
Red Hat Enterprise Linux 9

Packaging and distributing software

Packaging software by using the RPM package management system

Last Updated: 2024-08-20

Red Hat Enterprise Linux 9 Packaging and distributing software

Packaging software by using the RPM package management system

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Package software into an RPM package by using the RPM package manager. Prepare source code
for packaging, package software, and investigate advanced packaging scenarios, such as packaging
Python projects or RubyGems into RPM packages.

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO RPM
1.1. RPM PACKAGES
1.2. LISTING RPM PACKAGING UTILITIES

CHAPTER 2. CREATING SOFTWARE FOR RPM PACKAGING
2.1. WHAT IS SOURCE CODE
2.2. METHODS OF CREATING SOFTWARE

2.2.1. Natively compiled software
2.2.2. Interpreted software

2.3. BUILDING SOFTWARE FROM SOURCE
2.3.1. Building software from natively compiled code

2.3.1.1. Manually building a sample C program
2.3.1.2. Setting up automated building for a sample C program

2.3.2. Interpreting source code
2.3.2.1. Byte-compiling a sample Python program
2.3.2.2. Raw-interpreting a sample Bash program

CHAPTER 3. PREPARING SOFTWARE FOR RPM PACKAGING
3.1. PATCHING SOFTWARE

3.1.1. Creating a patch file for a sample C program
3.1.2. Patching a sample C program

3.2. CREATING A LICENSE FILE
3.3. CREATING A SOURCE CODE ARCHIVE FOR DISTRIBUTION

3.3.1. Creating a source code archive for a sample Bash program
3.3.2. Creating a source code archive for a sample Python program
3.3.3. Creating a source code archive for a sample C program

CHAPTER 4. PACKAGING SOFTWARE
4.1. SETTING UP RPM PACKAGING WORKSPACE

4.1.1. Configuring RPM packaging workspace
4.1.2. RPM packaging workspace directories

4.2. ABOUT SPEC FILES
4.2.1. Preamble items
4.2.2. Body items
4.2.3. Advanced items

4.3. BUILDROOTS
4.4. RPM MACROS
4.5. WORKING WITH SPEC FILES

4.5.1. Creating a new spec file for sample Bash, Python, and C programs
4.5.2. Modifying an original spec file
4.5.3. An example spec file for a sample Bash program
4.5.4. An example SPEC file for a program written in Python
4.5.5. An example spec file for a sample C program

4.6. BUILDING RPMS
4.6.1. Building source RPMs
4.6.2. Rebuilding a binary RPM from a source RPM
4.6.3. Building a binary RPM from the spec file

4.7. CHECKING RPMS FOR COMMON ERRORS
4.7.1. Checking a sample Bash program for common errors

4.7.1.1. Checking the bello spec file for common errors

5

6
6
7

8
8
8
9
9
9

10
10
10
11

12
12

14
14
14
16
16
17
17
18
19

21
21
21
21
22
22
24
25
26
26
26
27
27
29
30
32
33
34
35
36
37
37
37

Table of Contents

1

. .

4.7.1.2. Checking the bello binary RPM for common errors
4.7.2. Checking a sample Python program for common errors

4.7.2.1. Checking the pello spec file for common errors
4.7.2.2. Checking the pello binary RPM for common errors

4.7.3. Checking a sample C program for common errors
4.7.3.1. Checking the cello spec file for common errors
4.7.3.2. Checking the cello binary RPM for common errors

4.8. LOGGING RPM ACTIVITY TO SYSLOG
4.9. EXTRACTING RPM CONTENT

CHAPTER 5. ADVANCED TOPICS
5.1. SIGNING RPM PACKAGES

5.1.1. Creating a GPG key
5.1.2. Configuring RPM to sign a package
5.1.3. Adding a signature to an RPM package

5.2. MORE ON MACROS
5.2.1. Defining your own macros
5.2.2. Using the %setup macro

5.2.2.1. Using the %setup -q macro
5.2.2.2. Using the %setup -n macro
5.2.2.3. Using the %setup -c macro
5.2.2.4. Using the %setup -D and %setup -T macros
5.2.2.5. Using the %setup -a and %setup -b macros

5.2.3. Common RPM macros in the %files section
5.2.4. Displaying the built-in macros
5.2.5. RPM distribution macros
5.2.6. Creating custom macros

5.3. EPOCH, SCRIPTLETS AND TRIGGERS
5.3.1. The Epoch directive
5.3.2. Scriptlets directives
5.3.3. Turning off a scriptlet execution
5.3.4. Scriptlets macros
5.3.5. The Triggers directives
5.3.6. Using non-shell scripts in a spec file

5.4. RPM CONDITIONALS
5.4.1. RPM conditionals syntax
5.4.2. The %if conditionals
5.4.3. Specialized variants of %if conditionals

5.5. PACKAGING PYTHON 3 RPMS
5.5.1. SPEC file description for a Python package
5.5.2. Common macros for Python 3 RPMs
5.5.3. Using automatically generated dependencies for Python RPMs

5.6. HANDLING INTERPRETER DIRECTIVES IN PYTHON SCRIPTS
5.6.1. Modifying interpreter directives in Python scripts

5.7. RUBYGEMS PACKAGES
5.7.1. What RubyGems are
5.7.2. How RubyGems relate to RPM
5.7.3. Creating RPM packages from RubyGems packages

5.7.3.1. RubyGems spec file conventions
5.7.3.2. RubyGems macros
5.7.3.3. RubyGems spec file example
5.7.3.4. Converting RubyGems packages to RPM spec files with gem2rpm

5.7.3.4.1. Installing gem2rpm

38
38
38
39
40
40
40
41
41

43
43
43
43
44
44
44
45
46
46
46
46
46
47
48
48
48
49
49
50
50
51
52
53
53
54
54
55
55
56
58
59
60
60
61
61
61

62
62
62
63
64
65

Red Hat Enterprise Linux 9 Packaging and distributing software

2

. .

. .

5.7.3.4.2. Displaying all options of gem2rpm
5.7.3.4.3. Using gem2rpm to convert RubyGems packages to RPM spec files
5.7.3.4.4. gem2rpm templates
5.7.3.4.5. Listing available gem2rpm templates
5.7.3.4.6. Editing gem2rpm templates

5.8. HOW TO HANDLE RPM PACKAGES WITH PERLS SCRIPTS
5.8.1. Common Perl-related dependencies
5.8.2. Using a specific Perl module
5.8.3. Limiting a package to a specific Perl version
5.8.4. Ensuring that a package uses the correct Perl interpreter

CHAPTER 6. NEW FEATURES IN RHEL 9
6.1. DYNAMIC BUILD DEPENDENCIES
6.2. IMPROVED PATCH DECLARATION

6.2.1. Optional automatic patch and source numbering
6.2.2. %patchlist and %sourcelist sections
6.2.3. %autopatch now accepts patch ranges

6.3. OTHER FEATURES

CHAPTER 7. ADDITIONAL RESOURCES

65
65
65
66
66
67
67
67
67
68

69
69
69
69
69
70
70

71

Table of Contents

3

Red Hat Enterprise Linux 9 Packaging and distributing software

4

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. INTRODUCTION TO RPM
The RPM Package Manager (RPM) is a package management system that runs on Red Hat
Enterprise Linux (RHEL), CentOS, and Fedora. You can use RPM to distribute, manage, and update
software that you create for any of these operating systems.

The RPM package management system has the following advantages over distributing software in
conventional archive files:

RPM manages software in the form of packages that you can install, update, or remove
independently of each other, which makes the maintenance of an operating system easier.

RPM simplifies the distribution of software because RPM packages are standalone binary files,
similar to compressed archives. These packages are built for a specific operating system and
hardware architecture. RPMs contain files such as compiled executables and libraries that are
placed into the appropriate paths on the filesystem when the package is installed.

With RPM, you can perform the following tasks:

Install, upgrade, and remove packaged software.

Query detailed information about packaged software.

Verify the integrity of packaged software.

Build your own packages from software sources and complete build instructions.

Digitally sign your packages by using the GNU Privacy Guard (GPG) utility.

Publish your packages in a DNF repository.

In Red Hat Enterprise Linux, RPM is fully integrated into the higher-level package management
software, such as DNF or PackageKit. Although RPM provides its own command-line interface, most
users need to interact with RPM only through this software. However, when building RPM packages, you
must use the RPM utilities such as rpmbuild(8).

1.1. RPM PACKAGES

An RPM package consists of an archive of files and metadata used to install and erase these files.
Specifically, the RPM package contains the following parts:

GPG signature

The GPG signature is used to verify the integrity of the package.

Header (package metadata)

The RPM package manager uses this metadata to determine package dependencies, where to install
files, and other information.

Payload

The payload is a cpio archive that contains files to install to the system.

There are two types of RPM packages. Both types share the file format and tooling, but have different
contents and serve different purposes:

Source RPM (SRPM)

An SRPM contains source code and a spec file, which describes how to build the source code

Red Hat Enterprise Linux 9 Packaging and distributing software

6

An SRPM contains source code and a spec file, which describes how to build the source code
into a binary RPM. Optionally, the SRPM can contain patches to source code.

Binary RPM

A binary RPM contains the binaries built from the sources and patches.

1.2. LISTING RPM PACKAGING UTILITIES

In addition to the rpmbuild(8) program for building packages, RPM provides other utilities to make the
process of creating packages easier. You can find these programs in the rpmdevtools package.

Prerequisites

The rpmdevtools package has been installed:

dnf install rpmdevtools

Procedure

Use one of the following methods to list RPM packaging utilities:

To list certain utilities provided by the rpmdevtools package and their short descriptions,
enter:

$ rpm -qi rpmdevtools

To list all utilities, enter:

$ rpm -ql rpmdevtools | grep ^/usr/bin

Additional resources

RPM utilities man pages

CHAPTER 1. INTRODUCTION TO RPM

7

CHAPTER 2. CREATING SOFTWARE FOR RPM PACKAGING
To prepare software for RPM packaging, you must understand what source code is and how to create
software.

2.1. WHAT IS SOURCE CODE

Source code is human-readable instructions to the computer that describe how to perform a
computation. Source code is expressed by using a programming language.

The following versions of the Hello World program written in three different programming languages
cover major RPM Package Manager use cases:

Hello World written in Bash
The bello project implements Hello World in Bash. The implementation contains only the bello
shell script. The purpose of this program is to output Hello World on the command line.

The bello file has the following contents:

#!/bin/bash

printf "Hello World\n"

Hello World written in Python
The pello project implements Hello World in Python. The implementation contains only the
pello.py program. The purpose of the program is to output Hello World on the command line.

The pello.py file has the following contents:

#!/usr/bin/python3

print("Hello World")

Hello World written in C
The cello project implements Hello World in C. The implementation contains only the cello.c
and Makefile files. The resulting tar.gz archive therefore has two files in addition to the
LICENSE file. The purpose of the program is to output Hello World on the command line.

The cello.c file has the following contents:

#include <stdio.h>

int main(void) {
 printf("Hello World\n");
 return 0;
}

NOTE

The packaging process is different for each version of the Hello World program.

2.2. METHODS OF CREATING SOFTWARE

Red Hat Enterprise Linux 9 Packaging and distributing software

8

https://www.gnu.org/software/bash/
https://www.python.org/

You can convert the human-readable source code into machine code by using one the following
methods:

Natively compile software.

Interpret software by using a language interpreter or language virtual machine. You can either
raw-interpret or byte-compile software.

2.2.1. Natively compiled software

Natively compiled software is software written in a programming language that compiles to machine
code with a resulting binary executable file. Natively compiled software is standalone software.

NOTE

Natively compiled RPM packages are architecture-specific.

If you compile such software on a computer that uses a 64-bit (x86_64) AMD or Intel
processor, it does not run on a 32-bit (x86) AMD or Intel processor. The resulting
package has the architecture specified in its name.

2.2.2. Interpreted software

Some programming languages, such as Bash or Python, do not compile to machine code. Instead, a
language interpreter or a language virtual machine executes the programs' source code step-by-step
without prior transformations.

NOTE

Software written entirely in interpreted programming languages is not architecture-
specific. Therefore, the resulting RPM package has the noarch string in its name.

You can either raw-interpret or byte-compile software written in interpreted languages:

Raw-interpreted software
You do not need to compile this type of software. Raw-interpreted software is directly executed
by the interpreter.

Byte-compiled software
You must first compile this type of software into bytecode, which is then executed by the
language virtual machine.

NOTE

Some byte-compiled languages can be either raw-interpreted or byte-compiled.

Note that the way you build and package software by using RPM is different for these two software
types.

2.3. BUILDING SOFTWARE FROM SOURCE

During the software building process, the source code is turned into software artifacts that you can
package by using RPM.

CHAPTER 2. CREATING SOFTWARE FOR RPM PACKAGING

9

https://www.gnu.org/software/bash/
https://www.python.org/

2.3.1. Building software from natively compiled code

You can build software written in a compiled language into an executable by using one of the following
methods:

Manual building

Automated building

2.3.1.1. Manually building a sample C program

You can use manual building to build software written in a compiled language.

A sample Hello World program written in C (cello.c) has the following contents:

#include <stdio.h>

int main(void) {
 printf("Hello World\n");
 return 0;
}

Procedure

1. Invoke the C compiler from the GNU Compiler Collection to compile the source code into
binary:

$ gcc -g -o cello cello.c

2. Run the resulting binary cello:

$./cello
Hello World

2.3.1.2. Setting up automated building for a sample C program

Large-scale software commonly uses automated building. You can set up automated building by
creating the Makefile file and then running the GNU make utility.

Procedure

1. Create the Makefile file with the following content in the same directory as cello.c:

cello:
 gcc -g -o cello cello.c
clean:
 rm cello

Note that the lines under cello: and clean: must begin with a tabulation character (tab).

2. Build the software:

Red Hat Enterprise Linux 9 Packaging and distributing software

10

https://gcc.gnu.org/
http://www.gnu.org/software/make/

$ make
make: 'cello' is up to date.

