
Red Hat Enterprise Linux 9

Using SELinux

Prevent users and processes from performing unauthorized interactions with files and
devices by using Security-Enhanced Linux (SELinux)

Last Updated: 2024-07-11

Red Hat Enterprise Linux 9 Using SELinux

Prevent users and processes from performing unauthorized interactions with files and devices by
using Security-Enhanced Linux (SELinux)

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

By configuring SELinux, you can enhance your system’s security. SELinux is an implementation of
Mandatory Access Control (MAC), and provides an additional layer of security. The SELinux policy
defines how users and processes can interact with the files on the system. You can control which
users can perform which actions by mapping them to specific SELinux confined users.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. GETTING STARTED WITH SELINUX
1.1. INTRODUCTION TO SELINUX
1.2. BENEFITS OF RUNNING SELINUX
1.3. SELINUX EXAMPLES
1.4. SELINUX ARCHITECTURE AND PACKAGES
1.5. SELINUX STATES AND MODES

CHAPTER 2. CHANGING SELINUX STATES AND MODES
2.1. PERMANENT CHANGES IN SELINUX STATES AND MODES
2.2. CHANGING SELINUX TO PERMISSIVE MODE
2.3. CHANGING SELINUX TO ENFORCING MODE
2.4. ENABLING SELINUX ON SYSTEMS THAT PREVIOUSLY HAD IT DISABLED
2.5. DISABLING SELINUX
2.6. CHANGING SELINUX MODES AT BOOT TIME

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS
3.1. CONFINED AND UNCONFINED USERS IN SELINUX
3.2. ROLES AND ACCESS RIGHTS OF SELINUX USERS
3.3. CONFINED NON-ADMINISTRATOR ROLES IN SELINUX
3.4. CONFINED ADMINISTRATOR ROLES IN SELINUX
3.5. ADDING A NEW USER AUTOMATICALLY MAPPED TO THE SELINUX UNCONFINED_U USER
3.6. ADDING A NEW USER AS AN SELINUX-CONFINED USER
3.7. CONFINING REGULAR USERS IN SELINUX
3.8. CONFINING AN ADMINISTRATOR BY MAPPING TO SYSADM_U
3.9. CONFINING AN ADMINISTRATOR BY USING SUDO AND THE SYSADM_R ROLE
3.10. ADDITIONAL RESOURCES

CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS AND SERVICES WITH NON-STANDARD
CONFIGURATIONS

4.1. CUSTOMIZING THE SELINUX POLICY FOR THE APACHE HTTP SERVER IN A NON-STANDARD
CONFIGURATION
4.2. ADJUSTING THE POLICY FOR SHARING NFS AND CIFS VOLUMES BY USING SELINUX BOOLEANS
4.3. FINDING THE CORRECT SELINUX TYPE FOR MANAGING ACCESS TO NON-STANDARD DIRECTORIES

4.4. MANAGING ACCESS TO NON-STANDARD SHARED DIRECTORIES FOR UNPRIVILEGED SELINUX USERS

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX
5.1. IDENTIFYING SELINUX DENIALS
5.2. ANALYZING SELINUX DENIAL MESSAGES
5.3. FIXING ANALYZED SELINUX DENIALS
5.4. CREATING A LOCAL SELINUX POLICY MODULE
5.5. SELINUX DENIALS IN THE AUDIT LOG
5.6. ADDITIONAL RESOURCES

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)
6.1. MULTI-LEVEL SECURITY (MLS)
6.2. SELINUX ROLES IN MLS
6.3. SWITCHING THE SELINUX POLICY TO MLS
6.4. ESTABLISHING USER CLEARANCE IN MLS
6.5. CHANGING A USER’S CLEARANCE LEVEL WITHIN THE DEFINED SECURITY RANGE IN MLS

4

5
5
6
7
8
9

10
10
10
11

13
14
15

17
17
18

20
22
24
24
25
26
28
29

30

30
32

33

34

37
37
38
39
42
44
45

46
46
48
49
51

53

Table of Contents

1

. .

. .

. .

. .

6.6. INCREASING FILE SENSITIVITY LEVELS IN MLS
6.7. CHANGING FILE SENSITIVITY IN MLS
6.8. SEPARATING SYSTEM ADMINISTRATION FROM SECURITY ADMINISTRATION IN MLS
6.9. DEFINING A SECURE TERMINAL IN MLS
6.10. ALLOWING MLS USERS TO EDIT FILES ON LOWER LEVELS

CHAPTER 7. USING MULTI-CATEGORY SECURITY (MCS) FOR DATA CONFIDENTIALITY
7.1. MULTI-CATEGORY SECURITY (MCS)

MCS within Multi-Level Security
7.2. CONFIGURING MULTI-CATEGORY SECURITY FOR DATA CONFIDENTIALITY
7.3. DEFINING CATEGORY LABELS IN MCS
7.4. ASSIGNING CATEGORIES TO USERS IN MCS
7.5. ASSIGNING CATEGORIES TO FILES IN MCS

CHAPTER 8. WRITING A CUSTOM SELINUX POLICY
8.1. CUSTOM SELINUX POLICIES AND RELATED TOOLS
8.2. CREATING AND ENFORCING AN SELINUX POLICY FOR A CUSTOM APPLICATION
8.3. ADDITIONAL RESOURCES

CHAPTER 9. CREATING SELINUX POLICIES FOR CONTAINERS
9.1. INTRODUCTION TO THE UDICA SELINUX POLICY GENERATOR
9.2. CREATING AND USING AN SELINUX POLICY FOR A CUSTOM CONTAINER

CHAPTER 10. DEPLOYING THE SAME SELINUX CONFIGURATION ON MULTIPLE SYSTEMS
10.1. INTRODUCTION TO THE SELINUX RHEL SYSTEM ROLE
10.2. USING THE SELINUX RHEL SYSTEM ROLE TO APPLY SELINUX SETTINGS ON MULTIPLE SYSTEMS
10.3. MANAGING PORTS BY USING THE SELINUX RHEL SYSTEM ROLE
10.4. TRANSFERRING SELINUX SETTINGS TO ANOTHER SYSTEM WITH SEMANAGE

55
56
57
60
61

63
63
63
64
65
67
68

70
70
70
74

75
75
75

78
78
78
79
81

Red Hat Enterprise Linux 9 Using SELinux

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 9 Using SELinux

4

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. GETTING STARTED WITH SELINUX
Security Enhanced Linux (SELinux) provides an additional layer of system security. SELinux
fundamentally answers the question: May <subject> do <action> to <object>? , for example: May a web
server access files in users' home directories?

1.1. INTRODUCTION TO SELINUX

The standard access policy based on the user, group, and other permissions, known as Discretionary
Access Control (DAC), does not enable system administrators to create comprehensive and fine-
grained security policies, such as restricting specific applications to only viewing log files, while allowing
other applications to append new data to the log files.

Security Enhanced Linux (SELinux) implements Mandatory Access Control (MAC). Every process and
system resource has a special security label called an SELinux context. A SELinux context, sometimes
referred to as an SELinux label, is an identifier which abstracts away the system-level details and focuses
on the security properties of the entity. Not only does this provide a consistent way of referencing
objects in the SELinux policy, but it also removes any ambiguity that can be found in other identification
methods. For example, a file can have multiple valid path names on a system that makes use of bind
mounts.

The SELinux policy uses these contexts in a series of rules which define how processes can interact with
each other and the various system resources. By default, the policy does not allow any interaction unless
a rule explicitly grants access.

NOTE

Remember that SELinux policy rules are checked after DAC rules. SELinux policy rules
are not used if DAC rules deny access first, which means that no SELinux denial is logged
if the traditional DAC rules prevent the access.

SELinux contexts have several fields: user, role, type, and security level. The SELinux type information is
perhaps the most important when it comes to the SELinux policy, as the most common policy rule which
defines the allowed interactions between processes and system resources uses SELinux types and not
the full SELinux context. SELinux types end with _t. For example, the type name for the web server is
httpd_t. The type context for files and directories normally found in /var/www/html/ is
httpd_sys_content_t. The type contexts for files and directories normally found in /tmp and /var/tmp/
is tmp_t. The type context for web server ports is http_port_t.

There is a policy rule that permits Apache (the web server process running as httpd_t) to access files
and directories with a context normally found in /var/www/html/ and other web server directories
(httpd_sys_content_t). There is no allow rule in the policy for files normally found in /tmp and /var/tmp/,
so access is not permitted. With SELinux, even if Apache is compromised, and a malicious script gains
access, it is still not able to access the /tmp directory.

Figure 1.1. An example how can SELinux help to run Apache and MariaDB in a secure way.

CHAPTER 1. GETTING STARTED WITH SELINUX

5

Figure 1.1. An example how can SELinux help to run Apache and MariaDB in a secure way.

As the previous scheme shows, SELinux allows the Apache process running as httpd_t to access the
/var/www/html/ directory and it denies the same process to access the /data/mysql/ directory because
there is no allow rule for the httpd_t and mysqld_db_t type contexts. On the other hand, the MariaDB
process running as mysqld_t is able to access the /data/mysql/ directory and SELinux also correctly
denies the process with the mysqld_t type to access the /var/www/html/ directory labeled as
httpd_sys_content_t.

Additional resources

selinux(8) man page and man pages listed by the apropos selinux command.

Man pages listed by the man -k _selinux command when the selinux-policy-doc package is
installed.

The SELinux Coloring Book helps you to better understand SELinux basic concepts.

SELinux Wiki FAQ

1.2. BENEFITS OF RUNNING SELINUX

SELinux provides the following benefits:

All processes and files are labeled. SELinux policy rules define how processes interact with files,
as well as how processes interact with each other. Access is only allowed if an SELinux policy
rule exists that specifically allows it.

SELinux provides fine-grained access control. Stepping beyond traditional UNIX permissions
that are controlled at user discretion and based on Linux user and group IDs, SELinux access
decisions are based on all available information, such as an SELinux user, role, type, and,
optionally, a security level.

SELinux policy is administratively-defined and enforced system-wide.

SELinux can mitigate privilege escalation attacks. Processes run in domains, and are therefore
separated from each other. SELinux policy rules define how processes access files and other
processes. If a process is compromised, the attacker only has access to the normal functions of
that process, and to files the process has been configured to have access to. For example, if the

Red Hat Enterprise Linux 9 Using SELinux

6

https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
http://selinuxproject.org/page/FAQ

Apache HTTP Server is compromised, an attacker cannot use that process to read files in user
home directories, unless a specific SELinux policy rule was added or configured to allow such
access.

SELinux can enforce data confidentiality and integrity, and can protect processes from
untrusted inputs.

SELinux is designed to enhance existing security solutions, not replace antivirus software, secure
passwords, firewalls, or other security systems. Even when running SELinux, it is important to continue to
follow good security practices, such as keeping software up-to-date, using hard-to-guess passwords,
and firewalls.

1.3. SELINUX EXAMPLES

The following examples demonstrate how SELinux increases security:

The default action is deny. If an SELinux policy rule does not exist to allow access, such as for a
process opening a file, access is denied.

SELinux can confine Linux users. A number of confined SELinux users exist in the SELinux
policy. Linux users can be mapped to confined SELinux users to take advantage of the security
rules and mechanisms applied to them. For example, mapping a Linux user to the SELinux
user_u user, results in a Linux user that is not able to run unless configured otherwise set user
ID (setuid) applications, such as sudo and su.

Increased process and data separation. The concept of SELinux domains allows defining which
processes can access certain files and directories. For example, when running SELinux, unless
otherwise configured, an attacker cannot compromise a Samba server, and then use that Samba
server as an attack vector to read and write to files used by other processes, such as MariaDB
databases.

SELinux helps mitigate the damage made by configuration mistakes. Domain Name System
(DNS) servers often replicate information between each other in a zone transfer. Attackers can
use zone transfers to update DNS servers with false information. When running the Berkeley
Internet Name Domain (BIND) as a DNS server in RHEL, even if an administrator forgets to limit
which servers can perform a zone transfer, the default SELinux policy prevent updates for zone
files [1] that use zone transfers, by the BIND named daemon itself, and by other processes.

Without SELinux, an attacker can misuse a vulnerability to path traversal on an Apache web
server and access files and directories stored on the file system by using special elements such
as ../. If an attacker attempts an attack on a server running with SELinux in enforcing mode,
SELinux denies access to files that the httpd process must not access. SELinux cannot block
this type of attack completely but it effectively mitigates it.

SELinux in enforcing mode successfully prevents exploitation of kernel NULL pointer
dereference operators on non-SMAP platforms (CVE-2019-9213). Attackers use a vulnerability
in the mmap function, which does not check mapping of a null page, for placing arbitrary code
on this page.

The deny_ptrace SELinux boolean and SELinux in enforcing mode protect systems from the
PTRACE_TRACEME vulnerability (CVE-2019-13272). Such configuration prevents scenarios
when an attacker can get root privileges.

The nfs_export_all_rw and nfs_export_all_ro SELinux booleans provide an easy-to-use tool
to prevent misconfigurations of Network File System (NFS) such as accidental sharing /home
directories.

CHAPTER 1. GETTING STARTED WITH SELINUX

7

Additional resources

SELinux as a security pillar of an operating system - Real-world benefits and examples
Knowledgebase article

SELinux hardening with Ansible Knowledgebase article

selinux-playbooks Github repository with Ansible playbooks for SELinux hardening

1.4. SELINUX ARCHITECTURE AND PACKAGES

SELinux is a Linux Security Module (LSM) that is built into the Linux kernel. The SELinux subsystem in
the kernel is driven by a security policy which is controlled by the administrator and loaded at boot. All
security-relevant, kernel-level access operations on the system are intercepted by SELinux and
examined in the context of the loaded security policy. If the loaded policy allows the operation, it
continues. Otherwise, the operation is blocked and the process receives an error.

SELinux decisions, such as allowing or disallowing access, are cached. This cache is known as the Access
Vector Cache (AVC). When using these cached decisions, SELinux policy rules need to be checked less,
which increases performance. Remember that SELinux policy rules have no effect if DAC rules deny
access first. Raw audit messages are logged to the /var/log/audit/audit.log and they start with the
type=AVC string.

In RHEL 9, system services are controlled by the systemd daemon; systemd starts and stops all
services, and users and processes communicate with systemd using the systemctl utility. The systemd
daemon can consult the SELinux policy and check the label of the calling process and the label of the
unit file that the caller tries to manage, and then ask SELinux whether or not the caller is allowed the
access. This approach strengthens access control to critical system capabilities, which include starting
and stopping system services.

The systemd daemon also works as an SELinux Access Manager. It retrieves the label of the process
running systemctl or the process that sent a D-Bus message to systemd. The daemon then looks up
the label of the unit file that the process wanted to configure. Finally, systemd can retrieve information
from the kernel if the SELinux policy allows the specific access between the process label and the unit
file label. This means a compromised application that needs to interact with systemd for a specific
service can now be confined by SELinux. Policy writers can also use these fine-grained controls to
confine administrators.

If a process is sending a D-Bus message to another process and if the SELinux policy does not allow the
D-Bus communication of these two processes, then the system prints a USER_AVC denial message,
and the D-Bus communication times out. Note that the D-Bus communication between two processes
works bidirectionally.

IMPORTANT

To avoid incorrect SELinux labeling and subsequent problems, ensure that you start
services using a systemctl start command.

RHEL 9 provides the following packages for working with SELinux:

policies: selinux-policy-targeted, selinux-policy-mls

tools: policycoreutils, policycoreutils-gui, libselinux-utils, policycoreutils-python-utils,
setools-console, checkpolicy

Red Hat Enterprise Linux 9 Using SELinux

8

https://access.redhat.com/articles/6964380
https://access.redhat.com/articles/7047896
https://github.com/fedora-selinux/selinux-playbooks

1.5. SELINUX STATES AND MODES

SELinux can run in one of three modes: enforcing, permissive, or disabled.

Enforcing mode is the default, and recommended, mode of operation; in enforcing mode
SELinux operates normally, enforcing the loaded security policy on the entire system.

In permissive mode, the system acts as if SELinux is enforcing the loaded security policy,
including labeling objects and emitting access denial entries in the logs, but it does not actually
deny any operations. While not recommended for production systems, permissive mode can be
helpful for SELinux policy development and debugging.

Disabled mode is strongly discouraged; not only does the system avoid enforcing the SELinux
policy, it also avoids labeling any persistent objects such as files, making it difficult to enable
SELinux in the future.

Use the setenforce utility to change between enforcing and permissive mode. Changes made with
setenforce do not persist across reboots. To change to enforcing mode, enter the setenforce 1
command as the Linux root user. To change to permissive mode, enter the setenforce 0 command. Use
the getenforce utility to view the current SELinux mode:

getenforce
Enforcing

setenforce 0
getenforce
Permissive

setenforce 1
getenforce
Enforcing

In Red Hat Enterprise Linux, you can set individual domains to permissive mode while the system runs in
enforcing mode. For example, to make the httpd_t domain permissive:

semanage permissive -a httpd_t

Note that permissive domains are a powerful tool that can compromise security of your system. Red Hat
recommends to use permissive domains with caution, for example, when debugging a specific scenario.

