Zone in IdM has multiple
forwarders. In the example procedure below, the IdM administrator ensures the DNS forward zone for
example.com is forwarding to 8.8.8.8 and 4.4.4.4.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

325

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-presence-multiple-forwarders.yml

4. Open the ensure-presence-multiple-forwarders.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the presence of
multiple forwarders in a dnsforwardzone in IdM DNS.

b. In the tasks section, change the name of the task to Ensure presence of 8.8.8.8 and
4.4.4.4 forwarders in dnsforwardzone for example.com.

c. In the tasks section, change the ipadnsconfig heading to ipadnsforwardzone.

d. In the ipadnsforwardzone section:

i. Add the ipaadmin_password variable and set it to your IdM administrator password.

ii. Add the name variable and set it to example.com.

iii. In the forwarders section:

A. Remove the ip_address and port lines.

B. Add the IP address of the DNS servers you want to ensure are present, preceded by
a dash:

- 8.8.8.8
- 4.4.4.4

iv. Change the state variable to present.

This the modified Ansible playbook file for the current example:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

326

- name: name: Playbook to ensure the presence of multiple forwarders in a dnsforwardzone
in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure presence of 8.8.8.8 and 4.4.4.4 forwarders in dnsforwardzone for
example.com
 ipadnsforwardzone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: example.com
 forwarders:
 - 8.8.8.8
 - 4.4.4.4
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-presence-
multiple-forwarders.yml

Additional resources

See the README-dnsforwardzone.md file in the /usr/share/doc/ansible-freeipa/ directory.

30.13. ENSURING A DNS FORWARD ZONE IS DISABLED IN IDM USING
ANSIBLE

Follow this procedure to use an Ansible playbook to ensure a DNS Forward Zone is disabled in IdM. In
the example procedure below, the IdM administrator ensures the DNS forward zone for example.com is
disabled.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

327

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-disabled-forwardzone.yml

4. Open the ensure-disabled-forwardzone.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure a dnsforwardzone is
disabled in IdM DNS.

b. In the tasks section, change the name of the task to Ensure a dnsforwardzone for
example.com is disabled.

c. In the tasks section, change the ipadnsconfig heading to ipadnsforwardzone.

d. In the ipadnsforwardzone section:

i. Add the ipaadmin_password variable and set it to your IdM administrator password.

ii. Add the name variable and set it to example.com.

iii. Remove the entire forwarders section.

iv. Change the state variable to disabled.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure a dnsforwardzone is disabled in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure a dnsforwardzone for example.com is disabled
 ipadnsforwardzone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: example.com
 state: disabled

6. Save the file.

7. Run the playbook:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

328

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-disabled-
forwardzone.yml

Additional resources

See the README-dnsforwardzone.md file in the /usr/share/doc/ansible-freeipa/ directory.

30.14. ENSURING THE ABSENCE OF A DNS FORWARD ZONE IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the absence of a DNS Forward Zone in IdM.
In the example procedure below, the IdM administrator ensures the absence of a DNS forward zone for
example.com.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-absence-forwardzone.yml

4. Open the ensure-absence-forwardzone.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the absence of a

CHAPTER 30. MANAGING DNS FORWARDING IN IDM

329

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

a. Change the name variable for the playbook to Playbook to ensure the absence of a
dnsforwardzone in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the absence of a
dnsforwardzone for example.com.

c. In the tasks section, change the ipadnsconfig heading to ipadnsforwardzone.

d. In the ipadnsforwardzone section:

i. Add the ipaadmin_password variable and set it to your IdM administrator password.

ii. Add the name variable and set it to example.com.

iii. Remove the entire forwarders section.

iv. Leave the state variable as absent.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the absence of a dnsforwardzone in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the absence of a dnsforwardzone for example.com
 ipadnsforwardzone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: example.com
 state: absent

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-absence-
forwardzone.yml

Additional resources

See the README-dnsforwardzone.md file in the /usr/share/doc/ansible-freeipa/ directory.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

330

CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN
IDM

This chapter describes how to manage DNS records in Identity Management (IdM) using an Ansible
playbook. As an IdM administrator, you can add, modify, and delete DNS records in IdM. The chapter
contains the following sections:

Ensuring the presence of A and AAAA DNS records in IdM using Ansible

Ensuring the presence of A and PTR DNS records in IdM using Ansible

Ensuring the presence of multiple DNS records in IdM using Ansible

Ensuring the presence of multiple CNAME records in IdM using Ansible

Ensuring the presence of an SRV record in IdM using Ansible

31.1. DNS RECORDS IN IDM

Identity Management (IdM) supports many different DNS record types. The following four are used
most frequently:

A

This is a basic map for a host name and an IPv4 address. The record name of an A record is a host
name, such as www. The IP Address value of an A record is an IPv4 address, such as 192.0.2.1.
For more information about A records, see RFC 1035.

AAAA

This is a basic map for a host name and an IPv6 address. The record name of an AAAA record is a
host name, such as www. The IP Address value is an IPv6 address, such as 2001:DB8::1111.
For more information about AAAA records, see RFC 3596.

SRV

Service (SRV) resource records map service names to the DNS name of the server that is providing
that particular service. For example, this record type can map a service like an LDAP directory to the
server which manages it.
The record name of an SRV record has the format _service._protocol, such as _ldap._tcp. The
configuration options for SRV records include priority, weight, port number, and host name for the
target service.

For more information about SRV records, see RFC 2782.

PTR

A pointer record (PTR) adds a reverse DNS record, which maps an IP address to a domain name.

NOTE

All reverse DNS lookups for IPv4 addresses use reverse entries that are defined in the
in-addr.arpa. domain. The reverse address, in human-readable form, is the exact
reverse of the regular IP address, with the in-addr.arpa. domain appended to it. For
example, for the network address 192.0.2.0/24, the reverse zone is 2.0.192.in-
addr.arpa.

CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

331

http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc3596
http://tools.ietf.org/html/rfc2782

The record name of a PTR must be in the standard format specified in RFC 1035, extended in RFC
2317, and RFC 3596. The host name value must be a canonical host name of the host for which you
want to create the record.

NOTE

Reverse zones can also be configured for IPv6 addresses, with zones in the .ip6.arpa.
domain. For more information about IPv6 reverse zones, see RFC 3596.

When adding DNS resource records, note that many of the records require different data. For example,
a CNAME record requires a host name, while an A record requires an IP address. In the IdM Web UI, the
fields in the form for adding a new record are updated automatically to reflect what data is required for
the currently selected type of record.

31.2. COMMON IPA DNSRECORD-* OPTIONS

You can use the following options when adding, modifying and deleting the most common DNS
resource record types in Identity Management (IdM):

A (IPv4)

AAAA (IPv6)

SRV

PTR

In Bash, you can define multiple entries by listing the values in a comma-separated list inside curly
braces, such as -- ⁠option={val1,val2,val3}.

Table 31.1. General Record Options

Option Description

--ttl=number Sets the time to live for the record.

--structured Parses the raw DNS records and returns them in a
structured format.

Table 31.2. "A" record options

Option Description Examples

--a-
rec=ARECORD

Passes a single A record or a list of A records. ipa dnsrecord-add
idm.example.com host1 --a-
rec=192.168.122.123

Can create a wildcard A record with a given IP
address.

ipa dnsrecord-add
idm.example.com "*" --a-
rec=192.168.122.123 [a]

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

332

http://tools.ietf.org/html/rfc1035#section-3.5
http://tools.ietf.org/html/rfc2317
https://tools.ietf.org/html/rfc3596#section-2.5
http://www.ietf.org/rfc/rfc3596.txt

--a-ip-
address=strin
g

Gives the IP address for the record. When creating a
record, the option to specify the A record value is --
a-rec. However, when modifying an A record, the --
a-rec option is used to specify the current value for
the A record. The new value is set with the --a-ip-
address option.

ipa dnsrecord-mod
idm.example.com --a-rec
192.168.122.123 --a-ip-
address 192.168.122.124

[a] The example creates a wildcard A record with the IP address of 192.0.2.123.

Option Description Examples

Table 31.3. "AAAA" record options

Option Description Example

--aaaa-
rec=AAAAREC
ORD

Passes a single AAAA (IPv6) record or a list of AAAA
records.

ipa dnsrecord-add
idm.example.com www --
aaaa-rec
2001:db8::1231:5675

--aaaa-ip-
address=strin
g

Gives the IPv6 address for the record. When creating
a record, the option to specify the A record value is --
aaaa-rec. However, when modifying an A record, the
--aaaa-rec option is used to specify the current
value for the A record. The new value is set with the -
-a-ip-address option.

ipa dnsrecord-mod
idm.example.com --aaaa-rec
2001:db8::1231:5675 --aaaa-
ip-address
2001:db8::1231:5676

Table 31.4. "PTR" record options

Option Description Example

--ptr-
rec=PTRRECO
RD

Passes a single PTR record or a list of PTR records.
When adding the reverse DNS record, the zone name
used with the ipa dnsrecord-add command is
reversed, compared to the usage for adding other
DNS records. Typically, the host IP address is the last
octet of the IP address in a given network. The first
example on the right adds a PTR record for
server4.idm.example.com with IPv4 address
192.168.122.4. The second example adds a reverse
DNS entry to the
0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa. IPv6
reverse zone for the host server2.example.com with
the IP address 2001:DB8::1111.

ipa dnsrecord-add
122.168.192.in-addr.arpa 4 --
ptr-rec
server4.idm.example.com.

$ ipa dnsrecord-add
0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.i
p6.arpa.
1.1.1.0.0.0.0.0.0.0.0.0.0.0.0 --
ptr-rec
server2.idm.example.com.

--ptr-
hostname=stri
ng

Gives the host name for the record.

CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

333

Table 31.5. "SRV" Record Options

Option Description Example

--srv-
rec=SRVRECORD

Passes a single SRV record or a list of
SRV records. In the examples on the right,
_ldap._tcp defines the service type and
the connection protocol for the SRV
record. The --srv-rec option defines the
priority, weight, port, and target values.
The weight values of 51 and 49 in the
examples add up to 100 and represent
the probability, in percentages, that a
particular record is used.

ipa dnsrecord-add
idm.example.com _ldap._tcp --srv-
rec="0 51 389
server1.idm.example.com."

ipa dnsrecord-add
server.idm.example.com _ldap._tcp
--srv-rec="1 49 389
server2.idm.example.com."

