& RedHat

Red Hat Enterprise Linux for Real Time
9

Understanding RHEL for Real Time

An introduction to RHEL for Real Time kernel

Last Updated: 2024-03-26

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real
Time

An introduction to RHEL for Real Time kernel

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Understand the fundamental concepts and associated references on tuning the RHEL for Real
Time kernel to maintain low latency and a consistent response time on latency sensitive
applications.

Table of Contents

MAKING OPEN SOURCEMOREINCLUSIVE i

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION,

CHAPTER 1. HARDWARE PLATFORMS FORRHEL FORREALTIME

1.1. PROCESSOR CORES
1.2. ADDITIONAL RESOURCES

CHAPTER 2. MEMORY MANAGEMENT ON RHEL FORREALTIME

2.1. DEMAND PAGING

2.2. MAJOR AND MINOR PAGE FAULTS
2.3. MLOCK() SYSTEM CALLS

2.4. SHARED LIBRARIES

2.5.SHARED MEMORY

CHAPTER 3. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG

3.1 TESTING CPU FLOATING POINT UNITS AND PROCESSOR DATA CACHE
3.2. TESTING CPU WITH MULTIPLE STRESS MECHANISMS

3.3. MEASURING CPU HEAT GENERATION

3.4. MEASURING TEST OUTCOMES WITH BOGO OPERATIONS

3.5. GENERATING A VIRTUAL MEMORY PRESSURE

3.6. TESTING LARGE INTERRUPTS LOADS ON A DEVICE

3.7. GENERATING MAJOR PAGE FAULTS IN A PROGRAM

3.8. VIEWING CPU STRESS TEST MECHANISMS

3.9. USING THE VERIFY MODE

CHAPTER 4. HARDWARE INTERRUPTS ON RHEL FORREALTIME

4.1. LEVEL-SIGNALED INTERRUPTS

4.2. MESSAGE-SIGNALED INTERRUPTS

4.3. NON-MASKABLE INTERRUPTS

4.4. SYSTEM MANAGEMENT INTERRUPTS

4.5. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER

CHAPTER 5. RHEL FOR REAL TIME PROCESSES AND THREADS

5.1. PROCESSES
5.2. THREADS
5.3. ADDITIONAL RESOURCES

CHAPTER 6. APPLICATION TIMESTAMPING ON RHEL FORREAL TIME

6.1. HARDWARE CLOCKS

6.2. POSIX CLOCKS

6.3. CLOCK_GETTIME() FUNCTION
6.4. ADDITIONAL RESOURCES

CHAPTER 7. SCHEDULING POLICIES FORRHEL FORREALTIME

7.1. SCHEDULER POLICIES
7.2. PARAMETERS FOR SCHED_DEADLINE POLICY

CHAPTER 8. RUNTIME VERIFICATION OF THE REAL-TIMEKERNEL

8.1. RUNTIME MONITORS AND REACTORS
8.2. ONLINE RUNTIME MONITORS
8.3. THE USER INTERFACE

CHAPTERS.AFFINITYINRHELFORREALTIME i

Table of Contents

.................... 22

22
22
23

.................... 24

24
24
25
25

.................... 26

26
27

.................... 28

28
28
28

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

9.1. PROCESSOR AFFINITY
9.2. SCHED_DEADLINE AND CPUSETS

CHAPTER 10. THREAD SYNCHRONIZATION MECHANISMS INRHEL FORREALTIME
10.1. MUTEXES
10.2. BARRIERS
10.3. CONDITION VARIABLES
10.4. MUTEX CLASSES
10.5. THREAD SYNCHRONIZATION FUNCTIONS

CHAPTER 11. SOCKET OPTIONSINRHEL FORREAL TIME i
1.1. TCP_NODELAY SOCKET OPTION
11.2. TCP_CORK SOCKET OPTION
11.3. EXAMPLE PROGRAMS USING SOCKET OPTIONS

CHAPTER12.RHEL FORREAL TIMESCHEDULER i e
12.1. CHRT UTILITY FOR SETTING THE SCHEDULER
12.2. PREEMPTIVE SCHEDULING
12.3. LIBRARY FUNCTIONS FOR SCHEDULER PRIORITY

CHAPTER13.SYSTEM CALLSINRHEL FORREAL TIME ... e
13.1. SCHED_YIELD() FUNCTION
13.2. GETRUSAGE() FUNCTION

CHAPTER 14. MEASURING SCHEDULING LATENCY USING TIMERLAT IN RHEL FORREAL TIME
14.1. CONFIGURING THE TIMERLAT TRACER TO MEASURE SCHEDULING LATENCY
14.2. THE TIMERLAT TRACER OPTIONS
14.3. MEASURING TIMER LATENCY WITH RTLA-TIMERLAT-TOP
14.4. THE RTLA TIMERLAT TOP TRACER OPTIONS

CHAPTER 15. MEASURING SCHEDULING LATENCY USING RTLA-OSNOISE IN RHEL FOR REAL TIME
15.. THE RTLA-OSNOISE TRACER
15.2. CONFIGURING THE RTLA-OSNOISE TRACER TO MEASURE SCHEDULING LATENCY
15.3. THE RTLA-OSNOISE OPTIONS FOR CONFIGURATION
15.4. THE RTLA-OSNOISE TRACEPOINTS
15.5. THE RTLA-OSNOISE TRACER OPTIONS
15.6. MEASURING OPERATING SYSTEM NOISE WITH THE RTLA-OSNOISE-TOP TRACER
15.7. THE RTLA-OSNOISE-TOP TRACER OPTIONS

CHAPTER 16. SCHEDULING PROBLEMS ON THE REAL-TIME KERNEL AND SOLUTIONS
16.1. SCHEDULING POLICIES FOR THE REAL-TIME KERNEL
16.2. SCHEDULER THROTTLING IN THE REAL-TIME KERNEL
16.3. THREAD STARVATION IN THE REAL-TIME KERNEL

30
31

32
32
32
33
33
34

36
36
36
37

39
39
39
39

41
41
41

42
42
43
43

44
44
45
45
46
46
46
47

49
49
49
50

Table of Contents

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Login to the Jira website.
2. Click Create in the top navigation bar
3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

https://issues.redhat.com/projects/RHELDOCS/issues

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 1. HARDWARE PLATFORMS FOR RHEL FOR REAL
TIME

Configuring the hardware correctly plays a critical role in setting up the real-time environment because
hardware impacts the way your system operates. Not all hardware platforms are real-time capable and
enable fine tuning. Before performing fine tuning, you must ensure that the potential hardware platform
is real-time capable.

Hardware platforms vary based on the vendor. You can test and verify the hardware suitability for real-
time with the hardware latency detector (hwlatdetect) program. The program controls the latency
detector kernel module and helps to detect latencies caused by underlying hardware or firmware
behavior.

Any tuning steps required for low latency operation have been completed. Refer to the vendor
documentation for instructions to

Prerequisites

® The RHEL-RT packages are installed.
® Any tuning steps required for low latency operation are complete. Refer to the vendor

documentation for instructions to reduce or remove any System Management Interrupts (SMls)
that make the system move to System Management Mode (SMM).

' WARNING
A You must avoid disabling System Management Interrupts (SMis)

completely because it can result in catastrophic hardware failures.

1.1. PROCESSOR CORES

A real-time processor core is a physical Central Processing Unit (CPU) and it executes the machine
code. A socket is a connection between the processor and the motherboard of the computer. The
socket is the location on the motherboard that the processor is placed into. There are two sets of
processors:

® Single core processor that occupies one socket with one available core.
® Quad-core processor that occupies one socket with four available cores.

When designing a real time environment, be aware of the number of available cores, the cache layout
among cores, and how the cores are physically connected.

When multiple cores are available, use threads or processes. A program when written without using
these constructs, runs on a single processor at a time. A multi-core platform provides advantages

through using different cores for different types of operations.

Caches

CHAPTER 1. HARDWARE PLATFORMS FOR RHEL FOR REAL TIME

Caches have a noticeable impact on overall processing time and determinism. Often, the threads of an
application need to synchronize access to a shared resource, such as a data structure.

With the tuna command line tool (CLI), you can determine the cache layout and bind interacting
threads to a core so that they share the cache. Cache sharing reduces memory faults by ensuring that
the mutual exclusion primitive (mutex, condition variables, or similar) and the data structure use the
same cache.

Interconnects

Increasing the number of cores on systems can cause conflicting demands on the interconnects. This
makes it necessary to determine the interconnect topology to help detect the conflicts that occur
between the cores on real-time systems.

Many hardware vendors now provide a transparent network of interconnects between cores and
memory, known as Non-uniform memory access (NUMA) architecture.

NUMA is a system memory design used in multiprocessing, where the memory access time depends on
the memory location relative to the processor. When you use NUMA, a processor can access its own
local memory faster than non-local memory, such as memory on another processor or memory shared
between processors. On NUMA systems, understanding the interconnect topology helps to place
threads that communicate frequently on adjacent cores.

The taskset and numactl utilities determine the CPU topology. taskset defines the CPU affinity

without NUMA resources such as memory nodes and numactl controls the NUMA policy for processes
and shared memory.

1.2. ADDITIONAL RESOURCES

® |nstalling RHEL 9 for Real Time

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/9/html/installing_rhel_9_for_real_time/index

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 2. MEMORY MANAGEMENT ON RHEL FOR REAL
TIME

Real-time systems use a virtual memory system, where an address referenced by a user-space
application translates into a physical address. The translation occurs through a combination of page
tables and address translation hardware in the underlying computing system. An advantage of having
the translation mechanism in between a program and the actual memory is that the operating system
can swap pages when required or on request of the CPU.

In real-time, to swap pages from the storage to the primary memory, the previously used page table
entry is marked as invalid. As a result, even under normal memory pressure, the operating system can
retrieve pages from one application and give them to another. This can cause unpredictable system
behaviors.

Memory allocation implementations include demand paging mechanism and memory lock (mlock())
system calls.

NOTE

Sharing data information about CPUs in different cache and NUMA domains might cause
traffic problems and bottlenecks.

When writing a multithreaded application, consider the machine topology before
designing the data decomposition. Topology is the memory hierarchy, and includes CPU
caches and the Non-Uniform Memory Access (NUMA) node.

2.1. DEMAND PAGING

Demand paging is similar to a paging system with page swapping. The system loads pages that are
stored in the secondary memory when required or on CPU demand. All memory addresses generated by
a program pass through an address translation mechanism in the processor. The addresses then convert
from a process-specific virtual address to a physical memory address. This is referred to as virtual
memory. The two main components in the translation mechanism are page tables and translation
lookaside buffers (TLBs)

Page tables

Page tables are multi-level tables in physical memory that contain mappings for virtual to physical
memory. These mappings are readable by the virtual memory translation hardware in the processor.

A page table entry with an assigned physical address, is referred to as the resident working set. When the
operating system needs to free memory for other processes, it can swap pages from the resident
working set. When swapping pages, any reference to a virtual address within that page creates a page
fault and causes page reallocation.

When the system is extremely low on physical memory, the swap process starts to thrash, which
constantly steals pages from processes, and never allows a process to complete. You can monitor the
virtual memory statistics by looking for the pgfault value in the /proc/vmstat file.

