
Red Hat Enterprise Linux 8

Working with vaults in Identity Management

Storing and managing sensitive data in IdM

Last Updated: 2024-08-05

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

Storing and managing sensitive data in IdM

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A vault is a secure location in Red Hat Identity Management (IdM) to store, retrieve, and share
sensitive data, such as authentication credentials for services. You can manage vaults using the
command line or Ansible Playbooks.

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. VAULTS IN IDM
1.1. VAULTS AND THEIR BENEFITS
1.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS
1.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS
1.4. USER, SERVICE, AND SHARED VAULTS
1.5. VAULT CONTAINERS
1.6. BASIC IDM VAULT COMMANDS
1.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

CHAPTER 2. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETS
2.1. STORING A SECRET IN A USER VAULT
2.2. RETRIEVING A SECRET FROM A USER VAULT
2.3. ADDITIONAL RESOURCES

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS
3.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM USING ANSIBLE
3.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM USING ANSIBLE
3.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM USING ANSIBLE

CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS
4.1. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT
4.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE INSTANCE
4.3. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED
4.4. ADDITIONAL RESOURCES

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

5.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT IN IDM USING ANSIBLE
5.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING ANSIBLE
5.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT USING ANSIBLE
5.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING ANSIBLE
5.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED USING ANSIBLE
5.6. ADDITIONAL RESOURCES

3

4
4
5
6
6
6
7
7

9
9

10
11

12
12
13
15

18
18
19

20
21

22
23
25
26
28
31

34

Table of Contents

1

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

2

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

3

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. VAULTS IN IDM
This chapter describes vaults in Identity Management (IdM). It introduces the following topics:

The concept of the vault.

The different roles associated with a vault .

The different types of vaults available in IdM based on the level of security and access control .

The different types of vaults available in IdM based on ownership .

The concept of vault containers.

The basic commands for managing vaults in IdM .

Installing the key recovery authority (KRA), which is a prerequisite for using vaults in IdM .

1.1. VAULTS AND THEIR BENEFITS

A vault is a useful feature for those Identity Management (IdM) users who want to keep all their sensitive
data stored securely but conveniently in one place. There are various types of vaults and you should
choose which vault to use based on your requirements.

A vault is a secure location in (IdM) for storing, retrieving, sharing, and recovering a secret. A secret is
security-sensitive data, usually authentication credentials, that only a limited group of people or entities
can access. For example, secrets include:

Passwords

PINs

Private SSH keys

A vault is comparable to a password manager. Just like a password manager, a vault typically requires a
user to generate and remember one primary password to unlock and access any information stored in
the vault. However, a user can also decide to have a standard vault. A standard vault does not require
the user to enter any password to access the secrets stored in the vault.

NOTE

The purpose of vaults in IdM is to store authentication credentials that allow you to
authenticate to external, non-IdM-related services.

Other important characteristics of the IdM vaults are:

Vaults are only accessible to the vault owner and those IdM users that the vault owner selects
to be the vault members. In addition, the IdM administrator has access to the vault.

If a user does not have sufficient privileges to create a vault, an IdM administrator can create the
vault and set the user as its owner.

Users and services can access the secrets stored in a vault from any machine enrolled in the IdM
domain.

One vault can only contain one secret, for example, one file. However, the file itself can contain

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

4

One vault can only contain one secret, for example, one file. However, the file itself can contain
multiple secrets such as passwords, keytabs or certificates.

NOTE

Vault is only available from the IdM command line (CLI), not from the IdM Web UI.

1.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS

Identity Management (IdM) distinguishes the following vault user types:

Vault owner

A vault owner is a user or service with basic management privileges on the vault. For example, a vault
owner can modify the properties of the vault or add new vault members.
Each vault must have at least one owner. A vault can also have multiple owners.

Vault member

A vault member is a user or service that can access a vault created by another user or service.

Vault administrator

Vault administrators have unrestricted access to all vaults and are allowed to perform all vault
operations.

NOTE

Symmetric and asymmetric vaults are protected with a password or key and apply
special access control rules (see Vault types). The administrator must meet these
rules to:

Access secrets in symmetric and asymmetric vaults.

Change or reset the vault password or key.

A vault administrator is any user with the Vault Administrators privilege. In the context of the role-
based access control (RBAC) in IdM, a privilege is a group of permissions that you can apply to a role.