--srv-
priority=number

Sets the priority of the record. There can
be multiple SRV records for a service
type. The priority (0 - 65535) sets the
rank of the record; the lower the number,
the higher the priority. A service has to
use the record with the highest priority
first.

ipa dnsrecord-mod
server.idm.example.com _ldap._tcp
--srv-rec="1 49 389
server2.idm.example.com." --srv-
priority=0

--srv-
weight=number

Sets the weight of the record. This helps
determine the order of SRV records with
the same priority. The set weights should
add up to 100, representing the
probability (in percentages) that a
particular record is used.

ipa dnsrecord-mod
server.idm.example.com _ldap._tcp
--srv-rec="0 49 389
server2.idm.example.com." --srv-
weight=60

--srv-
port=number

Gives the port for the service on the
target host.

ipa dnsrecord-mod
server.idm.example.com _ldap._tcp
--srv-rec="0 60 389
server2.idm.example.com." --srv-
port=636

--srv-
target=string

Gives the domain name of the target
host. This can be a single period (.) if the
service is not available in the domain.

Additional resources

Run ipa dnsrecord-add --help.

31.3. ENSURING THE PRESENCE OF A AND AAAA DNS RECORDS IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure that A and AAAA records for a particular IdM
host are present. In the example used in the procedure below, an IdM administrator ensures the
presence of A and AAAA records for host1 in the idm.example.com DNS zone.

Prerequisites

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

334

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The idm.example.com zone exists and is managed by IdM DNS. For more information about
adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS zones .

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-A-and-AAAA-records-are-present.yml Ansible playbook file. For
example:

$ cp ensure-A-and-AAAA-records-are-present.yml ensure-A-and-AAAA-records-are-
present-copy.yml

4. Open the ensure-A-and-AAAA-records-are-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the zone_name variable to idm.example.com.

In the records variable, set the name variable to host1, and the a_ip_address variable to
192.168.122.123.

In the records variable, set the name variable to host1, and the aaaa_ip_address variable
to ::1.
This is the modified Ansible playbook file for the current example:

- name: Ensure A and AAAA records are present

CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

335

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-playbooks-to-manage-idm-dns-zones_working-with-dns-in-identity-management

 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 # Ensure A and AAAA records are present
 - name: Ensure that 'host1' has A and AAAA records.
 ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 zone_name: idm.example.com
 records:
 - name: host1
 a_ip_address: 192.168.122.123
 - name: host1
 aaaa_ip_address: ::1

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-A-
and-AAAA-records-are-present-copy.yml

Additional resources

See DNS records in IdM .

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

31.4. ENSURING THE PRESENCE OF A AND PTR DNS RECORDS IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure that an A record for a particular IdM host is
present, with a corresponding PTR record. In the example used in the procedure below, an IdM
administrator ensures the presence of A and PTR records for host1 with an IP address of 192.168.122.45
in the idm.example.com zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

336

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-to-manage-dns-records-in-idm_working-with-dns-in-identity-management#dns-records-in-idm_using-ansible-to-manage-dns-records-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You know the IdM administrator password.

The idm.example.com DNS zone exists and is managed by IdM DNS. For more information
about adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS
zones.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-dnsrecord-with-reverse-is-present.yml Ansible playbook file. For
example:

$ cp ensure-dnsrecord-with-reverse-is-present.yml ensure-dnsrecord-with-reverse-is-
present-copy.yml

4. Open the ensure-dnsrecord-with-reverse-is-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to host1.

Set the zone_name variable to idm.example.com.

Set the ip_address variable to 192.168.122.45.

Set the create_reverse variable to true.
This is the modified Ansible playbook file for the current example:

- name: Ensure DNS Record is present.
 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 # Ensure that dns record is present
 - ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host1
 zone_name: idm.example.com
 ip_address: 192.168.122.45
 create_reverse: true
 state: present

CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

337

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-playbooks-to-manage-idm-dns-zones_working-with-dns-in-identity-management

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
dnsrecord-with-reverse-is-present-copy.yml

Additional resources

See DNS records in IdM .

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

31.5. ENSURING THE PRESENCE OF MULTIPLE DNS RECORDS IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure that multiple values are associated with a
particular IdM DNS record. In the example used in the procedure below, an IdM administrator ensures
the presence of multiple A records for host1 in the idm.example.com DNS zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The idm.example.com zone exists and is managed by IdM DNS. For more information about
adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS zones .

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

338

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-records-in-idm_working-with-dns-in-identity-management#dns-records-in-idm_managing-dns-records-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-presence-multiple-records.yml Ansible playbook file. For example:

$ cp ensure-presence-multiple-records.yml ensure-presence-multiple-records-
copy.yml

4. Open the ensure-presence-multiple-records-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

Set the ipaadmin_password variable to your IdM administrator password.

In the records section, set the name variable to host1.

In the records section, set the zone_name variable to idm.example.com.

In the records section, set the a_rec variable to 192.168.122.112 and to 192.168.122.122.

Define a second record in the records section:

Set the name variable to host1.

Set the zone_name variable to idm.example.com.

Set the aaaa_rec variable to ::1.

This is the modified Ansible playbook file for the current example:

- name: Test multiple DNS Records are present.
 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 # Ensure that multiple dns records are present
 - ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 records:
 - name: host1
 zone_name: idm.example.com
 a_rec: 192.168.122.112
 a_rec: 192.168.122.122
 - name: host1
 zone_name: idm.example.com
 aaaa_rec: ::1

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
presence-multiple-records-copy.yml

CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

339

Additional resources

See DNS records in IdM .

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

31.6. ENSURING THE PRESENCE OF MULTIPLE CNAME RECORDS IN
IDM USING ANSIBLE

A Canonical Name record (CNAME record) is a type of resource record in the Domain Name System
(DNS) that maps one domain name, an alias, to another name, the canonical name.

You may find CNAME records useful when running multiple services from a single IP address: for
example, an FTP service and a web service, each running on a different port.

Follow this procedure to use an Ansible playbook to ensure that multiple CNAME records are present in
IdM DNS. In the example used in the procedure below, host03 is both an HTTP server and an FTP
server. The IdM administrator ensures the presence of the www and ftp CNAME records for the host03
A record in the idm.example.com zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The idm.example.com zone exists and is managed by IdM DNS. For more information about
adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS zones .

The host03 A record exists in the idm.example.com zone.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

340

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-records-in-idm_working-with-dns-in-identity-management#dns-records-in-idm_managing-dns-records-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-CNAME-record-is-present.yml Ansible playbook file. For example:

$ cp ensure-CNAME-record-is-present.yml ensure-CNAME-record-is-present-copy.yml

4. Open the ensure-CNAME-record-is-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

(Optional) Adapt the description provided by the name of the play.

Set the ipaadmin_password variable to your IdM administrator password.

Set the zone_name variable to idm.example.com.

In the records variable section, set the following variables and values:

Set the name variable to www.

Set the cname_hostname variable to host03.

Set the name variable to ftp.

Set the cname_hostname variable to host03.

This is the modified Ansible playbook file for the current example:

- name: Ensure that 'www.idm.example.com' and 'ftp.idm.example.com' CNAME records
point to 'host03.idm.example.com'.
 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 - ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 zone_name: idm.example.com
 records:
 - name: www
 cname_hostname: host03
 - name: ftp
 cname_hostname: host03

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
CNAME-record-is-present.yml

Additional resources

CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

341

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

31.7. ENSURING THE PRESENCE OF AN SRV RECORD IN IDM USING
ANSIBLE

A DNS service (SRV) record defines the hostname, port number, transport protocol, priority and weight
of a service available in a domain. In Identity Management (IdM), you can use SRV records to locate IdM
servers and replicas.

Follow this procedure to use an Ansible playbook to ensure that an SRV record is present in IdM DNS. In
the example used in the procedure below, an IdM administrator ensures the presence of the
_kerberos._udp.idm.example.com SRV record with the value of 10 50 88 idm.example.com. This sets
the following values:

It sets the priority of the service to 10.

It sets the weight of the service to 50.

It sets the port to be used by the service to 88.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The idm.example.com zone exists and is managed by IdM DNS. For more information about
adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS zones .

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

342

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-playbooks-to-manage-idm-dns-zones_working-with-dns-in-identity-management

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-SRV-record-is-present.yml Ansible playbook file. For example:

$ cp ensure-SRV-record-is-present.yml ensure-SRV-record-is-present-copy.yml

4. Open the ensure-SRV-record-is-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to _kerberos._udp.idm.example.com.

Set the srv_rec variable to '10 50 88 idm.example.com'.

Set the zone_name variable to idm.example.com.
This the modified Ansible playbook file for the current example:

- name: Test multiple DNS Records are present.
 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 # Ensure a SRV record is present
 - ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: _kerberos._udp.idm.example.com
 srv_rec: ’10 50 88 idm.example.com’
 zone_name: idm.example.com
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-SRV-
record-is-present.yml

Additional resources

See DNS records in IdM .

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

343

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-records-in-idm_working-with-dns-in-identity-management#dns-records-in-idm_managing-dns-records-in-idm

CHAPTER 32. USING ANSIBLE TO AUTOMOUNT NFS SHARES
FOR IDM USERS

Automount is a way to manage, organize, and access directories across multiple systems. Automount
automatically mounts a directory whenever access to it is requested. This works well within an
Identity Management (IdM) domain as it allows you to share directories on clients within the domain
easily.

You can use Ansible to configure NFS shares to be mounted automatically for IdM users logged in to
IdM clients in an IdM location.

The example in this chapter uses the following scenario:

nfs-server.idm.example.com is the fully-qualified domain name (FQDN) of a Network File
System (NFS) server.

nfs-server.idm.example.com is an IdM client located in the raleigh automount location.

The NFS server exports the /exports/project directory as read-write.

Any IdM user belonging to the developers group can access the contents of the exported
directory as /devel/project/ on any IdM client that is located in the same raleigh automount
location as the NFS server.

idm-client.idm.example.com is an IdM client located in the raleigh automount location.

IMPORTANT

If you want to use a Samba server instead of an NFS server to provide the shares for IdM
clients, see the How do I configure kerberized CIFS mounts with Autofs in an IPA
environment? KCS solution.

The chapter contains the following sections:

1. Autofs and automount in IdM

2. Setting up an NFS server with Kerberos in IdM

3. Configuring automount locations, maps, and keys in IdM by using Ansible

4. Using Ansible to add IdM users to a group that owns NFS shares

5. Configuring automount on an IdM client

6. Verifying that an IdM user can access NFS shares on an IdM client

32.1. AUTOFS AND AUTOMOUNT IN IDM

The autofs service automates the mounting of directories, as needed, by directing the automount
daemon to mount directories when they are accessed. In addition, after a period of inactivity, autofs
directs automount to unmount auto-mounted directories. Unlike static mounting, on-demand mounting
saves system resources.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

344

https://access.redhat.com/solutions/6596071

Automount maps

On a system that utilizes autofs, the automount configuration is stored in several different files. The
primary automount configuration file is /etc/auto.master, which contains the master mapping of
automount mount points, and their associated resources, on a system. This mapping is known as
automount maps.
The /etc/auto.master configuration file contains the master map. It can contain references to other
maps. These maps can either be direct or indirect. Direct maps use absolute path names for their
mount points, while indirect maps use relative path names.