3. Because a build is already available in the current directory, enter the make clean command,
and then enter the make command again:

$ make clean
rm cello

$ make
gcc -g -o cello cello.c

Note that trying to build the program again at this point has no effect because the GNU make
system detects the existing binary:

$ make
make: 'cello' is up to date.

4. Run the program:

$./cello
Hello World

2.3.2. Interpreting source code

You can convert the source code written in an interpreted programming language into machine code by
using one of the following methods:

Byte-compiling
The procedure for byte-compiling software varies depending on the following factors:

Programming language

Language’s virtual machine

Tools and processes used with that language

NOTE

You can byte-compile software written, for example, in Python. Python
software intended for distribution is often byte-compiled, but not in the way
described in this document. The described procedure aims not to conform to
the community standards, but to be simple. For real-world Python guidelines,
see Software Packaging and Distribution.

You can also raw-interpret Python source code. However, the byte-compiled version is faster.
Therefore, RPM packagers prefer to package the byte-compiled version for distribution to end
users.

Raw-interpreting
Software written in shell scripting languages, such as Bash, is always executed by raw-
interpreting.

CHAPTER 2. CREATING SOFTWARE FOR RPM PACKAGING

11

https://www.python.org/
https://docs.python.org/2/library/distribution.html
https://www.gnu.org/software/bash/

2.3.2.1. Byte-compiling a sample Python program

By choosing byte-compiling over raw-interpreting of Python source code, you can create faster
software.

A sample Hello World program written in the Python programming language (pello.py) has the
following contents:

print("Hello World")

Procedure

1. Byte-compile the pello.py file:

$ python -m compileall pello.py

2. Verify that a byte-compiled version of the file is created:

$ ls __pycache__
pello.cpython-311.pyc

Note that the package version in the output might differ depending on which Python version is
installed.

3. Run the program in pello.py:

$ python pello.py
Hello World

2.3.2.2. Raw-interpreting a sample Bash program

A sample Hello World program written in Bash shell built-in language (bello) has the following
contents:

#!/bin/bash

printf "Hello World\n"

NOTE

The shebang (#!) sign at the top of the bello file is not part of the programming
language source code.

Use the shebang to turn a text file into an executable. The system program loader
parses the line containing the shebang to get a path to the binary executable, which is
then used as the programming language interpreter.

Procedure

1. Make the file with source code executable:

$ chmod +x bello

Red Hat Enterprise Linux 9 Packaging and distributing software

12

https://www.python.org/
https://www.gnu.org/software/bash/

2. Run the created file:

$./bello
Hello World

CHAPTER 2. CREATING SOFTWARE FOR RPM PACKAGING

13

CHAPTER 3. PREPARING SOFTWARE FOR RPM PACKAGING
To prepare a piece of software for packaging with RPM, you can first patch the software, create a
LICENSE file for it, and archive it as a tarball.

3.1. PATCHING SOFTWARE

When packaging software, you might need to make certain changes to the original source code, such as
fixing a bug or changing a configuration file. In RPM packaging, you can instead leave the original source
code intact and apply patches on it.

A patch is a piece of text that updates a source code file. The patch has a diff format, because it
represents the difference between two versions of the text. You can create a patch by using the diff
utility, and then apply the patch to the source code by using the patch utility.

NOTE

Software developers often use Version Control Systems such as Git to manage their
code base. Such tools offer their own methods of creating diffs or patching software.

3.1.1. Creating a patch file for a sample C program

You can create a patch from the original source code by using the diff utility. For example, to patch a
Hello world program written in C (cello.c), complete the following steps.

Prerequisites

You installed the diff utility on your system:

dnf install diffutils

Procedure

1. Back up the original source code:

$ cp -p cello.c cello.c.orig

The -p option preserves mode, ownership, and timestamps.

2. Modify cello.c as needed:

#include <stdio.h>

int main(void) {
 printf("Hello World from my very first patch!\n");
 return 0;
}

3. Generate a patch:

$ diff -Naur cello.c.orig cello.c
--- cello.c.orig 2016-05-26 17:21:30.478523360 -0500
+ cello.c 2016-05-27 14:53:20.668588245 -0500

Red Hat Enterprise Linux 9 Packaging and distributing software

14

http://savannah.gnu.org/projects/patch/
https://git-scm.com/

@@ -1,6 +1,6 @@
 #include<stdio.h>

 int main(void){
- printf("Hello World!\n");
+ printf("Hello World from my very first patch!\n");
 return 0;
 }
\ No newline at end of file

Lines that start with + replace the lines that start with -.

NOTE

Using the Naur options with the diff command is recommended because it fits
the majority of use cases:

-N (--new-file)
The -N option handles absent files as empty files.

-a (--text)
The -a option treats all files as text. As a result, the diff utility does not ignore
the files it classified as binaries.

-u (-U NUM or --unified[=NUM])
The -u option returns output in the form of output NUM (default 3) lines of
unified context. This is a compact and an easily readable format commonly
used in patch files.

-r (--recursive)
The -r option recursively compares any subdirectories that the diff utility
found.

However, note that in this particular case, only the -u option is necessary.

4. Save the patch to a file:

$ diff -Naur cello.c.orig cello.c > cello.patch

5. Restore the original cello.c:

$ mv cello.c.orig cello.c

IMPORTANT

You must retain the original cello.c because the RPM package manager uses the
original file, not the modified one, when building an RPM package. For more
information, see Working with spec files.

Additional resources

diff(1) man page

CHAPTER 3. PREPARING SOFTWARE FOR RPM PACKAGING

15

3.1.2. Patching a sample C program

To apply code patches on your software, you can use the patch utility.

Prerequisites

You installed the patch utility on your system:

dnf install patch

You created a patch from the original source code. For instructions, see Creating a patch file
for a sample C program.

Procedure

The following steps apply a previously created cello.patch file on the cello.c file.

1. Redirect the patch file to the patch command:

$ patch < cello.patch
patching file cello.c

2. Check that the contents of cello.c now reflect the desired change:

$ cat cello.c
#include<stdio.h>

int main(void){
 printf("Hello World from my very first patch!\n");
 return 1;
}

Verification

1. Build the patched cello.c program:

$ make
gcc -g -o cello cello.c

2. Run the built cello.c program:

$./cello
Hello World from my very first patch!

3.2. CREATING A LICENSE FILE

It is recommended that you distribute your software with a software license.

A software license file informs users of what they can and cannot do with a source code. Having no
license for your source code means that you retain all rights to this code and no one can reproduce,
distribute, or create derivative works from your source code.

Procedure

Red Hat Enterprise Linux 9 Packaging and distributing software

16

Create the LICENSE file with the required license statement:

$ vim LICENSE

Example 3.1. Example GPLv3 LICENSE file text

$ cat /tmp/LICENSE
This program is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

Additional resources

Sorce code examples

3.3. CREATING A SOURCE CODE ARCHIVE FOR DISTRIBUTION

An archive file is a file with the .tar.gz or .tgz suffix. Putting source code into the archive is a common
way to release the software to be later packaged for distribution.

3.3.1. Creating a source code archive for a sample Bash program

The bello project is a Hello World file in Bash.

The following example contains only the bello shell script. Therefore, the resulting tar.gz archive has
only one file in addition to the LICENSE file.

NOTE

The patch file is not distributed in the archive with the program. The RPM package
manager applies the patch when the RPM is built. The patch will be placed into the
~/rpmbuild/SOURCES/ directory together with the tar.gz archive.

Prerequisites

Assume that the 0.1 version of the bello program is used.

You created a LICENSE file. For instructions, see Creating a LICENSE file .

Procedure

1. Move all required files into a single directory:

$ mkdir bello-0.1

CHAPTER 3. PREPARING SOFTWARE FOR RPM PACKAGING

17

https://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.gnu.org/licenses/
https://github.com/redhat-developer/rpm-packaging-guide/tree/master/example-code
https://www.gnu.org/software/bash/

$ mv ~/bello bello-0.1/

$ mv LICENSE bello-0.1/

2. Create the archive for distribution:

$ tar -cvzf bello-0.1.tar.gz bello-0.1
bello-0.1/
bello-0.1/LICENSE
bello-0.1/bello

3. Move the created archive to the ~/rpmbuild/SOURCES/ directory, which is the default
directory where the rpmbuild command stores the files for building packages:

$ mv bello-0.1.tar.gz ~/rpmbuild/SOURCES/

Additional resources

Hello World written in bash

3.3.2. Creating a source code archive for a sample Python program

The pello project is a Hello World file in Python.

The following example contains only the pello.py program. Therefore, the resulting tar.gz archive has
only one file in addition to the LICENSE file.

NOTE

The patch file is not distributed in the archive with the program. The RPM package
manager applies the patch when the RPM is built. The patch will be placed into the
~/rpmbuild/SOURCES/ directory together with the tar.gz archive.

Prerequisites

Assume that the 0.1.1 version of the pello program is used.

You created a LICENSE file. For instructions, see Creating a LICENSE file .

Procedure

1. Move all required files into a single directory:

$ mkdir pello-0.1.1

$ mv pello.py pello-0.1.1/

$ mv LICENSE pello-0.1.1/

2. Create the archive for distribution:

$ tar -cvzf pello-0.1.1.tar.gz pello-0.1.1
pello-0.1.1/

Red Hat Enterprise Linux 9 Packaging and distributing software

18

https://www.python.org/

pello-0.1.1/LICENSE
pello-0.1.1/pello.py

3. Move the created archive to the ~/rpmbuild/SOURCES/ directory, which is the default
directory where the rpmbuild command stores the files for building packages:

$ mv pello-0.1.1.tar.gz ~/rpmbuild/SOURCES/

Additional resources

Hello World written in Python

3.3.3. Creating a source code archive for a sample C program

The cello project is a Hello World file in C.

The following example contains only the cello.c and the Makefile files. Therefore, the resulting tar.gz
archive has two files in addition to the LICENSE file.

NOTE

The patch file is not distributed in the archive with the program. The RPM package
manager applies the patch when the RPM is built. The patch will be placed into the
~/rpmbuild/SOURCES/ directory together with the tar.gz archive.

Prerequisites

Assume that the 1.0 version of the cello program is used.

You created a LICENSE file. For instructions, see Creating a LICENSE file .

Procedure

1. Move all required files into a single directory:

$ mkdir cello-1.0

$ mv cello.c cello-1.0/

$ mv Makefile cello-1.0/

$ mv LICENSE cello-1.0/

2. Create the archive for distribution:

$ tar -cvzf cello-1.0.tar.gz cello-1.0
cello-1.0/
cello-1.0/Makefile
cello-1.0/cello.c
cello-1.0/LICENSE

3. Move the created archive to the ~/rpmbuild/SOURCES/ directory, which is the default
directory where the rpmbuild command stores the files for building packages:

CHAPTER 3. PREPARING SOFTWARE FOR RPM PACKAGING

19

$ mv cello-1.0.tar.gz ~/rpmbuild/SOURCES/

Additional resources

Hello World written in C

Red Hat Enterprise Linux 9 Packaging and distributing software

20

CHAPTER 4. PACKAGING SOFTWARE
In the following sections, learn the basics of the packaging process with the RPM package manager.

4.1. SETTING UP RPM PACKAGING WORKSPACE

To build RPM packages, you must first create a special workspace that consists of directories used for
different packaging purposes.

4.1.1. Configuring RPM packaging workspace

To configure the RPM packaging workspace, you can set up a directory layout by using the rpmdev-
setuptree utility.

Prerequisites

You installed the rpmdevtools package, which provides utilities for packaging RPMs:

dnf install rpmdevtools

Procedure

Run the rpmdev-setuptree utility:

$ rpmdev-setuptree

$ tree ~/rpmbuild/
/home/user/rpmbuild/
|-- BUILD
|-- RPMS
|-- SOURCES
|-- SPECS
`-- SRPMS

5 directories, 0 files

Additional resources

RPM packaging workspace directories

4.1.2. RPM packaging workspace directories

The following are the RPM packaging workspace directories created by using the rpmdev-setuptree
utility:

Table 4.1. RPM packaging workspace directories

Directory Purpose

BUILD Contains build artifacts compiled from the source
files from the SOURCES directory.

CHAPTER 4. PACKAGING SOFTWARE

21

RPMS Binary RPMs are created under the RPMS directory
in subdirectories for different architectures. For
example, in the x86_64 or noarch subdirectory.

SOURCES Contains compressed source code archives and
patches. The rpmbuild command then searches for
these archives and patches in this directory.

SPECS Contains spec files created by the packager. These
files are then used for building packages.

SRPMS When you use the rpmbuild command to build an
SRPM instead of a binary RPM, the resulting SRPM is
created under this directory.

Directory Purpose

4.2. ABOUT SPEC FILES

A spec file is a file with instructions that the rpmbuild utility uses to build an RPM package. This file
provides necessary information to the build system by defining instructions in a series of sections. These
sections are defined in the Preamble and the Body part of the spec file:

The Preamble section contains a series of metadata items that are used in the Body section.

The Body section represents the main part of the instructions.

4.2.1. Preamble items

The following are some of the directives that you can use in the Preamble section of the RPM spec file.

Table 4.2. The Preamble section directives

Directive Definition

Name A base name of the package that must match the spec file name.

Version An upstream version number of the software.

Release The number of times the version of the package was released.

Set the initial value to 1%{?dist} and increase it with each new release of
the package. Reset to 1 when a new Version of the software is built.

Summary A brief one-line summary of the package.

Red Hat Enterprise Linux 9 Packaging and distributing software

22

License A license of the software being packaged.

The exact format for how to label the License in your spec file varies
depending on which RPM-based Linux distribution guidelines you are
following, for example, GPLv3+.

URL A full URL for more information about the software, for example, an
upstream project website for the software being packaged.

Source A path or URL to the compressed archive of the unpatched upstream
source code. This link must point to an accessible and reliable storage of the
archive, for example, the upstream page, not the packager’s local storage.

You can apply the Source directive either with or without numbers at the
end of the directive name. If there is no number given, the number is
assigned to the entry internally. You can also give the numbers explicitly, for
example, Source0, Source1, Source2, Source3, and so on.