Translation lookaside buffers

Translation Lookaside Buffers (TLBs) are hardware caches of virtual memory translations. Any
processor core with a TLB checks the TLB in parallel with initiating a memory read of a page table entry.
If the TLB entry for a virtual address is valid, the memory read is aborted and the value in the TLB is
used for the address translation.

CHAPTER 2. MEMORY MANAGEMENT ON RHEL FOR REAL TIME

A TLB operates on the principle of locality of reference. This means that if code stays in one region of
memory for a significant period of time (such as loops or call-related functions) then the TLB references
avoid the main memory for address translations. This can significantly speed up processing times.

When writing deterministic and fast code, use functions that maintain locality of reference. This can
mean using loops rather than recursion. If recursion are not avoidable, place the recursion call at the end
of the function. This is called tail-recursion, which makes the code work in a relatively small region of
memory and avoids calling table translations from the main memory.

2.2. MAJOR AND MINOR PAGE FAULTS

RHEL for Real Time allocates memory by breaking physical memory into chunks called pages and then
maps them to the virtual memory. Faults in real-time occur when a process needs a specific page that is
not mapped or is no longer available in the memory. Hence faults essentially mean unavailability of
pages when required by a CPU. When a process encounters a page fault, all threads freeze until the
kernel handles this fault. There are several ways to address this problem, but the best solution can be to
adjust the source code to avoid page faults.

Minor page faults

Minor page faults in real-time occur when a process attempts to access a portion of memory before it
has been initialized. In such scenarios, the system performs operations to fill the memory maps or other
management structures. The severity of a minor page fault can depend on the system load and other
factors, but they are usually short and have a negligible impact.

Major page faults

Real-time major faults occur when the system has to either synchronize memory buffers with the disk,
swap memory pages belonging to other processes, or undertake any other input output (I/O) activity to
free memory. This occurs when the processor references a virtual memory address that does not have a
physical page allocated to it. The reference to an empty page causes the processor to execute a fault,
and instructs the kernel code to allocate a page which increases latency dramatically.

In real-time, when an application shows a performance drop, it is beneficial to check for the process
information related to page faults in the /proc/ directory. For a specific process identifier (PID), using
the cat command, you can view the /proc/PID/stat file for following relevant entries:

® Field 2: the executable file name.

e Field 10: the number of minor page faults.

® Field 12: the number of major page faults.

The following example demonstrates viewing page faults with the cat command and a pipe function to
return only the second, tenth, and twelfth lines of the /proc/PID/stat file:

cat /proc/3366/stat | cut -d\ -f2,10,12
(bash) 5389 0

In the example output, the process with PID 3366 is bash and it has 5389 minor page faults and no
major page faults.

Additional resources

® Linux System Programming by Robert Love

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

2.3. MLOCK() SYSTEM CALLS

The memory lock (mlock()) system calls enable calling processes to lock or unlock a specified range of
the address space and prevents Linux from paging the locked memory to swap space. After you allocate
the physical page to the page table entry, references to that page are relatively fast. The memory lock
system calls fall into mlock() and munlock() categories.

The mlock() and munlock() system calls lock and unlock a specified range of process address pages.
When successful, the pages in the specified range remain resident in the memory until the munlock()
system call unlocks the pages.
The mlock() and munlock() system calls take following parameters:

® addr: specifies the start of an address range.

® |en: specifies the length of the address space in bytes.

When successful, mlock() and munlock() system calls return O. In case of an error, they return -1and set
aerrno to indicate the error.

The mlockall() and munlockall() system calls locks or unlocks all of the program space.

NOTE

The mlock() system call does not ensure that the program will not have a page I/O. It
ensures that the data stays in the memory but cannot ensure it stays on the same page.
Other functions such as move_pages and memory compactors can move data around
regardless of the use of mlock().

Memory locks are made on a page basis and do not stack. If two dynamically allocated memory
segments share the same page locked twice by mlock() or mlockall(), they unlock by using a single
munlock() or munlockall() system call. As such, it is important to be aware of the pages that the
application unlocks to avoid double-locking or single-unlocking problems.
The following are two most common workarounds to mitigate double-lock or single-unlock problems:
® Tracking the allocated and locked memory areas and creating a wrapper function that verifies
the number of page allocations before unlocking a page. This is the resource counting principle

used in device drivers.

® Making memory allocations based on page size and alignment to avoid double-lock on a page.

Additional resources
® capabilities(7) man page
® mlock(2) man page
® mlock(3) man page
® milockall(2) man page
® mmap(2) man page

® move_pages(2) man page

10

CHAPTER 2. MEMORY MANAGEMENT ON RHEL FOR REAL TIME

® posix_memalign(3) man page

® posix_memalign(3p) man page

2.4. SHARED LIBRARIES

The RHEL for Real Time shared libraries are called dynamic shared objects (DSO) and are a collection of
pre-compiled code blocks called functions. These functions are reusable in multiple programs and they
load at run-time or compile time.

Linux supports the following two library classes:

® Dynamic or shared libraries: exists as separate files outside of the executable file. These files
load into the memory and get mapped at run-time.

® Static libraries: are files linked to a program statically at compile time.
The Id.so dynamic linker loads the shared libraries required by a program and then executes the code.
The DSO functions load the libraries in the memory once and multiple processes can then reference the
objects by mapping into the address space of processes. You can configure the dynamic libraries to load

at compile time using the LD_BIND_NOW variable.

Evaluating symbols before program initialization can improve performance because evaluating at
application run-time can cause latency if the memory pages are located on an external disk.

Additional resources

® |d.so(8) man page

2.5. SHARED MEMORY
In RHEL for Real Time, shared memory is a memory space shared between multiple processes. Using
program threads, all threads created in one process context can share the same address space. This
makes all data structures accessible to threads. With POSIX shared memory calls, you can configure
processes to share a part of the address space.
You can use the following supported POSIX shared memory calls:

® shm_open(): creates and opens a new or opens an existing POSIX shared memory object.

o shm_unlink(): unlinks POSIX shared memory objects.

® mmap(): creates a new mapping in the virtual address space of the calling process.

NOTE

The mechanism for sharing a memory region between two processes using System V IPC
shmem() set of calls is deprecated and is no longer supported on RHEL for Real Time.

Additional resources
® shm_open(3) man page

e shm_overview(7) man page

1

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

® mmap(2) man page

12

CHAPTER 3. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG

CHAPTER 3. STRESS TESTING REAL-TIME SYSTEMS WITH
STRESS-NG

The stress-ng tool measures the system’s capability to maintain a good level of efficiency under
unfavorable conditions. The stress-ng tool is a stress workload generator to load and stress all kernel
interfaces. It includes a wide range of stress mechanisms known as stressors. Stress testing makes a
machine work hard and trip hardware issues such as thermal overruns and operating system bugs that
occur when a system is being overworked.

There are over 270 different tests. These include CPU specific tests that exercise floating point, integer,
bit manipulation, control flow, and virtual memory tests.

NOTE

Use the stress-ng tool with caution as some of the tests can impact the system’s thermal
zone trip points on a poorly designed hardware. This can impact system performance and
cause excessive system thrashing which can be difficult to stop.

3.1. TESTING CPU FLOATING POINT UNITS AND PROCESSOR DATA
CACHE

A floating point unit is the functional part of the processor that performs floating point arithmetic
operations. Floating point units handle mathematical operations and make floating numbers or decimal
calculations simpler.

Using the --matrix-method option, you can stress test the CPU floating point operations and processor
data cache.

Prerequisites

® You have root permissions on the systems

Procedure

® To test the floating point on one CPU for 60 seconds, use the --matrix option:

I # stress-ng --matrix 1 -t 1m

® To run multiple stressors on more than one CPUs for 60 seconds, use the --times or -t option:

stress-ng --matrix 0 -t 1m

stress-ng --matrix 0 -t 1m --times

stress-ng: info: [16783] dispatching hogs: 4 matrix

stress-ng: info: [16783] successful run completed in 60.00s (1 min, 0.00 secs)
stress-ng: info: [16783] for a 60.00s run time:

stress-ng: info: [16783] 240.00s available CPU time

stress-ng: info: [16783] 205.21s user time (85.50%)

stress-ng: info: [16783] 0.32s system time (0.13%)

stress-ng: info: [16783] 205.53s total time (85.64%)

stress-ng: info: [16783] load average: 3.20 1.25 1.40

13

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

The special mode with O stressors, query the available CPUs to run, removing the need to
specify the CPU number.

The total CPU time required is 4 x 60 seconds (240 seconds), of which 0.13% is in the kernel,
85.50% is in user time, and stress-ng runs 85.64% of all the CPUs.

To test message passing between processes using a POSIX message queue, use the -mq
option:

I # stress-ng --mq 0 -t 30s --times --perf

The mq option configures a specific number of processes to force context switches using the
POSIX message queue. This stress test aims for low data cache misses.

3.2. TESTING CPU WITH MULTIPLE STRESS MECHANISMS

The stress-ng tool runs multiple stress tests. In the default mode, it runs the specified stressor
mechanisms in parallel.

Prerequisites

® You have root privileges on the systems

Procedure

® Run multiple instances of CPU stressors as follows:

I # stress-ng --cpu 2 --matrix 1 --mq 3 -t 5m

In the example, stress-ng runs two instances of the CPU stressors, one instance of the matrix
stressor and three instances of the message queue stressor to test for five minutes.

To run all stress tests in parallel, use the —all option:
I # stress-ng --all 2

In this example, stress-ng runs two instances of all stress tests in parallel.

To run each different stressor in a specific sequence, use the --seq option.
I # stress-ng --seq 4 -t 20

In this example, stress-ng runs all the stressors one by one for 20 minutes, with the number of
instances of each stressor matching the number of online CPUs.

® To exclude specific stressors from a test run, use the -x option:

I # stress-ng --seq 1 -x huma,matrix,hdd

In this example, stress-ng runs all stressors, one instance of each, excluding numa, hdd and key
stressors mechanisms.

3.3. MEASURING CPU HEAT GENERATION

14

CHAPTER 3. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG

To measure the CPU heat generation, the specified stressors generate high temperatures for a short
time duration to test the system’s cooling reliability and stability under maximum heat generation. Using
the --matrix-size option, you can measure CPU temperatures in degrees Celsius over a short time
duration.

Prerequisites

® You have root privileges on the system.

Procedure

1. To test the CPU behavior at high temperatures for a specified time duration, run the following
command:

stress-ng --matrix 0 --matrix-size 64 --tz -t 60

stress-ng: info: [18351] dispatching hogs: 4 matrix

stress-ng: info: [18351] successful run completed in 60.00s (1 min, 0.00 secs)
stress-ng: info: [18351] matrix:

stress-ng: info: [18351] x86_pkg_temp 88.00 °C

stress-ng: info: [18351] acpitz 87.00 °C

In this example, the stress-ng configures the processor package thermal zone to reach 88
degrees Celsius over the duration of 60 seconds.