Vault User

The vault user represents the user in whose container the vault is located. The Vault user
information is displayed in the output of specific commands, such as ipa vault-show:

$ ipa vault-show my_vault
 Vault name: my_vault
 Type: standard
 Owner users: user
 Vault user: user

For details on vault containers and user vaults, see Vault containers.

Additional resources

See Standard, symmetric and asymmetric vaults for details on vault types.

CHAPTER 1. VAULTS IN IDM

5

1.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS

Based on the level of security and access control, IdM classifies vaults into the following types:

Standard vaults

Vault owners and vault members can archive and retrieve the secrets without having to use a
password or key.

Symmetric vaults

Secrets in the vault are protected with a symmetric key. Vault owners and members can archive and
retrieve the secrets, but they must provide the vault password.

Asymmetric vaults

Secrets in the vault are protected with an asymmetric key. Users archive the secret using a public key
and retrieve it using a private key. Vault members can only archive secrets, while vault owners can do
both, archive and retrieve secrets.

1.4. USER, SERVICE, AND SHARED VAULTS

Based on ownership, IdM classifies vaults into several types. The table below contains information about
each type, its owner and use.

Table 1.1. IdM vaults based on ownership

Type Description Owner Note

User vault A private vault for a user A single user Any user can own one or more user
vaults if allowed by IdM administrator

Service
vault

A private vault for a
service

A single service Any service can own one or more user
vaults if allowed by IdM administrator

Shared
vault

A vault shared by
multiple users and
services

The vault administrator
who created the vault

Users and services can own one or
more user vaults if allowed by IdM
administrator. The vault administrators
other than the one that created the
vault also have full access to the vault.

1.5. VAULT CONTAINERS

A vault container is a collection of vaults. The table below lists the default vault containers that
Identity Management (IdM) provides.

Table 1.2. Default vault containers in IdM

Type Description Purpose

User container A private container for a
user

Stores user vaults for a particular user

Service container A private container for a
service

Stores service vaults for a particular service

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

6

Shared container A container for multiple
users and services

Stores vaults that can be shared by multiple users or
services

Type Description Purpose

IdM creates user and service containers for each user or service automatically when the first private
vault for the user or service is created. After the user or service is deleted, IdM removes the container
and its contents.

1.6. BASIC IDM VAULT COMMANDS

You can use the basic commands outlined below to manage Identity Management (IdM) vaults. The
table below contains a list of ipa vault-* commands with the explanation of their purpose.

NOTE

Before running any ipa vault-* command, install the Key Recovery Authority (KRA)
certificate system component on one or more of the servers in your IdM domain. For
details, see Installing the Key Recovery Authority in IdM .

Table 1.3. Basic IdM vault commands with explanations

Command Purpose

ipa help vault Displays conceptual information about IdM vaults and sample vault commands.

ipa vault-add --help,
ipa vault-find --help

Adding the --help option to a specific ipa vault-* command displays the options
and detailed help available for that command.

ipa vault-show
user_vault --user
idm_user

When accessing a vault as a vault member, you must specify the vault owner. If
you do not specify the vault owner, IdM informs you that it did not find the vault:

[admin@server ~]$ ipa vault-show user_vault
ipa: ERROR: user_vault: vault not found

ipa vault-show
shared_vault --
shared

When accessing a shared vault, you must specify that the vault you want to
access is a shared vault. Otherwise, IdM informs you it did not find the vault:

[admin@server ~]$ ipa vault-show shared_vault
ipa: ERROR: shared_vault: vault not found

1.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

Follow this procedure to enable vaults in Identity Management (IdM) by installing the Key Recovery
Authority (KRA) Certificate System (CS) component on a specific IdM server.

Prerequisites

You are logged in as root on the IdM server.

CHAPTER 1. VAULTS IN IDM

7

An IdM certificate authority is installed on the IdM server.

You have the Directory Manager credentials.

Procedure

Install the KRA:

ipa-kra-install

IMPORTANT

You can install the first KRA of an IdM cluster on a hidden replica. However, installing
additional KRAs requires temporarily activating the hidden replica before you install the
KRA clone on a non-hidden replica. Then you can hide the originally hidden replica again.

NOTE

To make the vault service highly available and resilient, install the KRA on two IdM servers
or more. Maintaining multiple KRA servers prevents data loss.