Patch A name of the first patch to apply to the source code, if necessary.

You can apply the Patch directive either with or without numbers at the end
of the directive name. If there is no number given, the number is assigned to
the entry internally. You can also give the numbers explicitly, for example,
Patch0, Patch1, Patch2, Patch3, and so on.

You can apply the patches individually by using the %patch0, %patch1,
%patch2 macro, and so on. Macros are applied within the %prep directive
in the Body section of the RPM spec file. Alternatively, you can use the
%autopatch macro that automatically applies all patches in the order they
are given in the spec file.

BuildArch An architecture that the software will be built for.

If the software is not architecture-dependent, for example, if you wrote the
software entirely in an interpreted programming language, set the value to
BuildArch: noarch. If you do not set this value, the software
automatically inherits the architecture of the machine on which it is built, for
example, x86_64.

BuildRequires A comma- or whitespace-separated list of packages required to build the
program written in a compiled language. There can be multiple entries of
BuildRequires, each on its own line in the SPEC file.

Requires A comma- or whitespace-separated list of packages required by the
software to run once installed. There can be multiple entries of Requires,
each on its own line in the spec file.

Directive Definition

CHAPTER 4. PACKAGING SOFTWARE

23

https://www.gnu.org/licenses/quick-guide-gplv3.html

ExcludeArch If a piece of software cannot operate on a specific processor architecture,
you can exclude this architecture in the ExcludeArch directive.

Conflicts A comma- or whitespace-separated list of packages that must not be
installed on the system in order for your software to function properly when
installed. There can be multiple entries of Conflicts, each on its own line in
the spec file.

Obsoletes The Obsoletes directive changes the way updates work depending on the
following factors:

If you use the rpm command directly on a command line, it
removes all packages that match obsoletes of packages being
installed, or the update is performed by an updates or dependency
solver.

If you use the updates or dependency resolver (DNF), packages
containing matching Obsoletes: are added as updates and
replace the matching packages.

Provides If you add the Provides directive to the package, this package can be
referred to by dependencies other than its name.

Directive Definition

The Name, Version, and Release (NVR) directives comprise the file name of the RPM package in the
name-version-release format.

You can display the NVR information for a specific package by querying RPM database by using the rpm
command, for example:

rpm -q bash
bash-4.4.19-7.el8.x86_64

Here, bash is the package name, 4.4.19 is the version, and 7.el8 is the release. The x86_64 marker is the
package architecture. Unlike NVR, the architecture marker is not under direct control of the RPM
packager, but is defined by the rpmbuild build environment. The exception to this is the architecture-
independent noarch package.

4.2.2. Body items

The following are the items used in the Body section of the RPM spec file.

Table 4.3. The Body section items

Directive Definition

%description A full description of the software packaged in the RPM. This description can span
multiple lines and can be broken into paragraphs.

Red Hat Enterprise Linux 9 Packaging and distributing software

24

%prep A command or series of commands to prepare the software for building, for example,
for unpacking the archive in the Source directive. The %prep directive can contain a
shell script.

%build A command or series of commands for building the software into machine code (for
compiled languages) or bytecode (for some interpreted languages).

%install A command or series of commands that the rpmbuild utility will use to install the
software into the BUILDROOT directory once the software has been built. These
commands copy the desired build artifacts from the %_builddir directory, where the
build happens, to the %buildroot directory that contains the directory structure with
the files to be packaged. This includes copying files from ~/rpmbuild/BUILD to
~/rpmbuild/BUILDROOT and creating the necessary directories in
~/rpmbuild/BUILDROOT.

The %install directory is an empty chroot base directory, which resembles the end
user’s root directory. Here you can create any directories that will contain the installed
files. To create such directories, you can use RPM macros without having to hardcode
the paths.

Note that %install is only run when you create a package, not when you install it. For
more information, see Working with spec files.

%check A command or series of commands for testing the software, for example, unit tests.

%files A list of files, provided by the RPM package, to be installed in the user’s system and
their full path location on the system.

During the build, if there are files in the %buildroot directory that are not listed in
%files, you will receive a warning about possible unpackaged files.

Within the %files section, you can indicate the role of various files by using built-in
macros. This is useful for querying the package file manifest metadata by using the rpm
command. For example, to indicate that the LICENSE file is a software license file, use
the %license macro.

%changelog A record of changes that happened to the package between different Version or
Release builds. These changes include a list of date-stamped entries for each
Version-Release of the package. These entries log packaging changes, not software
changes, for example, adding a patch or changing the build procedure in the %build
section.

Directive Definition

4.2.3. Advanced items

A spec file can contain advanced items, such as Scriptlets or Triggers.

Scriptlets and Triggers take effect at different points during the installation process on the end user’s
system, not the build process.

CHAPTER 4. PACKAGING SOFTWARE

25

4.3. BUILDROOTS

In the context of RPM packaging, buildroot is a chroot environment. The build artifacts are placed here
by using the same file system hierarchy as the future hierarchy in the end user’s system, with buildroot
acting as the root directory. The placement of build artifacts must comply with the file system hierarchy
standard of the end user’s system.

The files in buildroot are later put into a cpio archive, which becomes the main part of the RPM. When
RPM is installed on the end user’s system, these files are extracted in the root directory, preserving the
correct hierarchy.

NOTE

The rpmbuild program has its own defaults. Overriding these defaults can cause certain
issues. Therefore, avoid defining your own value of the buildroot macro. Use the default
%{buildroot} macro instead.

4.4. RPM MACROS

An rpm macro is a straight text substitution that can be conditionally assigned based on the optional
evaluation of a statement when certain built-in functionality is used. Therefore, RPM can perform text
substitutions for you.

For example, you can define Version of the packaged software only once in the %{version} macro, and
use this macro throughout the spec file. Every occurrence is automatically substituted by Version that
you defined in the macro.

NOTE

If you see an unfamiliar macro, you can evaluate it with the following command:

$ rpm --eval %{MACRO}

For example, to evaluate the %{_bindir} and %{_libexecdir} macros, enter:

$ rpm --eval %{_bindir}
/usr/bin

$ rpm --eval %{_libexecdir}
/usr/libexec

Additional resources

More on macros

4.5. WORKING WITH SPEC FILES

To package new software, you must create a spec file. You can create the spec file either of the
following ways:

Write the new spec file manually from scratch.

Use the rpmdev-newspec utility. This utility creates an unpopulated spec file, where you fill the

Red Hat Enterprise Linux 9 Packaging and distributing software

26

http://rpm-software-management.github.io/rpm/manual/macros.html

Use the rpmdev-newspec utility. This utility creates an unpopulated spec file, where you fill the
necessary directives and fields.

NOTE

Some programmer-focused text editors pre-populate a new spec file with their own
spec template. The rpmdev-newspec utility provides an editor-agnostic method.

4.5.1. Creating a new spec file for sample Bash, Python, and C programs

You can create a spec file for each of the three implementations of the Hello World! program by using
the rpmdev-newspec utility.

Prerequisites

The following Hello World! program implementations were placed into the
~/rpmbuild/SOURCES directory:

bello-0.1.tar.gz

pello-0.1.2.tar.gz

cello-1.0.tar.gz (cello-output-first-patch.patch)

Procedure

1. Navigate to the ~/rpmbuild/SPECS directory:

$ cd ~/rpmbuild/SPECS

2. Create a spec file for each of the three implementations of the Hello World! program:

$ rpmdev-newspec bello
bello.spec created; type minimal, rpm version >= 4.11.

$ rpmdev-newspec cello
cello.spec created; type minimal, rpm version >= 4.11.

$ rpmdev-newspec pello
pello.spec created; type minimal, rpm version >= 4.11.

The ~/rpmbuild/SPECS/ directory now contains three spec files named bello.spec, cello.spec,
and pello.spec.

3. Examine the created files.
The directives in the files represent those described in About spec files. In the following
sections, you will populate particular section in the output files of rpmdev-newspec.

4.5.2. Modifying an original spec file

The original output spec file generated by the rpmdev-newspec utility represents a template that you
must modify to provide necessary instructions for the rpmbuild utility. rpmbuild then uses these
instructions to build an RPM package.

CHAPTER 4. PACKAGING SOFTWARE

27

https://github.com/redhat-developer/rpm-packaging-guide/raw/master/example-code/bello-0.1.tar.gz
https://github.com/redhat-developer/rpm-packaging-guide/raw/master/example-code/pello-0.1.2.tar.gz
https://github.com/redhat-developer/rpm-packaging-guide/raw/master/example-code/cello-1.0.tar.gz
https://raw.githubusercontent.com/redhat-developer/rpm-packaging-guide/master/example-code/cello-output-first-patch.patch

Prerequisites

The unpopulated ~/rpmbuild/SPECS/<name>.spec spec file was created by using the
rpmdev-newspec utility. For more information, see Creating a new spec file for sample Bash,
Python, and C programs.

Procedure

1. Open the ~/rpmbuild/SPECS/<name>.spec file provided by the rpmdev-newspec utility.

2. Populate the following directives of the spec file Preamble section:

Name

Name was already specified as an argument to rpmdev-newspec.

Version

Set Version to match the upstream release version of the source code.

Release

Release is automatically set to 1%{?dist}, which is initially 1.

Summary

Enter a one-line explanation of the package.

License

Enter the software license associated with the source code.

URL

Enter the URL to the upstream software website. For consistency, utilize the %{name} RPM
macro variable and use the https://example.com/%{name} format.

Source

Enter the URL to the upstream software source code. Link directly to the software version
being packaged.

NOTE

The example URLs in this documentation include hard-coded values that
could possibly change in the future. Similarly, the release version can change
as well. To simplify these potential future changes, use the %{name} and %
{version} macros. By using these macros, you need to update only one field in
the spec file.

BuildRequires

Specify build-time dependencies for the package.

Requires

Specify run-time dependencies for the package.

BuildArch

Specify the software architecture.

3. Populate the following directives of the spec file Body section. You can think of these
directives as section headings, because these directives can define multi-line, multi-instruction,
or scripted tasks to occur.

%description

Red Hat Enterprise Linux 9 Packaging and distributing software

28

Enter the full description of the software.

%prep

Enter a command or series of commands to prepare software for building.

%build

Enter a command or series of commands for building software.

%install

Enter a command or series of commands that instruct the rpmbuild command on how to
install the software into the BUILDROOT directory.

%files

Specify the list of files, provided by the RPM package, to be installed on your system.

%changelog

Enter the list of datestamped entries for each Version-Release of the package.
Start the first line of the %changelog section with an asterisk (*) character followed by Day-
of-Week Month Day Year Name Surname <email> - Version-Release.

For the actual change entry, follow these rules:

Each change entry can contain multiple items, one for each change.

Each item starts on a new line.

Each item begins with a hyphen (-) character.

You have now written an entire spec file for the required program.

Additional resources

Preamble items

Body items

An example spec file for a sample Bash program

An example spec file for a sample Python program

An example spec file for a sample C program

Building RPMs

4.5.3. An example spec file for a sample Bash program

You can use the following example spec file for the bello program written in bash for your reference.

An example spec file for the bello program written in bash

Name: bello
Version: 0.1
Release: 1%{?dist}
Summary: Hello World example implemented in bash script

License: GPLv3+

CHAPTER 4. PACKAGING SOFTWARE

29

URL: https://www.example.com/%{name}
Source0: https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

Requires: bash

BuildArch: noarch

%description
The long-tail description for our Hello World Example implemented in
bash script.

%prep
%setup -q

%build

%install

mkdir -p %{buildroot}/%{_bindir}

install -m 0755 %{name} %{buildroot}/%{_bindir}/%{name}

%files
%license LICENSE
%{_bindir}/%{name}

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1-1
- First bello package
- Example second item in the changelog for version-release 0.1-1

The BuildRequires directive, which specifies build-time dependencies for the package, was
deleted because there is no building step for bello. Bash is a raw interpreted programming
language, and the files are just installed to their location on the system.

The Requires directive, which specifies run-time dependencies for the package, includes only
bash, because the bello script requires only the bash shell environment to execute.

The %build section, which specifies how to build the software, is blank, because the bash script
does not need to be built.

NOTE

To install bello, you must create the destination directory and install the executable bash
script file there. Therefore, you can use the install command in the %install section. You
can use RPM macros to do this without hardcoding paths.

Additional resources

What is source code

4.5.4. An example SPEC file for a program written in Python

You can use the following example spec file for the pello program written in the Python programming
language for your reference.

Red Hat Enterprise Linux 9 Packaging and distributing software

30

An example spec file for the pello program written in Python

%global python3_pkgversion 3.11 1

Name: python-pello 2
Version: 1.0.2
Release: 1%{?dist}
Summary: Example Python library

License: MIT
URL: https://github.com/fedora-python/Pello
Source: %{url}/archive/v%{version}/Pello-%{version}.tar.gz

BuildArch: noarch
BuildRequires: python%{python3_pkgversion}-devel 3

Build dependencies needed to be specified manually
BuildRequires: python%{python3_pkgversion}-setuptools

Test dependencies needed to be specified manually
Also runtime dependencies need to be BuildRequired manually to run tests during build
BuildRequires: python%{python3_pkgversion}-pytest >= 3

%global _description %{expand:
Pello is an example package with an executable that prints Hello World! on the command line.}

%description %_description

%package -n python%{python3_pkgversion}-pello 4
Summary: %{summary}

%description -n python%{python3_pkgversion}-pello %_description

%prep
%autosetup -p1 -n Pello-%{version}

%build
The macro only supported projects with setup.py
%py3_build 5

%install
The macro only supported projects with setup.py
%py3_install

%check 6
%{pytest}

Note that there is no %%files section for the unversioned python module
%files -n python%{python3_pkgversion}-pello

CHAPTER 4. PACKAGING SOFTWARE

31

1

2

3

4

5

6

By defining the python3_pkgversion macro, you set which Python version this package will be
built for. To build for the default Python version 3.9, either set the macro to its default value 3 or
remove the line entirely.

