
Red Hat Enterprise Linux 9

Using systemd unit files to customize and
optimize your system

Optimize system performance and extend configuration with systemd

Last Updated: 2024-06-25

Red Hat Enterprise Linux 9 Using systemd unit files to customize and
optimize your system

Optimize system performance and extend configuration with systemd

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Modify the systemd unit files and extend the default configuration, examine the system boot
performance and optimize systemd to shorten the boot time.

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES
1.1. INTRODUCTION TO UNIT FILES
1.2. SYSTEMD UNIT FILES LOCATIONS
1.3. UNIT FILE STRUCTURE
1.4. IMPORTANT [UNIT] SECTION OPTIONS
1.5. IMPORTANT [SERVICE] SECTION OPTIONS
1.6. IMPORTANT [INSTALL] SECTION OPTIONS
1.7. CREATING CUSTOM UNIT FILES
1.8. CREATING A CUSTOM UNIT FILE BY USING THE SECOND INSTANCE OF THE SSHD SERVICE
1.9. FINDING THE SYSTEMD SERVICE DESCRIPTION
1.10. FINDING THE SYSTEMD SERVICE DEPENDENCIES
1.11. FINDING DEFAULT TARGETS OF THE SERVICE
1.12. FINDING FILES USED BY THE SERVICE
1.13. MODIFYING EXISTING UNIT FILES
1.14. EXTENDING THE DEFAULT UNIT CONFIGURATION
1.15. OVERRIDING THE DEFAULT UNIT CONFIGURATION
1.16. CHANGING THE TIMEOUT LIMIT
1.17. MONITORING OVERRIDDEN UNITS
1.18. WORKING WITH INSTANTIATED UNITS
1.19. IMPORTANT UNIT SPECIFIERS
1.20. ADDITIONAL RESOURCES

CHAPTER 2. OPTIMIZING SYSTEMD TO SHORTEN THE BOOT TIME
2.1. EXAMINING SYSTEM BOOT PERFORMANCE
2.2. A GUIDE TO SELECTING SERVICES THAT CAN BE SAFELY DISABLED
2.3. ADDITIONAL RESOURCES

3

4
4
4
5
5
6
8
8

10
11
11

12
12
14
15
16
16
17
18
18
19

20
20
21

24

Table of Contents

1

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

2

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

3

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES
The systemd unit files represent your system resources. As a system administrator, you can perform
the following advanced tasks:

Create custom unit files

Modify existing unit files

Work with instantiated units

1.1. INTRODUCTION TO UNIT FILES

A unit file contains configuration directives that describe the unit and define its behavior. Several
systemctl commands work with unit files in the background. To make finer adjustments, you can edit or
create unit files manually. You can find three main directories where unit files are stored on the system,
the /etc/systemd/system/ directory is reserved for unit files created or customized by the system
administrator.

Unit file names take the following form:

<unit_name>.<type_extension>

Here, unit_name stands for the name of the unit and type_extension identifies the unit type.

For example, you can find an sshd.service as well as an sshd.socket unit present on your system.

Unit files can be supplemented with a directory for additional configuration files. For example, to add
custom configuration options to sshd.service, create the sshd.service.d/custom.conf file and insert
additional directives there. For more information on configuration directories, see Modifying existing unit
files.

The systemd system and service manager can also create the sshd.service.wants/ and
sshd.service.requires/ directories. These directories contain symbolic links to unit files that are
dependencies of the sshd service. systemd creates the symbolic links automatically either during
installation according to [Install] unit file options or at runtime based on [Unit] options. You can also
create these directories and symbolic links manually.

Also, the sshd.service.wants/ and sshd.service.requires/ directories can be created. These
directories contain symbolic links to unit files that are dependencies of the sshd service. The symbolic
links are automatically created either during installation according to [Install] unit file options or at
runtime based on [Unit] options. It is also possible to create these directories and symbolic links
manually. For more details on [Install] and [Unit] options, see the tables below.

Many unit file options can be set using the so called unit specifiers – wildcard strings that are
dynamically replaced with unit parameters when the unit file is loaded. This enables creation of generic
unit files that serve as templates for generating instantiated units. See Working with instantiated units .

1.2. SYSTEMD UNIT FILES LOCATIONS

You can find the unit configuration files in one of the following directories:

Table 1.1. systemd unit files locations

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

4

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_systemd_unit_files_to_customize_and_optimize_your_system/assembly_working-with-systemd-unit-files_working-with-systemd#proc_modifying-existing-unit-files_assembly_working-with-systemd-unit-files

Directory Description

/usr/lib/systemd/system/ systemd unit files distributed with installed RPM
packages.

/run/systemd/system/ systemd unit files created at run time. This
directory takes precedence over the directory with
installed service unit files.