Automount configuration in IdM

While automount typically retrieves its map data from the local /etc/auto.master and associated
files, it can also retrieve map data from other sources. One common source is an LDAP server. In the
context of Identity Management (IdM), this is a 389 Directory Server.
If a system that uses autofs is a client in an IdM domain, the automount configuration is not stored in
local configuration files. Instead, the autofs configuration, such as maps, locations, and keys, is stored
as LDAP entries in the IdM directory. For example, for the idm.example.com IdM domain, the
default master map is stored as follows:

dn:
automountmapname=auto.master,cn=default,cn=automount,dc=idm,dc=example,dc=com
objectClass: automountMap
objectClass: top
automountMapName: auto.master

Additional resources

Mounting file systems on demand

32.2. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT
IDENTITY MANAGEMENT DOMAIN

If you use Red Hat Identity Management (IdM), you can join your NFS server to the IdM domain. This
enables you to centrally manage users and groups and to use Kerberos for authentication, integrity
protection, and traffic encryption.

Prerequisites

The NFS server is enrolled in a Red Hat Identity Management (IdM) domain.

The NFS server is running and configured.

Procedure

1. Obtain a kerberos ticket as an IdM administrator:

kinit admin

2. Create a nfs/<FQDN> service principal:

ipa service-add nfs/nfs_server.idm.example.com

CHAPTER 32. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS

345

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/mounting-file-systems-on-demand_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management

3. Retrieve the nfs service principal from IdM, and store it in the /etc/krb5.keytab file:

ipa-getkeytab -s idm_server.idm.example.com -p nfs/nfs_server.idm.example.com -k
/etc/krb5.keytab

4. Optional: Display the principals in the /etc/krb5.keytab file:

klist -k /etc/krb5.keytab
Keytab name: FILE:/etc/krb5.keytab
KVNO Principal
---- --
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM

By default, the IdM client adds the host principal to the /etc/krb5.keytab file when you join the
host to the IdM domain. If the host principal is missing, use the ipa-getkeytab -s
idm_server.idm.example.com -p host/nfs_server.idm.example.com -k /etc/krb5.keytab
command to add it.

5. Use the ipa-client-automount utility to configure mapping of IdM IDs:

ipa-client-automount
Searching for IPA server...
IPA server: DNS discovery
Location: default
Continue to configure the system with these values? [no]: yes
Configured /etc/idmapd.conf
Restarting sssd, waiting for it to become available.
Started autofs

6. Update your /etc/exports file, and add the Kerberos security method to the client options. For
example:

/nfs/projects/ 192.0.2.0/24(rw,sec=krb5i)

If you want that your clients can select from multiple security methods, specify them separated
by colons:

/nfs/projects/ 192.0.2.0/24(rw,sec=krb5:krb5i:krb5p)

7. Reload the exported file systems:

exportfs -r

32.3. CONFIGURING AUTOMOUNT LOCATIONS, MAPS, AND KEYS IN
IDM BY USING ANSIBLE

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

346

As an Identity Management (IdM) system administrator, you can configure automount locations and
maps in IdM so that IdM users in the specified locations can access shares exported by an NFS server by
navigating to specific mount points on their hosts. Both the exported NFS server directory and the
mount points are specified in the maps. In LDAP terms, a location is a container for such map entries.

The example describes how to use Ansible to configure the raleigh location and a map that mounts the
nfs-server.idm.example.com:/exports/project share on the /devel/project mount point on the IdM
client as a read-write directory.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. On your Ansible control node, navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automount-location-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automount/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automount/automount-location-
present.yml automount-location-map-and-key-present.yml

3. Open the automount-location-map-and-key-present.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomountlocation task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to raleigh.

Ensure that the state variable is set to present.
This is the modified Ansible playbook file for the current example:

- name: Automount location present example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:

CHAPTER 32. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS

347

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - name: Ensure automount location is present
 ipaautomountlocation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: raleigh
 state: present

5. Continue editing the automount-location-map-and-key-present.yml file:

a. In the tasks section, add a task to ensure the presence of an automount map:

[...]
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
[...]
 - name: ensure map named auto.devel in location raleigh is created
 ipaautomountmap:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: auto.devel
 location: raleigh
 state: present

b. Add another task to add the mount point and NFS server information to the map:

[...]
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
[...]
 - name: ensure automount key /devel/project is present
 ipaautomountkey:
 ipaadmin_password: "{{ ipaadmin_password }}"
 location: raleigh
 mapname: auto.devel
 key: /devel/project
 info: nfs-server.idm.example.com:/exports/project
 state: present

c. Add another task to ensure auto.devel is connected to auto.master:

[...]
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
[...]
- name: Ensure auto.devel is connected in auto.master:
 ipaautomountkey:
 ipaadmin_password: "{{ ipaadmin_password }}"
 location: raleigh
 mapname: auto.map
 key: /devel
 info: auto.devel
 state: present

6. Save the file.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

348

7. Run the Ansible playbook and specify the playbook and inventory files:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automount-
location-map-and-key-present.yml

32.4. USING ANSIBLE TO ADD IDM USERS TO A GROUP THAT OWNS
NFS SHARES

As an Identity Management (IdM) system administrator, you can use Ansible to create a group of users
that is able to access NFS shares, and add IdM users to this group.

This example describes how to use an Ansible playbook to ensure that the idm_user account belongs to
the developers group, so that idm_user can access the /exports/project NFS share.

Prerequisites

You have root access to the nfs-server.idm.example.com NFS server, which is an IdM client
located in the raleigh automount location.

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

In ~/MyPlaybooks/, you have created the automount-location-map-and-key-present.yml
file that already contains tasks from Configuring automount locations, maps, and keys in
IdM by using Ansible.

Procedure

1. On your Ansible control node, navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Open the automount-location-map-and-key-present.yml file for editing.

3. In the tasks section, add a task to ensure that the IdM developers group exists and idm_user is
added to this group:

[...]
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
[...]

CHAPTER 32. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS

349

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: developers
 user:
 - idm_user
 state: present

4. Save the file.

5. Run the Ansible playbook and specify the playbook and inventory files:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automount-
location-map-and-key-present.yml

6. On the NFS server, change the group ownership of the /exports/project directory to
developers so that every IdM user in the group can access the directory:

chgrp developers /exports/project

32.5. CONFIGURING AUTOMOUNT ON AN IDM CLIENT

As an Identity Management (IdM) system administrator, you can configure automount services on an
IdM client so that NFS shares configured for a location to which the client has been added are accessible
to an IdM user automatically when the user logs in to the client. The example describes how to configure
an IdM client to use automount services that are available in the raleigh location.

Prerequisites

You have root access to the IdM client.

You are logged in as IdM administrator.

The automount location exists. The example location is raleigh.

Procedure

1. On the IdM client, enter the ipa-client-automount command and specify the location. Use the -
U option to run the script unattended:

ipa-client-automount --location raleigh -U

2. Stop the autofs service, clear the SSSD cache, and start the autofs service to load the new
configuration settings:

systemctl stop autofs ; sss_cache -E ; systemctl start autofs

32.6. VERIFYING THAT AN IDM USER CAN ACCESS NFS SHARES ON
AN IDM CLIENT

As an Identity Management (IdM) system administrator, you can test if an IdM user that is a member of a
specific group can access NFS shares when logged in to a specific IdM client.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

350

In the example, the following scenario is tested:

An IdM user named idm_user belonging to the developers group can read and write the
contents of the files in the /devel/project directory automounted on idm-
client.idm.example.com, an IdM client located in the raleigh automount location.

Prerequisites

You have set up an NFS server with Kerberos on an IdM host .

You have configured automount locations, maps, and mount points in IdM in which you
configured how IdM users can access the NFS share.

You have used Ansible to add IdM users to the developers group that owns the NFS shares .

You have configured automount on the IdM client .

Procedure

1. Verify that the IdM user can access the read-write directory:

a. Connect to the IdM client as the IdM user:

$ ssh idm_user@idm-client.idm.example.com
Password:

b. Obtain the ticket-granting ticket (TGT) for the IdM user:

$ kinit idm_user

c. [Optional] View the group membership of the IdM user:

$ ipa user-show idm_user
 User login: idm_user
 [...]
 Member of groups: developers, ipausers

d. Navigate to the /devel/project directory:

$ cd /devel/project

e. List the directory contents:

$ ls
rw_file

f. Add a line to the file in the directory to test the write permission:

$ echo "idm_user can write into the file" > rw_file

g. [Optional] View the updated contents of the file:

CHAPTER 32. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS

351

$ cat rw_file
this is a read-write file
idm_user can write into the file

The output confirms that idm_user can write into the file.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

352

CHAPTER 33. USING ANSIBLE TO INTEGRATE IDM WITH NIS
DOMAINS AND NETGROUPS

33.1. NIS AND ITS BENEFITS

In UNIX environments, the network information service (NIS) is a common way to centrally manage
identities and authentication. NIS, which was originally named Yellow Pages (YP), centrally manages
authentication and identity information such as:

Users and passwords

Host names and IP addresses

POSIX groups

For modern network infrastructures, NIS is considered too insecure because, for example, it neither
provides host authentication, nor is data sent encrypted over the network. To work around the
problems, NIS is often integrated with other protocols to enhance security.

If you use Identity Management (IdM), you can use the NIS server plug-in to connect clients that cannot
be fully migrated to IdM. IdM integrates netgroups and other NIS data into the IdM domain. Additionally,
you can easily migrate user and host identities from a NIS domain to IdM.

Netgroups can be used everywhere that NIS groups are expected.

Additional resources

NIS in IdM

NIS netgroups in IdM

Migrating from NIS to Identity Management

33.2. NIS IN IDM

NIS objects in IdM

NIS objects are integrated and stored in the Directory Server back end in compliance with RFC 2307.
IdM creates NIS objects in the LDAP directory and clients retrieve them through, for example, System
Security Services Daemon (SSSD) or nss_ldap using an encrypted LDAP connection.

IdM manages netgroups, accounts, groups, hosts, and other data. IdM uses a NIS listener to map
passwords, groups, and netgroups to IdM entries.

NIS Plug-ins in IdM

For NIS support, IdM uses the following plug-ins provided in the slapi-nis package:

NIS Server Plug-in

The NIS Server plug-in enables the IdM-integrated LDAP server to act as a NIS server for clients. In
this role, Directory Server dynamically generates and updates NIS maps according to the
configuration. Using the plug-in, IdM serves clients using the NIS protocol as an NIS server.