When packaging a Python project into RPM, always add the python- prefix to the original name of
the project. The original name here is pello and, therefore, the name of the Source RPM (SRPM) is
python-pello.

The BuildRequires directive specifies what packages are required to build and test this package. In
BuildRequires, always include items providing tools necessary for building Python packages:
python3-devel (or python3.11-devel or python3.12-devel) and the relevant projects needed by
the specific software that you package, for example, python3-setuptools (or python3.11-
setuptools or python3.12-setuptools) or the runtime and testing dependencies needed to run
the tests in the %check section.

When choosing a name for the binary RPM (the package that users will be able to install), add a
versioned Python prefix. Use the python3- prefix for the default Python 3.9, the python3.11-
prefix for Python 3.11, or the python3.12- prefix for Python 3.12. You can use the %
{python3_pkgversion} macro, which evaluates to 3 for the default Python version 3.9 unless you
set it to an explicit version, for example, 3.11 (see footnote 1).

The %py3_build and %py3_install macros run the setup.py build and setup.py install
commands, respectively, with additional arguments to specify installation locations, the interpreter
to use, and other details.

The %check section should run the tests of the packaged project. The exact command depends
on the project itself, but it is possible to use the %pytest macro to run the pytest command in an
RPM-friendly way.

4.5.5. An example spec file for a sample C program

You can use the following example spec file for the cello program that was written in the C
programming language for your reference.

An example spec file for the cello program written in C

Name: cello
Version: 1.0
Release: 1%{?dist}
Summary: Hello World example implemented in C

License: GPLv3+
URL: https://www.example.com/%{name}
Source0: https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

%doc README.md
%license LICENSE.txt
%{_bindir}/pello_greeting

The library files needed to be listed manually
%{python3_sitelib}/pello/

The metadata files needed to be listed manually
%{python3_sitelib}/Pello-*.egg-info/

Red Hat Enterprise Linux 9 Packaging and distributing software

32

Patch0: cello-output-first-patch.patch

BuildRequires: gcc
BuildRequires: make

%description
The long-tail description for our Hello World Example implemented in
C.

%prep
%setup -q

%patch0

%build
make %{?_smp_mflags}

%install
%make_install

%files
%license LICENSE
%{_bindir}/%{name}

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 1.0-1
- First cello package

The BuildRequires directive, which specifies build-time dependencies for the package, includes
the following packages required to perform the compilation build process:

gcc

make

The Requires directive, which specifies run-time dependencies for the package, is omitted in
this example. All runtime requirements are handled by rpmbuild, and the cello program does
not require anything outside of the core C standard libraries.

The %build section reflects the fact that in this example the Makefile file for the cello program
was written. Therefore, you can use the GNU make command. However, you must remove the
call to %configure because you did not provide a configure script.

You can install the cello program by using the %make_install macro. This is possible because the
Makefile file for the cello program is available.

Additional resources

What is source code

4.6. BUILDING RPMS

You can build RPM packages by using the rpmbuild command. When using this command, a certain
directory and file structure is expected, which is the same as the structure that was set up by the
rpmdev-setuptree utility.

CHAPTER 4. PACKAGING SOFTWARE

33

http://www.gnu.org/software/make/

Different use cases and desired outcomes require different combinations of arguments to the rpmbuild
command. The following are the main use cases:

Building source RPMs.

Building binary RPMs:

Rebuilding a binary RPM from a source RPM.

Building a binary RPM from the spec file.

4.6.1. Building source RPMs

Building a Source RPM (SRPM) has the following advantages:

You can preserve the exact source of a certain Name-Version-Release of an RPM file that was
deployed to an environment. This includes the exact spec file, the source code, and all relevant
patches. This is useful for tracking and debugging purposes.

You can build a binary RPM on a different hardware platform or architecture.

Prerequisites

You have installed the rpmbuild utility on your system:

dnf install rpm-build

The following Hello World! implementations were placed into the ~/rpmbuild/SOURCES/
directory:

bello-0.1.tar.gz

pello-0.1.2.tar.gz

cello-1.0.tar.gz (cello-output-first-patch.patch)

A spec file for the program that you want to package exists.

Procedure

1. Navigate to the ~/rpmbuild/SPECS/ directive, which contains the created spec file:

$ cd ~/rpmbuild/SPECS/

2. Build the source RPM by entering the rpmbuild command with the specified spec file:

$ rpmbuild -bs <specfile>

The -bs option stands for the build source.

For example, to build source RPMs for the bello, pello, and cello programs, enter:

$ rpmbuild -bs bello.spec
Wrote: /home/admiller/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm

Red Hat Enterprise Linux 9 Packaging and distributing software

34

https://github.com/redhat-developer/rpm-packaging-guide/raw/master/example-code/bello-0.1.tar.gz
https://github.com/redhat-developer/rpm-packaging-guide/raw/master/example-code/pello-0.1.2.tar.gz
https://github.com/redhat-developer/rpm-packaging-guide/raw/master/example-code/cello-1.0.tar.gz
https://raw.githubusercontent.com/redhat-developer/rpm-packaging-guide/master/example-code/cello-output-first-patch.patch

$ rpmbuild -bs pello.spec
Wrote: /home/admiller/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm

$ rpmbuild -bs cello.spec
Wrote: /home/admiller/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm

Verification

Verify that the rpmbuild/SRPMS directory includes the resulting source RPMs. The directory is
a part of the structure expected by rpmbuild.

Additional resources

Working with spec files

Creating a new spec file for sample Bash, C, and Python programs

Modifying an original spec file

4.6.2. Rebuilding a binary RPM from a source RPM

To rebuild a binary RPM from a source RPM (SRPM), use the rpmbuild command with the --rebuild
option.

The output generated when creating the binary RPM is verbose, which is helpful for debugging. The
output varies for different examples and corresponds to their spec files.

The resulting binary RPMs are located in the ~/rpmbuild/RPMS/YOURARCH directory, where
YOURARCH is your architecture, or in the ~/rpmbuild/RPMS/noarch/ directory, if the package is not
architecture-specific.

Prerequisites

You have installed the rpmbuild utility on your system:

dnf install rpm-build

Procedure

1. Navigate to the ~/rpmbuild/SRPMS/ directive, which contains the source RPM:

$ cd ~/rpmbuild/SRPMS/

2. Rebuild the binary RPM from the source RPM:

$ rpmbuild --rebuild <srpm>

Replace srpm with the name of the source RPM file.

For example, to rebuild bello, pello, and cello from their SRPMs, enter:

$ rpmbuild --rebuild bello-0.1-1.el8.src.rpm
[output truncated]

CHAPTER 4. PACKAGING SOFTWARE

35

$ rpmbuild --rebuild pello-0.1.2-1.el8.src.rpm
[output truncated]

$ rpmbuild --rebuild cello-1.0-1.el8.src.rpm
[output truncated]

NOTE

Invoking rpmbuild --rebuild involves the following processes:

Installing the contents of the SRPM (the spec file and the source code) into the
~/rpmbuild/ directory.

Building an RPM by using the installed contents.

Removing the spec file and the source code.

You can retain the spec file and the source code after building either of the following
ways:

When building the RPM, use the rpmbuild command with the --recompile option
instead of the --rebuild option.

Install SRPMs for bello, pello, and cello:

$ rpm -Uvh ~/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm
Updating / installing…
 1:bello-0.1-1.el8 [100%]

$ rpm -Uvh ~/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm
Updating / installing…
… 1:pello-0.1.2-1.el8 [100%]

$ rpm -Uvh ~/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm
Updating / installing…
… 1:cello-1.0-1.el8 [100%]

4.6.3. Building a binary RPM from the spec file

To build a binary RPM from its spec file, use the rpmbuild command with the -bb option.

Prerequisites

You have installed the rpmbuild utility on your system:

dnf install rpm-build

Procedure

1. Navigate to the ~/rpmbuild/SPECS/ directive, which contains spec files:

$ cd ~/rpmbuild/SPECS/

Red Hat Enterprise Linux 9 Packaging and distributing software

36

2. Build the binary RPM from its spec:

$ rpmbuild -bb <spec_file>

For example, to build bello, pello, and cello binary RPMs from their spec files, enter:

$ rpmbuild -bb bello.spec

$ rpmbuild -bb pello.spec

$ rpmbuild -bb cello.spec

4.7. CHECKING RPMS FOR COMMON ERRORS

After creating a package, you might want to check the quality of the package. The main tool for checking
package quality is rpmlint.

With the rpmlint tool, you can perform the following actions:

Improve RPM maintainability.

Enable content validation by performing static analysis of the RPM.

Enable error checking by performing static analysis of the RPM.

You can use rpmlint to check binary RPMs, source RPMs (SRPMs), and spec files. Therefore, this tool is
useful for all stages of packaging.

Note that rpmlint has strict guidelines. Therefore, it is sometimes acceptable to skip some of its errors
and warnings as shown in the following sections.

NOTE

In the examples described in the following sections, rpmlint is run without any options,
which produces a non-verbose output. For detailed explanations of each error or warning,
run rpmlint -i instead.

4.7.1. Checking a sample Bash program for common errors

In the following sections, investigate possible warnings and errors that can occur when checking an RPM
for common errors on the example of the bello spec file and bello binary RPM.

4.7.1.1. Checking the bello spec file for common errors

Inspect the outputs of the following examples to learn how to check a bello spec file for common
errors.

Output of running the rpmlint command on the bello spec file

$ rpmlint bello.spec
bello.spec: W: invalid-url Source0: https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP
Error 404: Not Found
0 packages and 1 specfiles checked; 0 errors, 1 warnings.

CHAPTER 4. PACKAGING SOFTWARE

37

https://github.com/rpm-software-management/rpmlint

For bello.spec, there is only one invalid-url Source0 warning. This warning means that the URL listed in
the Source0 directive is unreachable. This is expected, because the specified example.com URL does
not exist. Assuming that this URL will be valid in the future, you can ignore this warning.

Output of running the rpmlint command on the bello SRPM

$ rpmlint ~/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm
bello.src: W: invalid-url URL: https://www.example.com/bello HTTP Error 404: Not Found
bello.src: W: invalid-url Source0: https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP Error
404: Not Found
1 packages and 0 specfiles checked; 0 errors, 2 warnings.

For the bello SRPM, there is a new invalid-url URL warning that means that the URL specified in the
URL directive is unreachable. Assuming that this URL will be valid in the future, you can ignore this
warning.

4.7.1.2. Checking the bello binary RPM for common errors

When checking binary RPMs, the rpmlint command checks the following items:

Documentation

Manual pages

Consistent use of the filesystem hierarchy standard

Inspect the outputs of the following example to learn how to check a bello binary RPM for common
errors.

Output of running the rpmlint command on the bello binary RPM

$ rpmlint ~/rpmbuild/RPMS/noarch/bello-0.1-1.el8.noarch.rpm
bello.noarch: W: invalid-url URL: https://www.example.com/bello HTTP Error 404: Not Found
bello.noarch: W: no-documentation
bello.noarch: W: no-manual-page-for-binary bello
1 packages and 0 specfiles checked; 0 errors, 3 warnings.

The no-documentation and no-manual-page-for-binary warnings mean that the RPM has no
documentation or manual pages, because you did not provide any. Apart from the output warnings, the
RPM passed rpmlint checks.

4.7.2. Checking a sample Python program for common errors

In the following sections, investigate possible warnings and errors that can occur when validating RPM
content on the example of the pello spec file and pello binary RPM.

4.7.2.1. Checking the pello spec file for common errors

Inspect the outputs of the following examples to learn how to check a pello spec file for common
errors.

Output of running the rpmlint command on the pello spec file

$ rpmlint pello.spec

Red Hat Enterprise Linux 9 Packaging and distributing software

38

pello.spec:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}
pello.spec:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc
pello.spec:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/
pello.spec:43: E: hardcoded-library-path in /usr/lib/%{name}/
pello.spec:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*
pello.spec: W: invalid-url Source0: https://www.example.com/pello/releases/pello-0.1.2.tar.gz HTTP
Error 404: Not Found
0 packages and 1 specfiles checked; 5 errors, 1 warnings.

The invalid-url Source0 warning means that the URL listed in the Source0 directive is
unreachable. This is expected, because the specified example.com URL does not exist.
Assuming that this URL will be valid in the future, you can ignore this warning.

The hardcoded-library-path errors suggest using the %{_libdir} macro instead of hard-coding
the library path. For the sake of this example, you can safely ignore these errors. However, for
packages going into production, check all errors carefully.

Output of running the rpmlint command on the SRPM for pello

$ rpmlint ~/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm
pello.src: W: invalid-url URL: https://www.example.com/pello HTTP Error 404: Not Found
pello.src:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}
pello.src:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc
pello.src:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/
pello.src:43: E: hardcoded-library-path in /usr/lib/%{name}/
pello.src:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*
pello.src: W: invalid-url Source0: https://www.example.com/pello/releases/pello-0.1.2.tar.gz HTTP
Error 404: Not Found
1 packages and 0 specfiles checked; 5 errors, 2 warnings.

The invalid-url URL error means that the URL mentioned in the URL directive is unreachable.
Assuming that this URL will be valid in the future, you can ignore this warning.

4.7.2.2. Checking the pello binary RPM for common errors

When checking binary RPMs, the rpmlint command checks the following items:

Documentation

Manual pages

Consistent use of the Filesystem Hierarchy Standard

Inspect the outputs of the following example to learn how to check a pello binary RPM for common
errors.

Output of running the rpmlint command on the pello binary RPM

$ rpmlint ~/rpmbuild/RPMS/noarch/pello-0.1.2-1.el8.noarch.rpm
pello.noarch: W: invalid-url URL: https://www.example.com/pello HTTP Error 404: Not Found
pello.noarch: W: only-non-binary-in-usr-lib
pello.noarch: W: no-documentation
pello.noarch: E: non-executable-script /usr/lib/pello/pello.py 0644L /usr/bin/env
pello.noarch: W: no-manual-page-for-binary pello
1 packages and 0 specfiles checked; 1 errors, 4 warnings.