Additional resources

See Demoting or promoting hidden replicas .

See The hidden replica mode.

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/demoting-or-promoting-hidden-replicas_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#the-hidden-replica-mode_planning-the-replica-topology

CHAPTER 2. USING IDM USER VAULTS: STORING AND
RETRIEVING SECRETS

This chapter describes how to use user vaults in Identity Management. Specifically, it describes how a
user can store a secret in an IdM vault, and how the user can retrieve it. The user can do the storing and
the retrieving from two different IdM clients.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

2.1. STORING A SECRET IN A USER VAULT

Follow this procedure to create a vault container with one or more private vaults to securely store files
with sensitive information. In the example used in the procedure below, the idm_user user creates a
vault of the standard type. The standard vault type ensures that idm_user will not be required to
authenticate when accessing the file. idm_user will be able to retrieve the file from any IdM client to
which the user is logged in.

In the procedure:

idm_user is the user who wants to create the vault.

my_vault is the vault used to store the user’s certificate.

The vault type is standard, so that accessing the archived certificate does not require the user
to provide a vault password.

secret.txt is the file containing the certificate that the user wants to store in the vault.

Prerequisites

You know the password of idm_user.

You are logged in to a host that is an IdM client.

Procedure

1. Obtain the Kerberos ticket granting ticket (TGT) for idm_user:

$ kinit idm_user

2. Use the ipa vault-add command with the --type standard option to create a standard vault:

$ ipa vault-add my_vault --type standard

Added vault "my_vault"

 Vault name: my_vault
 Type: standard
 Owner users: idm_user
 Vault user: idm_user

CHAPTER 2. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETS

9

IMPORTANT

Make sure the first user vault for a user is created by the same user. Creating the
first vault for a user also creates the user’s vault container. The agent of the
creation becomes the owner of the vault container.

For example, if another user, such as admin, creates the first user vault for user1,
the owner of the user’s vault container will also be admin, and user1 will be
unable to access the user vault or create new user vaults.

3. Use the ipa vault-archive command with the --in option to archive the secret.txt file into the
vault:

$ ipa vault-archive my_vault --in secret.txt

Archived data into vault "my_vault"

2.2. RETRIEVING A SECRET FROM A USER VAULT

As an Identity Management (IdM), you can retrieve a secret from your user private vault onto any IdM
client to which you are logged in.

Follow this procedure to retrieve, as an IdM user named idm_user, a secret from the user private vault
named my_vault onto idm_client.idm.example.com.

Prerequisites

idm_user is the owner of my_vault.

idm_user has archived a secret in the vault .

my_vault is a standard vault, which means that idm_user does not have to enter any password
to access the contents of the vault.

Procedure

1. SSH to idm_client as idm_user:

$ ssh idm_user@idm_client.idm.example.com

2. Log in as idm_user:

$ kinit user

3. Use the ipa vault-retrieve --out command with the --out option to retrieve the contents of the
vault and save them into the secret_exported.txt file.

$ ipa vault-retrieve my_vault --out secret_exported.txt

Retrieved data from vault "my_vault"

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

10

2.3. ADDITIONAL RESOURCES

See Using Ansible to manage IdM service vaults: storing and retrieving secrets .

CHAPTER 2. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETS

11

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-ansible-to-manage-idm-service-vaults-storing-and-retrieving-secrets_configuring-and-managing-idm

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS:
STORING AND RETRIEVING SECRETS

This chapter describes how to manage user vaults in Identity Management using the Ansible vault
module. Specifically, it describes how a user can use Ansible playbooks to perform the following three
consecutive actions:

Create a user vault in IdM .

Store a secret in the vault .

Retrieve a secret from the vault .

The user can do the storing and the retrieving from two different IdM clients.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

3.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to create a vault container with one or more private
vaults to securely store sensitive information. In the example used in the procedure below, the idm_user
user creates a vault of the standard type named my_vault. The standard vault type ensures that
idm_user will not be required to authenticate when accessing the file. idm_user will be able to retrieve
the file from any IdM client to which the user is logged in.

Prerequisites

You have installed the ansible-freeipa package on the Ansible controller, that is the host on
which you execute the steps in the procedure.