/etc/systemd/system/ systemd unit files created by using the systemctl
enable command as well as unit files added for
extending a service. This directory takes precedence
over the directory with runtime unit files.

The default configuration of systemd is defined during the compilation and you can find the
configuration in the /etc/systemd/system.conf file. By editing this file, you can modify the default
configuration by overriding values for systemd units globally.

For example, to override the default value of the timeout limit, which is set to 90 seconds, use the
DefaultTimeoutStartSec parameter to input the required value in seconds.

DefaultTimeoutStartSec=required value

1.3. UNIT FILE STRUCTURE

Unit files typically consist of three following sections:

The [Unit] section

Contains generic options that are not dependent on the type of the unit. These options provide unit
description, specify the unit’s behavior, and set dependencies to other units. For a list of most
frequently used [Unit] options, see Important [Unit] section options .

The [Unit type] section

Contains type-specific directives, these are grouped under a section named after the unit type. For
example, service unit files contain the [Service] section.

The [Install] section

Contains information about unit installation used by systemctl enable and disable commands. For a
list of options for the [Install] section, see Important [Install] section options .

Additional resources

Important [Unit] section options

Important [Service] section options

Important [Install] section options

1.4. IMPORTANT [UNIT] SECTION OPTIONS

The following tables lists important options of the [Unit] section.

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES

5

Table 1.2. Important [Unit] section options

Option [a] Description

Description A meaningful description of the unit. This text is
displayed for example in the output of the
systemctl status command.

Documentation Provides a list of URIs referencing documentation for
the unit.

After[b] Defines the order in which units are started. The unit
starts only after the units specified in After are
active. Unlike Requires, After does not explicitly
activate the specified units. The Before option has
the opposite functionality to After.

Requires Configures dependencies on other units. The units
listed in Requires are activated together with the
unit. If any of the required units fail to start, the unit is
not activated.

Wants Configures weaker dependencies than Requires. If
any of the listed units does not start successfully, it
has no impact on the unit activation. This is the
recommended way to establish custom unit
dependencies.

Conflicts Configures negative dependencies, an opposite to
Requires.

[a] For a complete list of options configurable in the [Unit] section, see the systemd.unit(5) manual page.

[b] In most cases, it is sufficient to set only the ordering dependencies with After and Before unit file options. If you also
set a requirement dependency with Wants (recommended) or Requires, the ordering dependency still needs to be
specified. That is because ordering and requirement dependencies work independently from each other.

1.5. IMPORTANT [SERVICE] SECTION OPTIONS

The following tables lists important options of the [Service] section.

Table 1.3. Important [Service] section options

Option [a] Description

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

6

Type Configures the unit process startup type that affects
the functionality of ExecStart and related options.
One of:

* simple – The default value. The process started
with ExecStart is the main process of the service.

* forking – The process started with ExecStart
spawns a child process that becomes the main
process of the service. The parent process exits
when the startup is complete.

* oneshot – This type is similar to simple, but the
process exits before starting consequent units.

* dbus – This type is similar to simple, but
consequent units are started only after the main
process gains a D-Bus name.

* notify – This type is similar to simple, but
consequent units are started only after a notification
message is sent via the sd_notify() function.

* idle – similar to simple, the actual execution of the
service binary is delayed until all jobs are finished,
which avoids mixing the status output with shell
output of services.

ExecStart Specifies commands or scripts to be executed when
the unit is started. ExecStartPre and
ExecStartPost specify custom commands to be
executed before and after ExecStart.
Type=oneshot enables specifying multiple custom
commands that are then executed sequentially.

ExecStop Specifies commands or scripts to be executed when
the unit is stopped.

ExecReload Specifies commands or scripts to be executed when
the unit is reloaded.

Restart With this option enabled, the service is restarted after
its process exits, with the exception of a clean stop
by the systemctl command.

RemainAfterExit If set to True, the service is considered active even
when all its processes exited. Default value is False.
This option is especially useful if Type=oneshot is
configured.

Option [a] Description

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES

7

[a] For a complete list of options configurable in the [Service] section, see the systemd.service(5) manual page.

Option [a] Description

1.6. IMPORTANT [INSTALL] SECTION OPTIONS

The following tables lists important options of the [Install] section.

Table 1.4. Important [Install] section options

Option [a] Description

Alias Provides a space-separated list of additional names
for the unit. Most systemctl commands, excluding
systemctl enable, can use aliases instead of the
actual unit name.

RequiredBy A list of units that depend on the unit. When this unit
is enabled, the units listed in RequiredBy gain a
Require dependency on the unit.

WantedBy A list of units that weakly depend on the unit. When
this unit is enabled, the units listed in WantedBy
gain a Want dependency on the unit.