CHAPTER 4. PACKAGING SOFTWARE

39

The no-documentation and no-manual-page-for-binary warnings mean that the RPM has no
documentation or manual pages because you did not provide any.

The only-non-binary-in-usr-lib warning means that you provided only non-binary artifacts in
the /usr/lib/ directory. This directory is typically used for shared object files, which are binary
files. Therefore, rpmlint expects at least one or more files in /usr/lib/ to be binary.
This is an example of an rpmlint check for compliance with Filesystem Hierarchy Standard. To
ensure the correct placement of files, use RPM macros. For the sake of this example, you can
safely ignore this warning.

The non-executable-script error means that the /usr/lib/pello/pello.py file has no execute
permissions. The rpmlint tool expects the file to be executable because the file contains the
shebang (#!). For the purpose of this example, you can leave this file without execute
permissions and ignore this error.

Apart from the output warnings and errors, the RPM passed rpmlint checks.

4.7.3. Checking a sample C program for common errors

In the following sections, investigate possible warnings and errors that can occur when validating RPM
content on the example of the cello spec file and cello binary RPM.

4.7.3.1. Checking the cello spec file for common errors

Inspect the outputs of the following examples to learn how to check a cello spec file for common
errors.

Output of running the rpmlint command on the cello spec file

$ rpmlint ~/rpmbuild/SPECS/cello.spec
/home/admiller/rpmbuild/SPECS/cello.spec: W: invalid-url Source0:
https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP Error 404: Not Found
0 packages and 1 specfiles checked; 0 errors, 1 warnings.

For cello.spec, there is only one invalid-url Source0 warning. This warning means that the URL listed in
the Source0 directive is unreachable. This is expected because the specified example.com URL does
not exist. Assuming that this URL will be valid in the future, you can ignore this warning.

Output of running the rpmlint command on the cello SRPM

$ rpmlint ~/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm
cello.src: W: invalid-url URL: https://www.example.com/cello HTTP Error 404: Not Found
cello.src: W: invalid-url Source0: https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP Error
404: Not Found
1 packages and 0 specfiles checked; 0 errors, 2 warnings.

For the cello SRPM, there is a new invalid-url URL warning. This warning means that the URL specified
in the URL directive is unreachable. Assuming that this URL will be valid in the future, you can ignore this
warning.

4.7.3.2. Checking the cello binary RPM for common errors

When checking binary RPMs, the rpmlint command checks the following items:

Red Hat Enterprise Linux 9 Packaging and distributing software

40

Documentation

Manual pages

Consistent use of the filesystem hierarchy standard

Inspect the outputs of the following example to learn how to check a cello binary RPM for common
errors.

Output of running the rpmlint command on the cello binary RPM

$ rpmlint ~/rpmbuild/RPMS/x86_64/cello-1.0-1.el8.x86_64.rpm
cello.x86_64: W: invalid-url URL: https://www.example.com/cello HTTP Error 404: Not Found
cello.x86_64: W: no-documentation
cello.x86_64: W: no-manual-page-for-binary cello
1 packages and 0 specfiles checked; 0 errors, 3 warnings.

The no-documentation and no-manual-page-for-binary warnings mean that the RPM has no
documentation or manual pages because you did not provide any.

Apart from the output warnings, the RPM passed rpmlint checks.

4.8. LOGGING RPM ACTIVITY TO SYSLOG

You can log any RPM activity or transaction by using the System Logging protocol (syslog).

Prerequisites

The syslog plug-in is installed on the system:

dnf install rpm-plugin-syslog

NOTE

The default location for the syslog messages is the /var/log/messages file.
However, you can configure syslog to use another location to store the
messages.

Procedure

1. Open the file that you configured to store the syslog messages.
Alternatively, if you use the default syslog configuration, open the /var/log/messages file.

2. Search for new lines including the [RPM] string.

4.9. EXTRACTING RPM CONTENT

In some cases, for example, if a package required by RPM is damaged, you might need to extract the
content of the package. In such cases, if an RPM installation is still working despite the damage, you can
use the rpm2archive utility to convert an .rpm file to a tar archive to use the content of the package.

NOTE

CHAPTER 4. PACKAGING SOFTWARE

41

NOTE

If the RPM installation is severely damaged, you can use the rpm2cpio utility to convert
the RPM package file to a cpio archive.

Procedure

Convert the RPM file to the tar archive:

$ rpm2archive <filename>.rpm

The resulting file has the .tgz suffix. For example, to create an archive from the bash package,
enter:

$ rpm2archive bash-4.4.19-6.el8.x86_64.rpm
$ ls bash-4.4.19-6.el8.x86_64.rpm.tgz
bash-4.4.19-6.el8.x86_64.rpm.tgz

Red Hat Enterprise Linux 9 Packaging and distributing software

42

CHAPTER 5. ADVANCED TOPICS
This section covers topics that are beyond the scope of the introductory tutorial but are useful in real-
world RPM packaging.

5.1. SIGNING RPM PACKAGES

You can sign RPM packages to ensure that no third party can alter their content. To add an additional
layer of security, use the HTTPS protocol when downloading the package.

You can sign a package by using the --addsign option provided by the rpm-sign package.

Prerequisites

You have created a GNU Privacy Guard (GPG) key as described in Creating a GPG key .

5.1.1. Creating a GPG key

Use the following procedure to create a GNU Privacy Guard (GPG) key required for signing packages.

Procedure

1. Generate a GPG key pair:

gpg --gen-key

2. Check the generated key pair:

gpg --list-keys

3. Export the public key:

gpg --export -a '<Key_name>' > RPM-GPG-KEY-pmanager

Replace <Key_name> with the real key name that you have selected.

4. Import the exported public key into an RPM database:

rpm --import RPM-GPG-KEY-pmanager

5.1.2. Configuring RPM to sign a package

To be able to sign an RPM package, you need to specify the %_gpg_name RPM macro.

The following procedure describes how to configure RPM for signing a package.

Procedure

Define the %_gpg_name macro in your $HOME/.rpmmacros file as follows:

%_gpg_name Key ID

Replace Key ID with the GNU Privacy Guard (GPG) key ID that you will use to sign a package. A

CHAPTER 5. ADVANCED TOPICS

43

Replace Key ID with the GNU Privacy Guard (GPG) key ID that you will use to sign a package. A
valid GPG key ID value is either a full name or email address of the user who created the key.

5.1.3. Adding a signature to an RPM package

The most usual case is when a package is built without a signature. The signature is added just before
the release of the package.

To add a signature to an RPM package, use the --addsign option provided by the rpm-sign package.

Procedure

Add a signature to a package:

$ rpm --addsign package-name.rpm

Replace package-name with the name of an RPM package you want to sign.

NOTE

You must enter the password to unlock the secret key for the signature.

5.2. MORE ON MACROS

This section covers selected built-in RPM Macros. For an exhaustive list of such macros, see RPM
Documentation.

5.2.1. Defining your own macros

The following section describes how to create a custom macro.

Procedure

Include the following line in the RPM spec file:

%global <name>[(opts)] <body>

All whitespace surrounding <body> is removed. Name may be composed of alphanumeric characters,
and the character _ and must be at least 3 characters in length. Inclusion of the (opts) field is optional:

Simple macros do not contain the (opts) field. In this case, only recursive macro expansion is
performed.

Parametrized macros contain the (opts) field. The opts string between parentheses is passed
to getopt(3) for argc/argv processing at the beginning of a macro invocation.

NOTE

Red Hat Enterprise Linux 9 Packaging and distributing software

44

https://rpm-software-management.github.io/rpm/manual/macros.html

NOTE

Older RPM spec files use the %define <name> <body> macro pattern instead. The
differences between %define and %global macros are as follows:

%define has local scope. It applies to a specific part of a spec file. The body of a
%define macro is expanded when used.

%global has global scope. It applies to an entire spec file. The body of a %global
macro is expanded at definition time.

IMPORTANT

Macros are evaluated even if they are commented out or the name of the macro is given
into the %changelog section of the spec file. To comment out a macro, use %%. For
example: %%global.

Additional resources

Macro syntax

5.2.2. Using the %setup macro

This section describes how to build packages with source code tarballs using different variants of the
%setup macro. Note that the macro variants can be combined. The rpmbuild output illustrates
standard behavior of the %setup macro. At the beginning of each phase, the macro outputs
Executing(%…), as shown in the below example.

Example 5.1. Example %setup macro output

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.DhddsG

The shell output is set with set -x enabled. To see the content of /var/tmp/rpm-tmp.DhddsG, use
the --debug option because rpmbuild deletes temporary files after a successful build. This displays
the setup of environment variables followed by for example:

cd '/builddir/build/BUILD'
rm -rf 'cello-1.0'
/usr/bin/gzip -dc '/builddir/build/SOURCES/cello-1.0.tar.gz' | /usr/bin/tar -xof -
STATUS=$?
if [$STATUS -ne 0]; then
 exit $STATUS
fi
cd 'cello-1.0'
/usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .

The %setup macro:

Ensures that we are working in the correct directory.

Removes residues of previous builds.

Unpacks the source tarball.

CHAPTER 5. ADVANCED TOPICS

45

https://rpm-software-management.github.io/rpm/manual/macros.html

Sets up some default privileges.

5.2.2.1. Using the %setup -q macro

The -q option limits the verbosity of the %setup macro. Only tar -xof is executed instead of tar -xvvof.
Use this option as the first option.

5.2.2.2. Using the %setup -n macro

The -n option is used to specify the name of the directory from expanded tarball.

This is used in cases when the directory from expanded tarball has a different name from what is
expected (%{name}-%{version}), which can lead to an error of the %setup macro.

For example, if the package name is cello, but the source code is archived in hello-1.0.tgz and contains
the hello/ directory, the spec file content needs to be as follows:

Name: cello
Source0: https://example.com/%{name}/release/hello-%{version}.tar.gz
…
%prep
%setup -n hello

5.2.2.3. Using the %setup -c macro

The -c option is used if the source code tarball does not contain any subdirectories and after unpacking,
files from an archive fills the current directory.

The -c option then creates the directory and steps into the archive expansion as shown below:

/usr/bin/mkdir -p cello-1.0
cd 'cello-1.0'

The directory is not changed after archive expansion.

5.2.2.4. Using the %setup -D and %setup -T macros

The -D option disables deleting of source code directory, and is particularly useful if the %setup macro
is used several times. With the -D option, the following lines are not used:

rm -rf 'cello-1.0'

The -T option disables expansion of the source code tarball by removing the following line from the
script:

/usr/bin/gzip -dc '/builddir/build/SOURCES/cello-1.0.tar.gz' | /usr/bin/tar -xvvof -

5.2.2.5. Using the %setup -a and %setup -b macros

The -a and -b options expand specific sources:

The -b option stands for before. This option expands specific sources before entering the
working directory.

Red Hat Enterprise Linux 9 Packaging and distributing software

46

The -a option stands for after. This option expands those sources after entering. Their
arguments are source numbers from the spec file preamble.

In the following example, the cello-1.0.tar.gz archive contains an empty examples directory. The
examples are shipped in a separate examples.tar.gz tarball and they expand into the directory of the
same name. In this case, use -a 1 if you want to expand Source1 after entering the working directory:

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz
Source1: examples.tar.gz
…
%prep
%setup -a 1

In the following example, examples are provided in a separate cello-1.0-examples.tar.gz tarball, which
expands into cello-1.0/examples. In this case, use -b 1 to expand Source1 before entering the working
directory:

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz
Source1: %{name}-%{version}-examples.tar.gz
…
%prep
%setup -b 1

5.2.3. Common RPM macros in the %files section

The following table lists advanced RPM Macros that are needed in the %files section of a spec file.

Table 5.1. Advanced RPM Macros in the %files section

Macro Definition

%license The %license macro identifies the file listed as a LICENSE file and it will be installed
and labeled as such by RPM. Example: %license LICENSE.

%doc The %doc macro identifies a file listed as documentation and it will be installed and
labeled as such by RPM. The %doc macro is used for documentation about the
packaged software and also for code examples and various accompanying items. If
code examples are included, care must be taken to remove executable mode from the
file. Example: %doc README

%dir The %dir macro ensures that the path is a directory owned by this RPM. This is
important so that the RPM file manifest accurately knows what directories to clean up
on uninstall. Example: %dir %{_libdir}/%{name}

%config(noreplace
)

The %config(noreplace) macro ensures that the following file is a configuration file
and therefore should not be overwritten (or replaced) on a package install or update if
the file has been modified from the original installation checksum. If there is a change,
the file will be created with .rpmnew appended to the end of the filename upon
upgrade or install so that the pre-existing or modified file on the target system is not
modified. Example: %config(noreplace) %{_sysconfdir}/%{name}/%
{name}.conf

CHAPTER 5. ADVANCED TOPICS

47

5.2.4. Displaying the built-in macros

Red Hat Enterprise Linux provides multiple built-in RPM macros.

Procedure

1. To display all built-in RPM macros, run:

rpm --showrc

NOTE

The output is quite sizeable. To narrow the result, use the command above with
the grep command.

2. To find information about the RPMs macros for your system’s version of RPM, run:

rpm -ql rpm

NOTE

RPM macros are the files titled macros in the output directory structure.

5.2.5. RPM distribution macros

Different distributions provide different sets of recommended RPM macros based on the language
implementation of the software being packaged or the specific guidelines of the distribution.

The sets of recommended RPM macros are often provided as RPM packages, ready to be installed with
the dnf package manager.

Once installed, the macro files can be found in the /usr/lib/rpm/macros.d/ directory.

Procedure

To display the raw RPM macro definitions, run:

rpm --showrc

The above output displays the raw RPM macro definitions.

To determine what a macro does and how it can be helpful when packaging RPMs, run the rpm -
-eval command with the name of the macro used as its argument:

rpm --eval %{_MACRO}

Additional resources

rpm man page

5.2.6. Creating custom macros

You can override the distribution macros in the ~/.rpmmacros file with your custom macros. Any

Red Hat Enterprise Linux 9 Packaging and distributing software

48

You can override the distribution macros in the ~/.rpmmacros file with your custom macros. Any
changes that you make affect every build on your machine.