Schema Compatibility Plug-in

The Schema Compatibility plug-in enables the Directory Server back end to provide an alternate

CHAPTER 33. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS

353

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_migrating-from-nis-to-identity-management_configuring-and-managing-idm#
http://tools.ietf.org/html/rfc2307

view of entries stored in part of the directory information tree (DIT). This includes adding, dropping,
or renaming attribute values, and optionally retrieving values for attributes from multiple entries in
the tree.
For further details, see the /usr/share/doc/slapi-nis-version/sch-getting-started.txt file.

33.3. NIS NETGROUPS IN IDM

NIS entities can be stored in netgroups. Compared to UNIX groups, netgroups provide support for:

Nested groups (groups as members of other groups).

Grouping hosts.

A netgroup defines a set of the following information: host, user, and domain. This set is called a triple.
These three fields can contain:

A value.

A dash (-), which specifies "no valid value"

No value. An empty field specifies a wildcard.

(host.example.com,,nisdomain.example.com)
(-,user,nisdomain.example.com)

When a client requests a NIS netgroup, IdM translates the LDAP entry :

To a traditional NIS map and sends it to the client over the NIS protocol by using the NIS plug-in.

To an LDAP format that is compliant with RFC 2307 or RFC 2307bis.

33.4. USING ANSIBLE TO ENSURE THAT A NETGROUP IS PRESENT

You can use an Ansible playbook to ensure that an IdM netgroup is present. The example describes how
to ensure that the TestNetgroup1 group is present.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Procedure

1. Create your Ansible playbook file netgroup-present.yml with the following content:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

354

https://www.ietf.org/rfc/rfc2307.txt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Playbook to manage IPA netgroup.
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure netgroup members are present
 ipanetgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: TestNetgroup1

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory_/netgroup-
present.yml

Additional resources

NIS in IdM

/usr/share/doc/ansible-freeipa/README-netgroup.md

/usr/share/doc/ansible-freeipa/playbooks/netgroup

33.5. USING ANSIBLE TO ENSURE THAT MEMBERS ARE PRESENT IN A
NETGROUP

You can use an Ansible playbook to ensure that IdM users, groups, and netgroups are members of a
netgroup. The example describes how to ensure that the TestNetgroup1 group has the following
members:

The user1 and user2 IdM users

The group1 IdM group

The admins netgroup

An idmclient1 host that is an IdM client

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

The TestNetgroup1 IdM netgroup exists.

CHAPTER 33. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS

355

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The user1 and user2 IdM users exist.

The group1 IdM group exists.

The admins IdM netgroup exists.

Procedure

1. Create your Ansible playbook file IdM-members-present-in-a-netgroup.yml with the
following content:

- name: Playbook to manage IPA netgroup.
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure netgroup members are present
 ipanetgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: TestNetgroup1
 user: user1,user2
 group: group1
 host: idmclient1
 netgroup: admins
 action: member

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory_/IdM-
members-present-in-a-netgroup.yml

Additional resources

NIS in IdM

/usr/share/doc/ansible-freeipa/README-netgroup.md

/usr/share/doc/ansible-freeipa/playbooks/netgroup

33.6. USING ANSIBLE TO ENSURE THAT A MEMBER IS ABSENT FROM
A NETGROUP

You can use an Ansible playbook to ensure that IdM users are members of a netgroup. The example
describes how to ensure that the TestNetgroup1 group does not have the user1 IdM user among its
members. netgroup

Prerequisites

You have configured your Ansible control node to meet the following requirements:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

356

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

The TestNetgroup1 netgroup exists.

Procedure

1. Create your Ansible playbook file IdM-member-absent-from-a-netgroup.yml with the
following content:

- name: Playbook to manage IPA netgroup.
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure netgroup user, "user1", is absent
 ipanetgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: TestNetgroup1
 user: "user1"
 action: member
 state: absent

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory_/IdM-
member-absent-from-a-netgroup.yml

Additional resources

NIS in IdM

/usr/share/doc/ansible-freeipa/README-netgroup.md

/usr/share/doc/ansible-freeipa/playbooks/netgroup

33.7. USING ANSIBLE TO ENSURE THAT A NETGROUP IS ABSENT

You can use an Ansible playbook to ensure that a netgroup does not exist in Identity Management (IdM).
The example describes how to ensure that the TestNetgroup1 group does not exist in your IdM domain.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

CHAPTER 33. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS

357

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Procedure

1. Create your Ansible playbook file netgroup-absent.yml with the following content:

- name: Playbook to manage IPA netgroup.
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure netgroup my_netgroup1 is absent
 ipanetgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: my_netgroup1
 state: absent

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory_/netgroup-
absent.yml

Additional resources

NIS in IdM

/usr/share/doc/ansible-freeipa/README-netgroup.md

/usr/share/doc/ansible-freeipa/playbooks/netgroup

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

358

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

CHAPTER 34. USING ANSIBLE TO CONFIGURE HBAC AND
SUDO RULES IN IDM

Using host-based access control (HBAC) in Identity Management (IdM), you can define policies that
restrict access to hosts or services based on the following:

The user attempting to log in and this user’s groups

The host that a user is trying to access and the host groups to which that host belongs

The service that is being used to access a host

Using sudo, a user can run programs as another user, with different privileges, for example root
privileges. In IdM, you can manage sudo rules centrally. You can define sudo rules based on user groups,
host groups and command groups, as well as individual users, hosts and commands.

Complete this procedure to ensure the presence of the following HBAC and sudo rules for IdM users:

jane can only access host client01.idm.example.com.

john can only access host client02.idm.example.com.

Members of the admins group, which includes the default admin user as well as the regular
alice user, can access any IdM host.

Members of the admins group can run sudo with the following commands on any IdM host:

/usr/sbin/reboot

/usr/bin/less

/usr/sbin/setenforce

The following diagram represents the desired configuration described above:

Figure 34.1. IdM HBAC and SUDO rules diagram

CHAPTER 34. USING ANSIBLE TO CONFIGURE HBAC AND SUDO RULES IN IDM

359

Figure 34.1. IdM HBAC and SUDO rules diagram

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

The users jane, john and alice exist in IdM. Passwords are configured for these accounts.

Procedure

1. Create your Ansible playbook file add-hbac-and-sudo-rules-to-idm.yml with the following
content:

- name: Playbook to manage IPA HBAC and SUDO rules
 hosts: ipaserver
 become: false
 gather_facts: false

 vars_files:
 - /home/<user_name>/MyPlaybooks/secret.yml

 module_defaults:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

360

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 ipahbacrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ipasudocmd:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ipasudocmdgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ipasudorule:
 ipaadmin_password: "{{ ipaadmin_password }}"

 tasks:
 - name: HBAC Rule for Jane - can log in to client01
 ipahbacrule: # Creates the rule
 name: Jane_rule
 hbacsvc:
 - sshd
 - login
 host: # Host name
 - client01.idm.example.com
 user:
 - jane

 - name: HBAC Rule for John - can log in to client02
 ipahbacrule: # Creates the rule
 name: john_rule
 hbacsvc:
 - sshd
 - login
 host: # Host name
 - client02.idm.example.com
 user:
 - john

 - name: Add user member alice to group admins
 ipagroup:
 name: admins
 action: member
 user:
 - alice

 - name: HBAC Rule for IdM administrators
 ipahbacrule: # Rule to allow admins full access
 name: admin_access # Rule name
 servicecat: all # All services
 hostcat: all # All hosts
 group: # User group
 - admins

 - name: Add reboot command to SUDO
 ipasudocmd:
 name: /usr/sbin/reboot
 state: present
 - name: Add less command to SUDO
 ipasudocmd:
 name: /usr/bin/less

CHAPTER 34. USING ANSIBLE TO CONFIGURE HBAC AND SUDO RULES IN IDM

361

 state: present
 - name: Add setenforce command to SUDO
 ipasudocmd:
 name: /usr/sbin/setenforce
 state: present

 - name: Create a SUDO command group
 ipasudocmdgroup:
 name: cmd_grp_1
 description: "Group of important commands"
 sudocmd:
 - /usr/sbin/setenforce
 - /usr/bin/less
 - /usr/sbin/reboot
 action: sudocmdgroup
 state: present

 - name: Create a SUDO rule with a SUDO command group
 ipasudorule:
 name: sudo_rule_1
 allow_sudocmdgroup:
 - cmd_grp_1
 group: admins
 state: present

 - name: Disable allow_all HBAC Rule
 ipahbacrule: # Rule to allow admins full access
 name: allow_all # Rule name
 state: disabled # Disables rule to allow everyone the ability to login

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -i inventory add-hbac-and-
sudo-rules-to-idm.yml

Verification

1. Connect to client01 as the jane user:

~]$ ssh jane@client01
Password:

Last login: Fri Aug 11 15:32:18 2023 from 192.168.122.1
[jane@client01 ~]$

The output verifies that jane has logged in to client01.

2. Try to connect to client02 as the jane user:

~]$ ssh jane@client02
Password:
Connection closed by 192.168.122.47 port 22

The output verifies that jane cannot log in to client02.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

362

3. Connect to client02 as the alice user:

~]$ ssh alice@client02
Password:

Last login: Fri Aug 10 16:13:43 2023 from 192.168.122.1

The output verifies that alice has logged in to client02.

4. Try to view the contents of the /etc/sssd/sssd.conf file using less without invoking the
superuser privileges:

[alice@client02 ~]$ less /etc/sssd/sssd.conf
/etc/sssd/sssd.conf: Permission denied

The attempt fails as the file is not readable by anyone except the owner of the file, which is root.

5. Invoke the root privileges to view the contents of the /etc/sssd/sssd.conf file using less:

[alice@client02 ~]$ sudo less /etc/sssd/sssd.conf
[sudo] password for alice:

[domain/idm.example.com]

id_provider = ipa
ipa_server_mode = True
[...]

The output verifies that alice can execute the less command on the /etc/sssd/sssd.conf file.

Additional resources

Host-based access control rules in IdM

Sudo access on an IdM client

CHAPTER 34. USING ANSIBLE TO CONFIGURE HBAC AND SUDO RULES IN IDM

363

CHAPTER 35. USING ANSIBLE TO DELEGATE
AUTHENTICATION FOR IDM USERS TO EXTERNAL IDENTITY

PROVIDERS
You can use the idp ansible-freeipa module to associate users with external identity providers (IdP)
that support the OAuth 2 device authorization flow. If an IdP reference and an associated IdP user ID
exist, you can use them to enable IdP authentication for an IdM user with the user ansible-freeipa
module.

Afterward, if these users authenticate with the SSSD version 2.7.0 or later, available in RHEL 8.7 or later,
they receive RHEL Identity Management (IdM) single sign-on capabilities with Kerberos tickets after
performing authentication and authorization at the external IdP.