You know the password of idm_user.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Create an inventory file, for example inventory.file:

$ touch inventory.file

3. Open inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

4. Make a copy of the ensure-standard-vault-is-present.yml Ansible playbook file. For example:

$ cp ensure-standard-vault-is-present.yml ensure-standard-vault-is-present-copy.yml

5. Open the ensure-standard-vault-is-present-copy.yml file for editing.

6. Adapt the file by setting the following variables in the ipavault task section:

Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the vault_type variable to standard.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_principal: idm_user
 ipaadmin_password: idm_user_password
 user: idm_user
 name: my_vault
 vault_type: standard

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
standard-vault-is-present-copy.yml

3.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to store sensitive information in a personal vault. In the
example used, the idm_user user archives a file with sensitive information named password.txt in a
vault named my_vault.

Prerequisites

You have installed the ansible-freeipa package on the Ansible controller, that is the host on
which you execute the steps in the procedure.

You know the password of idm_user.

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

idm_user is the owner, or at least a member user of my_vault.

You have access to password.txt, the secret that you want to archive in my_vault.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the data-archive-in-symmetric-vault.yml Ansible playbook file but replace
"symmetric" by "standard". For example:

$ cp data-archive-in-symmetric-vault.yml data-archive-in-standard-vault-copy.yml

4. Open the data-archive-in-standard-vault-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipavault task section:

Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the in variable to the full path to the file with sensitive information.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_principal: idm_user
 ipaadmin_password: idm_user_password
 user: idm_user
 name: my_vault
 in: /usr/share/doc/ansible-freeipa/playbooks/vault/password.txt
 action: member

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

14

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file data-
archive-in-standard-vault-copy.yml

3.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to retrieve a secret from the user personal vault. In the
example used in the procedure below, the idm_user user retrieves a file with sensitive data from a vault
of the standard type named my_vault onto an IdM client named host01. idm_user does not have to
authenticate when accessing the file. idm_user can use Ansible to retrieve the file from any IdM client on
which Ansible is installed.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the password of idm_user.

idm_user is the owner of my_vault.

idm_user has stored a secret in my_vault.

Ansible can write into the directory on the IdM host into which you want to retrieve the secret.

idm_user can read from the directory on the IdM host into which you want to retrieve the secret.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and mention, in a clearly defined section, the IdM client onto which you
want to retrieve the secret. For example, to instruct Ansible to retrieve the secret onto
host01.idm.example.com, enter:

[ipahost]
host01.idm.example.com

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Make a copy of the retrive-data-symmetric-vault.yml Ansible playbook file. Replace
"symmetric" with "standard". For example:

$ cp retrive-data-symmetric-vault.yml retrieve-data-standard-vault.yml-copy.yml

4. Open the retrieve-data-standard-vault.yml-copy.yml file for editing.

5. Adapt the file by setting the hosts variable to ipahost.

6. Adapt the file by setting the following variables in the ipavault task section:

Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the out variable to the full path of the file into which you want to export the secret.

Set the state variable to retrieved.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipahost
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_principal: idm_user
 ipaadmin_password: idm_user_password
 user: idm_user
 name: my_vault
 out: /tmp/password_exported.txt
 state: retrieved

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file retrieve-
data-standard-vault.yml-copy.yml

Verification

1. SSH to host01 as user01:

$ ssh user01@host01.idm.example.com

2. View the file specified by the out variable in the Ansible playbook file:

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

16

$ vim /tmp/password_exported.txt

You can now see the exported secret.

For more information about using Ansible to manage IdM vaults and user secrets and about
playbook variables, see the README-vault.md Markdown file available in the
/usr/share/doc/ansible-freeipa/ directory and the sample playbooks available in the
/usr/share/doc/ansible-freeipa/playbooks/vault/ directory.

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

17

CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING
AND RETRIEVING SECRETS

This section shows how an administrator can use a service vault in Identity Management (IdM) to
securely store a service secret in a centralized location. The vault used in the example is asymmetric,
which means that to use it, the administrator needs to perform the following steps:

1. Generate a private key using, for example, the openssl utility.

2. Generate a public key based on the private key.

The service secret is encrypted with the public key when an administrator archives it into the vault.
Afterwards, a service instance hosted on a specific machine in the domain retrieves the secret using the
private key. Only the service and the administrator are allowed to access the secret.