WARNING

Defining any new macros in the ~/.rpmmacros file is not recommended. Such
macros would not be present on other machines, where users may want to try to
rebuild your package.

Procedure

To override a macro, run:

%_topdir /opt/some/working/directory/rpmbuild

You can create the directory from the example above, including all subdirectories through the rpmdev-
setuptree utility. The value of this macro is by default ~/rpmbuild.

%_smp_mflags -l3

The macro above is often used to pass to Makefile, for example make %{?_smp_mflags}, and to set a
number of concurrent processes during the build phase. By default, it is set to -jX, where X is a number of
cores. If you alter the number of cores, you can speed up or slow down a build of packages.

5.3. EPOCH, SCRIPTLETS AND TRIGGERS

This section covers Epoch, Scriptlets, and Triggers, which represent advanced directives for RMP spec
files.

All these directives influence not only the spec file, but also the end machine on which the resulting RPM
is installed.

5.3.1. The Epoch directive

The Epoch directive enables to define weighted dependencies based on version numbers.

If this directive is not listed in the RPM spec file, the Epoch directive is not set at all. This is contrary to
common belief that not setting Epoch results in an Epoch of 0. However, the dnf utility treats an unset
Epoch as the same as an Epoch of 0 for the purposes of depsolving.

However, listing Epoch in a spec file is usually omitted because in majority of cases introducing an
Epoch value skews the expected RPM behavior when comparing versions of packages.

Example 5.2. Using Epoch

If you install the foobar package with Epoch: 1 and Version: 1.0, and someone else packages
foobar with Version: 2.0 but without the Epoch directive, the new version will never be considered
an update. The reason being that the Epoch version is preferred over the traditional Name-Version-
Release marker that signifies versioning for RPM Packages.

CHAPTER 5. ADVANCED TOPICS

49

Using of Epoch is thus quite rare. However, Epoch is typically used to resolve an upgrade ordering
issue. The issue can appear as a side effect of upstream change in software version number schemes or
versions incorporating alphabetical characters that cannot always be compared reliably based on
encoding.

5.3.2. Scriptlets directives

Scriptlets are a series of RPM directives that are executed before or after packages are installed or
deleted.

Use Scriptlets only for tasks that cannot be done at build time or in an start up script.

A set of common Scriptlet directives exists. They are similar to the spec file section headers, such as
%build or %install. They are defined by multi-line segments of code, which are often written as a
standard POSIX shell script. However, they can also be written in other programming languages that
RPM for the target machine’s distribution accepts. RPM Documentation includes an exhaustive list of
available languages.

The following table includes Scriptlet directives listed in their execution order. Note that a package
containing the scripts is installed between the %pre and %post directive, and it is uninstalled between
the %preun and %postun directive.

Table 5.2. Scriptlet directives

Directive Definition

%pretrans Scriptlet that is executed just before installing or removing any package.

%pre Scriptlet that is executed just before installing the package on the target system.

%post Scriptlet that is executed just after the package was installed on the target system.

%preun Scriptlet that is executed just before uninstalling the package from the target system.

%postun Scriptlet that is executed just after the package was uninstalled from the target system.

%posttrans Scriptlet that is executed at the end of the transaction.

5.3.3. Turning off a scriptlet execution

The following procedure describes how to turn off the execution of any scriptlet using the rpm
command together with the --no_scriptlet_name_ option.

Procedure

For example, to turn off the execution of the %pretrans scriptlets, run:

rpm --nopretrans

You can also use the -- noscripts option, which is equivalent to all of the following:

Red Hat Enterprise Linux 9 Packaging and distributing software

50

--nopre

--nopost

--nopreun

--nopostun

--nopretrans

--noposttrans

Additional resources

rpm(8) man page.

5.3.4. Scriptlets macros

The Scriptlets directives also work with RPM macros.

The following example shows the use of systemd scriptlet macro, which ensures that systemd is notified
about a new unit file.

$ rpm --showrc | grep systemd
-14: __transaction_systemd_inhibit %{__plugindir}/systemd_inhibit.so
-14: _journalcatalogdir /usr/lib/systemd/catalog
-14: _presetdir /usr/lib/systemd/system-preset
-14: _unitdir /usr/lib/systemd/system
-14: _userunitdir /usr/lib/systemd/user
/usr/lib/systemd/systemd-binfmt %{?*} >/dev/null 2>&1 || :
/usr/lib/systemd/systemd-sysctl %{?*} >/dev/null 2>&1 || :
-14: systemd_post
-14: systemd_postun
-14: systemd_postun_with_restart
-14: systemd_preun
-14: systemd_requires
Requires(post): systemd
Requires(preun): systemd
Requires(postun): systemd
-14: systemd_user_post %systemd_post --user --global %{?*}
-14: systemd_user_postun %{nil}
-14: systemd_user_postun_with_restart %{nil}
-14: systemd_user_preun
systemd-sysusers %{?*} >/dev/null 2>&1 || :
echo %{?*} | systemd-sysusers - >/dev/null 2>&1 || :
systemd-tmpfiles --create %{?*} >/dev/null 2>&1 || :

$ rpm --eval %{systemd_post}

if [$1 -eq 1] ; then
 # Initial installation
 systemctl preset >/dev/null 2>&1 || :
fi

$ rpm --eval %{systemd_postun}

CHAPTER 5. ADVANCED TOPICS

51

systemctl daemon-reload >/dev/null 2>&1 || :

$ rpm --eval %{systemd_preun}

if [$1 -eq 0] ; then
 # Package removal, not upgrade
 systemctl --no-reload disable > /dev/null 2>&1 || :
 systemctl stop > /dev/null 2>&1 || :
fi

5.3.5. The Triggers directives

Triggers are RPM directives which provide a method for interaction during package installation and
uninstallation.

WARNING

Triggers may be executed at an unexpected time, for example on update of the
containing package. Triggers are difficult to debug, therefore they need to be
implemented in a robust way so that they do not break anything when executed
unexpectedly. For these reasons, Red Hat recommends to minimize the use of
Triggers.

The order of execution on a single package upgrade and the details for each existing Triggers are listed
below:

all-%pretrans
…
any-%triggerprein (%triggerprein from other packages set off by new install)
new-%triggerprein
new-%pre for new version of package being installed
… (all new files are installed)
new-%post for new version of package being installed

any-%triggerin (%triggerin from other packages set off by new install)
new-%triggerin
old-%triggerun
any-%triggerun (%triggerun from other packages set off by old uninstall)

old-%preun for old version of package being removed
… (all old files are removed)
old-%postun for old version of package being removed

old-%triggerpostun
any-%triggerpostun (%triggerpostun from other packages set off by old un
 install)
…
all-%posttrans

The above items are found in the /usr/share/doc/rpm-4.*/triggers file.

Red Hat Enterprise Linux 9 Packaging and distributing software

52

5.3.6. Using non-shell scripts in a spec file

The -p scriptlet option in a spec file enables the user to invoke a specific interpreter instead of the
default shell scripts interpreter (-p /bin/sh).

The following procedure describes how to create a script, which prints out a message after installation of
the pello.py program:

Procedure

1. Open the pello.spec file.

2. Find the following line:

install -m 0644 %{name}.py* %{buildroot}/usr/lib/%{name}/

3. Under the above line, insert:

%post -p /usr/bin/python3
print("This is {} code".format("python"))

4. Build your package as described in Building RPMs.

5. Install your package:

dnf install /home/<username>/rpmbuild/RPMS/noarch/pello-0.1.2-1.el8.noarch.rpm

6. Check the output message after the installation:

Installing : pello-0.1.2-1.el8.noarch 1/1
Running scriptlet: pello-0.1.2-1.el8.noarch 1/1
This is python code

NOTE

To use a Python 3 script, include the following line under install -m in a spec file:

%post -p /usr/bin/python3

To use a Lua script, include the following line under install -m in a SPEC file:

%post -p <lua>

This way, you can specify any interpreter in a spec file.

5.4. RPM CONDITIONALS

RPM Conditionals enable conditional inclusion of various sections of the spec file.

Conditional inclusions usually deal with:

Architecture-specific sections

CHAPTER 5. ADVANCED TOPICS

53

Operating system-specific sections

Compatibility issues between various versions of operating systems

Existence and definition of macros

5.4.1. RPM conditionals syntax

RPM conditionals use the following syntax:

If expression is true, then do some action:

%if expression
…
%endif

If expression is true, then do some action, in other case, do another action:

%if expression
…
%else
…
%endif

5.4.2. The %if conditionals

The following examples shows the usage of %if RPM conditionals.

Example 5.3. Using the %if conditional to handle compatibility between Red Hat
Enterprise Linux 8 and other operating systems

%if 0%{?rhel} == 8
sed -i '/AS_FUNCTION_DESCRIBE/ s/^/#/' configure.in
sed -i '/AS_FUNCTION_DESCRIBE/ s/^/#/' acinclude.m4
%endif

This conditional handles compatibility between RHEL 8 and other operating systems in terms of support
of the AS_FUNCTION_DESCRIBE macro. If the package is built for RHEL, the %rhel macro is defined,
and it is expanded to RHEL version. If its value is 8, meaning the package is build for RHEL 8, then the
references to AS_FUNCTION_DESCRIBE, which is not supported by RHEL 8, are deleted from
autoconfig scripts.

Example 5.4. Using the %if conditional to handle definition of macros

%define ruby_archive %{name}-%{ruby_version}
%if 0%{?milestone:1}%{?revision:1} != 0
%define ruby_archive %{ruby_archive}-%{?milestone}%{?!milestone:%{?revision:r%{revision}}}
%endif

This conditional handles definition of macros. If the %milestone or the %revision macros are set, the
%ruby_archive macro, which defines the name of the upstream tarball, is redefined.

Red Hat Enterprise Linux 9 Packaging and distributing software

54

5.4.3. Specialized variants of %if conditionals

The %ifarch conditional, %ifnarch conditional and %ifos conditional are specialized variants of the %if
conditionals. These variants are commonly used, hence they have their own macros.

The %ifarch conditional

The %ifarch conditional is used to begin a block of the spec file that is architecture-specific. It is
followed by one or more architecture specifiers, each separated by commas or whitespace.

Example 5.5. An example use of the %ifarch conditional

%ifarch i386 sparc
…
%endif

All the contents of the spec file between %ifarch and %endif are processed only on the 32-bit AMD
and Intel architectures or Sun SPARC-based systems.

The %ifnarch conditional

The %ifnarch conditional has a reverse logic than %ifarch conditional.

Example 5.6. An example use of the %ifnarch conditional

%ifnarch alpha
…
%endif

All the contents of the spec file between %ifnarch and %endif are processed only if not done on a
Digital Alpha/AXP-based system.

The %ifos conditional

The %ifos conditional is used to control processing based on the operating system of the build. It can be
followed by one or more operating system names.

Example 5.7. An example use of the %ifos conditional

%ifos linux
…
%endif

All the contents of the spec file between %ifos and %endif are processed only if the build was done on
a Linux system.

5.5. PACKAGING PYTHON 3 RPMS

You can install Python packages on your system either from the upstream PyPI repository using the pip
installer, or using the DNF package manager. DNF uses the RPM package format, which offers more
downstream control over the software.

CHAPTER 5. ADVANCED TOPICS

55

The packaging format of native Python packages is defined by Python Packaging Authority (PyPA)
Specifications. Most Python projects use the distutils or setuptools utilities for packaging, and defined
package information in the setup.py file. However, possibilities of creating native Python packages have
evolved over time. For more information about emerging packaging standards, see pyproject-rpm-
macros.

This chapter describes how to package a Python project that uses setup.py into an RPM package. This
approach provides the following advantages compared to native Python packages:

Dependencies on Python and non-Python packages are possible and strictly enforced by the
DNF package manager.

You can cryptographically sign the packages. With cryptographic signing, you can verify,
integrate, and test content of RPM packages with the rest of the operating system.

You can execute tests during the build process.

5.5.1. SPEC file description for a Python package

A SPEC file contains instructions that the rpmbuild utility uses to build an RPM. The instructions are
included in a series of sections. A SPEC file has two main parts in which the sections are defined:

Preamble (contains a series of metadata items that are used in the Body)

Body (contains the main part of the instructions)

An RPM SPEC file for Python projects has some specifics compared to non-Python RPM SPEC files.

IMPORTANT

A name of any RPM package of a Python library must always include the python3-,
python3.11-, or python3.12- prefix.

Other specifics are shown in the following SPEC file example for the python3*-pello package. For
description of such specifics, see the notes below the example.

An example spec file for the pello program written in Python

%global python3_pkgversion 3.11 1

Name: python-pello 2
Version: 1.0.2
Release: 1%{?dist}
Summary: Example Python library

License: MIT
URL: https://github.com/fedora-python/Pello
Source: %{url}/archive/v%{version}/Pello-%{version}.tar.gz

BuildArch: noarch
BuildRequires: python%{python3_pkgversion}-devel 3

Build dependencies needed to be specified manually
BuildRequires: python%{python3_pkgversion}-setuptools

Red Hat Enterprise Linux 9 Packaging and distributing software

56

https://www.pypa.io/en/latest/specifications/
https://gitlab.com/redhat/centos-stream/rpms/pyproject-rpm-macros/

1

2

3

By defining the python3_pkgversion macro, you set which Python version this package will be
built for. To build for the default Python version 3.9, either set the macro to its default value 3 or
remove the line entirely.

When packaging a Python project into RPM, always add the python- prefix to the original name of
the project. The original name here is pello and, therefore, the name of the Source RPM (SRPM) is
python-pello.