Also Specifies a list of units to be installed or uninstalled
along with the unit.

DefaultInstance Limited to instantiated units, this option specifies the
default instance for which the unit is enabled. See
Working with instantiated units.

[a] For a complete list of options configurable in the [Install] section, see the systemd.unit(5) manual page.

1.7. CREATING CUSTOM UNIT FILES

There are several use cases for creating unit files from scratch: you could run a custom daemon, create a
second instance of some existing service as in Creating a custom unit file by using the second instance
of the sshd service

On the other hand, if you intend just to modify or extend the behavior of an existing unit, use the
instructions from Modifying existing unit files .

Procedure

1. To create a custom service, prepare the executable file with the service. The file can contain a
custom-created script, or an executable delivered by a software provider. If required, prepare a
PID file to hold a constant PID for the main process of the custom service. You can also include

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

8

environment files to store shell variables for the service. Make sure the source script is
executable (by executing the chmod a+x) and is not interactive.

2. Create a unit file in the /etc/systemd/system/ directory and make sure it has correct file
permissions. Execute as root:

touch /etc/systemd/system/<name>.service

chmod 664 /etc/systemd/system/<name>.service

Replace <name> with a name of the service you want to created. Note that the file does not
need to be executable.

3. Open the created <name>.service file and add the service configuration options. You can use
various options depending on the type of service you wish to create, see Unit file structure.
The following is an example unit configuration for a network-related service:

[Unit]
Description=<service_description>
After=network.target

[Service]
ExecStart=<path_to_executable>
Type=forking
PIDFile=<path_to_pidfile>

[Install]
WantedBy=default.target

<service_description> is an informative description that is displayed in journal log files and in
the output of the systemctl status command.

the After setting ensures that the service is started only after the network is running. Add a
space-separated list of other relevant services or targets.

path_to_executable stands for the path to the actual service executable.

Type=forking is used for daemons that make the fork system call. The main process of the
service is created with the PID specified in path_to_pidfile. Find other startup types in
Important [Service] section options .

WantedBy states the target or targets that the service should be started under. Think of
these targets as of a replacement of the older concept of runlevels.

4. Notify systemd that a new <name>.service file exists:

systemctl daemon-reload

systemctl start <name>.service

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES

9

WARNING

Always execute the systemctl daemon-reload command after creating
new unit files or modifying existing unit files. Otherwise, the systemctl start
or systemctl enable commands could fail due to a mismatch between
states of systemd and actual service unit files on disk. Note, that on
systems with a large number of units this can take a long time, as the state
of each unit has to be serialized and subsequently deserialized during the
reload.

1.8. CREATING A CUSTOM UNIT FILE BY USING THE SECOND
INSTANCE OF THE SSHD SERVICE

If you need to configure and run multiple instances of a service, you can create copies of the original
service configuration files and modifying certain parameters to avoid conflicts with the primary instance
of the service.

Procedure

To create a second instance of the sshd service:

1. Create a copy of the sshd_config file that the second daemon will use:

cp /etc/ssh/sshd{,-second}_config

2. Edit the sshd-second_config file created in the previous step to assign a different port number
and PID file to the second daemon:

Port 22220
PidFile /var/run/sshd-second.pid

See the sshd_config(5) manual page for more information about Port and PidFile options.
Make sure the port you choose is not in use by any other service. The PID file does not have to
exist before running the service, it is generated automatically on service start.

3. Create a copy of the systemd unit file for the sshd service:

cp /usr/lib/systemd/system/sshd.service /etc/systemd/system/sshd-second.service

4. Alter the created sshd-second.service:

a. Modify the Description option:

Description=OpenSSH server second instance daemon

b. Add sshd.service to services specified in the After option, so that the second instance
starts only after the first one has already started:

After=syslog.target network.target auditd.service sshd.service

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

10

c. Remove the ExecStartPre=/usr/sbin/sshd-keygen line, the first instance of sshd includes
key generation.

d. Add the -f /etc/ssh/sshd-second_config parameter to the sshd command, so that the
alternative configuration file is used:

ExecStart=/usr/sbin/sshd -D -f /etc/ssh/sshd-second_config $OPTIONS

e. After the modifications, the sshd-second.service unit file contains the following settings:

[Unit]
Description=OpenSSH server second instance daemon
After=syslog.target network.target auditd.service sshd.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStart=/usr/sbin/sshd -D -f /etc/ssh/sshd-second_config $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target

5. If using SELinux, add the port for the second instance of sshd to SSH ports, otherwise the
second instance of sshd will be rejected to bind to the port:

semanage port -a -t ssh_port_t -p tcp 22220

6. Enable sshd-second.service to start automatically on boot:

systemctl enable sshd-second.service

7. Verify if the sshd-second.service is running by using the systemctl status command.

8. Verify if the port is enabled correctly by connecting to the service:

$ ssh -p 22220 user@server

Make sure you configure firewall to allow connections to the second instance of sshd.