If the secret is compromised, the administrator can replace it in the service vault and then redistribute it
to those individual service instances that have not been compromised.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

This section includes these procedure

1. Storing an IdM service secret in an asymmetric vault

2. Retrieving a service secret for an IdM service instance

3. Changing an IdM service vault secret when compromised

Terminology used

In the procedures:

admin is the administrator who manages the service password.

private-key-to-an-externally-signed-certificate.pem is the file containing the service secret,
in this case a private key to an externally signed certificate. Do not confuse this private key with
the private key used to retrieve the secret from the vault.

secret_vault is the vault created for the service.

HTTP/webserver.idm.example.com is the service whose secret is being archived.

service-public.pem is the service public key used to encrypt the password stored in
password_vault.

service-private.pem is the service private key used to decrypt the password stored in
secret_vault.

4.1. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT

Follow this procedure to create an asymmetric vault and use it to archive a service secret.

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_vaults_in_identity_management/vaults-in-idm_working-with-vaults-in-idm

Prerequisites

You know the IdM administrator password.

Procedure

1. Log in as the administrator:

$ kinit admin

2. Obtain the public key of the service instance. For example, using the openssl utility:

a. Generate the service-private.pem private key.

$ openssl genrsa -out service-private.pem 2048
Generating RSA private key, 2048 bit long modulus
.+++
...+++
e is 65537 (0x10001)

b. Generate the service-public.pem public key based on the private key.

$ openssl rsa -in service-private.pem -out service-public.pem -pubout
writing RSA key

3. Create an asymmetric vault as the service instance vault, and provide the public key:

$ ipa vault-add secret_vault --service HTTP/webserver.idm.example.com --type
asymmetric --public-key-file service-public.pem

Added vault "secret_vault"

Vault name: secret_vault
Type: asymmetric
Public key: LS0tLS1C...S0tLS0tCg==
Owner users: admin
Vault service: HTTP/webserver.idm.example.com@IDM.EXAMPLE.COM

The password archived into the vault will be protected with the key.

4. Archive the service secret into the service vault:

$ ipa vault-archive secret_vault --service HTTP/webserver.idm.example.com --in
private-key-to-an-externally-signed-certificate.pem

Archived data into vault "secret_vault"

This encrypts the secret with the service instance public key.

Repeat these steps for every service instance that requires the secret. Create a new asymmetric vault
for each service instance.

4.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE INSTANCE

CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS

19

Follow this procedure to use a service instance to retrieve the service vault secret using a locally-stored
service private key.

Prerequisites

You have access to the keytab of the service principal owning the service vault, for example
HTTP/webserver.idm.example.com.

You have created an asymmetric vault and archived a secret in the vault .

You have access to the private key used to retrieve the service vault secret.

Procedure

1. Log in as the administrator:

$ kinit admin

2. Obtain a Kerberos ticket for the service:

kinit HTTP/webserver.idm.example.com -k -t /etc/httpd/conf/ipa.keytab

3. Retrieve the service vault password:

$ ipa vault-retrieve secret_vault --service HTTP/webserver.idm.example.com --private-
key-file service-private.pem --out secret.txt

Retrieved data from vault "secret_vault"

4.3. CHANGING AN IDM SERVICE VAULT SECRET WHEN
COMPROMISED

Follow this procedure to isolate a compromised service instance by changing the service vault secret.

Prerequisites

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

You have generated the new secret and have access to it, for example in the new-private-key-
to-an-externally-signed-certificate.pem file.

Procedure

1. Archive the new secret into the service instance vault:

$ ipa vault-archive secret_vault --service HTTP/webserver.idm.example.com --in new-
private-key-to-an-externally-signed-certificate.pem

Archived data into vault "secret_vault"

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

20

This overwrites the current secret stored in the vault.

2. Retrieve the new secret on non-compromised service instances only. For details, see Retrieving
a service secret for an IdM service instance.

4.4. ADDITIONAL RESOURCES

See Using Ansible to manage IdM service vaults: storing and retrieving secrets .

CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-ansible-to-manage-idm-service-vaults-storing-and-retrieving-secrets_configuring-and-managing-idm

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE
VAULTS: STORING AND RETRIEVING SECRETS

This section shows how an administrator can use the ansible-freeipa vault module to securely store a
service secret in a centralized location. The vault used in the example is asymmetric, which means that
to use it, the administrator needs to perform the following steps:

1. Generate a private key using, for example, the openssl utility.

2. Generate a public key based on the private key.

The service secret is encrypted with the public key when an administrator archives it into the vault.
Afterwards, a service instance hosted on a specific machine in the domain retrieves the secret using the
private key. Only the service and the administrator are allowed to access the secret.