The BuildRequires directive specifies what packages are required to build and test this package. In
BuildRequires, always include items providing tools necessary for building Python packages:
python3-devel (or python3.11-devel or python3.12-devel) and the relevant projects needed by

Test dependencies needed to be specified manually
Also runtime dependencies need to be BuildRequired manually to run tests during build
BuildRequires: python%{python3_pkgversion}-pytest >= 3

%global _description %{expand:
Pello is an example package with an executable that prints Hello World! on the command line.}

%description %_description

%package -n python%{python3_pkgversion}-pello 4
Summary: %{summary}

%description -n python%{python3_pkgversion}-pello %_description

%prep
%autosetup -p1 -n Pello-%{version}

%build
The macro only supported projects with setup.py
%py3_build 5

%install
The macro only supported projects with setup.py
%py3_install

%check 6
%{pytest}

Note that there is no %%files section for the unversioned python module
%files -n python%{python3_pkgversion}-pello
%doc README.md
%license LICENSE.txt
%{_bindir}/pello_greeting

The library files needed to be listed manually
%{python3_sitelib}/pello/

The metadata files needed to be listed manually
%{python3_sitelib}/Pello-*.egg-info/

CHAPTER 5. ADVANCED TOPICS

57

4

5

6

python3-devel (or python3.11-devel or python3.12-devel) and the relevant projects needed by
the specific software that you package, for example, python3-setuptools (or python3.11-
setuptools or python3.12-setuptools) or the runtime and testing dependencies needed to run
the tests in the %check section.

When choosing a name for the binary RPM (the package that users will be able to install), add a
versioned Python prefix. Use the python3- prefix for the default Python 3.9, the python3.11-
prefix for Python 3.11, or the python3.12- prefix for Python 3.12. You can use the %
{python3_pkgversion} macro, which evaluates to 3 for the default Python version 3.9 unless you
set it to an explicit version, for example, 3.11 (see footnote 1).

The %py3_build and %py3_install macros run the setup.py build and setup.py install
commands, respectively, with additional arguments to specify installation locations, the interpreter
to use, and other details.

The %check section should run the tests of the packaged project. The exact command depends
on the project itself, but it is possible to use the %pytest macro to run the pytest command in an
RPM-friendly way.

5.5.2. Common macros for Python 3 RPMs

In a SPEC file, always use the macros that are described in the following Macros for Python 3 RPMs table
rather than hardcoding their values. You can redefine which Python 3 version is used in these macros by
defining the python3_pkgversion macro on top of your SPEC file (see Section 5.5.1, “SPEC file
description for a Python package”). If you define the python3_pkgversion macro, the values of the
macros described in the following table will reflect the specified Python 3 version.

Table 5.3. Macros for Python 3 RPMs

Macro Normal Definition Description

%
{python3_pkgversion
}

3 The Python version that is used by all other
macros. Can be redefined to 3.11 to use
Python 3.11, or to 3.12 to use Python 3.12

%{python3} /usr/bin/python3 The Python 3 interpreter

%{python3_version} 3.9 The major.minor version of the Python 3
interpreter

%{python3_sitelib} /usr/lib/python3.9/site-packages The location where pure-Python modules are
installed

%{python3_sitearch} /usr/lib64/python3.9/site-
packages

The location where modules containing
architecture-specific extension modules are
installed

%py3_build Runs the setup.py build command with
arguments suitable for an RPM package

%py3_install Runs the setup.py install command with
arguments suitable for an RPM package

Red Hat Enterprise Linux 9 Packaging and distributing software

58

%
{py3_shebang_flags}

s The default set of flags for the Python
interpreter directives macro,
%py3_shebang_fix

%py3_shebang_fix Changes Python interpreter directives to #! %
{python3}, preserves any existing flags (if
found), and adds flags defined in the %
{py3_shebang_flags} macro

Macro Normal Definition Description

Additional resources

Python macros in upstream documentation

5.5.3. Using automatically generated dependencies for Python RPMs

The following procedure describes how to use automatically generated dependencies when packaging a
Python project as an RPM.

Prerequisites

A SPEC file for the RPM exists. For more information, see SPEC file description for a Python
package.

Procedure

1. Make sure that one of the following directories containing upstream-provided metadata is
included in the resulting RPM:

.dist-info

.egg-info
The RPM build process automatically generates virtual pythonX.Ydist provides from these
directories, for example:

python3.9dist(pello)

The Python dependency generator then reads the upstream metadata and generates
runtime requirements for each RPM package using the generated pythonX.Ydist virtual
provides. For example, a generated requirements tag might look as follows:

Requires: python3.9dist(requests)

2. Inspect the generated requires.

3. To remove some of the generated requires, use one of the following approaches:

a. Modify the upstream-provided metadata in the %prep section of the SPEC file.

CHAPTER 5. ADVANCED TOPICS

59

https://docs.fedoraproject.org/en-US/packaging-guidelines/Python_201x/#_macros

b. Use automatic filtering of dependencies described in the upstream documentation.

4. To disable the automatic dependency generator, include the %{?
python_disable_dependency_generator} macro above the main package’s %description
declaration.

Additional resources

Automatically generated dependencies

5.6. HANDLING INTERPRETER DIRECTIVES IN PYTHON SCRIPTS

In Red Hat Enterprise Linux 9, executable Python scripts are expected to use interpreter directives
(also known as hashbangs or shebangs) that explicitly specify at a minimum the major Python version.
For example:

#!/usr/bin/python3
#!/usr/bin/python3.9
#!/usr/bin/python3.11
#!/usr/bin/python3.12

The /usr/lib/rpm/redhat/brp-mangle-shebangs buildroot policy (BRP) script is run automatically when
building any RPM package, and attempts to correct interpreter directives in all executable files.

The BRP script generates errors when encountering a Python script with an ambiguous interpreter
directive, such as:

#!/usr/bin/python

or

#!/usr/bin/env python

5.6.1. Modifying interpreter directives in Python scripts

Use the following procedure to modify interpreter directives in Python scripts that cause build errors at
RPM build time.

Prerequisites

Some of the interpreter directives in your Python scripts cause a build error.

Procedure

To modify interpreter directives, complete one of the following tasks:

Use the following macro in the %prep section of your SPEC file:

%py3_shebang_fix SCRIPTNAME …

SCRIPTNAME can be any file, directory, or a list of files and directories.

As a result, all listed files and all .py files in listed directories will have their interpreter

Red Hat Enterprise Linux 9 Packaging and distributing software

60

https://fedoraproject.org/w/index.php?title=Packaging:AutoProvidesAndRequiresFiltering&oldid=530706
https://docs.fedoraproject.org/en-US/packaging-guidelines/Python_201x/#_automatically_generated_dependencies

directives modified to point to %{python3}. Existing flags from the original interpreter
directive will be preserved and additional flags defined in the %{py3_shebang_flags}
macro will be added. You can redefine the %{py3_shebang_flags} macro in your SPEC file
to change the flags that will be added.

Apply the pathfix.py script from the python3-devel package:

pathfix.py -pn -i %{python3} PATH …

You can specify multiple paths. If a PATH is a directory, pathfix.py recursively scans for any
Python scripts matching the pattern ^[a-zA-Z0-9_]+\.py$, not only those with an ambiguous
interpreter directive. Add the command above to the %prep section or at the end of the
%install section.

Modify the packaged Python scripts so that they conform to the expected format. For this
purpose, you can use the pathfix.py script outside the RPM build process, too. When
running pathfix.py outside an RPM build, replace %{python3} from the preceding example
with a path for the interpreter directive, such as /usr/bin/python3 or /usr/bin/python3.11.

Additional resources

Interpreter invocation

5.7. RUBYGEMS PACKAGES

This section explains what RubyGems packages are, and how to re-package them into RPM.

5.7.1. What RubyGems are

Ruby is a dynamic, interpreted, reflective, object-oriented, general-purpose programming language.

Programs written in Ruby are typically packaged using the RubyGems project, which provides a specific
Ruby packaging format.

Packages created by RubyGems are called gems, and they can be re-packaged into RPM as well.

NOTE

This documentation refers to terms related to the RubyGems concept with the gem
prefix, for example .gemspec is used for the gem specification, and terms related to
RPM are unqualified.

5.7.2. How RubyGems relate to RPM

RubyGems represent Ruby’s own packaging format. However, RubyGems contain metadata similar to
those needed by RPM, which enables the conversion from RubyGems to RPM.

According to Ruby Packaging Guidelines, it is possible to re-package RubyGems packages into RPM in
this way:

Such RPMs fit with the rest of the distribution.

End users are able to satisfy dependencies of a gem by installing the appropriate RPM-
packaged gem.

CHAPTER 5. ADVANCED TOPICS

61

https://docs.fedoraproject.org/en-US/packaging-guidelines/Python/#_interpreter_invocation
https://docs.fedoraproject.org/en-US/packaging-guidelines/Ruby/#_rubygems

RubyGems use similar terminology as RPM, such as spec files, package names, dependencies and other
items.

To fit into the rest of RHEL RPM distribution, packages created by RubyGems must follow the
conventions listed below:

Names of gems must follow this pattern:

rubygem-%{gem_name}

To implement a shebang line, the following string must be used:

#!/usr/bin/ruby

5.7.3. Creating RPM packages from RubyGems packages

To create a source RPM for a RubyGems package, the following files are needed:

A gem file

An RPM spec file

The following sections describe how to create RPM packages from packages created by RubyGems.

5.7.3.1. RubyGems spec file conventions

A RubyGems spec file must meet the following conventions:

Contain a definition of %{gem_name}, which is the name from the gem’s specification.

The source of the package must be the full URL to the released gem archive; the version of the
package must be the gem’s version.

Contain the BuildRequires: a directive defined as follows to be able to pull in the macros
needed to build.

BuildRequires:rubygems-devel

Not contain any RubyGems Requires or Provides, because those are autogenerated.

Not contain the BuildRequires: directive defined as follows, unless you want to explicitly
specify Ruby version compatibility:

Requires: ruby(release)

The automatically generated dependency on RubyGems (Requires: ruby(rubygems)) is
sufficient.

5.7.3.2. RubyGems macros

The following table lists macros useful for packages created by RubyGems. These macros are provided
by the rubygems-devel packages.

Table 5.4. RubyGems' macros

Red Hat Enterprise Linux 9 Packaging and distributing software

62

Macro
name

Extended path Usage

%
{gem_dir
}

/usr/share/gems Top directory for the gem structure.

%
{gem_in
stdir}

%{gem_dir}/gems/%{gem_name}-%{version} Directory with the actual content of the gem.

%
{gem_lib
dir}

%{gem_instdir}/lib The library directory of the gem.

%
{gem_ca
che}

%{gem_dir}/cache/%{gem_name}-%
{version}.gem

The cached gem.

%
{gem_sp
ec}

%{gem_dir}/specifications/%{gem_name}-%
{version}.gemspec

The gem specification file.

%
{gem_do
cdir}

%{gem_dir}/doc/%{gem_name}-%{version} The RDoc documentation of the gem.

%
{gem_ex
tdir_mri}

%{_libdir}/gems/ruby/%{gem_name}-%
{version}

The directory for gem extension.

5.7.3.3. RubyGems spec file example

Example spec file for building gems together with an explanation of its particular sections follows.

An example RubyGems spec file

%prep
%setup -q -n %{gem_name}-%{version}

Modify the gemspec if necessary
Also apply patches to code if necessary
%patch0 -p1

%build
Create the gem as gem install only works on a gem file
gem build ../%{gem_name}-%{version}.gemspec

%%gem_install compiles any C extensions and installs the gem into ./%%gem_dir
by default, so that we can move it into the buildroot in %%install
%gem_install

CHAPTER 5. ADVANCED TOPICS

63

%install
mkdir -p %{buildroot}%{gem_dir}
cp -a ./%{gem_dir}/* %{buildroot}%{gem_dir}/

If there were programs installed:
mkdir -p %{buildroot}%{_bindir}
cp -a ./%{_bindir}/* %{buildroot}%{_bindir}

If there are C extensions, copy them to the extdir.
mkdir -p %{buildroot}%{gem_extdir_mri}
cp -a .%{gem_extdir_mri}/{gem.build_complete,*.so} %{buildroot}%{gem_extdir_mri}/

The following table explains the specifics of particular items in a RubyGems spec file:

Table 5.5. RubyGems' spec directives specifics

Directive RubyGems specifics

%prep RPM can directly unpack gem archives, so you can run the gem unpack comamnd to
extract the source from the gem. The %setup -n %{gem_name}-%{version} macro
provides the directory into which the gem has been unpacked. At the same directory level,
the %{gem_name}-%{version}.gemspec file is automatically created, which can be
used to rebuild the gem later, to modify the .gemspec, or to apply patches to the code.

%build This directive includes commands or series of commands for building the software into
machine code. The %gem_install macro operates only on gem archives, and the gem is
recreated with the next gem build. The gem file that is created is then used by
%gem_install to build and install the code into the temporary directory, which is ./%
{gem_dir} by default. The %gem_install macro both builds and installs the code in one
step. Before being installed, the built sources are placed into a temporary directory that is
created automatically.

The %gem_install macro accepts two additional options: -n <gem_file>, which allows to
override gem used for installation, and -d <install_dir>, which might override the gem
installation destination; using this option is not recommended.

The %gem_install macro must not be used to install into the %{buildroot}.

%install The installation is performed into the %{buildroot} hierarchy. You can create the
directories that you need and then copy what was installed in the temporary directories
into the %{buildroot} hierarchy. If this gem creates shared objects, they are moved into
the architecture-specific %{gem_extdir_mri} path.

Additional resources

Ruby Packaging Guidelines

5.7.3.4. Converting RubyGems packages to RPM spec files with gem2rpm

The gem2rpm utility converts RubyGems packages to RPM spec files.

The following sections describe how to:

Install the gem2rpm utility

Red Hat Enterprise Linux 9 Packaging and distributing software

64

https://docs.fedoraproject.org/en-US/packaging-guidelines/Ruby/

Display all gem2rpm options

Use gem2rpm to convert RubyGems packages to RPM spec files

Edit gem2rpm templates

5.7.3.4.1. Installing gem2rpm

The following procedure describes how to install the gem2rpm utility.

Procedure

To install gem2rpm from RubyGems.org, run:

$ gem install gem2rpm

5.7.3.4.2. Displaying all options of gem2rpm

The following procedure describes how to display all options of the gem2rpm utility.

