
Red Hat Fuse 7.1

Deploying into Apache Karaf

Deploying application packages into the Apache Karaf container

Last Updated: 2019-01-02

Red Hat Fuse 7.1 Deploying into Apache Karaf

Deploying application packages into the Apache Karaf container

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The guide describes the options for deploying applications into an Apache Karaf container.

. .

. .

. .

. .

Table of Contents

PART I. DEVELOPER GUIDE

CHAPTER 1. DEPLOYING USING AN OSGI BUNDLE
1.1. OSGI OVERVIEW
1.2. PREREQUISITES
1.3. PREPARING THE OSGI BUNDLE
1.4. DEPLOYING THE OSGI BUNDLE

CHAPTER 2. INTRODUCTION TO OSGI
2.1. OVERVIEW
2.2. ARCHITECTURE OF APACHE KARAF
2.3. OSGI FRAMEWORK

2.3.1. Overview
2.3.2. OSGi architecture

2.4. OSGI SERVICES
2.4.1. Overview
2.4.2. OSGi service registry
Event notification
Service invocation model
OSGi framework services
OSGi Compendium services

2.5. OSGI BUNDLES
Overview
Class Loading in OSGi

CHAPTER 3. BUILDING AN OSGI BUNDLE
3.1. GENERATING A BUNDLE PROJECT

3.1.1. Generating bundle projects with Maven archetypes
3.1.2. Apache Camel archetype
3.1.3. Building the bundle

3.2. MODIFYING AN EXISTING MAVEN PROJECT
3.2.1. Overview
3.2.2. Change the package type to bundle
3.2.3. Add the bundle plug-in to your POM
3.2.4. Customize the bundle plug-in
3.2.5. Customize the JDK compiler version

3.3. PACKAGING A WEB SERVICE IN A BUNDLE
3.3.1. Overview
3.3.2. Modifying the POM file to generate a bundle
3.3.3. Mandatory import packages
3.3.4. Sample Maven bundle plug-in instructions
3.3.5. Add a code generation plug-in
3.3.6. OSGi configuration properties
3.3.7. Configuring the Bundle Plug-In

Overview
Configuration properties
Setting a bundle’s symbolic name
Setting a bundle’s name
Setting a bundle’s version
Specifying exported packages
Specifying private packages
Specifying imported packages

8

9
9
9
9
9

11
11
11
11
11
12
12
12
13
13
13
13
14
14
14
15

16
16
16
16
16
16
16
17
17
17
18
18
18
18
18
19
20
20
20
20
20
21
21
22
22
23
23

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

More information
3.3.8. OSGI configAdmin file naming convention

CHAPTER 4. HOT DEPLOYMENT VS MANUAL DEPLOYMENT
4.1. HOT DEPLOYMENT

4.1.1. Hot deploy directory
4.2. HOT UNDEPLOYING A BUNDLE
4.3. MANUAL DEPLOYMENT

4.3.1. Overview
4.3.2. Installing a bundle
4.3.3. Uninstalling a bundle
4.3.4. URL schemes for locating bundles

4.4. REDEPLOYING BUNDLES AUTOMATICALLY USING BUNDLE:WATCH

CHAPTER 5. LIFECYCLE MANAGEMENT
5.1. BUNDLE LIFECYCLE STATES
5.2. INSTALLING AND RESOLVING BUNDLES
5.3. STARTING AND STOPPING BUNDLES
5.4. BUNDLE START LEVEL
5.5. SPECIFYING A BUNDLE’S START LEVEL
5.6. SYSTEM START LEVEL

CHAPTER 6. TROUBLESHOOTING DEPENDENCIES
6.1. MISSING DEPENDENCIES
6.2. REQUIRED FEATURES OR BUNDLES ARE NOT INSTALLED
6.3. IMPORT-PACKAGE HEADER IS INCOMPLETE
6.4. HOW TO TRACK DOWN MISSING DEPENDENCIES

CHAPTER 7. DEPLOYING FEATURES
7.1. CREATING A FEATURE

7.1.1. Overview
7.2. CREATE A CUSTOM FEATURE REPOSITORY
7.3. ADD A FEATURE TO THE CUSTOM FEATURE REPOSITORY
7.4. ADD THE LOCAL REPOSITORY URL TO THE FEATURES SERVICE
7.5. ADD DEPENDENT FEATURES TO THE FEATURE
7.6. ADD OSGI CONFIGURATIONS TO THE FEATURE
7.7. AUTOMATICALLY DEPLOY AN OSGI CONFIGURATION

CHAPTER 8. DEPLOYING A FEATURE
8.1. OVERVIEW
8.2. INSTALLING AT THE CONSOLE
8.3. UNINSTALLING AT THE CONSOLE
8.4. HOT DEPLOYMENT
HOT UNDEPLOYING A FEATURES FILE
8.5. ADDING A FEATURE TO THE BOOT CONFIGURATION

CHAPTER 9. DEPLOYING A PLAIN JAR
9.1. CONVERTING A JAR USING THE WRAP SCHEME

Overview
Syntax
Default properties

WRAP AND INSTALL
Reference

CHAPTER 10. OSGI SERVICES

24
24

25
25
25
25
25
25
25
26
26
26

28
28
28
29
29
29
29

31
31
31
31
31

34
34
34
34
34
35
36
36
37

38
38
38
38
38
39
39

42
42
42
42
42
42
43

44

Red Hat Fuse 7.1 Deploying into Apache Karaf

2

. .

. .

10.1. THE BLUEPRINT CONTAINER
10.1.1. Blueprint Configuration
10.1.2. Defining a Service Bean
10.1.3. Using properties to configure Blueprint

10.2. EXPORTING A SERVICE
10.3. IMPORTING A SERVICE
10.4. PUBLISHING AN OSGI SERVICE

10.4.1. Overview
10.4.2. Prerequisites
10.4.3. Generating a Maven project
10.4.4. Customizing the POM file
10.4.5. Writing the service interface
10.4.6. Writing the service class
10.4.7. Writing the Blueprint file
10.4.8. Running the service bundle

10.5. ACCESSING AN OSGI SERVICE
10.5.1. Overview
10.5.2. Prerequisites
10.5.3. Generating a Maven project
10.5.4. Customizing the POM file
10.5.5. Writing the Blueprint file
10.5.6. Writing the client class
10.5.7. Running the client bundle

10.6. INTEGRATION WITH APACHE CAMEL
10.6.1. Overview
10.6.2. Registry chaining
10.6.3. Sample OSGi service interface
10.6.4. Sample service export
10.6.5. Invoking the OSGi service from Java DSL
10.6.6. Invoking the OSGi service from XML DSL

CHAPTER 11. DEPLOYING USING A JMS BROKER
11.1. AMQ 7 QUICKSTART
11.2. USING THE ARTEMIS CORE CLIENT

CHAPTER 12. URL HANDLERS
12.1. FILE URL HANDLER
SYNTAX
EXAMPLES
12.2. HTTP URL HANDLER

Syntax
12.3. MVN URL HANDLER

Overview
Syntax
Omitting coordinates
Specifying a version range
Configuring the Mvn URL handler
Check the Mvn URL settings
Edit the configuration file
Customize the location of the local repository
Reference

12.4. WRAP URL HANDLER
Overview

44
44
46
47
47
51
57
57
58
58
58
59
59
59
60
61
61
61
61
62
62
63
64
64
64
64
65
65
65
66

67
67
69

70
70
70
70
70
70
70
70
71
71
71
71
72
72
73
73
73
73

Table of Contents

3

. .

. .

. .

Syntax
Default instructions
Examples
Reference

12.5. WAR URL HANDLER
OVERVIEW

Syntax
WAR-specific properties/instructions
Default instructions
Examples
Reference

PART II. USER GUIDE

CHAPTER 13. INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE
13.1. INTRODUCING FUSE CONFIGURATION
13.2. OSGI CONFIGURATION
13.3. CONFIGURATION FILES
CONFIGURATION FILE NAMING CONVENTION
SETTING JAVA OPTIONS
13.4. CONFIG CONSOLE COMMANDS
13.5. JMX CONFIGMBEAN
13.6. USING THE CONSOLE

13.6.1. Available commands
13.6.2. Subshell and completion mode
13.6.3. Unix like environment

13.6.3.1. Help or man
13.6.3.2. Completion
13.6.3.3. Alias
13.6.3.4. Key binding
13.6.3.5. Pipe
13.6.3.6. Grep, more, find, … ​
13.6.3.7. Scripting

13.6.4. Security

CHAPTER 14. PROVISIONING
14.1. APPLICATION
14.2. OSGI
14.3. FEATURE AND RESOLVER
14.4. FEATURES REPOSITORIES
14.5. BOOT FEATURES
14.6. FEATURES UPGRADE
14.7. OVERRIDES
14.8. FEATURE BUNDLES

14.8.1. Start Level
14.8.2. Simulate, Start and stop
14.8.3. Dependency

14.9. DEPENDENT FEATURES
14.9.1. Feature prerequisites

14.10. FEATURE CONFIGURATIONS
14.11. FEATURE CONFIGURATION FILES

14.11.1. Requirements
14.12. COMMANDS

14.12.1. feature:repo-list

73
73
74
74
74
74
75
75
75
76
76

77

78
78
78
78
79
80
80
80
81
81
82
84
84
84
85
86
86
87
88
90

91
91
91
91
92
93
93
93
93
93
94
94
94
95
95
95
96
96
96

Red Hat Fuse 7.1 Deploying into Apache Karaf

4

. .

. .

. .

. .

14.12.2. feature:repo-add
14.12.3. feature:repo-refresh
14.12.4. feature:repo-remove
14.12.5. feature:list
14.12.6. feature:install
14.12.7. feature:start
14.12.8. feature:stop
14.12.9. feature:uninstall

14.13. DEPLOYER
14.14. JMX FEATUREMBEAN

14.14.1. Attributes
14.14.2. Operations
14.14.3. Notifications

CHAPTER 15. REMOTE
15.1. SSHD SERVER

15.1.1. Configuration
15.1.2. Console clients

15.1.2.1. System native clients
15.1.2.2. ssh:ssh command
15.1.2.3. Apache Karaf client
15.1.2.4. Logout

15.1.3. Filsystem clients
15.1.3.1. Native SCP/SFTP clients
15.1.3.2. Apache Maven

15.2. JMX MBEANSERVER

CHAPTER 16. BUILDING WITH MAVEN
16.1. MAVEN DIRECTORY STRUCTURE

16.1.1. Overview
16.1.2. Standard directory layout
16.1.3. pom.xml file
16.1.4. src and target directories
16.1.5. main and test directories
16.1.6. java directory
16.1.7. resources directory
16.1.8. Blueprint container

CHAPTER 17. MAVEN INDEXER PLUGIN

CHAPTER 18. LOG
18.1. CONFIGURATION FILES
18.2. LOG4J V2 SUPPORT
18.3. COMMANDS

18.3.1. log:clear
18.3.2. log:display
18.3.3. log:exception-display
18.3.4. log:get
18.3.5. log:log
18.3.6. log:set
18.3.7. log:tail

18.4. JMX LOGMBEAN
18.4.1. Attributes
18.4.2. Operations

97
99
99

100
102
103
103
103
103
104
104
105
105

106
106
106
108
108
109
110
112
112
112
113
113

114
114
114
114
115
115
115
115
115
115

116

117
117
119
120
120
120
122
122
122
123
124
125
125
125

Table of Contents

5

. .

18.5. ADVANCED CONFIGURATION
18.5.1. Filters
18.5.2. Nested appenders
18.5.3. Error handlers
18.5.4. OSGi specific MDC attributes
18.5.5. Enhanced OSGi stack trace renderer
18.5.6. Custom appenders

CHAPTER 19. SECURITY
19.1. REALMS

19.1.1. Users, groups, roles, and passwords
19.1.1.1. Commands

19.1.1.1.1. jaas:realm-list
19.1.1.1.2. jaas:realm-manage
19.1.1.1.3. jaas:user-list
19.1.1.1.4. jaas:user-add
19.1.1.1.5. jaas:user-delete
19.1.1.1.6. jaas:group-add
19.1.1.1.7. jaas:group-delete
19.1.1.1.8. jaas:group-role-add
19.1.1.1.9. jaas:group-role-delete
19.1.1.1.10. jaas:update
19.1.1.1.11. jaas:cancel

19.1.2. Passwords encryption
19.1.3. Managing authentication by key
19.1.4. RBAC

19.1.4.1. OSGi services
19.1.4.2. Console
19.1.4.3. JMX
19.1.4.4. WebConsole

19.1.5. SecurityMBean
19.1.5.1. Operations

19.1.6. Security providers

125
125
126
126
127
127
128

130
130
131
132
132
132
133
133
133
134
134
134
134
134
134
134
136
137
137
138
139
140
140
140
141

Red Hat Fuse 7.1 Deploying into Apache Karaf

6

Table of Contents

7

PART I. DEVELOPER GUIDE
This part contains information for developers.

Red Hat Fuse 7.1 Deploying into Apache Karaf

8

CHAPTER 1. DEPLOYING USING AN OSGI BUNDLE

Abstract

The usual and most common method of deploying into Apache Karaf is using an OSGi bundle.

1.1. OSGI OVERVIEW

Apache Karaf is structured to use OSGi functionality. For more information about the structure of Apache
Karaf see Chapter 2, Introduction to OSGi.

An OSGi bundle is a collection of JAR files with configuration files, bundled up into a JAR. For more
information about creating OSGi bundles see Chapter 3, Building an OSGi Bundle.

1.2. PREREQUISITES

Before following the instructions make sure that you have completed the following prerequisites:

Install Apache Karaf, following the instructions in the Red Hat Fuse Installing on Apache Karaf
Guide

Make sure you have installed and configured Maven as shown in Chapter 16, Building with
Maven

1.3. PREPARING THE OSGI BUNDLE

For this example we will use a quickstart, which is a ready-prepared bundle. Quickstarts can be found in
FUSE_HOME/quickstarts

To find out more about how to build your own OSGi bundle, see Section 3.1, “Generating a Bundle
Project” .

1.4. DEPLOYING THE OSGI BUNDLE

The OSGi bundle is deployed into a running Apache Karaf instance.

1. Start Fuse from the bin direction by executing the ./fuse script in the FUSE_HOME/bin/
directory.
You will see the prompt:

karaf@root()>

2. On a separate terminal, navigate to the FUSE_HOME/quickstarts/beginner/camel-log
directory. camel-log is the name of the quickstart we will use to create a bundle.

3. Compile the camel-log quickstart using Maven:

$ mvn clean install

4. Return to the Karaf terminal and install the project:

CHAPTER 1. DEPLOYING USING AN OSGI BUNDLE

9

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.1/html-single/installing_on_apache_karaf/index

karaf@root()> bundle:install -s
mvn:org.jboss.fuse.quickstarts/beginner-camel-log/$CURRENT_VERSION

You will see a bundle ID returned:

Bundle ID: 228

This is a unique identifier for this bundle on this instance of Fuse

5. To see the output of project, look in the log file at FUSE_HOME/data/log/fuse.log The
output will look like this:

12:07:34.542 INFO [Camel (log-example-context) thread #1 - timer://foo]
>>> Hello from Fuse based Camel route! :
12:07:39.530 INFO [Camel (log-example-context) thread #1 - timer://foo]
>>> Hello from Fuse based Camel route! :
12:07:44.530 INFO [Camel (log-example-context) thread #1 - timer://foo]
>>> Hello from Fuse based Camel route! :

For more information about deploying OSGi bundles, see Chapter 4, Hot deployment vs manual
deployment.

Red Hat Fuse 7.1 Deploying into Apache Karaf

10

CHAPTER 2. INTRODUCTION TO OSGI

Abstract

The OSGi specification supports modular application development by defining a runtime framework that
simplifies building, deploying, and managing complex applications.

2.1. OVERVIEW

Apache Karaf is an OSGi-based runtime container for deploying and managing bundles. Apache Karaf
also provides native operating system integration, and can be integrated into the operating system as a
service so that the lifecycle is bound to the operating system.

Apache Karaf has the following structure:

Apache Karaf - a wrapper layer around the OSGi container implementation, which provides
support for deploying the OSGi container as a runtime server. Runtime features provided by the
Fuse include hot deployment, management, and administration features.

OSGi Framework - implements OSGi functionality, including managing dependencies and
bundle lifecycles

2.2. ARCHITECTURE OF APACHE KARAF

Apache Karaf extends the OSGi layers with the following functionality:

Console - the console manages services, installs and manages applications and libraries, and
interacts with the Fuse runtime. It provides console commands to administer instances of Fuse.
See the Apache Karaf Console Reference.

Logging - the logging subsystem provides console commands to display, view and change log
levels.

Deployment - supports both manual deployment of OSGi bundles using the bundle:install
and bundle:start commands and hot deployment of applications. See Section 4.1, “Hot
Deployment”.

Provisioning - provides multiple mechanisms for installing applications and libraries. See
Chapter 7, Deploying Features.

Configuration - the properties files stored in the InstallDir/etc folder are continuously
monitored, and changes to them are automatically propagated to the relevant services at
configurable intervals.

Blueprint - is a dependency injection framework that simplifies interaction with the OSGi
container. For example, providing standard XML elements to import and export OSGi services.
When a Blueprint configuration file is copied to the hot deployment folder, Red Hat Fuse
generates an OSGi bundle on-the-fly and instantiates the Blueprint context.

2.3. OSGI FRAMEWORK

2.3.1. Overview

CHAPTER 2. INTRODUCTION TO OSGI

11

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.1/html-single/apache_karaf_console_reference/index

The OSGi Alliance is an independent organization responsible for defining the features and capabilities
of the OSGi Service Platform Release 4. The OSGi Service Platform is a set of open specifications that
simplify building, deploying, and managing complex software applications.

OSGi technology is often referred to as the dynamic module system for Java. OSGi is a framework for
Java that uses bundles to modularly deploy Java components and handle dependencies, versioning,
classpath control, and class loading. OSGi’s lifecycle management allows you to load, start, and stop
bundles without shutting down the JVM.

OSGi provides the best runtime platform for Java, a superior class loading architecture, and a registry for
services. Bundles can export services, run processes, and have their dependencies managed. Each
bundle can have its requirements managed by the OSGi container.

Fuse uses Apache Felix as its default OSGi implementation. The framework layers form the container
where you install bundles. The framework manages the installation and updating of bundles in a
dynamic, scalable manner, and manages the dependencies between bundles and services.

2.3.2. OSGi architecture

The OSGi framework contains the following:

Bundles — Logical modules that make up an application. See Section 2.5, “OSGi Bundles”.

Service layer — Provides communication among modules and their contained components.
This layer is tightly integrated with the lifecycle layer. See Section 2.4, “OSGi Services”.

Lifecycle layer — Provides access to the underlying OSGi framework. This layer handles the
lifecycle of individual bundles so you can manage your application dynamically, including
starting and stopping bundles.

Module layer — Provides an API to manage bundle packaging, dependency resolution, and
class loading.

Execution environment — A configuration of a JVM. This environment uses profiles that define
the environment in which bundles can work.

Security layer — Optional layer based on Java 2 security, with additional constraints and
enhancements.

Each layer in the framework depends on the layer beneath it. For example, the lifecycle layer requires
the module layer. The module layer can be used without the lifecycle and service layers.

2.4. OSGI SERVICES

2.4.1. Overview

An OSGi service is a Java class or service interface with service properties defined as name/value pairs.
The service properties differentiate among service providers that provide services with the same service
interface.

An OSGi service is defined semantically by its service interface, and it is implemented as a service
object. A service’s functionality is defined by the interfaces it implements. Thus, different applications
can implement the same service.

Red Hat Fuse 7.1 Deploying into Apache Karaf

12

http://www.osgi.org
http://www.osgi.org/Specifications/HomePage?section=2
http://felix.apache.org/

Service interfaces allow bundles to interact by binding interfaces, not implementations. A service
interface should be specified with as few implementation details as possible.

2.4.2. OSGi service registry

In the OSGi framework, the service layer provides communication between Section 2.5, “OSGi Bundles”
and their contained components using the publish, find, and bind service model. The service layer
contains a service registry where:

Service providers register services with the framework to be used by other bundles

Service requesters find services and bind to service providers

Services are owned by, and run within, a bundle. The bundle registers an implementation of a service
with the framework service registry under one or more Java interfaces. Thus, the service’s functionality is
available to other bundles under the control of the framework, and other bundles can look up and use the
service. Lookup is performed using the Java interface and service properties.

Each bundle can register multiple services in the service registry using the fully qualified name of its
interface and its properties. Bundles use names and properties with LDAP syntax to query the service
registry for services.

A bundle is responsible for runtime service dependency management activities including publication,
discovery, and binding. Bundles can also adapt to changes resulting from the dynamic availability
(arrival or departure) of the services that are bound to the bundle.

Event notification

Service interfaces are implemented by objects created by a bundle. Bundles can:

Register services

Search for services

Receive notifications when their registration state changes

The OSGi framework provides an event notification mechanism so service requesters can receive
notification events when changes in the service registry occur. These changes include the publication or
retrieval of a particular service and when services are registered, modified, or unregistered.

Service invocation model

When a bundle wants to use a service, it looks up the service and invokes the Java object as a normal
Java call. Therefore, invocations on services are synchronous and occur in the same thread. You can
use callbacks for more asynchronous processing. Parameters are passed as Java object references. No
marshalling or intermediary canonical formats are required as with XML. OSGi provides solutions for the
problem of services being unavailable.

OSGi framework services

In addition to your own services, the OSGi framework provides the following optional services to manage
the operation of the framework:

Package Admin service—allows a management agent to define the policy for managing Java
package sharing by examining the status of the shared packages. It also allows the

CHAPTER 2. INTRODUCTION TO OSGI

13

management agent to refresh packages and to stop and restart bundles as required. This
service enables the management agent to make decisions regarding any shared packages
when an exporting bundle is uninstalled or updated.
The service also provides methods to refresh exported packages that were removed or updated
since the last refresh, and to explicitly resolve specific bundles. This service can also trace
dependencies between bundles at runtime, allowing you to see what bundles might be affected
by upgrading.

Start Level service—enables a management agent to control the starting and stopping order of
bundles. The service assigns each bundle a start level. The management agent can modify the
start level of bundles and set the active start level of the framework, which starts and stops the
appropriate bundles. Only bundles that have a start level less than, or equal to, this active start
level can be active.

URL Handlers service—dynamically extends the Java runtime with URL schemes and content
handlers enabling any component to provide additional URL handlers.

Permission Admin service—enables the OSGi framework management agent to administer
the permissions of a specific bundle and to provide defaults for all bundles. A bundle can have a
single set of permissions that are used to verify that it is authorized to execute privileged code.
You can dynamically manipulate permissions by changing policies on the fly and by adding new
policies for newly installed components. Policy files are used to control what bundles can do.

Conditional Permission Admin service—extends the Permission Admin service with
permissions that can apply when certain conditions are either true or false at the time the
permission is checked. These conditions determine the selection of the bundles to which the
permissions apply. Permissions are activated immediately after they are set.

The OSGi framework services are described in detail in separate chapters in the OSGi Service
Platform Release 4 specification available from the release 4 download page on the OSGi Alliance web
site.

OSGi Compendium services

In addition to the OSGi framework services, the OSGi Alliance defines a set of optional, standardized
compendium services. The OSGi compendium services provide APIs for tasks such as logging and
preferences. These services are described in the OSGi Service Platform, Service Compendium
available from the release 4 download page on the OSGi Alliance Web site.

The Configuration Admin compendium service is like a central hub that persists configuration
information and distributes it to interested parties. The Configuration Admin service specifies the
configuration information for deployed bundles and ensures that the bundles receive that data when they
are active. The configuration data for a bundle is a list of name-value pairs. See Section 2.2,
“Architecture of Apache Karaf”.

2.5. OSGI BUNDLES

Overview

With OSGi, you modularize applications into bundles. Each bundle is a tightly coupled, dynamically
loadable collection of classes, JARs, and configuration files that explicitly declare any external
dependencies. In OSGi, a bundle is the primary deployment format. Bundles are applications that are
packaged in JARs, and can be installed, started, stopped, updated, and removed.

Red Hat Fuse 7.1 Deploying into Apache Karaf

14

https://www.osgi.org/developer/downloads/
https://www.osgi.org/developer/downloads/

OSGi provides a dynamic, concise, and consistent programming model for developing bundles.
Development and deployment are simplified by decoupling the service’s specification (Java interface)
from its implementation.

The OSGi bundle abstraction allows modules to share Java classes. This is a static form of reuse. The
shared classes must be available when the dependent bundle is started.

A bundle is a JAR file with metadata in its OSGi manifest file. A bundle contains class files and,
optionally, other resources and native libraries. You can explicitly declare which packages in the bundle
are visible externally (exported packages) and which external packages a bundle requires (imported
packages).

The module layer handles the packaging and sharing of Java packages between bundles and the hiding
of packages from other bundles. The OSGi framework dynamically resolves dependencies among
bundles. The framework performs bundle resolution to match imported and exported packages. It can
also manage multiple versions of a deployed bundle.

Class Loading in OSGi

OSGi uses a graph model for class loading rather than a tree model (as used by the JVM). Bundles can
share and re-use classes in a standardized way, with no runtime class-loading conflicts.

Each bundle has its own internal classpath so that it can serve as an independent unit if required.

The benefits of class loading in OSGi include:

Sharing classes directly between bundles. There is no requirement to promote JARs to a parent
class-loader.

You can deploy different versions of the same class at the same time, with no conflict.

CHAPTER 2. INTRODUCTION TO OSGI

15

CHAPTER 3. BUILDING AN OSGI BUNDLE

Abstract

This chapter describes how to build an OSGi bundle using Maven. For building bundles, the Maven
bundle plug-in plays a key role, because it enables you to automate the generation of OSGi bundle
headers (which would otherwise be a tedious task). Maven archetypes, which generate a complete
sample project, can also provide a starting point for your bundle projects.

3.1. GENERATING A BUNDLE PROJECT

3.1.1. Generating bundle projects with Maven archetypes

To help you get started quickly, you can invoke a Maven archetype to generate the initial outline of a
Maven project (a Maven archetype is analogous to a project wizard). The following Maven archetype
generates a project for building OSGi bundles.

3.1.2. Apache Camel archetype

The Apache Camel OSGi archetype creates a project for building a route that can be deployed into the
OSGi container. To generate a Maven project with the coordinates, GroupId:ArtifactId:Version, enter
the following command:

mvn archetype:generate \
 -DarchetypeGroupId=org.apache.camel.archetypes \
 -DarchetypeArtifactId=camel-archetype-blueprint \
 -DarchetypeVersion=${current-Camel-version} \
 -DgroupId=GroupId \
 -DartifactId=ArtifactId \
 -Dversion=Version

3.1.3. Building the bundle

By default, the preceding archetypes create a project in a new directory, whose names is the same as
the specified artifact ID, ArtifactId. To build the bundle defined by the new project, open a command
prompt, go to the project directory (that is, the directory containing the pom.xml file), and enter the
following Maven command:

mvn install

The effect of this command is to compile all of the Java source files, to generate a bundle JAR under the
ArtifactId/target directory, and then to install the generated JAR in the local Maven repository.

3.2. MODIFYING AN EXISTING MAVEN PROJECT

3.2.1. Overview

If you already have a Maven project and you want to modify it so that it generates an OSGi bundle,
perform the following steps:

1. Section 3.2.2, “Change the package type to bundle”.

Red Hat Fuse 7.1 Deploying into Apache Karaf

16

2. Section 3.2.3, “Add the bundle plug-in to your POM”.

3. Section 3.2.4, “Customize the bundle plug-in”.

4. Section 3.2.5, “Customize the JDK compiler version”.

3.2.2. Change the package type to bundle

Configure Maven to generate an OSGi bundle by changing the package type to bundle in your project’s
pom.xml file. Change the contents of the packaging element to bundle, as shown in the following
example:

<project ... >
 ...
 <packaging>bundle</packaging>
 ...
</project>

The effect of this setting is to select the Maven bundle plug-in, maven-bundle-plugin, to perform
packaging for this project. This setting on its own, however, has no effect until you explicitly add the
bundle plug-in to your POM.

3.2.3. Add the bundle plug-in to your POM

To add the Maven bundle plug-in, copy and paste the following sample plugin element into the
project/build/plugins section of your project’s pom.xml file:

<project ... >
 ...
 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>3.3.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}
 </Bundle-SymbolicName>
 <Import-Package>*</Import-Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
</project>

Where the bundle plug-in is configured by the settings in the instructions element.

3.2.4. Customize the bundle plug-in

CHAPTER 3. BUILDING AN OSGI BUNDLE

17

For some specific recommendations on configuring the bundle plug-in for Apache CXF, see Section 3.3,
“Packaging a Web Service in a Bundle”.

3.2.5. Customize the JDK compiler version

It is almost always necessary to specify the JDK version in your POM file. If your code uses any modern
features of the Java language—such as generics, static imports, and so on—and you have not
customized the JDK version in the POM, Maven will fail to compile your source code. It is not sufficient to
set the JAVA_HOME and the PATH environment variables to the correct values for your JDK, you must
also modify the POM file.

To configure your POM file, so that it accepts the Java language features introduced in JDK 1.8, add the
following maven-compiler-plugin plug-in settings to your POM (if they are not already present):

<project ... >
 ...
 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
</project>

3.3. PACKAGING A WEB SERVICE IN A BUNDLE

3.3.1. Overview

This section explains how to modify an existing Maven project for a Apache CXF application, so that the
project generates an OSGi bundle suitable for deployment in the Red Hat Fuse OSGi container. To
convert the Maven project, you need to modify the project’s POM file and the project’s Blueprint file(s)
(located in META-INF/spring).

3.3.2. Modifying the POM file to generate a bundle

To configure a Maven POM file to generate a bundle, there are essentially two changes you need to
make: change the POM’s package type to bundle; and add the Maven bundle plug-in to your POM. For
details, see Section 3.1, “Generating a Bundle Project”.

3.3.3. Mandatory import packages

In order for your application to use the Apache CXF components, you need to import their packages into
the application’s bundle. Because of the complex nature of the dependencies in Apache CXF, you cannot
rely on the Maven bundle plug-in, or the bnd tool, to automatically determine the needed imports. You

Red Hat Fuse 7.1 Deploying into Apache Karaf

18

will need to explicitly declare them.

You need to import the following packages into your bundle:

javax.jws
javax.wsdl
javax.xml.bind
javax.xml.bind.annotation
javax.xml.namespace
javax.xml.ws
org.apache.cxf.bus
org.apache.cxf.bus.spring
org.apache.cxf.bus.resource
org.apache.cxf.configuration.spring
org.apache.cxf.resource
org.apache.cxf.jaxws
org.springframework.beans.factory.config

3.3.4. Sample Maven bundle plug-in instructions

Example 3.1, “Configuration of Mandatory Import Packages” shows how to configure the Maven bundle
plug-in in your POM to import the mandatory packages. The mandatory import packages appear as a
comma-separated list inside the Import-Package element. Note the appearance of the wildcard, *, as
the last element of the list. The wildcard ensures that the Java source files from the current bundle are
scanned to discover what additional packages need to be imported.