If the secret is compromised, the administrator can replace it in the service vault and then redistribute it
to those individual service instances that have not been compromised.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

This section includes these procedures:

Ensuring the presence of an asymmetric service vault in IdM using Ansible

Storing an IdM service secret in an asymmetric vault using Ansible

Retrieving a service secret for an IdM service using Ansible

Changing an IdM service vault secret when compromised using Ansible

In the procedures:

admin is the administrator who manages the service password.

private-key-to-an-externally-signed-certificate.pem is the file containing the service secret,
in this case a private key to an externally signed certificate. Do not confuse this private key with
the private key used to retrieve the secret from the vault.

secret_vault is the vault created to store the service secret.

HTTP/webserver1.idm.example.com is the service that is the owner of the vault.

HTTP/webserver2.idm.example.com and HTTP/webserver3.idm.example.com are the vault
member services.

service-public.pem is the service public key used to encrypt the password stored in
password_vault.

service-private.pem is the service private key used to decrypt the password stored in
secret_vault.

5.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#vaults-in-idm_configuring-and-managing-idm

5.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT
IN IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to create a service vault container with one or more
private vaults to securely store sensitive information. In the example used in the procedure below, the
administrator creates an asymmetric vault named secret_vault. This ensures that the vault members
have to authenticate using a private key to retrieve the secret in the vault. The vault members will be
able to retrieve the file from any IdM client.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Obtain the public key of the service instance. For example, using the openssl utility:

a. Generate the service-private.pem private key.

$ openssl genrsa -out service-private.pem 2048
Generating RSA private key, 2048 bit long modulus
.+++
...+++
e is 65537 (0x10001)

b. Generate the service-public.pem public key based on the private key.

$ openssl rsa -in service-private.pem -out service-public.pem -pubout
writing RSA key

3. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

4. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[ipaserver]
server.idm.example.com

5. Make a copy of the ensure-asymmetric-vault-is-present.yml Ansible playbook file. For
example:

$ cp ensure-asymmetric-vault-is-present.yml ensure-asymmetric-service-vault-is-
present-copy.yml

6. Open the ensure-asymmetric-vault-is-present-copy.yml file for editing.

7. Add a task that copies the service-public.pem public key from the Ansible controller to the
server.idm.example.com server.

8. Modify the rest of the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Define the name of the vault using the name variable, for example secret_vault.

Set the vault_type variable to asymmetric.

Set the service variable to the principal of the service that owns the vault, for example
HTTP/webserver1.idm.example.com.

Set the public_key_file to the location of your public key.
This is the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Copy public key to ipaserver.
 copy:
 src: /path/to/service-public.pem
 dest: /usr/share/doc/ansible-freeipa/playbooks/vault/service-public.pem
 mode: 0600
 - name: Add data to vault, from a LOCAL file.
 ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 vault_type: asymmetric
 service: HTTP/webserver1.idm.example.com
 public_key_file: /usr/share/doc/ansible-freeipa/playbooks/vault/service-public.pem

9. Save the file.

10. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
asymmetric-service-vault-is-present-copy.yml

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

24

5.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING
ANSIBLE

Follow this procedure to use an Ansible playbook to add member services to a service vault so that they
can all retrieve the secret stored in the vault. In the example used in the procedure below, the IdM
administrator adds the HTTP/webserver2.idm.example.com and
HTTP/webserver3.idm.example.com service principals to the secret_vault vault that is owned by
HTTP/webserver1.idm.example.com.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

3. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

4. Make a copy of the data-archive-in-asymmetric-vault.yml Ansible playbook file. For example:

$ cp data-archive-in-asymmetric-vault.yml add-services-to-an-asymmetric-vault.yml

5. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Define the services that you want to have access to the vault secret using the services
variable.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 services:
 - HTTP/webserver2.idm.example.com
 - HTTP/webserver3.idm.example.com
 action: member

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file add-
services-to-an-asymmetric-vault.yml

5.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT
USING ANSIBLE

Follow this procedure to use an Ansible playbook to store a secret in a service vault so that it can be later
retrieved by the service. In the example used in the procedure below, the administrator stores a PEM file
with the secret in an asymmetric vault named secret_vault. This ensures that the service will have to
authenticate using a private key to retrieve the secret from the vault. The vault members will be able to
retrieve the file from any IdM client.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