[1] Text files that include DNS information, such as hostname to IP address mappings.

CHAPTER 1. GETTING STARTED WITH SELINUX

9

CHAPTER 2. CHANGING SELINUX STATES AND MODES
When enabled, SELinux can run in one of two modes: enforcing or permissive. The following sections
show how to permanently change into these modes.

2.1. PERMANENT CHANGES IN SELINUX STATES AND MODES

As discussed in SELinux states and modes, SELinux can be enabled or disabled. When enabled, SELinux
has two modes: enforcing and permissive.

Use the getenforce or sestatus commands to check in which mode SELinux is running. The getenforce
command returns Enforcing, Permissive, or Disabled.

The sestatus command returns the SELinux status and the SELinux policy being used:

$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 31

WARNING

When systems run SELinux in permissive mode, users and processes might label
various file-system objects incorrectly. File-system objects created while SELinux is
disabled are not labeled at all. This behavior causes problems when changing to
enforcing mode because SELinux relies on correct labels of file-system objects.

To prevent incorrectly labeled and unlabeled files from causing problems, SELinux
automatically relabels file systems when changing from the disabled state to
permissive or enforcing mode. Use the fixfiles -F onboot command as root to
create the /.autorelabel file containing the -F option to ensure that files are
relabeled upon next reboot.

Before rebooting the system for relabeling, make sure the system will boot in
permissive mode, for example by using the enforcing=0 kernel option. This
prevents the system from failing to boot in case the system contains unlabeled files
required by systemd before launching the selinux-autorelabel service. For more
information, see RHBZ#2021835.

2.2. CHANGING SELINUX TO PERMISSIVE MODE

When SELinux is running in permissive mode, SELinux policy is not enforced. The system remains



Red Hat Enterprise Linux 9 Using SELinux

10

https://bugzilla.redhat.com/show_bug.cgi?id=2021835

operational and SELinux does not deny any operations but only logs AVC messages, which can be then
used for troubleshooting, debugging, and SELinux policy improvements. Each AVC is logged only once
in this case.

Prerequisites

The selinux-policy-targeted, libselinux-utils, and policycoreutils packages are installed on
your system.

The selinux=0 or enforcing=0 kernel parameters are not used.

Procedure

1. Open the /etc/selinux/config file in a text editor of your choice, for example:

vi /etc/selinux/config

2. Configure the SELINUX=permissive option:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

3. Restart the system:

reboot

Verification

1. After the system restarts, confirm that the getenforce command returns Permissive:

$ getenforce
Permissive

2.3. CHANGING SELINUX TO ENFORCING MODE

When SELinux is running in enforcing mode, it enforces the SELinux policy and denies access based on
SELinux policy rules. In RHEL, enforcing mode is enabled by default when the system was initially
installed with SELinux.

Prerequisites

The selinux-policy-targeted, libselinux-utils, and policycoreutils packages are installed on
your system.

The selinux=0 or enforcing=0 kernel parameters are not used.

CHAPTER 2. CHANGING SELINUX STATES AND MODES

11

Procedure

1. Open the /etc/selinux/config file in a text editor of your choice, for example:

vi /etc/selinux/config

2. Configure the SELINUX=enforcing option:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

3. Save the change, and restart the system:

reboot

On the next boot, SELinux relabels all the files and directories within the system and adds
SELinux context for files and directories that were created when SELinux was disabled.

Verification

1. After the system restarts, confirm that the getenforce command returns Enforcing:

$ getenforce
Enforcing

Troubleshooting

After changing to enforcing mode, SELinux may deny some actions because of incorrect or missing
SELinux policy rules.

To view what actions SELinux denies, enter the following command as root:

ausearch -m AVC,USER_AVC,SELINUX_ERR,USER_SELINUX_ERR -ts today

Alternatively, with the setroubleshoot-server package installed, enter:

grep "SELinux is preventing" /var/log/messages

If SELinux is active and the Audit daemon (auditd) is not running on your system, then search
for certain SELinux messages in the output of the dmesg command:

dmesg | grep -i -e type=1300 -e type=1400

See Troubleshooting problems related to SELinux for more information.

Red Hat Enterprise Linux 9 Using SELinux

12

2.4. ENABLING SELINUX ON SYSTEMS THAT PREVIOUSLY HAD IT
DISABLED

To avoid problems, such as systems unable to boot or process failures, when enabling SELinux on
systems that previously had it disabled, resolve Access Vector Cache (AVC) messages in permissive
mode first.

When systems run SELinux in permissive mode, users and processes might label various file-system
objects incorrectly. File-system objects created while SELinux is disabled are not labeled at all. This
behavior causes problems when changing to enforcing mode because SELinux relies on correct labels of
file-system objects.

To prevent incorrectly labeled and unlabeled files from causing problems, SELinux automatically
relabels file systems when changing from the disabled state to permissive or enforcing mode.

WARNING

Before rebooting the system for relabeling, make sure the system will boot in
permissive mode, for example by using the enforcing=0 kernel option. This
prevents the system from failing to boot in case the system contains unlabeled files
required by systemd before launching the selinux-autorelabel service. For more
information, see RHBZ#2021835.

Procedure

1. Enable SELinux in permissive mode. For more information, see Changing to permissive mode .

2. Restart your system:

reboot

3. Check for SELinux denial messages. For more information, see Identifying SELinux denials.

4. Ensure that files are relabeled upon the next reboot:

fixfiles -F onboot

This creates the /.autorelabel file containing the -F option.

WARNING

Always switch to permissive mode before entering the fixfiles -F onboot
command.

By default, autorelabel uses as many threads in parallel as the system has available CPU cores.





CHAPTER 2. CHANGING SELINUX STATES AND MODES

13

https://bugzilla.redhat.com/show_bug.cgi?id=2021835

By default, autorelabel uses as many threads in parallel as the system has available CPU cores.
To use only a single thread during automatic relabeling, use the fixfiles -T 1 onboot command.

5. If there are no denials, switch to enforcing mode. For more information, see Changing SELinux
modes at boot time.

Verification

1. After the system restarts, confirm that the getenforce command returns Enforcing:

$ getenforce
Enforcing

Next steps

To run custom applications with SELinux in enforcing mode, choose one of the following scenarios:

Run your application in the unconfined_service_t domain.

Write a new policy for your application. See the Writing a custom SELinux policy section for
more information.

Additional resources

SELinux states and modes section covers temporary changes in modes.

2.5. DISABLING SELINUX

When you disable SELinux, your system does not load your SELinux policy. As a result, the system does
not enforce the SELinux policy and does not log Access Vector Cache (AVC) messages. Therefore, all
benefits of running SELinux are lost.

Do not disable SELinux except in specific scenarios, such as performance-sensitive systems where the
weakened security does not impose significant risks.

IMPORTANT

If your scenario requires to perform debugging in a production environment, temporarily
use permissive mode instead of permanently disabling SELinux. See Changing to
permissive mode for more information about permissive mode.

Prerequisites

The grubby package is installed:

$ rpm -q grubby
grubby-<version>

Procedure

1. Configure your boot loader to add selinux=0 to the kernel command line:

$ sudo grubby --update-kernel ALL --args selinux=0

Red Hat Enterprise Linux 9 Using SELinux

14

2. Restart your system:

$ reboot

Verification

After the reboot, confirm that the getenforce command returns Disabled:

$ getenforce
Disabled

2.6. CHANGING SELINUX MODES AT BOOT TIME

On boot, you can set the following kernel parameters to change the way SELinux runs:

enforcing=0

Setting this parameter causes the system to start in permissive mode, which is useful when
troubleshooting issues. Using permissive mode might be the only option to detect a problem if your
file system is too corrupted. Moreover, in permissive mode, the system continues to create the labels
correctly. The AVC messages that are created in this mode can be different than in enforcing mode.
In permissive mode, only the first denial from a series of the same denials is reported. However, in
enforcing mode, you might get a denial related to reading a directory, and an application stops. In
permissive mode, you get the same AVC message, but the application continues reading files in the
directory and you get an AVC for each denial in addition.

selinux=0

This parameter causes the kernel to not load any part of the SELinux infrastructure. The init scripts
notice that the system booted with the selinux=0 parameter and touch the /.autorelabel file. This
causes the system to automatically relabel the next time you boot with SELinux enabled.

IMPORTANT

Do not use the selinux=0 parameter in a production environment. To debug your
system, temporarily use permissive mode instead of disabling SELinux.

autorelabel=1

This parameter forces the system to relabel similarly to the following commands:

touch /.autorelabel
reboot

If a file system contains a large amount of mislabeled objects, start the system in permissive mode to
make the autorelabel process successful.

Additional resources

For additional SELinux-related kernel boot parameters, such as checkreqprot, see the
/usr/share/doc/kernel-doc-<KERNEL_VER>/Documentation/admin-guide/kernel-
parameters.txt file installed with the kernel-doc package. Replace the <KERNEL_VER> string
with the version number of the installed kernel, for example:

CHAPTER 2. CHANGING SELINUX STATES AND MODES

15

dnf install kernel-doc
$ less /usr/share/doc/kernel-doc-4.18.0/Documentation/admin-guide/kernel-parameters.txt

Red Hat Enterprise Linux 9 Using SELinux

16

CHAPTER 3. MANAGING CONFINED AND UNCONFINED
USERS

Each Linux user is mapped to an SELinux user according to the rules in the SELinux policy.
Administrators can modify these rules by using the semanage login utility or by assigning Linux users
directly to specific SELinux users. Therefore, a Linux user has the restrictions of the SELinux user to
which it is assigned. When a Linux user that is assigned to an SELinux user launches a process, this
process inherits the SELinux user’s restrictions, unless other rules specify a different role or type.

3.1. CONFINED AND UNCONFINED USERS IN SELINUX

By default, all Linux users in Red Hat Enterprise Linux, including users with administrative privileges, are
mapped to the unconfined SELinux user unconfined_u. You can improve the security of the system by
assigning users to SELinux confined users.

The security context for a Linux user consists of the SELinux user, the SELinux role, and the SELinux
type. For example:

user_u:user_r:user_t

Where:

user_u

Is the SELinux user.

user_r

Is the SELinux role.

user_t

Is the SELinux type.

After a Linux user logs in, its SELinux user cannot change. However, its type and role can change, for
example, during transitions.

To see the SELinux user mapping on your system, use the semanage login -l command as root:

semanage login -l
Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *

In Red Hat Enterprise Linux, Linux users are mapped to the SELinux __default__ login by default, which
is mapped to the SELinux unconfined_u user. The following line defines the default mapping:

__default__ unconfined_u s0-s0:c0.c1023 *

Confined users are restricted by SELinux rules explicitly defined in the current SELinux policy.
Unconfined users are subject to only minimal restrictions by SELinux.

Confined and unconfined Linux users are subject to executable and writable memory checks, and are
also restricted by MCS or MLS.

To list the available SELinux users, enter the following command:

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

17

$ seinfo -u
Users: 8
 guest_u
 root
 staff_u
 sysadm_u
 system_u
 unconfined_u
 user_u
 xguest_u

Note that the seinfo command is provided by the setools-console package, which is not installed by
default.

If an unconfined Linux user executes an application that SELinux policy defines as one that can
transition from the unconfined_t domain to its own confined domain, the unconfined Linux user is still
subject to the restrictions of that confined domain. The security benefit of this is that, even though a
Linux user is running unconfined, the application remains confined. Therefore, the exploitation of a flaw
in the application can be limited by the policy.

Similarly, we can apply these checks to confined users. Each confined user is restricted by a confined
user domain. The SELinux policy can also define a transition from a confined user domain to its own
target confined domain. In such a case, confined users are subject to the restrictions of that target
confined domain. The main point is that special privileges are associated with the confined users
according to their role.

3.2. ROLES AND ACCESS RIGHTS OF SELINUX USERS

The SELinux policy maps each Linux user to an SELinux user. This allows Linux users to inherit the
restrictions of SELinux users.

You can customize the permissions for confined users in your SELinux policy according to specific needs
by adjusting booleans in the policy. You can determine the current state of these booleans by using the
semanage boolean -l command. To list all SELinux users, their SELinux roles, and levels and ranges for
MLS and MCS, use the semanage user -l command as root.

Table 3.1. Roles of SELinux users

User Default role Additional roles

unconfined_u unconfined_r system_r

guest_u guest_r

xguest_u xguest_r

user_u user_r

staff_u staff_r sysadm_r

unconfined_r

Red Hat Enterprise Linux 9 Using SELinux

18

system_r

sysadm_u sysadm_r

root staff_r sysadm_r

unconfined_r

system_r

system_u system_r

User Default role Additional roles

Note that system_u is a special user identity for system processes and objects, and system_r is the
associated role. Administrators must never associate this system_u user and the system_r role to a
Linux user. Also, unconfined_u and root are unconfined users. For these reasons, the roles associated
to these SELinux users are not included in the following table Types and access rights of SELinux roles .

Each SELinux role corresponds to an SELinux type and provides specific access rights.

Table 3.2. Types and access rights of SELinux roles

Role Type Log in using X
Window
System

su and sudo Execute in
home
directory and
/tmp (default)

Networking

unconfined_
r

unconfined_
t

yes yes yes yes

guest_r guest_t no no yes no

xguest_r xguest_t yes no yes web browsers
only (Mozilla
Firefox,
GNOME Web)

user_r user_t yes no yes yes

staff_r staff_t yes only sudo yes yes

auditadm_r auditadm_t yes yes yes

dbadm_r dbadm_r yes yes yes

logadm_r logadm_t yes yes yes

webadm_r webadm_r yes yes yes

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

19

secadm_r secadm_t yes yes yes

sysadm_r sysadm_t only when the
xdm_sysad
m_login
boolean is on

yes yes yes

Role Type Log in using X
Window
System

su and sudo Execute in
home
directory and
/tmp (default)

Networking

For more detailed descriptions of the non-administrator roles, see Confined non-administrator roles in
SELinux.

For more detailed descriptions of the administrator roles, see Confined administrator roles in SELinux .

To list all available roles, enter the seinfo -r command:

$ seinfo -r
Roles: 14
 auditadm_r
 dbadm_r
 guest_r
 logadm_r
 nx_server_r
 object_r
 secadm_r
 staff_r
 sysadm_r
 system_r
 unconfined_r
 user_r
 webadm_r
 xguest_r

Note that the seinfo command is provided by the setools-console package, which is not installed by
default.

Additional resources

seinfo(1), semanage-login(8), and xguest_selinux(8) man pages installed with the selinux-
policy-doc package

How to modify SELinux settings with booleans

3.3. CONFINED NON-ADMINISTRATOR ROLES IN SELINUX

In SELinux, confined non-administrator roles grant specific sets of privileges and permissions for
performing specific tasks to the Linux users assigned to them. By assigning separate confined non-

Red Hat Enterprise Linux 9 Using SELinux

20

https://www.redhat.com/sysadmin/change-selinux-settings-boolean

administrator roles, you can assign specific privileges to individual users. This is useful in scenarios with
multiple users who each have a different level of authorizations.

You can also customize the permissions of SELinux roles by changing the related SELinux booleans on
your system. To see the SELinux booleans and their current state, use the semanage boolean -l
command as root. You can get more detailed descriptions if you install the selinux-policy-devel
package.

semanage boolean -l
SELinux boolean State Default Description
…
xguest_connect_network (on , on) Allow xguest users to configure Network Manager and
connect to apache ports
xguest_exec_content (on , on) Allow xguest to exec content
…

Linux users in the user_t, guest_t, and xguest_t domains can only run set user ID (setuid) applications
if SELinux policy permits it (for example, passwd). These users cannot run the setuid applications su
and sudo, and therefore cannot use these applications to become root.

By default, Linux users in the staff_t, user_t, guest_t, and xguest_t domains can execute applications in
their home directories and /tmp. Applications inherit the permissions of the user that executed them.

To prevent guest_t, and xguest_t users from executing applications in directories in which they have
write access, set the guest_exec_content and xguest_exec_content booleans to off.

SELinux has the following confined non-administrator roles, each with specific privileges and limitations:

guest_r

Has very limited permissions. Users assigned to this role cannot access the network, but can execute
files in the /tmp and /home directories.
Related boolean:

SELinux boolean State Default Description
guest_exec_content (on , on) Allow guest to exec content

xguest_r

Has limited permissions. Users assigned to this role can log into X Window, access web pages by
using network browsers, and access media. They can also execute files in the /tmp and /home
directories.
Related booleans:

SELinux boolean State Default Description
xguest_connect_network (on , on) Allow xguest users to configure Network Manager and
connect to apache ports
xguest_exec_content (on , on) Allow xguest to exec content
xguest_mount_media (on , on) Allow xguest users to mount removable media
xguest_use_bluetooth (on , on) Allow xguest to use blue tooth devices

user_r

Has non-privileged access with full user permissions. Users assigned to this role can perform most
actions that do not require administrative privileges.
Related booleans:

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

21

SELinux boolean State Default Description
unprivuser_use_svirt (off , off) Allow unprivileged user to create and transition to svirt
domains.

staff_r

Has permissions similar to user_r and additional privileges. In particular, users assigned to this role
are allowed to run sudo to execute administrative commands that are normally reserved for the root
user. This changes roles and the effective user ID (EUID) but does not change the SELinux user.
Related booleans:

SELinux boolean State Default Description
staff_exec_content (on , on) Allow staff to exec content
staff_use_svirt (on , on) allow staff user to create and transition to svirt domains.