Example 3.1. Configuration of Mandatory Import Packages

<project ... >
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 ...
 <Import-Package>
 javax.jws,
 javax.wsdl,
 javax.xml.bind,
 javax.xml.bind.annotation,
 javax.xml.namespace,
 javax.xml.ws,
 org.apache.cxf.bus,
 org.apache.cxf.bus.spring,
 org.apache.cxf.bus.resource,
 org.apache.cxf.configuration.spring,
 org.apache.cxf.resource,
 org.apache.cxf.jaxws,
 org.springframework.beans.factory.config,
 *
 </Import-Package>

CHAPTER 3. BUILDING AN OSGI BUNDLE

19

 ...
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
</project>

3.3.5. Add a code generation plug-in

A Web services project typically requires code to be generated. Apache CXF provides two Maven plug-
ins for the JAX-WS front-end, which enable tyou to integrate the code generation step into your build.
The choice of plug-in depends on whether you develop your service using the Java-first approach or the
WSDL-first approach, as follows:

Java-first approach—use the cxf-java2ws-plugin plug-in.

WSDL-first approach—use the cxf-codegen-plugin plug-in.

3.3.6. OSGi configuration properties

The OSGi Configuration Admin service defines a mechanism for passing configuration settings to an
OSGi bundle. You do not have to use this service for configuration, but it is typically the most convenient
way of configuring bundle applications. Blueprint provides support for OSGi configuration, enabling you
to substitute variables in a Blueprint file using values obtained from the OSGi Configuration Admin
service.

For details of how to use OSGi configuration properties, see Section 3.3.7, “Configuring the Bundle Plug-
In” and Section 7.6, “Add OSGi configurations to the feature”.

3.3.7. Configuring the Bundle Plug-In

Overview

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in’s instructions element.

Configuration properties

Some of the commonly used configuration properties are:

Bundle-SymbolicName

Bundle-Name

Bundle-Version

Export-Package

Red Hat Fuse 7.1 Deploying into Apache Karaf

20

Private-Package

Import-Package

Setting a bundle’s symbolic name

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupId + "."
+ artifactId, with the following exceptions:

If groupId has only one section (no dots), the first package name with classes is returned.
For example, if the group Id is commons-logging:commons-logging, the bundle’s symbolic
name is org.apache.commons.logging.

If artifactId is equal to the last section of groupId, then groupId is used.
For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle’s symbolic name is org.apache.maven.

If artifactId starts with the last section of groupId, that portion is removed.
For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven-
core, the bundle’s symbolic name is org.apache.maven.core.

To specify your own value for the bundle’s symbolic name, add a Bundle-SymbolicName child in the
plug-in’s instructions element, as shown in Example 3.2, “Setting a bundle’s symbolic name”.

Example 3.2. Setting a bundle’s symbolic name

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
 ...
 </instructions>
 </configuration>
</plugin>

Setting a bundle’s name

By default, a bundle’s name is set to ${project.name}.

To specify your own value for the bundle’s name, add a Bundle-Name child to the plug-in’s
instructions element, as shown in Example 3.3, “Setting a bundle’s name”.

Example 3.3. Setting a bundle’s name

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Name>JoeFred</Bundle-Name>
 ...

CHAPTER 3. BUILDING AN OSGI BUNDLE

21

 </instructions>
 </configuration>
</plugin>

Setting a bundle’s version

By default, a bundle’s version is set to ${project.version}. Any dashes (-) are replaced with dots
(.) and the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes
4.2.0.SNAPSHOT.

To specify your own value for the bundle’s version, add a Bundle-Version child to the plug-in’s
instructions element, as shown in Example 3.4, “Setting a bundle’s version”.

Example 3.4. Setting a bundle’s version

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Version>1.0.3.1</Bundle-Version>
 ...
 </instructions>
 </configuration>
</plugin>

Specifying exported packages

By default, the OSGi manifest’s Export-Package list is populated by all of the packages in your local
Java source code (under src/main/java), except for the default package, ., and any packages
containing .impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages listed
in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export-Package child to the plug-in’s
instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and that
are to be exported. The package names can be specified using the * wildcard symbol. For example, the
entry com.fuse.demo.* includes all packages on the project’s classpath that start with
com.fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For example, the entry
!com.fuse.demo.private excludes the package com.fuse.demo.private.

Red Hat Fuse 7.1 Deploying into Apache Karaf

22

When excluding packages, the order of entries in the list is important. The list is processed in order from
the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except the package
com.fuse.demo.private, list the packages using:

!com.fuse.demo.private,com.fuse.demo.*

However, if you list the packages using com.fuse.demo.*,!com.fuse.demo.private, then
com.fuse.demo.private is included in the bundle because it matches the first pattern.

Specifying private packages

If you want to specify a list of packages to include in a bundle without exporting them, you can add a
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a
Private-Package instruction, all packages in your local Java source are included in the bundle.

IMPORTANT

If a package matches an entry in both the Private-Package element and the Export-
Package element, the Export-Package element takes precedence. The package is
added to the bundle and exported.

The Private-Package element works similarly to the Export-Package element in that you specify a
list of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project’s classpath that are to be included in the bundle. These packages are packaged in the bundle,
but not exported (unless they are also selected by the Export-Package instruction).

Example 3.5, “Including a private package in a bundle” shows the configuration for including a private
package in a bundle

Example 3.5. Including a private package in a bundle

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
 ...
 </instructions>
 </configuration>
</plugin>

Specifying imported packages

By default, the bundle plug-in populates the OSGi manifest’s Import-Package property with a list of all
the packages referred to by the contents of the bundle.

While the default behavior is typically sufficient for most projects, you might find instances where you
want to import packages that are not automatically added to the list. The default behavior can also result
in unwanted packages being imported.

CHAPTER 3. BUILDING AN OSGI BUNDLE

23

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-
in’s instructions element. The syntax for the package list is the same as for the Export-Package
element and the Private-Package element.

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan
the bundle’s contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example 3.6, “Specifying the packages imported by a bundle” shows the configuration for specifying the
packages imported by a bundle

Example 3.6. Specifying the packages imported by a bundle

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Import-Package>javax.jws, javax.wsdl, org.apache.cxf.bus,
org.apache.cxf.bus.spring, org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring, org.apache.cxf.resource,
org.springframework.beans.factory.config, * </Import-Package>
 ...
 </instructions>
 </configuration>
</plugin>

More information

For more information on configuring a bundle plug-in, see:

olink:OsgiDependencies/OsgiDependencies

Apache Felix documentation

Peter Kriens' aQute Software Consultancy web site

3.3.8. OSGI configAdmin file naming convention

PID strings (symbolic-name syntax) allow hyphens in the OSGI specification. However, hyphens are
interpreted by Apache Felix.fileinstall and config:edit shell commands to differentiate a
"managed service" and "managed service factory". Therefore, it is recommended to not use hyphens
elsewhere in a PID string.

NOTE

The Configuration file names are related to the PID and factory PID.

Red Hat Fuse 7.1 Deploying into Apache Karaf

24

olink:OsgiDependencies/OsgiDependencies
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

CHAPTER 4. HOT DEPLOYMENT VS MANUAL DEPLOYMENT

Abstract

Fuse provides two different approaches for deploying files: hot deployment or manual deployment. If you
need to deploy a collection of related bundles it is recommended that you deploy them together as a
feature, rather than singly (see Chapter 7, Deploying Features).

4.1. HOT DEPLOYMENT

4.1.1. Hot deploy directory

Fuse monitors files in the FUSE_HOME/deploy directory and hot deploys everything in this directory.
Each time a file is copied to this directory, it is installed in the runtime and started. You can subsequently
update or delete the files in the FUSE_HOME/deploy directory, and the changes are handled
automatically.

For example, if you have just built the bundle, ProjectDir/target/foo-1.0-SNAPSHOT.jar, you can
deploy this bundle by copying it to the FUSE_HOME/deploy directory as follows (assuming you are
working on a UNIX platform):

% cp ProjectDir/target/foo-1.0-SNAPSHOT.jar FUSE_HOME/deploy

4.2. HOT UNDEPLOYING A BUNDLE

To undeploy a bundle from the hot deploy directory, simply delete the bundle file from the
FUSE_HOME/deploy directory while the Apache Karaf container is running.

IMPORTANT

The hot undeploy mechanism does not work while the container is shut down. If you shut
down the Karaf container, delete the bundle file from FUSE_HOME/deploy directory, and
then restart the Karaf container, the bundle will not be undeployed after you restart the
container.

You can also undeploy a bundle by using the bundle:uninstall console command.

4.3. MANUAL DEPLOYMENT

4.3.1. Overview

You can manually deploy and undeploy bundles by issuing commands at the Fuse console.

4.3.2. Installing a bundle

Use the bundle:install command to install one or more bundles in the OSGi container. This
command has the following syntax:

bundle:install [-s] [--start] [--help] UrlList

CHAPTER 4. HOT DEPLOYMENT VS MANUAL DEPLOYMENT

25

Where UrlList is a whitespace-separated list of URLs that specify the location of each bundle to deploy.
The following command arguments are supported:

-s

Start the bundle after installing.

--start

Same as -s.

--help

Show and explain the command syntax.

For example, to install and start the bundle, ProjectDir/target/foo-1.0-SNAPSHOT.jar, enter the
following command at the Karaf console prompt:

bundle:install -s file:ProjectDir/target/foo-1.0-SNAPSHOT.jar

NOTE

On Windows platforms, you must be careful to use the correct syntax for the file URL in
this command. See Section 12.1, “File URL Handler” for details.

4.3.3. Uninstalling a bundle

To uninstall a bundle, you must first obtain its bundle ID using the bundle:list command. You can
then uninstall the bundle using the bundle:uninstall command (which takes the bundle ID as its
argument).

For example, if you have already installed the bundle named A Camel OSGi Service Unit, entering
bundle:list at the console prompt might produce output like the following:

...
[181] [Resolved] [] [] [60] A Camel OSGi
Service Unit (1.0.0.SNAPSHOT)

You can now uninstall the bundle with the ID, 181, by entering the following console command:

bundle:uninstall 181

4.3.4. URL schemes for locating bundles

When specifying the location URL to the bundle:install command, you can use any of the URL
schemes supported by Fuse, which includes the following scheme types:

Section 12.1, “File URL Handler”.

Section 12.2, “HTTP URL Handler”.

Section 12.3, “Mvn URL Handler”.

4.4. REDEPLOYING BUNDLES AUTOMATICALLY USING
BUNDLE:WATCH

Red Hat Fuse 7.1 Deploying into Apache Karaf

26

In a development environment—where a developer is constantly changing and rebuilding a bundle—it is
typically necessary to re-install the bundle multiple times. Using the bundle:watch command, you can
instruct Karaf to monitor your local Maven repository and re-install a particular bundle automatically, as
soon as it changes in your local Maven repository.

For example, given a particular bundle—with bundle ID, 751—you can enable automatic redeployment
by entering the command:

bundle:watch 751

Now, whenever you rebuild and install the Maven artifact into your local Maven repository (for example,
by executing mvn install in your Maven project), the Karaf container automatically re-installs the
changed Maven artifact. For more details, see Apache Karaf Console Reference.

IMPORTANT

Using the bundle:watch command is intended for a development environment only. It is
not recommended for use in a production environment.

CHAPTER 4. HOT DEPLOYMENT VS MANUAL DEPLOYMENT

27

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.1/html-single/apache_karaf_console_reference/index

CHAPTER 5. LIFECYCLE MANAGEMENT

5.1. BUNDLE LIFECYCLE STATES

Applications in an OSGi environment are subject to the lifecycle of its bundles. Bundles have six lifecycle
states:

1. Installed — All bundles start in the installed state. Bundles in the installed state are waiting for
all of their dependencies to be resolved, and once they are resolved, bundles move to the
resolved state.

2. Resolved — Bundles are moved to the resolved state when the following conditions are met:

The runtime environment meets or exceeds the environment specified by the bundle.

All of the packages imported by the bundle are exposed by bundles that are either in the
resolved state or that can be moved into the resolved state at the same time as the current
bundle.

All of the required bundles are either in the resolved state or they can be resolved at the
same time as the current bundle.

IMPORTANT

All of an application’s bundles must be in the resolved state before the
application can be started.

If any of the above conditions ceases to be satisfied, the bundle is moved back into the
installed state. For example, this can happen when a bundle that contains an imported
package is removed from the container.

3. Starting — The starting state is a transitory state between the resolved state and the active
state. When a bundle is started, the container must create the resources for the bundle. The
container also calls the start() method of the bundle’s bundle activator when one is provided.

4. Active — Bundles in the active state are available to do work. What a bundle does in the active
state depends on the contents of the bundle. For example, a bundle containing a JAX-WS
service provider indicates that the service is available to accept requests.

5. Stopping — The stopping state is a transitory state between the active state and the resolved
state. When a bundle is stopped, the container must clean up the resources for the bundle. The
container also calls the stop() method of the bundle’s bundle activator when one is provided.

6. Uninstalled — When a bundle is uninstalled it is moved from the resolved state to the
uninstalled state. A bundle in this state cannot be transitioned back into the resolved state or
any other state. It must be explicitly re-installed.

The most important lifecycle states for application developers are the starting state and the stopping
state. The endpoints exposed by an application are published during the starting state. The published
endpoints are stopped during the stopping state.

5.2. INSTALLING AND RESOLVING BUNDLES

When you install a bundle using the bundle:install command (without the -s flag), the kernel

Red Hat Fuse 7.1 Deploying into Apache Karaf

28

installs the specified bundle and attempts to put it into the resolved state. If the resolution of the bundle
fails for some reason (for example, if one of its dependencies is unsatisfied), the kernel leaves the
bundle in the installed state.

At a later time (for example, after you have installed missing dependencies) you can attempt to move the
bundle into the resolved state by invoking the bundle:resolve command, as follows:

bundle:resolve 181

Where the argument (181, in this example) is the ID of the bundle you want to resolve.

5.3. STARTING AND STOPPING BUNDLES

You can start one or more bundles (from either the installed or the resolved state) using the
bundle:start command. For example, to start the bundles with IDs, 181, 185, and 186, enter the
following console command:

bundle:start 181 185 186

You can stop one or more bundles using the bundle:stop command. For example, to stop the
bundles with IDs, 181, 185, and 186, enter the following console command:

bundle:stop 181 185 186

You can restart one or more bundles (that is, moving from the started state to the resolved state, and
then back again to the started state) using the bundle:restart command. For example, to restart the
bundles with IDs, 181, 185, and 186, enter the following console command:

bundle:restart 181 185 186

5.4. BUNDLE START LEVEL

A start level is associated with every bundle. The start level is a positive integer value that controls the
order in which bundles are activated/started. Bundles with a low start level are started before bundles
with a high start level. Hence, bundles with the start level, 1, are started first and bundles belonging to
the kernel tend to have lower start levels, because they provide the prerequisites for running most other
bundles.

Typically, the start level of user bundles is 60 or higher.

5.5. SPECIFYING A BUNDLE’S START LEVEL

Use the bundle:start-level command to set the start level of a particular bundle. For example, to
configure the bundle with ID, 181, to have a start level of 70, enter the following console command:

bundle:start-level 181 70

5.6. SYSTEM START LEVEL

CHAPTER 5. LIFECYCLE MANAGEMENT

29

The OSGi container itself has a start level associated with it and this system start level determines which
bundles can be active and which cannot: only those bundles whose start level is less than or equal to
the system start level can be active.

To discover the current system start level, enter system:start-level in the console, as follows:

karaf@root()> system:start-level
Level 100

If you want to change the system start level, provide the new start level as an argument to the
system:start-level command, as follows:

system:start-level 200

Red Hat Fuse 7.1 Deploying into Apache Karaf

30

CHAPTER 6. TROUBLESHOOTING DEPENDENCIES

6.1. MISSING DEPENDENCIES

The most common issue that can arise when you deploy an OSGi bundle into the Red Hat Fuse
container is that one or more dependencies are missing. This problem shows itself when you try to
resolve the bundle in the OSGi container, usually as a side effect of starting the bundle. The bundle fails
to resolve (or start) and a ClassNotFound error is logged (to view the log, use the log:display
console command or look at the log file in the FUSE_HOME/data/log directory).

There are two basic causes of a missing dependency: either a required feature or bundle is not installed
in the container; or your bundle’s Import-Package header is incomplete.

6.2. REQUIRED FEATURES OR BUNDLES ARE NOT INSTALLED

Evidently, all features and bundles required by your bundle must already be installed in the OSGi
container, before you attempt to resolve your bundle. In particular, because Apache Camel has a
modular architecture, where each component is installed as a separate feature, it is easy to forget to
install one of the required components.

NOTE

Consider packaging your bundle as a feature. Using a feature, you can package your
bundle together with all of its dependencies and thus ensure that they are all installed
simultaneously. For details, see Chapter 7, Deploying Features.

6.3. IMPORT-PACKAGE HEADER IS INCOMPLETE

If all of the required features and bundles are already installed and you are still getting a
ClassNotFound error, this means that the Import-Package header in your bundle’s MANIFEST.MF
file is incomplete. The maven-bundle-plugin (see Section 3.2, “Modifying an Existing Maven
Project”) is a great help when it comes to generating your bundle’s Import-Package header, but you
should note the following points:

Make sure that you include the wildcard, *, in the Import-Package element of the Maven
bundle plug-in configuration. The wildcard directs the plug-in to scan your Java source code and
automatically generates a list of package dependencies.

The Maven bundle plug-in is not able to figure out dynamic dependencies. For example, if your
Java code explicitly calls a class loader to load a class dynamically, the bundle plug-in does not
take this into account and the required Java package will not be listed in the generated Import-
Package header.

If you define a Blueprint XML file (for example, in the OSGI-INF/blueprint directory), any
dependencies arising from the Blueprint XML file are automatically resolved at run time.

6.4. HOW TO TRACK DOWN MISSING DEPENDENCIES

To track down missing dependencies, perform the following steps:

1. Use the bundle:diag console command. This will provide information about why your bundle
is inactive. See Apache Karaf Console Reference for usage information.

CHAPTER 6. TROUBLESHOOTING DEPENDENCIES

31

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.1/html-single/apache_karaf_console_reference/index

2. Perform a quick check to ensure that all of the required bundles and features are actually
installed in the OSGi container. You can use bundle:list to check which bundles are
installed and features:list to check which features are installed.

3. Install (but do not start) your bundle, using the bundle:install console command. For
example:

karaf@root()> bundle:install MyBundleURL

4. Use the bundle:dynamic-import console command to enable dynamic imports on the
bundle you just installed. For example, if the bundle ID of your bundle is 218, you would enable
dynamic imports on this bundle by entering the following command:

karaf@root()> bundle:dynamic-import 218

This setting allows OSGi to resolve dependencies using any of the bundles already installed in
the container, effectively bypassing the usual dependency resolution mechanism (based on the
Import-Package header). This is not recommemded for normal deployment, because it
bypasses version checks: you could easily pick up the wrong version of a package, causing your
application to malfunction.

5. You should now be able to resolve your bundle. For example, if your bundle ID is 218, enter the
followng console command:

karaf@root()> bundle:resolve 218

6. Assuming your bundle is now resolved (check the bundle status using bundle:list), you can
get a complete list of all the packages wired to your bundle using the package:imports
command. For example, if your bundle ID is 218, enter the following console command:

karaf@root()> package:imports -b 218

You should see a list of dependent packages in the console window:

Package │ Version │ Optional
│ ID │ Bundle Name
─────────────────────────────────────┼───────────────┼────────────┼─
────┼──────────────────────────────────
org.apache.jasper.servlet │ [2.2.0,3.0.0) │ resolved │
217 │ org.ops4j.pax.web.pax-web-runtime
org.jasypt.encryption.pbe │ │ resolved │
217 │ org.ops4j.pax.web.pax-web-runtime
org.ops4j.pax.web.jsp │ [7.0.0,) │ resolved │
217 │ org.ops4j.pax.web.pax-web-runtime
org.ops4j.pax.web.service.spi.model │ [7.0.0,) │ │
217 │ org.ops4j.pax.web.pax-web-runtime
org.ops4j.pax.web.service.spi.util │ [7.0.0,) │ │
217 │ org.ops4j.pax.web.pax-web-runtime
...

7. Unpack your bundle JAR file and look at the packages listed under the Import-Package
header in the META-INF/MANIFEST.MF file. Compare this list with the list of packages found in
the previous step. Now, compile a list of the packages that are missing from the manifest’s

Red Hat Fuse 7.1 Deploying into Apache Karaf

32

Import-Package header and add these package names to the Import-Package element of
the Maven bundle plug-in configuration in your project’s POM file.

8. To cancel the dynamic import option, you must uninstall the old bundle from the OSGi container.
For example, if your bundle ID is 218, enter the following command:

karaf@root()> bundle:uninstall 218

9. You can now rebuild your bundle with the updated list of imported packages and test it in the
OSGi container.

addurl :experimental: :toc: :toclevels: 4 :numbered:

CHAPTER 6. TROUBLESHOOTING DEPENDENCIES

33

CHAPTER 7. DEPLOYING FEATURES

Abstract

Because applications and other tools typically consist of multiple OSGi bundles, it is often convenient to
aggregate inter-dependent or related bundles into a larger unit of deployment. Red Hat Fuse therefore
provides a scalable unit of deployment, the feature, which enables you to deploy multiple bundles (and,
optionally, dependencies on other features) in a single step.

7.1. CREATING A FEATURE

7.1.1. Overview

Essentially, a feature is created by adding a new feature element to a special kind of XML file, known
as a feature repository. To create a feature, perform the following steps:

1. Section 7.2, “Create a custom feature repository”.

2. Section 7.3, “Add a feature to the custom feature repository”.

3. Section 7.4, “Add the local repository URL to the features service”.

4. Section 7.5, “Add dependent features to the feature”.

5. Section 7.6, “Add OSGi configurations to the feature”.

7.2. CREATE A CUSTOM FEATURE REPOSITORY

If you have not already defined a custom feature repository, you can create one as follows. Choose a
convenient location for the feature repository on your file system—for example,
C:\Projects\features.xml—and use your favorite text editor to add the following lines to it:

<?xml version="1.0" encoding="UTF-8"?>
<features name="CustomRepository">
</features>

Where you must specify a name for the repository, CustomRepository, by setting the name attribute.

NOTE

In contrast to a Maven repository or an OBR, a feature repository does not provide a
storage location for bundles. A feature repository merely stores an aggregate of
references to bundles. The bundles themselves are stored elsewhere (for example, in the
file system or in a Maven repository).

7.3. ADD A FEATURE TO THE CUSTOM FEATURE REPOSITORY

To add a feature to the custom feature repository, insert a new feature element as a child of the root
features element. You must give the feature a name and you can list any number of bundles
belonging to the feature, by inserting bundle child elements. For example, to add a feature named
example-camel-bundle containing the single bundle, C:\Projects\camel-
bundle\target\camel-bundle-1.0-SNAPSHOT.jar, add a feature element as follows:

Red Hat Fuse 7.1 Deploying into Apache Karaf

34

<?xml version="1.0" encoding="UTF-8"?>
<features name="MyFeaturesRepo">
 <feature name="example-camel-bundle">
 <bundle>file:C:/Projects/camel-bundle/target/camel-bundle-1.0-
SNAPSHOT.jar</bundle>
 </feature>
</features>

The contents of the bundle element can be any valid URL, giving the location of a bundle (see
Chapter 12, URL Handlers). You can optionally specify a version attribute on the feature element, to
assign a non-zero version to the feature (you can then specify the version as an optional argument to the
features:install command).

To check whether the features service successfully parses the new feature entry, enter the following pair
of console commands:

JBossFuse:karaf@root> features:refreshurl
JBossFuse:karaf@root> features:list
...
[uninstalled] [0.0.0] example-camel-bundle
MyFeaturesRepo
...

The features:list command typically produces a rather long listing of features, but you should be
able to find the entry for your new feature (in this case, example-camel-bundle) by scrolling back
through the listing. The features:refreshurl command forces the kernel to reread all the feature
repositories: if you did not issue this command, the kernel would not be aware of any recent changes
that you made to any of the repositories (in particular, the new feature would not appear in the listing).

To avoid scrolling through the long list of features, you can grep for the example-camel-bundle
feature as follows:

JBossFuse:karaf@root> features:list | grep example-camel-bundle
[uninstalled] [0.0.0] example-camel-bundle
MyFeaturesRepo

Where the grep command (a standard UNIX pattern matching utility) is built into the shell, so this
command also works on Windows platforms.

7.4. ADD THE LOCAL REPOSITORY URL TO THE FEATURES SERVICE

In order to make the new feature repository available to Apache Karaf, you must add the feature
repository using the features:addurl console command. For example, to make the contents of the
repository, C:\Projects\features.xml, available to the kernel, you would enter the following
console command:

features:addurl file:C:/Projects/features.xml

Where the argument to features:addurl can be specified using any of the supported URL formats
(see Chapter 12, URL Handlers).

You can check that the repository’s URL is registered correctly by entering the features:listUrl
console command, to get a complete listing of all registered feature repository URLs, as follows:

CHAPTER 7. DEPLOYING FEATURES

35

JBossFuse:karaf@root> features:listUrl
file:C:/Projects/features.xml
mvn:org.apache.ode/ode-jbi-karaf/1.3.3-fuse-01-00/xml/features
mvn:org.apache.felix.karaf/apache-felix-karaf/1.2.0-fuse-01-
00/xml/features

7.5. ADD DEPENDENT FEATURES TO THE FEATURE

If your feature depends on other features, you can specify these dependencies by adding feature
elements as children of the original feature element. Each child feature element contains the name
of a feature on which the current feature depends. When you deploy a feature with dependent features,
the dependency mechanism checks whether or not the dependent features are installed in the container.
If not, the dependency mechanism automatically installs the missing dependencies (and any recursive
dependencies).

For example, for the custom Apache Camel feature, example-camel-bundle, you can specify
explicitly which standard Apache Camel features it depends on. This has the advantage that the
application could now be successfully deployed and run, even if the OSGi container does not have the
required features pre-deployed. For example, you can define the example-camel-bundle feature
with Apache Camel dependencies as follows:

<?xml version="1.0" encoding="UTF-8"?>
<features name="MyFeaturesRepo">
 <feature name="example-camel-bundle">
 <bundle>file:C:/Projects/camel-bundle/target/camel-bundle-1.0-
SNAPSHOT.jar</bundle>
 <feature version="7.1.0.fuse-710023-redhat-00001">camel-core</feature>
 <feature version="7.1.0.fuse-710023-redhat-00001">camel-spring-
osgi</feature>
 </feature>
</features>

Specifying the version attribute is optional. When present, it enables you to select the specified
version of the feature.

7.6. ADD OSGI CONFIGURATIONS TO THE FEATURE

If your application uses the OSGi Configuration Admin service, you can specify configuration settings for
this service using the config child element of your feature definition. For example, to specify that the
prefix property has the value, MyTransform, add the following config child element to your
feature’s configuration:

<?xml version="1.0" encoding="UTF-8"?>
<features name="MyFeaturesRepo">
 <feature name="example-camel-bundle">
 <config name="org.fusesource.fuseesb.example">
 prefix=MyTransform
 </config>
 </feature>
</features>

Red Hat Fuse 7.1 Deploying into Apache Karaf

36

Where the name attribute of the config element specifies the persistent ID of the property settings
(where the persistent ID acts effectively as a name scope for the property names). The content of the
config element is parsed in the same way as a Java properties file.

The settings in the config element can optionally be overridden by the settings in the Java properties
file located in the InstallDir/etc directory, which is named after the persistent ID, as follows:

InstallDir/etc/org.fusesource.fuseesb.example.cfg

As an example of how the preceding configuration properties can be used in practice, consider the
following Blueprint XML file that accesses the OSGi configuration properties:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-
cm/v1.1.0">

 <!-- osgi blueprint property placeholder -->
 <cm:property-placeholder id="placeholder"
 persistent-
id="org.fusesource.fuseesb.example">
 <cm:default-properties>
 <cm:property name="prefix" value="DefaultValue"/>
 </cm:default-properties>
 </cm:property-placeholder>

 <bean id="myTransform"
class="org.fusesource.fuseesb.example.MyTransform">
 <property name="prefix" value="${prefix}"/>
 </bean>

</blueprint>

When this Blueprint XML file is deployed in the example-camel-bundle bundle, the property
reference, ${prefix}, is replaced by the value, MyTransform, which is specified by the config
element in the feature repository.

7.7. AUTOMATICALLY DEPLOY AN OSGI CONFIGURATION

By adding a configfile element to a feature, you can ensure that an OSGi configuration file gets
added to the InstallDir/etc directory at the same time that the feature is installed. This means that
you can conveniently install a feature and its associated configuration at the same time.

For example, given that the org.fusesource.fuseesb.example.cfg configuration file is archived
in a Maven repository at mvn:org.fusesource.fuseesb.example/configadmin/1.0/cfg, you
could deploy the configuration file by adding the following element to the feature:

<configfile finalname="etc/org.fusesource.fuseesb.example.cfg">
 mvn:org.fusesource.fuseesb.example/configadmin/1.0/cfg
</configfile>

CHAPTER 7. DEPLOYING FEATURES

37

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html#load%28java.io.InputStream%29

CHAPTER 8. DEPLOYING A FEATURE

8.1. OVERVIEW

You can deploy a feature in one of the following ways:

Install at the console, using features:install.

Use hot deployment.

Modify the boot configuration (first boot only!).

8.2. INSTALLING AT THE CONSOLE

After you have created a feature (by adding an entry for it in a feature repository and registering the
feature repository), it is relatively easy to deploy the feature using the features:install console
command. For example, to deploy the example-camel-bundle feature, enter the following pair of
console commands:

JBossFuse:karaf@root> features:refreshurl
JBossFuse:karaf@root> features:install example-camel-bundle

It is recommended that you invoke the features:refreshurl command before calling
features:install, in case any recent changes were made to the features in the feature repository
which the kernel has not picked up yet. The features:install command takes the feature name as
its argument (and, optionally, the feature version as its second argument).

NOTE

Features use a flat namespace. So when naming your features, be careful to avoid name
clashes with existing features.

8.3. UNINSTALLING AT THE CONSOLE

To uninstall a feature, invoke the features:uninstall command as follows:

JBossFuse:karaf@root> features:uninstall example-camel-bundle

NOTE

After uninstalling, the feature will still be visible when you invoke features:list, but its
status will now be flagged as [uninstalled].

8.4. HOT DEPLOYMENT

You can hot deploy all of the features in a feature repository simply by copying the feature repository file
into the InstallDir/deploy directory.