Procedure

To see all options of gem2rpm, run:

$ gem2rpm --help

5.7.3.4.3. Using gem2rpm to convert RubyGems packages to RPM spec files

The following procedure describes how to use the gem2rpm utility to convert RubyGems packages to
RPM spec files.

Procedure

Download a gem in its latest version, and generate the RPM spec file for this gem:

$ gem2rpm --fetch <gem_name> > <gem_name>.spec

The described procedure creates an RPM spec file based on the information provided in the gem’s
metadata. However, the gem misses some important information that is usually provided in RPMs, such
as the license and the changelog. The generated spec file thus needs to be edited.

5.7.3.4.4. gem2rpm templates

The gem2rpm template is a standard Embedded Ruby (ERB) file, which includes variables listed in the
following table.

Table 5.6. Variables in the gem2rpm template

Variable Explanation

package The Gem::Package variable for the gem.

CHAPTER 5. ADVANCED TOPICS

65

https://rubygems.org/

spec The Gem::Specification variable for the gem (the same as format.spec).

config The Gem2Rpm::Configuration variable that can redefine default macros or rules
used in spec template helpers.

runtime_dependen
cies

The Gem2Rpm::RpmDependencyList variable providing a list of package runtime
dependencies.

development_dep
endencies

The Gem2Rpm::RpmDependencyList variable providing a list of package
development dependencies.

tests The Gem2Rpm::TestSuite variable providing a list of test frameworks allowing their
execution.

files The Gem2Rpm::RpmFileList variable providing an unfiltered list of files in a
package.

main_files The Gem2Rpm::RpmFileList variable providing a list of files suitable for the main
package.

doc_files The Gem2Rpm::RpmFileList variable providing a list of files suitable for the -doc
subpackage.

format The Gem::Format variable for the gem. Note that this variable is now deprecated.

Variable Explanation

5.7.3.4.5. Listing available gem2rpm templates

Use the following procedure describes to list all available gem2rpm templates.

Procedure

To see all available templates, run:

$ gem2rpm --templates

5.7.3.4.6. Editing gem2rpm templates

You can edit the template from which the RPM spec file is generated instead of editing the generated
spec file.

Use the following procedure to edit the gem2rpm templates.

Procedure

1. Save the default template:

$ gem2rpm -T > rubygem-<gem_name>.spec.template

Red Hat Enterprise Linux 9 Packaging and distributing software

66

2. Edit the template as needed.

3. Generate the spec file by using the edited template:

$ gem2rpm -t rubygem-<gem_name>.spec.template <gem_name>-<latest_version.gem
> <gem_name>-GEM.spec

You can now build an RPM package by using the edited template as described in Building RPMs.

5.8. HOW TO HANDLE RPM PACKAGES WITH PERLS SCRIPTS

Since RHEL 8, the Perl programming language is not included in the default buildroot. Therefore, the
RPM packages that include Perl scripts must explicitly indicate the dependency on Perl using the
BuildRequires: directive in RPM spec file.

5.8.1. Common Perl-related dependencies

The most frequently occurring Perl-related build dependencies used in BuildRequires: are :

perl-generators
Automatically generates run-time Requires and Provides for installed Perl files. When you
install a Perl script or a Perl module, you must include a build dependency on this package.

perl-interpreter
The Perl interpreter must be listed as a build dependency if it is called in any way, either explicitly
via the perl package or the %__perl macro, or as a part of your package’s build system.

perl-devel
Provides Perl header files. If building architecture-specific code which links to the libperl.so
library, such as an XS Perl module, you must include BuildRequires: perl-devel.

5.8.2. Using a specific Perl module

If a specific Perl module is required at build time, use the following procedure:

Procedure

Apply the following syntax in your RPM spec file:

BuildRequires: perl(MODULE)

NOTE

Apply this syntax to Perl core modules as well, because they can move in and out
of the perl package over time.

5.8.3. Limiting a package to a specific Perl version

To limit your package to a specific Perl version, follow this procedure:

Procedure

Use the perl(:VERSION) dependency with the desired version constraint in your RPM spec file:

CHAPTER 5. ADVANCED TOPICS

67

For example, to limit a package to Perl version 5.30 and higher, use:

BuildRequires: perl(:VERSION) >= 5.30

WARNING

Do not use a comparison against the version of the perl package because it
includes an epoch number.

5.8.4. Ensuring that a package uses the correct Perl interpreter

Red Hat provides multiple Perl interpreters, which are not fully compatible. Therefore, any package that
delivers a Perl module must use at run time the same Perl interpreter that was used at build time.

To ensure this, follow the procedure below:

Procedure

Include versioned MODULE_COMPAT Requires in RPM spec file for any package that delivers
a Perl module:

Requires: perl(:MODULE_COMPAT_%(eval `perl -V:version`; echo $version))

Red Hat Enterprise Linux 9 Packaging and distributing software

68

CHAPTER 6. NEW FEATURES IN RHEL 9
This section documents the most notable changes in RPM packaging between Red Hat Enterprise Linux
8 and 9.

6.1. DYNAMIC BUILD DEPENDENCIES

Red Hat Enterprise Linux 9 introduces the %generate_buildrequires section that enables generating
dynamic build dependencies.

Additional build dependencies can now be generated programmatically at RPM build time, using the
newly available %generate_buildrequires script. This is useful when packaging software written in a
language in which a specialized utility is commonly used to determine run-time or build-time
dependencies, such as Rust, Golang, Node.js, Ruby, Python, or Haskell.

You can use the %generate_buildrequires script to dynamically determine which BuildRequires
directives are added to a SPEC file at build-time. If present, %generate_buildrequires is executed after
the %prep section and can access the unpacked and patched source files. The script must print the
found build dependencies to standard output using the same syntax as a regular BuildRequires
directive.

The rpmbuild utility then checks if the dependencies are met before continuing the build.

If some dependencies are missing, a package with the .buildreqs.nosrc.rpm suffix is created, which
contains the found BuildRequires and no source files. You can use this package to install the missing
build dependencies with the dnf builddep command before restarting the build.

For more information, see the DYNAMIC BUILD DEPENDENCIES section in the rpmbuild(8) man
page.

Additional resources

rpmbuild(8) man page

yum-builddep(1) man page

6.2. IMPROVED PATCH DECLARATION

6.2.1. Optional automatic patch and source numbering

The Patch: and Source: tags without a number are now automatically numbered based on the order in
which they are listed.

The numbering is run internally by the rpmbuild utility starting from the last manually numbered entry,
or 0 if there is no such entry.

For example:

Patch: one.patch
Patch: another.patch
Patch: yet-another.patch

6.2.2. %patchlist and %sourcelist sections

CHAPTER 6. NEW FEATURES IN RHEL 9

69

It is now possible to list patch and source files without preceding each item with the respective Patch:
and Source: tags by using the newly added %patchlist and %sourcelist sections.

For example, the following entries:

Patch0: one.patch
Patch1: another.patch
Patch2: yet-another.patch

can now be replaced with:

%patchlist
one.patch
another.patch
yet-another.patch

6.2.3. %autopatch now accepts patch ranges

The %autopatch macro now accepts the -m and -M parameters to limit the minimum and maximum
patch number to apply, respectively:

The -m parameter specifies the patch number (inclusive) to start at when applying patches.

The -M parameter specifies the patch number (inclusive) to stop at when applying patches.

This feature can be useful when an action needs to be performed in between certain patch sets.

6.3. OTHER FEATURES

Other new features related to RPM packaging in Red Hat Enterprise Linux 9 include:

Fast macro-based dependency generators

Powerful macro and %if expressions, including ternary operator and native version comparison

Meta (unordered) dependencies

Caret version operator (^), which can be used to express a version that is higher than the base
version. This operator complements the tilde (~) operator, which has the opposite semantics.

%elif, %elifos and %elifarch statements

Red Hat Enterprise Linux 9 Packaging and distributing software

70

CHAPTER 7. ADDITIONAL RESOURCES
References to various topics related to RPMs, RPM packaging, and RPM building follows.

Mock

RPM Documentation

RPM 4.15.0 Release Notes

RPM 4.16.0 Release Notes

Fedora Packaging Guidelines

CHAPTER 7. ADDITIONAL RESOURCES

71

https://rpm-packaging-guide.github.io/#mock
http://rpm.org/documentation
https://rpm.org/wiki/Releases/4.15.0
https://rpm.org/wiki/Releases/4.16.0
https://docs.fedoraproject.org/en-US/packaging-guidelines/

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO RPM
	1.1. RPM PACKAGES
	1.2. LISTING RPM PACKAGING UTILITIES

	CHAPTER 2. CREATING SOFTWARE FOR RPM PACKAGING
	2.1. WHAT IS SOURCE CODE
	2.2. METHODS OF CREATING SOFTWARE
	2.2.1. Natively compiled software
	2.2.2. Interpreted software

	2.3. BUILDING SOFTWARE FROM SOURCE
	2.3.1. Building software from natively compiled code
	2.3.1.1. Manually building a sample C program
	2.3.1.2. Setting up automated building for a sample C program

	2.3.2. Interpreting source code
	2.3.2.1. Byte-compiling a sample Python program
	2.3.2.2. Raw-interpreting a sample Bash program

	CHAPTER 3. PREPARING SOFTWARE FOR RPM PACKAGING
	3.1. PATCHING SOFTWARE
	3.1.1. Creating a patch file for a sample C program
	3.1.2. Patching a sample C program

	3.2. CREATING A LICENSE FILE
	3.3. CREATING A SOURCE CODE ARCHIVE FOR DISTRIBUTION
	3.3.1. Creating a source code archive for a sample Bash program
	3.3.2. Creating a source code archive for a sample Python program
	3.3.3. Creating a source code archive for a sample C program

	CHAPTER 4. PACKAGING SOFTWARE
	4.1. SETTING UP RPM PACKAGING WORKSPACE
	4.1.1. Configuring RPM packaging workspace
	4.1.2. RPM packaging workspace directories

	4.2. ABOUT SPEC FILES
	4.2.1. Preamble items
	4.2.2. Body items
	4.2.3. Advanced items

	4.3. BUILDROOTS
	4.4. RPM MACROS
	4.5. WORKING WITH SPEC FILES
	4.5.1. Creating a new spec file for sample Bash, Python, and C programs
	4.5.2. Modifying an original spec file
	4.5.3. An example spec file for a sample Bash program
	4.5.4. An example SPEC file for a program written in Python
	4.5.5. An example spec file for a sample C program

	4.6. BUILDING RPMS
	4.6.1. Building source RPMs
	4.6.2. Rebuilding a binary RPM from a source RPM
	4.6.3. Building a binary RPM from the spec file

	4.7. CHECKING RPMS FOR COMMON ERRORS
	4.7.1. Checking a sample Bash program for common errors
	4.7.1.1. Checking the bello spec file for common errors
	4.7.1.2. Checking the bello binary RPM for common errors

	4.7.2. Checking a sample Python program for common errors
	4.7.2.1. Checking the pello spec file for common errors
	4.7.2.2. Checking the pello binary RPM for common errors

	4.7.3. Checking a sample C program for common errors
	4.7.3.1. Checking the cello spec file for common errors
	4.7.3.2. Checking the cello binary RPM for common errors

	4.8. LOGGING RPM ACTIVITY TO SYSLOG
	4.9. EXTRACTING RPM CONTENT

	CHAPTER 5. ADVANCED TOPICS
	5.1. SIGNING RPM PACKAGES
	5.1.1. Creating a GPG key
	5.1.2. Configuring RPM to sign a package
	5.1.3. Adding a signature to an RPM package

	5.2. MORE ON MACROS
	5.2.1. Defining your own macros
	5.2.2. Using the %setup macro
	5.2.2.1. Using the %setup -q macro
	5.2.2.2. Using the %setup -n macro
	5.2.2.3. Using the %setup -c macro
	5.2.2.4. Using the %setup -D and %setup -T macros
	5.2.2.5. Using the %setup -a and %setup -b macros

	5.2.3. Common RPM macros in the %files section
	5.2.4. Displaying the built-in macros
	5.2.5. RPM distribution macros
	5.2.6. Creating custom macros

	5.3. EPOCH, SCRIPTLETS AND TRIGGERS
	5.3.1. The Epoch directive
	5.3.2. Scriptlets directives
	5.3.3. Turning off a scriptlet execution
	5.3.4. Scriptlets macros
	5.3.5. The Triggers directives
	5.3.6. Using non-shell scripts in a spec file

	5.4. RPM CONDITIONALS
	5.4.1. RPM conditionals syntax
	5.4.2. The %if conditionals
	5.4.3. Specialized variants of %if conditionals

	5.5. PACKAGING PYTHON 3 RPMS
	5.5.1. SPEC file description for a Python package
	5.5.2. Common macros for Python 3 RPMs
	5.5.3. Using automatically generated dependencies for Python RPMs

	5.6. HANDLING INTERPRETER DIRECTIVES IN PYTHON SCRIPTS
	5.6.1. Modifying interpreter directives in Python scripts

	5.7. RUBYGEMS PACKAGES
	5.7.1. What RubyGems are
	5.7.2. How RubyGems relate to RPM
	5.7.3. Creating RPM packages from RubyGems packages
	5.7.3.1. RubyGems spec file conventions
	5.7.3.2. RubyGems macros
	5.7.3.3. RubyGems spec file example
	5.7.3.4. Converting RubyGems packages to RPM spec files with gem2rpm

	5.8. HOW TO HANDLE RPM PACKAGES WITH PERLS SCRIPTS
	5.8.1. Common Perl-related dependencies
	5.8.2. Using a specific Perl module
	5.8.3. Limiting a package to a specific Perl version
	5.8.4. Ensuring that a package uses the correct Perl interpreter

	CHAPTER 6. NEW FEATURES IN RHEL 9
	6.1. DYNAMIC BUILD DEPENDENCIES
	6.2. IMPROVED PATCH DECLARATION
	6.2.1. Optional automatic patch and source numbering
	6.2.2. %patchlist and %sourcelist sections
	6.2.3. %autopatch now accepts patch ranges

	6.3. OTHER FEATURES

	CHAPTER 7. ADDITIONAL RESOURCES