The secret is stored locally on the Ansible controller, for example in the
/usr/share/doc/ansible-freeipa/playbooks/vault/private-key-to-an-externally-signed-
certificate.pem file.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

3. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

4. Make a copy of the data-archive-in-asymmetric-vault.yml Ansible playbook file. For example:

$ cp data-archive-in-asymmetric-vault.yml data-archive-in-asymmetric-vault-copy.yml

5. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Set the in variable to "{{ lookup('file', 'private-key-to-an-externally-signed-
certificate.pem') | b64encode }}". This ensures that Ansible retrieves the file with the
private key from the working directory on the Ansible controller rather than from the IdM
server.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

27

 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 in: "{{ lookup('file', 'private-key-to-an-externally-signed-certificate.pem') | b64encode }}"
 action: member

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file data-
archive-in-asymmetric-vault-copy.yml

5.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING
ANSIBLE

Follow this procedure to use an Ansible playbook to retrieve a secret from a service vault on behalf of
the service. In the example used in the procedure below, running the playbook retrieves a PEM file with
the secret from an asymmetric vault named secret_vault, and stores it in the specified location on all the
hosts listed in the Ansible inventory file as ipaservers.

The services authenticate to IdM using keytabs, and they authenticate to the vault using a private key.
You can retrieve the file on behalf of the service from any IdM client on which ansible-freeipa is
installed.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

You have archived the secret in the vault .

You have stored the private key used to retrieve the service vault secret in the location
specified by the private_key_file variable on the Ansible controller.

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

3. Open your inventory file and define the following hosts:

Define your IdM server in the [ipaserver] section.

Define the hosts onto which you want to retrieve the secret in the [webservers] section.
For example, to instruct Ansible to retrieve the secret to webserver1.idm.example.com,
webserver2.idm.example.com, and webserver3.idm.example.com, enter:

[ipaserver]
server.idm.example.com

[webservers]
webserver1.idm.example.com
webserver2.idm.example.com
webserver3.idm.example.com

4. Make a copy of the retrieve-data-asymmetric-vault.yml Ansible playbook file. For example:

$ cp retrieve-data-asymmetric-vault.yml retrieve-data-asymmetric-vault-copy.yml

5. Open the retrieve-data-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Set the private_key_file variable to the location of the private key used to retrieve the
service vault secret.

Set the out variable to the location on the IdM server where you want to retrieve the
private-key-to-an-externally-signed-certificate.pem secret, for example the current
working directory.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Retrieve data from vault
 hosts: ipaserver
 become: no

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

29

 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Retrieve data from the service vault
 ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 vault_type: asymmetric
 private_key: "{{ lookup('file', 'service-private.pem') | b64encode }}"
 out: private-key-to-an-externally-signed-certificate.pem
 state: retrieved

7. Add a section to the playbook that retrieves the data file from the IdM server to the Ansible
controller:

- name: Retrieve data from vault
 hosts: ipaserver
 become: no
 gather_facts: false
 tasks:
[...]
 - name: Retrieve data file
 fetch:
 src: private-key-to-an-externally-signed-certificate.pem
 dest: ./
 flat: true
 mode: 0600

8. Add a section to the playbook that transfers the retrieved private-key-to-an-externally-
signed-certificate.pem file from the Ansible controller on to the webservers listed in the
webservers section of the inventory file:

- name: Send data file to webservers
 become: no
 gather_facts: no
 hosts: webservers
 tasks:
 - name: Send data to webservers
 copy:
 src: private-key-to-an-externally-signed-certificate.pem
 dest: /etc/pki/tls/private/httpd.key
 mode: 0444

9. Save the file.

10. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file retrieve-
data-asymmetric-vault-copy.yml

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

30

5.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN
COMPROMISED USING ANSIBLE

Follow this procedure to reuse an Ansible playbook to change the secret stored in a service vault when a
service instance has been compromised. The scenario in the following example assumes that on
webserver3.idm.example.com, the retrieved secret has been compromised, but not the key to the
asymmetric vault storing the secret. In the example, the administrator reuses the Ansible playbooks used
when storing a secret in an asymmetric vault and retrieving a secret from the asymmetric vault onto IdM
hosts. At the start of the procedure, the IdM administrator stores a new PEM file with a new secret in the
asymmetric vault, adapts the inventory file so as not to retrieve the new secret on to the compromised
web server, webserver3.idm.example.com, and then re-runs the two procedures.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

You have generated a new httpd key for the web services running on IdM hosts to replace the
compromised old key.