As it is unlikely that you would want to hot deploy an entire feature repository at once, it is often more
convenient to define a reduced feature repository or feature descriptor, which references only those
features you want to deploy. The feature descriptor has exactly the same syntax as a feature repository,

Red Hat Fuse 7.1 Deploying into Apache Karaf

38

but it is written in a different style. The difference is that a feature descriptor consists only of references
to existing features from a feature repository.

For example, you could define a feature descriptor to load the example-camel-bundle feature as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<features name="CustomDescriptor">
 <repository>RepositoryURL</repository>
 <feature name="hot-example-camel-bundle">
 <feature>example-camel-bundle</feature>
 </feature>
</features>

The repository element specifies the location of the custom feature repository, RepositoryURL (where
you can use any of the URL formats described in Chapter 12, URL Handlers). The feature, hot-
example-camel-bundle, is just a reference to the existing feature, example-camel-bundle.

HOT UNDEPLOYING A FEATURES FILE

To undeploy a features file from the hot deploy directory, simply delete the features file from the
InstallDir/deploy directory while the Apache Karaf container is running.

IMPORTANT

The hot undeploy mechanism does not work while the container is shut down. If you shut
down the Karaf container, delete the features file from deploy/, and then restart the
Karaf container, the features will not be undeployed after you restart the container (you
can, however, undeploy the features manually using the features:uninstall console
command).

8.5. ADDING A FEATURE TO THE BOOT CONFIGURATION

If you want to provision copies of Apache Karaf for deployment on multiple hosts, you might be interested
in adding a feature to the boot configuration, which determines the collection of features that are installed
when Apache Karaf boots up for the very first time.

The configuration file, /etc/org.apache.karaf.features.cfg, in your install directory contains the
following settings:

...
#
Comma separated list of features repositories to register by default
#
featuresRepositories = \
 mvn:org.apache-extras.camel-extra.karaf/camel-extra/2.21.0.fuse-
000032-redhat-2/xml/features, \
 mvn:org.apache.karaf.features/spring-legacy/4.2.0.fuse-000191-redhat-
1/xml/features, \
 mvn:org.apache.activemq/artemis-features/2.4.0.amq-710008-redhat-
1/xml/features, \
 mvn:org.jboss.fuse.modules.patch/patch-features/7.0.0.fuse-000163-
redhat-2/xml/features, \
 mvn:org.apache.karaf.features/framework/4.2.0.fuse-000191-redhat-

CHAPTER 8. DEPLOYING A FEATURE

39

1/xml/features, \
 mvn:org.jboss.fuse/fuse-karaf-framework/7.0.0.fuse-000163-redhat-
2/xml/features, \
 mvn:org.apache.karaf.features/standard/4.2.0.fuse-000191-redhat-
1/xml/features, \
 mvn:org.apache.karaf.features/enterprise/4.2.0.fuse-000191-redhat-
1/xml/features, \
 mvn:org.apache.camel.karaf/apache-camel/2.21.0.fuse-000055-redhat-
2/xml/features, \
 mvn:org.apache.cxf.karaf/apache-cxf/3.1.11.fuse-000199-redhat-
1/xml/features, \
 mvn:io.hawt/hawtio-karaf/2.0.0.fuse-000145-redhat-1/xml/features

#
Comma separated list of features to install at startup
#
featuresBoot = \
 instance/4.2.0.fuse-000191-redhat-1, \
 cxf-commands/3.1.11.fuse-000199-redhat-1, \
 log/4.2.0.fuse-000191-redhat-1, \
 pax-cdi-weld/1.0.0, \
 camel-jms/2.21.0.fuse-000055-redhat-2, \
 ssh/4.2.0.fuse-000191-redhat-1, \
 camel-cxf/2.21.0.fuse-000055-redhat-2, \
 aries-blueprint/4.2.0.fuse-000191-redhat-1, \
 cxf/3.1.11.fuse-000199-redhat-1, \
 cxf-http-undertow/3.1.11.fuse-000199-redhat-1, \
 pax-jdbc-pool-narayana/1.2.0, \
 patch/7.0.0.fuse-000163-redhat-2, \
 cxf-rs-description-swagger2/3.1.11.fuse-000199-redhat-1, \
 feature/4.2.0.fuse-000191-redhat-1, \
 camel/2.21.0.fuse-000055-redhat-2, \
 jaas/4.2.0.fuse-000191-redhat-1, \
 camel-jaxb/2.21.0.fuse-000055-redhat-2, \
 camel-paxlogging/2.21.0.fuse-000055-redhat-2, \
 deployer/4.2.0.fuse-000191-redhat-1, \
 diagnostic/4.2.0.fuse-000191-redhat-1, \
 patch-management/7.0.0.fuse-000163-redhat-2, \
 bundle/4.2.0.fuse-000191-redhat-1, \
 kar/4.2.0.fuse-000191-redhat-1, \
 camel-csv/2.21.0.fuse-000055-redhat-2, \
 package/4.2.0.fuse-000191-redhat-1, \
 scr/4.2.0.fuse-000191-redhat-1, \
 maven/4.2.0.fuse-000191-redhat-1, \
 war/4.2.0.fuse-000191-redhat-1, \
 camel-mail/2.21.0.fuse-000055-redhat-2, \
 fuse-credential-store/7.0.0.fuse-000163-redhat-2, \
 framework/4.2.0.fuse-000191-redhat-1, \
 system/4.2.0.fuse-000191-redhat-1, \
 pax-http-undertow/6.1.2, \
 camel-jdbc/2.21.0.fuse-000055-redhat-2, \
 shell/4.2.0.fuse-000191-redhat-1, \
 management/4.2.0.fuse-000191-redhat-1, \
 service/4.2.0.fuse-000191-redhat-1, \
 camel-undertow/2.21.0.fuse-000055-redhat-2, \
 camel-blueprint/2.21.0.fuse-000055-redhat-2, \

Red Hat Fuse 7.1 Deploying into Apache Karaf

40

 camel-spring/2.21.0.fuse-000055-redhat-2, \
 hawtio/2.0.0.fuse-000145-redhat-1, \
 camel-ftp/2.21.0.fuse-000055-redhat-2, \
 wrap/2.5.4, \
 config/4.2.0.fuse-000191-redhat-1, \
 transaction-manager-narayana/5.7.2.Final

This configuration file has two properties:

featuresRepositories—comma separated list of feature repositories to load at startup.

featuresBoot—comma separated list of features to install at startup.

You can modify the configuration to customize the features that are installed as Fuse starts up. You can
also modify this configuration file, if you plan to distribute Fuse with pre-installed features.

IMPORTANT

This method of adding a feature is only effective the first time a particular Apache Karaf
instance boots up. Any changes made subsequently to the featuresRepositories
setting and the featuresBoot setting are ignored, even if you restart the container.

You could force the container to revert back to its initial state, however, by deleting the
complete contents of the InstallDir/data/cache (thereby losing all of the container’s
custom settings).

CHAPTER 8. DEPLOYING A FEATURE

41

CHAPTER 9. DEPLOYING A PLAIN JAR

Abstract

An alternative method of deploying applications into Apache Karaf is to use plain JAR files. These are
usually libraries that contain no deployment metadata. A plain JAR is neither a WAR, nor an OSGi
bundle.

If the plain JAR occurs as a dependency of a bundle, you must add bundle headers to the JAR. If the
JAR exposes a public API, typically the best solution is to convert the existing JAR into a bundle,
enabling the JAR to be shared with other bundles. Use the instructions in this chapter to perform the
conversion process automatically, using the open source Bnd tool.

For more information on the Bnd tool, see Bnd tools website.

9.1. CONVERTING A JAR USING THE WRAP SCHEME

Overview

You have the option of converting a JAR into a bundle using the wrap: protocol, which can be used with
any existing URL format. The wrap: protocol is based on the Bnd utility.

Syntax

The wrap: protocol has the following basic syntax:

wrap:LocationURL

The wrap: protocol can prefix any URL that locates a JAR. The locating part of the URL, LocationURL,
is used to obtain the plain JAR and the URL handler for the wrap: protocol then converts the JAR
automatically into a bundle.

NOTE

The wrap: protocol also supports a more elaborate syntax, which enables you to
customize the conversion by specifying a Bnd properties file or by specifying individual
Bnd properties in the URL. Typically, however, the wrap: protocol is used just with the
default settings.

Default properties

The wrap: protocol is based on the Bnd utility, so it uses exactly the same default properties to
generate the bundle as Bnd does.

WRAP AND INSTALL

The following example shows how you can use a single console command to download the plain
commons-logging JAR from a remote Maven repository, dynamically convert it into an OSGi bundle,
and then install it and start it in the OSGi container:

karaf@root> bundle:install -s wrap:mvn:commons-logging/commons-
logging/1.1.1

Red Hat Fuse 7.1 Deploying into Apache Karaf

42

http://bndtools.org/

Reference

The wrap: protocol is provided by the Pax project, which is the umbrella project for a variety of open
source OSGi utilities. For full documentation on the wrap: protocol, see the Wrap Protocol reference
page.

CHAPTER 9. DEPLOYING A PLAIN JAR

43

http://team.ops4j.org/wiki/display/ops4j/Pax
http://team.ops4j.org/wiki/display/paxurl/WrapProtocol

CHAPTER 10. OSGI SERVICES

Abstract

The OSGi core framework defines the OSGi Service Layer, which provides a simple mechanism for
bundles to interact by registering Java objects as services in the OSGi service registry. One of the
strengths of the OSGi service model is that any Java object can be offered as a service: there are no
particular constraints, inheritance rules, or annotations that must be applied to the service class. This
chapter describes how to deploy an OSGi service using the OSGi Blueprint container.

10.1. THE BLUEPRINT CONTAINER

Abstract

The Blueprint container is a dependency injection framework that simplifies interaction with the OSGi
container. The Blueprint container supports a configuration-based approach to using the OSGi service
registry—for example, providing standard XML elements to import and export OSGi services.

10.1.1. Blueprint Configuration

Location of Blueprint files in a JAR file

Relative to the root of the bundle JAR file, the standard location for Blueprint configuration files is the
following directory:

OSGI-INF/blueprint

Any files with the suffix, .xml, under this directory are interpreted as Blueprint configuration files; in
other words, any files that match the pattern, OSGI-INF/blueprint/*.xml.

Location of Blueprint files in a Maven project

In the context of a Maven project, ProjectDir, the standard location for Blueprint configuration files is the
following directory:

ProjectDir/src/main/resources/OSGI-INF/blueprint

Blueprint namespace and root element

Blueprint configuration elements are associated with the following XML namespace:

http://www.osgi.org/xmlns/blueprint/v1.0.0

The root element for Blueprint configuration is blueprint, so a Blueprint XML configuration file
normally has the following outline form:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 ...
</blueprint>

Red Hat Fuse 7.1 Deploying into Apache Karaf

44

NOTE

In the blueprint root element, there is no need to specify the location of the Blueprint
schema using an xsi:schemaLocation attribute, because the schema location is
already known to the Blueprint framework.

Blueprint Manifest configuration

Some aspects of Blueprint configuration are controlled by headers in the JAR’s manifest file, META-
INF/MANIFEST.MF, as follows:

Custom Blueprint file locations.

Mandatory dependencies.

Custom Blueprint file locations

If you need to place your Blueprint configuration files in a non-standard location (that is, somewhere
other than OSGI-INF/blueprint/*.xml), you can specify a comma-separated list of alternative
locations in the Bundle-Blueprint header in the manifest file—for example:

Bundle-Blueprint: lib/account.xml, security.bp, cnf/*.xml

Mandatory dependencies

Dependencies on an OSGi service are mandatory by default (although this can be changed by setting
the availability attribute to optional on a reference element or a reference-list element).
Declaring a dependency to be mandatory means that the bundle cannot function properly without that
dependency and the dependency must be available at all times.

Normally, while a Blueprint container is initializing, it passes through a grace period, during which time it
attempts to resolve all mandatory dependencies. If the mandatory dependencies cannot be resolved in
this time (the default timeout is 5 minutes), container initialization is aborted and the bundle is not started.
The following settings can be appended to the Bundle-SymbolicName manifest header to configure
the grace period:

blueprint.graceperiod

If true (the default), the grace period is enabled and the Blueprint container waits for mandatory
dependencies to be resolved during initialization; if false, the grace period is skipped and the
container does not check whether the mandatory dependencies are resolved.

blueprint.timeout

Specifies the grace period timeout in milliseconds. The default is 300000 (5 minutes).

For example, to enable a grace period of 10 seconds, you could define the following Bundle-
SymbolicName header in the manifest file:

Bundle-SymbolicName: org.fusesource.example.osgi-client;
 blueprint.graceperiod:=true;
 blueprint.timeout:= 10000

The value of the Bundle-SymbolicName header is a semi-colon separated list, where the first item is
the actual bundle symbolic name, the second item, blueprint.graceperiod:=true, enables the
grace period and the third item, blueprint.timeout:= 10000, specifies a 10 second timeout.

CHAPTER 10. OSGI SERVICES

45

10.1.2. Defining a Service Bean

Overview

The Blueprint container enables you to instantiate Java classes using a bean element. You can create
all of your main application objects this way. In particular, you can use the bean element to create a
Java object that represents an OSGi service instance.

Blueprint bean element

The Blueprint bean element is defined in the Blueprint schema namespace,
http://www.osgi.org/xmlns/blueprint/v1.0.0.

Sample beans

The following example shows how to create a few different types of bean using Blueprint’s bean
element:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <bean id="label" class="java.lang.String">
 <argument value="LABEL_VALUE"/>
 </bean>

 <bean id="myList" class="java.util.ArrayList">
 <argument type="int" value="10"/>
 </bean>

 <bean id="account" class="org.fusesource.example.Account">
 <property name="accountName" value="john.doe"/>
 <property name="balance" value="10000"/>
 </bean>

</blueprint>

Where the Account class referenced by the last bean example could be defined as follows:

package org.fusesource.example;

public class Account
{
 private String accountName;
 private int balance;

 public Account () { }

 public void setAccountName(String name) {
 this.accountName = name;
 }

 public void setBalance(int bal) {
 this.balance = bal;
 }
 ...
}

Red Hat Fuse 7.1 Deploying into Apache Karaf

46

http://www.osgi.org/xmlns/blueprint/v1.0.0

References

For more details on defining Blueprint beans, consult the following references:

Spring Dynamic Modules Reference Guide v2.0, Blueprint chapter.

Section 121 Blueprint Container Specification, from the OSGi Compendium Services R4.2
specification.

10.1.3. Using properties to configure Blueprint

Overview

This section describes how to configure Blueprint using properties held in a file which is outside the
Camel context.

Configuring Blueprint beans

Blueprint beans can be configured by using variables that can be substitued with properties from an
external file. You need to declare the ext namespace and add the property placeholder bean in
your Blueprint xml. Use the Property-Placeholder bean to declare the location of your properties file
to Blueprint.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.2.0">

 <ext:property-placeholder>
 <ext:location>file:etc/ldap.properties</ext:location>
 </ext:property-placeholder>
 ...
 <bean ...>
 <property name="myProperty" value="${myProperty}" />
 </bean>
</blueprint>

The specification of property-placeholder configuration options can be found at
http://aries.apache.org/schemas/blueprint-ext/blueprint-ext.xsd.

10.2. EXPORTING A SERVICE

Overview

This section describes how to export a Java object to the OSGi service registry, thus making it
accessible as a service to other bundles in the OSGi container.

Exporting with a single interface

To export a service to the OSGi service registry under a single interface name, define a service
element that references the relevant service bean, using the ref attribute, and specifies the published
interface, using the interface attribute.

For example, you could export an instance of the SavingsAccountImpl class under the
org.fusesource.example.Account interface name using the Blueprint configuration code shown in
Example 10.1, “Sample Service Export with a Single Interface”.

CHAPTER 10. OSGI SERVICES

47

https://docs.spring.io/spring-osgi/docs/2.0.0.M1/reference/html/blueprint.html
http://www.osgi.org/Release4/Download
http://aries.apache.org/schemas/blueprint-ext/blueprint-ext.xsd

Example 10.1. Sample Service Export with a Single Interface

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>

 <service ref="savings" interface="org.fusesource.example.Account"/>

</blueprint>

Where the ref attribute specifies the ID of the corresponding bean instance and the interface
attribute specifies the name of the public Java interface under which the service is registered in the OSGi
service registry. The classes and interfaces used in this example are shown in Example 10.2, “Sample
Account Classes and Interfaces”

Example 10.2. Sample Account Classes and Interfaces

package org.fusesource.example

public interface Account { ... }

public interface SavingsAccount { ... }

public interface CheckingAccount { ... }

public class SavingsAccountImpl implements SavingsAccount
{
 ...
}

public class CheckingAccountImpl implements CheckingAccount
{
 ...
}

Exporting with multiple interfaces

To export a service to the OSGi service registry under multiple interface names, define a service
element that references the relevant service bean, using the ref attribute, and specifies the published
interfaces, using the interfaces child element.

For example, you could export an instance of the SavingsAccountImpl class under the list of public
Java interfaces, org.fusesource.example.Account and
org.fusesource.example.SavingsAccount, using the following Blueprint configuration code:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>
 <service ref="savings">
 <interfaces>
 <value>org.fusesource.example.Account</value>
 <value>org.fusesource.example.SavingsAccount</value>
 </interfaces>

Red Hat Fuse 7.1 Deploying into Apache Karaf

48

 </service>
 ...
</blueprint>

NOTE

The interface attribute and the interfaces element cannot be used simultaneously
in the same service element. You must use either one or the other.

Exporting with auto-export

If you want to export a service to the OSGi service registry under all of its implemented public Java
interfaces, there is an easy way of accomplishing this using the auto-export attribute.

For example, to export an instance of the SavingsAccountImpl class under all of its implemented
public interfaces, use the following Blueprint configuration code:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>
 <service ref="savings" auto-export="interfaces"/>
 ...
</blueprint>

Where the interfaces value of the auto-export attribute indicates that Blueprint should register all
of the public interfaces implemented by SavingsAccountImpl. The auto-export attribute can have
the following valid values:

disabled

Disables auto-export. This is the default.

interfaces

Registers the service under all of its implemented public Java interfaces.

class-hierarchy

Registers the service under its own type (class) and under all super-types (super-classes), except for
the Object class.

all-classes

Like the class-hierarchy option, but including all of the implemented public Java interfaces as
well.

Setting service properties

The OSGi service registry also allows you to associate service properties with a registered service.
Clients of the service can then use the service properties to search for or filter services. To associate
service properties with an exported service, add a service-properties child element that contains
one or more beans:entry elements (one beans:entry element for each service property).

For example, to associate the bank.name string property with a savings account service, you could use
the following Blueprint configuration:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:beans="http://www.springframework.org/schema/beans"
 ...>
 ...

CHAPTER 10. OSGI SERVICES

49

 <service ref="savings" auto-export="interfaces">
 <service-properties>
 <beans:entry key="bank.name" value="HighStreetBank"/>
 </service-properties>
 </service>
 ...
</blueprint>

Where the bank.name string property has the value, HighStreetBank. It is possible to define service
properties of type other than string: that is, primitive types, arrays, and collections are also supported.
For details of how to define these types, see Controlling the Set of Advertised Properties. in the Spring
Reference Guide.

NOTE

The entry element ought to belong to the Blueprint namespace. The use of the
beans:entry element in Spring’s implementation of Blueprint is non-standard.

Default service properties

There are two service properties that might be set automatically when you export a service using the
service element, as follows:

osgi.service.blueprint.compname—is always set to the id of the service’s bean
element, unless the bean is inlined (that is, the bean is defined as a child element of the
service element). Inlined beans are always anonymous.

service.ranking—is automatically set, if the ranking attribute is non-zero.

Specifying a ranking attribute

If a bundle looks up a service in the service registry and finds more than one matching service, you can
use ranking to determine which of the services is returned. The rule is that, whenever a lookup matches
multiple services, the service with the highest rank is returned. The service rank can be any non-negative
integer, with 0 being the default. You can specify the service ranking by setting the ranking attribute on
the service element—for example:

<service ref="savings" interface="org.fusesource.example.Account"
ranking="10"/>

Specifying a registration listener

If you want to keep track of service registration and unregistration events, you can define a registration
listener callback bean that receives registration and unregistration event notifications. To define a
registration listener, add a registration-listener child element to a service element.

For example, the following Blueprint configuration defines a listener bean, listenerBean, which is
referenced by a registration-listener element, so that the listener bean receives callbacks
whenever an Account service is registered or unregistered:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0" ...>
 ...
 <bean id="listenerBean" class="org.fusesource.example.Listener"/>

 <service ref="savings" auto-export="interfaces">

Red Hat Fuse 7.1 Deploying into Apache Karaf

50

http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/service-registry.html#service-registry:export:props

 <registration-listener
 ref="listenerBean"
 registration-method="register"
 unregistration-method="unregister"/>
 </service>
 ...
</blueprint>

Where the registration-listener element’s ref attribute references the id of the listener bean,
the registration-method attribute specifies the name of the listener method that receives the
registration callback, and unregistration-method attribute specifies the name of the listener method
that receives the unregistration callback.

The following Java code shows a sample definition of the Listener class that receives notifications of
registration and unregistration events:

package org.fusesource.example;

public class Listener
{
 public void register(Account service, java.util.Map serviceProperties)
{
 ...
 }

 public void unregister(Account service, java.util.Map
serviceProperties) {
 ...
 }
}

The method names, register and unregister, are specified by the registration-method and
unregistration-method attributes respectively. The signatures of these methods must conform to
the following syntax:

First method argument—any type T that is assignable from the service object’s type. In other
words, any supertype class of the service class or any interface implemented by the service
class. This argument contains the service instance, unless the service bean declares the scope
to be prototype, in which case this argument is null (when the scope is prototype, no
service instance is available at registration time).

Second method argument—must be of either java.util.Map type or
java.util.Dictionary type. This map contains the service properties associated with this
service registration.

10.3. IMPORTING A SERVICE

Overview

This section describes how to obtain and use references to OSGi services that have been exported to
the OSGi service registry. You can use either the reference element or the reference-list
element to import an OSGi service. The reference element is suitable for accessing stateless
services, while the reference-list element is suitable for accessing stateful services.

Managing service references

CHAPTER 10. OSGI SERVICES

51

The following models for obtaining OSGi services references are supported:

Reference manager.

Reference list manager.

Reference manager

A reference manager instance is created by the Blueprint reference element. This element returns a
single service reference and is the preferred approach for accessing stateless services. Figure 10.1,
“Reference to Stateless Service” shows an overview of the model for accessing a stateless service using
the reference manager.

Figure 10.1. Reference to Stateless Service

Beans in the client Blueprint container get injected with a proxy object (the provided object), which is
backed by a service object (the backing service) from the OSGi service registry. This model explicitly
takes advantage of the fact that stateless services are interchangeable, in the following ways:

If multiple services instances are found that match the criteria in the reference element, the
reference manager can arbitrarily choose one of them as the backing instance (because they are
interchangeable).

If the backing service disappears, the reference manager can immediately switch to using one of
the other available services of the same type. Hence, there is no guarantee, from one method
invocation to the next, that the proxy remains connected to the same backing service.

The contract between the client and the backing service is thus stateless, and the client must not
assume that it is always talking to the same service instance. If no matching service instances are
available, the proxy will wait for a certain length of time before throwing the ServiceUnavailable
exception. The length of the timeout is configurable by setting the timeout attribute on the reference
element.

Reference list manager

A reference list manager instance is created by the Blueprint reference-list element. This element
returns a list of service references and is the preferred approach for accessing stateful services.
Figure 10.2, “List of References to Stateful Services” shows an overview of the model for accessing a

Red Hat Fuse 7.1 Deploying into Apache Karaf

52

stateful service using the reference list manager.

Figure 10.2. List of References to Stateful Services

Beans in the client Blueprint container get injected with a java.util.List object (the provided object),
which contains a list of proxy objects. Each proxy is backed by a unique service instance in the OSGi
service registry. Unlike the stateless model, backing services are not considered to be interchangeable
here. In fact, the lifecycle of each proxy in the list is tightly linked to the lifecycle of the corresponding
backing service: when a service gets registered in the OSGi registry, a corresponding proxy is
synchronously created and added to the proxy list; and when a service gets unregistered from the OSGi
registry, the corresponding proxy is synchronously removed from the proxy list.

The contract between a proxy and its backing service is thus stateful, and the client may assume when
it invokes methods on a particular proxy, that it is always communicating with the same backing service.
It could happen, however, that the backing service becomes unavailable, in which case the proxy
becomes stale. Any attempt to invoke a method on a stale proxy will generate the
ServiceUnavailable exception.

Matching by interface (stateless)

The simplest way to obtain a stateles service reference is by specifying the interface to match, using the
interface attribute on the reference element. The service is deemed to match, if the interface
attribute value is a super-type of the service or if the attribute value is a Java interface implemented by
the service (the interface attribute can specify either a Java class or a Java interface).

For example, to reference a stateless SavingsAccount service (see Example 10.1, “Sample Service
Export with a Single Interface”), define a reference element as follows:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <reference id="savingsRef"
 interface="org.fusesource.example.SavingsAccount"/>

CHAPTER 10. OSGI SERVICES

53

 <bean id="client" class="org.fusesource.example.client.Client">
 <property name="savingsAccount" ref="savingsRef"/>
 </bean>

</blueprint>

Where the reference element creates a reference manager bean with the ID, savingsRef. To use the
referenced service, inject the savingsRef bean into one of your client classes, as shown.

The bean property injected into the client class can be any type that is assignable from
SavingsAccount. For example, you could define the Client class as follows:

package org.fusesource.example.client;

import org.fusesource.example.SavingsAccount;

public class Client {
 SavingsAccount savingsAccount;

 // Bean properties
 public SavingsAccount getSavingsAccount() {
 return savingsAccount;
 }

 public void setSavingsAccount(SavingsAccount savingsAccount) {
 this.savingsAccount = savingsAccount;
 }
 ...
}

Matching by interface (stateful)

The simplest way to obtain a stateful service reference is by specifying the interface to match, using the
interface attribute on the reference-list element. The reference list manager then obtains a list of
all the services, whose interface attribute value is either a super-type of the service or a Java
interface implemented by the service (the interface attribute can specify either a Java class or a Java
interface).

For example, to reference a stateful SavingsAccount service (see Example 10.1, “Sample Service
Export with a Single Interface”), define a reference-list element as follows:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <reference-list id="savingsListRef"
 interface="org.fusesource.example.SavingsAccount"/>

 <bean id="client" class="org.fusesource.example.client.Client">
 <property name="savingsAccountList" ref="savingsListRef"/>
 </bean>

</blueprint>

Red Hat Fuse 7.1 Deploying into Apache Karaf

54

Where the reference-list element creates a reference list manager bean with the ID,
savingsListRef. To use the referenced service list, inject the savingsListRef bean reference into
one of your client classes, as shown.

By default, the savingsAccountList bean property is a list of service objects (for example,
java.util.List<SavingsAccount>). You could define the client class as follows:

package org.fusesource.example.client;

import org.fusesource.example.SavingsAccount;

public class Client {
 java.util.List<SavingsAccount> accountList;

 // Bean properties
 public java.util.List<SavingsAccount> getSavingsAccountList() {
 return accountList;
 }

 public void setSavingsAccountList(
 java.util.List<SavingsAccount> accountList
) {
 this.accountList = accountList;
 }
 ...
}

Matching by interface and component name

To match both the interface and the component name (bean ID) of a stateless service, specify both the
interface attribute and the component-name attribute on the reference element, as follows:

<reference id="savingsRef"
 interface="org.fusesource.example.SavingsAccount"
 component-name="savings"/>

To match both the interface and the component name (bean ID) of a stateful service, specify both the
interface attribute and the component-name attribute on the reference-list element, as follows:

<reference-list id="savingsRef"
 interface="org.fusesource.example.SavingsAccount"
 component-name="savings"/>

Matching service properties with a filter

You can select services by matching service properties against a filter. The filter is specified using the
filter attribute on the reference element or on the reference-list element. The value of the
filter attribute must be an LDAP filter expression. For example, to define a filter that matches when
the bank.name service property equals HighStreetBank, you could use the following LDAP filter
expression:

(bank.name=HighStreetBank)

CHAPTER 10. OSGI SERVICES

55

To match two service property values, you can use & conjunction, which combines expressions with a
logical and.For example, to require that the foo property is equal to FooValue and the bar property is
equal to BarValue, you could use the following LDAP filter expression:

(&(foo=FooValue)(bar=BarValue))

For the complete syntax of LDAP filter expressions, see section 3.2.7 of the OSGi Core Specification.

Filters can also be combined with the interface and component-name settings, in which case all of
the specified conditions are required to match.

For example, to match a stateless service of SavingsAccount type, with a bank.name service
property equal to HighStreetBank, you could define a reference element as follows:

<reference id="savingsRef"
 interface="org.fusesource.example.SavingsAccount"
 filter="(bank.name=HighStreetBank)"/>

To match a stateful service of SavingsAccount type, with a bank.name service property equal to
HighStreetBank, you could define a reference-list element as follows:

<reference-list id="savingsRef"
 interface="org.fusesource.example.SavingsAccount"
 filter="(bank.name=HighStreetBank)"/>

Specifying whether mandatory or optional

By default, a reference to an OSGi service is assumed to be mandatory (see Mandatory dependencies).
It is possible to customize the dependency behavior of a reference element or a reference-list
element by setting the availability attribute on the element.

There are two possible values of the availability attribute:

mandatory (the default), means that the dependency must be resolved during a normal
Blueprint container initialization

optional, means that the dependency need not be resolved during initialization.

The following example of a reference element shows how to declare explicitly that the reference is a
mandatory dependency:

<reference id="savingsRef"
 interface="org.fusesource.example.SavingsAccount"
 availability="mandatory"/>

Specifying a reference listener

To cope with the dynamic nature of the OSGi environment—for example, if you have declared some of
your service references to have optional availability—it is often useful to track when a backing service
gets bound to the registry and when it gets unbound from the registry. To receive notifications of service
binding and unbinding events, you can define a reference-listener element as the child of either
the reference element or the reference-list element.

Red Hat Fuse 7.1 Deploying into Apache Karaf

56

For example, the following Blueprint configuration shows how to define a reference listener as a child of
the reference manager with the ID, savingsRef:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <reference id="savingsRef"
 interface="org.fusesource.example.SavingsAccount"
 >
 <reference-listener bind-method="onBind" unbind-method="onUnbind">
 <bean class="org.fusesource.example.client.Listener"/>
 </reference-listener>
 </reference>

 <bean id="client" class="org.fusesource.example.client.Client">
 <property name="savingsAcc" ref="savingsRef"/>
 </bean>

</blueprint>

The preceding configuration registers an instance of org.fusesource.example.client.Listener
type as a callback that listens for bind and unbind events. Events are generated whenever the
savingsRef reference manager’s backing service binds or unbinds.