Additional resources

To map a Linux user to staff_u and configure sudo, see Confining an administrator using sudo
and the sysadm_r role.

For additional information about each role and the associated types, see the relevant man
pages installed with the selinux-policy-doc package:
guest_selinux(8), xguest_selinux(8), user_selinux(8), and staff_selinux(8)

3.4. CONFINED ADMINISTRATOR ROLES IN SELINUX

In SELinux, confined administrator roles grant specific sets of privileges and permissions for performing
specific tasks to the Linux users assigned to them. By assigning separate confined administrator roles,
you can divide the privileges over various domains of system administration to individual users. This is
useful in scenarios with multiple administrators, each with a separate domain.

You can assign these roles to SELinux users by using the semanage user command.

SELinux has the following confined administrator roles:

auditadm_r

The audit administrator role allows managing processes related to the Audit subsystem.
Related boolean:

SELinux boolean State Default Description
auditadm_exec_content (on , on) Allow auditadm to exec content

dbadm_r

The database administrator role allows managing MariaDB and PostgreSQL databases.
Related booleans:

SELinux boolean State Default Description
dbadm_exec_content (on , on) Allow dbadm to exec content
dbadm_manage_user_files (off , off) Determine whether dbadm can manage generic user
files.
dbadm_read_user_files (off , off) Determine whether dbadm can read generic user files.

Red Hat Enterprise Linux 9 Using SELinux

22

logadm_r

The log administrator role allows managing logs, specifically, SELinux types related to the Rsyslog
logging service and the Audit subsystem.
Related boolean:

SELinux boolean State Default Description
logadm_exec_content (on , on) Allow logadm to exec content

webadm_r

The web administrator allows managing the Apache HTTP Server.
Related booleans:

SELinux boolean State Default Description
webadm_manage_user_files (off , off) Determine whether webadm can manage generic
user files.
webadm_read_user_files (off , off) Determine whether webadm can read generic user files.

secadm_r

The security administrator role allows managing the SELinux database.
Related booleans:

SELinux boolean State Default Description
secadm_exec_content (on , on) Allow secadm to exec content

sysadm_r

The system administrator role allows doing everything of the previously listed roles and has additional
privileges. In non-default configurations, security administration can be separated from system
administration by disabling the sysadm_secadm module in the SELinux policy. For detailed
instructions, see Separating system administration from security administration in MLS .
The sysadm_u user cannot log in directly using SSH. To enable SSH logins for sysadm_u, set the
ssh_sysadm_login boolean to on:

setsebool -P ssh_sysadm_login on

Related booleans:

SELinux boolean State Default Description
ssh_sysadm_login (on , on) Allow ssh logins as sysadm_r:sysadm_t
sysadm_exec_content (on , on) Allow sysadm to exec content
xdm_sysadm_login (on , on) Allow the graphical login program to login directly as
sysadm_r:sysadm_t

Additional resources

To assign a Linux user to a confined administrator role, see Confining an administrator by
mapping to sysadm_u.

For additional information about each role, and the associated types, see the relevant man
pages installed with the selinux-policy-doc package:

auditadm_selinux(8), dbadm_selinux (8), logadm_selinux(8), webadm_selinux(8),

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

23

auditadm_selinux(8), dbadm_selinux (8), logadm_selinux(8), webadm_selinux(8),
secadm_selinux(8), and sysadm_selinux(8)

3.5. ADDING A NEW USER AUTOMATICALLY MAPPED TO THE
SELINUX UNCONFINED_U USER

The following procedure demonstrates how to add a new Linux user to the system. The user is
automatically mapped to the SELinux unconfined_u user.

Prerequisites

The root user is running unconfined, as it does by default in Red Hat Enterprise Linux.

Procedure

1. Enter the following command to create a new Linux user named <example_user>:

useradd <example_user>

2. To assign a password to the Linux <example_user> user:

passwd <example_user>
Changing password for user <example_user>.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

3. Log out of your current session.

4. Log in as the Linux <example_user> user. When you log in, the pam_selinux PAM module
automatically maps the Linux user to an SELinux user (in this case, unconfined_u), and sets up
the resulting SELinux context. The Linux user’s shell is then launched with this context.

Verification

1. When logged in as the <example_user> user, check the context of a Linux user:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Additional resources

pam_selinux(8) man page.

3.6. ADDING A NEW USER AS AN SELINUX-CONFINED USER

Use the following steps to add a new SELinux-confined user to the system. This example procedure
maps the user to the SELinux staff_u user right with the command for creating the user account.

Prerequisites

The root user is running unconfined, as it does by default in Red Hat Enterprise Linux.

Red Hat Enterprise Linux 9 Using SELinux

24

Procedure

1. Enter the following command to create a new Linux user named <example_user> and map it to
the SELinux staff_u user:

useradd -Z staff_u <example_user>

2. To assign a password to the Linux <example_user> user:

passwd <example_user>
Changing password for user <example_user>.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

3. Log out of your current session.

4. Log in as the Linux <example_user> user. The user’s shell launches with the staff_u context.

Verification

1. When logged in as the <example_user> user, check the context of a Linux user:

$ id -Z
uid=1000(<example_user>) gid=1000(<example_user>) groups=1000(<example_user>)
context=staff_u:staff_r:staff_t:s0-s0:c0.c1023

Additional resources

pam_selinux(8) man page.

3.7. CONFINING REGULAR USERS IN SELINUX

You can confine all regular users on your system by mapping them to the user_u SELinux user.

By default, all Linux users in Red Hat Enterprise Linux, including users with administrative privileges, are
mapped to the unconfined SELinux user unconfined_u. You can improve the security of the system by
assigning users to SELinux confined users. This is useful to conform with the V-71971 Security Technical
Implementation Guide.

Procedure

1. Display the list of SELinux login records. The list displays the mappings of Linux users to
SELinux users:

semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *

2. Map the __default__ user, which represents all users without an explicit mapping, to the user_u

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

25

https://rhel7stig.readthedocs.io/en/latest/medium.html#v-71971-the-operating-system-must-prevent-non-privileged-users-from-executing-privileged-functions-to-include-disabling-circumventing-or-altering-implemented-security-safeguards-countermeasures-rhel-07-020020

2. Map the __default__ user, which represents all users without an explicit mapping, to the user_u
SELinux user:

semanage login -m -s user_u -r s0 __default__

Verification

1. Check that the __default__ user is mapped to the user_u SELinux user:

semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ user_u s0 *
root unconfined_u s0-s0:c0.c1023 *

2. Verify that the processes of a new user run in the user_u:user_r:user_t:s0 SELinux context.

a. Create a new user:

adduser <example_user>

b. Define a password for <example_user>:

passwd <example_user>

c. Log out as root and log in as the new user.

d. Show the security context for the user’s ID:

[<example_user>@localhost ~]$ id -Z
user_u:user_r:user_t:s0

e. Show the security context of the user’s current processes:

[<example_user>@localhost ~]$ ps axZ
LABEL PID TTY STAT TIME COMMAND
- 1 ? Ss 0:05 /usr/lib/systemd/systemd --switched-root --
system --deserialize 18
- 3729 ? S 0:00 (sd-pam)
user_u:user_r:user_t:s0 3907 ? Ss 0:00 /usr/lib/systemd/systemd --user
- 3911 ? S 0:00 (sd-pam)
user_u:user_r:user_t:s0 3918 ? S 0:00 sshd: <example_user>@pts/0
user_u:user_r:user_t:s0 3922 pts/0 Ss 0:00 -bash
user_u:user_r:user_dbusd_t:s0 3969 ? Ssl 0:00 /usr/bin/dbus-daemon --session --
address=systemd: --nofork --nopidfile --systemd-activation --syslog-only
user_u:user_r:user_t:s0 3971 pts/0 R+ 0:00 ps axZ

3.8. CONFINING AN ADMINISTRATOR BY MAPPING TO SYSADM_U

You can confine a user with administrative privileges by mapping the user directly to the sysadm_u
SELinux user. When the user logs in, the session runs in the sysadm_u:sysadm_r:sysadm_t SELinux
context.

Red Hat Enterprise Linux 9 Using SELinux

26

By default, all Linux users in Red Hat Enterprise Linux, including users with administrative privileges, are
mapped to the unconfined SELinux user unconfined_u. You can improve the security of the system by
assigning users to SELinux confined users. This is useful to conform with the V-71971 Security Technical
Implementation Guide.

Prerequisites

The root user runs unconfined. This is the Red Hat Enterprise Linux default.

Procedure

1. Optional: To allow sysadm_u users to connect to the system by using SSH:

setsebool -P ssh_sysadm_login on

2. Map a new or existing user to the sysadm_u SELinux user:

To map a new user, add a new user to the wheel user group and map the user to the
sysadm_u SELinux user:

adduser -G wheel -Z sysadm_u <example_user>

To map an existing user, add the user to the wheel user group and map the user to the
sysadm_u SELinux user:

usermod -G wheel -Z sysadm_u <example_user>

3. Restore the context of the user’s home directory:

restorecon -R -F -v /home/<example_user>

Verification

1. Check that <example_user> is mapped to the sysadm_u SELinux user:

semanage login -l | grep <example_user>
<example_user> sysadm_u s0-s0:c0.c1023 *

2. Log in as <example_user>, for example, by using SSH, and show the user’s security context:

[<example_user>@localhost ~]$ id -Z
sysadm_u:sysadm_r:sysadm_t:s0-s0:c0.c1023

3. Switch to the root user:

$ sudo -i
[sudo] password for <example_user>:

4. Verify that the security context remains unchanged:

id -Z
sysadm_u:sysadm_r:sysadm_t:s0-s0:c0.c1023

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

27

https://rhel7stig.readthedocs.io/en/latest/medium.html#v-71971-the-operating-system-must-prevent-non-privileged-users-from-executing-privileged-functions-to-include-disabling-circumventing-or-altering-implemented-security-safeguards-countermeasures-rhel-07-020020

5. Try an administrative task, for example, restarting the sshd service:

systemctl restart sshd

If there is no output, the command finished successfully.

If the command does not finish successfully, it prints the following message:

Failed to restart sshd.service: Access denied
See system logs and 'systemctl status sshd.service' for details.

3.9. CONFINING AN ADMINISTRATOR BY USING SUDO AND THE
SYSADM_R ROLE

You can map a specific user with administrative privileges to the staff_u SELinux user, and configure
sudo so that the user can gain the sysadm_r SELinux administrator role. This role allows the user to
perform administrative tasks without SELinux denials. When the user logs in, the session runs in the
staff_u:staff_r:staff_t SELinux context, but when the user enters a command by using sudo, the session
changes to the staff_u:sysadm_r:sysadm_t context.

By default, all Linux users in Red Hat Enterprise Linux, including users with administrative privileges, are
mapped to the unconfined SELinux user unconfined_u. You can improve the security of the system by
assigning users to SELinux confined users. This is useful to conform with the V-71971 Security Technical
Implementation Guide.

Prerequisites

The root user runs unconfined. This is the Red Hat Enterprise Linux default.

Procedure

1. Map a new or existing user to the staff_u SELinux user:

a. To map a new user, add a new user to the wheel user group and map the user to the staff_u
SELinux user:

adduser -G wheel -Z staff_u <example_user>

b. To map an existing user, add the user to the wheel user group and map the user to the
staff_u SELinux user:

usermod -G wheel -Z staff_u <example_user>

2. Restore the context of the user’s home directory:

restorecon -R -F -v /home/<example_user>

3. To allow <example_user> to gain the SELinux administrator role, create a new file in the
/etc/sudoers.d/ directory, for example:

visudo -f /etc/sudoers.d/<example_user>

Red Hat Enterprise Linux 9 Using SELinux

28

https://rhel7stig.readthedocs.io/en/latest/medium.html#v-71971-the-operating-system-must-prevent-non-privileged-users-from-executing-privileged-functions-to-include-disabling-circumventing-or-altering-implemented-security-safeguards-countermeasures-rhel-07-020020

4. Add the following line to the new file:

<example_user> ALL=(ALL) TYPE=sysadm_t ROLE=sysadm_r ALL

Verification

1. Check that <example_user> is mapped to the staff_u SELinux user:

semanage login -l | grep <example_user>
<example_user> staff_u s0-s0:c0.c1023 *

2. Log in as <example_user>, for example, using SSH, and switch to the root user:

[<example_user>@localhost ~]$ sudo -i
[sudo] password for <example_user>:

3. Show the root security context:

id -Z
staff_u:sysadm_r:sysadm_t:s0-s0:c0.c1023

4. Try an administrative task, for example, restarting the sshd service:

systemctl restart sshd

If there is no output, the command finished successfully.

If the command does not finish successfully, it prints the following message:

Failed to restart sshd.service: Access denied
See system logs and 'systemctl status sshd.service' for details.

3.10. ADDITIONAL RESOURCES

unconfined_selinux(8), user_selinux(8), staff_selinux(8), and sysadm_selinux(8) man pages
installed with the selinux-policy-doc package.

How to set up a system with SELinux confined users

How to modify SELinux settings with booleans

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

29

https://access.redhat.com/articles/3263671
https://www.redhat.com/sysadmin/change-selinux-settings-boolean

CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS
AND SERVICES WITH NON-STANDARD CONFIGURATIONS

When SELinux is in enforcing mode, the default policy is the targeted policy. The following sections
provide information about setting up and configuring the SELinux policy for various services after you
change configuration defaults, such as ports, database locations, or file-system permissions for
processes.

You learn to change SELinux types for non-standard ports, to identify and fix incorrect labels for
changes of default directories, and to adjust the policy using SELinux booleans.

4.1. CUSTOMIZING THE SELINUX POLICY FOR THE APACHE HTTP
SERVER IN A NON-STANDARD CONFIGURATION

You can configure the Apache HTTP server to listen on a different port and to provide content in a non-
default directory. To prevent consequent SELinux denials, follow the steps in this procedure to adjust
your system’s SELinux policy.

Prerequisites

The httpd package is installed and the Apache HTTP server is configured to listen on TCP port
3131 and to use the /var/test_www/ directory instead of the default /var/www/ directory.

The policycoreutils-python-utils and setroubleshoot-server packages are installed on your
system.

Procedure

1. Start the httpd service and check the status:

systemctl start httpd
systemctl status httpd
...
httpd[14523]: (13)Permission denied: AH00072: make_sock: could not bind to address
[::]:3131
...
systemd[1]: Failed to start The Apache HTTP Server.
...

2. The SELinux policy assumes that httpd runs on port 80:

semanage port -l | grep http
http_cache_port_t tcp 8080, 8118, 8123, 10001-10010
http_cache_port_t udp 3130
http_port_t tcp 80, 81, 443, 488, 8008, 8009, 8443, 9000
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989

3. Change the SELinux type of port 3131 to match port 80:

semanage port -a -t http_port_t -p tcp 3131

4. Start httpd again:

Red Hat Enterprise Linux 9 Using SELinux

30

systemctl start httpd

5. However, the content remains inaccessible:

wget localhost:3131/index.html
...
HTTP request sent, awaiting response... 403 Forbidden
...

Find the reason with the sealert tool:

sealert -l "*"
...
SELinux is preventing httpd from getattr access on the file /var/test_www/html/index.html.
...

6. Compare SELinux types for the standard and the new path using the matchpathcon tool:

matchpathcon /var/www/html /var/test_www/html
/var/www/html system_u:object_r:httpd_sys_content_t:s0
/var/test_www/html system_u:object_r:var_t:s0

7. Change the SELinux type of the new /var/test_www/html/ content directory to the type of the
default /var/www/html directory:

semanage fcontext -a -e /var/www /var/test_www

8. Relabel the /var directory recursively:

restorecon -Rv /var/
...
Relabeled /var/test_www/html from unconfined_u:object_r:var_t:s0 to
unconfined_u:object_r:httpd_sys_content_t:s0
Relabeled /var/test_www/html/index.html from unconfined_u:object_r:var_t:s0 to
unconfined_u:object_r:httpd_sys_content_t:s0

Verification

1. Check that the httpd service is running:

systemctl status httpd
...
Active: active (running)
...
systemd[1]: Started The Apache HTTP Server.
httpd[14888]: Server configured, listening on: port 3131
...

2. Verify that the content provided by the Apache HTTP server is accessible:

wget localhost:3131/index.html
...
HTTP request sent, awaiting response... 200 OK

CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS AND SERVICES WITH NON-STANDARD CONFIGURATIONS

31

Length: 0 [text/html]
Saving to: ‘index.html’
...

Additional resources

semanage(8), matchpathcon(8), and sealert(8) man pages.

4.2. ADJUSTING THE POLICY FOR SHARING NFS AND CIFS VOLUMES
BY USING SELINUX BOOLEANS

You can change parts of SELinux policy at runtime using booleans, even without any knowledge of
SELinux policy writing. This enables changes, such as allowing services access to NFS volumes, without
reloading or recompiling SELinux policy. The following procedure demonstrates listing SELinux
booleans and configuring them to achieve the required changes in the policy.