1.9. FINDING THE SYSTEMD SERVICE DESCRIPTION

You can find descriptive information about the script on the line starting with #description. Use this
description together with the service name in the Description option in the [Unit] section of the unit file.
The header might contain similar data on the #Short-Description and #Description lines.

1.10. FINDING THE SYSTEMD SERVICE DEPENDENCIES

The Linux standard base (LSB) header might contain several directives that form dependencies
between services. Most of them are translatable to systemd unit options, see the following table:

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES

11

Table 1.5. Dependency options from the LSB header

LSB Option Description Unit File Equivalent

Provides Specifies the boot facility name
of the service, that can be
referenced in other init scripts
(with the "$" prefix). This is no
longer needed as unit files refer to
other units by their file names.

–

Required-Start Contains boot facility names of
required services. This is
translated as an ordering
dependency, boot facility names
are replaced with unit file names
of corresponding services or
targets they belong to. For
example, in case of postfix, the
Required-Start dependency on
$network was translated to the
After dependency on
network.target.

After, Before

Should-Start Constitutes weaker dependencies
than Required-Start. Failed
Should-Start dependencies do
not affect the service startup.

After, Before

Required-Stop, Should-Stop Constitute negative
dependencies.

Conflicts

1.11. FINDING DEFAULT TARGETS OF THE SERVICE

The line starting with #chkconfig contains three numerical values. The most important is the first
number that represents the default runlevels in which the service is started. Map these runlevels to
equivalent systemd targets. Then list these targets in the WantedBy option in the [Install] section of the
unit file. For example, postfix was previously started in runlevels 2, 3, 4, and 5, which translates to multi-
user.target and graphical.target. Note that the graphical.target depends on multiuser.target, therefore it
is not necessary to specify both. You might find information about default and forbidden runlevels also
at #Default-Start and #Default-Stop lines in the LSB header.

The other two values specified on the #chkconfig line represent startup and shutdown priorities of the
init script. These values are interpreted by systemd if it loads the init script, but there is no unit file
equivalent.

1.12. FINDING FILES USED BY THE SERVICE

Init scripts require loading a function library from a dedicated directory and allow importing
configuration, environment, and PID files. Environment variables are specified on the line starting with
#config in the init script header, which translates to the EnvironmentFile unit file option. The PID file
specified on the #pidfile init script line is imported to the unit file with the PIDFile option.

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

12

The key information that is not included in the init script header is the path to the service executable,
and potentially some other files required by the service. In previous versions of Red Hat Enterprise Linux,
init scripts used a Bash case statement to define the behavior of the service on default actions, such as
start, stop, or restart, as well as custom-defined actions. The following excerpt from the postfix init
script shows the block of code to be executed at service start.

conf_check() {
 [-x /usr/sbin/postfix] || exit 5
 [-d /etc/postfix] || exit 6
 [-d /var/spool/postfix] || exit 5
}

make_aliasesdb() {
 if ["$(/usr/sbin/postconf -h alias_database)" == "hash:/etc/aliases"]
 then
 # /etc/aliases.db might be used by other MTA, make sure nothing
 # has touched it since our last newaliases call
 [/etc/aliases -nt /etc/aliases.db] ||
 ["$ALIASESDB_STAMP" -nt /etc/aliases.db] ||
 ["$ALIASESDB_STAMP" -ot /etc/aliases.db] || return
 /usr/bin/newaliases
 touch -r /etc/aliases.db "$ALIASESDB_STAMP"
 else
 /usr/bin/newaliases
 fi
}

start() {
 ["$EUID" != "0"] && exit 4
 # Check that networking is up.
 [${NETWORKING} = "no"] && exit 1
 conf_check
 # Start daemons.
 echo -n $"Starting postfix: "
 make_aliasesdb >/dev/null 2>&1
 [-x $CHROOT_UPDATE] && $CHROOT_UPDATE
 /usr/sbin/postfix start 2>/dev/null 1>&2 && success || failure $"$prog start"
 RETVAL=$?
 [$RETVAL -eq 0] && touch $lockfile
 echo
 return $RETVAL
}

The extensibility of the init script allowed specifying two custom functions, conf_check() and
make_aliasesdb(), that are called from the start() function block. On closer look, several external files
and directories are mentioned in the above code: the main service executable /usr/sbin/postfix, the
/etc/postfix/ and /var/spool/postfix/ configuration directories, as well as the /usr/sbin/postconf/
directory.

systemd supports only the predefined actions, but enables executing custom executables with
ExecStart, ExecStartPre, ExecStartPost, ExecStop, and ExecReload options. The /usr/sbin/postfix
together with supporting scripts are executed on service start. Converting complex init scripts requires
understanding the purpose of every statement in the script. Some of the statements are specific to the
operating system version, therefore you do not need to translate them. On the other hand, some
adjustments might be needed in the new environment, both in unit file as well as in the service
executable and supporting files.