The following example shows a sample implementation of the Listener class:

package org.fusesource.example.client;

import org.osgi.framework.ServiceReference;

public class Listener {

 public void onBind(ServiceReference ref) {
 System.out.println("Bound service: " + ref);
 }

 public void onUnbind(ServiceReference ref) {
 System.out.println("Unbound service: " + ref);
 }

}

The method names, onBind and onUnbind, are specified by the bind-method and unbind-method
attributes respectively. Both of these callback methods take an
org.osgi.framework.ServiceReference argument.

10.4. PUBLISHING AN OSGI SERVICE

10.4.1. Overview

This section explains how to generate, build, and deploy a simple OSGi service in the OSGi container.
The service is a simple Hello World Java class and the OSGi configuration is defined using a Blueprint
configuration file.

CHAPTER 10. OSGI SERVICES

57

10.4.2. Prerequisites

In order to generate a project using the Maven Quickstart archetype, you must have the following
prerequisites:

Maven installation—Maven is a free, open source build tool from Apache. You can download
the latest version from http://maven.apache.org/download.html (minimum is 2.0.9).

Internet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your build
machine must be connected to the Internet.

10.4.3. Generating a Maven project

The maven-archetype-quickstart archetype creates a generic Maven project, which you can then
customize for whatever purpose you like. To generate a Maven project with the coordinates,
org.fusesource.example:osgi-service, enter the following command:

mvn archetype:create
-DarchetypeArtifactId=maven-archetype-quickstart
-DgroupId=org.fusesource.example
-DartifactId=osgi-service

The result of this command is a directory, ProjectDir/osgi-service, containing the files for the
generated project.

NOTE

Be careful not to choose a group ID for your artifact that clashes with the group ID
of an existing product! This could lead to clashes between your project’s packages and
the packages from the existing product (because the group ID is typically used as the root
of a project’s Java package names).

10.4.4. Customizing the POM file

You must customize the POM file in order to generate an OSGi bundle, as follows:

1. Follow the POM customization steps described in Section 3.1, “Generating a Bundle Project”.

2. In the configuration of the Maven bundle plug-in, modify the bundle instructions to export the
org.fusesource.example.service package, as follows:

<project ... >
 ...
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${pom.groupId}.${pom.artifactId}

Red Hat Fuse 7.1 Deploying into Apache Karaf

58

http://maven.apache.org/download.html

</Bundle-SymbolicName>
 <Export-Package>org.fusesource.example.service</Export-
Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
</project>

10.4.5. Writing the service interface

Create the ProjectDir/osgi-service/src/main/java/org/fusesource/example/service
sub-directory. In this directory, use your favorite text editor to create the file, HelloWorldSvc.java,
and add the code from Example 10.3, “The HelloWorldSvc Interface” to it.

Example 10.3. The HelloWorldSvc Interface

package org.fusesource.example.service;

public interface HelloWorldSvc
{
 public void sayHello();
}

10.4.6. Writing the service class

Create the ProjectDir/osgi-
service/src/main/java/org/fusesource/example/service/impl sub-directory. In this
directory, use your favorite text editor to create the file, HelloWorldSvcImpl.java, and add the code
from Example 10.4, “The HelloWorldSvcImpl Class” to it.

Example 10.4. The HelloWorldSvcImpl Class

package org.fusesource.example.service.impl;

import org.fusesource.example.service.HelloWorldSvc;

public class HelloWorldSvcImpl implements HelloWorldSvc {

 public void sayHello()
 {
 System.out.println("Hello World!");
 }

}

10.4.7. Writing the Blueprint file

CHAPTER 10. OSGI SERVICES

59

The Blueprint configuration file is an XML file stored under the OSGI-INF/blueprint directory on the
class path. To add a Blueprint file to your project, first create the following sub-directories:

ProjectDir/osgi-service/src/main/resources
ProjectDir/osgi-service/src/main/resources/OSGI-INF
ProjectDir/osgi-service/src/main/resources/OSGI-INF/blueprint

Where the src/main/resources is the standard Maven location for all JAR resources. Resource files
under this directory will automatically be packaged in the root scope of the generated bundle JAR.

Example 10.5, “Blueprint File for Exporting a Service” shows a sample Blueprint file that creates a
HelloWorldSvc bean, using the bean element, and then exports the bean as an OSGi service, using
the service element.

Under the ProjectDir/osgi-service/src/main/resources/OSGI-INF/blueprint directory,
use your favorite text editor to create the file, config.xml, and add the XML code from Example 10.5,
“Blueprint File for Exporting a Service”.

Example 10.5. Blueprint File for Exporting a Service

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <bean id="hello"
class="org.fusesource.example.service.impl.HelloWorldSvcImpl"/>

 <service ref="hello"
interface="org.fusesource.example.service.HelloWorldSvc"/>

</blueprint>

10.4.8. Running the service bundle

To install and run the osgi-service project, perform the following steps:

1. Build the project—open a command prompt and change directory to ProjectDir/osgi-
service. Use Maven to build the demonstration by entering the following command:

mvn install

If this command runs successfully, the ProjectDir/osgi-service/target directory should
contain the bundle file, osgi-service-1.0-SNAPSHOT.jar.

2. Install and start the osgi-service bundle—at the Red Hat Fuse console, enter the following
command:

Jkaraf@root()> bundle:install -s file:ProjectDir/osgi-
service/target/osgi-service-1.0-SNAPSHOT.jar

Where ProjectDir is the directory containing your Maven projects and the -s flag directs the
container to start the bundle right away. For example, if your project directory is C:\Projects
on a Windows machine, you would enter the following command:

Red Hat Fuse 7.1 Deploying into Apache Karaf

60

karaf@root()> bundle:install -s file:C:/Projects/osgi-
service/target/osgi-service-1.0-SNAPSHOT.jar

NOTE

On Windows machines, be careful how you format the file URL—for details of
the syntax understood by the file URL handler, see Section 12.1, “File URL
Handler”.

3. Check that the service has been created—to check that the bundle has started successfully,
enter the following Red Hat Fuse console command:

karaf@root()> bundle:list

Somewhere in this listing, you should see a line for the osgi-service bundle, for example:

[236] [Active] [Created] [] [60] osgi-service
(1.0.0.SNAPSHOT)

10.5. ACCESSING AN OSGI SERVICE

10.5.1. Overview

This section explains how to generate, build, and deploy a simple OSGi client in the OSGi container. The
client finds the simple Hello World service in the OSGi registry and invokes the sayHello() method on
it.

10.5.2. Prerequisites

In order to generate a project using the Maven Quickstart archetype, you must have the following
prerequisites:

Maven installation—Maven is a free, open source build tool from Apache. You can download
the latest version from http://maven.apache.org/download.html (minimum is 2.0.9).

Internet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your build
machine must be connected to the Internet.

10.5.3. Generating a Maven project

The maven-archetype-quickstart archetype creates a generic Maven project, which you can then
customize for whatever purpose you like. To generate a Maven project with the coordinates,
org.fusesource.example:osgi-client, enter the following command:

mvn archetype:create
-DarchetypeArtifactId=maven-archetype-quickstart
-DgroupId=org.fusesource.example
-DartifactId=osgi-client

CHAPTER 10. OSGI SERVICES

61

http://maven.apache.org/download.html

The result of this command is a directory, ProjectDir/osgi-client, containing the files for the
generated project.

NOTE

Be careful not to choose a group ID for your artifact that clashes with the group ID
of an existing product! This could lead to clashes between your project’s packages and
the packages from the existing product (because the group ID is typically used as the root
of a project’s Java package names).

10.5.4. Customizing the POM file

You must customize the POM file in order to generate an OSGi bundle, as follows:

1. Follow the POM customization steps described in Section 3.1, “Generating a Bundle Project”.

2. Because the client uses the HelloWorldSvc Java interface, which is defined in the osgi-
service bundle, it is necessary to add a Maven dependency on the osgi-service bundle.
Assuming that the Maven coordinates of the osgi-service bundle are
org.fusesource.example:osgi-service:1.0-SNAPSHOT, you should add the following
dependency to the client’s POM file:

<project ... >
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.fusesource.example</groupId>
 <artifactId>osgi-service</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 ...
</project>

10.5.5. Writing the Blueprint file

To add a Blueprint file to your client project, first create the following sub-directories:

ProjectDir/osgi-client/src/main/resources
ProjectDir/osgi-client/src/main/resources/OSGI-INF
ProjectDir/osgi-client/src/main/resources/OSGI-INF/blueprint

Under the ProjectDir/osgi-client/src/main/resources/OSGI-INF/blueprint directory,
use your favorite text editor to create the file, config.xml, and add the XML code from Example 10.6,
“Blueprint File for Importing a Service”.

Example 10.6. Blueprint File for Importing a Service

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <reference id="helloWorld"
 interface="org.fusesource.example.service.HelloWorldSvc"/>

Red Hat Fuse 7.1 Deploying into Apache Karaf

62

 <bean id="client"
 class="org.fusesource.example.client.Client"
 init-method="init">
 <property name="helloWorldSvc" ref="helloWorld"/>
 </bean>

</blueprint>

Where the reference element creates a reference manager that finds a service of HelloWorldSvc
type in the OSGi registry. The bean element creates an instance of the Client class and injects the
service reference as the bean property, helloWorldSvc. In addition, the init-method attribute
specifies that the Client.init() method is called during the bean initialization phase (that is, after
the service reference has been injected into the client bean).

10.5.6. Writing the client class

Under the ProjectDir/osgi-client/src/main/java/org/fusesource/example/client
directory, use your favorite text editor to create the file, Client.java, and add the Java code from
Example 10.7, “The Client Class”.

Example 10.7. The Client Class

package org.fusesource.example.client;

import org.fusesource.example.service.HelloWorldSvc;

public class Client {
 HelloWorldSvc helloWorldSvc;

 // Bean properties
 public HelloWorldSvc getHelloWorldSvc() {
 return helloWorldSvc;
 }

 public void setHelloWorldSvc(HelloWorldSvc helloWorldSvc) {
 this.helloWorldSvc = helloWorldSvc;
 }

 public void init() {
 System.out.println("OSGi client started.");
 if (helloWorldSvc != null) {
 System.out.println("Calling sayHello()");
 helloWorldSvc.sayHello(); // Invoke the OSGi service!
 }
 }

}

The Client class defines a getter and a setter method for the helloWorldSvc bean property, which
enables it to receive the reference to the Hello World service by injection. The init() method is called
during the bean initialization phase, after property injection, which means that it is normally possible to

CHAPTER 10. OSGI SERVICES

63

invoke the Hello World service within the scope of this method.

10.5.7. Running the client bundle

To install and run the osgi-client project, perform the following steps:

1. Build the project—open a command prompt and change directory to ProjectDir/osgi-
client. Use Maven to build the demonstration by entering the following command:

mvn install

If this command runs successfully, the ProjectDir/osgi-client/target directory should
contain the bundle file, osgi-client-1.0-SNAPSHOT.jar.

2. Install and start the osgi-service bundle—at the Red Hat Fuse console, enter the following
command:

karaf@root()> bundle:install -s file:ProjectDir/osgi-
client/target/osgi-client-1.0-SNAPSHOT.jar

Where ProjectDir is the directory containing your Maven projects and the -s flag directs the
container to start the bundle right away. For example, if your project directory is C:\Projects
on a Windows machine, you would enter the following command:

karaf@root()> bundle:install -s file:C:/Projects/osgi-
client/target/osgi-client-1.0-SNAPSHOT.jar

NOTE

On Windows machines, be careful how you format the file URL—for details of
the syntax understood by the file URL handler, see Section 12.1, “File URL
Handler”.

3. Client output—f the client bundle is started successfully, you should immediately see output
like the following in the console:

Bundle ID: 239
OSGi client started.
Calling sayHello()
Hello World!

10.6. INTEGRATION WITH APACHE CAMEL

10.6.1. Overview

Apache Camel provides a simple way to invoke OSGi services using the Bean language. This feature is
automatically available whenever a Apache Camel application is deployed into an OSGi container and
requires no special configuration.

10.6.2. Registry chaining

Red Hat Fuse 7.1 Deploying into Apache Karaf

64

When a Apache Camel route is deployed into the OSGi container, the CamelContext automatically
sets up a registry chain for resolving bean instances: the registry chain consists of the OSGi registry,
followed by the Blueprint registry. Now, if you try to reference a particular bean class or bean instance,
the registry resolves the bean as follows:

1. Look up the bean in the OSGi registry first. If a class name is specified, try to match this with the
interface or class of an OSGi service.

2. If no match is found in the OSGi registry, fall back on the Blueprint registry.

10.6.3. Sample OSGi service interface

Consider the OSGi service defined by the following Java interface, which defines the single method,
getGreeting():

package org.fusesource.example.hello.boston;

public interface HelloBoston {
 public String getGreeting();
}

10.6.4. Sample service export

When defining the bundle that implements the HelloBoston OSGi service, you could use the following
Blueprint configuration to export the service:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <bean id="hello"
class="org.fusesource.example.hello.boston.HelloBostonImpl"/>

 <service ref="hello"
interface="org.fusesource.example.hello.boston.HelloBoston"/>

</blueprint>

Where it is assumed that the HelloBoston interface is implemented by the HelloBostonImpl class
(not shown).

10.6.5. Invoking the OSGi service from Java DSL

After you have deployed the bundle containing the HelloBoston OSGi service, you can invoke the
service from a Apache Camel application using the Java DSL. In the Java DSL, you invoke the OSGi
service through the Bean language, as follows:

from("timer:foo?period=5000")
 .bean(org.fusesource.example.hello.boston.HelloBoston.class,
"getGreeting")
 .log("The message contains: ${body}")

In the bean command, the first argument is the OSGi interface or class, which must match the interface
exported from the OSGi service bundle. The second argument is the name of the bean method you want

CHAPTER 10. OSGI SERVICES

65

to invoke. For full details of the bean command syntax, see Apache Camel Development Guide Bean
Integration .

NOTE

When you use this approach, the OSGi service is implicitly imported. It is not necessary
to import the OSGi service explicitly in this case.

10.6.6. Invoking the OSGi service from XML DSL

In the XML DSL, you can also use the Bean language to invoke the HelloBoston OSGi service, but the
syntax is slightly different. In the XML DSL, you invoke the OSGi service through the Bean language,
using the method element, as follows:

<beans ...>
 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="timer:foo?period=5000"/>
 <setBody>
 <method ref="org.fusesource.example.hello.boston.HelloBoston"
method="getGreeting"/>
 </setBody>
 <log message="The message contains: ${body}"/>
 </route>
 </camelContext>
</beans>

NOTE

When you use this approach, the OSGi service is implicitly imported. It is not necessary
to import the OSGi service explicitly in this case.

Red Hat Fuse 7.1 Deploying into Apache Karaf

66

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/7.0-tp/html-single/apache_camel_development_guide/#BasicPrinciples-BeanIntegration

CHAPTER 11. DEPLOYING USING A JMS BROKER

Abstract

Fuse 7.1 does not ship with a default internal broker, but it is designed to interface with four external JMS
brokers.

Fuse 7.1 containers contain broker client libraries for the supported external brokers.

See Supported Configurations for more information about the external brokers, client and Camel
component combinations that are available for messaging on Fuse 7.1.

11.1. AMQ 7 QUICKSTART

A quickstart is provided to demonstrate the set up and deployment of apps using the AMQ 7 broker.

Setup the quickstart

1. Navigate to FUSE_HOME/quickstarts/beginner/camel-jms

2. Enter mvn clean install to build the quickstart.

3. Copy the file org.ops4j.connectionfactory-amq7.cfg from
FUSE_HOME/quickstarts/beginner/camel-jms/src/main directory to the
FUSE_HOME/etc directory in your Fuse installation. Verify its contents for the correct broker
URL and credentials. By default, the broker URL is set to tcp://localhost:61616 following AMQ
7’s CORE protocol. Credentials are set to admin/admin. Change these details to suit your
external broker.

4. Start Fuse by running ./bin/fuse on Linux or bin\fuse.bat on Windows.

5. In the Fuse console, enter the following commands:

feature:install pax-jms-pool artemis-jms-client camel-blueprint
camel-jms

install -s mvn:org.jboss.fuse.quickstarts/camel-
jms/${project.version}

Fuse will give you a bundle ID when the bundle is deployed.

6. Enter log:display to see the start up log information. Check to make sure the bundle was
deployed successfully.

12:13:50.445 INFO [Blueprint Event Dispatcher: 1] Attempting to start
Camel Context jms-example-context
12:13:50.446 INFO [Blueprint Event Dispatcher: 1] Apache Camel
2.21.0.fuse-000030 (CamelContext: jms-example-context) is starting
12:13:50.446 INFO [Blueprint Event Dispatcher: 1] JMX is enabled
12:13:50.528 INFO [Blueprint Event Dispatcher: 1] StreamCaching is not in
use. If using streams then its recommended to enable stream caching. See
more details at http://camel.apache.org/stream-caching.html
12:13:50.553 INFO [Blueprint Event Dispatcher: 1] Route: file-to-jms-route
started and consuming from: file://work/jms/input

CHAPTER 11. DEPLOYING USING A JMS BROKER

67

https://access.redhat.com/articles/310603

12:13:50.555 INFO [Blueprint Event Dispatcher: 1] Route: jms-cbr-route
started and consuming from: jms://queue:incomingOrders?transacted=true
12:13:50.556 INFO [Blueprint Event Dispatcher: 1] Total 2 routes, of which
2 are started

Run the quickstart

1. When the Camel routes run the FUSE_HOME/quickstarts/beginner/camel-
jms/work/jms/input directory will be created. Copy the files from the
FUSE_HOME/quickstarts/beginner/camel-jms/src/main/data directory to the
FUSE_HOME/quickstarts/beginner/camel-jms/work/jms/input directory.

2. The files copied into the … ​/src/main/data file are order files. Wait for a minute and then
check the FUSE_HOME/quickstarts/beginner/camel-jms/work/jms/output directory.
The files will be sorted into separate directories according to their country of destination:

order1.xml, order2.xml and order4.xml in
FUSE_HOME/quickstarts/beginner/camel-jms/work/jms/output/others/

order3.xml and order5.xml in FUSE_HOME/quickstarts/beginner/camel-
jms/work/jms/output/us

order6.xml in FUSE_HOME/quickstarts/beginner/camel-
jms/work/jms/output/fr

3. Use log:display to see the log messages:

Receiving order order1.xml
Sending order order1.xml to another country
Done processing order1.xml

1. Camel commands will show details about the context:

Use camel:context-list to show the context details:

Context Status Total # Failed #
Inflight # Uptime
------- ------ ------- -------- --
-------- ------
jms-example-context Started 12 0
0 3 minutes

Use camel:route-list to display the Camel routes in the context:

Context Route Status Total #
Failed # Inflight # Uptime
------- ----- ------ -------
-------- ---------- ------
jms-example-context file-to-jms-route Started 6
0 0 3 minutes
jms-example-context jms-cbr-route Started 6
0 0 3 minutes

Use camel:route-info to display the exchange statistics:

Red Hat Fuse 7.1 Deploying into Apache Karaf

68

karaf@root()> camel:route-info jms-cbr-route jms-example-context
Camel Route jms-cbr-route
 Camel Context: jms-example-context
 State: Started
 State: Started

Statistics
 Exchanges Total: 6
 Exchanges Completed: 6
 Exchanges Failed: 0
 Exchanges Inflight: 0
 Min Processing Time: 2 ms
 Max Processing Time: 12 ms
 Mean Processing Time: 4 ms
 Total Processing Time: 29 ms
 Last Processing Time: 4 ms
 Delta Processing Time: 1 ms
 Start Statistics Date: 2018-01-30 12:13:50
 Reset Statistics Date: 2018-01-30 12:13:50
 First Exchange Date: 2018-01-30 12:19:47
 Last Exchange Date: 2018-01-30 12:19:47

11.2. USING THE ARTEMIS CORE CLIENT

The Artemis core client can be used to connect to an external broker instead of qpid-jms-client.

Connect using the Artemis core client

1. To enable the Artemis core client, start Fuse. Navigate to the FUSE_HOME directory and enter
./bin/fuse on Linux or bin\fuse.bat on Windows.

2. Add the Artemis client as a feature using the following command: feature:install
artemis-core-client

3. When you are writing your code you need to connect the Camel component with the connection
factory.

Import the connection factory:

Set up the connection:

import org.apache.qpid.jms.JmsConnectionFactory;

ConnectionFactory connectionFactory = new
JmsConnectionFactory("amqp://localhost:5672");
 try (Connection connection = connectionFactory.createConnection()) {

CHAPTER 11. DEPLOYING USING A JMS BROKER

69

CHAPTER 12. URL HANDLERS

Abstract

There are many contexts in Red Hat Fuse where you need to provide a URL to specify the location of a
resource (for example, as the argument to a console command). In general, when specifying a URL, you
can use any of the schemes supported by Fuse’s built-in URL handlers. This appendix describes the
syntax for all of the available URL handlers.

12.1. FILE URL HANDLER

SYNTAX

A file URL has the syntax, file:PathName, where PathName is the relative or absolute pathname of a
file that is available on the Classpath. The provided PathName is parsed by Java’s built-in file URL
handler. Hence, the PathName syntax is subject to the usual conventions of a Java pathname: in
particular, on Windows, each backslash must either be escaped by another backslash or replaced by a
forward slash.

EXAMPLES

For example, consider the pathname, C:\Projects\camel-bundle\target\foo-1.0-
SNAPSHOT.jar, on Windows. The following example shows the correct alternatives for the file URL on
Windows:

file:C:/Projects/camel-bundle/target/foo-1.0-SNAPSHOT.jar
file:C:\\Projects\\camel-bundle\\target\\foo-1.0-SNAPSHOT.jar

The following example shows some incorrect alternatives for the file URL on Windows:

file:C:\Projects\camel-bundle\target\foo-1.0-SNAPSHOT.jar // WRONG!
file://C:/Projects/camel-bundle/target/foo-1.0-SNAPSHOT.jar // WRONG!
file://C:\\Projects\\camel-bundle\\target\\foo-1.0-SNAPSHOT.jar // WRONG!

12.2. HTTP URL HANDLER

Syntax

A HTTP URL has the standard syntax, http:Host[:Port]/[Path][#AnchorName][?Query]. You
can also specify a secure HTTP URL using the https scheme. The provided HTTP URL is parsed by
Java’s built-in HTTP URL handler, so the HTTP URL behaves in the normal way for a Java application.

12.3. MVN URL HANDLER

Overview

If you use Maven to build your bundles or if you know that a particular bundle is available from a Maven
repository, you can use the Mvn handler scheme to locate the bundle.

Red Hat Fuse 7.1 Deploying into Apache Karaf

70

file://c/Projects/camel-bundle/target/foo-1.0-SNAPSHOT.jar

NOTE

To ensure that the Mvn URL handler can find local and remote Maven artifacts, you might
find it necessary to customize the Mvn URL handler configuration. For details, see the
section called “Configuring the Mvn URL handler”.

Syntax

An Mvn URL has the following syntax:

mvn:[repositoryUrl!]groupId/artifactId[/[version][/[packaging]
[/[classifier]]]]

Where repositoryUrl optionally specifies the URL of a Maven repository. The groupId, artifactId, version,
packaging, and classifier are the standard Maven coordinates for locating Maven artifacts.

Omitting coordinates

When specifying an Mvn URL, only the groupId and the artifactId coordinates are required. The following
examples reference a Maven bundle with the groupId, org.fusesource.example, and with the
artifactId, bundle-demo:

mvn:org.fusesource.example/bundle-demo
mvn:org.fusesource.example/bundle-demo/1.1

When the version is omitted, as in the first example, it defaults to LATEST, which resolves to the latest
version based on the available Maven metadata.

In order to specify a classifier value without specifying a packaging or a version value, it is permissible to
leave gaps in the Mvn URL. Likewise, if you want to specify a packaging value without a version value.
For example:

mvn:groupId/artifactId///classifier
mvn:groupId/artifactId/version//classifier
mvn:groupId/artifactId//packaging/classifier
mvn:groupId/artifactId//packaging

Specifying a version range

When specifying the version value in an Mvn URL, you can specify a version range (using standard
Maven version range syntax) in place of a simple version number. You use square brackets—[and]—
to denote inclusive ranges and parentheses—(and)—to denote exclusive ranges. For example, the
range, [1.0.4,2.0), matches any version, v, that satisfies 1.0.4 ⇐ v < 2.0. You can use this
version range in an Mvn URL as follows:

mvn:org.fusesource.example/bundle-demo/[1.0.4,2.0)

Configuring the Mvn URL handler

Before using Mvn URLs for the first time, you might need to customize the Mvn URL handler settings, as
follows:

CHAPTER 12. URL HANDLERS

71

1. the section called “Check the Mvn URL settings”.

2. the section called “Edit the configuration file”.

3. the section called “Customize the location of the local repository”.

Check the Mvn URL settings

The Mvn URL handler resolves a reference to a local Maven repository and maintains a list of remote
Maven repositories. When resolving an Mvn URL, the handler searches first the local repository and then
the remote repositories in order to locate the specified Maven artifiact. If there is a problem with resolving
an Mvn URL, the first thing you should do is to check the handler settings to see which local repository
and remote repositories it is using to resolve URLs.

To check the Mvn URL settings, enter the following commands at the console:

JBossFuse:karaf@root> config:edit org.ops4j.pax.url.mvn
JBossFuse:karaf@root> config:proplist

The config:edit command switches the focus of the config utility to the properties belonging to the
org.ops4j.pax.url.mvn persistent ID. The config:proplist command outputs all of the property
settings for the current persistent ID. With the focus on org.ops4j.pax.url.mvn, you should see a
listing similar to the following:

 org.ops4j.pax.url.mvn.defaultRepositories =
file:/path/to/JBossFuse/jboss-fuse-7.1.0.fuse-710023-redhat-
00001/system@snapshots@id=karaf.system,file:/home/userid/.m2/repository@sn
apshots@id=local,file:/path/to/JBossFuse/jboss-fuse-7.1.0.fuse-710023-
redhat-00001/local-repo@snapshots@id=karaf.local-
repo,file:/path/to/JBossFuse/jboss-fuse-7.1.0.fuse-710023-redhat-
00001/system@snapshots@id=child.karaf.system
 org.ops4j.pax.url.mvn.globalChecksumPolicy = warn
 org.ops4j.pax.url.mvn.globalUpdatePolicy = daily
 org.ops4j.pax.url.mvn.localRepository = /path/to/JBossFuse/jboss-fuse-
7.1.0.fuse-710023-redhat-00001/data/repository
 org.ops4j.pax.url.mvn.repositories =
http://repo1.maven.org/maven2@id=maven.central.repo,
https://maven.repository.redhat.com/ga@id=redhat.ga.repo,
https://maven.repository.redhat.com/earlyaccess/all@id=redhat.ea.repo,
https://repository.jboss.org/nexus/content/groups/ea@id=fuseearlyaccess
 org.ops4j.pax.url.mvn.settings = /path/to/jboss-fuse-7.1.0.fuse-710023-
redhat-00001/etc/maven-settings.xml
 org.ops4j.pax.url.mvn.useFallbackRepositories = false
 service.pid = org.ops4j.pax.url.mvn

Where the localRepository setting shows the local repository location currently used by the handler
and the repositories setting shows the remote repository list currently used by the handler.

Edit the configuration file

To customize the property settings for the Mvn URL handler, edit the following configuration file:

InstallDir/etc/org.ops4j.pax.url.mvn.cfg

Red Hat Fuse 7.1 Deploying into Apache Karaf

72

The settings in this file enable you to specify explicitly the location of the local Maven repository, remove
Maven repositories, Maven proxy server settings, and more. Please see the comments in the
configuration file for more details about these settings.

Customize the location of the local repository

In particular, if your local Maven repository is in a non-default location, you might find it necessary to
configure it explicitly in order to access Maven artifacts that you build locally. In your
org.ops4j.pax.url.mvn.cfg configuration file, uncomment the
org.ops4j.pax.url.mvn.localRepository property and set it to the location of your local Maven
repository. For example:

Path to the local maven repository which is used to avoid downloading
artifacts when they already exist locally.
The value of this property will be extracted from the settings.xml file
above, or defaulted to:
System.getProperty("user.home") + "/.m2/repository"
#
org.ops4j.pax.url.mvn.localRepository=file:E:/Data/.m2/repository

Reference

For more details about the mvn URL syntax, see the original Pax URL Mvn Protocol documentation.

12.4. WRAP URL HANDLER

Overview

If you need to reference a JAR file that is not already packaged as a bundle, you can use the Wrap URL
handler to convert it dynamically. The implementation of the Wrap URL handler is based on Peter Krien’s
open source Bnd utility.

Syntax

A Wrap URL has the following syntax:

wrap:locationURL[,instructionsURL][$instructions]

The locationURL can be any URL that locates a JAR (where the referenced JAR is not formatted as a
bundle). The optional instructionsURL references a Bnd properties file that specifies how the bundle
conversion is performed. The optional instructions is an ampersand, &, delimited list of Bnd properties
that specify how the bundle conversion is performed.

Default instructions

In most cases, the default Bnd instructions are adequate for wrapping an API JAR file. By default, Wrap
adds manifest headers to the JAR’s META-INF/Manifest.mf file as shown in Table 12.1, “Default
Instructions for Wrapping a JAR”.

Table 12.1. Default Instructions for Wrapping a JAR

CHAPTER 12. URL HANDLERS

73

http://team.ops4j.org/wiki/display/paxurl/Mvn+Protocol

Manifest Header Default Value

Import-Package *;resolution:=optional

Export-Package All packages from the wrapped JAR.

Bundle-SymbolicName The name of the JAR file, where any characters not
in the set [a-zA-Z0-9_-] are replaced by
underscore, _.

Examples

The following Wrap URL locates version 1.1 of the commons-logging JAR in a Maven repository and
converts it to an OSGi bundle using the default Bnd properties:

wrap:mvn:commons-logging/commons-logging/1.1

The following Wrap URL uses the Bnd properties from the file, E:\Data\Examples\commons-
logging-1.1.bnd:

wrap:mvn:commons-logging/commons-
logging/1.1,file:E:/Data/Examples/commons-logging-1.1.bnd

The following Wrap URL specifies the Bundle-SymbolicName property and the Bundle-Version
property explicitly:

wrap:mvn:commons-logging/commons-logging/1.1$Bundle-SymbolicName=apache-
comm-log&Bundle-Version=1.1

If the preceding URL is used as a command-line argument, it might be necessary to escape the dollar
sign, \$, to prevent it from being processed by the command line, as follows:

wrap:mvn:commons-logging/commons-logging/1.1\$Bundle-SymbolicName=apache-
comm-log&Bundle-Version=1.1

Reference

For more details about the wrap URL handler, see the following references:

The Bnd tool documentation, for more details about Bnd properties and Bnd instruction files.

The original Pax URL Wrap Protocol documentation.

12.5. WAR URL HANDLER

OVERVIEW

If you need to deploy a WAR file in an OSGi container, you can automatically add the requisite manifest
headers to the WAR file by prefixing the WAR URL with war:, as described here.