2. (Optional) To print a report at the end of a run, use the --tz option:

stress-ng --cpu 0 --tz -t 60

stress-ng: info: [18065] dispatching hogs: 4 cpu

stress-ng: info: [18065] successful run completed in 60.07s (1 min, 0.07 secs)
stress-ng: info: [18065] cpu:

stress-ng: info: [18065] x86_pkg_temp 88.75 °C

stress-ng: info: [18065] acpitz 88.38 °C

3.4. MEASURING TEST OUTCOMES WITH BOGO OPERATIONS

The stress-ng tool can measure a stress test throughput by measuring the bogo operations per second.
The size of a bogo operation depends on the stressor being run. The test outcomes are not precise, but
they provide a rough estimate of the performance.

You must not use this measurement as an accurate benchmark metric. These estimates help to
understand the system performance changes on different kernel versions or different compiler versions
used to build stress-ng. Use the --metrics-brief option to display the total available bogo operations
and the matrix stressor performance on your machine.

Prerequisites

® You have root privileges on the system.

Procedure

® To measure test outcomes with bogo operations, use with the --metrics-brief option:

15

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

stress-ng --matrix 0 -t 60s --metrics-brief

stress-ng: info: [17579] dispatching hogs: 4 matrix

stress-ng: info: [17579] successful run completed in 60.01s (1 min, 0.01 secs)

stress-ng: info: [17579] stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s

stress-ng: info: [17579] (secs) (secs) (secs) (real time) (usr+sys time)
stress-ng: info: [17579] matrix 349322 60.00 203.23 0.19 5822.03 1717.25

The --metrics-brief option displays the test outcomes and the total real-time bogo operations
run by the matrix stressor for 60 seconds.

3.5. GENERATING A VIRTUAL MEMORY PRESSURE

When under memory pressure, the kernel starts writing pages out to swap. You can stress the virtual
memory by using the --page-in option to force non-resident pages to swap back into the virtual
memory. This causes the virtual machine to be heavily exercised. Using the --page-in option, you can
enable this mode for the bigheap, mmap and virtual machine (vm) stressors. The --page-in option,
touch allocated pages that are not in core, forcing them to page in.

Prerequisites

® You have root privileges on the system.
Procedure
® To stress test a virtual memory, use the --page-in option:
I # stress-ng --vm 2 --vm-bytes 2G --mmap 2 --mmap-bytes 2G --page-in

In this example, stress-ng tests memory pressure on a system with 4GB of memory, which is
less than the allocated buffer sizes, 2 x 2GB of vm stressor and 2 x 2GB of mmap stressor with
--page-in enabled.

3.6. TESTING LARGE INTERRUPTS LOADS ON A DEVICE

Running timers at high frequency can generate a large interrupt load. The —timer stressor with an
appropriately selected timer frequency can force many interrupts per second.

Prerequisites

® You have root permissions on the system.

Procedure

® To generate an interrupt load, use the --timer option:
I # stress-ng --timer 32 --timer-freq 1000000

In this example, stress-ng tests 32 instances at IMHz.

3.7. GENERATING MAJOR PAGE FAULTS IN A PROGRAM

16

CHAPTER 3. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG

With stress-ng, you can test and analyze the page fault rate by generating major page faults in a page
that are not loaded in the memory. On new kernel versions, the userfaultfd mechanism notifies the fault
finding threads about the page faults in the virtual memory layout of a process.

Prerequisites

® You have root permissions on the system.
Procedure
® To generate major page faults on early kernel versions, use:

I # stress-ng --fault 0 --perf -t 1m

® To generate major page faults on new kernel versions, use:

I # stress-ng --userfaultfd 0 --perf -t 1m

3.8. VIEWING CPU STRESS TEST MECHANISMS

The CPU stress test contains methods to exercise a CPU. You can print an output to view all methods
using the which option.

If you do not specify the test method, by default, the stressor checks all the stressors in a round-robin
fashion to test the CPU with each stressor.

Prerequisites

® You have root permissions on the system.
Procedure
1. Print all available stressor mechanisms, use the which option:

stress-ng --cpu-method which
cpu-method must be one of: all ackermann bitops callfunc cdouble cfloat clongdouble

correlate crc16 decimal32 decimal64 decimal128 dither djb2a double euler explog fft
fibonacci float fnvia gamma gcd gray hamming hanoi hyperbolic idct int128 int64 int32

2. Specify a specific CPU stress method using the --cpu-method option:

I # stress-ng --cpu 1 --cpu-method fft -t 1Tm

3.9. USING THE VERIFY MODE

The verify mode validates the results when a test is active. It sanity checks the memory contents from a
test run and reports any unexpected failures.

All stressors do not have the verify mode and enabling one will reduce the bogo operation statistics
because of the extra verification step being run in this mode.

17

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

Prerequisites

® You have root permissions on the system.

Procedure
® To validate a stress test results, use the --verify option:
I # stress-ng --vm 1 --vm-bytes 2G --verify -v

In this example, stress-ng prints the output for an exhaustive memory check on a virtually
mapped memory using the vm stressor configured with --verify mode. It sanity checks the read
and write results on the memory.

18

CHAPTER 4. HARDWARE INTERRUPTS ON RHEL FOR REAL TIME

CHAPTER 4. HARDWARE INTERRUPTS ON RHEL FOR REAL
TIME

Real-time systems receive many interrupts over the course of its operation, including a semi-regular
"timer" interrupt that periodically performs maintenance and system scheduling decisions. The systems
may also receive special kinds of interrupts, such as Nonmaskable Interrupt (NMI) and System
Management Interrupt (SMI). Hardware interrupts are used by devices to indicate a change in the
physical state of the system that requires attention. For example, a hard disk signaling that it has read a
series of data blocks, or when a network device has processed a buffer containing network packets.

When an interrupt occurs in real-time, the system stops active programs are stopped and executes an
interrupt handler is executed.

In real-time, hardware interrupts are referenced by an interrupt number. These numbers are mapped
back to the piece of hardware that created the interrupt. This enables the system to monitor which
device created the interrupt and when it occurred. When an interrupt occurs in real-time, the system
stops active programs and executes an interrupt handler. The handler preempts other running programs
and system activities. This can slow the entire system and create latencies.

RHEL for Real Time modifies the way interrupts are handled to improve performance and decrease
latency. Using the cat /proc/interrupts command you can print an output to view the types of hardware
interrupts that took place, the number of interrupts received, the target CPU for the interrupt, and the
device generating the interrupt.

4.1. LEVEL-SIGNALED INTERRUPTS

In real-time, level-signaled interrupts use a dedicated interrupt line that delivers voltage transitions. The
device controller raises an interrupt by asserting a signal on the interrupt request line. The interrupt line
sends one of two voltages to represent a binary 1 or binary O.

When the interrupt signal is sent by the line, it remains in that state until the CPU resets it. The CPU
performs a state save, captures the interrupt, and dispatches the interrupt handler. The interrupt
handler determines the cause of the interrupt, clears the interrupt by performing necessary services,
and restores the state of the device. The Level-signaled interrupts are more reliable and supports
multiple devices, though they are complex to implement.

4.2. MESSAGE-SIGNALED INTERRUPTS

In real-time, many systems use message-signaled interrupts (MSI), which send the signal as a dedicated
message on a packet or message-based electrical bus. A common example of this type of bus is the
Peripheral Component Interconnect Express (PCl Express or PCle). These devices transmit a message
type, which the PCle host controller interprets as an interrupt message. The host controller then sends
the message on to the CPU.

In real-time, depending on the hardware, a PCle system does one of the following:
® Sends the signal using a dedicated interrupt line between the PCle host controller and the CPU.
® Sends the message over the CPU HyperTransport bus.

In real-time, PCle systems can also operate in legacy mode, where legacy interrupt lines are

implemented in order to support older operating systems or on boot Linux kernels with the option
pci=nomsi on the kernel command line.

19

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

4.3. NON-MASKABLE INTERRUPTS

In real-time, non-maskable interrupts are hardware interrupts that standard interrupt masking
techniques in the system cannot ignore. The NMls have higher priority than the maskable interrupts.
The NMls occur to signal attention for non recoverable hardware errors.

In real-time, NMls are also used by some systems as a hardware monitor. When a processor receives
NMI, it handles the NMl immediately by calling the NMI handler pointed to by the interrupt vector. If
certain conditions are met, such as an interrupt not being triggered after a specified length of time, the
NMI handler signals a warning and provides debugging information about the problem. This helps to
identify and prevent system lockups.

In real-time, maskable interrupts are hardware interrupts that can be ignored by setting a bit in an
interrupt mask register’s bit-mask. CPUs can temporarily ignore maskable interrupts during critical
processing.

4.4. SYSTEM MANAGEMENT INTERRUPTS

In real-time, system management interrupts (SMis) offer extended functionality, such as legacy
hardware device emulation and can also be used for system management tasks. SMls are similar to non
maskable interrupts (NMlIs) in that they use a special electrical signalling line and are generally not
maskable. When an SMI occurs, the CPU enters the System Management Mode (SMM). In this mode, a
special low-level handler executes to handle the SMls. The SMM is typically provided directly from the
system management firmware, often the BIOS or the EFI.

The real-time SMls are most often used to provide legacy hardware emulation. A common example is to
imitate a diskette drive. When there is no diskette drive attached, the operating system attempts to
access the diskette and triggers a SMI. In this scenario, a handler provides the operating system with an
emulated device instead. The operating system then treats the emulation as a legacy device.

In real-time, SMIs can adversely affect the system because they take place without the direct
involvement of the operating system. A poorly written SMI handling routine may consume many
milliseconds of CPU time, and the operating system might not be able to preempt the handler. This can
create periodic high latencies in an otherwise well-tuned and highly responsive system. As a vendor may
use SMI handlers to manage CPU temperature and fan control, it may not be possible to disable them. In
such situations, you must notify the vendor of problems that occur when using these interrupts.

In real-time, you can isolate SMls using the hwlatdetect utility. It is available in the rt-tests package. This
utility measures the time period during which the CPU is used by an SMI handling routine.

4.5. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER

The advanced programmable interrupt controller (APIC) developed by Intel Corporation, provides the
ability to:

e Handle large amounts of interrupts to route each to a specific set of CPUs.

® Support inter-CPU communication and remove the need for multiple devices to share a single
interrupt line.

The real-time APIC represents a series of devices and technologies that work together to generate,
route, and handle a large number of hardware interrupts in a scalable and manageable way. It uses a
combination of a local APIC built into each system CPU and a number of Input/Output APICs that are
connected directly to hardware devices.

20

CHAPTER 4. HARDWARE INTERRUPTS ON RHEL FOR REAL TIME

In real-time, when a hardware device generates an interrupt, the connected I/O APIC detects and routes
the interrupt across the system APIC bus to a specific CPU. The operating system knows the IO-APIC
connectes to the devices, and interrupt line within that device. The Advanced Configuration and Power
Interface Differentiated System Description Table (ACPI DSDT) includes information about the specific
wiring of the host system motherboard and peripheral components and a device provides information
about the available interrupt sources. Together, these two sets of data provide information about the
overall interrupt hierarchy.

RHEL for Real Time supports Complex APIC-based interrupt management strategies with the system
APICs connected in hierarchies and delivering interrupts to CPUs in a load-balanced fashion rather than
targeting a specific CPU or set of CPUs.