NFS mounts on the client side are labeled with a default context defined by a policy for NFS volumes. In
RHEL, this default context uses the nfs_t type. Also, Samba shares mounted on the client side are
labeled with a default context defined by the policy. This default context uses the cifs_t type. You can
enable or disable booleans to control which services are allowed to access the nfs_t and cifs_t types.

To allow the Apache HTTP server service (httpd) to access and share NFS and CIFS volumes, perform
the following steps:

Prerequisites

Optionally, install the selinux-policy-devel package to obtain clearer and more detailed
descriptions of SELinux booleans in the output of the semanage boolean -l command.

Procedure

1. Identify SELinux booleans relevant for NFS, CIFS, and Apache:

semanage boolean -l | grep 'nfs\|cifs' | grep httpd
httpd_use_cifs (off , off) Allow httpd to access cifs file systems
httpd_use_nfs (off , off) Allow httpd to access nfs file systems

2. List the current state of the booleans:

$ getsebool -a | grep 'nfs\|cifs' | grep httpd
httpd_use_cifs --> off
httpd_use_nfs --> off

3. Enable the identified booleans:

setsebool httpd_use_nfs on
setsebool httpd_use_cifs on

NOTE

Use setsebool with the -P option to make the changes persistent across restarts.
A setsebool -P command requires a rebuild of the entire policy, and it might take
some time depending on your configuration.

Red Hat Enterprise Linux 9 Using SELinux

32

Verification

1. Check that the booleans are on:

$ getsebool -a | grep 'nfs\|cifs' | grep httpd
httpd_use_cifs --> on
httpd_use_nfs --> on

Additional resources

semanage-boolean(8), sepolicy-booleans(8), getsebool(8), setsebool(8), booleans(5), and
booleans(8) man pages

4.3. FINDING THE CORRECT SELINUX TYPE FOR MANAGING ACCESS
TO NON-STANDARD DIRECTORIES

If you need to set access-control rules that the default SELinux policy does not cover, start by searching
for a boolean that matches your use case. If you cannot find a suitable boolean, you can use a matching
SELinux type or even create a local policy module.

Prerequisites

The selinux-policy-doc and setools-console packages are installed on your system.

Procedure

1. List all SELinux-related topics and limit the results to a component you want to configure. For
example:

man -k selinux | grep samba
samba_net_selinux (8) - Security Enhanced Linux Policy for the samba_net processes
samba_selinux (8) - Security Enhanced Linux Policy for the smbd processes
…

In the man page that corresponds to your scenario, find the related SELinux booleans, port
types, and file types.

Note that the man -k selinux or apropos selinux commands are available only after you install
the selinux-policy-doc package.

2. Optional: You can display the default mapping of processes on default locations by using the
semanage fcontext -l command, for example:

semanage fcontext -l | grep samba
…
/var/cache/samba(/.*)? all files system_u:object_r:samba_var_t:s0
…
/var/spool/samba(/.*)? all files system_u:object_r:samba_spool_t:s0
…

3. Use the sesearch command to display rules in the default SELinux policy. You can find the type
and boolean to use by listing the corresponding rule, for example:

$ sesearch -A | grep samba | grep httpd

CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS AND SERVICES WITH NON-STANDARD CONFIGURATIONS

33

…
allow httpd_t cifs_t:dir { getattr open search }; [use_samba_home_dirs &&
httpd_enable_homedirs]:True
…

4. An SELinux boolean might be the most straightforward solution for your configuration problem.
You can display all available booleans and their values by using the getsebool -a command, for
example:

$ getsebool -a | grep homedirs
git_cgi_enable_homedirs --> off
git_system_enable_homedirs --> off
httpd_enable_homedirs --> off
mock_enable_homedirs --> off
mpd_enable_homedirs --> off
openvpn_enable_homedirs --> on
ssh_chroot_rw_homedirs --> off

5. You can verify that the selected boolean does exactly what you want by using the sesearch
command, for example:

$ sesearch -A | grep httpd_enable_homedirs
…
allow httpd_suexec_t autofs_t:dir { getattr open search }; [use_nfs_home_dirs &&
httpd_enable_homedirs]:True
allow httpd_suexec_t autofs_t:dir { getattr open search }; [use_samba_home_dirs &&
httpd_enable_homedirs]:True
…

6. If no boolean matches your scenario, find an SELinux type that suits your case. You can find a
type for your files by querying a corresponding rule from the default policy by using sesearch,
for example:

$ sesearch -A -s httpd_t -c file -p read
…
allow httpd_t httpd_t:file { append getattr ioctl lock open read write };
allow httpd_t httpd_tmp_t:file { append create getattr ioctl link lock map open read rename
setattr unlink write };
…

7. If none of the previous solutions cover your scenario, you can add a custom rule to the SELinux
policy. See the Creating a local SELinux policy module section for more information.

Additional resources

SELinux-related man pages provided by the man -k selinux command

sesearch(1), semanage-fcontext(8), semanage-boolean(8), and getsebool(8) man pages on
your system

4.4. MANAGING ACCESS TO NON-STANDARD SHARED DIRECTORIES
FOR UNPRIVILEGED SELINUX USERS

You can configure access to a non-standard shared directory for the generic unprivileged SELinux user

Red Hat Enterprise Linux 9 Using SELinux

34

You can configure access to a non-standard shared directory for the generic unprivileged SELinux user
user_u by finding and mapping the corresponding SELinux file type. The user_u user has the default
role user_r and the default domain user_t.

Prerequisites

The selinux-policy-doc and setools-console packages are installed on your system.

Procedure

1. Open the user_selinux(8) man page in your terminal:

$ man user_selinux

In the MANAGED FILES section, find an attribute or a type that corresponds with your
scenario. For example, the user_home_type attribute.

2. Optional: To list all types assigned to an attribute, use the seinfo command with the -x and -a
options, for example:

$ seinfo -x -a user_home_type

Type Attributes: 1
 attribute user_home_type;
…
 chrome_sandbox_home_t
 config_home_t
 cvs_home_t
 data_home_t
 dbus_home_t
 fetchmail_home_t
 gconf_home_t
 git_user_content_t
…

3. After you identify a candidate for the corresponding type, the data_home_t type in this
example, check its SELinux mapping:

$ semanage fcontext -l | grep data_home_t
…
/root/\.local/share(/.*)? all files system_u:object_r:data_home_t:s0
…

4. Map the corresponding type to a directory that you want to make accessible for user_u, for
example, /shared-data:

$ semanage fcontext -a -t data_home_t '/shared-data(/.*)?'

Verification

1. Check the mapping of the directory you configured:

semanage fcontext -l | grep "shared-data"
/shared-data(/.*)? all files system_u:object_r:data_home_t:s0

CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS AND SERVICES WITH NON-STANDARD CONFIGURATIONS

35

2. Log in as a Linux user mapped to the user_u SELinux user, and verify you can access the
directory.

Additional resources

Managing confined and unconfined users

seinfo(1), semanage-fcontext(8), and user_selinux(8) man pages on your system

Red Hat Enterprise Linux 9 Using SELinux

36

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO
SELINUX

If you plan to enable SELinux on systems where it has been previously disabled or if you run a service in a
non-standard configuration, you might need to troubleshoot situations potentially blocked by SELinux.
Note that in most cases, SELinux denials are signs of misconfiguration.

5.1. IDENTIFYING SELINUX DENIALS

Follow only the necessary steps from this procedure; in most cases, you need to perform just step 1.

Procedure

1. When your scenario is blocked by SELinux, the /var/log/audit/audit.log file is the first place to
check for more information about a denial. To query Audit logs, use the ausearch tool. Because
the SELinux decisions, such as allowing or disallowing access, are cached and this cache is known
as the Access Vector Cache (AVC), use the AVC and USER_AVC values for the message type
parameter, for example:

ausearch -m AVC,USER_AVC,SELINUX_ERR,USER_SELINUX_ERR -ts recent

If there are no matches, check if the Audit daemon is running. If it does not, repeat the denied
scenario after you start auditd and check the Audit log again.

2. In case auditd is running, but there are no matches in the output of ausearch, check messages
provided by the systemd Journal:

journalctl -t setroubleshoot

3. If SELinux is active and the Audit daemon is not running on your system, then search for certain
SELinux messages in the output of the dmesg command:

dmesg | grep -i -e type=1300 -e type=1400

4. Even after the previous three checks, it is still possible that you have not found anything. In this
case, AVC denials can be silenced because of dontaudit rules.
To temporarily disable dontaudit rules, allowing all denials to be logged:

semodule -DB

After re-running your denied scenario and finding denial messages using the previous steps, the
following command enables dontaudit rules in the policy again:

semodule -B

5. If you apply all four previous steps, and the problem still remains unidentified, consider if
SELinux really blocks your scenario:

Switch to permissive mode:

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX

37

setenforce 0
$ getenforce
Permissive

Repeat your scenario.

If the problem still occurs, something different than SELinux is blocking your scenario.

5.2. ANALYZING SELINUX DENIAL MESSAGES

After identifying that SELinux is blocking your scenario, you might need to analyze the root cause before
you choose a fix.

Prerequisites

The policycoreutils-python-utils and setroubleshoot-server packages are installed on your
system.

Procedure

1. List more details about a logged denial using the sealert command, for example:

$ sealert -l "*"
SELinux is preventing /usr/bin/passwd from write access on the file
/root/test.

***** Plugin leaks (86.2 confidence) suggests *****************************

If you want to ignore passwd trying to write access the test file,
because you believe it should not need this access.
Then you should report this as a bug.
You can generate a local policy module to dontaudit this access.
Do
ausearch -x /usr/bin/passwd --raw | audit2allow -D -M my-passwd
semodule -X 300 -i my-passwd.pp

***** Plugin catchall (14.7 confidence) suggests **************************

...

Raw Audit Messages
type=AVC msg=audit(1553609555.619:127): avc: denied { write } for
pid=4097 comm="passwd" path="/root/test" dev="dm-0" ino=17142697
scontext=unconfined_u:unconfined_r:passwd_t:s0-s0:c0.c1023
tcontext=unconfined_u:object_r:admin_home_t:s0 tclass=file permissive=0

...

Hash: passwd,passwd_t,admin_home_t,file,write

2. If the output obtained in the previous step does not contain clear suggestions:

Enable full-path auditing to see full paths to accessed objects and to make additional Linux
Audit event fields visible:

Red Hat Enterprise Linux 9 Using SELinux

38

auditctl -w /etc/shadow -p w -k shadow-write

Clear the setroubleshoot cache:

rm -f /var/lib/setroubleshoot/setroubleshoot.xml

Reproduce the problem.

Repeat step 1.
After you finish the process, disable full-path auditing:

auditctl -W /etc/shadow -p w -k shadow-write

3. If sealert returns only catchall suggestions or suggests adding a new rule using the audit2allow
tool, match your problem with examples listed and explained in SELinux denials in the Audit log .

Additional resources

sealert(8) man page

5.3. FIXING ANALYZED SELINUX DENIALS

In most cases, suggestions provided by the sealert tool give you the right guidance about how to fix
problems related to the SELinux policy. See Analyzing SELinux denial messages for information how to
use sealert to analyze SELinux denials.

Be careful when the tool suggests using the audit2allow tool for configuration changes. You should not
use audit2allow to generate a local policy module as your first option when you see an SELinux denial.
Troubleshooting should start with a check if there is a labeling problem. The second most often case is
that you have changed a process configuration, and you forgot to tell SELinux about it.

Labeling problems

A common cause of labeling problems is when a non-standard directory is used for a service. For
example, instead of using /var/www/html/ for a website, an administrator might want to use
/srv/myweb/. On Red Hat Enterprise Linux, the /srv directory is labeled with the var_t type. Files and
directories created in /srv inherit this type. Also, newly-created objects in top-level directories, such as
/myserver, can be labeled with the default_t type. SELinux prevents the Apache HTTP Server (httpd)
from accessing both of these types. To allow access, SELinux must know that the files in /srv/myweb/
are to be accessible by httpd:

semanage fcontext -a -t httpd_sys_content_t "/srv/myweb(/.*)?"

This semanage command adds the context for the /srv/myweb/ directory and all files and directories
under it to the SELinux file-context configuration. The semanage utility does not change the context.
As root, use the restorecon utility to apply the changes:

restorecon -R -v /srv/myweb

Incorrect context

The matchpathcon utility checks the context of a file path and compares it to the default label for that
path. The following example demonstrates the use of matchpathcon on a directory that contains
incorrectly labeled files:

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX

39

$ matchpathcon -V /var/www/html/*
/var/www/html/index.html has context unconfined_u:object_r:user_home_t:s0, should be
system_u:object_r:httpd_sys_content_t:s0
/var/www/html/page1.html has context unconfined_u:object_r:user_home_t:s0, should be
system_u:object_r:httpd_sys_content_t:s0

In this example, the index.html and page1.html files are labeled with the user_home_t type. This type
is used for files in user home directories. Using the mv command to move files from your home directory
may result in files being labeled with the user_home_t type. This type should not exist outside of home
directories. Use the restorecon utility to restore such files to their correct type:

restorecon -v /var/www/html/index.html
restorecon reset /var/www/html/index.html context unconfined_u:object_r:user_home_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

To restore the context for all files under a directory, use the -R option:

restorecon -R -v /var/www/html/
restorecon reset /var/www/html/page1.html context unconfined_u:object_r:samba_share_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /var/www/html/index.html context unconfined_u:object_r:samba_share_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

Confined applications configured in non-standard ways

Services can be run in a variety of ways. To account for that, you need to specify how you run your
services. You can achieve this through SELinux booleans that allow parts of SELinux policy to be
changed at runtime. This enables changes, such as allowing services access to NFS volumes, without
reloading or recompiling SELinux policy. Also, running services on non-default port numbers requires
policy configuration to be updated using the semanage command.

For example, to allow the Apache HTTP Server to communicate with MariaDB, enable the
httpd_can_network_connect_db boolean:

setsebool -P httpd_can_network_connect_db on

Note that the -P option makes the setting persistent across reboots of the system.

If access is denied for a particular service, use the getsebool and grep utilities to see if any booleans
are available to allow access. For example, use the getsebool -a | grep ftp command to search for FTP
related booleans:

$ getsebool -a | grep ftp
ftpd_anon_write --> off
ftpd_full_access --> off
ftpd_use_cifs --> off
ftpd_use_nfs --> off

ftpd_connect_db --> off
httpd_enable_ftp_server --> off
tftp_anon_write --> off

To get a list of booleans and to find out if they are enabled or disabled, use the getsebool -a command.

Red Hat Enterprise Linux 9 Using SELinux

40

To get a list of booleans and to find out if they are enabled or disabled, use the getsebool -a command.
To get a list of booleans including their meaning, and to find out if they are enabled or disabled, install
the selinux-policy-devel package and use the semanage boolean -l command as root.

Port numbers

Depending on policy configuration, services can only be allowed to run on certain port numbers.
Attempting to change the port a service runs on without changing policy may result in the service failing
to start. For example, run the semanage port -l | grep http command as root to list http related ports:

semanage port -l | grep http
http_cache_port_t tcp 3128, 8080, 8118
http_cache_port_t udp 3130
http_port_t tcp 80, 443, 488, 8008, 8009, 8443
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989

The http_port_t port type defines the ports Apache HTTP Server can listen on, which in this case, are
TCP ports 80, 443, 488, 8008, 8009, and 8443. If an administrator configures httpd.conf so that httpd
listens on port 9876 (Listen 9876), but policy is not updated to reflect this, the following command fails:

systemctl start httpd.service
Job for httpd.service failed. See 'systemctl status httpd.service' and 'journalctl -xn' for details.

systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: failed (Result: exit-code) since Thu 2013-08-15 09:57:05 CEST; 59s ago
 Process: 16874 ExecStop=/usr/sbin/httpd $OPTIONS -k graceful-stop (code=exited,
status=0/SUCCESS)
 Process: 16870 ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND (code=exited,
status=1/FAILURE)

An SELinux denial message similar to the following is logged to /var/log/audit/audit.log:

type=AVC msg=audit(1225948455.061:294): avc: denied { name_bind } for pid=4997
comm="httpd" src=9876 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=system_u:object_r:port_t:s0 tclass=tcp_socket

To allow httpd to listen on a port that is not listed for the http_port_t port type, use the semanage port
command to assign a different label to the port:

semanage port -a -t http_port_t -p tcp 9876

The -a option adds a new record; the -t option defines a type; and the -p option defines a protocol. The
last argument is the port number to add.

Corner cases, evolving or broken applications, and compromised systems

Applications may contain bugs, causing SELinux to deny access. Also, SELinux rules are evolving –
SELinux may not have seen an application running in a certain way, possibly causing it to deny access,
even though the application is working as expected. For example, if a new version of PostgreSQL is
released, it may perform actions the current policy does not account for, causing access to be denied,
even though access should be allowed.

For these situations, after access is denied, use the audit2allow utility to create a custom policy module

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX

41

to allow access. You can report missing rules in the SELinux policy in Red Hat Bugzilla. For Red Hat
Enterprise Linux 9, create bugs against the Red Hat Enterprise Linux 9 product, and select the
selinux-policy component. Include the output of the audit2allow -w -a and audit2allow -a commands
in such bug reports.