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES

13

1.13. MODIFYING EXISTING UNIT FILES

If you want to modify existing unit files proceed to the /etc/systemd/system/ directory. Note that you
should not modify the your the default unit files, which your system stores in the
/usr/lib/systemd/system/ directory.

Procedure

1. Depending on the extent of the required changes, pick one of the following approaches:

Create a directory for supplementary configuration files at /etc/systemd/system/<unit>.d/.
This method is recommended for most use cases. You can extend the default configuration
with additional functionality, while still referring to the original unit file. Changes to the
default unit introduced with a package upgrade are therefore applied automatically. See
Extending the default unit configuration for more information.

Create a copy of the original unit file from /usr/lib/systemd/system/`directory in the
`/etc/systemd/system/ directory and make changes there. The copy overrides the original
file, therefore changes introduced with the package update are not applied. This method is
useful for making significant unit changes that should persist regardless of package
updates. See Overriding the default unit configuration for details.

2. To return to the default configuration of the unit, delete custom-created configuration files in
the /etc/systemd/system/ directory.

3. Apply changes to unit files without rebooting the system:

systemctl daemon-reload

The daemon-reload option reloads all unit files and recreates the entire dependency tree, which
is needed to immediately apply any change to a unit file. As an alternative, you can achieve the
same result with the following command:

init q

4. If the modified unit file belongs to a running service, restart the service:

systemctl restart <name>.service

IMPORTANT

To modify properties, such as dependencies or timeouts, of a service that is handled by a
SysV initscript, do not modify the initscript itself. Instead, create a systemd drop-in
configuration file for the service as described in: Extending the default unit configuration
and Overriding the default unit configuration .

Then manage this service in the same way as a normal systemd service.

For example, to extend the configuration of the network service, do not modify the
/etc/rc.d/init.d/network initscript file. Instead, create new directory
/etc/systemd/system/network.service.d/ and a systemd drop-in file
/etc/systemd/system/network.service.d/my_config.conf. Then, put the modified values
into the drop-in file. Note: systemd knows the network service as network.service,
which is why the created directory must be called network.service.d

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

14

1.14. EXTENDING THE DEFAULT UNIT CONFIGURATION

You can extend the default unit file with additional systemd configuration options.

Procedure

1. Create a configuration directory in /etc/systemd/system/:

mkdir /etc/systemd/system/<name>.service.d/

Replace <name> with the name of the service you want to extend. The syntax applies to all unit
types.

2. Create a configuration file with the .conf suffix:

touch /etc/systemd/system/name.service.d/<config_name>.conf

Replace <config_name> with the name of the configuration file. This file adheres to the normal
unit file structure and you have to specify all directives in the appropriate sections, see Unit file
structure.

For example, to add a custom dependency, create a configuration file with the following
content:

[Unit]
Requires=<new_dependency>
After=<new_dependency>

The <new_dependency> stands for the unit to be marked as a dependency. Another example is a
configuration file that restarts the service after its main process exited, with a delay of 30
seconds:

[Service]
Restart=always
RestartSec=30

Create small configuration files focused only on one task. Such files can be easily moved or
linked to configuration directories of other services.

3. Apply changes to the unit:

systemctl daemon-reload
systemctl restart <name>.service

Example 1.1. Extending the httpd.service configuration

To modify the httpd.service unit so that a custom shell script is automatically executed when
starting the Apache service, perform the following steps.

1. Create a directory and a custom configuration file:

mkdir /etc/systemd/system/httpd.service.d/

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES

15

touch /etc/systemd/system/httpd.service.d/custom_script.conf

2. Specify the script you want to execute after the main service process by inserting the
following text to the custom_script.conf file:

[Service]
ExecStartPost=/usr/local/bin/custom.sh

3. Apply the unit changes::

systemctl daemon-reload

systemctl restart httpd.service

NOTE

The configuration files from the /etc/systemd/system/ configuration directories take
precedence over unit files in /usr/lib/systemd/system/. Therefore, if the configuration
files contain an option that can be specified only once, such as Description or ExecStart,
the default value of this option is overridden. Note that in the output of the systemd-
delta command, described in Monitoring overridden units ,such units are always marked
as [EXTENDED], even though in sum, certain options are actually overridden.

1.15. OVERRIDING THE DEFAULT UNIT CONFIGURATION

You can make changes to the unit file configuration that will persist after updating the package that
provides the unit file.