21

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 5. RHEL FOR REAL TIME PROCESSES AND
THREADS

The RHEL for Real Time key factors in operating systems are minimal interrupt latency and minimal
thread switching latency. Although all programs use threads and processes, RHEL for Real Time handles
them in a different way compared to the standard Red Hat Enterprise Linux.

In real-time, using parallelism helps achieve greater efficiency in task execution and latency. Parallelism

is when multiple tasks or several sub-tasks run at the same time using the multi-core infrastructure of
CPU.

5.1. PROCESSES
A real-time process, in simplest terms, is a program in execution. The term process refers to an
independent address space, potentially containing multiple threads. When the concept of more than one
process running inside one address space was developed, Linux turned to a process structure that
shares an address space with another process. This works well, as long as the process data structure is
small.
A UNIX®-style process construct contains:

® Address mappings for virtual memory.

® An execution context (PC, stack, registers).

® State and accounting information.
In real-time, each process starts with a single thread, often called the parent thread. You can create
additional threads from parent threads using the fork() system calls. fork() creates a new child process
which is identical to the parent process except for the new process identifier. The child process runs
independent of the creating process. The parent and child processes can be executed simultaneously.
The difference between the fork() and exec() system calls is that, fork() starts a new process which is

the copy of the parent process and exec() replaces the current process image with the new one.

In real-time, the fork() system call, when successful, returns the process identifier of the child process
and the parent process returns a non-zero value. On error, it returns an error number.

5.2. THREADS

In real-time, multiple threads can exist within a process. All threads of a process share its virtual address
space and system resources. A thread is a schedulable entity that contains:

® A program counter (PC).
® Aregister context.
® A stack pointer.
In real-time, following are potential mechanisms to create parallelism:

e Using the fork() and exec() function calls to create new processes. The fork() call creates an
exact duplicate of a process from which it is called and has a unique process identifier.

® Using the Posix threads (pthreads) API to create new threads within an already running process.

22

CHAPTER 5. RHEL FOR REAL TIME PROCESSES AND THREADS

You must evaluate the component interaction level before forking real-time threads. Creating a new
address space and running it as a new process is beneficial when the components are independent of
one another or with less interaction. When components are required to share data or communicate
frequently, running the threads within one address space is more efficient.

In real-time, the fork() system call, when successful, returns a zero value. On error, it returns an error
number.

5.3. ADDITIONAL RESOURCES
e fork(2) man page

® exec(2) man page

23

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 6. APPLICATION TIMESTAMPING ON RHEL FOR
REAL TIME

Applications that perform frequent timestamps are affected by the CPU cost of reading the clock. The
high cost and amount of time used to read the clock can have a negative impact on an application’s
performance.

You can reduce the cost of reading the clock by selecting a hardware clock that has a reading
mechanism, faster than that of the default clock.

In RHEL for Real Time, a further performance gain can be acquired by using POSIX clocks with the
clock_gettime() function to produce clock readings with the lowest possible CPU cost.

These benefits are more evident on systems which use hardware clocks with high reading costs.

6.1. HARDWARE CLOCKS

Multiple instances of clock sources found in multiprocessor systems, such as non-uniform memory
access (NUMA) and Symmetric multiprocessing (SMP), interact among themselves and the way they
react to system events, such as CPU frequency scaling or entering energy economy modes, determine
whether they are suitable clock sources for the real-time kernel.

The preferred clock source is the Time Stamp Counter (TSC). If the TSC is not available, the High
Precision Event Timer (HPET) is the second best option. However, not all systems have HPET clocks,
and some HPET clocks can be unreliable.

In the absence of TSC and HPET, other options include the ACPI Power Management Timer
(ACPI_PM), the Programmable Interval Timer (PIT), and the Real Time Clock (RTC). The last two
options are either costly to read or have a low resolution (time granularity), therefore they are sub-
optimal for use with the real-time kernel.

6.2. POSIX CLOCKS

POSIX is a standard for implementing and representing time sources. You can assign a POSIX clock to
an application without affecting other applications in the system. This is in contrast to hardware clocks
which are selected by the kernel and implemented across the system.

The function used to read a given POSIX clock is clock_gettime(), which is defined at <time.h>. The
kernel counterpart to clock_gettime() is a system call. When a user process calls clock_gettime():

1. The corresponding C library (glibc) calls the sys_clock_gettime() system call.

2. sys_clock_gettime() performs the requested operation.

3. sys_clock_gettime() returns the result to the user program.
However, the context switch from the user application to the kernel has a CPU cost. Even though this
cost is very low, if the operation is repeated thousands of times, the accumulated cost can have an
impact on the overall performance of the application. To avoid context switching to the kernel, thus
making it faster to read the clock, support for the CLOCK_MONOTONIC_COARSE and
CLOCK_REALTIME_COARSE POSIX clocks was added, in the form of a virtual dynamic shared object
(VDSO) library function.

Time readings performed by clock_gettime(), using one of the _ COARSE clock variants, do not require
kernel intervention and are executed entirely in user space. This yields a significant performance gain.

24

CHAPTER 6. APPLICATION TIMESTAMPING ON RHEL FOR REAL TIME

Time readings for _COARSE clocks have a millisecond (ms) resolution, meaning that time intervals
smaller than 1 ms are not recorded. The _COARSE variants of the POSIX clocks are suitable for any
application that can accommodate millisecond clock resolution.

NOTE

To compare the cost and resolution of reading POSIX clocks with and without the
_COARSE prefix, see the RHEL for Real Time Reference guide.

6.3. CLOCK_GETTIME() FUNCTION

The following code shows an example of code using the clock_gettime() function with the
CLOCK_MONOTONIC_COARSE POSIX clock:

#include <time.h>
main()

{

int rc;

long i;

struct timespec ts;

for(i=0; i<10000000; i++) {

rc = clock_gettime(CLOCK_MONOTONIC_COARSE, &ts);
}
!

You can improve upon the example above by adding checks to verify the return code of
clock_gettime(), to verify the value of the rc variable, or to ensure the content of the ts structureis to
be trusted.

NOTE

The clock_gettime() man page provides more information about writing more reliable
applications.

IMPORTANT

Programs using the clock_gettime() function must be linked with the rtlibrary by adding
-Irt to the gec command line.

$ gcc clock_timing.c -o clock_timing -Irt

6.4. ADDITIONAL RESOURCES

e clock_gettime() man page

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html-single/reference_guide/index#sect-POSIX_clocks

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 7. SCHEDULING POLICIES FOR RHEL FOR REAL
TIME

In real-time, the scheduler is the kernel component that determines the runnable thread to run. Each
thread has an associated scheduling policy and a static scheduling priority, known as sched_priority.
The scheduling is preemptive and therefore the currently running thread stops when a thread with a
higher static priority gets ready to run. The running thread then returns to the waitlist for its static
priority.

All Linux threads have one of the following scheduling policies:
e SCHED_OTHER or SCHED_NORMAL.: is the default policy.
e SCHED_BATCH: is similar to SCHED_OTHER, but with incremental orientation.
® SCHED_IDLE: is the policy with lower priority than SCHED_OTHER.
® SCHED_FIFO: is the first in and first out real-time policy.
e SCHED_RR:is the round-robin real-time policy.

e SCHED_DEADLINE: is a scheduler policy to prioritize tasks according to the job deadline. The
job with the earliest absolute deadline runs first.

7.1. SCHEDULER POLICIES

The real-time threads have higher priority than the standard threads. The policies have scheduling
priority values that range from the minimum value of 1to the maximum value of 99.

The following policies are critical to real-time:

e SCHED_OTHER or SCHED_NORMAL policy
This is the default scheduling policy for Linux threads. It has a dynamic priority that is changed
by the system based on the characteristics of the thread. SCHED_OTHER threads have nice
values between 20, which is the highest priority and 19, which is the lowest priority. The default
nice value for SCHED_OTHER threads is O.

e SCHED_FIFO policy
Threads with SCHED_FIFO run with higher priority over SCHED_OTHER tasks. Instead of
using nice values, SCHED_FIFO uses a fixed priority between 1, which is the lowest and 99,
which is the highest. ASCHED_FIFO thread with a priority of 1always schedules first over a
SCHED_OTHER thread.

e SCHED_RR policy
The SCHED_RR policy is similar to the SCHED_FIFO policy. The threads of equal priority are
scheduled in a round-robin fashion. SCHED_FIFO and SCHED_RR threads run until one of the
following events occurs:

o The thread goes to sleep or waits for an event.

o A higher-priority real-time thread gets ready to run.
Unless one of the above events occurs, the threads run indefinitely on the specified
processor, while the lower-priority threads remain in the queue waiting to run. This might
cause the system service threads to be resident and prevent being swapped out and fail the
filesystem data flushing.

26

CHAPTER 7. SCHEDULING POLICIES FOR RHEL FOR REAL TIME

e SCHED_DEADLINE policy
The SCHED_DEADLINE policy specifies the timing requirements. It schedules each task
according to the task’s deadline. The task with the earliest deadline first (EDF) schedule runs
first.

The kernel requires runtime«deadline«<period to be true. The relation between the required
options is runtime«<deadline<=period.

7.2. PARAMETERS FOR SCHED_DEADLINE POLICY

Each SCHED_DEADLINE task is characterized by period, runtime, and deadline parameters. The
values for these parameters are integers of nanoseconds.

Table 7.1. SCHED_DEADLINE parameters

Parameter Description

period period is the activation pattern of a real-time task.

For example, if a video processing task has 60
frames per second to process, a new frame is queued
for service every 16 milliseconds. Therefore, the
period is 16 milliseconds.

runtime runtime is the amount of CPU execution time
allotted to the task to produce an output. In real-
time, the maximum execution time, also known as
“Worst Case Execution Time” (WCET) is the
runtime.

For example, if a video processing tool can take, in
the worst case, five milliseconds to process an image,
the runtime is five milliseconds.

deadline deadline is the maximum time for the output to be
produced.

For example, if a task needs to deliver the processed
frame within ten milliseconds, the deadline is ten
milliseconds.

27

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 8. RUNTIME VERIFICATION OF THE REAL-TIME
KERNEL

Runtime verification is a lightweight and rigorous method to check the behavioral equivalence between
system events and their formal specifications. Runtime verification has monitors integrated in the kernel
that attach to tracepoints. If a system state deviates from defined specifications, the runtime
verification program activates reactors to inform or enable a reaction, such as capturing the eventin log
files or a system shutdown to prevent failure propagation in an extreme case.

8.1. RUNTIME MONITORS AND REACTORS

The runtime verification (RV) monitors are encapsulated inside the RV monitor abstraction and
coordinate between the defined specifications and the kernel trace to capture runtime events in trace
files. The RV monitor includes:

® Reference Model is a reference model of the system.

® Monitor Instance(s) is a set of instance for a monitor, such as a per-CPU monitor or a per-task
monitor.

® Helper functions that connect the monitor to the system.

In addition to verifying and monitoring a system at runtime, you can enable a response to an unexpected
system event. The forms of reaction can vary from capturing an event in the trace file to initiating an
extreme reaction, such as a shut-down to avoid a system failure on safety critical systems.

Reactors are reaction methods available for RV monitors to define reactions to system events as
required. By default, monitors provide a trace output of the actions.