Red Hat Fuse 7.1 Deploying into Apache Karaf

74

http://bndtools.org/
http://team.ops4j.org/wiki/display/paxurl/Wrap+Protocol

Syntax

A War URL is specified using either of the following syntaxes:

war:warURL
warref:instructionsURL

The first syntax, using the war scheme, specifies a WAR file that is converted into a bundle using the
default instructions. The warURL can be any URL that locates a WAR file.

The second syntax, using the warref scheme, specifies a Bnd properties file, instructionsURL, that
contains the conversion instructions (including some instructions that are specific to this handler). In this
syntax, the location of the referenced WAR file does not appear explicitly in the URL. The WAR file is
specified instead by the (mandatory) WAR-URL property in the properties file.

WAR-specific properties/instructions

Some of the properties in the .bnd instructions file are specific to the War URL handler, as follows:

WAR-URL

(Mandatory) Specifies the location of the War file that is to be converted into a bundle.

Web-ContextPath

Specifies the piece of the URL path that is used to access this Web application, after it has been
deployed inside the Web container.

NOTE

Earlier versions of PAX Web used the property, Webapp-Context, which is now
deprecated.

Default instructions

By default, the War URL handler adds manifest headers to the WAR’s META-INF/Manifest.mf file as
shown in Table 12.2, “Default Instructions for Wrapping a WAR File”.

Table 12.2. Default Instructions for Wrapping a WAR File

Manifest Header Default Value

Import-Package javax.,org.xml.,org.w3c.*

Export-Package No packages are exported.

Bundle-SymbolicName The name of the WAR file, where any characters not
in the set [a-zA-Z0-9_-\.] are replaced by
period, ..

Web-ContextPath No default value. But the WAR extender will use the
value of Bundle-SymbolicName by default.

CHAPTER 12. URL HANDLERS

75

Bundle-ClassPath In addition to any class path entries specified
explicitly, the following entries are added
automatically:

.

WEB-INF/classes

All of the JARs from the WEB-INF/lib
directory.

Manifest Header Default Value

Examples

The following War URL locates version 1.4.7 of the wicket-examples WAR in a Maven repository and
converts it to an OSGi bundle using the default instructions:

war:mvn:org.apache.wicket/wicket-examples/1.4.7/war

The following Wrap URL specifies the Web-ContextPath explicitly:

war:mvn:org.apache.wicket/wicket-examples/1.4.7/war?Web-ContextPath=wicket

The following War URL converts the WAR file referenced by the WAR-URL property in the wicket-
examples-1.4.7.bnd file and then converts the WAR into an OSGi bundle using the other instructions
in the .bnd file:

warref:file:E:/Data/Examples/wicket-examples-1.4.7.bnd

Reference

For more details about the war URL syntax, see the original Pax URL War Protocol documentation.

Red Hat Fuse 7.1 Deploying into Apache Karaf

76

http://team.ops4j.org/wiki/display/paxurl/War+Protocol

PART II. USER GUIDE
This part contains configuration and preparation information for Apache Karaf on Red Hat Fuse.

PART II. USER GUIDE

77

CHAPTER 13. INTRODUCTION TO THE DEPLOYING INTO
APACHE KARAF USER GUIDE

Abstract

Before you use this User Guide section of the Deploying into Apache Karaf guide, you must have
installed the latest version of Red Hat Fuse, following the instructions in Installing on Apache Karaf.

13.1. INTRODUCING FUSE CONFIGURATION

Abstract

The OSGi Configuration Admin service specifies the configuration information for deployed services and
ensures that the services receive that data when they are active.

13.2. OSGI CONFIGURATION

A configuration is a list of name-value pairs read from a .cfg file in the FUSE_HOME/etc directory. The
file is interpreted using the Java properties file format. The filename is mapped to the persistent identifier
(PID) of the service that is to be configured. In OSGi, a PID is used to identify a service across restarts of
the container.

13.3. CONFIGURATION FILES

You can configure the Red Hat Fuse runtime using the following files:

Table 13.1. Fuse Configuration Files

Filename Description

config.properties The main configuration file for the container.

custom.properties The main configuration file for custom properties for
the container.

keys.properties Lists the users who can access the Fuse runtime
using the SSH key-based protocol. The file’s contents
take the format username=publicKey,role

org.apache.karaf.features.repos.cfg The features repository URLs.

org.apache.karaf.features.cfg Configures a list of feature repositories to be
registered and a list of features to be installed when
Fuse starts up for the first time.

org.apache.karaf.jaas.cfg Configures options for the Karaf JAAS login module.
Mainly used for configuring encrypted passwords
(disabled by default).

Red Hat Fuse 7.1 Deploying into Apache Karaf

78

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.1/html-single/installing_on_apache_karaf/index

org.apache.karaf.log.cfg Configures the output of the log console commands.

org.apache.karaf.management.cfg Configures the JMX system.

org.apache.karaf.shell.cfg Configures the properties of remote consoles.

org.ops4j.pax.logging.cfg Configures the logging system.

org.ops4j.pax.transx.tm.narayana.cfg Narayana transaction manager configuration

org.ops4j.pax.url.mvn.cfg Configures additional URL resolvers.

org.ops4j.pax.web.cfg Configures the default Jetty container (Web server).
See olink:FMQSecurity/WebConsole.

startup.properties Specifies which bundles are started in the container
and their start-levels. Entries take the format
bundle=start-level.

system.properties Specifies Java system properties. Any properties set
in this file are available at runtime using
System.getProperties().

users.properties Lists the users who can access the Fuse runtime
either remotely or via the web console. The file’s
contents take the format
username=password,role

setenv or setenv.bat This file is in the /bin directory. It is used to set
JVM options. The file’s contents take the format
JAVA_MIN_MEM=512M, where 512M is the
minimum size of Java memory. See the section
called “Setting Java Options” for more information.

Filename Description

CONFIGURATION FILE NAMING CONVENTION

The file naming convention for configuration files depends on whether the configuration is intended for an
OSGi Managed Service or for an OSGi Managed Service factory.

The configuration file for an OSGi Managed Service obeys the following naming convention:

<PID>.cfg

Where <PID> is the persistent ID of the OSGi Managed Service (as defined in the OSGi Configuration
Admin specification). A persistent ID is normally dot-delimited—for example, org.ops4j.pax.web.

The configuration file for an OSGi Managed Service Factory obeys the following naming convention:

CHAPTER 13. INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE

79

olink:FMQSecurity/WebConsole

<PID>-<InstanceID>.cfg

Where <PID> is the persistent ID of the OSGi Managed Service Factory. In the case of a managed
service factory’s <PID>, you can append a hyphen followed by an arbitrary instance ID,
<InstanceID>. The managed service factory then creates a unique service instance for each
<InstanceID> that it finds.

SETTING JAVA OPTIONS

Java Options can be set using the /bin/setenv file in Linux, or the bin/setenv.bat file for
Windows. Use this file to directly set a group of Java options: JAVA_MIN_MEM, JAVA_MAX_MEM,
JAVA_PERM_MEM, JAVA_MAX_PERM_MEM. Other Java options can be set using the
EXTRA_JAVA_OPTS variable.

For example, to allocate minimum memory for the JVM use

JAVA_MIN_MEM=512M # Minimum memory for the JVM

To set a Java option other than the direct options, use

EXTRA_JAVA_OPTS="Java option"

For example,

EXTRA_JAVA_OPTS="-XX:+UseG1GC"

13.4. CONFIG CONSOLE COMMANDS

There are a number of console commands that can be used to change or interrogate the configuration of
Fuse 7.1.

See the Config section in the Apache Karaf Console Reference for more details about the config:
commands.

13.5. JMX CONFIGMBEAN

On the JMX layer, the MBean is dedicated to configuration management.

The ConfigMBean object name is: org.apache.karaf:type=config,name=*`.

14.1.2.1. Attributes

The config MBean contains a list of all configuration PIDs.

14.1.2.2. Operations

Table 13.2. JMX MBean Operations

Operation name Description

Red Hat Fuse 7.1 Deploying into Apache Karaf

80

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.1/html-single/apache_karaf_console_reference/index

listProperties(pid) returns the list of properties (property=value
formatted) for the configuration pid.

deleteProperty(pid, property) deletes the property from the configuration pid.

appendProperty(pid, property, value) appends value at the end of the value of the property
of the configuration pid.

setProperty(pid, property, value) sets value for the value of the property of the
configuration pid.

delete(pid) deletes the configuration identified by the pid.

create(pid) creates an empty (without any property) configuration
with pid.

update(pid, properties) updates a configuration identified with pid with the
provided properties map.

Operation name Description

13.6. USING THE CONSOLE

13.6.1. Available commands

To see a list of the available commands in the console, you can use the help:

karaf@root()> help
bundle Enter the subshell
bundle:capabilities Displays OSGi capabilities of a given
bundles.
bundle:classes Displays a list of classes/resources
contained in the bundle
bundle:diag Displays diagnostic information why a
bundle is not Active
bundle:dynamic-import Enables/disables dynamic-import for a
given bundle.
bundle:find-class Locates a specified class in any
deployed bundle
bundle:headers Displays OSGi headers of a given
bundles.
bundle:id Gets the bundle ID.
...

You have the list of all commands with a short description.

You can use the tab key to get a quick list of all commands:

karaf@root()> Display all 294 possibilities? (y or n)
...

CHAPTER 13. INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE

81

13.6.2. Subshell and completion mode

The commands have a scope and a name. For instance, the command feature:list has feature
as scope, and list as name.

Karaf "groups" the commands by scope. Each scope form a subshell.

You can directly execute a command with its full qualified name (scope:name):

karaf@root()> feature:list
...

or enter in a subshell and type the command contextual to the subshell:

karaf@root()> feature
karaf@root(feature)> list

You can note that you enter in a subshell directly by typing the subshell name (here feature). You can
"switch" directly from a subshell to another:

karaf@root()> feature
karaf@root(feature)> bundle
karaf@root(bundle)>

The prompt displays the current subshell between ().

The exit command goes to the parent subshell:

karaf@root()> feature
karaf@root(feature)> exit
karaf@root()>

The completion mode defines the behaviour of the tab key and the help command.

You have three different modes available:

GLOBAL

FIRST

SUBSHELL

You can define your default completion mode using the completionMode property in
etc/org.apache.karaf.shell.cfg file. By default, you have:

completionMode = GLOBAL

You can also change the completion mode “on the fly” (while using the Karaf shell console) using the
shell:completion command:

karaf@root()> shell:completion
GLOBAL
karaf@root()> shell:completion FIRST

Red Hat Fuse 7.1 Deploying into Apache Karaf

82

karaf@root()> shell:completion
FIRST

shell:completion can inform you about the current completion mode used. You can also provide the
new completion mode that you want.

GLOBAL completion mode is the default one in Karaf 4.0.0 (mostly for transition purpose).

GLOBAL mode doesn’t really use subshell: it’s the same behavior as in previous Karaf versions.

When you type the tab key, whatever in which subshell you are, the completion will display all
commands and all aliases:

karaf@root()> <TAB>
karaf@root()> Display all 273 possibilities? (y or n)
...
karaf@root()> feature
karaf@root(feature)> <TAB>
karaf@root(feature)> Display all 273 possibilities? (y or n)

FIRST completion mode is an alternative to the GLOBAL completion mode.

If you type the tab key on the root level subshell, the completion will display the commands and the
aliases from all subshells (as in GLOBAL mode). However, if you type the tab key when you are in a
subshell, the completion will display only the commands of the current subshell:

karaf@root()> shell:completion FIRST
karaf@root()> <TAB>
karaf@root()> Display all 273 possibilities? (y or n)
...
karaf@root()> feature
karaf@root(feature)> <TAB>
karaf@root(feature)>
info install list repo-add repo-list repo-remove uninstall version-list
karaf@root(feature)> exit
karaf@root()> log
karaf@root(log)> <TAB>
karaf@root(log)>
clear display exception-display get log set tail

SUBSHELL completion mode is the real subshell mode.

If you type the tab key on the root level, the completion displays the subshell commands (to go into a
subshell), and the global aliases. Once you are in a subshell, if you type the TAB key, the completion
displays the commands of the current subshell:

karaf@root()> shell:completion SUBSHELL
karaf@root()> <TAB>
karaf@root()>
* bundle cl config dev feature help instance jaas kar la ld lde log
log:list man package region service shell ssh system
karaf@root()> bundle
karaf@root(bundle)> <TAB>
karaf@root(bundle)>
capabilities classes diag dynamic-import find-class headers info install

CHAPTER 13. INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE

83

list refresh requirements resolve restart services start start-level stop
uninstall update watch
karaf@root(bundle)> exit
karaf@root()> camel
karaf@root(camel)> <TAB>
karaf@root(camel)>
backlog-tracer-dump backlog-tracer-info backlog-tracer-start backlog-
tracer-stop context-info context-list context-start context-stop endpoint-
list route-info route-list route-profile route-reset-stats
route-resume route-show route-start route-stop route-suspend

13.6.3. Unix like environment

Karaf console provides a full Unix like environment.

13.6.3.1. Help or man

We already saw the usage of the help command to display all commands available.

But you can also use the help command to get details about a command or the man command which is
an alias to the help command. You can also use another form to get the command help, by using the --
help option to the command.

So these commands

karaf@root()> help feature:list
karaf@root()> man feature:list
karaf@root()> feature:list --help

All produce the same help output:

DESCRIPTION
 feature:list

 Lists all existing features available from the defined
repositories.

SYNTAX
 feature:list [options]

OPTIONS
 --help
 Display this help message
 -o, --ordered
 Display a list using alphabetical order
 -i, --installed
 Display a list of all installed features only
 --no-format
 Disable table rendered output

13.6.3.2. Completion

When you type the tab key, Karaf tries to complete:

Red Hat Fuse 7.1 Deploying into Apache Karaf

84

subshell

commands

aliases

command arguments

command options

13.6.3.3. Alias

An alias is another name associated to a given command.

The shell:alias command creates a new alias. For instance, to create the list-installed-
features alias to the actual feature:list -i command, you can do:

karaf@root()> alias "list-features-installed = { feature:list -i }"
karaf@root()> list-features-installed
Name | Version | Required | State | Repository | Description
--
--
feature | 4.0.0 | x | Started | standard-4.0.0 | Features
Support
shell | 4.0.0 | x | Started | standard-4.0.0 | Karaf Shell
deployer | 4.0.0 | x | Started | standard-4.0.0 | Karaf
Deployer
bundle | 4.0.0 | x | Started | standard-4.0.0 | Provide
Bundle support
config | 4.0.0 | x | Started | standard-4.0.0 | Provide OSGi
ConfigAdmin support
diagnostic | 4.0.0 | x | Started | standard-4.0.0 | Provide
Diagnostic support
instance | 4.0.0 | x | Started | standard-4.0.0 | Provide
Instance support
jaas | 4.0.0 | x | Started | standard-4.0.0 | Provide JAAS
support
log | 4.0.0 | x | Started | standard-4.0.0 | Provide Log
support
package | 4.0.0 | x | Started | standard-4.0.0 | Package
commands and mbeans
service | 4.0.0 | x | Started | standard-4.0.0 | Provide
Service support
system | 4.0.0 | x | Started | standard-4.0.0 | Provide
System support
kar | 4.0.0 | x | Started | standard-4.0.0 | Provide KAR
(KARaf archive) support
ssh | 4.0.0 | x | Started | standard-4.0.0 | Provide a
SSHd server on Karaf
management | 4.0.0 | x | Started | standard-4.0.0 | Provide a JMX
MBeanServer and a set of MBeans in

At login, the Apache Karaf console reads the etc/shell.init.script file where you can create your
aliases. It’s similar to a bashrc or profile file on Unix.

CHAPTER 13. INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE

85

ld = { log:display $args } ;
lde = { log:exception-display $args } ;
la = { bundle:list -t 0 $args } ;
ls = { service:list $args } ;
cl = { config:list "(service.pid=$args)" } ;
halt = { system:shutdown -h -f $args } ;
help = { *:help $args | more } ;
man = { help $args } ;
log:list = { log:get ALL } ;

You can see here the aliases available by default:

ld is a short form to display log (alias to log:display command)

lde is a short form to display exceptions (alias to log:exception-display command)

la is a short form to list all bundles (alias to bundle:list -t 0 command)

ls is a short form to list all services (alias to service:list command)

cl is a short form to list all configurations (alias to config:list command)

halt is a short form to shutdown Apache Karaf (alias to system:shutdown -h -f command)

help is a short form to display help (alias to *:help command)

man is the same as help (alias to help command)

log:list displays all loggers and level (alias to log:get ALL command)

You can create your own aliases in the etc/shell.init.script file.

13.6.3.4. Key binding

Like on most Unix environment, Karaf console support some key bindings:

the arrows key to navigate in the commands history

CTRL-D to logout/shutdown Karaf

CTRL-R to search previously executed command

CTRL-U to remove the current line

13.6.3.5. Pipe

You can pipe the output of one command as input to another one. It’s a pipe, using the | character:

karaf@root()> feature:list |grep -i war
pax-war | 4.1.4 |
| Uninstalled | org.ops4j.pax.web-4.1.4 | Provide support of a full
WebContainer
pax-war-tomcat | 4.1.4 |
| Uninstalled | org.ops4j.pax.web-4.1.4 |
war | 4.0.0 |

Red Hat Fuse 7.1 Deploying into Apache Karaf

86

| Uninstalled | standard-4.0.0 | Turn Karaf as a full
WebContainer
blueprint-web | 4.0.0 |
| Uninstalled | standard-4.0.0 | Provides an OSGI-aware Servlet
ContextListener fo

13.6.3.6. Grep, more, find, … ​

Karaf console provides some core commands similar to Unix environment:

shell:alias creates an alias to an existing command

shell:cat displays the content of a file or URL

shell:clear clears the current console display

shell:completion displays or change the current completion mode

shell:date displays the current date (optionally using a format)

shell:each executes a closure on a list of arguments

shell:echo echoes and prints arguments to stdout

shell:edit calls a text editor on the current file or URL

shell:env displays or sets the value of a shell session variable

shell:exec executes a system command

shell:grep prints lines matching the given pattern

shell:head displays the first line of the input

shell:history prints the commands history

shell:if allows you to use conditions (if, then, else blocks) in script

shell:info prints various information about the current Karaf instance

shell:java executes a Java application

shell:less file pager

shell:logout disconnects shell from current session

shell:more is a file pager

shell:new creates a new Java object

shell:printf formats and prints arguments

shell:sleep sleeps for a bit then wakes up

shell:sort writes sorted concatenation of all files to stdout

CHAPTER 13. INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE

87

shell:source executes commands contained in a script

shell:stack-traces-print prints the full stack trace in the console when the execution of a
command throws an exception

shell:tac captures the STDIN and returns it as a string

shell:tail displays the last lines of the input

shell:threads prints the current thread

shell:watch periodically executes a command and refresh the output

shell:wc prints newline, words, and byte counts for each file

shell:while loop while the condition is true

You don’t have to use the fully qualified name of the command, you can directly use the command name
as long as it is unique. So you can use 'head' instead of 'shell:head'

Again, you can find details and all options of these commands using help command or --help option.

13.6.3.7. Scripting

The Apache Karaf Console supports a complete scripting language, similar to bash or csh on Unix.

The each (shell:each) command can iterate in a list:

karaf@root()> list = [1 2 3]; each ($list) { echo $it }
1
2
3

NOTE

The same loop could be written with the shell:while command:

karaf@root()> a = 0 ; while { %((a+=1) <= 3) } { echo $a }
1
2
3

You can create the list yourself (as in the previous example), or some commands can return a list too.

We can note that the console created a "session" variable with the name list that you can access with
$list.

The $it variable is an implicit one corresponding to the current object (here the current iterated value
from the list).

When you create a list with [], Apache Karaf console creates a Java ArrayList. It means that you can
use methods available in the ArrayList objects (like get or size for instance):

karaf@root()> list = ["Hello" world]; echo ($list get 0) ($list get 1)

Red Hat Fuse 7.1 Deploying into Apache Karaf

88

Hello world

We can note here that calling a method on an object is directly using (object method argument).
Here ($list get 0) means $list.get(0) where $list is the ArrayList.

The class notation will display details about the object:

karaf@root()> $list class
...
ProtectionDomain ProtectionDomain null
 null
 <no principals>
 java.security.Permissions@6521c24e (
 ("java.security.AllPermission" "<all permissions>" "<all actions>")
)

Signers null
SimpleName ArrayList
TypeParameters [E]

You can "cast" a variable to a given type.

karaf@root()> ("hello world" toCharArray)
[h, e, l, l, o, , w, o, r, l, d]

If it fails, you will see the casting exception:

karaf@root()> ("hello world" toCharArray)[0]
Error executing command: [C cannot be cast to [Ljava.lang.Object;

You can "call" a script using the shell:source command:

karaf@root> shell:source script.txt
True!

where script.txt contains:

foo = "foo"
if { $foo equals "foo" } {
 echo "True!"
}

CHAPTER 13. INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE

89

NOTE

The spaces are important when writing script. For instance, the following script is not
correct:

if{ $foo equals "foo" } ...

and will fail with:

karaf@root> shell:source script.txt
Error executing command: Cannot coerce echo "true!"() to any of
[]

because a space is missing after the if statement.

As for the aliases, you can create init scripts in the etc/shell.init.script file. You can also
named you script with an alias. Actually, the aliases are just scripts.

See the Scripting section of the developers guide for details.

13.6.4. Security

The Apache Karaf console supports a Role Based Access Control (RBAC) security mechanism. It means
that depending of the user connected to the console, you can define, depending of the user’s groups and
roles, the permission to execute some commands, or limit the values allowed for the arguments.

Console security is detailed in the Security section of this user guide.

Red Hat Fuse 7.1 Deploying into Apache Karaf

90

security

CHAPTER 14. PROVISIONING
Apache Karaf supports the provisioning of applications and modules using the concept ofApache
KarafFeatures.

14.1. APPLICATION

An application consists of all modules, configuration, and transitive applications required for a feature.

14.2. OSGI

Apache Karaf natively supports the deployment of OSGi applications.

An OSGi application is a set of OSGi bundles. An OSGi bundle is a regular jar file, with additional
metadata in the jar MANIFEST.

In OSGi, a bundle can depend on other bundles. So, it means that to deploy an OSGi application, you
may also need to firstly deploy a lot of other bundles required by the application.

You have to identify the dependant bundles first and install them. These dependency bundles may
require other bundles to satisfy their own dependencies.

An application requires configuration. Before starting your application, in addition to the dependency
bundles, you have to create or deploy the configuration.

14.3. FEATURE AND RESOLVER

Apache Karaf provides a simple and flexible way to provision applications.

In Apache Karaf, the application provisioning is an Apache Karaf "feature".

A feature describes an application as:

a name

a version

a optional description (eventually with a long description)

a set of bundles

optionally a set configurations or configuration files

optionally a set of dependency features

When you install a feature, Apache Karaf installs all resources described in the feature. Apache Karaf will
automatically resolve and install all bundles, configurations, and dependency features described in the
feature.

The feature resolver checks the service requirements, and install the bundles providing the services
matching the requirements. The default mode enables this behavior only for "new style" features
repositories (basically, the features repositories XML with schema equal or greater to 1.3.0). It doesn’t
apply for "old style" features repositories (coming from Apache Karaf2 or 3).

CHAPTER 14. PROVISIONING

91

You can change the service requirements enforcement mode in
etc/org.apache.karaf.features.cfg file, using the serviceRequirements property.

serviceRequirements=default

The possible values are:

disable: service requirements are completely ignored, for both old style and new style features
repositories

default: service requirements are ignored for old style features repositories, and enabled for
new style features repositories.

enforce: service requirements are always verified, for old style and new style features
repositories.

Additionally, a feature can also define requirements. In that case,Apache Karafwill automatically add
additional bundles or features providing the capabilities to satisfy the requirements.

A feature has a complete lifecycle: install, start, stop, update, uninstall.

14.4. FEATURES REPOSITORIES

The features are described in a features XML descriptor. This XML file contains the description of a set
of features.

A features XML descriptor is named a "features repository". Before being able to install a feature, you
have to register the features repository that provides the feature (using feature:repo-add command
or FeatureMBean as described later).

For instance, the following XML file (or "features repository") describes the feature1 and feature2
features:

<features xmlns="http://karaf.apache.org/xmlns/features/v1.3.0">
 <feature name="feature1" version="1.0.0">
 <bundle>...</bundle>
 <bundle>...</bundle>
 </feature>
 <feature name="feature2" version="1.1.0">
 <feature>feature1</feature>
 <bundle>...</bundle>
 </feature>
</features>

We can note that the features XML has a schema.

The feature1 feature is available in version 1.0.0, and contains two bundles. The <bundle/>
element contains a URL to the bundle artifact (see [Artifacts repositories and URLs section|urls] for
details). If you install the feature1 feature (using feature:install or the FeatureMBean as
described later),{Apache Karaf} will automatically installs the two bundles described. The feature2
feature is available in version 1.1.0, and contains a reference to the feature1 feature and a bundle.
The <feature/> element contains the name of a feature. A specific feature version can be defined
using the version attribute to the <feature/> element (<feature
version="1.0.0">feature1</feature>). If the version attribute is not specified, Apache Karaf

Red Hat Fuse 7.1 Deploying into Apache Karaf

92

will install the latest version available. If you install the feature2 feature (using feature:install or
the FeatureMBean as described later), Apache Karaf will automatically installs feature1 (if it’s not
already installed) and the bundle.

A feature repository is registered using the URL to the features XML file.

The features state is stored in the Apache Karaf cache (in the KARAF_DATA folder). You can restart
Apache Karaf, the previously installed features remain installed and available after restart. If you do a
clean restart or you delete the Apache Karaf cache (delete the KARAF_DATA folder), all previously
features repositories registered and features installed will be lost: you will have to register the features
repositories and install features by hand again. To prevent this behaviour, you can specify features as
boot features.

14.5. BOOT FEATURES

You can describe some features as boot features. A boot feature will be automatically install by Apache
Karaf, even if it has not been previously installed using feature:install or FeatureMBean.

Apache Karaf features configuration is located in the etc/org.apache.karaf.features.cfg
configuration file.

This configuration file contains the two properties to use to define boot features:

featuresRepositories contains a list (comma-separated) of features repositories (features
XML) URLs.

featuresBoot contains a list (comma-separated) of features to install at boot.

14.6. FEATURES UPGRADE

You can update a release by installing the same feature (with the same SNAPSHOT version or a
different version).

Thanks to the features lifecycle, you can control the status of the feature (started, stopped, etc).

You can also use a simulation to see what the update will do.

14.7. OVERRIDES

Bundles defined in features can be overridden by using a file etc/overrides.properties. Each line in the
file defines one override. The syntax is: <bundle-uri>[;range="[min,max)"] The given bundle will override
all bundles in feature definitions with the same symbolic name if the version of the override is greater
than the version of the overridden bundle and the range matches. If no range is given then compatibility
on the micro version level is assumed.

So for example the override mvn:org.ops4j.pax.logging/pax-logging-service/1.8.5 would overide pax-
logging-service 1.8.3 but not 1.8.6 or 1.7.0.

14.8. FEATURE BUNDLES

14.8.1. Start Level

CHAPTER 14. PROVISIONING

93

By default, the bundles deployed by a feature will have a start-level equals to the value defined in the
etc/config.properties configuration file, in the karaf.startlevel.bundle property.

This value can be "overrided" by the start-level attribute of the <bundle/> element, in the features
XML.

 <feature name="my-project" version="1.0.0">
 <bundle start-level="80">mvn:com.mycompany.myproject/myproject-
dao</bundle>
 <bundle start-level="85">mvn:com.mycompany.myproject/myproject-
service</bundle>
 </feature>

The start-level attribute insure that the myproject-dao bundle is started before the bundles that use it.

Instead of using start-level, a better solution is to simply let the OSGi framework know what your
dependencies are by defining the packages or services you need. It is more robust than setting start
levels.

14.8.2. Simulate, Start and stop

You can simulate the installation of a feature using the -t option to feature:install command.

You can install a bundle without starting it. By default, the bundles in a feature are automatically started.

A feature can specify that a bundle should not be started automatically (the bundle stays in resolved
state). To do so, a feature can specify the start attribute to false in the <bundle/> element:

 <feature name="my-project" version="1.0.0">
 <bundle start-level="80"
start="false">mvn:com.mycompany.myproject/myproject-dao</bundle>
 <bundle start-level="85"
start="false">mvn:com.mycompany.myproject/myproject-service</bundle>
 </feature>

14.8.3. Dependency

A bundle can be flagged as being a dependency, using the dependency attribute set to true on the
<bundle/> element.

This information can be used by resolvers to compute the full list of bundles to be installed.

14.9. DEPENDENT FEATURES

A feature can depend on a set of other features:

 <feature name="my-project" version="1.0.0">
 <feature>other</feature>
 <bundle start-level="80"
start="false">mvn:com.mycompany.myproject/myproject-dao</bundle>
 <bundle start-level="85"
start="false">mvn:com.mycompany.myproject/myproject-service</bundle>
 </feature>

Red Hat Fuse 7.1 Deploying into Apache Karaf

94

When the my-project feature is installed, the other feature will be automatically installed as well.

It’s possible to define a version range for a dependent feature:

<feature name="spring-dm">
 <feature version="[2.5.6,4)">spring</feature>
 ...
</feature>

The feature with the highest version available in the range will be installed.

If a single version is specified, the range will be considered open-ended.

If nothing is specified, the highest available will be installed.

To specify an exact version, use a closed range such as [3.1,3.1].

14.9.1. Feature prerequisites

A prerequisite feature is a special kind of dependency. If you add the prerequisite attribute to a
dependant feature tag it will force installation and activation of bundles in the dependant feature before
installation of the actual feature. This may be useful when bundles in the given feature are not using pre-
installed URL such as wrap or war.

14.10. FEATURE CONFIGURATIONS

The <config/> element in a feature XML allows a feature to create and/or populate a configuration
(identified by a configuration PID).

<config name="com.foo.bar">
 myProperty = myValue
</config>

The name attribute of the <config/> element corresponds to the configuration PID (see the
[Configuration section|configuration] for details).

The installation of the feature will have the same effect as dropping a file named com.foo.bar.cfg in
the etc folder.

The content of the <config/> element is a set of properties, following the key=value standard.

14.11. FEATURE CONFIGURATION FILES

Instead of using the <config/> element, a feature can specify <configfile/> elements.

<configfile finalname="/etc/myfile.cfg" override="false">URL</configfile>

Instead of directly manipulating the Apache Karaf configuration layer (as when using the <config/>
element), the <configfile/> element directly takes a file specified by a URL, and copies the file in the
location specified by the finalname attribute.

If not specified, the location is relative from the KARAF_BASE variable. It’s also possible to use variable
like ${karaf.home}, ${karaf.base}, ${karaf.etc}, or even system properties.