Procedure

1. Copy the unit file to the /etc/systemd/system/ directory by entering the following command as
root:

cp /usr/lib/systemd/system/<name>.service /etc/systemd/system/<name>.service

2. Open the copied file with a text editor, and make changes.

3. Apply unit changes:

systemctl daemon-reload
systemctl restart <name>.service

1.16. CHANGING THE TIMEOUT LIMIT

You can specify a timeout value per service to prevent a malfunctioning service from freezing the
system. Otherwise, the default value for timeout is 90 seconds for normal services and 300 seconds for
SysV-compatible services.

Procedure

To extend timeout limit for the httpd service:

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#proc_monitoring-overriden-units_assembly_working-with-systemd-unit-files

1. Copy the httpd unit file to the /etc/systemd/system/ directory:

cp /usr/lib/systemd/system/httpd.service /etc/systemd/system/httpd.service

2. Open the /etc/systemd/system/httpd.service file and specify the TimeoutStartUSec value in
the [Service] section:

...
[Service]
...
PrivateTmp=true
TimeoutStartSec=10

[Install]
WantedBy=multi-user.target
...

3. Reload the systemd daemon:

systemctl daemon-reload

4. Optional. Verify the new timeout value:

systemctl show httpd -p TimeoutStartUSec

NOTE

To change the timeout limit globally, input the DefaultTimeoutStartSec in the
/etc/systemd/system.conf file.

1.17. MONITORING OVERRIDDEN UNITS

You can display an overview of overridden or modified unit files by using the systemd-delta command.

Procedure

Display an overview of overridden or modified unit files:

systemd-delta

For example, the output of the command can look as follows:

[EQUIVALENT] /etc/systemd/system/default.target → /usr/lib/systemd/system/default.target
[OVERRIDDEN] /etc/systemd/system/autofs.service →
/usr/lib/systemd/system/autofs.service

--- /usr/lib/systemd/system/autofs.service 2014-10-16 21:30:39.000000000 -0400
+++ /etc/systemd/system/autofs.service 2014-11-21 10:00:58.513568275 -0500
@@ -8,7 +8,8 @@
 EnvironmentFile=-/etc/sysconfig/autofs
 ExecStart=/usr/sbin/automount $OPTIONS --pid-file /run/autofs.pid
 ExecReload=/usr/bin/kill -HUP $MAINPID
-TimeoutSec=180

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES

17

+TimeoutSec=240
+Restart=Always

 [Install]
 WantedBy=multi-user.target

[MASKED] /etc/systemd/system/cups.service → /usr/lib/systemd/system/cups.service
[EXTENDED] /usr/lib/systemd/system/sssd.service →
/etc/systemd/system/sssd.service.d/journal.conf

4 overridden configuration files found.

1.18. WORKING WITH INSTANTIATED UNITS

You can manage multiple instances of a service by using a single template configuration. You can define
a generic template for a unit and generate multiple instances of that unit with specific parameters at
runtime. The template is indicated by the at sign (@). Instantiated units can be started from another unit
file (using Requires or Wants options), or with the systemctl start command. Instantiated service units
are named the following way:

<template_name>@<instance_name>.service

The <template_name> stands for the name of the template configuration file. Replace <instance_name>
with the name for the unit instance. Several instances can point to the same template file with
configuration options common for all instances of the unit. Template unit name has the form of:

<unit_name>@.service

For example, the following Wants setting in a unit file:

Wants=getty@ttyA.service getty@ttyB.service

first makes systemd search for given service units. If no such units are found, the part between "@" and
the type suffix is ignored and systemd searches for the getty@.service file, reads the configuration
from it, and starts the services.

For example, the getty@.service template contains the following directives:

[Unit]
Description=Getty on %I
...
[Service]
ExecStart=-/sbin/agetty --noclear %I $TERM
...

When the getty@ttyA.service and getty@ttyB.service are instantiated from the above template,
Description= is resolved as Getty on ttyA and Getty on ttyB.

1.19. IMPORTANT UNIT SPECIFIERS

You can use the wildcard characters, called unit specifiers, in any unit configuration file. Unit specifiers
substitute certain unit parameters and are interpreted at runtime.

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

18

Table 1.6. Important unit specifiers

Unit Specifier Meaning Description

%n Full unit name Stands for the full unit name
including the type suffix. %N has
the same meaning but also
replaces the forbidden characters
with ASCII codes.

%p Prefix name Stands for a unit name with type
suffix removed. For instantiated
units %p stands for the part of the
unit name before the "@"
character.

%i Instance name Is the part of the instantiated unit
name between the "@" character
and the type suffix. %I has the
same meaning but also replaces
the forbidden characters for ASCII
codes.

%H Host name Stands for the hostname of the
running system at the point in
time the unit configuration is
loaded.