If an application asks for major security privileges, it could be a signal that the application is
compromised. Use intrusion detection tools to inspect such suspicious behavior.

The Solution Engine on the Red Hat Customer Portal can also provide guidance in the form of an article
containing a possible solution for the same or very similar problem you have. Select the relevant product
and version and use SELinux-related keywords, such as selinux or avc, together with the name of your
blocked service or application, for example: selinux samba.

5.4. CREATING A LOCAL SELINUX POLICY MODULE

Adding specific SELinux policy modules to an active SELinux policy can fix certain problems with the
SELinux policy. You can use this procedure to fix a specific Known Issue described in Red Hat release
notes, or to implement a specific Red Hat Solution .

WARNING

Use only rules provided by Red Hat. Red Hat does not support creating SELinux
policy modules with custom rules, because this falls outside of the Production
Support Scope of Coverage. If you are not an expert, contact your Red Hat sales
representative and request consulting services.

Prerequisites

The setools-console and audit packages for verification.

Procedure

1. Open a new .cil file with a text editor, for example:

vim <local_module>.cil

To keep your local modules better organized, use the local_ prefix in the names of local SELinux
policy modules.

2. Insert the custom rules from a Known Issue or a Red Hat Solution.

IMPORTANT

Do not write your own rules. Use only the rules provided in a specific Known Issue
or Red Hat Solution.

For example, to implement the SELinux denies cups-lpd read access to cups.sock in RHEL
solution, insert the following rule:



Red Hat Enterprise Linux 9 Using SELinux

42

https://bugzilla.redhat.com/
https://access.redhat.com/solution-engine/
https://access.redhat.com/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/
https://access.redhat.com/solutions
https://access.redhat.com/support/offerings/production/soc/
https://access.redhat.com/solutions/5729251

(allow cupsd_lpd_t cupsd_var_run_t (sock_file (read)))

The example solution has been fixed permanently for RHEL in RHBA-2021:4420. Therefore,
the parts of this procedure specific to this solution have no effect on updated RHEL 8 and 9
systems, and are included only as examples of syntax.

You can use either of the two SELinux rule syntaxes, Common Intermediate Language
(CIL) and m4. For example, (allow cupsd_lpd_t cupsd_var_run_t (sock_file (read))) in
CIL is equivalent to the following in m4:

module local_cupslpd-read-cupssock 1.0;

require {
 type cupsd_var_run_t;
 type cupsd_lpd_t;
 class sock_file read;
}

#============= cupsd_lpd_t ==============
allow cupsd_lpd_t cupsd_var_run_t:sock_file read;

3. Save and close the file.

4. Install the policy module:

semodule -i <local_module>.cil

If you want to remove a local policy module which you created by using semodule -i, refer to the
module name without the .cil suffix. To remove a local policy module, use semodule -r
<local_module>.

5. Restart any services related to the rules:

systemctl restart <service-name>

Verification

1. List the local modules installed in your SELinux policy:

semodule -lfull | grep "local_"
400 local_module cil

Because local modules have priority 400, you can filter them from the list also by using that
value, for example, by using the semodule -lfull | grep -v ^100 command.

2. Search the SELinux policy for the relevant allow rules:

sesearch -A --source=<SOURCENAME> --target=<TARGETNAME> --
class=<CLASSNAME> --perm=<P1>,<P2>

Where <SOURCENAME> is the source SELinux type, <TARGETNAME> is the target SELinux
type, <CLASSNAME> is the security class or object class name, and <P1> and <P2> are the
specific permissions of the rule.

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX

43

https://access.redhat.com/errata/RHBA-2021:4420

For example, for the SELinux denies cups-lpd read access to cups.sock in RHEL solution:

sesearch -A --source=cupsd_lpd_t --target=cupsd_var_run_t --class=sock_file --
perm=read
allow cupsd_lpd_t cupsd_var_run_t:sock_file { append getattr open read write };

The last line should now include the read operation.

3. Verify that the relevant service runs confined by SELinux:

a. Identify the process related to the relevant service:

$ systemctl status <service-name>

b. Check the SELinux context of the process listed in the output of the previous command:

$ ps -efZ | grep <process-name>

4. Verify that the service does not cause any SELinux denials:

ausearch -m AVC -i -ts recent
<no matches>

The -i option interprets the numeric values into human-readable text.

Additional resources

How to create custom SELinux policy module wisely Knowledgebase article

5.5. SELINUX DENIALS IN THE AUDIT LOG

The Linux Audit system stores log entries in the /var/log/audit/audit.log file by default.

To list only SELinux-related records, use the ausearch command with the message type parameter set
to AVC and AVC_USER at a minimum, for example:

ausearch -m AVC,USER_AVC,SELINUX_ERR,USER_SELINUX_ERR

An SELinux denial entry in the Audit log file can look as follows:

type=AVC msg=audit(1395177286.929:1638): avc: denied { read } for pid=6591 comm="httpd"
name="webpages" dev="0:37" ino=2112 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:nfs_t:s0 tclass=dir

The most important parts of this entry are:

avc: denied - the action performed by SELinux and recorded in Access Vector Cache (AVC)

{ read } - the denied action

pid=6591 - the process identifier of the subject that tried to perform the denied action

comm="httpd" - the name of the command that was used to invoke the analyzed process

Red Hat Enterprise Linux 9 Using SELinux

44

https://access.redhat.com/solutions/5729251
https://access.redhat.com/articles/5494701

httpd_t - the SELinux type of the process

nfs_t - the SELinux type of the object affected by the process action

tclass=dir - the target object class

The previous log entry can be translated to:

SELinux denied the httpd process with PID 6591 and the httpd_t type to read from a directory with the
nfs_t type.

The following SELinux denial message occurs when the Apache HTTP Server attempts to access a
directory labeled with a type for the Samba suite:

type=AVC msg=audit(1226874073.147:96): avc: denied { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

{ getattr } - the getattr entry indicates the source process was trying to read the target file’s
status information. This occurs before reading files. SELinux denies this action because the
process accesses the file and it does not have an appropriate label. Commonly seen permissions
include getattr, read, and write.

path="/var/www/html/file1" - the path to the object (target) the process attempted to access.

scontext="unconfined_u:system_r:httpd_t:s0" - the SELinux context of the process
(source) that attempted the denied action. In this case, it is the SELinux context of the Apache
HTTP Server, which is running with the httpd_t type.

tcontext="unconfined_u:object_r:samba_share_t:s0" - the SELinux context of the object
(target) the process attempted to access. In this case, it is the SELinux context of file1.

This SELinux denial can be translated to:

SELinux denied the httpd process with PID 2465 to access the /var/www/html/file1 file with the
samba_share_t type, which is not accessible to processes running in the httpd_t domain unless
configured otherwise.

Additional resources

auditd(8) and ausearch(8) man pages

5.6. ADDITIONAL RESOURCES

Basic SELinux Troubleshooting in CLI

What is SELinux trying to tell me? The 4 key causes of SELinux errors

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX

45

https://access.redhat.com/articles/2191331
https://fedorapeople.org/~dwalsh/SELinux/Presentations/selinux_four_things.pdf

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)
The Multi-Level Security (MLS) policy uses levels of clearance as originally designed by the US defense
community. MLS meets a very narrow set of security requirements based on information management in
rigidly controlled environments such as the military.

Using MLS is complex and does not map well to general use-case scenarios.

6.1. MULTI-LEVEL SECURITY (MLS)

The Multi-Level Security (MLS) technology classifies data in a hierarchical classification using
information security levels, for example:

[lowest] Unclassified

[low] Confidential

[high] Secret

[highest] Top secret

By default, the MLS SELinux policy uses 16 sensitivity levels:

s0 is the least sensitive.

s15 is the most sensitive.

MLS uses specific terminology to address sensitivity levels:

Users and processes are called subjects, whose sensitivity level is called clearance.

Files, devices, and other passive components of the system are called objects, whose sensitivity
level is called classification.

To implement MLS, SELinux uses the Bell-La Padula Model (BLP) model. This model specifies how
information can flow within the system based on labels attached to each subject and object.

The basic principle of BLP is “No read up, no write down.” This means that users can only read files at
their own sensitivity level and lower, and data can flow only from lower levels to higher levels, and never
the reverse.

The MLS SELinux policy, which is the implementation of MLS on RHEL, applies a modified principle
called Bell-La Padula with write equality. This means that users can read files at their own sensitivity
level and lower, but can write only at exactly their own level. This prevents, for example, low-clearance
users from writing content into top-secret files.

For example, by default, a user with clearance level s2:

Can read files with sensitivity levels s0, s1, and s2.

Cannot read files with sensitivity level s3 and higher.

Can modify files with sensitivity level of exactly s2.

Cannot modify files with sensitivity level other than s2.

NOTE

Red Hat Enterprise Linux 9 Using SELinux

46

NOTE

Security administrators can adjust this behavior by modifying the system’s SELinux policy.
For example, they can allow users to modify files at lower levels, which increases the file’s
sensitivity level to the user’s clearance level.

In practice, users are typically assigned to a range of clearance levels, for example s1-s2. A user can
read files with sensitivity levels lower than the user’s maximum level, and write to any files within that
range.

For example, by default, a user with a clearance range s1-s2:

Can read files with sensitivity levels s0 and s1.

Cannot read files with sensitivity level s2 and higher.

Can modify files with sensitivity level s1.

Cannot modify files with sensitivity level other than s1.

Can change own clearance level to s2.

The security context for a non-privileged user in an MLS environment is, for example:

user_u:user_r:user_t:s1

Where:

user_u

Is the SELinux user.

user_r

Is the SELinux role.

user_t

Is the SELinux type.

s1

Is the range of MLS sensitivity levels.

The system always combines MLS access rules with conventional file access permissions. For example,
if a user with a security level of "Secret" uses Discretionary Access Control (DAC) to block access to a
file by other users, even “Top Secret” users cannot access that file. A high security clearance does not
automatically permit a user to browse the entire file system.

Users with top-level clearances do not automatically acquire administrative rights on multi-level
systems. While they might have access to all sensitive information about the system, this is different
from having administrative rights.

In addition, administrative rights do not provide access to sensitive information. For example, even when
someone logs in as root, they still cannot read top-secret information.

You can further adjust access within an MLS system by using categories. With Multi-Category Security
(MCS), you can define categories such as projects or departments, and users will only be allowed to
access files in the categories to which they are assigned. For additional information, see Using Multi-
Category Security (MCS) for data confidentiality .

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)

47

6.2. SELINUX ROLES IN MLS

The SELinux policy maps each Linux user to an SELinux user. This allows Linux users to inherit the
restrictions of SELinux users.

IMPORTANT

The MLS policy does not contain the unconfined module, including unconfined users,
types, and roles. As a result, users that would be unconfined, including root, cannot
access every object and perform every action they could in the targeted policy.

You can customize the permissions for confined users in your SELinux policy according to specific needs
by adjusting the booleans in policy. You can determine the current state of these booleans by using the
semanage boolean -l command. To list all SELinux users, their SELinux roles, and MLS/MCS levels and
ranges, use the semanage user -l command as root.

Table 6.1. Roles of SELinux users in MLS

User Default role Additional roles

guest_u guest_r

xguest_u xguest_r

user_u user_r

staff_u staff_r auditadm_r

secadm_r

sysadm_r

staff_r

sysadm_u sysadm_r

root staff_r auditadm_r

secadm_r

sysadm_r

system_r

system_u system_r

Note that system_u is a special user identity for system processes and objects, and system_r is the
associated role. Administrators must never associate this system_u user and the system_r role to a
Linux user. Also, unconfined_u and root are unconfined users. For these reasons, the roles associated

Red Hat Enterprise Linux 9 Using SELinux

48

to these SELinux users are not included in the following table Types and access of SELinux roles.

Each SELinux role corresponds to an SELinux type and provides specific access rights.

Table 6.2. Types and access of SELinux roles in MLS

Role Type Login using X
Window
System

su and sudo Execute in
home
directory and
/tmp (default)

Networking

guest_r guest_t no no yes no

xguest_r xguest_t yes no yes web browsers
only (Firefox,
GNOME Web)

user_r user_t yes no yes yes

staff_r staff_t yes only sudo yes yes

auditadm_r auditadm_t yes yes yes

secadm_r secadm_t yes yes yes

sysadm_r sysadm_t only when the
xdm_sysad
m_login
boolean is on

yes yes yes

By default, the sysadm_r role has the rights of the secadm_r role, which means a user with the
sysadm_r role can manage the security policy. If this does not correspond to your use case, you
can separate the two roles by disabling the sysadm_secadm module in the policy. For
additional information, see Separating system administration from security administration in
MLS.

Non-login roles dbadm_r, logadm_r, and webadm_r can be used for a subset of administrative
tasks. By default, these roles are not associated with any SELinux user.

6.3. SWITCHING THE SELINUX POLICY TO MLS

Use the following steps to switch the SELinux policy from targeted to Multi-Level Security (MLS).

IMPORTANT

Do not use the MLS policy on a system that is running the X Window System.
Furthermore, when you relabel the file system with MLS labels, the system may prevent
confined domains from access, which prevents your system from starting correctly.
Therefore ensure that you switch SELinux to permissive mode before you relabel the
files. On most systems, you see a lot of SELinux denials after switching to MLS, and many
of them are not trivial to fix.

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)

49

Procedure

1. Install the selinux-policy-mls package:

dnf install selinux-policy-mls

2. Open the /etc/selinux/config file in a text editor of your choice, for example:

vi /etc/selinux/config

3. Change SELinux mode from enforcing to permissive and switch from the targeted policy to
MLS:

SELINUX=permissive
SELINUXTYPE=mls

Save the changes, and quit the editor.

4. Before you enable the MLS policy, you must relabel each file on the file system with an MLS
label:

fixfiles -F onboot
System will relabel on next boot

5. Restart the system:

reboot

6. Check for SELinux denials:

ausearch -m AVC,USER_AVC,SELINUX_ERR,USER_SELINUX_ERR -ts recent -i

Because the previous command does not cover all scenarios, see Troubleshooting problems
related to SELinux for guidance on identifying, analyzing, and fixing SELinux denials.

7. After you ensure that there are no problems related to SELinux on your system, switch SELinux
back to enforcing mode by changing the corresponding option in /etc/selinux/config:

SELINUX=enforcing

8. Restart the system:

reboot

IMPORTANT

Red Hat Enterprise Linux 9 Using SELinux

50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_selinux/troubleshooting-problems-related-to-selinux_using-selinux

IMPORTANT

If your system does not start or you are not able to log in after you switch to MLS, add the
enforcing=0 parameter to your kernel command line. See Changing SELinux modes at
boot time for more information.

Also note that in MLS, SSH logins as the root user mapped to the sysadm_r SELinux role
differ from logging in as root in staff_r. Before you start your system in MLS for the first
time, consider allowing SSH logins as sysadm_r by setting the ssh_sysadm_login
SELinux boolean to 1. To enable ssh_sysadm_login later, already in MLS, you must log
in as root in staff_r, switch to root in sysadm_r using the newrole -r sysadm_r
command, and then set the boolean to 1.

Verification

1. Verify that SELinux runs in enforcing mode:

getenforce
Enforcing

2. Check that the status of SELinux returns the mls value:

sestatus | grep mls
Loaded policy name: mls

Additional resources

fixfiles(8), setsebool(8), and ssh_selinux(8) man pages on your system

6.4. ESTABLISHING USER CLEARANCE IN MLS

After you switch SELinux policy to MLS, you must assign security clearance levels to users by mapping
them to confined SELinux users. By default, a user with a given security clearance:

Cannot read objects that have a higher sensitivity level.

Cannot write to objects at a different sensitivity level.

Prerequisites

The SELinux policy is set to mls.

The SELinux mode is set to enforcing.

The policycoreutils-python-utils package is installed.

A user assigned to an SELinux confined user:

For a non-privileged user, assigned to user_u (example_user in the following procedure).

For a privileged user, assigned to staff_u (staff in the following procedure) .

IMPORTANT

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)

51

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_selinux/changing-selinux-states-and-modes_using-selinux#changing-selinux-modes-at-boot-time_changing-selinux-states-and-modes

IMPORTANT

Make sure that the users have been created when the MLS policy was active. Users
created in other SELinux policies cannot be used in MLS.

Procedure

1. Optional: To prevent adding errors to your SELinux policy, switch to the permissive SELinux
mode, which facilitates troubleshooting:

setenforce 0

Note that in permissive mode, SELinux does not enforce the active policy but only logs
Access Vector Cache (AVC) messages, which can be then used for troubleshooting and
debugging.