8.2. ONLINE RUNTIME MONITORS
Runtime verification (RV) monitors are classified into following types:

® Online monitors capture events in the trace while the system is running.
Online monitors are synchronous if the event processing is attached to the system execution.
This will block the system during the event monitoring. Online monitors are asynchronous, if the
execution is detached from the system and is run on a different machine. This however requires
saved execution log files.

e Offline monitors process traces that are generated after the events have occurred.
Offline runtime verification capture information by reading the saved trace log files generally
from a permanent storage. Offline monitors can work only if you have the events saved in a file.

8.3. THE USER INTERFACE

The user interface is located at /sys/kernel/tracing/rv and resembles the tracing interface. The user
interface includes the mentioned files and folders.

Settings Description Example commands
available_monitors Displays the available monitors # cat available_monitors
one per line.

28

Settings

available_reactors

enabled_monitors

monitors/

monitors/MONITOR/reactors

monitoring_on

reacting_on

monitors/MONITOR/desc

monitors/MONITOR/enable

CHAPTER 8. RUNTIME VERIFICATION OF THE REAL-TIME KERNEL

Description

Display the available reactors one

per line.

Displays enabled monitors one
per line. You can enable more
than one monitor at the same
time.

Writing a monitor name with a '!'
prefix disables the monitor and
truncating the file disables all
enabled monitors.

The monitors/ directory
resembles the events directory
on the tracefs file system with
each monitor having its own
directory inside monitors/.

Lists available reactors with the
select reaction for a specific
MONITOR inside "[1". The default

is the no operation (NOP) reactor.

Writing the name of a reactor
integrates it to a specific
MONITOR.

Initiates the tracing_on and the
tracing_off switcher in the trace
interface.

Writing 0 stops the monitoring
and 1 continues the monitoring.
The switcher does not disable
enabled monitors but stops the
per-entity monitors from
monitoring the events.

Enables reactors. Writing 0
disables reactions and 1 enables
reactions.

Displays the Monitor description

Displays the current status of the
Monitor. Writing 0 disables the
Monitor and 1 enables the
Monitor.

Example commands

cat available_reactors

cat enabled_monitors

echo wip >
enabled_monitors

echo ''wip'>>
enabled_monitors

cd monitors/wip/

cat monitors/wip/reactors

29

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 9. AFFINITY IN RHEL FOR REAL TIME

In real-time, every thread and interrupt source in the system has a processor affinity property. The
operating system scheduler uses this information to determine which threads and interrupts to run on
which CPU.

The Affinity in real-time, is represented as a bitmask, where each bit in the mask represents a CPU core.
If the bit is set to 1, then the thread or interrupt may run on that core; if O then the thread or interrupt is
excluded from running on the core. The default value for an affinity bitmask is all ones, meaning the
thread or interrupt may run on any core in the system.

By default, processes can run on any CPU. However, processes can be instructed to run on a
predetermined selection of CPUs, by changing the affinity of the process. Child processes inherit the
CPU affinities of their parents.

Some of the more typical affinity setups include:

® Reserve one CPU core for all system processes and allow the application to run on the
remainder of the cores.

® Allow a thread application and a given kernel thread (such as the network softirq or a driver
thread) on the same CPU.

® Pair producer and consumer threads on each CPU.

NOTE

The affinity settings must be designed in conjunction with the program for good
expected behavior.

9.1. PROCESSOR AFFINITY

In real-time, the processes by default, can run on any CPU. However, you can configure the processes to
run on a predetermined selection of CPUs, by changing the affinity of the process. Child processes
inherit the CPU affinities of their parents.

The real-time practice for tuning affinities on a system is to determine the number of cores required to
run the application and then isolating those cores. This can be achieved with the Tuna tool, or with shell
scripts to modify the bitmask value.

The taskset command can be used to change the affinity of a process and modifying the /proc/
filesystem entry changes the affinity of an interrupt. Using the taskset command with the -p or --pid
option and the process identifier (PID) of the process, checks the affinity of a process.

The -c or --cpu-list option displays the numerical list of cores, instead of as a bitmask. The affinity can
be set by specifying the number of the CPU to bind a specific process. For example, for a process that
previously used either CPU O or CPU 1, you can change the affinity so that it can only run on CPU 1. In
addition to the taskset command, you can also set the processor affinity can using the
sched_setaffinity() system call.

Additional resources
e taskset(1) man page

e sched_setaffinity(2) man page

30

CHAPTER 9. AFFINITY IN RHEL FOR REAL TIME

9.2. SCHED_DEADLINE AND CPUSETS

The kernel's deadline scheduling class (SCHED_DEADLINE) implements early deadline first scheduler
(EDF) for sporadic tasks with a constrained deadline. It prioritizes the tasks according to the job
deadline: earliest absolute deadline first. In addition to the EDF scheduler, the deadline scheduler also
implements the constant bandwidth server (CBS). The CBS algorithm is a resource reservation
protocol.

The CBS guarantees that each task receives its run time (Q) at every period (T). At the start of every
activation of a task, the CBS replenishes the task’s run time. As the job runs, it consumes its runtime and
if the task runs out of its runtime, the task is throttled and de-scheduled. The throttling mechanism
prevents a single task from running more than its runtime and helps to avoid the performance problems
of other jobs.

In real-time, to avoid the overloading the system with deadline tasks, the deadline scheduler
implements an acceptance test, which is run every time a task is configured to run with the deadline
scheduler. The acceptance test guarantees that SCHED_DEADLINE tasks does not use more CPU
time than the specified on the kernel.sched_rt_runtime_us/kernel.sched_rt_period_us files, which is
950 ms over 1s, by default.

31

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 10. THREAD SYNCHRONIZATION MECHANISMS IN
RHEL FOR REAL TIME

In real-time, when two or more threads need access to a shared resource at the same time, the threads
coordinate using the thread synchronization mechanism. Thread synchronization ensures that only one
thread uses the shared resource at a time. The three thread synchronization mechanisms used on Linux:
Mutexes, Barriers, and Condition variables (condvars).

10.1. MUTEXES

Mutex derives from the terms mutual exclusion. The mutual exclusion object synchronizes access to a
resource. It is a mechanism that ensures only one thread can acquire a mutex at a time.

The mutex algorithm creates a serial access to each section of code, so that only one thread executes
the code at any one time. Mutexes are created using an attribute object known as the mutex attribute
object. Itis an abstract object, which contains several attributes that depends on the POSIX options you
choose to implement. The attribute object is defined with the pthread_mutex_t variable. The object
stores the attributes defined for the mutex. The pthread_mutex_init(&my_mutex, &my_mutex_attr),
pthread_mutexattr_setrobust() and pthread_mutexattr_getrobust() functions return O, when
successful. On error, they return the error number.

In real-time, you can either retain the attribute object to initialize more mutexes of the same type or you
can clean up (destroy) the attribute object. The mutex is not affected in either case. Mutexes include
the standard and advanced type of mutexes.

Standard mutexes

The real-time standard mutexes are private, non-recursive, non-robust, and non-priority inheritance
capable mutexes. Initializing a pthread_mutex_t using pthread_mutex_init(&my_mutex,
&my_mutex_attr) creates a standard mutex. When using the standard mutex type, your application may
not benefit from the advantages provided by the pthreads APl and the RHEL for Real Time kernel.

Advanced mutexes

Mutexes defined with additional capabilities are called advanced mutexes. Advanced capabilities include
priority inheritance, robust behavior of a mutex, and shared and private mutexes. For example, for
robust mutexes, initializing the pthread_mutexattr_setrobust() function, sets the robust attribute.
Similarly, using the attribute PTHREAD_PROCESS_SHARED, allows any thread to operate on the
mutex, provided the thread has access to its allocated memory. The attribute
PTHREAD_PROCESS_PRIVATE sets a private mutex.

A non-robust mutex does not release automatically and stays locked until you manually release it.

Additional resources
e futex(7) man page

o pthread_mutex_destroy(P) man page

10.2. BARRIERS

Barriers operate in a very different way when compared to other thread synchronization methods. The
barriers define a point in the code where all active threads stop until all threads and processes reach this
barrier. Barriers are used in situations when a running application needs to ensure that all threads have
completed specific tasks before execution can continue.

32

CHAPTER 10. THREAD SYNCHRONIZATION MECHANISMS IN RHEL FOR REAL TIME

The barrier mutex in real-time, take following two variables:
® The first variable records the stop and pass state of the barrier.
® The second variable records the total number of threads that enter the barrier.

The barrier sets the state to pass only when the specified number of threads reach the defined barrier.
When the barrier state is set to pass, the threads and processes proceed further. The
pthread_barrier_init() function allocates the required resources to use the defined barrier and initializes
it with the attributes referenced by the attr attribute object.

The pthread_barrier_init() and pthread_barrier_destroy() functions return the zero value, when
successful. On error, they return an error number.

10.3. CONDITION VARIABLES

In real-time, condition variables (condvar) is a POSIX thread construct that waits for a particular
condition to be achieved before proceeding. In general, the signaled condition relates to the state of
data that the thread shares with another thread. For example, a condvar can be used to signal a data
entry into a processing queue and a thread waiting to process that data from the queue. Using the
pthread_cond_init() function, you can initialize a condition variable.

The pthread_cond_init(), pthread_cond_wait(), and pthread_cond_signal() functions return the zero
value, when successful. On error, it returns the error number.

10.4. MUTEX CLASSES

The mentioned mutex options provides guidance on the mutex classes to consider when writing or
porting an application.

Table 10.1. Mutex options

Advanced mutexes Description

Shared mutexes Defines shared access for multiple threads to acquire
a mutex at a given time. Shared mutexes can create
latency. The attribute is
PTHREAD_PROCESS_SHARED.

Private mutexes Ensures that only the threads created within the
same process can access the mutex. The attribute is
PTHREAD_PROCESS_ PRIVATE.

Real-time priority inheritance Sets the priority level of the lower priority task higher
above a current higher priority task. When the task
completes, it releases the resource and the task
drops back to its original priority permitting the
higher priority task to run. The attribute is
PTHREAD_PRIO_INHERIT.

33

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

Advanced mutexes Description

Robust mutexes Sets the robust mutexes to release automatically
when the owning thread would stop. The value
substring NP in the string

PTHREAD_MUTEX_ROBUST_NP, indicates that
robust mutexes are non-POSIX or not portable

Additional resources

e futex(7) man page

10.5. THREAD SYNCHRONIZATION FUNCTIONS

The mentioned list of function types and the description provides information on the functions to use
for thread synchronization mechanisms for the real-time kernel.

Table 10.2. Functions

Function Description

pthread_mutexattr_init(&my Initiates a mutex with attributes specified by attr. If attr is NULL, it
_mutex_attr) applies the default mutex attributes.

pthread_mutexattr_destroy(Destroys the specified mutex object. You can re-initialize with
&my_mutex_attr) pthread_mutex_init().

pthread_mutexattr_setrobus Specifies the PTHREAD_MUTEX_ROBUST attribute of a mutex.

t() The PTHREAD_MUTEX_ROBUST attribute defines a thread that
can stop without unlocking the mutex. A future call to own this mutex
succeeds automatically and returns the value EOWNERDEAD to
indicate that the previous mutex owner no longer exists.

pthread_mutexattr_getrobus Queries the PTHREAD_MUTEX_ROBUST attribute of a mutex.
t()

pthread_barrier_init() Allocates the required resources to use and initialize the barrier with
attribute object attr. Ifattr is NULL, it applies the default values.

pthread_cond_init() Initializes a condition variable. The cond argument defines the object to
initiate with the attributes in the condition variable attribute object attr.
If attr is NULL, it applies the default values.

pthread_cond_wait() Blocks a thread execution until it receives a signal from another thread.
In addition, a call to this function also releases the associated lock on
mutex before blocking. The argument cond defines the
pthread_cond_tobject for a thread to block on. Themutex argument
specifies the mutex to unblock.