35.1. THE BENEFITS OF CONNECTING IDM TO AN EXTERNAL IDP

As an administrator, you might want to allow users stored in an external identity source, such as a cloud
services provider, to access RHEL systems joined to your Identity Management (IdM) environment. To
achieve this, you can delegate the authentication and authorization process of issuing Kerberos tickets
for these users to that external entity.

You can use this feature to expand IdM’s capabilities and allow users stored in external identity
providers (IdPs) to access Linux systems managed by IdM.

35.2. HOW IDM INCORPORATES LOGINS VIA EXTERNAL IDPS

SSSD 2.7.0 contains the sssd-idp package, which implements the idp Kerberos pre-authentication
method. This authentication method follows the OAuth 2.0 Device Authorization Grant flow to delegate
authorization decisions to external IdPs:

1. An IdM client user initiates OAuth 2.0 Device Authorization Grant flow, for example, by
attempting to retrieve a Kerberos TGT with the kinit utility at the command line.

2. A special code and website link are sent from the Authorization Server to the IdM KDC backend.

3. The IdM client displays the link and the code to the user. In this example, the IdM client outputs
the link and code on the command line.

4. The user opens the website link in a browser, which can be on another host, a mobile phone, and
so on:

a. The user enters the special code.

b. If necessary, the user logs in to the OAuth 2.0-based IdP.

c. The user is prompted to authorize the client to access information.

5. The user confirms access at the original device prompt. In this example, the user hits the Enter
key at the command line.

6. The IdM KDC backend polls the OAuth 2.0 Authorization Server for access to user information.

What is supported:

Logging in remotely via SSH with the keyboard-interactive authentication method enabled,

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

364

Logging in remotely via SSH with the keyboard-interactive authentication method enabled,
which allows calling Pluggable Authentication Module (PAM) libraries.

Logging in locally with the console via the logind service.

Retrieving a Kerberos ticket-granting ticket (TGT) with the kinit utility.

What is currently not supported:

Logging in to the IdM WebUI directly. To log in to the IdM WebUI, you must first acquire a
Kerberos ticket.

Logging in to Cockpit WebUI directly. To log in to the Cockpit WebUI, you must first acquire a
Kerberos ticket.

Additional resources

Authentication against external Identity Providers

RFC 8628: OAuth 2.0 Device Authorization Grant

35.3. USING ANSIBLE TO CREATE A REFERENCE TO AN EXTERNAL
IDENTITY PROVIDER

To connect external identity providers (IdPs) to your Identity Management (IdM) environment, create
IdP references in IdM. Complete this procedure to use the idp ansible-freeipa module to configure a
reference to the github external IdP.

Prerequisites

You have registered IdM as an OAuth application to your external IdP, and generated a client ID
and client secret on the device that an IdM user will be using to authenticate to IdM. The
example assumes that:

my_github_account_name is the github user whose account the IdM user will be using to
authenticate to IdM.

The client ID is 2efe1acffe9e8ab869f4.

The client secret is 656a5228abc5f9545c85fa626aecbf69312d398c.

Your IdM servers are using RHEL 8.7 or later.

Your IdM servers are using SSSD 2.7.0 or later.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You are using RHEL 8.10 or later.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

CHAPTER 35. USING ANSIBLE TO DELEGATE AUTHENTICATION FOR IDM USERS TO EXTERNAL IDENTITY PROVIDERS

365

https://freeipa.readthedocs.io/en/latest/workshop/12-external-idp-support.html
https://www.rfc-editor.org/rfc/rfc8628
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

Procedure

1. On your Ansible control node, create an configure-external-idp-reference.yml playbook:

- name: Configure external IdP
 hosts: ipaserver
 become: false
 gather_facts: false

 tasks:
 - name: Ensure a reference to github external provider is available
 ipaidp:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: github_idp
 provider: github
 client_ID: 2efe1acffe9e8ab869f4
 secret: 656a5228abc5f9545c85fa626aecbf69312d398c
 idp_user_id: my_github_account_name

2. Save the file.

3. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory configure-
external-idp-reference.yml

Verification

On an IdM client, verify that the output of the ipa idp-show command shows the IdP reference
you have created.

[idmuser@idmclient ~]$ ipa idp-show github_idp

Next steps

Using Ansible to enable an IdM user to authenticate via an external IdP

Additional resources

The idp ansible-freeipa upstream documentation

35.4. USING ANSIBLE TO ENABLE AN IDM USER TO AUTHENTICATE
VIA AN EXTERNAL IDP

You can use the user ansible-freeipa module to enable an Identity Management (IdM) user to
authenticate via an external identity provider (IdP). To do that, associate the external IdP reference you
have previously created with the IdM user account. Complete this procedure to use Ansible to associate

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

366

https://github.com/freeipa/ansible-freeipa/blob/master/README-idp.md

an external IdP reference named github_idp with the IdM user named idm-user-with-external-idp. As
a result of the procedure, the user is able to use the my_github_account_name github identity to
authenticate as idm-user-with-external-idp to IdM.

Prerequisites

Your IdM client and IdM servers are using RHEL 8.7 or later.

Your IdM client and IdM servers are using SSSD 2.7.0 or later.

You have created a reference to an external IdP in IdM. See Using Ansible to create a reference
to an external identity provider.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You are using RHEL 8.10 or later.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

Procedure

1. On your Ansible control node, create an enable-user-to-authenticate-via-external-idp.yml
playbook:

- name: Ensure an IdM user uses an external IdP to authenticate to IdM
 hosts: ipaserver
 become: false
 gather_facts: false

 tasks:
 - name: Retrieve Github user ID
 ansible.builtin.uri:
 url: “https://api.github.com/users/my_github_account_name”
 method: GET
 headers:
 Accept: “application/vnd.github.v3+json”
 register: user_data

 - name: Ensure IdM user exists with an external IdP authentication
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: idm-user-with-external-idp
 first: Example
 last: User
 userauthtype: idp
 idp: github_idp
 idp_user_id: my_github_account_name

CHAPTER 35. USING ANSIBLE TO DELEGATE AUTHENTICATION FOR IDM USERS TO EXTERNAL IDENTITY PROVIDERS

367

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Save the file.

3. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory enable-user-to-
authenticate-via-external-idp.yml

Verification

Log in to an IdM client and verify that the output of the ipa user-show command for the idm-
user-with-external-idp user displays references to the IdP:

$ ipa user-show idm-user-with-external-idp
User login: idm-user-with-external-idp
First name: Example
Last name: User
Home directory: /home/idm-user-with-external-idp
Login shell: /bin/sh
Principal name: idm-user-with-external-idp@idm.example.com
Principal alias: idm-user-with-external-idp@idm.example.com
Email address: idm-user-with-external-idp@idm.example.com
ID: 35000003
GID: 35000003
User authentication types: idp
External IdP configuration: github
External IdP user identifier: idm-user-with-external-idp@idm.example.com
Account disabled: False
Password: False
Member of groups: ipausers
Kerberos keys available: False

Additional resources

The idp ansible-freeipa upstream documentation

35.5. RETRIEVING AN IDM TICKET-GRANTING TICKET AS AN
EXTERNAL IDP USER

If you have delegated authentication for an Identity Management (IdM) user to an external identity
provider (IdP), the IdM user can request a Kerberos ticket-granting ticket (TGT) by authenticating to
the external IdP.

Complete this procedure to:

1. Retrieve and store an anonymous Kerberos ticket locally.

2. Request the TGT for the idm-user-with-external-idp user by using kinit with the -T option to
enable Flexible Authentication via Secure Tunneling (FAST) channel to provide a secure
connection between the Kerberos client and Kerberos Distribution Center (KDC).

Prerequisites

Your IdM client and IdM servers use RHEL 8.7 or later.

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

368

https://github.com/freeipa/ansible-freeipa/blob/master/README-idp.md

Your IdM client and IdM servers use SSSD 2.7.0 or later.

You have created a reference to an external IdP in IdM. See Using Ansible to create a reference
to an external identity provider.

You have associated an external IdP reference with the user account. See Using Ansible to
enable an IdM user to authenticate via an external IdP.

The user that you are initially logged in as has write permissions on a directory in the local
filesystem.

Procedure

1. Use Anonymous PKINIT to obtain a Kerberos ticket and store it in a file named ./fast.ccache.

$ kinit -n -c ./fast.ccache

2. [Optional] View the retrieved ticket:

$ klist -c fast.ccache
Ticket cache: FILE:fast.ccache
Default principal: WELLKNOWN/ANONYMOUS@WELLKNOWN:ANONYMOUS

Valid starting Expires Service principal
03/03/2024 13:36:37 03/04/2024 13:14:28
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM

3. Begin authenticating as the IdM user, using the -T option to enable the FAST communication
channel.

[root@client ~]# kinit -T ./fast.ccache idm-user-with-external-idp
Authenticate at https://oauth2.idp.com:8443/auth/realms/master/device?user_code=YHMQ-
XKTL and press ENTER.:

4. In a browser, authenticate as the user at the website provided in the command output.

5. At the command line, press the Enter key to finish the authentication process.

Verification

Display your Kerberos ticket information and confirm that the line config: pa_type shows 152
for pre-authentication with an external IdP.

[root@client ~]# klist -C
Ticket cache: KCM:0:58420
Default principal: idm-user-with-external-idp@IDM.EXAMPLE.COM

Valid starting Expires Service principal
05/09/22 07:48:23 05/10/22 07:03:07 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: fast_avail(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = yes
08/17/2022 20:22:45 08/18/2022 20:22:43
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: pa_type(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = 152

CHAPTER 35. USING ANSIBLE TO DELEGATE AUTHENTICATION FOR IDM USERS TO EXTERNAL IDENTITY PROVIDERS

369

The pa_type = 152 indicates external IdP authentication.

35.6. LOGGING IN TO AN IDM CLIENT VIA SSH AS AN EXTERNAL IDP
USER

To log in to an IdM client via SSH as an external identity provider (IdP) user, begin the login process on
the command linel. When prompted, perform the authentication process at the website associated with
the IdP, and finish the process at the Identity Management (IdM) client.

Prerequisites

Your IdM client and IdM servers are using RHEL 8.7 or later.

Your IdM client and IdM servers are using SSSD 2.7.0 or later.

You have created a reference to an external IdP in IdM. See Using Ansible to create a reference
to an external identity provider.

You have associated an external IdP reference with the user account. See Using Ansible to
enable an IdM user to authenticate via an external IdP.

Procedure

1. Attempt to log in to the IdM client via SSH.

[user@client ~]$ ssh idm-user-with-external-idp@client.idm.example.com
(idm-user-with-external-idp@client.idm.example.com) Authenticate at
https://oauth2.idp.com:8443/auth/realms/main/device?user_code=XYFL-ROYR and press
ENTER.