%t Runtime directory Represents the runtime directory,
which is either /run for the root
user, or the value of the
XDG_RUNTIME_DIR variable for
unprivileged users.

For a complete list of unit specifiers, see the systemd.unit(5) manual page.

1.20. ADDITIONAL RESOURCES

How to set limits for services in RHEL and systemd

How to write a service unit file which enforces that particular services have to be started

How to decide what dependencies a systemd service unit definition should have

CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES

19

https://access.redhat.com/solutions/1257953
https://access.redhat.com/solutions/3120581
https://access.redhat.com/solutions/3116611

CHAPTER 2. OPTIMIZING SYSTEMD TO SHORTEN THE BOOT
TIME

As a system administrator, you can optimize performance of your system and shorten the boot time.
You can review the services that systemd starts during boot and evaluate their necessity. Disabling
certain services to start at boot can improve the boot time of your system.

2.1. EXAMINING SYSTEM BOOT PERFORMANCE

To examine system boot performance, you can use the systemd-analyze command. By using certain
options, you can tune systemd to shorten the boot time.

Prerequisites

Optional: Before you examine systemd to tune the boot time, list all enabled services:

$ systemctl list-unit-files --state=enabled

Procedure

Choose the information you want to analyze:

Analyze the information about the time that the last successful boot took:

$ systemd-analyze

Analyze the unit initialization time of each systemd unit:

$ systemd-analyze blame

The output lists the units in descending order according to the time they took to initialize during
the last successful boot.

Identify critical units that took the longest time to initialize at the last successful boot:

$ systemd-analyze critical-chain

The output highlights the units that critically slow down the boot with the red color.

Figure 2.1. The output of the systemd-analyze critical-chain command

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

20

Figure 2.1. The output of the systemd-analyze critical-chain command

Additional resources

systemd-analyze (1) man page

2.2. A GUIDE TO SELECTING SERVICES THAT CAN BE SAFELY
DISABLED

You can shorten the boot time of your system by disabling certain services that are enabled on boot by
default.

List enabled services:

$ systemctl list-unit-files --state=enabled

Disable a service:

systemctl disable <service_name>

Certain services must stay enabled so that your operating system is safe and functions in the way you
need.

Refer to the following table as a guide to selecting the services that you can safely disable. The table
lists all services enabled by default on a minimal installation of Red Hat Enterprise Linux.

Table 2.1. Services enabled by default on a minimal installation of RHEL

Service name Can it be
disabled?

More information

CHAPTER 2. OPTIMIZING SYSTEMD TO SHORTEN THE BOOT TIME

21

auditd.service yes Disable auditd.service only if you do not need audit messages
from the kernel. Be aware that if you disable auditd.service, the
/var/log/audit/audit.log file is not produced. Consequently, you
are not able to retroactively review some commonly-reviewed
actions or events, such as user logins, service starts or password
changes. Also note that auditd has two parts: a kernel part, and a
service itself. By using the systemctl disable auditd command,
you only disable the service, but not the kernel part. To disable
system auditing in its entirety, set audit=0 on kernel command
line.

autovt@.service no This service runs only when it is really needed, so it does not need
to be disabled.

crond.service yes Be aware that no items from crontab will run if you disable
crond.service.

dbus-
org.fedoraproject.Fire
wallD1.service

yes A symlink to firewalld.service

dbus-
org.freedesktop.Netw
orkManager.service

yes A symlink to NetworkManager.service

dbus-
org.freedesktop.nm-
dispatcher.service

yes A symlink to NetworkManager-dispatcher.service

firewalld.service yes Disable firewalld.service only if you do not need firewall.

getty@.service no This service runs only when it is really needed, so it does not need
to be disabled.

import-state.service yes Disable import-state.service only if you do not need to boot
from a network storage.

irqbalance.service yes Disable irqbalance.service only if you have just one CPU. Do not
disable irqbalance.service on systems with multiple CPUs.

kdump.service yes Disable kdump.service only if you do not need reports from
kernel crashes.

Service name Can it be
disabled?

More information

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

22

loadmodules.service yes This service is not started unless the /etc/rc.modules or
/etc/sysconfig/modules directory exists, which means that it is
not started on a minimal RHEL installation.

lvm2-monitor.service yes Disable lvm2-monitor.service only if you do not use Logical
Volume Manager (LVM).

microcode.service no Do not be disable the service because it provides updates of the
microcode software in CPU.

NetworkManager-
dispatcher.service

yes Disable NetworkManager-dispatcher.service only if you do
not need notifications on network configuration changes (for
example in static networks).

NetworkManager-
wait-online.service

yes Disable NetworkManager-wait-online.service only if you do
not need working network connection available right after the
boot. If the service is enabled, the system does not finish the boot
before the network connection is working. This may prolong the
boot time significantly.