34

CHAPTER 10. THREAD SYNCHRONIZATION MECHANISMS IN RHEL FOR REAL TIME

Function Description

pthread_cond_signal() Unblocks at least one of the threads that are blocked on a specified
condition variable. The argument cond specifies using the
pthread_cond_t object to unblock the thread.

35

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 1. SOCKET OPTIONS IN RHEL FOR REAL TIME

The real-time socket is a two way data transfer mechanism between two processes on same systems
such as the UNIX domain and loopback devices or on different systems such as network sockets.

Transmission Control Protocol (TCP) is the most common transport protocol and is often used to
achieve consistent low latency for a service that requires constant communication or to cork the sockets
in a low priority restricted environment.

With new applications, hardware features, and kernel architecture optimizations, TCP has to introduce
new approaches to handle the changes effectively. The new approaches can cause unstable program
behaviors. Because the program behavior changes as the underlying operating system components
change, they must be handled with care.

One example of such behavior in TCP is the delay in sending small buffers. This allows sending them as
one network packet. Buffering small writes to TCP and sending them all at once generally works well, but
it can also create latencies. For real-time applications, the TCP_NODELAY socket option disables the
delay and sends small writes as soon as they are ready.

The relevant socket options for data transfer are TCP_NODELAY and TCP_CORK.

11.1. TCP_NODELAY SOCKET OPTION

The TCP_NODELAY socket option disables Nagle's algorithm. Configuring TCP_NODELAY with the
setsockopt sockets API function sends multiple small buffer writes as individual packets as soon as they
are ready.

Sending multiple logically related buffers as a single packet by building a contiguous packet before
sending, achieves better latency and performance. Alternatively, if the memory buffers are logically

related but not contiguous, you can create an I/O vector and pass it to the kernel using writev on a
socket with TCP_NODELAY enabled.

The following example illustrates enabling TCP_NODELAY through the setsockopt sockets API.

intone = 1;
I setsockopt(descriptor, SOL_TCP, TCP_NODELAY, &one, sizeof(one));

NOTE

To use TCP_NODELAY effectively, avoid small, logically related buffer writes. With
TCP_NODELAY, small writes make TCP send multiple buffers as individual packets,
which may result in poor overall performance.

Additional resources

e sendfile(2) man page

11.2. TCP_CORK SOCKET OPTION

The TCP_CORK option collects all data packets in a socket and prevents from transmitting them until
the buffer fills to a specified limit. This enables applications to build a packet in the kernel space and
send data when TCP_CORK is disabled. TCP_CORK is set on a socket file descriptor using the
setsocketopt() function. When developing programs, if you must send bulk data from a file, consider
using TCP_CORK with the sendfile() function.

36

CHAPTER 11. SOCKET OPTIONS IN RHEL FOR REAL TIME

When a logical packet is built in the kernel by various components, enable TCP_CORK by configuring it
to a value of 1using the setsockopt sockets API. This is known as "corking the socket”. TCP_CORK can
cause bugs if the cork is not removed at an appropriate time.

The following example illustrates enabling TCP_CORK through the setsockopt sockets API.

intone = 1;
I setsockopt(descriptor, SOL_TCP, TCP_CORK, &one, sizeof(one));

In some environments, if the kernel is not able to identify when to remove the cork, you can manually
remove it as follows:

int zero = 0;
setsockopt(descriptor, SOL_TCP, TCP_CORK, &zero, sizeof(zero));

Additional resources

e sendfile(2) man page

11.3. EXAMPLE PROGRAMS USING SOCKET OPTIONS

The TCP_NODELAY and TCP_CORK socket options significantly influence the behavior of a network
connection. TCP_NODELAY disables the Nagle’s algorithm on applications that benefit by sending data
packets as soon as they are ready. With TCP_CORK, you can transfer multiple data packets
simultaneously, with no delays between them.

NOTE

To enable the socket options, for example TCP_NODELAY, build it with the following
code and then set appropriate options.

I gcc tcp_nodelay_client.c -o tcp_nodelay_client -Irt

When you run the tcp_nodelay_server and tcp_nodelay_client programs without any
arguments, the client uses the default socket options. For more information about
tcp_nodelay_server and tcp_nodelay_client programs, see the TCP changes result in
latency performance when small buffers are used article.

The example programs provide information about the performance impact these socket options can
have on your applications.

Performance impact on a client

You can send small buffer writes to a client without using the TCP_NODELAY and TCP_CORK socket
options. When run without any arguments, the client uses the default socket options.

® Toinitiate data transfer, define the server TCP port and the number of packets it must process.
For example, 10,000 packets in this test.

I $./tcp_nodelay_server 5001 10000

The code sends 15 packets, each of two bytes, and waits for a response from the server. It
adopts the default TCP behavior here

37

https://access.redhat.com/solutions/6971889

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

Performance impact on a loopback interface

To enable the socket option, build it using gcc tcp_nodelay_client.c -o tcp_nodelay_client -Irt and
then set the appropriate options.

Following examples use a loopback interface to demonstrate three variations:

® To send buffer writes immediately, set the no_delay option on a socket configured with

TCP_NODELAY.

$./tcp_nodelay_client localhost 5001 10000 no_delay

10000 packets of 30 bytes sent in 1649.771240 ms: 181.843399 bytes/ms using
TCP_NODELAY

TCP sends the buffers right away, disabling the algorithm that combines the small packets. This
improves performance but can cause a flurry of small packets to be sent for each logical packet.

To collect multiple data packets and send them with one system call, configure the TCP_CORK
socket option.

$./tcp_nodelay_client localhost 5001 10000 cork

10000 packets of 30 bytes sent in 850.796448 ms: 352.610779 bytes/ms using TCP_CORK

Using the cork technique significantly reduces the time required to send data packets as it
combines full logical packets in its buffers and sends fewer overall network packets. You must
ensure to remove the cork at the appropriate time.

When developing programs, if you must send bulk data from a file, consider using TCP_CORK
with the sendfile() option.

To measure performance without using socket options.
$./tcp_nodelay_client localhost 5001 10000

10000 packets of 30 bytes sent in 400129.781250 ms: 0.749757 bytes/ms

This is the baseline measure when TCP combines buffer writes and waits to check for more data
than can optimally fit in the network packet.

Additional resources

38

e sendfile(2) man page

CHAPTER12. RHEL FOR REAL TIME SCHEDULER

CHAPTER 12. RHEL FOR REAL TIME SCHEDULER

RHEL for Real Time uses the command line utilities help you to configure and monitor process
configurations.

12.1. CHRT UTILITY FOR SETTING THE SCHEDULER

The chrt utility checks and adjusts scheduler policies and priorities. It can start new processes with the
desired properties, or change the current properties of a running process.

The chrt utility takes the either --pid or the -p option to specify the process ID (PID).
The chrt utility takes the following policy options:

e -for -fifo: sets the schedule to SCHED_FIFO.

® -oor --other: sets the schedule to SCHED_OTHER.

® -ror --IT: sets schedule to SCHED_RR.

® -dor --deadline: sets schedule to SCHED_DEADLINE.

The following example shows the attributes for a specified process.

chrt -p 468
pid 468’s current scheduling policy: SCHED_FIFO
pid 468’s current scheduling priority: 85

12.2. PREEMPTIVE SCHEDULING

The real-time preemption is the mechanism to temporarily interrupt an executing task, with the
intention of resuming it at a later time. It occurs when a higher priority process interrupts the CPU
usage. Preemption can have a particularly negative impact on performance, and constant preemption
can lead to a state known as thrashing. This problem occurs when processes are constantly preempted
and no process ever gets to run completely. Changing the priority of a task can help reduce involuntary
preemption.

You can check for voluntary and involuntary preemption occurring on a single process by viewing the
contents of the /proc/PID/status file, where PID is the process identifier.

The following example shows the preemption status of a process with PID 1000.

grep voluntary /proc/1000/status
voluntary_ctxt_switches: 194529
nonvoluntary_ctxt_switches: 195338

12.3. LIBRARY FUNCTIONS FOR SCHEDULER PRIORITY

The real-time processes use a different set of library calls to control policy and priority. The functions
require the inclusion of the sched.h header file. The symbols SCHED_OTHER, SCHED_RR and
SCHED_FIFO must also be defined in the sched.h header file.

The table lists the functions that set the policy and priority for the real-time scheduler.

39

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

Table 12.1. Library functions for real-time scheduler

Functions Description

sched_getscheduler() Retrieves the scheduler policy for a specific process
identifier (PID)

sched_setscheduler() Sets the scheduler policy and other parameters. This
function requires three parameters:
sched_setscheduler(pid_t pid, int policy,
const struct sched_param *sp);

sched_getparam() Retrieves the scheduling parameters of a scheduling
policy.
sched_setparam() Sets the parameters associated with a scheduling

policy that has been already set and can be verified
using the sched_getparam() function.

sched_get_priority_max() Returns the maximum valid priority associated with
the scheduling policy.

sched_get_priority_min() Returns the minimum valid priority associated with
the scheduling policy .

sched_rr_get_interval() Displays the allocated timeslice for each process.

40

CHAPTER13. SYSTEM CALLS IN RHEL FOR REAL TIME

CHAPTER13. SYSTEM CALLS IN RHEL FOR REAL TIME

The real-time system call is a function used by application programs to communicate with the kernel. It is
a mechanism for programs to order resources from the kernel.

13.1. SCHED_YIELD() FUNCTION

The sched_yield() function is designed for a processor to select a process other than the running one.
This type of request is prone to failure when issued from within a poorly-written application.

When the sched_yield() function is used within processes with real-time priorities, it can display
unexpected behavior. The process that calls sched_yield() moves to the tail of the queue of processes
running at same priority. When there are no other processes running at the same priority, the process
that called sched_yield() continues to run. If the priority of that process is high, it can potentially create
a busy loop, rendering the machine unusable.

In general, do not use sched_yield() on real-time processes.

13.2. GETRUSAGE() FUNCTION

The getrusage() function retrieves important information from a specified process or its threads. It
reports on information such as:

® The number of voluntary and involuntary context switches.

® Major and minor page faults.

® Amount of memory in use.
getrusage() enables you to query an application to provide information relevant to both performance
tuning and debugging activities. getrusage() retrieves information that would otherwise need to be

cataloged from several different files in the /proc/ directory and would be hard to synchronize with
specific actions or events on the application.

NOTE

Not all the fields contained in the structure filled with getrusage() results are set by the
kernel. Some of them are kept for compatibility reasons only.