2. Define a clearance range for the staff_u SELinux user. For example, this command sets the
clearance range from s1 to s15 with s1 being the default clearance level:

semanage user -m -L s1 -r s1-s15 staff_u

3. Generate SELinux file context configuration entries for user home directories:

genhomedircon

4. Restore file security contexts to default:

restorecon -R -F -v /home/
Relabeled /home/staff from staff_u:object_r:user_home_dir_t:s0 to
staff_u:object_r:user_home_dir_t:s1
Relabeled /home/staff/.bash_logout from staff_u:object_r:user_home_t:s0 to
staff_u:object_r:user_home_t:s1
Relabeled /home/staff/.bash_profile from staff_u:object_r:user_home_t:s0 to
staff_u:object_r:user_home_t:s1
Relabeled /home/staff/.bashrc from staff_u:object_r:user_home_t:s0 to
staff_u:object_r:user_home_t:s1

5. Assign a clearance level to the user:

semanage login -m -r s1 example_user

Where s1 is the clearance level assigned to the user.

6. Relabel the user’s home directory to the user’s clearance level:

chcon -R -l s1 /home/example_user

7. Optional: If you previously switched to the permissive SELinux mode, and after you verify that
everything works as expected, switch back to the enforcing SELinux mode:

setenforce 1

Verification steps

Red Hat Enterprise Linux 9 Using SELinux

52

1. Verify that the user is mapped to the correct SELinux user and has the correct clearance level
assigned:

semanage login -l
Login Name SELinux User MLS/MCS Range Service
__default__ user_u s0-s0 *
example_user user_u s1 *
…

2. Log in as the user within MLS.

3. Verify that the user’s security level works correctly:

WARNING

The files you use for verification should not contain any sensitive
information in case the configuration is incorrect and the user actually can
access the files without authorization.

a. Verify that the user cannot read a file with a higher-level sensitivity.

b. Verify that the user can write to a file with the same sensitivity.

c. Verify that the user can read a file with a lower-level sensitivity.

Additional resources

Switching the SELinux policy to MLS

Adding a new user as an SELinux-confined user

Permanent changes in SELinux states and modes

Troubleshooting problems related to SELinux

Basic SELinux Troubleshooting in CLI Knowledgebase article

6.5. CHANGING A USER’S CLEARANCE LEVEL WITHIN THE DEFINED
SECURITY RANGE IN MLS

As a user in Multi-Level Security (MLS), you can change your current clearance level within the range
the administrator assigned to you. You can never exceed the upper limit of your range or reduce your
level below the lower limit of your range. This allows you, for example, to modify lower-sensitivity files
without increasing their sensitivity level to your highest clearance level.

For example, as a user assigned to range s1-s3:

You can switch to levels s1, s2, and s3.

You can switch to ranges s1-s2, and s2-s3.



CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)

53

https://access.redhat.com/articles/2191331

You cannot switch to ranges s0-s3 or s1-s4.

Switching to a different level opens a new shell with the different clearance. This means you cannot
return to your original clearance level in the same way as decreasing it. However, you can always return
to the previous shell by entering exit.

Prerequisites

The SELinux policy is set to mls.

SELinux mode is set to enforcing.

You can log in as a user assigned to a range of MLS clearance levels.

Procedure

1. Log in as the user from a secure terminal.
Secure terminals are defined in the /etc/selinux/mls/contexts/securetty_types file. By default,
the console is a secure terminal, but SSH is not.

2. Check the current user’s security context:

$ id -Z
user_u:user_r:user_t:s0-s2

In this example, the user is assigned to the user_u SELinux user, user_r role, user_t type, and
the MLS security range s0-s2.

3. Check the current user’s security context:

$ id -Z
user_u:user_r:user_t:s1-s2

4. Switch to a different security clearance range within the user’s clearance range:

$ newrole -l s1

You can switch to any range whose maximum is lower or equal to your assigned range. Entering
a single-level range changes the lower limit of the assigned range. For example, entering
newrole -l s1 as a user with a s0-s2 range is equivalent to entering newrole -l s1-s2.

Verification

1. Display the current user’s security context:

$ id -Z
user_u:user_r:user_t:s1-s2

2. Return to the previous shell with the original range by terminating the current shell:

$ exit

Additional resources

Red Hat Enterprise Linux 9 Using SELinux

54

Establishing user clearance in MLS

newrole(1) and securetty_types(5) man pages on your system

6.6. INCREASING FILE SENSITIVITY LEVELS IN MLS

By default, Multi-Level Security (MLS) users cannot increase file sensitivity levels. However, the
security administrator (secadm_r) can change this default behavior to allow users to increase the
sensitivity of files by adding the local module mlsfilewrite to the system’s SELinux policy. Then, users
assigned to the SELinux type defined in the policy module can increase file classification levels by
modifying the file. Any time a user modifies a file, the file’s sensitivity level increases to the lower value of
the user’s current security range.

The security administrator, when logged in as a user assigned to the secadm_r role, can change the
security levels of files by using the chcon -l s0 /path/to/file command. For more information, see
Changing file sensitivity in MLS .

Prerequisites

The SELinux policy is set to mls.

SELinux mode is set to enforcing.

The policycoreutils-python-utils package is installed.

The mlsfilewrite local module is installed in the SELinux MLS policy.

You are logged in as a user in MLS which is:

Assigned to a defined security range. This example shows a user with a security range s0-s2.

Assigned to the same SELinux type defined in the mlsfilewrite module. This example
requires the (typeattributeset mlsfilewrite (user_t)) module.

Procedure

1. Optional: Display the security context of the current user:

$ id -Z
user_u:user_r:user_t:s0-s2

2. Change the lower level of the user’s MLS clearance range to the level which you want to assign
to the file:

$ newrole -l s1-s2

3. Optional: Display the security context of the current user:

$ id -Z
user_u:user_r:user_t:s1-s2

4. Optional: Display the security context of the file:

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)

55

$ ls -Z /path/to/file
user_u:object_r:user_home_t:s0 /path/to/file

5. Change the file’s sensitivity level to the lower level of the user’s clearance range by modifying
the file:

$ touch /path/to/file

IMPORTANT

The classification level reverts to the default value if the restorecon command is
used on the system.

6. Optional: Exit the shell to return to the user’s previous security range:

$ exit

Verification

Display the security context of the file:

$ ls -Z /path/to/file
user_u:object_r:user_home_t:s1 /path/to/file

Additional resources

Allowing MLS users to edit files on lower levels .

6.7. CHANGING FILE SENSITIVITY IN MLS

In the MLS SELinux policy, users can only modify files at their own sensitivity level. This is intended to
prevent any highly sensitive information to be exposed to users at lower clearance levels, and also
prevent low-clearance users creating high-sensitivity documents. Administrators, however, can manually
increase a file’s classification, for example for the file to be processed at the higher level.

Prerequisites

SELinux policy is set to mls.

SELinux mode is set to enforcing.

You have security administration rights, which means that you are assigned to either:

The secadm_r role.

If the sysadm_secadm module is enabled, to the sysadm_r role. The sysadm_secadm
module is enabled by default.

The policycoreutils-python-utils package is installed.

A user assigned to any clearance level. For additional information, see Establishing user
clearance levels in MLS .
In this example, User1 has clearance level s1.

Red Hat Enterprise Linux 9 Using SELinux

56

A file with a classification level assigned and to which you have access.
In this example, /path/to/file has classification level s1.

Procedure

1. Check the file’s classification level:

ls -lZ /path/to/file
-rw-r-----. 1 User1 User1 user_u:object_r:user_home_t:s1 0 12. Feb 10:43 /path/to/file

2. Change the file’s default classification level:

semanage fcontext -a -r s2 /path/to/file

3. Force the relabeling of the file’s SELinux context:

restorecon -F -v /path/to/file
Relabeled /path/to/file from user_u:object_r:user_home_t:s1 to
user_u:object_r:user_home_t:s2

Verification

1. Check the file’s classification level:

ls -lZ /path/to/file
-rw-r-----. 1 User1 User1 user_u:object_r:user_home_t:s2 0 12. Feb 10:53 /path/to/file

2. Optional: Verify that the lower-clearance user cannot read the file:

$ cat /path/to/file
cat: file: Permission denied

Additional resources

Establishing user clearance levels in MLS .

6.8. SEPARATING SYSTEM ADMINISTRATION FROM SECURITY
ADMINISTRATION IN MLS

By default, the sysadm_r role has the rights of the secadm_r role, which means a user with the
sysadm_r role can manage the security policy. If you need more control over security authorizations, you
can separate system administration from security administration by assigning a Linux user to the
secadm_r role and disabling the sysadm_secadm module in the SELinux policy.

Prerequisites

The SELinux policy is set to mls.

The SELinux mode is set to enforcing.

The policycoreutils-python-utils package is installed.

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)

57

A Linux user which will be assigned to the secadm_r role:

The user is assigned to the staff_u SELinux user

A password for this user has been defined.

WARNING

Make sure you can log in as the user which will be assigned to the secadm
role. If not, you can prevent any future modifications of the system’s
SELinux policy.

Procedure

1. Create a new sudoers file in the /etc/sudoers.d directory for the user:

visudo -f /etc/sudoers.d/<sec_adm_user>

To keep the sudoers files organized, replace <sec_adm_user> with the Linux user which will
be assigned to the secadm role.

2. Add the following content into the /etc/sudoers.d/<sec_adm_user> file:

<sec_adm_user> ALL=(ALL) TYPE=secadm_t ROLE=secadm_r ALL

This line authorizes <secadmuser> on all hosts to perform all commands, and maps the user to
the secadm SELinux type and role by default.

3. Log in as the <sec_adm_user> user.
To make sure that the SELinux context (which consists of SELinux user, role, and type) is
changed, log in using ssh, the console, or xdm. Other ways, such as su and sudo, cannot
change the entire SELinux context.

4. Verify the user’s security context:

$ id
uid=1000(<sec_adm_user>) gid=1000(<sec_adm_user>) groups=1000(<sec_adm_user>)
context=staff_u:staff_r:staff_t:s0-s15:c0.c1023

5. Run the interactive shell for the root user:

$ sudo -i
[sudo] password for <sec_adm_user>:

6. Verify the current user’s security context:

id
uid=0(root) gid=0(root) groups=0(root) context=staff_u:secadm_r:secadm_t:s0-s15:c0.c1023

7. Disable the sysadm_secadm module from the policy:



Red Hat Enterprise Linux 9 Using SELinux

58

semodule -d sysadm_secadm

IMPORTANT

Use the semodule -d command instead of removing the system policy module
by using the semodule -r command. The semodule -r command deletes the
module from your system’s storage, which means it cannot be loaded again
without reinstalling the selinux-policy-mls package.

Verification

1. As the user assigned to the secadm role, and in the interactive shell for the root user, verify
that you can access the security policy data:

seinfo -xt secadm_t

Types: 1
 type secadm_t, can_relabelto_shadow_passwords, (…) userdomain;

2. Log out from the root shell:

logout

3. Log out from the <sec_adm_user> user:

$ logout
Connection to localhost closed.

4. Display the current security context:

id
uid=0(root) gid=0(root) groups=0(root) context=root:sysadm_r:sysadm_t:s0-s15:c0.c1023

5. Attempt to enable the sysadm_secadm module. The command should fail:

semodule -e sysadm_secadm
SELinux: Could not load policy file /etc/selinux/mls/policy/policy.31: Permission denied
/sbin/load_policy: Can't load policy: Permission denied
libsemanage.semanage_reload_policy: load_policy returned error code 2. (No such file or
directory).
SELinux: Could not load policy file /etc/selinux/mls/policy/policy.31: Permission denied
/sbin/load_policy: Can't load policy: Permission denied
libsemanage.semanage_reload_policy: load_policy returned error code 2. (No such file or
directory).
semodule: Failed!

6. Attempt to display the details about the sysadm_t SELinux type. The command should fail:

seinfo -xt sysadm_t
[Errno 13] Permission denied: '/sys/fs/selinux/policy'

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)

59

6.9. DEFINING A SECURE TERMINAL IN MLS

The SELinux policy checks the type of the terminal from which a user is connected, and allows running of
certain SELinux applications, for example newrole, only from secure terminals. Attempting this from a
non-secure terminal produces an error: Error: you are not allowed to change levels on a non secure
terminal;.

The /etc/selinux/mls/contexts/securetty_types file defines secure terminals for the Multi-Level
Security (MLS) policy.

Default contents of the file:

console_device_t
sysadm_tty_device_t
user_tty_device_t
staff_tty_device_t
auditadm_tty_device_t
secureadm_tty_device_t

WARNING

Adding terminal types to the list of secure terminals can expose your system to
security risks.

Prerequisites

SELinux policy is set to mls.

You are connected from an already secure terminal, or SELinux is in permissive mode.

You have security administration rights, which means that you are assigned to either:

The secadm_r role.

If the sysadm_secadm module is enabled, to the sysadm_r role. The sysadm_secadm
module is enabled by default.

The policycoreutils-python-utils package is installed.

Procedure

1. Determine the current terminal type:

ls -Z `tty`
root:object_r:user_devpts_t:s0 /dev/pts/0

In this example output, user_devpts_t is the current terminal type.

2. Add the relevant SELinux type on a new line in the /etc/selinux/mls/contexts/securetty_types
file.



Red Hat Enterprise Linux 9 Using SELinux

60

3. Optional: Switch SELinux to enforcing mode:

setenforce 1

Verification

Log in from the previously insecure terminal you have added to the
/etc/selinux/mls/contexts/securetty_types file.

Additional resources

securetty_types(5) man page

6.10. ALLOWING MLS USERS TO EDIT FILES ON LOWER LEVELS

By default, MLS users cannot write to files which have a sensitivity level below the lower value of the
clearance range. If your scenario requires allowing users to edit files on lower levels, you can do so by
creating a local SELinux module. However, writing to a file will increase its sensitivity level to the lower
value of the user’s current range.

Prerequisites

The SELinux policy is set to mls.

The SELinux mode is set to enforcing.

The policycoreutils-python-utils package is installed.

The setools-console and audit packages for verification.

Procedure

1. Optional: Switch to permissive mode for easier troubleshooting.

setenforce 0

2. Open a new .cil file with a text editor, for example ~/local_mlsfilewrite.cil, and insert the
following custom rule:

(typeattributeset mlsfilewrite (_staff_t_))

You can replace staff_t with a different SELinux type. By specifying SELinux type here, you can
control which SELinux roles can edit lower-level files.

To keep your local modules better organized, use the local_ prefix in the names of local SELinux
policy modules.

3. Install the policy module:

semodule -i ~/local_mlsfilewrite.cil

NOTE

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)

61

NOTE

To remove the local policy module, use semodule -r ~/local_mlsfilewrite. Note
that you must refer to the module name without the .cil suffix.

4. Optional: If you previously switched back to permissive mode, return to enforcing mode:

setenforce 1

Verification

1. Find the local module in the list of installed SELinux modules:

semodule -lfull | grep "local_mls"
400 local_mlsfilewrite cil

Because local modules have priority 400, you can list them also by using the semodule -lfull |
grep -v ^100 command.

2. Log in as a user assigned to the type defined in the custom rule, for example, staff_t.

3. Attempt to write to a file with a lower sensitivity level. This increases the file’s classification level
to the user’s clearance level.

IMPORTANT

The files you use for verification should not contain any sensitive information in
case the configuration is incorrect and the user actually can access the files
without authorization.

Red Hat Enterprise Linux 9 Using SELinux

62

CHAPTER 7. USING MULTI-CATEGORY SECURITY (MCS) FOR
DATA CONFIDENTIALITY

You can use MCS to enhance the data confidentiality of your system by categorizing data, and then
granting certain processes and users access to specific categories

7.1. MULTI-CATEGORY SECURITY (MCS)

Multi-Category Security (MCS) is an access control mechanism that uses categories assigned to
processes and files. Files can then be accessed only by processes that are assigned to the same
categories. The purpose of MCS is to maintain data confidentiality on your system.

MCS categories are defined by the values c0 to c1023, but you can also define a text label for each
category or combination of categories, such as “Personnel”, “ProjectX”, or “ProjectX.Personnel”. The
MCS Translation service (mcstrans) then replaces the category values with the appropriate labels in
system inputs and outputs, so that users can use these labels instead of the category values.

When users are assigned to categories, they can label any of their files with any of the categories to
which they have been assigned.

MCS works on a simple principle: to access a file, a user must be assigned to all of the categories that
have been assigned to the file. The MCS check is applied after normal Linux Discretionary Access
Control (DAC) and SELinux Type Enforcement (TE) rules, so it can only further restrict existing security
configuration.

MCS within Multi-Level Security
You can use MCS on its own as a non-hierarchical system, or you can use it in combination with Multi-
Level Security (MLS) as a non-hierarchical layer within a hierarchical system.

An example of MCS within MLS could be a secretive research organization, where files are classified like
this:

Table 7.1. Example of combinations of security levels and categories

Security level Category

Not specified Project X Project Y Project Z

Unclassified s0 s0:c0 s0:c1 s0:c2

Confidential s1 s1:c0 s1:c1 s1:c2

Secret s2 s2:c0 s2:c1 s2:c2

Top secret s3 s3:c0 s3:c1 s3:c2

NOTE

A user with a range s0:c0.1023 would be able to access all files assigned to all categories
on level s0, unless the access is prohibited by other security mechanisms, such as DAC or
type enforcement policy rules.