CHAPTER 14. PROVISIONING

95

For instance:

<configfile finalname="${karaf.etc}/myfile.cfg"
override="false">URL</configfile>

If the file is already present at the desired location it is kept and the deployment of the configuration file is
skipped, as a already existing file might contain customization. This behaviour can be overriden by
override set to true.

The file URL is any URL supported by Apache Karaf (see the [Artifacts repositories and URLs|urls] of the
user guide for details).

14.11.1. Requirements

A feature can also specify expected requirements. The feature resolver will try to satisfy the
requirements. For that, it checks the features and bundles capabilities and will automatically install the
bundles to satisfy the requirements.

For instance, a feature can contain:

<requirement>osgi.ee;filter:="(&(osgi.ee=JavaSE)(!
(version>=1.8)))"</requirement>

The requirement specifies that the feature will work by only if the JDK version is not 1.8 (so basically 1.7).

The features resolver is also able to refresh the bundles when an optional dependency is satisfy,
rewiring the optional import.

14.12. COMMANDS

14.12.1. feature:repo-list

The feature:repo-list command lists all registered features repository:

karaf@root()> feature:repo-list
Repository | URL
--

org.ops4j.pax.cdi-0.12.0 | mvn:org.ops4j.pax.cdi/pax-cdi-
features/0.12.0/xml/features
org.ops4j.pax.web-4.1.4 | mvn:org.ops4j.pax.web/pax-web-
features/4.1.4/xml/features
standard-4.0.0 |
mvn:org.apache.karaf.features/standard/4.0.0/xml/features
enterprise-4.0.0 |
mvn:org.apache.karaf.features/enterprise/4.0.0/xml/features
spring-4.0.0 |
mvn:org.apache.karaf.features/spring/4.0.0/xml/features

Each repository has a name and the URL to the features XML.

Red Hat Fuse 7.1 Deploying into Apache Karaf

96

karaf parses the features XML when you register the features repository URL (using feature:repo-
add command or the FeatureMBean as described later). If you want to force Apache Karaf to reload the
features repository URL (and so update the features definition), you can use the -r option:

karaf@root()> feature:repo-list -r
Reloading all repositories from their urls

Repository | URL
--

org.ops4j.pax.cdi-0.12.0 | mvn:org.ops4j.pax.cdi/pax-cdi-
features/0.12.0/xml/features
org.ops4j.pax.web-4.1.4 | mvn:org.ops4j.pax.web/pax-web-
features/4.1.4/xml/features
standard-4.0.0 |
mvn:org.apache.karaf.features/standard/4.0.0/xml/features
enterprise-4.0.0 |
mvn:org.apache.karaf.features/enterprise/4.0.0/xml/features
spring-4.0.0 |
mvn:org.apache.karaf.features/spring/4.0.0/xml/features

14.12.2. feature:repo-add

To register a features repository, making new features available in Apache Karaf, you have to use the
feature:repo-add command.

The feature:repo-add command requires the name/url argument. This argument accepts:

a feature repository URL. It’s an URL directly to the features XML file. Any URL described in the
[Artifacts repositories and URLs section|urls] of the user guide is supported.

a feature repository name defined in the etc/org.apache.karaf.features.repos.cfg
configuration file.

The etc/org.apache.karaf.features.repos.cfg defines a list of "pre-installed/available"
features repositories:

##
######
#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version
2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and

CHAPTER 14. PROVISIONING

97

limitations under the License.
#
##
######

#
This file describes the features repository URL
It could be directly installed using feature:repo-add command
#
enterprise=mvn:org.apache.karaf.features/enterprise/LATEST/xml/features
spring=mvn:org.apache.karaf.features/spring/LATEST/xml/features
cellar=mvn:org.apache.karaf.cellar/apache-karaf-cellar/LATEST/xml/features
cave=mvn:org.apache.karaf.cave/apache-karaf-cave/LATEST/xml/features
camel=mvn:org.apache.camel.karaf/apache-camel/LATEST/xml/features
camel-extras=mvn:org.apache-extras.camel-extra.karaf/camel-
extra/LATEST/xml/features
cxf=mvn:org.apache.cxf.karaf/apache-cxf/LATEST/xml/features
cxf-dosgi=mvn:org.apache.cxf.dosgi/cxf-dosgi/LATEST/xml/features
cxf-xkms=mvn:org.apache.cxf.services.xkms/cxf-services-xkms-
features/LATEST/xml
activemq=mvn:org.apache.activemq/activemq-karaf/LATEST/xml/features
jclouds=mvn:org.apache.jclouds.karaf/jclouds-karaf/LATEST/xml/features
openejb=mvn:org.apache.openejb/openejb-feature/LATEST/xml/features
wicket=mvn:org.ops4j.pax.wicket/features/LATEST/xml/features
hawtio=mvn:io.hawt/hawtio-karaf/LATEST/xml/features
pax-cdi=mvn:org.ops4j.pax.cdi/pax-cdi-features/LATEST/xml/features
pax-jdbc=mvn:org.ops4j.pax.jdbc/pax-jdbc-features/LATEST/xml/features
pax-jpa=mvn:org.ops4j.pax.jpa/pax-jpa-features/LATEST/xml/features
pax-web=mvn:org.ops4j.pax.web/pax-web-features/LATEST/xml/features
pax-wicket=mvn:org.ops4j.pax.wicket/pax-wicket-
features/LATEST/xml/features
ecf=http://download.eclipse.org/rt/ecf/latest/site.p2/karaf-features.xml
decanter=mvn:org.apache.karaf.decanter/apache-karaf-
decanter/LATEST/xml/features

You can directly provide a features repository name to the feature:repo-add command. For install,
to install Apache Karaf Cellar, you can do:

karaf@root()> feature:repo-add cellar
Adding feature url mvn:org.apache.karaf.cellar/apache-karaf-
cellar/LATEST/xml/features

When you don’t provide the optional version argument, Apache Karaf installs the latest version of the
features repository available. You can specify a target version with the version argument:

karaf@root()> feature:repo-add cellar 4.0.0.RC1
Adding feature url mvn:org.apache.karaf.cellar/apache-karaf-
cellar/4.0.0.RC1/xml/features

Instead of providing a features repository name defined in the
etc/org.apache.karaf.features.repos.cfg configuration file, you can directly provide the
features repository URL to the feature:repo-add command:

karaf@root()> feature:repo-add mvn:org.apache.karaf.cellar/apache-karaf-
cellar/4.0.0.RC1/xml/features

Red Hat Fuse 7.1 Deploying into Apache Karaf

98

Adding feature url mvn:org.apache.karaf.cellar/apache-karaf-
cellar/4.0.0.RC1/xml/features

By default, the feature:repo-add command just registers the features repository, it doesn’t install any
feature. If you specify the -i option, the feature:repo-add command registers the features
repository and installs all features described in this features repository:

karaf@root()> feature:repo-add -i cellar

14.12.3. feature:repo-refresh

Apache Karaf parses the features repository XML when you register it (using feature:repo-add
command or the FeatureMBean). If the features repository XML changes, you have to indicate to Apache
Karaf to refresh the features repository to load the changes.

The feature:repo-refresh command refreshes the features repository.

Without argument, the command refreshes all features repository:

karaf@root()> feature:repo-refresh
Refreshing feature url mvn:org.ops4j.pax.cdi/pax-cdi-
features/0.12.0/xml/features
Refreshing feature url mvn:org.ops4j.pax.web/pax-web-
features/4.1.4/xml/features
Refreshing feature url
mvn:org.apache.karaf.features/standard/4.0.0/xml/features
Refreshing feature url
mvn:org.apache.karaf.features/enterprise/4.0.0/xml/features
Refreshing feature url
mvn:org.apache.karaf.features/spring/4.0.0/xml/features

Instead of refreshing all features repositories, you can specify the features repository to refresh, by
providing the URL or the features repository name (and optionally version):

karaf@root()> feature:repo-refresh
mvn:org.apache.karaf.features/standard/4.0.0/xml/features
Refreshing feature url
mvn:org.apache.karaf.features/standard/4.0.0/xml/features

karaf@root()> feature:repo-refresh cellar
Refreshing feature url mvn:org.apache.karaf.cellar/apache-karaf-
cellar/LATEST/xml/features

14.12.4. feature:repo-remove

The feature:repo-remove command removes a features repository from the registered ones.

The feature:repo-remove command requires a argument:

the features repository name (as displayed in the repository column of the feature:repo-
list command output)

CHAPTER 14. PROVISIONING

99

the features repository URL (as displayed in the URL column of the feature:repo-list
command output)

karaf@root()> feature:repo-remove karaf-cellar-4.0.0.RC1

karaf@root()> feature:repo-remove mvn:org.apache.karaf.cellar/apache-
karaf-cellar/LATEST/xml/features

By default, the feature:repo-remove command just removes the features repository from the
registered ones: it doesn’t uninstall the features provided by the features repository.

If you use -u option, the feature:repo-remove command uninstalls all features described by the
features repository:

karaf@root()> feature:repo-remove -u karaf-cellar-4.0.0.RC1

14.12.5. feature:list

The feature:list command lists all available features (provided by the different registered features
repositories):

Name | Version |
Required | State | Repository | Description
--
--

pax-cdi | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Provide CDI support
pax-cdi-1.1 | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Provide CDI 1.1 support
pax-cdi-1.2 | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Provide CDI 1.2 support
pax-cdi-weld | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Weld CDI support
pax-cdi-1.1-weld | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Weld CDI 1.1 support
pax-cdi-1.2-weld | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Weld CDI 1.2 support
pax-cdi-openwebbeans | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | OpenWebBeans CDI support
pax-cdi-web | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Web CDI support
pax-cdi-1.1-web | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Web CDI 1.1 support
...

If you want to order the features by alphabetical name, you can use the -o option:

karaf@root()> feature:list -o
Name | Version |
Required | State | Repository | Description
--
--

Red Hat Fuse 7.1 Deploying into Apache Karaf

100

deltaspike-core | 1.2.1 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Apache Deltaspike core support
deltaspike-data | 1.2.1 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Apache Deltaspike data support
deltaspike-jpa | 1.2.1 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Apache Deltaspike jpa support
deltaspike-partial-bean | 1.2.1 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Apache Deltaspike partial bean
support
pax-cdi | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Provide CDI support
pax-cdi-1.1 | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Provide CDI 1.1 support
pax-cdi-1.1-web | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Web CDI 1.1 support
pax-cdi-1.1-web-weld | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Weld Web CDI 1.1 support
pax-cdi-1.1-weld | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Weld CDI 1.1 support
pax-cdi-1.2 | 0.12.0 |
| Uninstalled | org.ops4j.pax.cdi-0.12.0 | Provide CDI 1.2 support
...

By default, the feature:list command displays all features, whatever their current state (installed or
not installed).

Using the -i option displays only installed features:

karaf@root()> feature:list -i
Name | Version | Required | State | Repository |
Description
--

aries-proxy | 4.0.0 | | Started | standard-4.0.0 | Aries
Proxy
aries-blueprint | 4.0.0 | x | Started | standard-4.0.0 | Aries
Blueprint
feature | 4.0.0 | x | Started | standard-4.0.0 |
Features Support
shell | 4.0.0 | x | Started | standard-4.0.0 | Karaf
Shell
shell-compat | 4.0.0 | x | Started | standard-4.0.0 | Karaf
Shell Compatibility
deployer | 4.0.0 | x | Started | standard-4.0.0 | Karaf
Deployer
bundle | 4.0.0 | x | Started | standard-4.0.0 | Provide
Bundle support
config | 4.0.0 | x | Started | standard-4.0.0 | Provide
OSGi ConfigAdmin support
diagnostic | 4.0.0 | x | Started | standard-4.0.0 | Provide
Diagnostic support
instance | 4.0.0 | x | Started | standard-4.0.0 | Provide
Instance support
jaas | 4.0.0 | x | Started | standard-4.0.0 | Provide
JAAS support

CHAPTER 14. PROVISIONING

101

log | 4.0.0 | x | Started | standard-4.0.0 | Provide
Log support
package | 4.0.0 | x | Started | standard-4.0.0 | Package
commands and mbeans
service | 4.0.0 | x | Started | standard-4.0.0 | Provide
Service support
system | 4.0.0 | x | Started | standard-4.0.0 | Provide
System support
kar | 4.0.0 | x | Started | standard-4.0.0 | Provide
KAR (KARaf archive) support
ssh | 4.0.0 | x | Started | standard-4.0.0 | Provide
a SSHd server on Karaf
management | 4.0.0 | x | Started | standard-4.0.0 | Provide
a JMX MBeanServer and a set of MBeans in
wrap | 0.0.0 | x | Started | standard-4.0.0 | Wrap
URL handler

14.12.6. feature:install

The feature:install command installs a feature.

It requires the feature argument. The feature argument is the name of the feature, or the
name/version of the feature. If only the name of the feature is provided (not the version), the latest
version available will be installed.

karaf@root()> feature:install eventadmin

We can simulate an installation using -t or --simulate option: it just displays what it would do, but it
doesn’t do it:

karaf@root()> feature:install -t -v eventadmin
Adding features: eventadmin/[4.0.0,4.0.0]
No deployment change.
 Managing bundle:
 org.apache.felix.metatype / 1.0.12

You can specify a feature version to install:

karaf@root()> feature:install eventadmin/4.0.0

By default, the feature:install command is not verbose. If you want to have some details about
actions performed by the feature:install command, you can use the -v option:

karaf@root()> feature:install -v eventadmin
Adding features: eventadmin/[4.0.0,4.0.0]
No deployment change.
Done.

If a feature contains a bundle which is already installed, by default, Apache Karaf will refresh this bundle.
Sometime, this refresh can cause issue to other running applications. If you want to disable the auto-
refresh of installed bundles, you can use the -r option:

karaf@root()> feature:install -v -r eventadmin

Red Hat Fuse 7.1 Deploying into Apache Karaf

102

Adding features: eventadmin/[4.0.0,4.0.0]
No deployment change.
Done.

You can decide to not start the bundles installed by a feature using the -s or --no-auto-start
option:

karaf@root()> feature:install -s eventadmin

14.12.7. feature:start

By default, when you install a feature, it’s automatically started. However, you can specify the -s option
to the feature:install command so that is it not started on installation.

As soon as you install a feature (started or not), all packages provided by the bundles defined in the
feature will be available, and can be used for the wiring in other bundles.

When starting a feature, all bundles are started, and so, the feature also exposes the services.

14.12.8. feature:stop

You can also stop a feature: it means that all services provided by the feature will be stop and removed
from the service registry. However, the packages are still available for the wiring (the bundles are in
resolved state).

14.12.9. feature:uninstall

The feature:uninstall command uninstalls a feature. As the feature:install command, the
feature:uninstall command requires the feature argument. The feature argument is the name
of the feature, or the name/version of the feature. If only the name of the feature is provided (not the
version), the latest version available will be installed.

karaf@root()> feature:uninstall eventadmin

The features resolver is involved during feature uninstallation: transitive features installed by the
uninstalled feature can be uninstalled themselves if not used by other feature.

14.13. DEPLOYER

You can hot deploy a feature XML by dropping the file directly in the deploy folder. See Section 4.1,
“Hot Deployment”. When you drop a features XML in the deploy folder, the features deployer does: *
register the features XML as a features repository * the features with install attribute set to "auto" will
be automatically installed by the features deployer.

For instance, dropping the following XML in the deploy folder will automatically install feature1 and
feature2, whereas feature3 won’t be installed:

<?xml version="1.0" encoding="UTF-8"?>
<features name="my-features"
xmlns="http://karaf.apache.org/xmlns/features/v1.3.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://karaf.apache.org/xmlns/features/v1.3.0
http://karaf.apache.org/xmlns/features/v1.3.0">

CHAPTER 14. PROVISIONING

103

 <feature name="feature1" version="1.0" install="auto">
 ...
 </feature>

 <feature name="feature2" version="1.0" install="auto">
 ...
 </feature>

 <feature name="feature3" version="1.0">
 ...
 </feature>

</features>

14.14. JMX FEATUREMBEAN

On the JMX layer, you have a MBean dedicated to the management of the features and features
repositories: the FeatureMBean.

The FeatureMBean object name is: org.apache.karaf:type=feature,name=*.

14.14.1. Attributes

The FeatureMBean provides two attributes:

Features is a tabular data set of all features available.

Repositories is a tabular data set of all registered features repositories.

The Repositories attribute provides the following information:

Name is the name of the features repository.

Uri is the URI to the features XML for this repository.

Features is a tabular data set of all features (name and version) provided by this features
repository.

Repositories is a tabular data set of features repositories "imported" in this features
repository.

The Features attribute provides the following information:

Name is the name of the feature.

Version is the version of the feature.

Installed is a boolean. If true, it means that the feature is currently installed.

Bundles is a tabular data set of all bundles (bundles URL) described in the feature.

Configurations is a tabular data set of all configurations described in the feature.

Configuration Files is a tabular data set of all configuration files described in the feature.

Red Hat Fuse 7.1 Deploying into Apache Karaf

104

Dependencies is a tabular data set of all dependent features described in the feature.

14.14.2. Operations

addRepository(url) adds the features repository with the url. The url can be a name as
in the feature:repo-add command.

addRepository(url, install) adds the features repository with the url and automatically
installs all bundles if install is true. The url can be a name like in the feature:repo-add
command.

removeRepository(url) removes the features repository with the url. The url can be a
name as in the feature:repo-remove command.

installFeature(name) installs the feature with the name.

installFeature(name, version) installs the feature with the name and version.

installFeature(name, noClean, noRefresh) installs the feature with the name without
cleaning the bundles in case of failure, and without refreshing already installed bundles.

installFeature(name, version, noClean, noRefresh) ` installs the
feature with the `name and version without cleaning the bundles in case of failure, and
without refreshing already installed bundles.

uninstallFeature(name) uninstalls the feature with the name.

uninstallFeature(name, version) uninstalls the feature with the name and version.

14.14.3. Notifications

The FeatureMBean sends two kind of notifications (on which you can subscribe and react):

When a feature repository changes (added or removed).

When a feature changes (installed or uninstalled).

CHAPTER 14. PROVISIONING

105

CHAPTER 15. REMOTE
Apache Karaf supports a complete remote mechanism allowing you to remotely connect to a running
Apache Karaf instance. You can also browse, download, and upload files remotely to a running Apache
Karaf instance.

Apache Karaf embeds a complete SSHd server.

15.1. SSHD SERVER

When you start Apache Karaf, it enables a remote console that can be accessed over SSH.

This remote console provides all the features of the "local" console, and gives a remote user complete
control over the container and services running inside of it. As the "local" console, the remote console is
secured by a RBAC mechanism See Chapter 19, Security for details.

In addition to the remote console, Apache Karaf also provides a remote filesystem. This remote
filesystem can be accessed using a SCP/SFTP client.

15.1.1. Configuration

The configuration of the SSHd server is stored in the etc/org.apache.karaf.shell.cfg file:

##
######
#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version
2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.
#
##
######

#
These properties are used to configure Karaf's ssh shell.
#

#
Via sshPort and sshHost you define the address you can login into Karaf.
#
sshPort = 8101
sshHost = 0.0.0.0

Red Hat Fuse 7.1 Deploying into Apache Karaf

106

#
The sshIdleTimeout defines the inactivity timeout to logout the SSH
session.
The sshIdleTimeout is in milliseconds, and the default is set to 30
minutes.
#
sshIdleTimeout = 1800000

#
sshRealm defines which JAAS domain to use for password authentication.
#
sshRealm = karaf

#
The location of the hostKey file defines where the private/public key of
the server
is located. If no file is at the defined location it will be ignored.
#
hostKey = ${karaf.etc}/host.key

#
Role name used for SSH access authorization
If not set, this defaults to the ${karaf.admin.role} configured in
etc/system.properties
#
sshRole = admin

#
Self defined key size in 1024, 2048, 3072, or 4096
If not set, this defaults to 4096.
#
keySize = 4096

#
Specify host key algorithm, defaults to RSA
#
algorithm = RSA

#
Defines the completion mode on the Karaf shell console. The possible
values are:
- GLOBAL: it's the same behavior as in previous Karaf releases. The
completion displays all commands and all aliases
ignoring if you are in a subshell or not.
- FIRST: the completion displays all commands and all aliases only when
you are not in a subshell. When you are
in a subshell, the completion displays only the commands local
to the subshell.
- SUBSHELL: the completion displays only the subshells on the root
level. When you are in a subshell, the completion
displays only the commands local to the subshell.
This property define the default value when you use the Karaf shell
console.
You can change the completion mode directly in the shell console, using

CHAPTER 15. REMOTE

107

shell:completion command.
#
completionMode = GLOBAL

The etc/org.apache.karaf.shell.cfg configuration file contains different properties to configure
the SSHd server:

sshPort is the port number where the SSHd server is bound (by default, it’s 8101).

sshHost is the address of the network interface where the SSHd server is bound. The default
value is 0.0.0.0, meaning that the SSHd server is bound on all network interfaces. You can bind
on a target interface providing the IP address of the network interface.

hostKey is the location of the host.key file. By defaut, it uses etc/host.key. This file stores
the public and private key pair of the SSHd server.

sshRole is the default role used for SSH access. The default value is the value of
karaf.admin.role property defined in etc/system.properties. See the [Security
section|security] of this user guide for details.

keySize is the key size used by the SSHd server. The possible values are 1024, 2048, 3072,
or 4096. The default value is 1024.

algorithm is the host key algorithm used by the SSHd server. The possible values are DSA or
RSA. The default value is DSA.

The SSHd server configuration can be changed at runtime:

by editing the etc/org.apache.karaf.shell.cfg configuration file

by using the config:* commands

At runtime, when you change the SSHd server configuration, you have to restart the SSHd server to load
the changes. You can do it with:

karaf@root()> bundle:restart -f org.apache.karaf.shell.ssh

The Apache Karaf SSHd server supports key/agent authentication and password authentication.

15.1.2. Console clients

15.1.2.1. System native clients

The Apache Karaf SSHd server is a pure SSHd server, similar to OpenSSH daemon.

It means that you can use directly a SSH client from your system.

For instance, on Unix, you can directly use OpenSSH:

~$ ssh -p 8101 karaf@localhost
Authenticated with partial success.
Authenticated with partial success.
Authenticated with partial success.
Password authentication
Password:

Red Hat Fuse 7.1 Deploying into Apache Karaf

108

Karaf started in 7s. Bundle stats: 239 active, 239 total

 ____ _ _ _ _ _____
| _ \ ___ __| | | | | | __ _| |_ | ___| _ ___ ___
| |_) / _ \/ _` | | |_| |/ _` | __| | |_ | | | / __|/ _ \
| _ < __/ (_| | | _ | (_| | |_ | _|| |_| __ \ __/
|_| ____|__,_| |_| |_|__,_|__| |_| __,_|___/___|

 Red Hat Fuse (7.0.0.fuse-000191-redhat-1)
 http://www.redhat.com/products/jbossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit 'system:shutdown' to shutdown Karaf.
Hit '<ctrl-d>' or type 'logout' to disconnect shell from current session.

karaf@root()>

On Windows, you can use Putty, Kitty, etc.

If you don’t have SSH client installed on your machine, you can use Apache Karaf client.

15.1.2.2. ssh:ssh command

Apache Karaf itself provides a SSH client. When you are on the Apache Karaf console, you have the
ssh:ssh command:

karaf@root()> ssh:ssh --help
DESCRIPTION
 ssh:ssh

 Connects to a remote SSH server

SYNTAX
 ssh:ssh [options] hostname [command]

ARGUMENTS
 hostname
 The host name to connect to via SSH
 command
 Optional command to execute

OPTIONS
 --help
 Display this help message
 -p, --port
 The port to use for SSH connection
 (defaults to 22)
 -P, --password
 The password for remote login
 -q
 Quiet Mode. Do not ask for confirmations
 -l, --username
 The user name for remote login

CHAPTER 15. REMOTE

109

Thanks to the ssh:ssh command, you can connect to another running Apache Karaf instance:

karaf@root()> ssh:ssh -p 8101 karaf@192.168.134.2
Connecting to host 192.168.134.2 on port 8101
Connecting to unknown server. Add this server to known hosts ? (y/n)
Storing the server key in known_hosts.
Connected
Karaf started in 7s. Bundle stats: 239 active, 239 total

 ____ _ _ _ _ _____
| _ \ ___ __| | | | | | __ _| |_ | ___| _ ___ ___
| |_) / _ \/ _` | | |_| |/ _` | __| | |_ | | | / __|/ _ \
| _ < __/ (_| | | _ | (_| | |_ | _|| |_| __ \ __/
|_| ____|__,_| |_| |_|__,_|__| |_| __,_|___/___|

 Red Hat Fuse (7.0.0.fuse-000191-redhat-1)
 http://www.redhat.com/products/jbossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit 'system:shutdown' to shutdown Karaf.
Hit '<ctrl-d>' or type 'logout' to disconnect shell from current session.

karaf@root()>

When you don’t provide the command argument to the ssh:ssh command, you are in the interactive
mode: you have a complete remote console available, where you can type commands, etc.

You can also provide directly a command to execute using the command argument. For instance, to
remotely shutdown a Apache Karaf instance:

karaf@root()> ssh:ssh -p 8101 karaf@localhost system:shutdown -f
Connecting to host localhost on port 8101
Connected

As the ssh:ssh command is a pure SSH client, so it means that you can connect to a Unix OpenSSH
daemon:

karaf@root()> ssh:ssh user@localhost
Connecting to host localhost on port 22
Connecting to unknown server. Add this server to known hosts ? (y/n)
Storing the server key in known_hosts.
Agent authentication failed, falling back to password authentication.
Password: Connected
Last login: Sun Sep 8 19:21:12 2013
user@server:~$

15.1.2.3. Apache Karaf client

The ssh:ssh command requires to be run into a running Apache Karaf console.

For commodity, the ssh:ssh command is "wrapped" as a standalone client: the bin/client Unix
script (bin\client.bat on Windows).

Red Hat Fuse 7.1 Deploying into Apache Karaf

110

bin/client --help
{karaf} client
 -a [port] specify the port to connect to
 -h [host] specify the host to connect to
 -u [user] specify the user name
 --help shows this help message
 -v raise verbosity
 -r [attempts] retry connection establishment (up to attempts times)
 -d [delay] intra-retry delay (defaults to 2 seconds)
 -b batch mode, specify multiple commands via standard input
 -f [file] read commands from the specified file
 [commands] commands to run
If no commands are specified, the client will be put in an interactive
mode

For instance, to connect to local Apache Karaf instance (on the default SSHd server 8101 port), you can
directly use bin/client Unix script (bin\client.bat on Windows) without any argument or option:

bin/client
Logging in as karaf
343 [pool-2-thread-4] WARN
org.apache.sshd.client.keyverifier.AcceptAllServerKeyVerifier - Server at
/0.0.0.0:8101 presented unverified key:
Karaf started in 7s. Bundle stats: 239 active, 239 total

 ____ _ _ _ _ _____
| _ \ ___ __| | | | | | __ _| |_ | ___| _ ___ ___
| |_) / _ \/ _` | | |_| |/ _` | __| | |_ | | | / __|/ _ \
| _ < __/ (_| | | _ | (_| | |_ | _|| |_| __ \ __/
|_| ____|__,_| |_| |_|__,_|__| |_| __,_|___/___|

 Red Hat Fuse (7.0.0.fuse-000191-redhat-1)
 http://www.redhat.com/products/jbossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit 'system:shutdown' to shutdown Karaf.
Hit '<ctrl-d>' or type 'logout' to disconnect shell from current session.

karaf@root()>

When you don’t provide the command argument to the bin/client Unix script (bin\client.bat on
Windows), you are in the interactive mode: you have a complete remote console available, where you
can type commands, etc.

You can also provide directly a command to execute using the command argument. For instance, to
remotely shutdown a Apache Karaf instance:

bin/client "system:shutdown -f"
Logging in as karaf
330 [pool-2-thread-3] WARN
org.apache.sshd.client.keyverifier.AcceptAllServerKeyVerifier - Server at
/0.0.0.0:8101 presented unverified key:

CHAPTER 15. REMOTE

111

As the Apache Karaf client is a pure SSH client, you can use to connect to any SSHd daemon (like Unix
OpenSSH daemon):

bin/client -a 22 -h localhost -u user
Logging in as user
353 [pool-2-thread-2] WARN
org.apache.sshd.client.keyverifier.AcceptAllServerKeyVerifier - Server at
localhost/127.0.0.1:22 presented unverified key:
Password:
Welcome to Ubuntu 13.10 (GNU/Linux 3.11.0-13-generic x86_64)

 * Documentation: https://help.ubuntu.com/

Last login: Tue Dec 3 18:18:31 2013 from localhost

15.1.2.4. Logout

When you are connected to a remote Apache Karaf console, you can logout using:

using CTRL-D key binding. Note that CTRL-D just logout from the remote console in this case, it
doesn’t shutdown the Apache Karaf instance (as CTRL-D does when used on a local console).

using shell:logout command (or simply logout)

15.1.3. Filsystem clients

Apache Karaf SSHd server also provides complete fileystem access via SSH. For security reason, the
available filesystem is limited to KARAF_BASE directory.

You can use this remote filesystem with any SCP/SFTP compliant clients.

15.1.3.1. Native SCP/SFTP clients

On Unix, you can directly use scp command to download/upload files to the Apache Karaf filesystem.
For instance, to retrieve the fuse.log file remotely:

~$ scp -P 8101 karaf@localhost:/data/log/karaf.log .
Authenticated with partial success.
Authenticated with partial success.
Authenticated with partial success.
Password admin
Password:
fuse.log

As you have access to the complete KARAF_BASE directory, you can remotely change the configuration
file in the etc folder, retrieve log files, populate the system folder.

On Windows, you can use WinSCP to access the Apache Karaf filesystem.

It’s probably easier to use a SFTP complient client.

For instance, on Unix system, you can use lftp or ncftp:

$ lftp

Red Hat Fuse 7.1 Deploying into Apache Karaf

112

lftp :~> open -u karaf sftp://localhost:8101
Password:
lftp karaf@localhost:~> ls
-rw-r--r-- 1 jbonofre jbonofre 27754 Oct 26 10:50 LICENSE
-rw-r--r-- 1 jbonofre jbonofre 1919 Dec 3 05:34 NOTICE
-rw-r--r-- 1 jbonofre jbonofre 3933 Aug 18 2012 README
-rw-r--r-- 1 jbonofre jbonofre 101041 Dec 3 05:34 RELEASE-NOTES
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 12:51 bin
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 18:57 data
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 12:51 demos
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 13:02 deploy
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 17:59 etc
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 13:02 instances
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 13:02 lib
-rw-r--r-- 1 jbonofre jbonofre 0 Dec 3 13:02 lock
drwxr-xr-x 1 jbonofre jbonofre 4096 Dec 3 12:51 system
lftp karaf@localhost:/>

You can also use graphic client like filezilla, gftp, nautilus, etc.