NetworkManager.servi
ce

yes Disable NetworkManager.service only if you do not need
connection to a network.

nis-
domainname.service

yes Disable nis-domainname.service only if you do not use
Network Information Service (NIS).

rhsmcertd.service no

rngd.service yes Disable rngd.service only if you do not need much entropy on
your system, or you do not have any sort of hardware generator.
Note that the service is necessary in environments that require a
lot of good entropy, such as systems used for generation of X.509
certificates (for example the FreeIPA server).

rsyslog.service yes Disable rsyslog.service only if you do not need persistent logs,
or you set systemd-journald to persistent mode.

selinux-autorelabel-
mark.service

yes Disable selinux-autorelabel-mark.service only if you do not
use SELinux.

sshd.service yes Disable sshd.service only if you do not need remote logins by
OpenSSH server.

Service name Can it be
disabled?

More information

CHAPTER 2. OPTIMIZING SYSTEMD TO SHORTEN THE BOOT TIME

23

sssd.service yes Disable sssd.service only if there are no users who log in the
system over the network (for example by using LDAP or Kerberos).
Red Hat recommends to disable all sssd-* units if you disable
sssd.service.

syslog.service yes An alias for rsyslog.service

tuned.service yes Disable tuned.service only if you do need to use performance
tuning.

lvm2-lvmpolld.socket yes Disable lvm2-lvmpolld.socket only if you do not use Logical
Volume Manager (LVM).

dnf-makecache.timer yes Disable dnf-makecache.timer only if you do not need your
package metadata to be updated automatically.

unbound-anchor.timer yes Disable unbound-anchor.timer only if you do not need daily
update of the root trust anchor for DNS Security Extensions
(DNSSEC). This root trust anchor is used by Unbound resolver and
resolver library for DNSSEC validation.

Service name Can it be
disabled?

More information

To find more information about a service, use one of the following commands:

$ systemctl cat <service_name>

$ systemctl help <service_name>

The systemctl cat command provides the content of the respective
/usr/lib/systemd/system/<service> service file, as well as all applicable overrides. The applicable
overrides include unit file overrides from the /etc/systemd/system/<service> file or drop-in files from a
corresponding unit.type.d directory.

Additional resources

The systemd.unit(5) man page

The systemd help command that shows the man page of a particular service

2.3. ADDITIONAL RESOURCES

systemctl(1) man page

systemd(1) man page

systemd-delta(1) man page

systemd.directives(7) man page

Red Hat Enterprise Linux 9 Using systemd unit files to customize and optimize your system

24

systemd.unit(5) man page

systemd.service(5) man page

systemd.target(5) man page

systemd.kill(5) man page

systemd Home Page

CHAPTER 2. OPTIMIZING SYSTEMD TO SHORTEN THE BOOT TIME

25

http://www.freedesktop.org/wiki/Software/systemd

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. WORKING WITH SYSTEMD UNIT FILES
	1.1. INTRODUCTION TO UNIT FILES
	1.2. SYSTEMD UNIT FILES LOCATIONS
	1.3. UNIT FILE STRUCTURE
	1.4. IMPORTANT [UNIT] SECTION OPTIONS
	1.5. IMPORTANT [SERVICE] SECTION OPTIONS
	1.6. IMPORTANT [INSTALL] SECTION OPTIONS
	1.7. CREATING CUSTOM UNIT FILES
	1.8. CREATING A CUSTOM UNIT FILE BY USING THE SECOND INSTANCE OF THE SSHD SERVICE
	1.9. FINDING THE SYSTEMD SERVICE DESCRIPTION
	1.10. FINDING THE SYSTEMD SERVICE DEPENDENCIES
	1.11. FINDING DEFAULT TARGETS OF THE SERVICE
	1.12. FINDING FILES USED BY THE SERVICE
	1.13. MODIFYING EXISTING UNIT FILES
	1.14. EXTENDING THE DEFAULT UNIT CONFIGURATION
	1.15. OVERRIDING THE DEFAULT UNIT CONFIGURATION
	1.16. CHANGING THE TIMEOUT LIMIT
	1.17. MONITORING OVERRIDDEN UNITS
	1.18. WORKING WITH INSTANTIATED UNITS
	1.19. IMPORTANT UNIT SPECIFIERS
	1.20. ADDITIONAL RESOURCES

	CHAPTER 2. OPTIMIZING SYSTEMD TO SHORTEN THE BOOT TIME
	2.1. EXAMINING SYSTEM BOOT PERFORMANCE
	2.2. A GUIDE TO SELECTING SERVICES THAT CAN BE SAFELY DISABLED
	2.3. ADDITIONAL RESOURCES