2. In a browser, authenticate as the user at the website provided in the command output.

3. At the command line, press the Enter key to finish the authentication process.

Verification

Display your Kerberos ticket information and confirm that the line config: pa_type shows 152
for pre-authentication with an external IdP.

[idm-user-with-external-idp@client ~]$ klist -C
Ticket cache: KCM:0:58420
Default principal: idm-user-with-external-idp@IDM.EXAMPLE.COM

Valid starting Expires Service principal
05/09/22 07:48:23 05/10/22 07:03:07 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: fast_avail(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = yes
08/17/2022 20:22:45 08/18/2022 20:22:43
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: pa_type(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = 152

35.7. THE PROVIDER OPTION IN THE IPAIDP ANSIBLE MODULE

The following identity providers (IdPs) support OAuth 2.0 device authorization grant flow:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

370

Microsoft Identity Platform, including Azure AD

Google

GitHub

Keycloak, including Red Hat Single Sign-On (SSO)

Okta

When using the idp ansible-freeipa module to create a reference to one of these external IdPs, you can
specify the IdP type with the provider option in your ipaidp ansible-freeipa playbook task, which
expands into additional options as described below:

provider: microsoft

Microsoft Azure IdPs allow parametrization based on the Azure tenant ID, which you can specify with
the organization option. If you need support for the live.com IdP, specify the option organization
common.
Choosing provider: microsoft expands to use the following options. The value of the organization
option replaces the string ${ipaidporg} in the table.

Option Value

auth_uri: URI https://login.microsoftonline.com/${ipaidporg}/oauth2/v2.0/
authorize

dev_auth_uri: URI https://login.microsoftonline.com/${ipaidporg}/oauth2/v2.0/
devicecode

token_uri: URI https://login.microsoftonline.com/${ipaidporg}/oauth2/v2.0/t
oken

userinfo_uri: URI https://graph.microsoft.com/oidc/userinfo

keys_uri: URI https://login.microsoftonline.com/common/discovery/v2.0/k
eys

scope: STR openid email

idp_user_id: STR email

provider: google

Choosing provider: google expands to use the following options:

Option Value

auth_uri: URI https://accounts.google.com/o/oauth2/auth

dev_auth_uri: URI https://oauth2.googleapis.com/device/code

CHAPTER 35. USING ANSIBLE TO DELEGATE AUTHENTICATION FOR IDM USERS TO EXTERNAL IDENTITY PROVIDERS

371

token_uri: URI https://oauth2.googleapis.com/token

userinfo_uri: URI https://openidconnect.googleapis.com/v1/userinfo

keys_uri: URI https://www.googleapis.com/oauth2/v3/certs

scope: STR openid email

idp_user_id: STR email

Option Value

provider: github

Choosing provider: github expands to use the following options:

Option Value

auth_uri: URI https://github.com/login/oauth/authorize

dev_auth_uri: URI https://github.com/login/device/code

token_uri: URI https://github.com/login/oauth/access_token

userinfo_uri: URI https://openidconnect.googleapis.com/v1/userinfo

keys_uri: URI https://api.github.com/user

scope: STR user

idp_user_id: STR login

provider: keycloak

With Keycloak, you can define multiple realms or organizations. Since it is often a part of a custom
deployment, both base URL and realm ID are required, and you can specify them with the base_url
and organization options in your ipaidp playbook task:

- name: Playbook to manage IPA idp
 hosts: ipaserver
 become: false

 tasks:
 - name: Ensure keycloak idp my-keycloak-idp is present using provider
 ipaidp:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: my-keycloak-idp
 provider: keycloak

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

372

 organization: main
 base_url: keycloak.domain.com:8443/auth
 client_id: my-keycloak-client-id

Choosing provider: keycloak expands to use the following options. The value you specify in the
base_url option replaces the string ${ipaidpbaseurl} in the table, and the value you specify for the
organization `option replaces the string `${ipaidporg}.

Option Value

auth_uri: URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/auth

dev_auth_uri: URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/auth/device

token_uri: URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/token

userinfo_uri: URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/userinfo

scope: STR openid email

idp_user_id: STR email

provider: okta

After registering a new organization in Okta, a new base URL is associated with it. You can specify this
base URL with the base_url option in the ipaidp playbook task:

- name: Playbook to manage IPA idp
 hosts: ipaserver
 become: false

 tasks:
 - name: Ensure okta idp my-okta-idp is present using provider
 ipaidp:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: my-okta-idp
 provider: okta
 base_url: dev-12345.okta.com
 client_id: my-okta-client-id

Choosing provider: okta expands to use the following options. The value you specify for the
base_url option replaces the string ${ipaidpbaseurl} in the table.

Option Value

auth_uri: URI https://${ipaidpbaseurl}/oauth2/v1/authorize

CHAPTER 35. USING ANSIBLE TO DELEGATE AUTHENTICATION FOR IDM USERS TO EXTERNAL IDENTITY PROVIDERS

373

dev_auth_uri: URI https://${ipaidpbaseurl}/oauth2/v1/device/authorize

token_uri: URI https://${ipaidpbaseurl}/oauth2/v1/token

userinfo_uri: URI https://${ipaidpbaseurl}/oauth2/v1/userinfo

scope: STR openid email

idp_user_id: STR email

Option Value

Additional resources

Pre-populated IdP templates

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

374

https://freeipa.readthedocs.io/en/latest/designs/external-idp/idp-api.html#pre-populated-idp-templates

CHAPTER 36. INTEGRATING RHEL SYSTEMS INTO AD
DIRECTLY BY USING THE RHEL SYSTEM ROLE

With the ad_integration system role, you can automate a direct integration of a RHEL system with
Active Directory (AD) by using Red Hat Ansible Automation Platform.

IMPORTANT

The ad_integration system role is not included in the ansible-freeipa package. It is part
of the rhel-system-roles package. You can install rhel-system-roles on systems with a
Red Hat Enterprise Linux Server subscription attached.

36.1. THE AD_INTEGRATION RHEL SYSTEM ROLE

Using the ad_integration system role, you can directly connect a RHEL system to Active Directory
(AD).

The role uses the following components:

SSSD to interact with the central identity and authentication source

realmd to detect available AD domains and configure the underlying RHEL system services, in
this case SSSD, to connect to the selected AD domain

NOTE

The ad_integration role is for deployments using direct AD integration without an
Identity Management (IdM) environment. For IdM environments, use the ansible-freeipa
roles.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.ad_integration/README.md file

/usr/share/doc/rhel-system-roles/ad_integration/ directory

Connecting RHEL systems directly to AD using SSSD

36.2. CONNECTING A RHEL SYSTEM DIRECTLY TO AD BY USING THE
AD_INTEGRATION RHEL SYSTEM ROLE

You can use the ad_integration system role to configure a direct integration between a RHEL system
and an AD domain by running an Ansible playbook.

NOTE

Starting with RHEL8, RHEL no longer supports RC4 encryption by default. If it is not
possible to enable AES in the AD domain, you must enable the AD-SUPPORT crypto
policy and allow RC4 encryption in the playbook.

IMPORTANT

CHAPTER 36. INTEGRATING RHEL SYSTEMS INTO AD DIRECTLY BY USING THE RHEL SYSTEM ROLE

375

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/integrating_rhel_systems_directly_with_windows_active_directory/connecting-rhel-systems-directly-to-ad-using-sssd_integrating-rhel-systems-directly-with-active-directory

IMPORTANT

Time between the RHEL server and AD must be synchronized. You can ensure this by
using the timesync system role in the playbook.

In this example, the RHEL system joins the domain.example.com AD domain, by using the AD
Administrator user and the password for this user stored in the Ansible vault. The playbook also sets
the AD-SUPPORT crypto policy and allows RC4 encryption. To ensure time synchronization between
the RHEL system and AD, the playbook sets the adserver.domain.example.com server as the
timesync source.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The following ports on the AD domain controllers are open and accessible from the RHEL
server:

Table 36.1. Ports Required for Direct Integration of Linux Systems into AD Using the
ad_integration system role

Source Port Destination Port Protocol Service

1024:65535 53 UDP and TCP DNS

1024:65535 389 UDP and TCP LDAP

1024:65535 636 TCP LDAPS

1024:65535 88 UDP and TCP Kerberos

1024:65535 464 UDP and TCP Kerberos change/set
password (kadmin)

1024:65535 3268 TCP LDAP Global Catalog

1024:65535 3269 TCP LDAP Global Catalog
SSL/TLS

1024:65535 123 UDP NTP/Chrony
(Optional)

1024:65535 323 UDP NTP/Chrony
(Optional)

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Red Hat Enterprise Linux 8 Using Ansible to install and manage Identity Management

376

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Display an AD user details, such as the administrator user:

$ getent passwd administrator@ad.example.com
administrator@ad.example.com:*:1450400500:1450400513:Administrator:/home/administrator
@ad.example.com:/bin/bash

Additional resources

/usr/share/ansible/roles/rhel-system-roles.ad_integration/README.md file

/usr/share/doc/rhel-system-roles/ad_integration/ directory

- name: Configure a direct integration between a RHEL system and an AD domain
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.ad_integration
 vars:
 ad_integration_realm: "domain.example.com"
 ad_integration_password: !vault | vault encrypted password
 ad_integration_manage_crypto_policies: true
 ad_integration_allow_rc4_crypto: true
 ad_integration_timesync_source: "adserver.domain.example.com"

CHAPTER 36. INTEGRATING RHEL SYSTEMS INTO AD DIRECTLY BY USING THE RHEL SYSTEM ROLE

377

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. ANSIBLE TERMINOLOGY
	CHAPTER 2. INSTALLING AN IDENTITY MANAGEMENT SERVER USING AN ANSIBLE PLAYBOOK
	2.1. ANSIBLE AND ITS ADVANTAGES FOR INSTALLING IDM
	Advantages of using Ansible to install IdM

	2.2. INSTALLING THE ANSIBLE-FREEIPA PACKAGE
	2.3. ANSIBLE ROLES LOCATION IN THE FILE SYSTEM
	2.4. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH AN INTEGRATED DNS AND AN INTEGRATED CA AS THE ROOT CA
	2.5. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH EXTERNAL DNS AND AN INTEGRATED CA AS THE ROOT CA
	2.6. DEPLOYING AN IDM SERVER WITH AN INTEGRATED CA AS THE ROOT CA USING AN ANSIBLE PLAYBOOK
	2.7. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH AN INTEGRATED DNS AND AN EXTERNAL CA AS THE ROOT CA
	2.8. SETTING THE PARAMETERS FOR A DEPLOYMENT WITH EXTERNAL DNS AND AN EXTERNAL CA AS THE ROOT CA
	2.9. DEPLOYING AN IDM SERVER WITH AN EXTERNAL CA AS THE ROOT CA USING AN ANSIBLE PLAYBOOK
	2.10. UNINSTALLING AN IDM SERVER USING AN ANSIBLE PLAYBOOK
	2.11. USING AN ANSIBLE PLAYBOOK TO UNINSTALL AN IDM SERVER EVEN IF THIS LEADS TO A DISCONNECTED TOPOLOGY
	2.12. ADDITIONAL RESOURCES