On Windows, you can use filezilla, WinSCP, etc.

15.1.3.2. Apache Maven

The Apache Karaf system folder is the Karaf repository, that use a Maven directory structure. It’s where
Apache Karaf looks for the artifacts (bundles, features, kars, etc).

Using Apache Maven, you can populate the system folder using the deploy:deploy-file goal.

For instance, you want to add the Apache ServiceMix facebook4j OSGi bundle, you can do:

mvn deploy:deploy-file -Dfile=org.apache.servicemix.bundles.facebook4j-
2.0.2_1.jar -DgroupId=org.apache.servicemix.bundles -
DartifactId=org.apache.servicemix.bundles.facebook4j -Dversion=2.0.2_1 -
Dpackaging=jar -Durl=scp://localhost:8101/system

15.2. JMX MBEANSERVER

Apache Karaf provides a JMX MBeanServer.

This MBeanServer is available remotely, using any JMX client like jconsole.

You can find details on the [Monitoring section|monitoring] of the user guide.

CHAPTER 15. REMOTE

113

CHAPTER 16. BUILDING WITH MAVEN

Abstract

Maven is an open source build system which is available from the Apache Maven project. This chapter
explains some of the basic Maven concepts and describes how to set up Maven to work with Red Hat
Fuse. In principle, you could use any build system to build an OSGi bundle. But Maven is strongly
recommended, because it is well supported by Red Hat Fuse.

16.1. MAVEN DIRECTORY STRUCTURE

16.1.1. Overview

One of the most important principles of the Maven build system is that there are standard locations for
all of the files in the Maven project. There are several advantages to this principle. One advantage is that
Maven projects normally have an identical directory layout, making it easy to find files in a project.
Another advantage is that the various tools integrated with Maven need almost no initial configuration.
For example, the Java compiler knows that it should compile all of the source files under
src/main/java and put the results into target/classes.

16.1.2. Standard directory layout

Example 16.1, “Standard Maven Directory Layout” shows the elements of the standard Maven directory
layout that are relevant to building OSGi bundle projects. In addition, the standard locations for Blueprint
configuration files (which are not defined by Maven) are also shown.

Example 16.1. Standard Maven Directory Layout

ProjectDir/
 pom.xml
 src/
 main/
 java/
 ...
 resources/
 META-INF/

 OSGI-INF/
 blueprint/
 *.xml
 test/
 java/
 resources/
 target/
 ...

NOTE

It is possible to override the standard directory layout, but this is not a recommended
practice in Maven.

Red Hat Fuse 7.1 Deploying into Apache Karaf

114

http://maven.apache.org/

16.1.3. pom.xml file

The pom.xml file is the Project Object Model (POM) for the current project, which contains a complete
description of how to build the current project. A pom.xml file can be completely self-contained, but
frequently (particular for more complex Maven projects) it can import settings from a parent POM file.

After building the project, a copy of the pom.xml file is automatically embedded at the following location
in the generated JAR file:

META-INF/maven/groupId/artifactId/pom.xml

16.1.4. src and target directories

The src/ directory contains all of the code and resource files that you will work on while developing the
project.

The target/ directory contains the result of the build (typically a JAR file), as well as all all of the
intermediate files generated during the build. For example, after performing a build, the
target/classes/ directory will contain a copy of the resource files and the compiled Java classes.

16.1.5. main and test directories

The src/main/ directory contains all of the code and resources needed for building the artifact.

The src/test/ directory contains all of the code and resources for running unit tests against the
compiled artifact.

16.1.6. java directory

Each java/ sub-directory contains Java source code (*.java files) with the standard Java directory
layout (that is, where the directory pathnames mirror the Java package names, with / in place of the .
character). The src/main/java/ directory contains the bundle source code and the src/test/java/
directory contains the unit test source code.

16.1.7. resources directory

If you have any configuration files, data files, or Java properties to include in the bundle, these should be
placed under the src/main/resources/ directory. The files and directories under
src/main/resources/ will be copied into the root of the JAR file that is generated by the Maven build
process.

The files under src/test/resources/ are used only during the testing phase and will not be copied
into the generated JAR file.

16.1.8. Blueprint container

OSGi R4.2 defines a Blueprint container. Red Hat Fuse has built-in support for the Blueprint container,
which you can enable simply by including Blueprint configuration files, OSGI-INF/blueprint/*.xml,
in your project. For more details about the Blueprint container, see Chapter 10, OSGi Services.

CHAPTER 16. BUILDING WITH MAVEN

115

CHAPTER 17. MAVEN INDEXER PLUGIN
The Maven Indexer Plugin is required for the Maven plugin to enable it to quickly search Maven Central
for artifacts.

To Deploy the Maven Indexer plugin use the following commands:

Prerequisites

Before deploying the Maven Indexer Plugin, make sure that you have followed the instructions in the
Installing on Apache Karaf Preparing to Use Maven section.

Deploy the Maven Indexer Plugin

1. Go to the Karaf console and enter the following command to install the Maven Indexer plugin:

features:install hawtio-maven-indexer

2. Enter the following commands to configure the Maven Indexer plugin:

config:edit io.hawt.maven.indexer
config:proplist
config:propset repositories 'https://maven.oracle.com'
config:proplist
config:update

3. Wait for the Maven Indexer plugin to be deployed. This may take a few minutes. Look out for
messages like those shown below to appear on the log tab.

When the Maven Indexer plugin has been deployed, use the following commands to add further external
Maven repositories to the Maven Indexer plugin configuration:

config:edit io.hawt.maven.indexer
config:proplist
config:propset repositories external repository
config:proplist
config:update

Red Hat Fuse 7.1 Deploying into Apache Karaf

116

https://access.qa.redhat.com/documentation/en-us/red_hat_fuse/7.0/html-single/installing_on_apache_karaf/#Build-GenerateMaven

CHAPTER 18. LOG
Apache Karaf provides a very dynamic and powerful logging system.

It supports:

the OSGi Log Service

the Apache Log4j v1 and v2 framework

the Apache Commons Logging framework

the Logback framework

the SLF4J framework

the native Java Util Logging framework

It means that the applications can use any logging framework, Apache Karaf will use the central log
system to manage the loggers, appenders, etc.

18.1. CONFIGURATION FILES

The initial log configuration is loaded from etc/org.ops4j.pax.logging.cfg.

This file is a standard Log4j configuration file.

You find the different Log4j element:

loggers

appenders

layouts

You can add your own initial configuration directly in the file.

The default configuration is the following:

##
######
#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version
2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

CHAPTER 18. LOG

117

http://logging.apache.org/log4j/1.2/manual.html

See the License for the specific language governing permissions and
limitations under the License.
#
##
######

Root logger
log4j.rootLogger=INFO, out, osgi:*
log4j.throwableRenderer=org.apache.log4j.OsgiThrowableRenderer

CONSOLE appender not used by default
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ISO8601} | %-5.5p | %-
16.16t | %-32.32c{1} | %X{bundle.id} - %X{bundle.name} -
%X{bundle.version} | %m%n

File appender
log4j.appender.out=org.apache.log4j.RollingFileAppender
log4j.appender.out.layout=org.apache.log4j.PatternLayout
log4j.appender.out.layout.ConversionPattern=%d{ISO8601} | %-5.5p | %-
16.16t | %-32.32c{1} | %X{bundle.id} - %X{bundle.name} -
%X{bundle.version} | %m%n
log4j.appender.out.file=${karaf.data}/log/karaf.log
log4j.appender.out.append=true
log4j.appender.out.maxFileSize=1MB
log4j.appender.out.maxBackupIndex=10

Sift appender
log4j.appender.sift=org.apache.log4j.sift.MDCSiftingAppender
log4j.appender.sift.key=bundle.name
log4j.appender.sift.default=karaf
log4j.appender.sift.appender=org.apache.log4j.FileAppender
log4j.appender.sift.appender.layout=org.apache.log4j.PatternLayout
log4j.appender.sift.appender.layout.ConversionPattern=%d{ISO8601} | %-5.5p
| %-16.16t | %-32.32c{1} | %m%n
log4j.appender.sift.appender.file=${karaf.data}/log/$\\{bundle.name\\}.log
log4j.appender.sift.appender.append=true

The default configuration only define the ROOT logger, with INFO log level, using the out file appender.
You can change the log level to any Log4j valid values (from the most to less verbose): TRACE,
DEBUG, INFO, WARN, ERROR, FATAL.

The osgi:* appender is a special appender to send the log message to the OSGi Log Service.

A stdout console appender is pre-configured, but not enabled by default. This appender allows you to
display log messages directly to standard output. It’s interesting if you plan to run Apache Karaf in server
mode (without console).

To enable it, you have to add the stdout appender to the rootLogger:

log4j.rootLogger=INFO, out, stdout, osgi:*

The out appender is the default one. It’s rolling file appender that maintain and rotate 10 log files of 1MB
each. The log files are located in data/log/karaf.log by default.

Red Hat Fuse 7.1 Deploying into Apache Karaf

118

The sift appender is not enabled by default. This appender allows you to have one log file per
deployed bundle. By default, the log file name format uses the bundle symbolic name (in the data/log
folder).

You can edit this file at runtime: any change will be reloaded and be effective immediately (no need to
restart Apache Karaf).

Another configuration file is used by Apache Karaf: etc/org.apache.karaf.log.cfg. This files
configures the Log Service used by the log commands (see later).

18.2. LOG4J V2 SUPPORT

Karaf supports log4j v2 backend.

To enable log4j v2 support you have to:

1. Edit etc/startup.properties to replace the line org/ops4j/pax/logging/pax-
logging-service/1.8.4/pax-logging-service-1.8.4.jar=8 with
org/ops4j/pax/logging/pax-logging-log4j2/1.8.4/pax-logging-log4j2-
1.8.4.jar=8

2. Add pax-logging-log4j2 jar file in system/org/ops4j/pax/logging/pax-logging-
log4j2/x.x/pax-logging-log4j2-x.x.jar where x.x is the version as
defined in `etc/startup.properties

3. Edit etc/org.ops4j.pax.logging.cfg configuration file and add
org.ops4j.pax.logging.log4j2.config.file=${karaf.etc}/log4j2.xml

4. Add the etc/log4j2.xml configuration file.

A default configuration in etc/log4j2.xml could be:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="INFO">
 <Appenders>
 <Console name="console" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{ABSOLUTE} | %-5.5p | %-16.16t | %-
32.32c{1} | %X{bundle.id} - %X{bundle.name} - %X{bundle.version} | %m%n"/>
 </Console>
 <RollingFile name="out" fileName="${karaf.data}/log/karaf.log"
 append="true" filePattern="${karaf.data}/log/$${date:yyyy-
MM}/fuse-%d{MM-dd-yyyy}-%i.log.gz">
 <PatternLayout>
 <Pattern>%d{ABSOLUTE} | %-5.5p | %-16.16t | %-32.32c{1} |
%X{bundle.id} - %X{bundle.name} - %X{bundle.version} | %m%n</Pattern>
 </PatternLayout>
 <Policies>
 <TimeBasedTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="250 MB"/>
 </Policies>
 </RollingFile>
 <PaxOsgi name="paxosgi" filter="VmLogAppender"/>
 </Appenders>
 <Loggers>
 <Root level="INFO">

CHAPTER 18. LOG

119

 <AppenderRef ref="console"/>
 <AppenderRef ref="out"/>
 <AppenderRef ref="paxosgi"/>
 </Root>
 </Loggers>
</Configuration>

18.3. COMMANDS

Instead of changing the etc/org.ops4j.pax.logging.cfg file, Apache Karaf provides a set of
commands allowing to dynamically change the log configuration and see the log content:

18.3.1. log:clear

The log:clear command clears the log entries.

18.3.2. log:display

The log:display command displays the log entries.

By default, it displays the log entries of the rootLogger:

karaf@root()> log:display
2015-07-01 19:12:46,208 | INFO | FelixStartLevel | SecurityUtils
| 16 - org.apache.sshd.core - 0.12.0 | BouncyCastle not registered, using
the default JCE provider
2015-07-01 19:12:47,368 | INFO | FelixStartLevel | core
| 68 - org.apache.aries.jmx.core - 1.1.1 | Starting JMX OSGi agent

You can also display the log entries from a specific logger, using the logger argument:

karaf@root()> log:display ssh
2015-07-01 19:12:46,208 | INFO | FelixStartLevel | SecurityUtils
| 16 - org.apache.sshd.core - 0.12.0 | BouncyCastle not registered, using
the default JCE provider

By default, all log entries will be displayed. It could be very long if your Apache Karaf container is running
since a long time. You can limit the number of entries to display using the -n option:

karaf@root()> log:display -n 5
2015-07-01 06:53:24,143 | INFO | JMX OSGi Agent | core
| 68 - org.apache.aries.jmx.core - 1.1.1 | Registering
org.osgi.jmx.framework.BundleStateMBean to MBeanServer
com.sun.jmx.mbeanserver.JmxMBeanServer@27cc75cb with name
osgi.core:type=bundleState,version=1.7,framework=org.apache.felix.framewor
k,uuid=5335370f-9dee-449f-9b1c-cabe74432ed1
2015-07-01 06:53:24,150 | INFO | JMX OSGi Agent | core
| 68 - org.apache.aries.jmx.core - 1.1.1 | Registering
org.osgi.jmx.framework.PackageStateMBean to MBeanServer
com.sun.jmx.mbeanserver.JmxMBeanServer@27cc75cb with name
osgi.core:type=packageState,version=1.5,framework=org.apache.felix.framewo
rk,uuid=5335370f-9dee-449f-9b1c-cabe74432ed1
2015-07-01 06:53:24,150 | INFO | JMX OSGi Agent | core

Red Hat Fuse 7.1 Deploying into Apache Karaf

120

| 68 - org.apache.aries.jmx.core - 1.1.1 | Registering
org.osgi.jmx.framework.ServiceStateMBean to MBeanServer
com.sun.jmx.mbeanserver.JmxMBeanServer@27cc75cb with name
osgi.core:type=serviceState,version=1.7,framework=org.apache.felix.framewo
rk,uuid=5335370f-9dee-449f-9b1c-cabe74432ed1
2015-07-01 06:53:24,152 | INFO | JMX OSGi Agent | core
| 68 - org.apache.aries.jmx.core - 1.1.1 | Registering
org.osgi.jmx.framework.wiring.BundleWiringStateMBean to MBeanServer
com.sun.jmx.mbeanserver.JmxMBeanServer@27cc75cb with name
osgi.core:type=wiringState,version=1.1,framework=org.apache.felix.framewor
k,uuid=5335370f-9dee-449f-9b1c-cabe74432ed1
2015-07-01 06:53:24,501 | INFO | FelixStartLevel |
RegionsPersistenceImpl | 78 - org.apache.karaf.region.persist -
4.0.0 | Loading region digraph persistence

You can also limit the number of entries stored and retain using the size property in
etc/org.apache.karaf.log.cfg file:

#
The number of log statements to be displayed using log:display. It also
defines the number
of lines searched for exceptions using log:display exception. You can
override this value
at runtime using -n in log:display.
#
size = 500

By default, each log level is displayed with a different color: ERROR/FATAL are in red, DEBUG in
purple, INFO in cyan, etc. You can disable the coloring using the --no-color option.

The log entries format pattern doesn’t use the conversion pattern define in
etc/org.ops4j.pax.logging.cfg file. By default, it uses the pattern property defined in
etc/org.apache.karaf.log.cfg.

#
The pattern used to format the log statement when using log:display.
This pattern is according
to the log4j layout. You can override this parameter at runtime using
log:display with -p.
#
pattern = %d{ISO8601} | %-5.5p | %-16.16t | %-32.32c{1} | %X{bundle.id} -
%X{bundle.name} - %X{bundle.version} | %m%n

You can also change the pattern dynamically (for one execution) using the -p option:

karaf@root()> log:display -p "%d - %c - %m%n"
2015-07-01 07:01:58,007 - org.apache.sshd.common.util.SecurityUtils -
BouncyCastle not registered, using the default JCE provider
2015-07-01 07:01:58,725 - org.apache.aries.jmx.core - Starting JMX OSGi
agent
2015-07-01 07:01:58,744 - org.apache.aries.jmx.core - Registering MBean
with ObjectName
[osgi.compendium:service=cm,version=1.3,framework=org.apache.felix.framewo
rk,uuid=6361fc65-8df4-4886-b0a6-479df2d61c83] for service with service.id
[13]

CHAPTER 18. LOG

121

2015-07-01 07:01:58,747 - org.apache.aries.jmx.core - Registering
org.osgi.jmx.service.cm.ConfigurationAdminMBean to MBeanServer
com.sun.jmx.mbeanserver.JmxMBeanServer@27cc75cb with name
osgi.compendium:service=cm,version=1.3,framework=org.apache.felix.framewor
k,uuid=6361fc65-8df4-4886-b0a6-479df2d61c83

The pattern is a regular Log4j pattern where you can use keywords like %d for the date, %c for the class,
%m for the log message, etc.

18.3.3. log:exception-display

The log:exception-display command displays the last occurred exception.

As for log:display command, the log:exception-display command uses the rootLogger by
default, but you can specify a logger with the logger argument.

18.3.4. log:get

The log:get command show the current log level of a logger.

By default, the log level showed is the one from the root logger:

karaf@root()> log:get
Logger | Level

ROOT | INFO

You can specify a particular logger using the logger argument:

karaf@root()> log:get ssh
Logger | Level

ssh | INFO

The logger argument accepts the ALL keyword to display the log level of all logger (as a list).

For instance, if you have defined your own logger in etc/org.ops4j.pax.logging.cfg file like this:

log4j.logger.my.logger = DEBUG

you can see the list of loggers with the corresponding log level:

karaf@root()> log:get ALL
Logger | Level

ROOT | INFO
my.logger | DEBUG

The log:list command is an alias to log:get ALL.

18.3.5. log:log

The log:log command allows you to manually add a message in the log. It’s interesting when you

Red Hat Fuse 7.1 Deploying into Apache Karaf

122

create Apache Karaf scripts:

karaf@root()> log:log "Hello World"
karaf@root()> log:display
2015-07-01 07:20:16,544 | INFO | Local user karaf | command
| 59 - org.apache.karaf.log.command - 4.0.0 | Hello World

By default, the log level is INFO, but you can specify a different log level using the -l option:

karaf@root()> log:log -l ERROR "Hello World"
karaf@root()> log:display
2015-07-01 07:21:38,902 | ERROR | Local user karaf | command
| 59 - org.apache.karaf.log.command - 4.0.0 | Hello World

18.3.6. log:set

The log:set command sets the log level of a logger.

By default, it changes the log level of the rootLogger:

karaf@root()> log:set DEBUG
karaf@root()> log:get
Logger | Level

ROOT | DEBUG

You can specify a particular logger using the logger argument, after the level one:

karaf@root()> log:set INFO my.logger
karaf@root()> log:get my.logger
Logger | Level

my.logger | INFO

The level argument accepts any Log4j log level: TRACE, DEBUG, INFO, WARN, ERROR, FATAL.

By it also accepts the DEFAULT special keyword.

The purpose of the DEFAULT keyword is to delete the current level of the logger (and only the level, the
other properties like appender are not deleted) in order to use the level of the logger parent (logger are
hierarchical).

For instance, you have defined the following loggers (in etc/org.ops4j.pax.logging.cfg file):

rootLogger=INFO,out,osgi:*
my.logger=INFO,appender1
my.logger.custom=DEBUG,appender2

You can change the level of my.logger.custom logger:

karaf@root()> log:set INFO my.logger.custom

Now we have:

CHAPTER 18. LOG

123

rootLogger=INFO,out,osgi:*
my.logger=INFO,appender1
my.logger.custom=INFO,appender2

You can use the DEFAULT keyword on my.logger.custom logger to remove the level:

karaf@root()> log:set DEFAULT my.logger.custom

Now we have:

rootLogger=INFO,out,osgi:*
my.logger=INFO,appender1
my.logger.custom=appender2

It means that, at runtime, the my.logger.custom logger uses the level of its parent my.logger, so
INFO.

Now, if we use DEFAULT keyword with the my.logger logger:

karaf@root()> log:set DEFAULT my.logger

We have:

rootLogger=INFO,out,osgi:*
my.logger=appender1
my.logger.custom=appender2

So, both my.logger.custom and my.logger use the log level of the parent rootLogger.

It’s not possible to use DEFAULT keyword with the rootLogger and it doesn’t have parent.

18.3.7. log:tail

The log:tail is exactly the same as log:display but it continuously displays the log entries.

You can use the same options and arguments as for the log:display command.

By default, it displays the entries from the rootLogger:

karaf@root()> log:tail
2015-07-01 07:40:28,152 | INFO | FelixStartLevel | SecurityUtils
| 16 - org.apache.sshd.core - 0.9.0 | BouncyCastle not registered, using
the default JCE provider
2015-07-01 07:40:28,909 | INFO | FelixStartLevel | core
| 68 - org.apache.aries.jmx.core - 1.1.1 | Starting JMX OSGi agent
2015-07-01 07:40:28,928 | INFO | FelixStartLevel | core
| 68 - org.apache.aries.jmx.core - 1.1.1 | Registering MBean with
ObjectName
[osgi.compendium:service=cm,version=1.3,framework=org.apache.felix.framewo
rk,uuid=b44a44b7-41cd-498f-936d-3b12d7aafa7b] for service with service.id
[13]
2015-07-01 07:40:28,936 | INFO | JMX OSGi Agent | core
| 68 - org.apache.aries.jmx.core - 1.1.1 | Registering

Red Hat Fuse 7.1 Deploying into Apache Karaf

124

org.osgi.jmx.service.cm.ConfigurationAdminMBean to MBeanServer
com.sun.jmx.mbeanserver.JmxMBeanServer@27cc75cb with name
osgi.compendium:service=cm,version=1.3,framework=org.apache.felix.framewor
k,uuid=b44a44b7-41cd-498f-936d-3b12d7aafa7b

To exit from the log:tail command, just type CTRL-C.

18.4. JMX LOGMBEAN

All actions that you can perform with the log:* command can be performed using the LogMBean.

The LogMBean object name is org.apache.karaf:type=log,name=*.

18.4.1. Attributes

Level attribute is the level of the ROOT logger.

18.4.2. Operations

getLevel(logger) to get the log level of a specific logger. As this operation supports the ALL
keyword, it returns a Map with the level of each logger.

setLevel(level, logger) to set the log level of a specific logger. This operation supports
the DEFAULT keyword as for the log:set command.

18.5. ADVANCED CONFIGURATION

18.5.1. Filters

You can use filters on appender. Filters allow log events to be evaluated to determine if or how they
should be published.

Log4j provides ready to use filters:

The DenyAllFilter (org.apache.log4j.varia.DenyAllFilter) drops all logging events.
You can add this filter to the end of a filter chain to switch from the default "accept all unless
instructed otherwise" filtering behaviour to a "deny all unless instructed otherwise" behaviour.

The LevelMatchFilter (org.apache.log4j.varia.LevelMatchFilter is a very simple
filter based on level matching. The filter admits two options LevelToMatch and
AcceptOnMatch. If there is an exact match between the value of the LevelToMatch option
and the level of the logging event, then the event is accepted in case the AcceptOnMatch
option value is set to true. Else, if the AcceptOnMatch option value is set to false, the log
event is rejected.

The LevelRangeFilter (org.apache.log4j.varia.LevelRangeFilter is a very simple
filter based on level matching, which can be used to reject messages with priorities outside a
certain range. The filter admits three options LevelMin, LevelMax and AcceptOnMatch. If the
log event level is between LevelMin and LevelMax, the log event is accepted if
AcceptOnMatch is true, or rejected if AcceptOnMatch is false.

The StringMatchFilter (org.apache.log4j.varia.StringMatchFilter) is a very simple
filter based on string matching. The filter admits two options StringToMatch and

CHAPTER 18. LOG

125

AcceptOnMatch. If there is a match between the StringToMatch and the log event message,
the log event is accepted if AcceptOnMatch is true, or rejected if AcceptOnMatch is false.

The filter is defined directly on the appender, in the etc/org.ops4j.pax.logging.cfg configuration
file.

The format to use it:

log4j.appender.[appender-name].filter.[filter-name]=[filter-class]
log4j.appender.[appender-name].filter.[filter-name].[option]=[value]

For instance, you can use the f1 LevelRangeFilter on the out default appender:

log4j.appender.out.filter.f1=org.apache.log4j.varia.LevelRangeFilter
log4j.appender.out.filter.f1.LevelMax=FATAL
log4j.appender.out.filter.f1.LevelMin=DEBUG

Thanks to this filter, the log files generated by the out appender will contain only log messages with a
level between DEBUG and FATAL (the log events with TRACE as level are rejected).

18.5.2. Nested appenders

A nested appender is a special kind of appender that you use "inside" another appender. It allows you to
create some kind of "routing" between a chain of appenders.

The most used "nested compliant" appender are:

The AsyncAppender (org.apache.log4j.AsyncAppender) logs events asynchronously.
This appender collects the events and dispatch them to all the appenders that are attached to it.

The RewriteAppender (org.apache.log4j.rewrite.RewriteAppender) forwards log
events to another appender after possibly rewriting the log event.

This kind of appender accepts an appenders property in the appender definition:

log4j.appender.[appender-name].appenders=[comma-separated-list-of-
appender-names]

For instance, you can create a AsyncAppender named async and asynchronously dispatch the log
events to a JMS appender:

log4j.appender.async=org.apache.log4j.AsyncAppender
log4j.appender.async.appenders=jms

log4j.appender.jms=org.apache.log4j.net.JMSAppender
...

18.5.3. Error handlers

Sometime, appenders can fail. For instance, a RollingFileAppender tries to write on the filesystem but
the filesystem is full, or a JMS appender tries to send a message but the JMS broker is not there.

As log can be very critical to you, you have to be inform that the log appender failed.

Red Hat Fuse 7.1 Deploying into Apache Karaf

126

It’s the purpose of the error handlers. Appenders may delegate their error handling to error handlers,
giving a chance to react to this appender errors.

You have two error handlers available:

The OnlyOnceErrorHandler (org.apache.log4j.helpers.OnlyOnceErrorHandler)
implements log4j’s default error handling policy which consists of emitting a message for the first
error in an appender and ignoring all following errors. The error message is printed on
System.err. This policy aims at protecting an otherwise working application from being flooded
with error messages when logging fails.

The FallbackErrorHandler (org.apache.log4j.varia.FallbackErrorHandler) allows a
secondary appender to take over if the primary appender fails. The error message is printed on
System.err, and logged in the secondary appender.

You can define the error handler that you want to use for each appender using the errorhandler
property on the appender definition itself:

log4j.appender.[appender-name].errorhandler=[error-handler-class]
log4j.appender.[appender-name].errorhandler.root-ref=[true|false]
log4j.appender.[appender-name].errorhandler.logger-ref=[logger-ref]
log4j.appender.[appender-name].errorhandler.appender-ref=[appender-ref]

18.5.4. OSGi specific MDC attributes

The sift appender is a OSGi oriented appender allowing you to split the log events based on MDC
(Mapped Diagnostic Context) attributes.

MDC allows you to distinguish the different source of log events.

The sift appender provides OSGi oritend MDC attributes by default:

bundle.id is the bundle ID

bundle.name is the bundle symbolic name

bundle.version is the bundle version

You can use these MDC properties to create a log file per bundle:

log4j.appender.sift=org.apache.log4j.sift.MDCSiftingAppender
log4j.appender.sift.key=bundle.name
log4j.appender.sift.default=karaf
log4j.appender.sift.appender=org.apache.log4j.FileAppender
log4j.appender.sift.appender.layout=org.apache.log4j.PatternLayout
log4j.appender.sift.appender.layout.ConversionPattern=%d{ABSOLUTE} | %-
5.5p | %-16.16t | %-32.32c{1} | %-32.32C %4L | %m%n
log4j.appender.sift.appender.file=${karaf.data}/log/$\\{bundle.name\\}.log
log4j.appender.sift.appender.append=true

18.5.5. Enhanced OSGi stack trace renderer

By default, Apache Karaf provides a special stack trace renderer, adding some OSGi specific specific
information.

CHAPTER 18. LOG

127

In the stack trace, in addition of the class throwing the exception, you can find a pattern
[id:name:version] at the end of each stack trace line, where:

id is the bundle ID

name is the bundle name

version is the bundle version

It’s very helpful to diagnosing the source of an issue.

For instance, in the following IllegalArgumentException stack trace, we can see the OSGi details about
the source of the exception:

java.lang.IllegalArgumentException: Command not found: *:foo
 at org.apache.felix.gogo.runtime.shell.Closure.execute(Closure.java:225)
[21:org.apache.karaf.shell.console:4.0.0]
 at
org.apache.felix.gogo.runtime.shell.Closure.executeStatement(Closure.java:
162)[21:org.apache.karaf.shell.console:4.0.0]
 at org.apache.felix.gogo.runtime.shell.Pipe.run(Pipe.java:101)
[21:org.apache.karaf.shell.console:4.0.0]
 at org.apache.felix.gogo.runtime.shell.Closure.execute(Closure.java:79)
[21:org.apache.karaf.shell.console:4.0.0]
 at
org.apache.felix.gogo.runtime.shell.CommandSessionImpl.execute(CommandSess
ionImpl.java:71)[21:org.apache.karaf.shell.console:4.0.0]
 at org.apache.karaf.shell.console.jline.Console.run(Console.java:169)
[21:org.apache.karaf.shell.console:4.0.0]
 at java.lang.Thread.run(Thread.java:637)[:1.7.0_21]

18.5.6. Custom appenders

You can use your own appenders in Apache Karaf.

The easiest way to do that is to package your appender as an OSGi bundle and attach it as a fragment
of the org.ops4j.pax.logging.pax-logging-service bundle.

For instance, you create MyAppender:

public class MyAppender extends AppenderSkeleton {
...
}

You compile and package as an OSGi bundle containing a MANIFEST looking like:

Manifest:
Bundle-SymbolicName: org.mydomain.myappender
Fragment-Host: org.ops4j.pax.logging.pax-logging-service
...

Copy your bundle in the Apache Karaf system folder. The system folder uses a standard Maven
directory layout: groupId/artifactId/version.

Red Hat Fuse 7.1 Deploying into Apache Karaf

128

In the etc/startup.properties configuration file, you define your bundle in the list before the pax-
logging-service bundle.

You have to restart Apache Karaf with a clean run (purging the data folder) in order to reload the system
bundles. You can now use your appender directly in etc/org.ops4j.pax.logging.cfg
configuration file.

CHAPTER 18. LOG

129

CHAPTER 19. SECURITY
Apache Karaf provides an advanced and flexible security system, powered by JAAS (Java
Authentication and Authorization Service) in an OSGi compliant way.

It provides a dynamic security system.

The Apache Karaf security framework is used internally to control the access to:

the OSGi services (described in the developer guide)

the console commands

the JMX layer

the WebConsole

Your applications can also use the security framework (see the developer guide for details).