The new httpd key is stored locally on the Ansible controller, for example in the
/usr/share/doc/ansible-freeipa/playbooks/vault/private-key-to-an-externally-signed-
certificate.pem file.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and make sure that the following hosts are defined correctly:

The IdM server in the [ipaserver] section.

The hosts onto which you want to retrieve the secret in the [webservers] section. For
example, to instruct Ansible to retrieve the secret to webserver1.idm.example.com and
webserver2.idm.example.com, enter:

[ipaserver]
server.idm.example.com

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

31

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[webservers]
webserver1.idm.example.com
webserver2.idm.example.com

IMPORTANT

Make sure that the list does not contain the compromised webserver, in the
current example webserver3.idm.example.com.

3. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

4. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver.idm.example.com.

Set the in variable to "{{ lookup('file', 'new-private-key-to-an-externally-signed-
certificate.pem') | b64encode }}". This ensures that Ansible retrieves the file with the
private key from the working directory on the Ansible controller rather than from the IdM
server.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver.idm.example.com
 in: "{{ lookup('file', 'new-private-key-to-an-externally-signed-certificate.pem') | b64encode
}}"
 action: member

5. Save the file.

6. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file data-
archive-in-asymmetric-vault-copy.yml

7. Open the retrieve-data-asymmetric-vault-copy.yml file for editing.

8. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to your IdM administrator password.

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

32

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Set the private_key_file variable to the location of the private key used to retrieve the
service vault secret.

Set the out variable to the location on the IdM server where you want to retrieve the new-
private-key-to-an-externally-signed-certificate.pem secret, for example the current
working directory.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Retrieve data from vault
 hosts: ipaserver
 become: no
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Retrieve data from the service vault
 ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 vault_type: asymmetric
 private_key: "{{ lookup('file', 'service-private.pem') | b64encode }}"
 out: new-private-key-to-an-externally-signed-certificate.pem
 state: retrieved

9. Add a section to the playbook that retrieves the data file from the IdM server to the Ansible
controller:

- name: Retrieve data from vault
 hosts: ipaserver
 become: true
 gather_facts: false
 tasks:
[...]
 - name: Retrieve data file
 fetch:
 src: new-private-key-to-an-externally-signed-certificate.pem
 dest: ./
 flat: true
 mode: 0600

10. Add a section to the playbook that transfers the retrieved new-private-key-to-an-externally-
signed-certificate.pem file from the Ansible controller on to the webservers listed in the
webservers section of the inventory file:

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

33

- name: Send data file to webservers
 become: true
 gather_facts: no
 hosts: webservers
 tasks:
 - name: Send data to webservers
 copy:
 src: new-private-key-to-an-externally-signed-certificate.pem
 dest: /etc/pki/tls/private/httpd.key
 mode: 0444

11. Save the file.

12. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file retrieve-
data-asymmetric-vault-copy.yml

5.6. ADDITIONAL RESOURCES

See the README-vault.md Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/vault/ directory.

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

34

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. VAULTS IN IDM
	1.1. VAULTS AND THEIR BENEFITS
	1.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS
	1.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS
	1.4. USER, SERVICE, AND SHARED VAULTS
	1.5. VAULT CONTAINERS
	1.6. BASIC IDM VAULT COMMANDS
	1.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

	CHAPTER 2. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETS
	2.1. STORING A SECRET IN A USER VAULT
	2.2. RETRIEVING A SECRET FROM A USER VAULT
	2.3. ADDITIONAL RESOURCES

	CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS
	3.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM USING ANSIBLE
	3.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM USING ANSIBLE
	3.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM USING ANSIBLE

	CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS
	4.1. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT
	4.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE INSTANCE
	4.3. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED
	4.4. ADDITIONAL RESOURCES

	CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS
	5.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT IN IDM USING ANSIBLE
	5.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING ANSIBLE
	5.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT USING ANSIBLE
	5.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING ANSIBLE
	5.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED USING ANSIBLE
	5.6. ADDITIONAL RESOURCES