CHAPTER 7. USING MULTI-CATEGORY SECURITY (MCS) FOR DATA CONFIDENTIALITY

63

The resulting security context of a file or process is a combination of:

SELinux user

SELinux role

SELinux type

MLS sensitivity level

MCS category

For example, a non-privileged user with access to sensitivity level 1 and category 2 in an MLS/MCS
environment could have the following SELinux context:

user_u:user_r:user_t:s1:c2

Additional resources

Using Multi-Level Security (MLS) .

7.2. CONFIGURING MULTI-CATEGORY SECURITY FOR DATA
CONFIDENTIALITY

By default, Multi-Category Security (MCS) is active in the targeted and mls SELinux policies but is not
configured for users. In the targeted policy, MCS is configured only for:

OpenShift

virt

sandbox

network labeling

containers (container-selinux)

You can configure MCS to categorize users by creating a local SELinux module with a rule that
constrains the user_t SELinux type by MCS rules in addition to type enforcement.

WARNING

Changing the categories of certain files may render some services non-operational.
If you are not an expert, contact your Red Hat sales representative and request
consulting services.

Prerequisites

SELinux mode is set to enforcing.



Red Hat Enterprise Linux 9 Using SELinux

64

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/using_selinux/index#using-multi-level-security-mls_using-selinux

The SELinux policy is set to targeted or mls.

The policycoreutils-python-utils and setools-console packages are installed.

Procedure

1. Create a new file named, for example, local_mcs_user.cil:

vim local_mcs_user.cil

2. Insert the following rule:

(typeattributeset mcs_constrained_type (user_t))

3. Install the policy module:

semodule -i local_mcs_user.cil

Verification

For each user domain, display additional details for all the components:

seinfo -xt user_t

Types: 1
type user_t, application_domain_type, nsswitch_domain, corenet_unlabeled_type, domain,
kernel_system_state_reader, mcs_constrained_type, netlabel_peer_type, privfd,
process_user_target, scsi_generic_read, scsi_generic_write, syslog_client_type,
pcmcia_typeattr_1, user_usertype, login_userdomain, userdomain, unpriv_userdomain,
userdom_home_reader_type, userdom_filetrans_type, xdmhomewriter, x_userdomain,
x_domain, dridomain, xdrawable_type, xcolormap_type;

Additional resources

Creating a local SELinux policy module

For more information about MCS in the context of containers, see the blog posts How SELinux
separates containers using Multi-Level Security and Why you should be using Multi-Category
Security for your Linux containers.

7.3. DEFINING CATEGORY LABELS IN MCS

You can manage and maintain labels for MCS categories, or combinations of MCS categories with MLS
levels, on your system by editing the setrans.conf file. In this file, SELinux maintains a mapping between
internal sensitivity and category levels and their human-readable labels.

NOTE

Category labels only make it easier for users to use the categories. MCS works the same
whether you define labels or not.

Prerequisites

CHAPTER 7. USING MULTI-CATEGORY SECURITY (MCS) FOR DATA CONFIDENTIALITY

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_selinux/troubleshooting-problems-related-to-selinux_using-selinux#proc_creating-a-local-selinux-policy-module_troubleshooting-problems-related-to-selinux
https://www.redhat.com/en/blog/how-selinux-separates-containers-using-multi-level-security
https://www.redhat.com/en/blog/why-you-should-be-using-multi-category-security-your-linux-containers

The SELinux mode is set to enforcing.

The SELinux policy is set to targeted or mls.

The policycoreutils-python-utils and mcstrans packages are installed.

Procedure

1. Modify existing categories or create new categories by editing the
/etc/selinux/<selinuxpolicy>/setrans.conf file in a text editor. Replace <selinuxpolicy> with
targeted or mls depending on the SELinux policy you use. For example:

vi /etc/selinux/targeted/setrans.conf

2. In the setrans.conf file for your policy, define the combinations of categories required by your
scenario using the syntax s_<security level>_:c_<category number>_=<category.name>, for
example:

s0:c0=Marketing
s0:c1=Finance
s0:c2=Payroll
s0:c3=Personnel

You can use category numbers from c0 to c1023.

In the targeted policy, use the s0 security level.

In the mls policy, you can label each combination of sensitivity levels and categories.

3. Optional: In the setrans.conf file, you can also label the MLS sensitivity levels.

4. Save and exit the file.

5. To make the changes effective, restart the MCS translation service:

systemctl restart mcstrans

Verification

Display the current categories:

chcat -L

The example above produces the following output:

s0:c0 Marketing
s0:c1 Finance
s0:c2 Payroll
s0:c3 Personnel
s0
s0-s0:c0.c1023 SystemLow-SystemHigh
s0:c0.c1023 SystemHigh

Additional resources

Red Hat Enterprise Linux 9 Using SELinux

66

The setrans.conf(5) man page.

7.4. ASSIGNING CATEGORIES TO USERS IN MCS

You can define user authorizations by assigning categories to Linux users. A user with assigned
categories can access and modify files that have a subset of the user’s categories. Users can also assign
files they own to categories they have been assigned to.

A Linux user cannot be assigned to a category that is outside of the security range defined for the
relevant SELinux user.

NOTE

Category access is assigned during login. Consequently, users do not have access to
newly assigned categories until they log in again. Similarly, if you revoke a user’s access to
a category, this is effective only after the user logs in again.

Prerequisites

The SELinux mode is set to enforcing.

The SELinux policy is set to targeted or mls.

The policycoreutils-python-utils package is installed.

Linux users are assigned to SELinux confined users:

Non-privileged users are assigned to user_u.

Privileged users are assigned to staff_u.

Procedure

1. Define the security range for the SELinux user.

semanage user -m -rs0:c0,c1-s0:c0.c9 <user_u>

Use category numbers c0 to c1023 or category labels as defined in the setrans.conf file. For
additional information, see Defining category labels in MCS .

2. Assign MCS categories to a Linux user. You can specify only a range within the range defined to
the relevant SELinux user:

semanage login -m -rs0:c1 <Linux.user1>

NOTE

CHAPTER 7. USING MULTI-CATEGORY SECURITY (MCS) FOR DATA CONFIDENTIALITY

67

NOTE

You can add or remove categories from Linux users by using the chcat
command. The following example adds <category1> and removes <category2>
from <Linux.user1> and <Linux.user2>:

chcat -l -- +<category1>,-<category2> <Linux.user1>,<Linux.user2>

You must specify -- on the command line before using the -<category> syntax.
Otherwise, the chcat command misinterprets the category removal as a
command option.

Verification

List the categories assigned to Linux users:

chcat -L -l <Linux.user1>,<Linux.user2>
<Linux.user1>: <category1>,<category2>
<Linux.user2>: <category1>,<category2>

Additional resources

chcat(8) man page

7.5. ASSIGNING CATEGORIES TO FILES IN MCS

You need administrative privileges to assign categories to users. Users can then assign categories to
files. To modify the categories of a file, users must have access rights to that file. Users can only assign a
file to a category that is assigned to them.

NOTE

The system combines category access rules with conventional file access permissions.
For example, if a user with a category of bigfoot uses Discretionary Access Control
(DAC) to block access to a file by other users, other bigfoot users cannot access that file.
A user assigned to all available categories still may not be able to access the entire file
system.

Prerequisites

The SELinux mode is set to enforcing.

The SELinux policy is set to targeted or mls.

The policycoreutils-python-utils package is installed.

Access and permissions to a Linux user that is:

Assigned to an SELinux user.

Assigned to the category to which you want to assign the file. For additional information,
see Assigning categories to users in MCS .

Access and permissions to the file you want to add to the category.

Red Hat Enterprise Linux 9 Using SELinux

68

For verification purposes: Access and permissions to a Linux user not assigned to this category

Procedure

Add categories to a file:

$ chcat -- +<category1>,+<category2> <path/to/file1>

Use category numbers c0 to c1023 or category labels as defined in the setrans.conf file. For
additional information, see Defining category labels in MCS .

You can remove categories from a file by using the same syntax:

$ chcat -- -<category1>,-<category2> <path/to/file1>

NOTE

When removing a category, you must specify -- on the command line before
using the -<category> syntax. Otherwise, the chcat command misinterprets the
category removal as a command option.

Verification

1. Display the security context of the file to verify that it has the correct categories:

$ ls -lZ <path/to/file>
-rw-r--r-- <LinuxUser1> <Group1> root:object_r:user_home_t:_<sensitivity>_:_<category>_
<path/to/file>

The specific security context of the file may differ.

2. Optional: Attempt to access the file when logged in as a Linux user not assigned to the same
category as the file:

$ cat <path/to/file>
cat: <path/to/file>: Permission Denied

Additional resources

semanage(8) and chcat(8) man pages

CHAPTER 7. USING MULTI-CATEGORY SECURITY (MCS) FOR DATA CONFIDENTIALITY

69

CHAPTER 8. WRITING A CUSTOM SELINUX POLICY
To run your applications confined by SELinux, you must write and use a custom policy.

8.1. CUSTOM SELINUX POLICIES AND RELATED TOOLS

An SELinux security policy is a collection of SELinux rules. A policy is a core component of SELinux and
is loaded into the kernel by SELinux user-space tools. The kernel enforces the use of an SELinux policy
to evaluate access requests on the system. By default, SELinux denies all requests except for requests
that correspond to the rules specified in the loaded policy.

Each SELinux policy rule describes an interaction between a process and a system resource:

ALLOW apache_process apache_log:FILE READ;

You can read this example rule as: The Apache process can read its logging file. In this rule,
apache_process and apache_log are labels. An SELinux security policy assigns labels to processes and
defines relations to system resources. This way, a policy maps operating-system entities to the SELinux
layer.

SELinux labels are stored as extended attributes of file systems, such as ext2. You can list them using
the getfattr utility or a ls -Z command, for example:

$ ls -Z /etc/passwd
system_u:object_r:passwd_file_t:s0 /etc/passwd

Where system_u is an SELinux user, object_r is an example of the SELinux role, and passwd_file_t is
an SELinux domain.

The default SELinux policy provided by the selinux-policy packages contains rules for applications and
daemons that are parts of Red Hat Enterprise Linux 9 and are provided by packages in its repositories.
Applications not described in this distribution policy are not confined by SELinux. To change this, you
have to modify the policy using a policy module, which contains additional definitions and rules.

In Red Hat Enterprise Linux 9, you can query the installed SELinux policy and generate new policy
modules using the sepolicy tool. Scripts that sepolicy generates together with the policy modules
always contain a command using the restorecon utility. This utility is a basic tool for fixing labeling
problems in a selected part of a file system.

Additional resources

sepolicy(8) and getfattr(1) man pages

Quick start to write a custom SELinux policy Knowledgebase article

8.2. CREATING AND ENFORCING AN SELINUX POLICY FOR A
CUSTOM APPLICATION

You can confine applications by SELinux to increase the security of host systems and users' data.
Because each application has specific requirements, modify this example procedure for creating an
SELinux policy that confines a simple daemon according to your use case.

Prerequisites

Red Hat Enterprise Linux 9 Using SELinux

70

https://access.redhat.com/articles/6999267

The selinux-policy-devel package and its dependencies are installed on your system.

Procedure

1. For this example procedure, prepare a simple daemon that opens the /var/log/messages file
for writing:

a. Create a new file, and open it in a text editor of your choice:

$ vi mydaemon.c

b. Insert the following code:

c. Compile the file:

$ gcc -o mydaemon mydaemon.c

d. Create a systemd unit file for your daemon:

$ vi mydaemon.service
[Unit]
Description=Simple testing daemon

[Service]
Type=simple
ExecStart=/usr/local/bin/mydaemon

[Install]
WantedBy=multi-user.target

e. Install and start the daemon:

cp mydaemon /usr/local/bin/
cp mydaemon.service /usr/lib/systemd/system
systemctl start mydaemon
systemctl status mydaemon
● mydaemon.service - Simple testing daemon
 Loaded: loaded (/usr/lib/systemd/system/mydaemon.service; disabled; vendor preset:
disabled)
 Active: active (running) since Sat 2020-05-23 16:56:01 CEST; 19s ago

#include <unistd.h>
#include <stdio.h>

FILE *f;

int main(void)
{
while(1) {
f = fopen("/var/log/messages","w");
 sleep(5);
 fclose(f);
 }
}

CHAPTER 8. WRITING A CUSTOM SELINUX POLICY

71

 Main PID: 4117 (mydaemon)
 Tasks: 1
 Memory: 148.0K
 CGroup: /system.slice/mydaemon.service
 └─4117 /usr/local/bin/mydaemon

May 23 16:56:01 localhost.localdomain systemd[1]: Started Simple testing daemon.

f. Check that the new daemon is not confined by SELinux:

$ ps -efZ | grep mydaemon
system_u:system_r:unconfined_service_t:s0 root 4117 1 0 16:56 ? 00:00:00
/usr/local/bin/mydaemon

2. Generate a custom policy for the daemon:

$ sepolicy generate --init /usr/local/bin/mydaemon
Created the following files:
/home/example.user/mysepol/mydaemon.te # Type Enforcement file
/home/example.user/mysepol/mydaemon.if # Interface file
/home/example.user/mysepol/mydaemon.fc # File Contexts file
/home/example.user/mysepol/mydaemon_selinux.spec # Spec file
/home/example.user/mysepol/mydaemon.sh # Setup Script

3. Rebuild the system policy with the new policy module using the setup script created by the
previous command:

./mydaemon.sh
Building and Loading Policy
+ make -f /usr/share/selinux/devel/Makefile mydaemon.pp
Compiling targeted mydaemon module
Creating targeted mydaemon.pp policy package
rm tmp/mydaemon.mod.fc tmp/mydaemon.mod
+ /usr/sbin/semodule -i mydaemon.pp
...

Note that the setup script relabels the corresponding part of the file system using the
restorecon command:

restorecon -v /usr/local/bin/mydaemon /usr/lib/systemd/system

4. Restart the daemon, and check that it now runs confined by SELinux:

systemctl restart mydaemon
$ ps -efZ | grep mydaemon
system_u:system_r:mydaemon_t:s0 root 8150 1 0 17:18 ? 00:00:00
/usr/local/bin/mydaemon

5. Because the daemon is now confined by SELinux, SELinux also prevents it from accessing
/var/log/messages. Display the corresponding denial message:

ausearch -m AVC -ts recent
...
type=AVC msg=audit(1590247112.719:5935): avc: denied { open } for pid=8150

Red Hat Enterprise Linux 9 Using SELinux

72

comm="mydaemon" path="/var/log/messages" dev="dm-0" ino=2430831
scontext=system_u:system_r:mydaemon_t:s0 tcontext=unconfined_u:object_r:var_log_t:s0
tclass=file permissive=1
...

6. You can get additional information also using the sealert tool:

$ sealert -l "*"
SELinux is preventing mydaemon from open access on the file /var/log/messages.

***** Plugin catchall (100. confidence) suggests **************************

If you believe that mydaemon should be allowed open access on the messages file by
default.
Then you should report this as a bug.
You can generate a local policy module to allow this access.
Do allow this access for now by executing:
ausearch -c 'mydaemon' --raw | audit2allow -M my-mydaemon
semodule -X 300 -i my-mydaemon.pp

Additional Information:
Source Context system_u:system_r:mydaemon_t:s0
Target Context unconfined_u:object_r:var_log_t:s0
Target Objects /var/log/messages [file]
Source mydaemon
…

7. Use the audit2allow tool to suggest changes:

$ ausearch -m AVC -ts recent | audit2allow -R

require {
 type mydaemon_t;
}

#============= mydaemon_t ==============
logging_write_generic_logs(mydaemon_t)

8. Because rules suggested by audit2allow can be incorrect for certain cases, use only a part of its
output to find the corresponding policy interface. Inspect the
logging_write_generic_logs(mydaemon_t) macro with the macro-expander tool, to see all
allow rules the macro provides:

$ macro-expander "logging_write_generic_logs(mydaemon_t)"
allow mydaemon_t var_t:dir { getattr search open };
allow mydaemon_t var_log_t:dir { getattr search open read lock ioctl };
allow mydaemon_t var_log_t:dir { getattr search open };
allow mydaemon_t var_log_t:file { open { getattr write append lock ioctl } };
allow mydaemon_t var_log_t:dir { getattr search open };
allow mydaemon_t var_log_t:lnk_file { getattr read };

9. In this case, you can use the suggested interface, because it only provides read and write access
to log files and their parent directories. Add the corresponding rule to your type enforcement
file:

CHAPTER 8. WRITING A CUSTOM SELINUX POLICY

73

$ echo "logging_write_generic_logs(mydaemon_t)" >> mydaemon.te

Alternatively, you can add this rule instead of using the interface:

$ echo "allow mydaemon_t var_log_t:file { open write getattr };" >> mydaemon.te

10. Reinstall the policy:

./mydaemon.sh
Building and Loading Policy
+ make -f /usr/share/selinux/devel/Makefile mydaemon.pp
Compiling targeted mydaemon module
Creating targeted mydaemon.pp policy package
rm tmp/mydaemon.mod.fc tmp/mydaemon.mod
+ /usr/sbin/semodule -i mydaemon.pp
...