19.1. REALMS

Apache Karaf is able to manage multiple realms. A realm contains the definition of the login modules to
use for the authentication and/or authorization on this realm. The login modules define the authentication
and authorization for the realm.

The jaas:realm-list command list the current defined realms:

karaf@root()> jaas:realm-list
Index | Realm Name | Login Module Class Name
--

1 | karaf |
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
2 | karaf |
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule

You can see that the Apache Karaf provides a default realm named karaf.

This realm has two login modules:

the PropertiesLoginModule uses the etc/users.properties file as backend for users,
groups, roles and password. This login module authenticates the users and returns the users'
roles.

the PublickeyLoginModule is especially used by the SSHd. It uses the
etc/keys.properties file. This file contains the users and a public key associated to each
user.

Apache Karaf provides additional login modules (see the developer guide for details):

JDBCLoginModule uses a database as backend

LDAPLoginModule uses a LDAP server as backend

SyncopeLoginModule uses Apache Syncope as backend

Red Hat Fuse 7.1 Deploying into Apache Karaf

130

OsgiConfigLoginModule uses a configuration as backend

Krb5LoginModule uses a Kerberos Server as backend

GSSAPILdapLoginModule uses a LDAP server as backend but delegate LDAP server
authentication to an other backend (typically Krb5LoginModule)

You can manage an existing realm, login module, or create your own realm using the jaas:realm-
manage command.

19.1.1. Users, groups, roles, and passwords

As we saw, by default, Apache Karaf uses a PropertiesLoginModule.

This login module uses the etc/users.properties file as storage for the users, groups, roles and
passwords.

The initial etc/users.properties file contains:

##
######
#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version
2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.
#
##
######

#
This file contains the users, groups, and roles.
Each line has to be of the format:
#
USER=PASSWORD,ROLE1,ROLE2,...
USER=PASSWORD,_g_:GROUP,...
g\:GROUP=ROLE1,ROLE2,...
#
All users, grousp, and roles entered in this file are available after
Karaf startup
and modifiable via the JAAS command group. These users reside in a JAAS
domain
with the name "karaf".

CHAPTER 19. SECURITY

131

#
karaf = karaf,_g_:admingroup
g\:admingroup = group,admin,manager,viewer

We can see in this file, that we have one user by default: karaf. The default password is karaf.

The karaf user is member of one group: the admingroup.

A group is always prefixed by g:. An entry without this prefix is an user.

A group defines a set of roles. By default, the admingroup defines group, admin, manager, and
viewer roles.

It means that the karaf user will have the roles defined by the admingroup.

19.1.1.1. Commands

The jaas:* commands manage the realms, users, groups, roles in the console.

19.1.1.1.1. jaas:realm-list

We already used the jaas:realm-list previously in this section.

The jaas:realm-list command list the realm and the login modules for each realm:

karaf@root()> jaas:realm-list
Index | Realm Name | Login Module Class Name
--

1 | karaf |
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
2 | karaf |
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule

We have here one realm (karaf) containing two login modules (PropertiesLoginModule and
PublickeyLoginModule).

The index is used by the jaas:realm-manage command to easily identify the realm/login module that
we want to manage.

19.1.1.1.2. jaas:realm-manage

The jaas:realm-manage command switch in realm/login module edit mode, where you can manage
the users, groups, and roles in the login module.

To identify the realm and login module that you want to manage, you can use the --index option. The
indexes are displayed by the jaas:realm-list command:

karaf@root()> jaas:realm-manage --index 1

Another way is to use the --realm and --module options. The --realm option expects the realm
name, and the --module option expects the login module class name:

karaf@root()> jaas:realm-manage --realm karaf --module

Red Hat Fuse 7.1 Deploying into Apache Karaf

132

org.apache.karaf.jaas.modules.properties.PropertiesLoginModule

19.1.1.1.3. jaas:user-list

When you are in edit mode, you can list the users in the login module using the jaas:user-list:

karaf@root()> jaas:user-list
User Name | Group | Role

karaf | admingroup | admin
karaf | admingroup | manager
karaf | admingroup | viewer

You can see the user name and the group by role.

19.1.1.1.4. jaas:user-add

The jaas:user-add command adds a new user (and the password) in the currently edited login
module:

karaf@root()> jaas:user-add foo bar

To "commit" your change (here the user addition), you have to execute the jaas:update command:

karaf@root()> jaas:update
karaf@root()> jaas:realm-manage --index 1
karaf@root()> jaas:user-list
User Name | Group | Role

karaf | admingroup | admin
karaf | admingroup | manager
karaf | admingroup | viewer
foo | |

On the other hand, if you want to rollback the user addition, you can use the jaas:cancel command.

19.1.1.1.5. jaas:user-delete

The jaas:user-delete command deletes an user from the currently edited login module:

karaf@root()> jaas:user-delete foo

Like for the jaas:user-add command, you have to use the jaas:update to commit your change (or
jaas:cancel to rollback):

karaf@root()> jaas:update
karaf@root()> jaas:realm-manage --index 1
karaf@root()> jaas:user-list
User Name | Group | Role

karaf | admingroup | admin
karaf | admingroup | manager
karaf | admingroup | viewer

CHAPTER 19. SECURITY

133

19.1.1.1.6. jaas:group-add

The jaas:group-add command assigns a group (and eventually creates the group) to an user in the
currently edited login module:

karaf@root()> jaas:group-add karaf mygroup

19.1.1.1.7. jaas:group-delete

The jaas:group-delete command removes an user from a group in the currently edited login
module:

karaf@root()> jaas:group-delete karaf mygroup

19.1.1.1.8. jaas:group-role-add

The jaas:group-role-add command adds a role in a group in the currently edited login module:

karaf@root()> jaas:group-role-add mygroup myrole

19.1.1.1.9. jaas:group-role-delete

The jaas:group-role-delete command removes a role from a group in the currently edited login
module:

karaf@root()> jaas:group-role-delete mygroup myrole

19.1.1.1.10. jaas:update

The jaas:update command commits your changes in the login module backend. For instance, in the
case of the PropertiesLoginModule, the etc/users.properties will be updated only after the
execution of the jaas:update command.

19.1.1.1.11. jaas:cancel

The jaas:cancel command rollback your changes and doesn’t update the login module backend.

19.1.2. Passwords encryption

By default, the passwords are stored in clear form in the etc/users.properties file.

It’s possible to enable encryption in the etc/org.apache.karaf.jaas.cfg configuration file:

##
######
#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.

Red Hat Fuse 7.1 Deploying into Apache Karaf

134

The ASF licenses this file to You under the Apache License, Version
2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.
#
##
######

#
Boolean enabling / disabling encrypted passwords
#
encryption.enabled = false

#
Encryption Service name
the default one is 'basic'
a more powerful one named 'jasypt' is available
when installing the encryption feature
#
encryption.name =

#
Encryption prefix
#
encryption.prefix = {CRYPT}

#
Encryption suffix
#
encryption.suffix = {CRYPT}

#
Set the encryption algorithm to use in Karaf JAAS login module
Supported encryption algorithms follow:
MD2
MD5
SHA-1
SHA-256
SHA-384
SHA-512
#
encryption.algorithm = MD5

#
Encoding of the encrypted password.
Can be:
hexadecimal

CHAPTER 19. SECURITY

135

base64
#
encryption.encoding = hexadecimal

If the encryption.enabled y is set to true, the password encryption is enabled.

With encryption enabled, the password are encrypted at the first time an user logs in. The encrypted
passwords are prefixed and suffixed with \{CRYPT\}. To re-encrypt the password, you can reset the
password in clear (in etc/users.properties file), without the \{CRYPT\} prefix and suffix. Apache
Karaf will detect that this password is in clear (because it’s not prefixed and suffixed with \{CRYPT\})
and encrypt it again.

The etc/org.apache.karaf.jaas.cfg configuration file allows you to define advanced encryption
behaviours:

the encryption.prefix property defines the prefix to "flag" a password as encrypted. The
default is \{CRYPT\}.

the encryption.suffix property defines the suffix to "flag" a password as encrypted. The
default is \{CRYPT\}.

the encryption.algorithm property defines the algorithm to use for encryption (digest). The
possible values are MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512. The default is MD5.

the encryption.encoding property defines the encoding of the encrypted password. The
possible values are hexadecimal or base64. The default value is hexadecimal.

19.1.3. Managing authentication by key

For the SSH layer, Karaf supports the authentication by key, allowing to login without providing the
password.

The SSH client (so bin/client provided by Karaf itself, or any ssh client like OpenSSH) uses a
public/private keys pair that will identify himself on Karaf SSHD (server side).

The keys allowed to connect are stored in etc/keys.properties file, following the format:

user=key,role

By default, Karaf allows a key for the karaf user:

karaf=AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1A
IlH7WT2NWPq/xfW6MPbLm1Vs14E7gB00b/JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnxq
imFQ8E+4P208UewwI1VBNaFpEy9nXzrith1yrv8iIDGZ3RSAHHAAAAFQCXYFCPFSMLzLKSuYKi
64QL8Fgc9QAAAIEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBx
CBgLRJFnEj6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTx
vqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSoAAACBAKKSU2PFl/qOLxIwmBZPPIcJshVe7b
VUpFvyl3BbJDow8rXfskl8wO63OzP/qLmcJM0+JbcRU/53JjTuyk31drV2qxhIOsLDC9dGCWj4
7Y7TyhPdXh/0dthTRBy6bqGtRPxGa7gJov1xm/UuYYXPIUR/3x9MAZvZ5xvE0kYXO+rx,admin

Red Hat Fuse 7.1 Deploying into Apache Karaf

136

NOTE

For security reason, this key is disabled. We encourage to create the keys pair per client
and update the etc/keys.properties file.

The easiest way to create key pair is to use OpenSSH.

You can create a key pair using:

ssh-keygen -t dsa -f karaf.id_dsa -N karaf

You have now the public and private keys:

-rw------- 1 jbonofre jbonofre 771 Jul 25 22:05 karaf.id_dsa
-rw-r--r-- 1 jbonofre jbonofre 607 Jul 25 22:05 karaf.id_dsa.pub

You can copy in the content of the karaf.id_dsa.pub file in the etc/keys.properties:

karaf=AAAAB3NzaC1kc3MAAACBAJLj9vnEhu3/Q9Cvym2jRDaNWkATgQiHZxmErCmiLRuD5Klf
v+HT/+8WoYdnvj0YaXFP80phYhzZ7fbIO2LRFhYhPmGLa9nSeOsQlFuX5A9kY1120yB2kxSIZI
0fU2hy1UCgmTxdTQPSYtdWBJyvO/vczoX/8I3FziEfss07Hj1NAAAAFQD1dKEzkt4e7rBPDokP
OMZigBh4kwAAAIEAiLnpbGNbKm8SNLUEc/fJFswg4G4VjjngjbPZAjhkYe4+H2uYmynry6V+GO
TS2kaFQGZRf9XhSpSwfdxKtx7vCCaoH9bZ6S5Pe0voWmeBhJXi/Sww8f2stpitW2Oq7V7lDdDG
81+N/D7/rKDD5PjUyMsVqc1n9wCTmfqmi6XPEw8AAACAHAGwPn/Mv7P9Q9+JZRWtGq+i4pL1zs
1OluiStCN9e/Ok96t3gRVKPheQ6IwLacNjC9KkSKrLtsVyepGA+V5j/N+Cmsl6csZilnLvMUTv
L/cmHDEEhTIQnPNrDDv+tED2BFqkajQqYLgMWeGVqXsBU6IT66itZlYtrq4v6uDQG/o=,admin

and specify to the client to use the karaf.id_dsa private key:

bin/client -k ~/karaf.id_dsa

or to ssh

ssh -p 8101 -i ~/karaf.id_dsa karaf@localhost

19.1.4. RBAC

Apache Karaf uses the roles to control the access to the resources: it’s a RBAC (Role Based Access
Control) system.

The roles are used to control:

access to OSGi services

access to the console (control the execution of the commands)

access to JMX (MBeans and/or operations)

access to the WebConsole

19.1.4.1. OSGi services

The details about OSGi services RBAC support is explained in the developer guide.

CHAPTER 19. SECURITY

137

19.1.4.2. Console

Console RBAC supports is a specialization of the OSGi service RBAC. Actually, in Apache Karaf, all
console commands are defined as OSGi services.

The console command name follows the scope:name format.

The ACL (Access Lists) are defined in etc/org.apache.karaf.command.acl.<scope>.cfg
configuration files, where <scope> is the commands scope.

For instance, we can define the ACL to the feature:* commands by creating a
etc/org.apache.karaf.command.acl.feature.cfg configuration file. In this
etc/org.apache.karaf.command.acl.feature.cfg configuration file, we can set:

list = viewer
info = viewer
install = admin
uninstall = admin

Here, we define that feature:list and feature:info commands can be executed by users with
viewer role, whereas the feature:install and feature:uninstall commands can only be
executed by users with admin role. Note that users in the admin group will also have viewer role, so will
be able to do everything.

Apache Karaf command ACLs can control access using (inside a given command scope):

the command name regex (e.g. name = role)

the command name and options or arguments values regex (e.g. name[/.[0-9][0-9][0-
9]+./] = role to execute name only with argument value above 100)

Both command name and options/arguments support exact matching or regex matching.

By default, Apache Karaf defines the following commands ACLs:

etc/org.apache.karaf.command.acl.bundle.cfg configuration file defines the ACL for
bundle:* commands. This ACL limits the execution of bundle:* commands for system
bundles only to the users with admin role, whereas bundle:* commands for non-system
bundles can be executed by the users with manager role.

etc/org.apache.karaf.command.acl.config.cfg configuration file defines the ACL for
config:* commands. This ACL limits the execution of config:* commands with
jmx.acl.*, org.apache.karaf.command.acl.*, and
org.apache.karaf.service.acl.* configuration PID to the users with admin role. For the
other configuration PID, the users with the manager role can execute config:* commands.

etc/org.apache.karaf.command.acl.feature.cfg configuration file defines the ACL for
feature:* commands. Only the users with admin role can execute feature:install and
feature:uninstall commands. The other feature:* commands can be executed by any
user.

etc/org.apache.karaf.command.acl.jaas.cfg configuration file defines the ACL for
jaas:* commands. Only the users with admin role can execute jaas:update command. The
other jaas:* commands can be executed by any user.

Red Hat Fuse 7.1 Deploying into Apache Karaf

138

etc/org.apache.karaf.command.acl.kar.cfg configuration file defines the ACL for
kar:* commands. Only the users with admin role can execute kar:install and
kar:uninstall commands. The other kar:* commands can be executed by any user.

etc/org.apache.karaf.command.acl.shell.cfg configuration file defines the ACL for
shell:* and "direct" commands. Only the users with admin role can execute shell:edit,
shell:exec, shell:new, and shell:java commands. The other shell:* commands can
be executed by any user.

You can change these default ACLs, and add your own ACLs for additional command scopes (for
instance etc/org.apache.karaf.command.acl.cluster.cfg for Apache Karaf Cellar,
etc/org.apache.karaf.command.acl.camel.cfg from Apache Camel, … ​).

You can fine tuned the command RBAC support by editing the karaf.secured.services property in
etc/system.properties:

#
By default, only Karaf shell commands are secured, but additional
services can be
secured by expanding this filter
#
karaf.secured.services = (&(osgi.command.scope=*)
(osgi.command.function=*))

19.1.4.3. JMX

Like for the console commands, you can define ACL (AccessLists) to the JMX layer.

The JMX ACL are defined in etc/jmx.acl<ObjectName>.cfg configuration file, where
<ObjectName> is a MBean object name (for instance org.apache.karaf.bundle represents
org.apache.karaf;type=Bundle MBean).

The etc/jmx.acl.cfg is the most generic configuration file and is used when no specific ones are
found. It contains the "global" ACL definition.

JMX ACLs can control access using (inside a JMX MBean):

the operation name regex (e.g. operation* = role)

the operation arguments value regex (e.g. operation(java.lang.String, int)[/([1-
4])?[0-9]/,/.*/] = role)

By default, Apache Karaf defines the following JMX ACLs:

etc/jmx.acl.org.apache.karaf.bundle.cfg configuration file defines the ACL for the
org.apache.karaf:type=bundle MBean. This ACL limits the setStartLevel(),
start(), stop(), and update() operations for system bundles for only users with admin
role. The other operations can be performed by users with the manager role.

etc/jmx.acl.org.apache.karaf.config.cfg configuration file defines the ACL for the
org.apache.karaf:type=config MBean. This ACL limits the change on jmx.acl*,
org.apache.karaf.command.acl*, and org.apache.karaf.service.acl*
configuration PIDs for only users with admin role. The other operations can be performed by
users with the manager role.

CHAPTER 19. SECURITY

139

etc/jmx.acl.org.apache.karaf.security.jmx.cfg configuration file defines the ACL
for the org.apache.karaf:type=security,area=jmx MBean. This ACL limits the
invocation of the canInvoke() operation for the users with viewer role.

etc/jmx.acl.osgi.compendium.cm.cfg configuration file defines the ACL for the
osgi.compendium:type=cm MBean. This ACL limits the changes on jmx.acl*,
org.apache.karaf.command.acl*, and org.apache.karaf.service.acl*
configuration PIDs for only users with admin role. The other operations can be performed by
users with the manager role.

etc/jmx.acl.java.lang.Memory.cfg configuration file defines the ACL for the core JVM
Memory MBean. This ACL limits the invocation of the gc operation for only users with the
manager role.

etc/jmx.acl.cfg configuration file is the most generic file. The ACLs defined here are used
when no other specific ACLs match (by specific ACL, it’s an ACL defined in another MBean
specific etc/jmx.acl.*.cfg configuration file). The list*(), get*(), is*() operations
can be performed by users with the viewer role. The set*() and all other *() operations can
be performed by users with the admin role.

19.1.4.4. WebConsole

The Apache Karaf WebConsole is not available by default. To enable it, you have to install the
webconsole feature:

karaf@root()> feature:install webconsole

The WebConsole doesn’t support fine grained RBAC like console or JMX for now.

All users with the admin role can logon the WebConsole and perform any operations.

19.1.5. SecurityMBean

Apache Karaf provides a JMX MBean to check if the current user can invoke a given MBean and/or
operation.

The canInvoke() operation gets the roles of the current user, and check if one the roles can invoke the
MBean and/or the operation, eventually with a given argument value.

19.1.5.1. Operations

canInvoke(objectName) returns true if the current user can invoke the MBean with the
objectName, false else.

canInvoke(objectName, methodName) returns true if the current user can invoke the
operation methodName on the MBean with the objectName, false else.

canInvoke(objectName, methodName, argumentTypes) returns true if the current
user can invoke the operation methodName with the array of arguments types argumentTypes
on the MBean with objectName, false else.

canInvoke(bulkQuery) returns a tabular data containing for each operation in the
bulkQuery tabular data if canInvoke is true or false.

Red Hat Fuse 7.1 Deploying into Apache Karaf

140

19.1.6. Security providers

Some applications require specific security providers to be available, such as
[BouncyCastle|http://www.bouncycastle.org].

The JVM imposes some restrictions about the use of such jars: they have to be signed and be available
on the boot classpath.

One way to deploy those providers is to put them in the JRE folder at $JAVA_HOME/jre/lib/ext and
modify the security policy configuration ($JAVA_HOME/jre/lib/security/java.security) in
order to register such providers.

While this approach works fine, it has a global effect and requires you to configure all your servers
accordingly.

Apache Karaf offers a simple way to configure additional security providers: * put your provider jar in
lib/ext * modify the etc/config.properties configuration file to add the following property

org.apache.karaf.security.providers = xxx,yyy

The value of this property is a comma separated list of the provider class names to register.

For instance, to add the bouncycastle security provider, you define:

org.apache.karaf.security.providers =
org.bouncycastle.jce.provider.BouncyCastleProvider

In addition, you may want to provide access to the classes from those providers from the system bundle
so that all bundles can access those.

It can be done by modifying the org.osgi.framework.bootdelegation property in the same
configuration file:

org.osgi.framework.bootdelegation = ...,org.bouncycastle*

CHAPTER 19. SECURITY

141

	Table of Contents
	PART I. DEVELOPER GUIDE
	CHAPTER 1. DEPLOYING USING AN OSGI BUNDLE
	1.1. OSGI OVERVIEW
	1.2. PREREQUISITES
	1.3. PREPARING THE OSGI BUNDLE
	1.4. DEPLOYING THE OSGI BUNDLE

	CHAPTER 2. INTRODUCTION TO OSGI
	2.1. OVERVIEW
	2.2. ARCHITECTURE OF APACHE KARAF
	2.3. OSGI FRAMEWORK
	2.3.1. Overview
	2.3.2. OSGi architecture

	2.4. OSGI SERVICES
	2.4.1. Overview
	2.4.2. OSGi service registry
	Event notification
	Service invocation model
	OSGi framework services
	OSGi Compendium services

	2.5. OSGI BUNDLES
	Overview
	Class Loading in OSGi

	CHAPTER 3. BUILDING AN OSGI BUNDLE
	3.1. GENERATING A BUNDLE PROJECT
	3.1.1. Generating bundle projects with Maven archetypes
	3.1.2. Apache Camel archetype
	3.1.3. Building the bundle

	3.2. MODIFYING AN EXISTING MAVEN PROJECT
	3.2.1. Overview
	3.2.2. Change the package type to bundle
	3.2.3. Add the bundle plug-in to your POM
	3.2.4. Customize the bundle plug-in
	3.2.5. Customize the JDK compiler version

	3.3. PACKAGING A WEB SERVICE IN A BUNDLE
	3.3.1. Overview
	3.3.2. Modifying the POM file to generate a bundle
	3.3.3. Mandatory import packages
	3.3.4. Sample Maven bundle plug-in instructions
	3.3.5. Add a code generation plug-in
	3.3.6. OSGi configuration properties
	3.3.7. Configuring the Bundle Plug-In
	Overview
	Configuration properties
	Setting a bundle’s symbolic name
	Setting a bundle’s name
	Setting a bundle’s version
	Specifying exported packages
	Specifying private packages
	Specifying imported packages
	More information

	3.3.8. OSGI configAdmin file naming convention

	CHAPTER 4. HOT DEPLOYMENT VS MANUAL DEPLOYMENT
	4.1. HOT DEPLOYMENT
	4.1.1. Hot deploy directory

	4.2. HOT UNDEPLOYING A BUNDLE
	4.3. MANUAL DEPLOYMENT
	4.3.1. Overview
	4.3.2. Installing a bundle
	4.3.3. Uninstalling a bundle
	4.3.4. URL schemes for locating bundles

	4.4. REDEPLOYING BUNDLES AUTOMATICALLY USING BUNDLE:WATCH

	CHAPTER 5. LIFECYCLE MANAGEMENT
	5.1. BUNDLE LIFECYCLE STATES
	5.2. INSTALLING AND RESOLVING BUNDLES
	5.3. STARTING AND STOPPING BUNDLES
	5.4. BUNDLE START LEVEL
	5.5. SPECIFYING A BUNDLE’S START LEVEL
	5.6. SYSTEM START LEVEL

	CHAPTER 6. TROUBLESHOOTING DEPENDENCIES
	6.1. MISSING DEPENDENCIES
	6.2. REQUIRED FEATURES OR BUNDLES ARE NOT INSTALLED
	6.3. IMPORT-PACKAGE HEADER IS INCOMPLETE
	6.4. HOW TO TRACK DOWN MISSING DEPENDENCIES

	CHAPTER 7. DEPLOYING FEATURES
	7.1. CREATING A FEATURE
	7.1.1. Overview

	7.2. CREATE A CUSTOM FEATURE REPOSITORY
	7.3. ADD A FEATURE TO THE CUSTOM FEATURE REPOSITORY
	7.4. ADD THE LOCAL REPOSITORY URL TO THE FEATURES SERVICE
	7.5. ADD DEPENDENT FEATURES TO THE FEATURE
	7.6. ADD OSGI CONFIGURATIONS TO THE FEATURE
	7.7. AUTOMATICALLY DEPLOY AN OSGI CONFIGURATION

	CHAPTER 8. DEPLOYING A FEATURE
	8.1. OVERVIEW
	8.2. INSTALLING AT THE CONSOLE
	8.3. UNINSTALLING AT THE CONSOLE
	8.4. HOT DEPLOYMENT
	HOT UNDEPLOYING A FEATURES FILE
	8.5. ADDING A FEATURE TO THE BOOT CONFIGURATION

	CHAPTER 9. DEPLOYING A PLAIN JAR
	9.1. CONVERTING A JAR USING THE WRAP SCHEME
	Overview
	Syntax
	Default properties

	WRAP AND INSTALL
	Reference

	CHAPTER 10. OSGI SERVICES
	10.1. THE BLUEPRINT CONTAINER
	10.1.1. Blueprint Configuration
	10.1.2. Defining a Service Bean
	10.1.3. Using properties to configure Blueprint

	10.2. EXPORTING A SERVICE
	10.3. IMPORTING A SERVICE
	10.4. PUBLISHING AN OSGI SERVICE
	10.4.1. Overview
	10.4.2. Prerequisites
	10.4.3. Generating a Maven project
	10.4.4. Customizing the POM file
	10.4.5. Writing the service interface
	10.4.6. Writing the service class
	10.4.7. Writing the Blueprint file
	10.4.8. Running the service bundle

	10.5. ACCESSING AN OSGI SERVICE
	10.5.1. Overview
	10.5.2. Prerequisites
	10.5.3. Generating a Maven project
	10.5.4. Customizing the POM file
	10.5.5. Writing the Blueprint file
	10.5.6. Writing the client class
	10.5.7. Running the client bundle

	10.6. INTEGRATION WITH APACHE CAMEL
	10.6.1. Overview
	10.6.2. Registry chaining
	10.6.3. Sample OSGi service interface
	10.6.4. Sample service export
	10.6.5. Invoking the OSGi service from Java DSL
	10.6.6. Invoking the OSGi service from XML DSL

	CHAPTER 11. DEPLOYING USING A JMS BROKER
	11.1. AMQ 7 QUICKSTART
	11.2. USING THE ARTEMIS CORE CLIENT

	CHAPTER 12. URL HANDLERS
	12.1. FILE URL HANDLER
	SYNTAX
	EXAMPLES
	12.2. HTTP URL HANDLER
	Syntax

	12.3. MVN URL HANDLER
	Overview
	Syntax
	Omitting coordinates
	Specifying a version range
	Configuring the Mvn URL handler
	Check the Mvn URL settings
	Edit the configuration file
	Customize the location of the local repository
	Reference

	12.4. WRAP URL HANDLER
	Overview
	Syntax
	Default instructions
	Examples
	Reference

	12.5. WAR URL HANDLER
	OVERVIEW
	Syntax
	WAR-specific properties/instructions
	Default instructions
	Examples
	Reference

	PART II. USER GUIDE
	CHAPTER 13. INTRODUCTION TO THE DEPLOYING INTO APACHE KARAF USER GUIDE
	13.1. INTRODUCING FUSE CONFIGURATION
	13.2. OSGI CONFIGURATION
	13.3. CONFIGURATION FILES
	CONFIGURATION FILE NAMING CONVENTION
	SETTING JAVA OPTIONS
	13.4. CONFIG CONSOLE COMMANDS
	13.5. JMX CONFIGMBEAN
	13.6. USING THE CONSOLE
	13.6.1. Available commands
	13.6.2. Subshell and completion mode
	13.6.3. Unix like environment
	13.6.3.1. Help or man
	13.6.3.2. Completion
	13.6.3.3. Alias
	13.6.3.4. Key binding
	13.6.3.5. Pipe
	13.6.3.6. Grep, more, find, …​
	13.6.3.7. Scripting

	13.6.4. Security

	CHAPTER 14. PROVISIONING
	14.1. APPLICATION
	14.2. OSGI
	14.3. FEATURE AND RESOLVER
	14.4. FEATURES REPOSITORIES
	14.5. BOOT FEATURES
	14.6. FEATURES UPGRADE
	14.7. OVERRIDES
	14.8. FEATURE BUNDLES
	14.8.1. Start Level
	14.8.2. Simulate, Start and stop
	14.8.3. Dependency

	14.9. DEPENDENT FEATURES
	14.9.1. Feature prerequisites

	14.10. FEATURE CONFIGURATIONS
	14.11. FEATURE CONFIGURATION FILES
	14.11.1. Requirements

	14.12. COMMANDS
	14.12.1. feature:repo-list
	14.12.2. feature:repo-add
	14.12.3. feature:repo-refresh
	14.12.4. feature:repo-remove
	14.12.5. feature:list
	14.12.6. feature:install
	14.12.7. feature:start
	14.12.8. feature:stop
	14.12.9. feature:uninstall

	14.13. DEPLOYER
	14.14. JMX FEATUREMBEAN
	14.14.1. Attributes
	14.14.2. Operations
	14.14.3. Notifications

	CHAPTER 15. REMOTE
	15.1. SSHD SERVER
	15.1.1. Configuration
	15.1.2. Console clients
	15.1.2.1. System native clients
	15.1.2.2. ssh:ssh command
	15.1.2.3. Apache Karaf client
	15.1.2.4. Logout

	15.1.3. Filsystem clients
	15.1.3.1. Native SCP/SFTP clients
	15.1.3.2. Apache Maven

	15.2. JMX MBEANSERVER

	CHAPTER 16. BUILDING WITH MAVEN
	16.1. MAVEN DIRECTORY STRUCTURE
	16.1.1. Overview
	16.1.2. Standard directory layout
	16.1.3. pom.xml file
	16.1.4. src and target directories
	16.1.5. main and test directories
	16.1.6. java directory
	16.1.7. resources directory
	16.1.8. Blueprint container

	CHAPTER 17. MAVEN INDEXER PLUGIN
	CHAPTER 18. LOG
	18.1. CONFIGURATION FILES
	18.2. LOG4J V2 SUPPORT
	18.3. COMMANDS
	18.3.1. log:clear
	18.3.2. log:display
	18.3.3. log:exception-display
	18.3.4. log:get
	18.3.5. log:log
	18.3.6. log:set
	18.3.7. log:tail

	18.4. JMX LOGMBEAN
	18.4.1. Attributes
	18.4.2. Operations

	18.5. ADVANCED CONFIGURATION
	18.5.1. Filters
	18.5.2. Nested appenders
	18.5.3. Error handlers
	18.5.4. OSGi specific MDC attributes
	18.5.5. Enhanced OSGi stack trace renderer
	18.5.6. Custom appenders

	CHAPTER 19. SECURITY
	19.1. REALMS
	19.1.1. Users, groups, roles, and passwords
	19.1.1.1. Commands

	19.1.2. Passwords encryption
	19.1.3. Managing authentication by key
	19.1.4. RBAC
	19.1.4.1. OSGi services
	19.1.4.2. Console
	19.1.4.3. JMX
	19.1.4.4. WebConsole

	19.1.5. SecurityMBean
	19.1.5.1. Operations

	19.1.6. Security providers