	CHAPTER 3. INSTALLING AN IDENTITY MANAGEMENT REPLICA USING AN ANSIBLE PLAYBOOK
	3.1. SPECIFYING THE BASE, SERVER AND CLIENT VARIABLES FOR INSTALLING THE IDM REPLICA
	3.2. SPECIFYING THE CREDENTIALS FOR INSTALLING THE IDM REPLICA USING AN ANSIBLE PLAYBOOK
	3.3. DEPLOYING AN IDM REPLICA USING AN ANSIBLE PLAYBOOK
	3.4. UNINSTALLING AN IDM REPLICA USING AN ANSIBLE PLAYBOOK

	CHAPTER 4. INSTALLING AN IDENTITY MANAGEMENT CLIENT USING AN ANSIBLE PLAYBOOK
	4.1. SETTING THE PARAMETERS OF THE INVENTORY FILE FOR THE AUTODISCOVERY CLIENT INSTALLATION MODE
	4.2. SETTING THE PARAMETERS OF THE INVENTORY FILE WHEN AUTODISCOVERY IS NOT POSSIBLE DURING CLIENT INSTALLATION
	4.3. AUTHORIZATION OPTIONS FOR IDM CLIENT ENROLLMENT USING AN ANSIBLE PLAYBOOK
	4.4. DEPLOYING AN IDM CLIENT USING AN ANSIBLE PLAYBOOK
	4.5. USING THE ONE-TIME PASSWORD METHOD IN ANSIBLE TO INSTALL AN IDM CLIENT
	4.6. TESTING AN IDENTITY MANAGEMENT CLIENT AFTER ANSIBLE INSTALLATION
	4.7. UNINSTALLING AN IDM CLIENT USING AN ANSIBLE PLAYBOOK

	CHAPTER 5. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS
	5.1. PREPARING A CONTROL NODE AND MANAGED NODES FOR MANAGING IDM USING ANSIBLE PLAYBOOKS
	5.2. DIFFERENT METHODS TO PROVIDE THE CREDENTIALS REQUIRED FOR ANSIBLE-FREEIPA PLAYBOOKS

	CHAPTER 6. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS
	6.1. RETRIEVING IDM CONFIGURATION USING AN ANSIBLE PLAYBOOK
	6.2. CONFIGURING THE IDM CA RENEWAL SERVER USING AN ANSIBLE PLAYBOOK
	6.3. CONFIGURING THE DEFAULT SHELL FOR IDM USERS USING AN ANSIBLE PLAYBOOK
	6.4. CONFIGURING A NETBIOS NAME FOR AN IDM DOMAIN BY USING ANSIBLE
	6.5. ENSURING THAT IDM USERS AND GROUPS HAVE SIDS BY USING ANSIBLE
	6.6. ADDITIONAL RESOURCES

	CHAPTER 7. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS
	7.1. USER LIFE CYCLE
	7.2. ENSURING THE PRESENCE OF AN IDM USER USING AN ANSIBLE PLAYBOOK
	7.3. ENSURING THE PRESENCE OF MULTIPLE IDM USERS USING ANSIBLE PLAYBOOKS
	7.4. ENSURING THE PRESENCE OF MULTIPLE IDM USERS FROM A JSON FILE USING ANSIBLE PLAYBOOKS
	7.5. ENSURING THE ABSENCE OF USERS USING ANSIBLE PLAYBOOKS
	7.6. ADDITIONAL RESOURCES

	CHAPTER 8. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS
	8.1. THE DIFFERENT GROUP TYPES IN IDM
	8.2. DIRECT AND INDIRECT GROUP MEMBERS
	8.3. ENSURING THE PRESENCE OF IDM GROUPS AND GROUP MEMBERS USING ANSIBLE PLAYBOOKS
	8.4. USING ANSIBLE TO ADD MULTIPLE IDM GROUPS IN A SINGLE TASK
	8.5. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
	8.6. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE PLAYBOOKS
	8.7. ENSURING THE ABSENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE PLAYBOOKS

	CHAPTER 9. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM
	9.1. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS PRESENT
	9.2. USING ANSIBLE TO ENSURE THAT A SPECIFIED CONDITION IS PRESENT IN AN IDM USER GROUP AUTOMEMBER RULE
	9.3. USING ANSIBLE TO ENSURE THAT A CONDITION IS ABSENT FROM AN IDM USER GROUP AUTOMEMBER RULE
	9.4. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS ABSENT
	9.5. USING ANSIBLE TO ENSURE THAT A CONDITION IS PRESENT IN AN IDM HOST GROUP AUTOMEMBER RULE

	CHAPTER 10. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM
	10.1. SELF-SERVICE ACCESS CONTROL IN IDM
	10.2. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS PRESENT
	10.3. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS ABSENT
	10.4. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE HAS SPECIFIC ATTRIBUTES
	10.5. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

	CHAPTER 11. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS
	11.1. DELEGATION RULES
	11.2. CREATING AN ANSIBLE INVENTORY FILE FOR IDM
	11.3. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS PRESENT
	11.4. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS ABSENT
	11.5. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE HAS SPECIFIC ATTRIBUTES
	11.6. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

	CHAPTER 12. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM
	12.1. PERMISSIONS IN IDM
	12.2. DEFAULT MANAGED PERMISSIONS
	12.3. PRIVILEGES IN IDM
	12.4. ROLES IN IDM
	12.5. PREDEFINED ROLES IN IDENTITY MANAGEMENT
	12.6. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE WITH PRIVILEGES IS PRESENT
	12.7. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE IS ABSENT
	12.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS ASSIGNED TO AN IDM RBAC ROLE
	12.9. USING ANSIBLE TO ENSURE THAT SPECIFIC USERS ARE NOT ASSIGNED TO AN IDM RBAC ROLE
	12.10. USING ANSIBLE TO ENSURE A SERVICE IS A MEMBER OF AN IDM RBAC ROLE
	12.11. USING ANSIBLE TO ENSURE A HOST IS A MEMBER OF AN IDM RBAC ROLE
	12.12. USING ANSIBLE TO ENSURE A HOST GROUP IS A MEMBER OF AN IDM RBAC ROLE

	CHAPTER 13. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES
	13.1. USING ANSIBLE TO ENSURE A CUSTOM IDM RBAC PRIVILEGE IS PRESENT
	13.2. USING ANSIBLE TO ENSURE MEMBER PERMISSIONS ARE PRESENT IN A CUSTOM IDM RBAC PRIVILEGE
	13.3. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE DOES NOT INCLUDE A PERMISSION
	13.4. USING ANSIBLE TO RENAME A CUSTOM IDM RBAC PRIVILEGE
	13.5. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE IS ABSENT
	13.6. ADDITIONAL RESOURCES

	CHAPTER 14. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM
	14.1. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS PRESENT
	14.2. USING ANSIBLE TO ENSURE AN RBAC PERMISSION WITH AN ATTRIBUTE IS PRESENT
	14.3. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS ABSENT
	14.4. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS A MEMBER OF AN IDM RBAC PERMISSION
	14.5. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS NOT A MEMBER OF AN IDM RBAC PERMISSION
	14.6. USING ANSIBLE TO RENAME AN IDM RBAC PERMISSION
	14.7. ADDITIONAL RESOURCES

	CHAPTER 15. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM
	15.1. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT EXISTS IN IDM
	15.2. USING ANSIBLE TO ENSURE REPLICATION AGREEMENTS EXIST BETWEEN MULTIPLE IDM REPLICAS
	15.3. USING ANSIBLE TO CHECK IF A REPLICATION AGREEMENT EXISTS BETWEEN TWO REPLICAS
	15.4. USING ANSIBLE TO VERIFY THAT A TOPOLOGY SUFFIX EXISTS IN IDM
	15.5. USING ANSIBLE TO REINITIALIZE AN IDM REPLICA
	15.6. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT IS ABSENT IN IDM
	15.7. ADDITIONAL RESOURCES

	CHAPTER 16. MANAGING IDM SERVERS BY USING ANSIBLE
	16.1. CHECKING THAT AN IDM SERVER IS PRESENT BY USING ANSIBLE
	16.2. ENSURING THAT AN IDM SERVER IS ABSENT FROM AN IDM TOPOLOGY BY USING ANSIBLE
	16.3. ENSURING THE ABSENCE OF AN IDM SERVER DESPITE HOSTING A LAST IDM SERVER ROLE
	16.4. ENSURING THAT AN IDM SERVER IS ABSENT BUT NOT NECESSARILY DISCONNECTED FROM OTHER IDM SERVERS
	16.5. ENSURING THAT AN EXISTING IDM SERVER IS HIDDEN USING AN ANSIBLE PLAYBOOK
	16.6. ENSURING THAT AN EXISTING IDM SERVER IS VISIBLE BY USING AN ANSIBLE PLAYBOOK
	16.7. ENSURING THAT AN EXISTING IDM SERVER HAS AN IDM DNS LOCATION ASSIGNED
	16.8. ENSURING THAT AN EXISTING IDM SERVER HAS NO IDM DNS LOCATION ASSIGNED

	CHAPTER 17. MANAGING HOSTS USING ANSIBLE PLAYBOOKS
	17.1. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH FQDN USING ANSIBLE PLAYBOOKS
	17.2. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH DNS INFORMATION USING ANSIBLE PLAYBOOKS
	17.3. ENSURING THE PRESENCE OF MULTIPLE IDM HOST ENTRIES WITH RANDOM PASSWORDS USING ANSIBLE PLAYBOOKS
	17.4. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH MULTIPLE IP ADDRESSES USING ANSIBLE PLAYBOOKS
	17.5. ENSURING THE ABSENCE OF AN IDM HOST ENTRY USING ANSIBLE PLAYBOOKS
	17.6. ADDITIONAL RESOURCES

	CHAPTER 18. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS
	18.1. HOST GROUPS IN IDM
	18.2. ENSURING THE PRESENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	18.3. ENSURING THE PRESENCE OF HOSTS IN IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	18.4. NESTING IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	18.5. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	18.6. ENSURING THE ABSENCE OF HOSTS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	18.7. ENSURING THE ABSENCE OF NESTED HOST GROUPS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	18.8. ENSURING THE ABSENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	18.9. ENSURING THE ABSENCE OF MEMBER MANAGERS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS

	CHAPTER 19. DEFINING IDM PASSWORD POLICIES
	19.1. WHAT IS A PASSWORD POLICY
	19.2. PASSWORD POLICIES IN IDM
	19.3. ENSURING THE PRESENCE OF A PASSWORD POLICY IN IDM USING AN ANSIBLE PLAYBOOK
	19.4. ADDITIONAL PASSWORD POLICY OPTIONS IN IDM
	19.5. APPLYING ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM GROUP
	19.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM GROUP

	CHAPTER 20. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
	20.1. SUDO ACCESS ON AN IDM CLIENT
	20.2. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE CLI
	20.3. GRANTING SUDO ACCESS TO AN AD USER ON AN IDM CLIENT USING THE CLI
	20.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE IDM WEB UI
	20.5. CREATING A SUDO RULE ON THE CLI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN IDM CLIENT
	20.6. CREATING A SUDO RULE IN THE IDM WEBUI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN IDM CLIENT
	20.7. ENABLING GSSAPI AUTHENTICATION FOR SUDO ON AN IDM CLIENT
	20.8. ENABLING GSSAPI AUTHENTICATION AND ENFORCING KERBEROS AUTHENTICATION INDICATORS FOR SUDO ON AN IDM CLIENT
	20.9. SSSD OPTIONS CONTROLLING GSSAPI AUTHENTICATION FOR PAM SERVICES
	20.10. TROUBLESHOOTING GSSAPI AUTHENTICATION FOR SUDO
	20.11. USING AN ANSIBLE PLAYBOOK TO ENSURE SUDO ACCESS FOR AN IDM USER ON AN IDM CLIENT

	CHAPTER 21. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING ANSIBLE PLAYBOOKS
	21.1. HOST-BASED ACCESS CONTROL RULES IN IDM
	21.2. ENSURING THE PRESENCE OF AN HBAC RULE IN IDM USING AN ANSIBLE PLAYBOOK

	CHAPTER 22. MANAGING IDM CERTIFICATES USING ANSIBLE
	22.1. USING ANSIBLE TO REQUEST SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
	22.2. USING ANSIBLE TO REVOKE SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
	22.3. USING ANSIBLE TO RESTORE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES
	22.4. USING ANSIBLE TO RETRIEVE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

	CHAPTER 23. VAULTS IN IDM
	23.1. VAULTS AND THEIR BENEFITS
	23.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS
	23.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS
	23.4. USER, SERVICE, AND SHARED VAULTS
	23.5. VAULT CONTAINERS
	23.6. BASIC IDM VAULT COMMANDS
	23.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

	CHAPTER 24. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS
	24.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM USING ANSIBLE
	24.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM USING ANSIBLE
	24.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM USING ANSIBLE

	CHAPTER 25. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS
	25.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT IN IDM USING ANSIBLE
	25.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING ANSIBLE
	25.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT USING ANSIBLE
	25.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING ANSIBLE
	25.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED USING ANSIBLE
	25.6. ADDITIONAL RESOURCES

	CHAPTER 26. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE
	26.1. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM USING AN ANSIBLE PLAYBOOK
	26.2. ENSURING THE PRESENCE OF MULTIPLE SERVICES IN IDM ON AN IDM CLIENT USING A SINGLE ANSIBLE TASK
	26.3. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM ON A NON-IDM CLIENT USING AN ANSIBLE PLAYBOOK
	26.4. ENSURING THE PRESENCE OF AN HTTP SERVICE ON AN IDM CLIENT WITHOUT DNS USING AN ANSIBLE PLAYBOOK
	26.5. ENSURING THE PRESENCE OF AN EXTERNALLY SIGNED CERTIFICATE IN AN IDM SERVICE ENTRY USING AN ANSIBLE PLAYBOOK
	26.6. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS, GROUPS, HOSTS, OR HOST GROUPS TO CREATE A KEYTAB OF A SERVICE
	26.7. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS, GROUPS, HOSTS, OR HOST GROUPS TO RETRIEVE A KEYTAB OF A SERVICE
	26.8. ENSURING THE PRESENCE OF A KERBEROS PRINCIPAL ALIAS OF A SERVICE USING AN ANSIBLE PLAYBOOK
	26.9. ENSURING THE ABSENCE OF AN HTTP SERVICE IN IDM USING AN ANSIBLE PLAYBOOK
	26.10. ADDITIONAL RESOURCES

	CHAPTER 27. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS
	27.1. HOW IDM ENSURES THAT GLOBAL FORWARDERS FROM /ETC/RESOLV.CONF ARE NOT REMOVED BY NETWORKMANAGER
	27.2. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	27.3. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	27.4. THE ACTION: MEMBER OPTION IN IPADNSCONFIG ANSIBLE-FREEIPA MODULES
	27.5. DNS FORWARD POLICIES IN IDM
	27.6. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT THE FORWARD FIRST POLICY IS SET IN IDM DNS GLOBAL CONFIGURATION
	27.7. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT GLOBAL FORWARDERS ARE DISABLED IN IDM DNS
	27.8. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT SYNCHRONIZATION OF FORWARD AND REVERSE LOOKUP ZONES IS DISABLED IN IDM DNS

	CHAPTER 28. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES
	28.1. SUPPORTED DNS ZONE TYPES
	28.2. CONFIGURATION ATTRIBUTES OF PRIMARY IDM DNS ZONES
	28.3. USING ANSIBLE TO CREATE A PRIMARY ZONE IN IDM DNS
	28.4. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF A PRIMARY DNS ZONE IN IDM WITH MULTIPLE VARIABLES
	28.5. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF A ZONE FOR REVERSE DNS LOOKUP WHEN AN IP ADDRESS IS GIVEN

	CHAPTER 29. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM
	29.1. DNS-BASED SERVICE DISCOVERY
	29.2. DEPLOYMENT CONSIDERATIONS FOR DNS LOCATIONS
	29.3. DNS TIME TO LIVE (TTL)
	29.4. USING ANSIBLE TO ENSURE AN IDM LOCATION IS PRESENT
	29.5. USING ANSIBLE TO ENSURE AN IDM LOCATION IS ABSENT
	29.6. ADDITIONAL RESOURCES

	CHAPTER 30. MANAGING DNS FORWARDING IN IDM
	30.1. THE TWO ROLES OF AN IDM DNS SERVER
	30.2. DNS FORWARD POLICIES IN IDM
	30.3. ADDING A GLOBAL FORWARDER IN THE IDM WEB UI
	30.4. ADDING A GLOBAL FORWARDER IN THE CLI
	30.5. ADDING A DNS FORWARD ZONE IN THE IDM WEB UI
	30.6. ADDING A DNS FORWARD ZONE IN THE CLI
	30.7. ESTABLISHING A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	30.8. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	30.9. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	30.10. ENSURING DNS GLOBAL FORWARDERS ARE DISABLED IN IDM USING ANSIBLE
	30.11. ENSURING THE PRESENCE OF A DNS FORWARD ZONE IN IDM USING ANSIBLE
	30.12. ENSURING A DNS FORWARD ZONE HAS MULTIPLE FORWARDERS IN IDM USING ANSIBLE
	30.13. ENSURING A DNS FORWARD ZONE IS DISABLED IN IDM USING ANSIBLE
	30.14. ENSURING THE ABSENCE OF A DNS FORWARD ZONE IN IDM USING ANSIBLE

	CHAPTER 31. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM
	31.1. DNS RECORDS IN IDM
	31.2. COMMON IPA DNSRECORD-* OPTIONS
	31.3. ENSURING THE PRESENCE OF A AND AAAA DNS RECORDS IN IDM USING ANSIBLE
	31.4. ENSURING THE PRESENCE OF A AND PTR DNS RECORDS IN IDM USING ANSIBLE
	31.5. ENSURING THE PRESENCE OF MULTIPLE DNS RECORDS IN IDM USING ANSIBLE
	31.6. ENSURING THE PRESENCE OF MULTIPLE CNAME RECORDS IN IDM USING ANSIBLE
	31.7. ENSURING THE PRESENCE OF AN SRV RECORD IN IDM USING ANSIBLE

	CHAPTER 32. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS
	32.1. AUTOFS AND AUTOMOUNT IN IDM
	32.2. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT IDENTITY MANAGEMENT DOMAIN
	32.3. CONFIGURING AUTOMOUNT LOCATIONS, MAPS, AND KEYS IN IDM BY USING ANSIBLE
	32.4. USING ANSIBLE TO ADD IDM USERS TO A GROUP THAT OWNS NFS SHARES
	32.5. CONFIGURING AUTOMOUNT ON AN IDM CLIENT
	32.6. VERIFYING THAT AN IDM USER CAN ACCESS NFS SHARES ON AN IDM CLIENT

	CHAPTER 33. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS
	33.1. NIS AND ITS BENEFITS
	33.2. NIS IN IDM
	33.3. NIS NETGROUPS IN IDM
	33.4. USING ANSIBLE TO ENSURE THAT A NETGROUP IS PRESENT
	33.5. USING ANSIBLE TO ENSURE THAT MEMBERS ARE PRESENT IN A NETGROUP
	33.6. USING ANSIBLE TO ENSURE THAT A MEMBER IS ABSENT FROM A NETGROUP
	33.7. USING ANSIBLE TO ENSURE THAT A NETGROUP IS ABSENT

	CHAPTER 34. USING ANSIBLE TO CONFIGURE HBAC AND SUDO RULES IN IDM
	CHAPTER 35. USING ANSIBLE TO DELEGATE AUTHENTICATION FOR IDM USERS TO EXTERNAL IDENTITY PROVIDERS
	35.1. THE BENEFITS OF CONNECTING IDM TO AN EXTERNAL IDP
	35.2. HOW IDM INCORPORATES LOGINS VIA EXTERNAL IDPS
	35.3. USING ANSIBLE TO CREATE A REFERENCE TO AN EXTERNAL IDENTITY PROVIDER
	35.4. USING ANSIBLE TO ENABLE AN IDM USER TO AUTHENTICATE VIA AN EXTERNAL IDP
	35.5. RETRIEVING AN IDM TICKET-GRANTING TICKET AS AN EXTERNAL IDP USER
	35.6. LOGGING IN TO AN IDM CLIENT VIA SSH AS AN EXTERNAL IDP USER
	35.7. THE PROVIDER OPTION IN THE IPAIDP ANSIBLE MODULE

	CHAPTER 36. INTEGRATING RHEL SYSTEMS INTO AD DIRECTLY BY USING THE RHEL SYSTEM ROLE
	36.1. THE AD_INTEGRATION RHEL SYSTEM ROLE
	36.2. CONNECTING A RHEL SYSTEM DIRECTLY TO AD BY USING THE AD_INTEGRATION RHEL SYSTEM ROLE