Verification

1. Check that your application runs confined by SELinux, for example:

$ ps -efZ | grep mydaemon
system_u:system_r:mydaemon_t:s0 root 8150 1 0 17:18 ? 00:00:00
/usr/local/bin/mydaemon

2. Verify that your custom application does not cause any SELinux denials:

ausearch -m AVC -ts recent
<no matches>

Additional resources

sepolgen(8), ausearch(8), audit2allow(1), audit2why(1), sealert(8), and restorecon(8) man
pages

Quick start to write a custom SELinux policy Knowledgebase article

8.3. ADDITIONAL RESOURCES

SELinux Policy Workshop

Red Hat Enterprise Linux 9 Using SELinux

74

https://access.redhat.com/articles/6999267
http://redhatgov.io/workshops/selinux_policy/

CHAPTER 9. CREATING SELINUX POLICIES FOR
CONTAINERS

Red Hat Enterprise Linux 9 provides a tool for generating SELinux policies for containers using the
udica package. With udica, you can create a tailored security policy for better control of how a container
accesses host system resources, such as storage, devices, and network. This enables you to harden your
container deployments against security violations and it also simplifies achieving and maintaining
regulatory compliance.

9.1. INTRODUCTION TO THE UDICA SELINUX POLICY GENERATOR

To simplify creating new SELinux policies for custom containers, RHEL 9 provides the udica utility. You
can use this tool to create a policy based on an inspection of the container JavaScript Object Notation
(JSON) file, which contains Linux-capabilities, mount-points, and ports definitions. The tool
consequently combines rules generated using the results of the inspection with rules inherited from a
specified SELinux Common Intermediate Language (CIL) block.

The process of generating SELinux policy for a container using udica has three main parts:

1. Parsing the container spec file in the JSON format

2. Finding suitable allow rules based on the results of the first part

3. Generating final SELinux policy

During the parsing phase, udica looks for Linux capabilities, network ports, and mount points.

Based on the results, udica detects which Linux capabilities are required by the container and creates
an SELinux rule allowing all these capabilities. If the container binds to a specific port, udica uses
SELinux user-space libraries to get the correct SELinux label of a port that is used by the inspected
container.

Afterward, udica detects which directories are mounted to the container file-system name space from
the host.

The CIL’s block inheritance feature allows udica to create templates of SELinux allow rules focusing on
a specific action, for example:

allow accessing home directories

allow accessing log files

allow accessing communication with Xserver .

These templates are called blocks and the final SELinux policy is created by merging the blocks.

Additional resources

Generate SELinux policies for containers with udica Red Hat Blog article

9.2. CREATING AND USING AN SELINUX POLICY FOR A CUSTOM
CONTAINER

To generate an SELinux security policy for a custom container, follow the steps in this procedure.

CHAPTER 9. CREATING SELINUX POLICIES FOR CONTAINERS

75

https://www.redhat.com/en/blog/generate-selinux-policies-containers-with-udica

Prerequisites

The podman tool for managing containers is installed. If it is not, use the dnf install podman
command.

A custom Linux container - ubi8 in this example.

Procedure

1. Install the udica package:

dnf install -y udica

Alternatively, install the container-tools module, which provides a set of container software
packages, including udica:

dnf module install -y container-tools

2. Start the ubi8 container that mounts the /home directory with read-only permissions and the
/var/spool directory with permissions to read and write. The container exposes the port 21.

podman run --env container=podman -v /home:/home:ro -v /var/spool:/var/spool:rw -p
21:21 -it ubi8 bash

Note that now the container runs with the container_t SELinux type. This type is a generic
domain for all containers in the SELinux policy and it might be either too strict or too loose for
your scenario.

3. Open a new terminal, and enter the podman ps command to obtain the ID of the container:

podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
37a3635afb8f registry.access.redhat.com/ubi8:latest bash 15 minutes ago Up 15
minutes ago heuristic_lewin

4. Create a container JSON file, and use udica for creating a policy module based on the
information in the JSON file:

podman inspect 37a3635afb8f > container.json
udica -j container.json my_container
Policy my_container with container id 37a3635afb8f created!
[…]

Alternatively:

podman inspect 37a3635afb8f | udica my_container
Policy my_container with container id 37a3635afb8f created!

Please load these modules using:
semodule -i my_container.cil
/usr/share/udica/templates/{base_container.cil,net_container.cil,home_container.cil}

Restart the container with: "--security-opt label=type:my_container.process" parameter

Red Hat Enterprise Linux 9 Using SELinux

76

5. As suggested by the output of udica in the previous step, load the policy module:

semodule -i my_container.cil
/usr/share/udica/templates/{base_container.cil,net_container.cil,home_container.cil}

6. Stop the container and start it again with the --security-opt label=type:my_container.process
option:

podman stop 37a3635afb8f
podman run --security-opt label=type:my_container.process -v /home:/home:ro -v
/var/spool:/var/spool:rw -p 21:21 -it ubi8 bash

Verification

1. Check that the container runs with the my_container.process type:

ps -efZ | grep my_container.process
unconfined_u:system_r:container_runtime_t:s0-s0:c0.c1023 root 2275 434 1 13:49 pts/1
00:00:00 podman run --security-opt label=type:my_container.process -v /home:/home:ro -v
/var/spool:/var/spool:rw -p 21:21 -it ubi8 bash
system_u:system_r:my_container.process:s0:c270,c963 root 2317 2305 0 13:49 pts/0
00:00:00 bash

2. Verify that SELinux now allows access the /home and /var/spool mount points:

[root@37a3635afb8f /]# cd /home
[root@37a3635afb8f home]# ls
username
[root@37a3635afb8f ~]# cd /var/spool/
[root@37a3635afb8f spool]# touch test
[root@37a3635afb8f spool]#

3. Check that SELinux allows binding only to the port 21:

[root@37a3635afb8f /]# dnf install nmap-ncat
[root@37a3635afb8f /]# nc -lvp 21
…
Ncat: Listening on :::21
Ncat: Listening on 0.0.0.0:21
^C
[root@37a3635afb8f /]# nc -lvp 80
…
Ncat: bind to :::80: Permission denied. QUITTING.

Additional resources

udica(8) and podman(1) man pages

udica - Generate SELinux policies for containers

Building, running, and managing containers

CHAPTER 9. CREATING SELINUX POLICIES FOR CONTAINERS

77

https://github.com/containers/udica#creating-selinux-policy-for-container
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/building_running_and_managing_containers/

CHAPTER 10. DEPLOYING THE SAME SELINUX
CONFIGURATION ON MULTIPLE SYSTEMS

You can deploy your verified SELinux configuration on multiple systems by using one of the following
methods:

Using RHEL system roles and Ansible

Using semanage export and import commands in your scripts

10.1. INTRODUCTION TO THE SELINUX RHEL SYSTEM ROLE

RHEL system roles is a collection of Ansible roles and modules that provide a consistent configuration
interface to remotely manage multiple RHEL systems. You can perform the following actions by using
the selinux RHEL system role:

Cleaning local policy modifications related to SELinux booleans, file contexts, ports, and logins.

Setting SELinux policy booleans, file contexts, ports, and logins.

Restoring file contexts on specified files or directories.

Managing SELinux modules.

The /usr/share/doc/rhel-system-roles/selinux/example-selinux-playbook.yml example playbook
installed by the rhel-system-roles package demonstrates how to set the targeted policy in enforcing
mode. The playbook also applies several local policy modifications and restores file contexts in the
/tmp/test_dir/ directory.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.selinux/README.md file

/usr/share/doc/rhel-system-roles/selinux/ directory

10.2. USING THE SELINUX RHEL SYSTEM ROLE TO APPLY SELINUX
SETTINGS ON MULTIPLE SYSTEMS

With the selinux RHEL system role, you can prepare and apply an Ansible playbook with your verified
SELinux settings.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Prepare your playbook. You can either start from scratch or modify the example playbook
installed as a part of the rhel-system-roles package:

Red Hat Enterprise Linux 9 Using SELinux

78

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

cp /usr/share/doc/rhel-system-roles/selinux/example-selinux-playbook.yml <my-selinux-
playbook.yml>
vi <my-selinux-playbook.yml>

2. Change the content of the playbook to fit your scenario. For example, the following part ensures
that the system installs and enables the selinux-local-1.pp SELinux module:

selinux_modules:
- { path: "selinux-local-1.pp", priority: "400" }

3. Save the changes, and exit the text editor.

4. Validate the playbook syntax:

ansible-playbook <my-selinux-playbook.yml> --syntax-check

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

5. Run your playbook:

ansible-playbook <my-selinux-playbook.yml>

Additional resources

/usr/share/ansible/roles/rhel-system-roles.selinux/README.md file

/usr/share/doc/rhel-system-roles/selinux/ directory

SELinux hardening with Ansible Knowledgebase article

10.3. MANAGING PORTS BY USING THE SELINUX RHEL SYSTEM ROLE

You can automate managing port access in SELinux consistently across multiple systems by using the
selinux RHEL system role. This might be useful, for example, when configuring an Apache HTTP server
to listen on a different port. You can do this by creating a playbook with the selinux RHEL system role
that assigns the http_port_t SELinux type to a specific port number. After you run the playbook on the
managed nodes, specific services defined in the SELinux policy can access this port.

You can automate managing port access in SELinux either by using the seport module, which is quicker
than using the entire role, or by using the selinux RHEL system role, which is more useful when you also
make other changes in SELinux configuration. The methods are equivalent, in fact the selinux
RHEL system role uses the seport module when configuring ports. Each of the methods has the same
effect as entering the command semanage port -a -t http_port_t -p tcp <port_number> on the
managed node.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Optional: To verify port status by using the semanage command, the policycoreutils-python-

CHAPTER 10. DEPLOYING THE SAME SELINUX CONFIGURATION ON MULTIPLE SYSTEMS

79

https://access.redhat.com/articles/7047896
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Optional: To verify port status by using the semanage command, the policycoreutils-python-
utils package must be installed.

Procedure

To configure just the port number without making other changes, use the seport module:

Replace <port_number> with the port number to which you want to assign the http_port_t
type.

For more complex configuration of the managed nodes that involves other customizations of
SELinux, use the selinux RHEL system role. Create a playbook file, for example,
~/playbook.yml, and add the following content:

Replace <port_number> with the port number to which you want to assign the http_port_t
type.

Verification

Verify that the port is assigned to the http_port_t type:

semanage port --list | grep http_port_t
http_port_t tcp <port_number>, 80, 81, 443, 488, 8008, 8009, 8443, 9000

Additional resources

/usr/share/ansible/roles/rhel-system-roles.selinux/README.md file

/usr/share/doc/rhel-system-roles/selinux/ directory

10.4. TRANSFERRING SELINUX SETTINGS TO ANOTHER SYSTEM

- name: Allow Apache to listen on tcp port <port_number>
 community.general.seport:
 ports: <port_number>
 proto: tcp
 setype: http_port_t
 state: present

- name: Modify SELinux port mapping example
 hosts: all
 vars:
 # Map tcp port <port_number> to the 'http_port_t' SELinux port type
 selinux_ports:
 - ports: <port_number>
 proto: tcp
 setype: http_port_t
 state: present

 tasks:
 - name: Include selinux role
 ansible.builtin.include_role:
 name: rhel-system-roles.selinux

Red Hat Enterprise Linux 9 Using SELinux

80

10.4. TRANSFERRING SELINUX SETTINGS TO ANOTHER SYSTEM
WITH SEMANAGE

Use the following steps for transferring your custom and verified SELinux settings between RHEL 9-
based systems.

Prerequisites

The policycoreutils-python-utils package is installed on your system.

Procedure

1. Export your verified SELinux settings:

semanage export -f ./my-selinux-settings.mod

2. Copy the file with the settings to the new system:

scp ./my-selinux-settings.mod new-system-hostname:

3. Log in on the new system:

$ ssh root@new-system-hostname

4. Import the settings on the new system:

new-system-hostname# semanage import -f ./my-selinux-settings.mod

Additional resources

semanage-export(8) and semanage-import(8) man pages

CHAPTER 10. DEPLOYING THE SAME SELINUX CONFIGURATION ON MULTIPLE SYSTEMS

81

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. GETTING STARTED WITH SELINUX
	1.1. INTRODUCTION TO SELINUX
	1.2. BENEFITS OF RUNNING SELINUX
	1.3. SELINUX EXAMPLES
	1.4. SELINUX ARCHITECTURE AND PACKAGES
	1.5. SELINUX STATES AND MODES

	CHAPTER 2. CHANGING SELINUX STATES AND MODES
	2.1. PERMANENT CHANGES IN SELINUX STATES AND MODES
	2.2. CHANGING SELINUX TO PERMISSIVE MODE
	2.3. CHANGING SELINUX TO ENFORCING MODE
	2.4. ENABLING SELINUX ON SYSTEMS THAT PREVIOUSLY HAD IT DISABLED
	2.5. DISABLING SELINUX
	2.6. CHANGING SELINUX MODES AT BOOT TIME

	CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS
	3.1. CONFINED AND UNCONFINED USERS IN SELINUX
	3.2. ROLES AND ACCESS RIGHTS OF SELINUX USERS
	3.3. CONFINED NON-ADMINISTRATOR ROLES IN SELINUX
	3.4. CONFINED ADMINISTRATOR ROLES IN SELINUX
	3.5. ADDING A NEW USER AUTOMATICALLY MAPPED TO THE SELINUX UNCONFINED_U USER
	3.6. ADDING A NEW USER AS AN SELINUX-CONFINED USER
	3.7. CONFINING REGULAR USERS IN SELINUX
	3.8. CONFINING AN ADMINISTRATOR BY MAPPING TO SYSADM_U
	3.9. CONFINING AN ADMINISTRATOR BY USING SUDO AND THE SYSADM_R ROLE
	3.10. ADDITIONAL RESOURCES

	CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS AND SERVICES WITH NON-STANDARD CONFIGURATIONS
	4.1. CUSTOMIZING THE SELINUX POLICY FOR THE APACHE HTTP SERVER IN A NON-STANDARD CONFIGURATION
	4.2. ADJUSTING THE POLICY FOR SHARING NFS AND CIFS VOLUMES BY USING SELINUX BOOLEANS
	4.3. FINDING THE CORRECT SELINUX TYPE FOR MANAGING ACCESS TO NON-STANDARD DIRECTORIES
	4.4. MANAGING ACCESS TO NON-STANDARD SHARED DIRECTORIES FOR UNPRIVILEGED SELINUX USERS

	CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX
	5.1. IDENTIFYING SELINUX DENIALS
	5.2. ANALYZING SELINUX DENIAL MESSAGES
	5.3. FIXING ANALYZED SELINUX DENIALS
	5.4. CREATING A LOCAL SELINUX POLICY MODULE
	5.5. SELINUX DENIALS IN THE AUDIT LOG
	5.6. ADDITIONAL RESOURCES

	CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)
	6.1. MULTI-LEVEL SECURITY (MLS)
	6.2. SELINUX ROLES IN MLS
	6.3. SWITCHING THE SELINUX POLICY TO MLS
	6.4. ESTABLISHING USER CLEARANCE IN MLS
	6.5. CHANGING A USER’S CLEARANCE LEVEL WITHIN THE DEFINED SECURITY RANGE IN MLS
	6.6. INCREASING FILE SENSITIVITY LEVELS IN MLS
	6.7. CHANGING FILE SENSITIVITY IN MLS
	6.8. SEPARATING SYSTEM ADMINISTRATION FROM SECURITY ADMINISTRATION IN MLS
	6.9. DEFINING A SECURE TERMINAL IN MLS
	6.10. ALLOWING MLS USERS TO EDIT FILES ON LOWER LEVELS

	CHAPTER 7. USING MULTI-CATEGORY SECURITY (MCS) FOR DATA CONFIDENTIALITY
	7.1. MULTI-CATEGORY SECURITY (MCS)
	MCS within Multi-Level Security

	7.2. CONFIGURING MULTI-CATEGORY SECURITY FOR DATA CONFIDENTIALITY
	7.3. DEFINING CATEGORY LABELS IN MCS
	7.4. ASSIGNING CATEGORIES TO USERS IN MCS
	7.5. ASSIGNING CATEGORIES TO FILES IN MCS

	CHAPTER 8. WRITING A CUSTOM SELINUX POLICY
	8.1. CUSTOM SELINUX POLICIES AND RELATED TOOLS
	8.2. CREATING AND ENFORCING AN SELINUX POLICY FOR A CUSTOM APPLICATION
	8.3. ADDITIONAL RESOURCES

	CHAPTER 9. CREATING SELINUX POLICIES FOR CONTAINERS
	9.1. INTRODUCTION TO THE UDICA SELINUX POLICY GENERATOR
	9.2. CREATING AND USING AN SELINUX POLICY FOR A CUSTOM CONTAINER

	CHAPTER 10. DEPLOYING THE SAME SELINUX CONFIGURATION ON MULTIPLE SYSTEMS
	10.1. INTRODUCTION TO THE SELINUX RHEL SYSTEM ROLE
	10.2. USING THE SELINUX RHEL SYSTEM ROLE TO APPLY SELINUX SETTINGS ON MULTIPLE SYSTEMS
	10.3. MANAGING PORTS BY USING THE SELINUX RHEL SYSTEM ROLE
	10.4. TRANSFERRING SELINUX SETTINGS TO ANOTHER SYSTEM WITH SEMANAGE