Additional resources

® getrusage(2) man page

41

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 14. MEASURING SCHEDULING LATENCY USING
TIMERLAT IN RHEL FOR REAL TIME

The rtla-timerlat tool is an interface for the timerlat tracer. The timerlat tracer finds sources of wake-
up latencies for real-time threads. The timerlat tracer creates a kernel thread per CPU with a real-time
priority and these threads set a periodic timer to wake up and go back to sleep. On a wake up, timerlat
finds and collects information, which is useful to debug operating system timer latencies. The timerlat
tracer generates an output and prints the following two lines at every activation:

® The timerlat tracer periodically prints the timer latency seen at timer interrupt requests (IRQs)
handler. This is the first output seen at the hardirq context before a thread activation.

® The second output is the timer latency of a thread. The ACTIVATION ID field displays the
interrupt requests (IRQs) performance to its respective thread execution.

14.1. CONFIGURING THE TIMERLAT TRACER TO MEASURE
SCHEDULING LATENCY

You can configure the timerlat tracer by adding timerlat in the curret_tracer file of the tracing system.
The current_tracer file is generally mounted in the /sys/kernel/tracing directory. The timerlat tracer

measures the interrupt requests (IRQs) and saves the trace output for analysis when a thread latency is
more than 100 microseconds.

Procedure

1. List the current tracer:

I # cat /sys/kernel/tracing/current_tracer
nop

The no operations (nop) is the default tracer.

2. Add the timerlat tracer in the current_tracer file of the tracing system:

cd /sys/kernel/tracing/
echo timerlat > current_tracer

3. Generate a tracing output:

cat trace
tracer: timerlat

Verification

® Enter the following command to check if timerlat is enabled as the current tracer:

cat /sys/kernel/tracing/current_tracer
timerlat

14.2. THE TIMERLAT TRACER OPTIONS

42

CHAPTER 14. MEASURING SCHEDULING LATENCY USING TIMERLAT IN RHEL FOR REAL TIME

The timerlat tracer is built on top of osnoise tracer. Therefore, you can set the options in the
/osnoise/config directory to trace and capture information for thread scheduling latencies.

timerlat options

cpus
Sets CPUs for a timerlat thread to execute on.
timerlat_period_us
Sets the duration period of the timerlat thread in microseconds.
stop_tracing_us

Stops the system tracing if a timer latency at the irq context is more than the configured value.
Writing O disables this option.

stop_tracing_total_us

Stops the system tracing if the total noise is more than the configured value. Writing O disables this
option.

print_stack

Saves the stack of the interrupt requests (IRQs) occurrence. The stack saves the IRQs occurrence
after the thread context event, or if the IRQs handler is more than the configured value.

14.3. MEASURING TIMER LATENCY WITH RTLA-TIMERLAT-TOP

The rtla-timerlat-top tracer displays a summary of the periodic output from the timerlat tracer. The
tracer output also provides information about each operating system noise and events, such as osnoise,
and tracepoints. You can view this information by using the -t option.

Procedure

® To measure timer latency:

I # rtla timerlat top -s 30 -T 30 -t

14.4. THE RTLA TIMERLAT TOP TRACER OPTIONS

By using the rtla timerlat top --help command, you can view the help usage on options for the rtla-
timerlat-top tracer.

timerlat-top-tracer options

-p, --period us
Sets the timerlat tracer period in microseconds.
-i, --irq us
Stops the trace if the interrupt requests (IRQs) latency is more than the argument in microseconds.
-T, --thread us
Stops the trace if the thread latency is more than the argument in microseconds.
-t, --trace
Saves the stopped trace to the timerlat_trace.txt file.
-s, --stack us

Saves the stack trace at the interrupt requests (IRQs), if a thread latency is more than the argument.

43

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

CHAPTER 15. MEASURING SCHEDULING LATENCY USING
RTLA-OSNOISE IN RHEL FOR REAL TIME

An ultra-low latency is an environment that is optimized to process high volumes of data packets with
low tolerance for delay. Providing exclusive resources to applications, including the CPU, is a prevalent
practice in ultra-low-latency environments. For example, for high performance network processing in
network functions virtualization (NFV) applications, a single application has the CPU power limit set to
run tasks continuously.

The Linux kernel includes the real-time analysis (rtla) tool, which provides an interface for the operating
system noise (osnoise) tracer. The operating system noise is the interference that occurs in an
application as a result of activities inside the operating system. Linux systems can experience noise due
to:

Non maskable interrupts (NMls)

® |nterrupt requests (IRQs)

® Softinterrupt requests (SoftIRQs)
® Other system threads activity

® Hardware-related jobs, such as non maskable high priority system management interrupts
(SMls)

15.1. THE RTLA-OSNOISE TRACER
The Linux kernel includes the real-time analysis (rtla) tool, which provides an interface for the operating
system noise (osnoise) tracer. The rtla-osnoise tracer creates a thread that runs periodically for a
specified given period. At the start of a period, the thread disables interrupts, starts sampling, and
captures the time in a loop.
The rtla-osnoise tracer provides the following capabilities:

® Measure how much operating noise a CPU receives.

e Characterize the type of operating system noise occurring in the CPU.

® Print optimized trace reports that help to define the root cause of unexpected results.

® Saves an interference counter for each interference source. The interference counter for non

maskable interrupts (NMls), interrupt requests (IRQs), software interrupt requests (SoftIRQs),

and threads increase when the tool detects the entry events for these interferences.

The rtla-osnoise tracer prints a run report with the following information about the noise sources at the
conclusion of the period:

® Total amount of noise.
® The maximum amount of noise.
® The percentage of CPU that is allocated to the thread.

® The counters for the noise sources.

44

CHAPTER 15. MEASURING SCHEDULING LATENCY USING RTLA-OSNOISE IN RHEL FOR REAL TIME

15.2. CONFIGURING THE RTLA-OSNOISE TRACER TO MEASURE
SCHEDULING LATENCY

You can configure the rtla-osnoise tracer by adding osnoise in the curret_tracer file of the tracing
system. The current_tracer file is generally mounted in the /sys/kernel/tracing/ directory. The rtla-
osnhoise tracer measures the interrupt requests (IRQs) and saves the trace output for analysis when a
thread latency is more than 20 microseconds for a single noise occurrence.

Procedure

1. List the current tracer:

I # cat /sys/kernel/tracing/current_tracer
nop

The no operations (nop) is the default tracer.

2. Add the timerlat tracer in the current_tracer file of the tracing system:

cd /sys/kernel/tracing/
echo osnoise > current_tracer

3. Generate the tracing output:

cat trace
tracer: osnoise

15.3. THE RTLA-OSNOISE OPTIONS FOR CONFIGURATION

The configuration options for the rtla-osnoise tracer is available in the /sys/kernel/tracing/ directory.

Configuration options forrtla-osnoise

oshoise/cpus

Configures the CPUs for the oshoise thread to run on.
oshoise/period_us

Configures the period for a osnoise thread run.
oshoise/runtime_us

Configures the run duration for a osnoise thread.
osnhoise/stop_tracing_us

Stops the system tracing if a single noise is more than the configured value. Setting 0 disables this
option.

osnoise/stop_tracing_total_us

Stops the system tracing if the total noise is more than the configured value. Setting 0 disables this
option.

tracing_thresh

Sets the minimum delta between two time() call reads to be considered as noise, in microseconds.
When set to 0,tracing_thresh uses the default value, which is 5 microseconds.

45

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

15.4. THE RTLA-OSNOISE TRACEPOINTS

The rtla-osnoise includes a set of tracepoints to identify the source of the operating system noise
(osnoise).

Trace points forrtla-osnoise

osnoise:sample_threshold

Displays a noise when the noise is more than the configured threshold (tolerance_ns).
osnoise:nmi_noise

Displays noise and the noise duration from non maskable interrupts (NMls).
oshoise:irq_noise

Displays noise and the noise duration from interrupt requests (IRQs).
osnoise:softirg_noise

Displays noise and the noise duration from soft interrupt requests (SoftIRQs),
osnoise:thread_noise

Displays noise and the noise duration from a thread.

15.5. THE RTLA-OSNOISE TRACER OPTIONS

The osnoise/options file includes a set of on and off configuration options for the rtla-osnoise tracer.

Options forrtla-osnoise

DEFAULTS
Resets the options to the default value.
OSNOISE_WORKLOAD
Stops the osnoise workload dispatch.
PANIC_ON_STOP
Sets the panic() call if the tracer stops. This option captures a vmcore dump file.
OSNOISE_PREEMPT_DISABLE

Disables preemption for oshoise workloads, which allows only interrupt requests (IRQs) and
hardware-related noise.

OSNOISE_IRQ_DISABLE

Disables interrupt requests (IRQs) for osnoise workloads, which allows only non maskable interrupts
(NMls) and hardware-related noise.

15.6. MEASURING OPERATING SYSTEM NOISE WITH THE RTLA-
OSNOISE-TOP TRACER

The rtla osnoise-top tracer measures and prints a periodic summary from the osnoise tracer along with
the information about the occurrence counters of the interference source.

Procedure

1. Measure the system noise:

46

CHAPTER 15. MEASURING SCHEDULING LATENCY USING RTLA-OSNOISE IN RHEL FOR REAL TIME

I # rtla osnoise top -P F:1 -¢ 0-3 -r 900000 -d 1M -q

The command output displays a periodic summary with information about the real-time priority,
the assigned CPUs to run the thread, and the period of the run in microseconds.

15.7. THE RTLA-OSNOISE-TOP TRACER OPTIONS

By using the rtla osnoise top --help command, you can view the help usage on the available options for
the rtla-osnoise-top tracer.

Options forrtla-osnoise-top

-a, --auto us

Sets the automatic trace mode. This mode sets some commonly used options while debugging the
system. It is equivalent to use -s us -T 1 and -t.

-p, --period us

Sets the osnoise tracer duration period in microseconds.
-r, --runtime us

Sets the osnoise tracer runtime in microseconds.
-s, --stop us

Stops the trace if a single sample is more than the argument in microseconds. With -t, the command
saves the trace to the output.

-S, --stop-total us

Stops the trace if the total sample is more than the argument in microseconds. With -T, the
command saves a trace to the output.

-T, --threshold us

Specifies the minimum delta between two time reads to be considered noise. The default threshold
is 5 us.

-q, --quiet

Prints only a summary at the end of a run.
-¢, --cpus cpu-list

Sets the osnoise tracer to run the sample threads on the assigned cpu-list.
-d, --duration time[s|m|h|d]

Sets the duration of a run.
-D, --debug

Prints debug information.
-t, --trace[=file]

Saves the stopped trace to [file|osnhoise_trace.txt] file.
-e, --event sys:event

Enables an event in the trace (-t) session. The argument can be a specific event, for example -e
sched:sched_switch, or all events of a system group, such as -e sched system group.

--filter <filter>
Filters the previous -e sys:event system event with a filter expression.
--trigger <trigger>

Enables a trace event trigger to the previous -e sys:event system event.

47

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

-P, --priority o:prio|r:prio|f:prio|d:runtime:period
Sets the scheduling parameters to the osnoise tracer threads.
-h, --help

Prints the help menu.

48

CHAPTER 16. SCHEDULING PROBLEMS ON THE REAL-TIME KERNEL AND SOLUTIONS

CHAPTER 16. SCHEDULING PROBLEMS ON THE REAL-TIME
KERNEL AND SOLUTIONS

Scheduling in the real-time kernel might have consequences sometimes. By using the information
provided, you can understand the problems on scheduling policies, scheduler throttling, and thread
starvation states on the real-time kernel, as well as potential solutions.

16.1. SCHEDULING POLICIES FOR THE REAL-TIME KERNEL

The real-time scheduling policies share one main characteristic: they run until a higher priority thread
interrupts the thread or the threads wait, either by sleeping or performing /0.

In the case of SCHED_RR, the operating system interrupts a running thread so that another thread of
equal SCHED_RR priority can run. In either of these cases, no provision is made by the POSIX
specifications that define the policies for allowing lower priority threads to get any CPU time. This
characteristic of real-time threads means that it is easy to write an application, which monopolizes 100%
of a given CPU. However, this causes problems for the operating system. For example, the operating
system is responsible for managing both system-wide and per-CPU resources and must periodically
examine data structures describing these resources and perform housekeeping activities with them. But
if a core is monopolized by a SCHED_FIFO thread, it cannot perform its housekeeping tasks. Eventually
the entire system becomes unstable and can potentially crash.

On the RHEL for Real Time kernel, interrupt handlers run as threads with a SCHED_FIFO priority. The
default priority is 50. A cpu-hog thread with a SCHED_FIFO or SCHED_RR policy higher than the
interrupt handler threads can prevent interrupt handlers from running. This causes the programs waiting
for data signaled by those interrupts to starve and fail.

16.2. SCHEDULER THROTTLING IN THE REAL-TIME KERNEL

The real-time kernel includes a safeguard mechanism to enable allocating bandwidth for use by the
real-time tasks. The safeguard mechanism is known as real-time scheduler throttling.

The default values for the real-time throttling mechanism define that the real-time tasks can use 95%
of the CPU time. The remaining 5% will be devoted to non real-time tasks, such as tasks running under
SCHED_OTHER and similar scheduling policies. It is important to note that if a single real-time task
occupies the 95% CPU time slot, the remaining real-time tasks on that CPU will not run. Only the non
real-time tasks use the remaining 5% of CPU time. The default values can have the following
performance impacts:

® The real-time tasks have at most 95% of CPU time available for them, which can affect their
performance.

® The real-time tasks do not lock up the system by not allowing non real-time tasks to run.
The real-time scheduler throttling is controlled by the following parameters in the /proc file system:

The /proc/sys/kernel/sched_rt_period_us parameter

Defines the period in ps (microseconds), which is 100% of the CPU bandwidth. The default value is
1,000,000 ps, which is 1second. Changes to the period'’s value must be carefully considered because
a period value that is either very high or low can cause problems.

The /proc/sys/kernel/sched_rt_runtime_us parameter

Defines the total bandwidth available for all real-time tasks. The default value is 950,000 ps (0.95 s),
which is 95% of the CPU bandwidth. Setting the value to -1 configures the real-time tasks to use up

49

Red Hat Enterprise Linux for Real Time 9 Understanding RHEL for Real Time

to 100% of CPU time. This is only adequate when the real-time tasks are well engineered and have no
obvious caveats, such as unbounded polling loops.

16.3. THREAD STARVATION IN THE REAL-TIME KERNEL

Thread starvation occurs when a thread is on a CPU run queue for longer than the starvation threshold
and does not make progress. A common cause of thread starvation is to run a fixed-priority polling
application, such as SCHED_FIFO or SCHED_RR bound to a CPU. Since the polling application does
not block for I/O, this can prevent other threads, such as kworkers, from running on that CPU.

An early attempt to reduce thread starvation is called as real-time throttling. In real-time throttling, each
CPU has a portion of the execution time dedicated to non real-time tasks. The default setting for
throttling is on with 95% of the CPU for real-time tasks and 5% reserved for non real-time tasks. This
works if you have a single real-time task causing starvation but does not work if there are multiple real-
time tasks assigned to a CPU. You can work around the problem by using:

The stalld mechanism

The stalld mechanism is an alternative for real-time throttling and avoids some of the throttling
drawbacks. stalld is a daemon to periodically monitor the state of each thread in the system and
looks for threads that are on the run queue for a specified length of time without being run. stalld
temporarily changes that thread to use the SCHED_DEADLINE policy and allocates the thread a
small slice of time on the specified CPU. The thread then runs, and when the time slice is used, the
thread returns to its original scheduling policy and stalld continues to monitor thread states.
Housekeeping CPUs are CPUs that run all daemons, shell processes, kernel threads, interrupt
handlers, and all work that can be dispatched from an isolated CPU. For housekeeping CPUs with
real-time throttling disabled, stalld monitors the CPU that runs the main workload and assigns the
CPU with the SCHED_FIFO busy loop, which helps to detect stalled threads and improve the thread
priority as required with a previously defined acceptable added noise. stalld can be a preference if
the real-time throttling mechanism causes an unreasonable noise in the main workload.

With stalld, you can more precisely control the noise introduced by boosting starved threads. The
shell script /ust/bin/throttlectl automatically disables real-time throttling when stalld is run. You can
list the current throttling values by using the /usr/bin/throttlectl show script.

Disabling real-time throttling

The following parameters in the /proc filesystem control real-time throttling:

e The /proc/sys/kernel/sched_rt_period_us parameter specifies the number of
microseconds in a period and defaults to 1 million, which is 1second.

e The /proc/sys/kernel/sched_rt_runtime_us parameter specifies the number of
microseconds that can be used by a real-time task before throttling occurs and it defaults to
950,000 or 95% of the available CPU cycles. You can disable throttling by passing a value of
-1 into the sched_rt_runtime_us file by using the echo -1 >
/proc/sys/kernel/sched_rt_runtime_us command.

50

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. HARDWARE PLATFORMS FOR RHEL FOR REAL TIME
	1.1. PROCESSOR CORES
	1.2. ADDITIONAL RESOURCES

	CHAPTER 2. MEMORY MANAGEMENT ON RHEL FOR REAL TIME
	2.1. DEMAND PAGING
	2.2. MAJOR AND MINOR PAGE FAULTS
	2.3. MLOCK() SYSTEM CALLS
	2.4. SHARED LIBRARIES
	2.5. SHARED MEMORY

	CHAPTER 3. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG
	3.1. TESTING CPU FLOATING POINT UNITS AND PROCESSOR DATA CACHE
	3.2. TESTING CPU WITH MULTIPLE STRESS MECHANISMS
	3.3. MEASURING CPU HEAT GENERATION
	3.4. MEASURING TEST OUTCOMES WITH BOGO OPERATIONS
	3.5. GENERATING A VIRTUAL MEMORY PRESSURE
	3.6. TESTING LARGE INTERRUPTS LOADS ON A DEVICE
	3.7. GENERATING MAJOR PAGE FAULTS IN A PROGRAM
	3.8. VIEWING CPU STRESS TEST MECHANISMS
	3.9. USING THE VERIFY MODE

	CHAPTER 4. HARDWARE INTERRUPTS ON RHEL FOR REAL TIME
	4.1. LEVEL-SIGNALED INTERRUPTS
	4.2. MESSAGE-SIGNALED INTERRUPTS
	4.3. NON-MASKABLE INTERRUPTS
	4.4. SYSTEM MANAGEMENT INTERRUPTS
	4.5. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER

	CHAPTER 5. RHEL FOR REAL TIME PROCESSES AND THREADS
	5.1. PROCESSES
	5.2. THREADS
	5.3. ADDITIONAL RESOURCES

	CHAPTER 6. APPLICATION TIMESTAMPING ON RHEL FOR REAL TIME
	6.1. HARDWARE CLOCKS
	6.2. POSIX CLOCKS
	6.3. CLOCK_GETTIME() FUNCTION
	6.4. ADDITIONAL RESOURCES

	CHAPTER 7. SCHEDULING POLICIES FOR RHEL FOR REAL TIME
	7.1. SCHEDULER POLICIES
	7.2. PARAMETERS FOR SCHED_DEADLINE POLICY

	CHAPTER 8. RUNTIME VERIFICATION OF THE REAL-TIME KERNEL
	8.1. RUNTIME MONITORS AND REACTORS
	8.2. ONLINE RUNTIME MONITORS
	8.3. THE USER INTERFACE

	CHAPTER 9. AFFINITY IN RHEL FOR REAL TIME
	9.1. PROCESSOR AFFINITY
	9.2. SCHED_DEADLINE AND CPUSETS

	CHAPTER 10. THREAD SYNCHRONIZATION MECHANISMS IN RHEL FOR REAL TIME
	10.1. MUTEXES
	10.2. BARRIERS
	10.3. CONDITION VARIABLES
	10.4. MUTEX CLASSES
	10.5. THREAD SYNCHRONIZATION FUNCTIONS

	CHAPTER 11. SOCKET OPTIONS IN RHEL FOR REAL TIME
	11.1. TCP_NODELAY SOCKET OPTION
	11.2. TCP_CORK SOCKET OPTION
	11.3. EXAMPLE PROGRAMS USING SOCKET OPTIONS

	CHAPTER 12. RHEL FOR REAL TIME SCHEDULER
	12.1. CHRT UTILITY FOR SETTING THE SCHEDULER
	12.2. PREEMPTIVE SCHEDULING
	12.3. LIBRARY FUNCTIONS FOR SCHEDULER PRIORITY

	CHAPTER 13. SYSTEM CALLS IN RHEL FOR REAL TIME
	13.1. SCHED_YIELD() FUNCTION
	13.2. GETRUSAGE() FUNCTION

	CHAPTER 14. MEASURING SCHEDULING LATENCY USING TIMERLAT IN RHEL FOR REAL TIME
	14.1. CONFIGURING THE TIMERLAT TRACER TO MEASURE SCHEDULING LATENCY
	14.2. THE TIMERLAT TRACER OPTIONS
	14.3. MEASURING TIMER LATENCY WITH RTLA-TIMERLAT-TOP
	14.4. THE RTLA TIMERLAT TOP TRACER OPTIONS

	CHAPTER 15. MEASURING SCHEDULING LATENCY USING RTLA-OSNOISE IN RHEL FOR REAL TIME
	15.1. THE RTLA-OSNOISE TRACER
	15.2. CONFIGURING THE RTLA-OSNOISE TRACER TO MEASURE SCHEDULING LATENCY
	15.3. THE RTLA-OSNOISE OPTIONS FOR CONFIGURATION
	15.4. THE RTLA-OSNOISE TRACEPOINTS
	15.5. THE RTLA-OSNOISE TRACER OPTIONS
	15.6. MEASURING OPERATING SYSTEM NOISE WITH THE RTLA-OSNOISE-TOP TRACER
	15.7. THE RTLA-OSNOISE-TOP TRACER OPTIONS

	CHAPTER 16. SCHEDULING PROBLEMS ON THE REAL-TIME KERNEL AND SOLUTIONS
	16.1. SCHEDULING POLICIES FOR THE REAL-TIME KERNEL
	16.2. SCHEDULER THROTTLING IN THE REAL-TIME KERNEL
	16.3. THREAD STARVATION IN THE REAL-TIME KERNEL

